Apple Device and Interrupt ‘@

Support Tools Manual
Apple Il Pascal 1.2

Table of Contents

v Table of Contents

. Preface
Xi
xiii
Xiii

Read Me First

What You Will Find Here
Hardware and Software You Will Need
Where to Look for More Information

Xi

rChapter 1

3
4
5
6
7
8
]

Introduction to Device Drivers

Runtime Support for the Pascal System
The Purpose of a Device Driver
Types of Devices Supported by Pascal
Device Numbers
Attaching Drivers at Run Time

The Three Attach Files

What SYSTEM.ATTACH Does

| Chapter 2

11
13
14
15
15
16
19
22

Writing a Device Driver

General Guidelines
Returning an IORESULT
Maintaining Type-Ahead
Device Driver Subroutines
Initialize
Read and Write
Status
Transient Initialization

Table of Contents

11

tChapter 3 Attaching a Device Driver 25

25 The Four Steps

26 Using ATTACHUD

31 Utility Programs for Handling Attach Data

31 Using the File Merge Utility (ADMERG)

32 Using the Listing Utility (SHOWAD)

33 Using the Conversion Utility (CONVAD)

34 Error Messages You Might Encounter at Startup
Time

] Chapter 4 Interrupt Management 37

37 Handling Interrupts in Apple |l Pascal

39 Sequence for All Systems but the lic

40 Sequence for the Apple lic

42 Writing an interrupt-Based Driver

42 Enabling and Disabling Interrupts

43 Initializing the Chain of Interrupt Service
Routines

44 Recognizing an Interrupt

44 Returning From an Interrupt Service Routine

45 Automatic UNITCLEAR

45 Environmental Considerations

47 Attaching an Interrupt-Based Driver

48 Installing the IM

48 On a 128K Pascal System

49 On a 64K Pascal System

iChapter 5 Special BIOS Considerations 51

51 Calling BIOS Routines

53 The Interpreter’'s Jump Table

54 BIOS Jump Tables

57 Returning to the Pascal Interpreter

58 Handling Special Characters

60 Managing the Type-Ahead Buffer

61 Permanent Locations Used by the BIOS and
Interpreter

vil Table of Contents

| Appendix A Sample Code for a Device 65

Driver

| Appendix B Sample Code for an 69
Interrupt-Based Driver

N Appendix C Information Contained in 79
ATTACH.DATA

|| Appendix D Peripheral Card Firmware 83
Protocols

| Appendix E Drivers for Standard Pascal 87

System Devices

87 Character Devices

89 CONSOLE: and SYSTERM:

92 PRINTER:

92 REMIN: and REMOUT:

93 Special Use of Unit #3

93 Block-Structured Devices

94 Sample Code for a CONSOLE: Driver

B Appendix F IORESULT Codes 99

| Index 101

Table of Contents Tvii

List of Figures and Tables

il] List of Figures and Tables

tChapter 1 Introduction to Device Drivers 3

4 Figure 1-1 Runtime Support
6 Table 1-1 Device Names and Numbers
N Chapter 2 Writing a Device Driver 11
18 Figure 2-1 The MODE Parameter for UNITREAD
and UNITWRITE
20 Figure 2-2 The CONTROL Parameter for
UNITSTATUS
N Chapter 4 Interrupt Management 37
38 Figure 4-1 A Chain of Interrupt Service Routines

H Chapter 5 Special BIOS Considerations 51

52 Figure 5-1
55 Table 5-1
61 Table 5-2
62 Table 5-3
63 Table 5-4

Bank Switching for the BIOS
Order of Addresses in BIOSAF
Zero Page Locations

$BFQ0 Page Locations

$FFO0 Page Locations

List of Figures and Tables [ix

Read Me First

Read Me First

Preface

This manual is a guide to writing and attaching your own device
drivers for use with the Apple® Il Pascal 1.2 operating system.

Before reading it, you should be familiar with the changes to Apple
Il Pascal describad in the Apple Il Pascal 1.2 Update.

Since a device driver is an assembly-language program, you
should also be familiar with the Apple Il Pascal 6502 Assembler.
This is described in Chapter 6 of the Apple Pascal Operating
System Reference Manual for the Apple Il.

M what You Will Find Here

Here is an overview of what this manual contains.

e Chapter 1 provides general information about device drivers—
what they are meant to do, where they reside at run time, and
what types of devices they support. It also gives a general
overview of how devices are attached.

e Chapter 2 gives guidelines for writing device driver code.

e Chapter 3 describes in detail how to attach a device driver to
the Pascal operating system.

e Chapter 4 explains interrupt handiing in Apple Il Pascal and the
additional requirements for device drivers that are meant to
handle interrupts.

What You Will Find Here Ixi

x|

Chapter 5 contains technical information about the Pascal
system’s BIOS, including the mechanisms for calling both
standard and user-defined device drivers. You may want to
skim this chapter on a first reading, but you should be familiar
with the information it contains before you attempt to assemble
and attach a user-defined driver.

Sample code for device drivers is provided in Appendix A and
Appendix B. It may be useful to refer to this code while you are
writing your own driver.

Appendix C lists the information contained in an attach data
file, and gives the format in which it is saved.

Appendix D summarizes the protocol for peripheral card
firmware to communicate with programs in Apple Il Pascal,
version 1.2.

Appendix E describes the special requirements ot standard
Pascal system device drivers. You will want to read through it if
the device driver you plan to write is intended to replace one of
the system device drivers.

Appendix F lists IORESULT codes to be returned by device
driver subroutines.

Look for these aids to understanding throughout the manual:

Gray ‘Boxes: Gray. boxes contain usefui pueces of related
mformatuon i

A Warning
Warning boxes point out potential problems or disasters.

Read Me First

- Hardware and Software You Will Need

You should use this manual with the following software and
hardware:

e The Attach Tools disk, provided with this manual. This disk
contains the following programs, which you will need to use in
writing and attaching drivers:

SYSTEM.ATTACH
ATTACHUD.CODE
ADMERG.CODE
CONVAD.CODE
SHOWAD.CODE
IM.CODE

A Warning
The version of SYSTEM.ATTACH shipped on the Attach Tools
disk is for use with 64K and 128K Apple Il Pascal 1.2
Development Systems only. The version shipped with Apple i
Pascal 1.2 Runtime Systems is for use with Runtime Systems
only. These two versions of SYSTEM.ATTACH are not
interchangeable.

e Apple Il Pascal, version 1.2, This manual does not apply to
earlier versions of the Pascal operating system.

e An Apple I, Apple Il Plus, Apple lie, or Apple lic.

if you are already using a user-defined driver that was created
under Apple Il Pascal 1.1, you must convert your ATTACH.DATA
file to the version 1.2 format. To do this, use the CONVAD utility
described in Chapter 3. In addition, a few of the memory locations
used by the BIOS have been changed in-version 1.2. If the driver
relies on any of these, you will have to modify it accordingly. Refer
to the tables at the end of Chapter 5 to see if this affects you.

“Vhere to Look for More Information

For technical information about the Apple Ii, Apple Il Plus, or Apple
lie, see the Apple lle Reference Manual. For technical information
about the Apple lic, refer to the Apple lic Reference Manual.

For technical information about bank-switching, see the Apple
Language Card Installation and Operation Manual for the Apple Il.

Where to Look for More Information ran

Introduction to Device Drivers

Chapter 1: Introduction to Device Drivers

Chapter 1

A device driver is an assembly-language program that performs
basic input/output operations on a peripheral device. A driver can
also contain code to handle interrupts.

The Apple |l Pascal operating system comes with drivers built in
for a console (video monitor and keyboard), one or more flexible
disk drives, a printer, and a remote device such as a phone line
with a modem. If you want Apple !l Pascal to drive another device,
you must write your own device driver to control it.

This chapter explains device driver basics: how they are accessed
at run time, what they are meant to do, what kinds of devices they
drive, how those devices are referenced, and how they are
attached.

M Runtime Support for the Pascal System

A portion of the Apple It Pascal system is present in main memory
whenever programs are run. This code includes a group of
interpreter routines called the Runtime Support Package (RSP).

The RSP does some initial processing of input/output calls, and
then calls the Basic Input/Output Subsystem (BIOS). The BIOS is
a major portion of the code that is resident at run time, and
includes all of the Pascal system’s device drivers.

This scheme is represented in Figure 1-1.

Runtime Support for the Pascal System (3

Figure 1-1. Runtime Support

a Pascal
program

3 unit 170 call

The RSP interpreter
routines

! special characters have been hangled

The BIOS Jump taole

a oevice artver

& 3 cevice driver

a cevice oriver

a device driver

The device drivers that are built into the Pascal system are aiways
present in the BIOS. User-defined device drivers are supplied in a
file on your startup disk, and are attached to the BIOS at startup
time. Chapter 3 describes this process in detail.

| The Purpose of a Device Driver
A device driver can perform four basic input/output (/0)
operations:
® initializing the device
® reading data from the device
® writing data to the device

® returning status information about the device

4] Chapter 1: Introduction to Device Drivers

A driver need not perform all four operations. For instance, the
printer driver writes data but does not read it.

These operations correspond to the Pascal unit /O procedures
UNITCLEAR, UNITREAD, UNITWRITE, and UNITSTATUS.

e UNITCLEAR resets the specified device and returns a Pascal
IORESULT that indicates whether the call was successtul.

o UNITREAD and UNITWRITE transfer data from (or to) the
specified device.

e UNITSTATUS returns status information about the specified
device. It can also be used to send control commands te the
device.

When a Pascal program makes a standard I/O call such as READ
or WRITELN, this is translated into a unit /O call.

The unit IO procedures can be used to access any I/O device that
is attached to the Pascal system.

| Types of Devices Supported by Pascal

The Pascal system supports two types of input/output devices:
character devices and block-structured devices.

A character device is a device that sends or receives a stream of
ASCIl characters. (Not all of the characters need to be printable.)
Some character devices, such as the console, both send and
receive characters. Other character devices, such as the printer,
can only receive characters.

A block-structured device is a disk drive. For the purposes of the
Pascal system, disks are organized into consecutive blocks of
data. A block contains 512 bytes.

At the hardware level, disks are actually organized into sectors
and tracks. On the Disk ll, for example, a block consists of two
sectors, and there are 280 consecutive blocks on the disk,
numbered from 0 to 278.

The device driver for a block-structured device must be able to
transfer one or more blocks. The driver’'s code is responsible for
translating Pascal system block numbers into the disk hardware’s
track-and-sector addresses.

Types of Devices Supported by Pascal (5

. Device Numbers

Every device —both standard and user-defined—attached to the
Pascal system is referenced by a device number (also called a
unit number). When a program calls a unit I/O procedure, it must
pass the number of the device it is to access.

Table 1-1 shows the numbers used to specify devices in the

Pascal system.

Table 1-1. Device Names and Numbers

Device
Number

#0:
#1:
#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:
#10:
#11:
#12:
#13:

20:

#128:
#120:
#130:

143:

Device
Name

CONSOLE:
SYSTERM:

<disk name >:
< disk name > :

PRINTER:
REMIN:
REMOUT:

< disk name > :
< disk name >:
<disk name >:
<disk name >:

Description
of the Device

(Not used)

Screen and keyboard with echo
Keyboard without echo

(Not used)

Startup disk drive

Second disk drive

Printer

Remote input

Remote output

Fifth disk drive

Sixth disk drive

Third disk drive

Fourth disk drive

A block-structured user-defined device

A block-structured user-defined device

ProFile
Mouse
A user-defined device

A user-defined device

User-defined devices can use device numbers 13-20 (for
block-structured devices only) and 128-143 (for devices of any

kind).

6l Chapter 1: Introduction to Device Drivers

Warning

If you assign device numbers 128 and 128 to user-defined
devices, you will not be able to use the drivers for the ProFile or
the Mouse.

Devices with numbers 128-143 can be accessed only by calls to
UNITCLEAR, UNITREAD, UNITWRITE, and UNITSTATUS.

N Attaching Drivers at Run Time

Before a program can access a user-defined device, the device's
driver must be attached to the Pascal operating system. This
ensures that the device driver will be present in the BIOS in main
memory and thus made available to programs at run time.

When a user-defined driver is attached, its code is placed on the
Pascal system heap in a region that is not accessible to ordinary
Pascal programs. The advantages of this scheme include the
following:

e Software vendors can write device drivers that will be lcaded at
startup time and will be invisible to the user.

e Drivers cannot be lost through improper heap management,
since the drivers are loaded on the heap in the operating
system’s space before any user program is allowed to allocate
heap space.

e The system is not restricted to using any special (hard-coded)
memory locations, since device driver code is relocatable.

The only disadvantage is that a user-defined device driver does
occupy memory space that might otherwise be used by a Pascal
code fite.

Attaching Drivers at Run Time 7

The Three Attach Files

To attach your own device driver, you must make sure three
special files—ATTACH.DRIVERS, ATTACH.DATA, and
SYSTEM.ATTACH—are present on your startup disk.

® ATTACH.DRIVERS contains the actual code for your
user-defined device drivers. It is a library file and is created by
using Pascal’s LIBRARY utility program.

e ATTACH.DATA contains a data record for each driver in
ATTACH.DRIVERS. This information is used by
SYSTEM.ATTACH. It is created by running the program
ATTACHUD (short for ATTACH User Device), described in
detail in Chapter 3.

e SYSTEM.ATTACH is the program that does the work of
attaching user-defined device drivers to the BIOS. When
SYSTEM.ATTACH is present on your startup disk, it is
automatically executed by the Pascal operating system at
startup time.

Chapter 1: Introduction to Device Drivers

What SYSTEM.ATTACH Does

For each user-defined device, SYSTEM.ATTACH does the
following things (roughly in this order):

e | oads the code for the driver into memory.
e Provides the BIOS with the address of the new driver.

e Does a UNITCLEAR on the new device (this is optional for
some devices).

e | cads and executes the driver’s transient initialization code.

The process of attaching a device driver is more involved if the
driver uses interrupts. For details, refer to Chapter 4, which deals
with interrupt management.

in general, SYSTEM.ATTACH initializes each device by calling the
device driver's UNITCLEAR routine. This initialization is optional
for user-defined devices with numbers 128-143, but devices that
use interrupts must always be initialized by SYSTEM.ATTACH.
Devices attached to device numbers 1-20 are always initialized by
SYSTEM.ATTACH.

When the Pascal system is restarted (due to a system error or a
user interrupt), all devices are reinitialized by a UNITCLEAR call.
This includes user devices that are not initialized by
SYSTEM.ATTACH at startup time.

Attaching Drivers at Run Time)

Chapter 2

Writing a Device Driver

101 Chapter 2: Writing a Device Driver

A device driver must be written in accordance with certain
guidelines if the Pascal system is to properly handle a
user-defined device. This chapter goes into detail about what is
required of a user-defined device driver. It starts with general
guidelines and then gets specific about code to return
IORESULTS, maintain type-ahead, and perform the four major
subroutines of a device driver.

If your device driver is meant to support interrupts, then some
additional requirements apply. These are discussed in Chapter 4.

As you read this chapter, you may wish to refer to Appendix A,
which contains an example of a user-defined device driver.

Chapter 5 contains additional information on the BIOS and its
format. You may need to refer to this material while you are writing
your device driver.

If you intend to write a device driver to replace one of the standard
Pascal system device drivers, see Appendix E for additional
requirements for these standard drivers.

. General Guidelines

A device driver must be written in assembly language using the
Pascal 6502 Assembler, described in Chapter 6 of the Apple
Pascal Operating System Reference Manual for the Apple 1i.

The code for the device driver must be relocatable, so you must
not assemble your driver using the .ABSOLUTE directive.
Relocatable code allows the system to manage memory properly
after the driver has been loaded.

Genera!l Guidelines f11

The device driver typically contains at least four subroutines—one
each to handle INIT, READ, WRITE, and STATUS types of calls.
Sometimes not all these subroutines are implemented. For
example, a READ call is unnecessary for a write-only device such
as a printer. If one of these calls is unimplemented, the device
driver can simply pop the parameters from the stack, load 0 into
the X Register (this indicates no error), and then return.

There must be one entry point for the device driver, which means
it must contain one and only one .PROC directive.

The driver's common entry point is the one used by the Pascal
system. When a program calis UNITCLEAR, UNITREAD,
UNITWRITE, or UNITSTATUS, the system jumps to the code at
the .PROC location. The X Register (XREG) is set to a code that
indicates what type of call this is—an INIT, READ, WRITE, or
STATUS call—and the A Register is set to the device number (the
UNITNUMBER parameter).

For this reason, your device driver must examine the X Register to
determine which type of call has been made. The possible values
of XREG are as follows:

XREG = 0 means READ (no bits are set)
1 WRITE (bit 0 is set)
2 INIT (bit 1 is set)
4 STATUS (bit 2 is set)

Once the value of XREG has been tested, your driver must jump
to the appropriate subroutine.

When the driver is called, the top of the stack contains a return
address. The driver must pop this address off the stack and save
it; when it returns, it must first push this word on the stack, and
then do an RTS.

Other parameters may be on the stack as well. These are
discussed below, in the section on Device Driver Subroutines.

12] Chapter 2: Writing a Device Driver

M Returning an IORESULT

When the driver returns, it must also pass a completion code—an
IORESULT—in the XREG. Appendix F contains a complete list of
IORESULT codes that your driver can use.

The foliowing IORESULT values are the ones your device driver is
most likely to use.

IORESULT = 0 No error

If your device driver does not detect any errors, it must clear the
XREG before it returns.

IORESULT = 3 lllegal /O request

This should be used, for example, if your driver receives a
UNITREAD call for a write-only printer.

IORESULT = 9 Volume not found

Return this error if the driver does not find the device’s card in the
slot where the driver expected it (see Appendix D).

IORESULT = 16 Disk is write protected

Use this for a UNITWRITE to a block-structured device when the
disk is write-protected.

IORESULT = 17 llegal block number

if a UNITREAD or UNITWRITE to a block-structured device
specifies a block number that cannot be mapped to a disk
address, use this error number. This number should also be
returned when a UNITWRITE to a block-structured device would
go beyond the end of the disk.

IORESULT = 128 through 255 (Available)

These values can be used for errors that are particular to the
device your driver controls. The Pascal program that uses the
device will have to detect the error and take appropriate action.

Other IORESULT values are used by standard Pascal system
device drivers or other portions of the Pascal system, and your
device driver doesn’t need to deal with them.

Returning an IORESULT M3

B Maintaining Type-Ahead

If you want the Pascal system to maintain the type-ahead buffer
while your device driver is in use, your driver must call the BIOS
routine CONCK before it does a read or a write. (CONCK stands
for CONsole ChecK, and is pronounced “concheck.”) This routine
checks CONSOLE: to see if a character has been typed. If one
has, it is placed in the type-ahead buffer, and CONCK returns.

Here is the code for a subroutine that calls CONCK and then
returns to your driver (this also appears in Appendix A).

CONCKAD .EQU 2 ;Declare label for the CONCK
;address
CKR .WORD CONCKRT-1
GOTOCK LOY #55. ;Load YREG with offset to
;CONCK call
LDA @0E2,Y ;Get the actual (current)
;CONCK address
STA CONCKAD ;Save it
INY
LDA @0E2,Y ;Get next byte of the CONCK
;address
STA CONCKAD+1 ;Save it
LDA CKR+1 ;Set up for the return to
PHA ; CONCKRT after the CONCK call
LDA CKR
PHA

JMP ®CONCKAD ;Jump to CONCK in the BIOS

CONCKRT RTS iReturn to caller (the READ
;or WRITE routine)

A Warning
The usual way to call CONCK is through the CONCKVECTOR
vector located at $BFOA (see Chapter 5). Do not do this in your
driver—the BIOS will lose its return address to Pascal, and will
not be able to return from your driver.

141 Chapter 2: Writing a Device Driver

. Device Driver Subroutines

This section describes the purpose of each of the four main
subroutines in a device driver,

Pascal provides the interfaces to the unit 1/O, but it does not
provide the implementation. The implementation (in terms of some
specific device) is the task of a specific device driver contained in
the BIOS. This means that whenever you call UNITCLEAR,
UNITREAD, UNITWRITE, or UNITSTATUS, in effect you are
caliing routines in the BIOS directly.

For the standard devices supported by the Pascal system, the
device driver code is already present in the BIOS (as we have
mentioned). For a user-defined device, you must write the driver
code yourself, and this code must conform to the interfaces
specified by the Pascal language (and the Pascal system). Once
you have written this code, you must attach it to the BIOS, as
described in Chapter 3.

Initialize

The initialize subroutine must be called when the device driver
receives a call from UNITCLEAR (XREG = 2).

A Pascal call to UNITCLEAR has this form:
UNITCLEAR (UNITNUMBER);

When UNITCLEAR is called, the top of the stack contains the
return address. This is a one-word (two-byte) parameter. There
are no other parameters on the stack.

This subroutine must do whatever is necessary to initialize the
device's hardware, and then set the XREG to the appropriate
IORESULT (0 means no error).

Initializing -at Startup ‘Time: When you start up your system,
“SYSTEM.ATTACH does the work of attaching your device
driver to the BIOS. You can have SYSTEM.ATTACH call the
initialize :subroutine {and thus initialize the device) wheneveryou
start up your Pascal system. To do this, answer Y to the prompt
Do you iwant ahis unit to be ‘tnitialized at boot time?
‘when you run ATTACHUD (desctibed in Chapter 3). Devices
“that use interrupts must be initialized by SYSTEM.ATTACH at
sstartup time. Devices wnth numbers 1 20 are. always mntxahzed
..by SYSTEM. ATTACH ,

Device Driver Subroutines [1_5—

Read and Write

The read subroutine must be called when the device driver
receives a call from UNITREAD (XREG = 0), and the write
subroutine must be called when the device driver receives a call
from UNITWRITE (XREG = 1).

The Pascal calls to these subroutines have the following form:

UNITREAD (UNITNUMBER, ARRAY,
LENGTH [, [BLOCKNUMBER] [,MODE]]);

UNITWRITE (UNITNUMBER, ARRAY,
LENGTH [, [BLOCKNUMBER] [,MODE]));

(Brackets indicate optional parameters.)

For both of these subroutines, the parameters are the same.
These are all one-word (two-byte) parameters. When UNITREAD
or UNITWRITE is called, the stack contains these parameters in
the following order:

top of stack — > return address

BLOCKNUMBER

LENGTH (byte count)

ARRAY (buffer address)

UNITNUMBER (this is also in
AREG when the
device driver is
called)

MODE (control word)

These are all one-word (two-byte) parameters.

The BLOCKNUMBER parameter contains the number of the first
block to transfer (for a block-structured device). The value of
BLOCKNUMBER will be 0 if the device is a character device, or if
the parameter wasn’t present in the call from Pascal.

The LENGTH parameter contains the number of bytes to be
transferred.

The ARRAY parameter contains the starting address of the buffer.

The read subroutine must transfer bytes from the device to the
buffer, starting at the buffer address that is on the stack. The
number of bytes to transfer is in the LENGTH parameter. If the
device is block-structured, then the BLOCKNUMBER parameter
must be translated into a hardware disk address; bytes are read
beginning at that address.

Chapter 2: Writing a Device Driver

Warning

In the Pascal source program, if the value of LENGTH is greater
than the declared size of the ARRAY parameter, then a
UNITREAD can destroy data in memory. ARRAY should be a
packed array that contains at least LENGTH bytes.

The write subroutine must transfer bytes from the buffer to the
device, starting at the buffer address that is on the stack. The
number of bytes to transfer is in the LENGTH parameter. If the
device is block-structured, then the BLOCKNUMBER parameter
must be translated into a hardware disk address; bytes are
transferred to the location that begins at that address.

‘Transferring a Partial Block: If the number of bytes to transfer
“dna UNITWRITE call is not a muttiple of 512 {the number of
“bytes in a block), the Jast block written will be only partiatly
Cfilled. 1t is_not defined whether the remainder of the block is left
~intact or-filled with garbage. If it is - more convement {0 write:a
Hull block you can safely do so.

i the number of bytes-1o transferin a UN!TREAD call'isnot a
mutltiple of 512, the last block may contain garbage that must
not be transterred:into:main memory. {f it is transferred, thers is
a danger of destroying-data. If your driver must always read a
- full block from disk, then buffer the block: within your driver, and
then transfer exactly the number of bytes requested into the
read buffer .

The UNITNUMBER parameter is the number of the device, and is
provided for reference. If the driver is to handle only one device,
then this parameter may not be needed. If the driver is to handle
more than one of the same kind of device, then the driver can use
this parameter to determine which device to access.

The MODE parameter is used (or can be used) as a control word.
If the device is a character device, then the RSP uses this value
to control two special write options. One is to insert a line-feed
character (ASCIl LF) after every end-of-line character (ASCIl CR)
that it encounters. Some devices, such as certain printers, require
this.

The other option is to expand the blank-compression code that
can appear at the beginning of a line in a text file created by the
Pascal system Editor. This code consists of two bytes: the first

Device Driver Subroutines 17

byte is an ASCII DLE character (decimal 16), and the second byte
contains the value 32 (decimal) pius the number of blanks that
appear at the beginning of the line.

There is no defined use for this parameter in a call to UNITREAD,
or when the device is block-structured. If the MODE parameter
wasn’t present in the call from Pascal, its value will be 0.

Figure 2-1 shows the defined format of the MODE parameter.

Figure 2-1. Format of the MODE Parameter for UNITREAD and UNITWRITE

15 13 12

l— can be user defined TYPE B ‘j

TYPE A

NOGRLF —!

NOSPEC —

Shaded areas are reserved.

Bits 12 .. 15 can be cefined by the oriver and Its application.
If bit 2, NOSPEC, equals 1, 0o not expand DLE codes.

If bit 3, NOCRLF, equals 1, 00 not append LF to each CR.

If bit 4 equals 1, do not process TYPE A characters.

If bit 5 equals 1, 0o not process TYPE B characters.

As shown in the figure, bit 2, NOSPEC, controls the expansion of
DLE codes, and bit 3, NOCRLF, controls the end-of-line/iine feed
option. These bits are processed by the RSP.

Bits 4 and 5 have to do with the processing of certain special
characters. These bits are also processed by the RSP. See
Chapter 5 for further details.

181 Chapter 2: Writing a Device Driver

Bits 13-15 are available to your device driver. In a call to
UNITREAD or UNITWRITE, they can be used to specify any
special options that you wish to support for the device you are
handling. Of course, any Pascal program that uses your device
driver will have to supply the correct value(s) of MODE.

The remaining bits in the MODE parameter are reserved, and
must not be used.

Status

The status subroutine must be called when the device driver
receives a call from UNITSTATUS (XREG = 4).

A Pascal call to UNITSTATUS has the following form:
UNITSTATUS (UNITNUMBER, PAB, CONTROL);

When UNITSTATUS is called, the stack contains the parameters
in the following order:

top of stack — > return address
PAB (buffer address)
CONTROL

These are all one-word (two-byte) parameters.

The PAB parameter contains the address of a packed array of
bytes. This is a variable parameter that UNITSTATUS uses to
return information. The size of PAB depends on the use of
UNITSTATUS, and can vary from driver to driver. The Pascal
program and the device driver must assume the same size for
PAB: otherwise data can be lost when UNITSTATUS writes to
memory.

Note that the UNITNUMBER parameter is not pushed onto the
stack in a UNITSTATUS call, although its value is present in the A
Register.

The status subroutine must examine the CONTROL parameter to
see what sort of status information is requested, and then write
out the appropriate values to the buffer that begins at the address
specified on the stack.

Device Driver Subroutines [_13

201

Figure 2-2 shows the defined format of the CONTROL parameter.

Figure 2-2. Format of the CONTROL Parameter for UNITSTATUS

15 13

l-::mbeuser defined PURPCSE —J

DIRECTION

Shaged areas are reserved
Bits 13 .. 15 can be gefined by the driver and its application.
Bit 0, DIRECTION -~

0 = retum status of output channel

1 = retum status of Input chamel
Blt 1, PURPOSE --

0 = pevice status requested

1 = gevice control requested

As shown in the figure, bit 0, DIRECTION, indicates whether the
request was for the status of output (DIRECTION = 0) or input
(DIRECTION = 1).

Chapter 2: Writing a Device Driver

If the device you are handling is input-only or output-only, you can
choose to have UNITSTATUS do nothing (that is, pop the
parameters and clear the XREG) for a call that requests
information about the wrong direction, or you can have it return an
IORESULT of 3: lllega! I’0O request.

Bit 1, PURPOSE, normally indicates that the subroutine should
return status information (PURPOSE = 0). You can write your
driver so that the STATUS subroutine also controls the device
(PURPQSE = 1) in some way(s).

Bits 13-15 are available to your device driver. They can be used to
specify any special options that you wish to support for the device
you are handling. Of course, any Pascal program that uses your
device driver will have to supply the correct value(s) of
CONTROL.

The remaining bits in the CONTROL parameter are reserved, and
must not be used.

In the Pascal system standard device drivers, UNITSTATUS is
implemented only for standard disk devices (device numbers 4, 5,
and 9-12) and for the CONSOLE:. See Appendix E for further
details.

If you choose not to implement UNITSTATUS for your device, this
subroutine should simply pop the parameters, clear the XREG
(IORESULT of 0), and then return.

Device Driver Subroutines |—§1_

“ransient Initialization

22]

As we mentioned in Chapter 1, SYSTEM.ATTACH initializes
devices by doing a UNITCLEAR on each device at startup time.
(Devices with numbers 128-143 are not necessarily initialized —
you can specify whether they are or not when you run
ATTACHUD, described in detail in Chapter 3.)

SYSTEM.ATTACH has another initialization step, which is optional,
but may be useful for some device drivers. A device driver can be
accompanied by a transient initialization module that is executed
only at startup time.

Transient initialization was provided for use by the Pascal ProFile
driver, but it is available to any user-defined device driver.

After SYSTEM.ATTACH loads all device drivers onto the heap,
and calls UNITCLEAR for each driver (if that is specified in the
driver’s attach data record), it loads and executes the transient
initialization modules. Transient initialization modules are loaded
and executed in the same order as their associated drivers.

A transient initialization module is executed immediately after it is
loaded. The next transient initialization module overlays the
previous one, so this code goes away as soon as it has been
executed.

Chapter 2: Writing a Device Driver

Transient initialization modules are prepared in the same way as
device drivers. A transient initialization module must be written in
assembly language, must be relocatable (that is, it must not
include the .ABSOLUTE directive), and must have a singlz entry
point (that is, one and only one .PROC directive).

The transient initialization module must be assembled separately
from its associated device driver. Once it has been assembled, it
must be placed in the ATTACH.DRIVERS file by using the
LIBRARY utility.

When you run ATTACHUD, it asks you whether the driver has an
associated transient initialization module. If you answer v,
ATTACHUD asks some further questions about the module. Like a
device driver, a transient initialization module can be aligned on
some particular byte boundary (from 0-256) in order to help
structure data.

Note that the transient initialization code is executed after the
device driver's own {callable) initialization code is executed.

When SYSTEM.ATTACH calls a transient initialization module, the
top of the stack contains the address of the module’s associated
device driver. This allows the transient initialization module to call
subroutines and use data contained within the device driver itself.

“Note: The address is the actual .PROC location of the driver,
and not {.PROC - 1). : -

Transient Initialization [—23

Chapter 3

Attaching a Device Driver

241 Chapter 3: Attaching a Device Driver

This chapter explains how to attach your device driver with the
three special files described briefly in Chapter 1—
ATTACH.DRIVERS, ATTACH.DATA, and SYSTEM.ATTACH. It
begins by outlining the four-step process for attaching drivers. It
then goes into more detail about executing ATTACHUD, the
utilities available for handling attach data files, and error
messages you might encounter at startup time.

M 7he Four Steps

Here is how you attach a new device driver, in four steps:

1. Write the device driver and assemble it, according to the
guidelines in Chapter 2 (and Chapter 4 as well, if the driver
uses interrupts).

2. Execute ATTACHUD, shipped on the Attach Tools disk, to
create an attach data file for your driver. Name the file
ATTACH.DATA and transfer this file to your startup disk.

3. Next, execute LIBRARY.CODE to place your driver’s code in
the ATTACH.DRIVERS file. Transfer this file to your startup
disk. The LIBRARY utility is described in Chapter 8 of the
Apple Pascal Operating System Reference Manual for the
Apple |l.

4. Transfer SYSTEM.ATTACH to your startup disk from the
Atftach Tools disk.

The Four Steps [25

Warning

The version of SYSTEM.ATTACH that is shipped on the Attach
Tools disk is for use with 64K and 128K Apple Il Pascal 1.2
Development Systems only. The version shipped with Apple II
Pascal 1.2 Runtime Systems is for use with the Runtime Systems
only. These two versions of SYSTEM.ATTACH are not
interchangeable.

When you start the Pascal system with SYSTEM.ATTACH,
ATTACH.DRIVERS, and ATTACH.DATA present,
SYSTEM.ATTACH loads your new driver, and you can then test it
and use it.

Viewing File Contents: You can use the SHOWAD utility
described later in this chapter to view the contents of an
ATTACH.DATA file, and the LIBRARY utility to view the
contents of ATTACH.DRIVERS. s ‘

W using ATTACHUD

26

ATTACHUD is an interactive program. When you execute it, it
presents you with a series of questions about the device driver
you have written, and uses your responses to create an attach
data record. The output of ATTACHUD is a file that contains one
or more attach data records.

If You Change Your Driver Code: If you change your device
.driver and reassembile it, you don't always need to run '
ATTACHUD a second time. Changes to driver code don’t
~affect the data record in ATTACH.DATA unless you have

changed something that affects the answer to aneof .

- ATTACHUD's questions. (Of course, you- still need to use

LIBRARY to place the new code in the ATTACH.DRIVERS
file) - Gl et :

When you execute ATTACHUD, it opens the session by displaying
this prompt:

ATTACH.DATA Creation Utility [1.2]
Copyright Apple Computer, Inc. 1983

What will be the name of the attach data file?
(<RETURN> to exit program):

Chapter 3: Attaching a Device Driver

Type in the name you have chosen for the output file. If this is the
first user-defined device driver in your system, call the new attach
data file ATTACH.DATA.

If you have already defined one or more device drivers and
created attach data files for them, call the new attach data file
something else, like NEWDEVICE.DATA. Then execute the
ADMERG utility described later in this chapter to append your
driver data file NEWDEVICE.DATA to the existing ATTACH.DATA
file.

ATTACHUD Error Messages: if at any point ATTACHUD can't
handie your response,it-displays a message .in the form

ERROR => some ‘error message
Please try again ...
{<RETURN> tc -exit program):

Decide what mistake you made, and then retype your response
to the previous prompt. If you simply press RETURN, you
terminate ATTACHUD. Saveral prompts allow you tocut a
:session short by jpressing RETURN; each of them tells you so.

After you enter the name of the output file for this session,
ATTACHUD asks you
Will you use the 2000.3FFF HIRES page? (Y/N)

A note informs you that these next questions will determine if any
attached drivers can reside in the HiRes pages. Type v for yes or
N for no.

The next question is
Will you use the 4000.5FFF HIRES page? (Y/N)

Again, answer v or N. Answer yes to these questions if you will
ever be running a program that uses the named HiRes graphics
page while your driver is attached.

Warning

Only a very large device driver will overlap a HiRes page.
However, if you should answer no to one or both of these
prompts, and a program does use the HiRes page in which a
driver has been loaded, that device will suddenly become
unavailable and other messy bugs may crop up. Be cautious!

Using ATTACHUD [27

28]

After the questions about the HiRes pages, ATTACHUD asks:

What is this device driver’s name?
It will be the assembly’s .PROC name.
(<RETURN> to exit program):

Type in the name of the driver's .PROC entry point (see Chapter
2). This name cannot be more than eight characters long.

The next prompt is:

Assign what unit number to this driver?
Valid units are 1, 2, 4..20, 128..143
(<RETURN> to exit program):

Type in the device number (unit number) that you wish your
programs to use when handling the device by calls to
UNITCLEAR, UNITREAD, UNITWRITE, and UNITSTATUS. Refer
to Tabie 1-1 for valid device numbers.

Block-structured devices can use numbers in the range 4, 5, 9-20;
character devices can use numbers in the range 1, 2, 6-8; and
devices of either kind can use numbers in the range 128-143.
Typically, user-defined block-structured devices should use only
device numbers 13-20. User-defined character devices should use
only device numbers 130-143.

Warning

If you use the number of an existing system device (for example, 1
for CONSOLE:), then ATTACHUD accepts it, and
SYSTEM.ATTACH goes ahead and loads the new driver into
memory. This is dangerous unless you know what you are doing.
System devices have their own requirements and peculiarities,
and if you accidentally replace a system driver with a driver that
does not work, some very serious bugs can occur. Probably the
Pascal system will have to be restarted. The requirements of the
standard Pascal device drivers are described in Appendix E.

After asking for the device number, ATTACHUD asks:

Do you want this unit to be initialized
at boot time? (Y/N)

it you answer v, SYSTEM.ATTACH does a UNITCLEAR on this
device whenever you start up your Pascal system. A driver that
uses interrupts must be initialized at startup time.

Chapter 3: Attaching a Device Driver

ATTACHUD then asks:

Do you want another unit number to
refer to this device driver? (Y/N)

As many device (unit) numbers as desired can be attached to the
driver. This can be a way to save memory space when you have

more than one of the same kind of device attached to your Apple
II. The devices should be either all character devices or all block

devices.

If you answer N to this question, ATTACHUD skips ahead to the
next prompt. if your driver has been written to drive more than one
device and you answer v, ATTACHUD takes you back to the
Assign what unit number ... prompt.

The next prompts have to do with whether SYSTEM.ATTACH
should load your driver so that it is aligned on a particular byte
bcundary.

Do you want this driver aligned on
a particular byte boundary? (Y/N)

If you answer v, ATTACHUD displays the following:

The boundary can be between O and 256.
O0=>Driver can start anywhere. (default)
8=>Driver starts on 8 byte boundary.
N=>Driver starts on N byte boundary.
256=>Driver starts on PAGE boundary.
wWhat boundary do you want? (0..256)
(<RETURN> to exit program):

Type in the number that you wish SYSTEM.ATTACH to use. Byte
alignment can make it easier for your driver’s assembly code to
access its internal data structures.

The next prompt asks about transient initialization code:

Do you want this driver to have a
transient initialization section? (Y/N)

If you answer N, ATTACHUD skips ahead to the question about
interrupts. If you answer v, the next question is

What is the transient’s name?
It will be the assembly’s .PROC name.
(<RETURN> to exit program):

Using ATTACHUD f29

This is just like the question about the name of the driver itself.
See Chapter 2 for a description of transient initialization.

Next, ATTACHUD asks if the transient initialization code should be
aligned on a byte boundary. These prompts are just like the
prompts for the driver itself:

Do you want this transient aligned on
a particular byte boundary? (Y/N)

If you answer v, the following prompt appears:

The boundary can be between O and 256.
O=>Transient can start anywhere. (default)
8=>Transient starts on 8 byte boundary.
N=>Transient starts on N byte boundary.
256=>Transient starts on PAGE boundary.
What boundary do you want? (0..256)
(<RETURN> to exit program):

The next prompt is
Will this driver use interrupts? (Y/N)

If your driver does use interrupts, answer v. ATTACHUD then
ensures that a data record for the interrupt manager (IM) is
present at the end of the output file. See Chapter 4 for a
discussion of interrupt handiing. Be sure that if you answer v to
this, you previously answered Y t0 Do you want this unit to be
initialized at boot time?

Finally, ATTACHUD asks you
Do you want to attach another driver? (Y/N)

If you want to attach another user-defined driver, answer v.
ATTACHUD takes you back to the what is the name of this
ariver? prompt.

Otherwise, answer N. ATTACHUD displays the following message
to show that your session is through:

Attach data creation complete

301 Chapter 3: Attaching a Device Driver

| Utility Programs for Handling Attach Data

After you have created an attach data file with ATTACHUD, you
may want to examine or modify the file. Three utility programs on
the Attach Tools disk let you do so.

e ADMERG lets you merge two or more attach data files.
o SHOWAD lists the contents of an attach data file.

o CONVAD converts records in an attach data file from Pascal
1.1 format to Pascal 1.2 format.

Using the File Merge Utility (ADMERG)

The ADMERG (for Attach Data MERGe) utility enables you to
combine two (or more) attach data files into one. ADMERG
creates a new file with one of each of the data records from the
original files, and ensures that no record is duplicated.

A Warning
ADMERG only allows one data record per device number. That is,
if ADMERG has read a data record with a certain device number,
then that record will be written to the output file, but if ADMERG
encounters a second record with the same number, that second
record will not be written out. It is a good idea to use SHOWAD to
examine the contents of each attach data file you plan to merge

and make sure device numbers are not duplicated before you run
ADMERG.

When you execute ADMERG, it displays the following prompt:

Apple Pascal ATTACH.DATA File Merge Utility [1.2]
Copyright Apple Computer, Inc. 1981,1983

Enter name of NEW file to create (<RETURN> to exit
program) :

Type the name of the new file you wish to create. If this is the file
that will be used by SYSTEM.ATTACH, you must call it
ATTACH.DATA.

ADMERG then prompts

Enter name of file to get Attach.data records FROM
(<RETURN> to exit program):

Type the name of one of the files that you want to merge.

Utility Programs for Handling Attach Data 131

32]

Once ADMERG has processed that file, it asks
Another Input file? (Y/N)

If you answer v, ADMERG asks for the name of the next file to
merge, and so forth. Once you answer N to this prompt, ADMERG
asks

Create another NEW file? (Y/N)

If you wish to create another new attach data file, answer v.
ADMERG returns you to the first prompt. Otherwise, ADMERG
signals that you are done by displaying

Program terminated

Using the Listing Utility (SHOWAD)

The SHOWAD (for SHOW Attach Data) utility displays the
contents of the records in an attach data file in an easily readable
format. '

When you execute SHOWAD, it displays this prompt:

Apple Pascal ATTACH.DATA Listing Utility [1.2]
Copyright Apple Computer, Inc. 1983

Enter name of ATTACH.DATA file (<RETURN> to exit
program):

Type the name of the attach data file you wish to view (it may
have some name other than ATTACH.DATA).

If there is some problem in reading the file, SHOWAD displays
file is empty ’

Otherwise, SHOWAD displays the contents of each data record, in
a format much like the following:

Driver Name - GISMET - Not Aligned

Attached to #130

Unit #’s to init at boot time - 130

This driver CANNOT be placed in the first HiRes graphics
space.

This driver CANNOT be placed in the second HiRes
graphics space.

This driver DOES use interrupts.

Driver does not have transient initialization code.

Chapter 3: Attaching a Device Driver

This tells you that the name of the driver (its .PROC entry point) is
GISMET, that the driver is not aligned to any byte boundary, and
that the GISMET driver is referenced by device number 130
(which would be used in a call to UNITCLEAR, UNITREAD,
UNITWRITE, or UNITSTATUS).

The display also tells you that this driver cannot occupy either of
the HiRes graphics pages, that it uses interrupts, and that it does
not have any associated transient initialization code.

if the driver were aligned, the display would show this in the format
- Aligned on a 16 byte boundary
showing the appropriate number of bytes.

If the driver did have transient initialization code, this would be
displayed as foliows:

Name of Driver’s transient initialization code - TRAN
Transient initialization code not aligned.

SHOWAD shows a similar display for every record present in the
file that it reads.

Using the Conversion Utility (CONVAD)

The CONVAD (for CONVert Attach Data) utility simply converts
the records in an attach data file from Pascal version 1.1 format to
Pascal version 1.2 format.

If you never attached a device driver under Pascal version 1.1,
you won't need to use this utility.

If you do have one or more attach data files that were created
under Pascal version 1.1, then you must convert them by running
CONVAD. Otherwise, the associated drivers will not be attached
when you start up your version 1.2 Pascal system.

When you execute CONVAD, it displays this prompt:

Appie Pascal ATTACH.DATA Conversion Utility [1.2]
Copyright Apple Computer, Inc. 1983

Enter name of OLD (1.1) ATTACH.DATA file (<RETURN> to
exit program):

Utility Programs for Handling Attach Data [33

Type the name of the original attach data file. CONVAD then
displays

Enter name of NEW (1.2) ATTACH.DATA file (<RETURN> to
exit program):

Type the name of the new file. If you foresee wanting to use the
original file for some reason, don't use the same name as the old
file when you answer this prompt.

fError Messages You Might Encounter at Startup

341

Time

Several errors can occur when SYSTEM.ATTACH is executed at
startup time. Following are the error messages that might be
displayed, and what can be done to correct the error.

ERROR => No records in ATTACH.DATA

You must run ATTACHUD to create an attach data record for each
driver in ATTACH.DRIVERS. This error can also occur if
ATTACH.DATA was created under Apple Pascal version 1.1. in
that case, convert it to version 1.2 format using the CONVAD
utility.

ERROR => Reading segment dictionary of ATTACH.DRIVERS

There is something wrong with the library file ATTACH.DRIVERS.
It may be possible to correct this by using the LIBRARY utility.

ERROR => Reading driver

There is something wrong with the library file ATTACH.DRIVERS,
or possibly something is wrong with the driver code itself.

ERROR => A needed driver is not in ATTACH.DRIVERS

There is a data record in ATTACH.DATA that does not correspond
to any driver in ATTACH.DRIVERS. The code for the driver must
be placed in ATTACH.DRIVERS by using the LIBRARY utility.

ERROR => ATTACH.DATA needed by SYSTEM.ATTACH
The ATTACH.DATA file is not present on the startup disk.
ERROR => ATTACH.DRIVERS needed by SYSTEM.ATTACH

The ATTACH.DRIVERS file is not present on the startup disk.

Chapter 3: Attaching a Device Driver

ERROR => The Interrupt Manager (IM) driver is not in
ATTACH.DRIVERS

One or more of the ATTACH.DATA records specifies that its
corresponding driver uses interrupts, but IM.CODE has not been
placed in ATTACH.DRIVERS. (This error can occur only in 64K

Pascal systems.) IM.CODE must be placed in ATTACH.DRIVERS
using the LIBRARY utility.

ERROR => Reading transient

There is something wrong with the library file ATTACH.DRIVERS,
or possibly something is wrong with the transient initialization code
itself.

ERROR => A needed transient is not in ATTACH.DRIVERS

A data record in ATTACH.DATA specifies a transient initialization
module that is not present in ATTACH.DRIVERS. The transient
code must be placed in ATTACH.DRIVERS by using the LIBRARY
utility.

Warning

If SYSTEM.ATTACH itself is not present on your startup disk, there
will be no error message. The Pascal system will not even attempt
to attach any user-defined device drivers, and when it has started

up it will support only the standard devices.

Error Messages You Might Encounter at Startup Time [35

Chapter 4

Interrupt Management

361 Chapter 4: Interrupt Management

One or more devices that generate interrupts can be supported
by Apple Il Pascal, version 1.2. The portion of the Pascal system
that controls interrupts is called the Interrupt Manager (IM). When
you write a device driver for an interrupt-based device, you must
meet the requirements of the IM, in addition to following the
guidelines in Chapter 2.

The first section in this chapter describes interrupt handling in
Apple Pascal. The sections that follow discuss how to write a
device driver that supports interrupts, and how it must be
attached. As you read this chapter, you may wish to refer to the
sample code for an interrupt-based driver, which appears in
Appendix B.

Note: 48K Runtime Systems do not support interrupts.

H Handling Interrupts in Apple Il Pascal

The main task in handling interrupts is to save the context of the
current program and then restore that context once the interrupt
has been processed. This includes saving the contents of various
system registers and restoring them once the driver returns.

When an interrupt can come from one of several devices, it is also
necessary to identify which device generated it, so that the
appropriate driver can handle the interrupt.

A driver for a device that supports interrupts must contain a
section of code calied the interrupt service routine. This code is
called by the Interrupt Manager.

Handling Interrupts in Apple Il Pascal (37

The Interrupt Manager (IM) itself is responsible for saving the
current context and restoring it later. The interrupt service routines
are responsible for determining whether they should handle a

given interrupt. Just how they do this depends on the particular
device.

Interrupt service routines are set up in a linked chain, as shown in
Figure 4-1. Although this figure does not apply precisely to the
Appie lic, the overall scheme for the lic is not essentially different.
Figure 4-1. A Chain of interrupt Service Routines

Image on left applies to 64K Pascal system, image on right to 128K Pascal

system
Main Memory Main Memory
$FFFF - $FFFF -
FFFE 1RQ vector FEFE IRQ vector
______ Interrupt Manager
» pascal reset cooe | | 0000 el

Internupt Meneger

gevice ariver gevice ariver

Ut

device ariver device driver

381 Chapter 4: Interrupt Management

If an interrupt service routine recognizes an interrupt, it processes
the interrupt and then returns to the IM. If the service routine
doesn't recognize an interrupt, it transfers control to the next
interrupt service routine in the chain. If rone of the service
routines claims an interrupt, then an error has occurred, and the
system is restarted.

To determine whether it should process an interrupt, an interrupt
service routine can (in general) check the interrupt flag register for
the appropriate card slot.

The location of the interrupt flag register may vary according to the
hardware; it is best if the peripheral card foliows the conventions
described in the Apple lle Design Guidelines manual, in the
section on Peripheral Card Firmware. See Appendix D for a
summary of these guidelines.

For 64K Pascal systems, the code for the IM is in the form of an
ATTACH driver. However, the IM cannot be called from a user
program. For 128K Pascal systems, interrupt handling is built in,
and the IM code is ignored if it is present in ATTACH.DRIVERS.
See the section below on Installing the IM.

Sequence for All Systems but the lic

For all systems but the Apple lic, interrupts are handled in the
following sequence:

1. A device interrupt occurs. This disables interrupts. If the
interrupt was generated by a BRK instruction, the processor
sets the break bit in the processor status byte.

2. The processor then jumps to the code whose address is stored
in $FFFE-FFFF. This is the Interrupt Manager.

3. If the break bit is set, the IM restarts the Pascal system.
Otherwise, the IM saves the current context and then transfers
control to the first interrupt service routine in the chain.

Handling Interrupts in Apple i Pascal [39

4. If the service routine doesn’t recognize the interrupt, it
transfers control to the next service routine in the chain.
Otherwise, it processes the interrupt and then returns to the
IM.

5. If the last interrupt service routine in the chain doesn’t
recognize the interrupt, it transfers control to the reset code for
the Pascal system.

6. When the IM regains contral, it restores the interrupted
program’s context, which re-enables interrupts. Execution
proceeds from the point at which it was interrupted.

A spurious interrupt can be generated as the result of a hardware
malfunction, or of a BRK instruction in currently executing code. In
the case of a hardware malfunction, the interrupt falls through the
chain of routines, and control is ultimately passed to the Pascal
system reset code. In the case of a BRK instruction, the processor
sets the break bit and the IM then restarts the Pascal system.

Sequence for the Apple lic

The sequence of events described above does not apply to the
Apple lic because the lic’s firmware performs some of the tasks
that are handled by the IM on other versions of the Appie Il.

Interrupt Handier Address: The address of the Apple lic’s
built-in interrupt handler-is always in $FEFE-FFFF of the Monitor

- ROM, and is automatically stored in $FFFE-FFFF of both
language cards when the Pascal system starts.up.

Here is the sequence of events on an Appie lic:

1. A device interrupt occurs. This disables interrupts. If the
interrupt was generated by a BRK instruction, the processor
also sets the break bit in the processor status byte.

2. The processor then jumps to the code whose address is
stored in the IRQ vector ($FFFE-FFFF).

3. The IRQ vector points to the built-in interrupt handler in the
llc firmware (this is in the $C800 space).

"40] Chapter 4: Interrupt Management

4. The lic firmware saves the current context and sets the
context to a known state, as follows:

If B0STORE and PAGE2 are on, then text page 1 is switched
in so that the main screen holes are accessible (the PAGE2
soft switch is turned off).

Main memory is switched in for reading (RAMRD soft switch).

Main memory is switched in for writing (RAMWRT soft
switch).

Monitor ROM ($D000 through $FFFF) is switched in for
reading.

The main stack and zero page are switched in (ALTZP soft
switch).

The auxiliary stack pointer is preserved, and the main stack
pointer is restored.

5. The firmware checks to see if the break bit was set. If so, the
firmware jumps to the code whose address is stored in
$03F0-03F1. Since this is the location of the Pascal system’s
type-ahead buffer, the results are random, and the Pascal
system must be restarted.

6. If the break bit was not set, the firmware checks to see if the
interrupt is one that it knows how to handle (for example,
some Mouse interrupts are handied completely by the
firmware). If this is the case, the firmware handles the
interrupt.

7. If the interrupt is not a standard firmware interrupt, the
firmware passes the interrupt to the Pascal system by
jumping to the code whose address is stored in $03FE-03FF
(in main memory).

8. The address contained in $03FE-03FF is $03F4, so the code
at $03F4 is executed. This code switches in the main
language card, write-enables it, and then jumps to a special
location in the IM.

9. The IM then transfers control to the first interrupt service
routine in the chain.

Handling Interrupts in Apple It Pascal l41

10. If the service routine doesn’t recognize the interrupt, it
transfers control to the next service routine in the chain.
Otherwise, it processes the interrupt and returns to the lic
firmware via an RTl instruction.

11. When the firmware interrupt handler regains control, it
restores the original context of the system, and then does an
RT! to resume processing from where it was when the
interrupt occurred.

12. If the last interrupt service routine in the chain doesn’t
recognize the interrupt, it transfers control back to the start of
the lic interrupt handler in the firmware. This, of course,
causes the system to loop indefinitely!

More detailed information about interrupt handiing on the Apple lic
can be found in the Apple lic Reference Manual.

H Writing an Interrupt-Based Driver

42

This section discusses the considerations you must take into
account when you write a driver for a device that generates
interrupts.

An interrupt service routine must be an integral part of your device
driver’s code. This ensures that it will be loaded by
SYSTEM.ATTACH. If you don’t do this, your code is in danger of
being released by the system, and a subsequent interrupt may
cause unpredictable effects.

Sample code for an interrupt-based device driver appears in
Appendix B. You may wish to refer to this appendix as you read
through this section.

Any device number (1-20 or 128-143) can be used. Do not replace
a standard device number unless you are familiar with the
information in Appendix E. The IM itself is assigned the highest
available number.

Enabling and Disabling Interrupts

SYSTEM.ATTACH enables interrupts after the fuli chain of
interrupt service routines has been built, and all transient
initialization modules have been executed. Device drivers (or
devices, in their firmware) must never re-enable interrupts if they
have been disabled by the IM.

Chapter 4: Interrupt Management

in addition, if you wish to execute some code with interrupts
disabled, this should not be done with just an SEIl instruction.
Instead you should use the sequence of PHP, SEI <code> PLP.
This ensures that the system state is correctly restored when you
exit the critical section (after the PLP).

Interrupts are disabled when an interrupt occurs, and the IM
re-enables interrupts after the interrupt has been serviced. Only
one interrupt can be handled at a time. Interrupts are also disabled
by the Pascal system during disk accesses.

On the Apple lie, interrupts are periodically disabled while
80-column screen operations are being performed. This is most
noticeable while the display is scrolling. Alsc, most Apple lle
peripheral cards disable interrupts during read and write
operations, and re-enable them when reading or writing is done.

Initializing the Chain of Interrupt Service Routines

Any driver that uses interrupts must initialize itself before the
system starts up in order to link its interrupt service code into the
chain of service routines. The initialization code should do the
following (before exiting) in order to initialize the links:

LDA OFFFE ;Move IRQ vector into next
STA STOREIT ;driver pointer

LDA OFFFF

STA STOREIT+1

LDA I_ADDRESS ;Move int service routine
STA OFFFE ;address into the IRQ vector
LDA I_ADDRESS+t

STA OFFFF

I_ADDRESS .WORD I_HANDLER
STOREIT .WORD © ;Next driver pointer

where |__HANDLER is the entry point of the driver’s interrupt
service routine, and STOREIT will contain the address of the next
interrupt service routine to be called if the current one finds that its
device did not generate the interrupt.

This code must be executed only once and must not be in a
transient initialization module. The driver itself can also contain
regular initialization code to reset the device or its buffer, and so
forth (see the section on Automatic UNITCLEAR, below).

Writing an Interrupt-Based Driver (43

44

Recognizing an Interrupt

At the start of its interrupt service routine(s), a device driver must
first determine whether the driver’s device hardware generated the
interrupt. In general, this involves checking a register on the
device's controller card (for example, an interrupt flag register on a
6522), but the details are device-dependent

If the interrupt was generated by the driver’s device, the driver
should process the interrupt and then return to the IM by an RTI
instruction,

If the interrupt was not generated by the driver’s device, the driver
should do an indirect jump to the next device driver. (The address

of the next driver is saved as STOREIT in the sample initialization

code shown in the previous section.) If this device driver is the last
in the chain, the jump will be to the Pascal system reset code.

This jump is accomplished automatically, since the system
initializes the IRQ vector to point to the reset code. If the
initialization for all interrupt-based device drivers follows the
scheme shown above and in Appendix B, then this pointer will be
moved to the end of the interrupt service routine chain. Note that
this does not apply to the lic.

If Device Card Can’t Signal Interrupts: If your device card
has no way of signaling that it generated an interrupt, then its
service routine must be the last service routine in the chain, it
will have to assume that if it is called, it will handle an interrupt.
Since the routine won't be able to detect a hardware failure .
interrupt, this is not a good approach,.and should be avoided if
at all possible;

To ensure that a driver is-the last one in the interrupt drivers
chain, -assign it-a unit number lower than all other mterrupt :
driver unit numbers.

Returning From an Interrupt Service Routine

At the end of an interrupt service routine, you should use the
standard RTI instruction—not an RTS. The RT! instruction
transters control back to the IM. (RT! is used because the IM
saves additional status information in the processor status byte
and then pushes this byte onto the stack.)

Chapter 4: Interrupt Management

Automatic UNITCLEAR

Under version 1.2 of the Pascal system, devices are reinitialized
when the system terminates abnormally. This can occur when a
program gets a system error or when a user interrupts the
program from the keyboard (CONTROL-@).

To reinitialize, the system executes a UNITCLEAR on all devices
(1-20 and 128-143). This is done even when the driver’s attach
data record specifies that no initialization is to be done at startup
time.

This presents a problem when the UNITCLEAR portion of a driver
contains code to initialize the service routine chain (as described
above). Drivers under version 1.2 must have some code to
distinguish between the first initialization (which sets up the driver
chain) and any subsequent initialization (call to UNITCLEAR).

in the driver, these two kinds of initialization can be distinguished
by a simple check of a byte of memory to see which type of
initialization code needs to be run (if any). This is the scheme
used in the example in Appendix B.

The 1.2 Pascal system reinitializes all devices because some
drivers may have pointers into the stack/heap space. If this space
were released without reinitializing the device drivers, the pointers
would then point to invalid code or data. The problem can’t be
solved by simply disabling further interrupts, since some external
devices (for example, a remote network printer server) need to be
notified of the reset; if interrupts were disabled, information coming
back from the remote device could not be handied correctly.

Environmental Considerations

if your card uses the $C800 expansion space, then focation $7F8
must contain the value $Cn, where n is the slot number of the
card. The reason for this is that when you are executing in your
$C800 space and an interrupt occurs, the interrupt service routine
may decide to use its own $C800 space. Once the interrupt has
been serviced, the system must know if it needs to reselect the
$C800 space for your card. The IM will take the contents of
location $7F8 (which can be initialized any time before your driver
enters the $C800 space), and use this number to reselect your
card.

Writing an Interrupt-Based Driver [45

If you do not do this, it is very possible that your routines may not
work correctly since your $C800 space will not be reselected. The
only other way to solve this is to disable all interrupts while you
are in your $C800 space.

if your interrupt service routine does need to modify the contents
of $7F8, it must save the contents and then restore the previous
value before it is done.

It is not necessary to save registers in an interrupt service routine.
The IM saves them before jumping to the chain of service
routines, and restores them before resuming normal execution of
the interrupted code.

There are additional restrictions on interrupts for applications that
execute under the 84K Pascal system and that also use the
auxiliary 64K memory on an Apple lle. Since the IM and all
interrupt service routines are resident in the main RAM, if an
interrupt occurs while the application is using the auxiliary RAM,
the interrupt will not be serviced properly and may cause the
system to crash. For this reason, an application must disable
interrupts while the auxiliary 64K is in use or must be able to
handle the interrupt management itself. This does not apply to the
Apple lic.

On the Apple lie, the IM will save the state of the 80STORE and
PAGEZ2 soft switches, and will deselect PAGE?2 if 80STORE is
selected. The original state of the PAGE2 switch is restored after
the interrupt is serviced. On the Apple lic, this is done by the
firmware rather than the M.

In the 128K Pascal system on the Apple lle, the IM will also save
the state of the RAMRD and RAMWRT soft switches and will then
select read main RAM and write main RAM. The original state is
restored after the interrupt is serviced. On the Apple lic, this is
done by the firmware rather than the IM.

461 Chapter 4: Interrupt Management

If an interrupt service routine uses any zero page user temporaries
($0-$35), then it must save their contents, and restore them after
the interrupt has been serviced.

If an application switches in the Monitor ROM, it must disable
interrupts before it does so. This does not apply to the Apple lic.

| Attaching an Interrupt-Based Driver

Attaching an interrupt-based device driver is no different from
attaching any user-defined device driver: you must place the driver
code in the ATTACH.DRIVERS library, execute ATTACHUD to
create an ATTACH.DATA data record, and make sure that these
files, plus SYSTEM.ATTACH, are on your startup disk when you
start the Pascal system.

For more details, see Chapter 3. Here are some reminders that
pertain to interrupt-based drivers:

When you run ATTACHUD, be sure to tell it that your driver uses
interrupts. This ensures that a data record for the IM is present in
your ATTACH.DATA file. Also remember to tell ATTACHUD that
your driver must be initialized at startup time.

On the 64K Pascal system, you must include IM.CODE in
ATTACH.DRIVERS. See the following section for details.

Attaching an Interrupt-Based Driver (47

N Installing the IM

48]

The Interrupt Manager (IM) driver is shipped in the file IM.CODE
on the Attach Tools disk.

On a 128K Pascal System

Interrupt handiing is built into the 128K Pascal system, and you
don’t need to install IM.CODE. If IM.CODE is present in
ATTACH.DRIVERS, it will simply be ignored.

For each interrupt-based driver that you attach, remember to tell
ATTACHUD that it uses interrupts. When you do so, ATTACHUD
ensures that a data record for the IM code is included in the
ATTACH.DATA file. This data record is included in ATTACH.DATA
as long as at least one of your drivers uses interrupts.

Chapter 4: Interrupt Management

On a 64K Pascal System

If you are running a 64K Pascal system, you must use the
LIBRARY utility (described in Chapter 8 of the Apple Pascal
Operating System Reference Manual for the Apple l) to install
IM.CODE into the ATTACH.DRIVERS file. When you use
LIBRARY, the size of IM.CODE is shown as approximately 280
bytes, but much of this space is occupied by relocation code that
is not resident at run time. At run time, the IM occupies about 200
bytes.

Although the IM is handied as if it were a driver, it cannot be
called from a user program. It is automatically attached to the
system at startup time.

For each interrupt-based driver that you attach, remember to tell
ATTACHUD that it uses interrupts. When you do so, ATTACHUD
ensures that a data record for the IM code is included in the
ATTACH.DATA file. This data record is included in ATTACH.DATA
as long as at least one of your drivers uses interrupts.

installing the IM fa9

Chapter 5

Special BIOS Considerations

501 Chapter 5: Special BIOS Considerations

The Pascal system’s BIOS (Basic Input/Output Subsystem) is a
package of device drivers and other support routines.

The code for the BIOS resides in the bank-switched portion of the
Pascal language card. The Pascal system calis BIOS routines
through a pair of jump tables. When SYSTEM.ATTACH loads a
user-defined device driver, it places a pointer to the new driver in
another jump table. Then the driver can be called from the BIOS.

This chapter explains this bank-switching scheme in detail. You
will need this information when you write a user-defined device
driver if your driver code is to call BIOS routines. This chapter also
contains information on special characters (which are usually
handied by RSP routines) and managing the type-ahead buffer.

| Calling BIOS Routines

BIOS routines are listed and described in Table 5-1. This section
explains in detail how these routines are calied.

RAM addresses $D000 to $DFFF on the Apple lle and lic and the
Apple Il language card can be switched between two separate
banks of memory. Under the Apple Il Pascal system, one of these
banks contains a portion of the system’s interpreter. The other
bank contains the BIOS.

The RSP calls a BIOS routine by way of a jump table in the
interpreter. A routine called via this jump table folds into main
memory the bank that contains the BIOS. When the BIOS routine
has been executed, the interpreter bank is folded back in, and
control returns to the Pascal interpreter.

Calling BIOS Routines [51

Figure 5-1 illustrates this bank-switching scheme.

Figure 5-1. Bank Switching for the BIOS

Bank-Switched RAM

$FFFF
Interpreter
$£000
$OFFF
interpreter BIOS
$0000

Further description of bank switching can be found in the Apple
Language Card Installation and Operation Manual for the Apple I
and the Apple lle Reference Manual.

521 Chapter 5: Special BIOS Considerations

The Interpreter’s Jump Table

The interpreter’s jump table to the BIOS, labeled simply BIOS, is
called by the RSP. Each of the entries in the BIOS jump table
calls a routine named SAVERET. SAVERET stores some return
addresses for a given routine and then folds in the BIOS bank.

Here is the jump table called BIOS:

BIOS JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET

KCONCK JSR SAVERET
JSR SAVERET
JSR SAVERET

;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Cald
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Call
;Cali

CREAD
CWRITE
CINIT
PWRITE
PINIT
DWRITE
DREAD
DINIT
RREAD
RWRITE
RINIT
I0RTS (do nothing)
GRINIT
I0RTS (do nothing)
CSTAT
ZEROSTAT
DSTATT
ZEROSTAT
CONCK
UDRWI
PSUBDRV

The offset to the actual BIOS routine is on top of the stack when
the BIOS jump table is called. After the routine SAVERET has
folded in the BIOS, it calls the routine SAVERET2, which does the
actual jump, using the offset to the BIOS routine plus the offset to
the second jump table, which is called BIOSAF.

Calling BIOS Routines

[53

Here is the code for SAVERET:

SAVERET STA TTA ;Save the AREG (this is the

;local return address)

PLA ;Get the offset to the
idesired routine

CLC

ADC #05C-2 ;Add the offset to the
;BIOSAF jump table

STA TT2 ;Save this in TT2

PLA

ADC #0

STA TT3

PLA ;Save the 2-byte Pascal

STA RETL ireturn addr in RETL-RETH

PLA

STA RETH

LIF SYSSIZE<>48. ;If the BIOS is not
;already switched in

LDA 0Cco83 ;.. .then fold it in

.ENDC

LDA TT1 ;Restore the local return
;address

JSR SAVERET2

SAVRET2 JMP eTT2 ;Jump through the BIOSAF

yjump table

BIOS Jump Tables

The BIOSAF jump table contains the addresses of all BIOS
routines, in a defined order. SYSTEM.ATTACH stores a copy of
the BIOSAF jump table on the heap, and stores the pointer to this
table at $00E2. Your driver can use this copy of the table to get
the address of a BIOS routine.

Each entry in BIOSAF consists of a JMP instruction followed by a
two-byte address. Table 5-1 shows the order of the routines
inciuded in the table, along with a description of the routine and
the offset to the JMP byte.

541 Chapter 5: Special BIOS Considerations

Table 5-1. Order of Addresses in BIOSAF

Routine Name Description Offset
CREAD Reads from CONGOLE: 0
CWRITE Writes 1o CONSOLE: 3
CINIT initializes CONSOLE: 6
PWRITE Writes 1o PRINTER: 9
PINIT Initializes PRINTER: 12
DWRITE Writes to disk 15
DREAD Reads from disk 18
DINIT Initializes disk 21
RREAD Reads from REMIN: 24
RWRITE Writes to REMOUT: 27
RINIT initializes REMIN: and REMOUT: 30
IORTS (Graph write—not implemented) 33
GRINIT (Graph init—sets text mode) 36
IORTS (Printer read—not implemented) 39
CSTAT Status of CONSOLE: 42
ZERQOSTAT (Printer status-—no: implemented) 45
DSTATT Status of disk 48
ZEROSTAT (Remote status—not impiemented) 51
CONCK Checks CONSOLE: for characters typed 54
UDRWI Routine to get user-defined driver 57
PSUBDRV Routine to get substitute driver 60

The routine ZEROSTAT is a stub for status routines that have not
been implemented. It simply pops parameters off the stack, stores
0 in the first word of the buffer {the ARRAY parameter in a
UNITSTATUS call from Pascal), clears the XREG, and then
returns. IORTS is a stub for routines other than status routines: it
pops parameters, clears the XREG, and then returns.

The UDRWI routine calls a user-defined device driver by jumping
through a jump table calied UDJMPVEC. UDJMPVEC is declared
as follows:

UDUMPVEC JMP o] ;Unit number 128 (usually
;the ProFile driver)
JMP 0 ;Unit number 128 (usually
;. the Mouse driver)
JMP o] ;Unit number 130 (available)
JMP 0 ;Unit number 143 (available)

Calling BIOS Routines (55

The actual driver addresses are filled in by SYSTEM.ATTACH at
startup time. An address of 0 (the default value) indicates an
unattached device.

The PSUBDRYV routine is used to call user-defined drivers
attached to device numbers 1-20. This range includes
user-defined block-structured devices and user-defined drivers that
substitute for standard Pascal system drivers (see Appendix E).
Just as UDRW! uses the table UDJMPVEC, PSUBDRY uses a
table called DISKNUM.

The jump table DISKNUM is declared as follows:

DISKNUM .WORD OFFFF ;Unit #1 CONSOLE:

.WORD OFFFF 2 SYSTERM:

.WORD OFFFF 3 (see Appendix E)

.WORD © 4 startup drive

.WORD 1 5 2nd disk drive

.WORD OFFFF 6 PRINTER:

.WORD OFFFF 7 REMIN:

.WORD OFFFF 8 REMOUT:

.WORD 4 9 5th disk drive

.WORD 5 10 6th disk drive

.WORD 2 i1 3rd disk drive

.WORD 3 12 4th disk drive

-WORD OFFFF 13 a block-structured
user device

.WORD OFFFF 14 a block-structured
user device

.WORD OFFFF H 20 a block-structured

user device

As with UDJMPVEC, the address of any user-defined driver is
stored by SYSTEM.ATTACH. Note that in DISKNUM, this value
will be the driver’s address minus 1.

In DISKNUM, the status of each device is indicated by the high
byte of the address word:

¢ If high byte = FF, then the device is not a disk drive (or it has
not been attached).

® If high byte = 0, then the device is a standard disk drive, and
the low byte contains its drive number.

® It high byte = anything else, then the word has been stored by
SYSTEM.ATTACH, and contains the driver’s address minus 1.

561 Chapter 5: Special BIOS Considerations

Note that since PSUBDRYV calls a device driver via an RTS
instruction, the address stored in the DISKNUM table must be 1
less than the driver’s actual address (that is, .PROC-1).
SYSTEM.ATTACH sets this up correctly.

If your driver is to call another BIOS routine, it must use the copy
of BIOSAF that SYSTEM.ATTACH stores on the heap. The
address of this copy is stored in ACJVAFLD at $0E2-E3. Your
driver should jump through this address, using an offset to the
appropriate driver. Note that this offset must be the number shown
in Table 5-1 plus 1, to avoid the JMP instruction that is stored with
each entry. The sample device driver in Appendix A uses this
technique to call CONCK.

Code to call the CONCK routine is also stored in a four-byte
vector located at address $BFOA. The usual way for a program to
call CONCK is to do a JSR BFOA. However, this must not be done
from within a user-defined device driver, as the return address to
Pascal will be lost.

Returning to the Pascal Interpreter

The routine called GOBACK accomplishes the return to the Pascal
interpreter:

GOBACK STA TTH ; Save the AREG
LDA RETH ;Get the Pascal return addr
PHA ;in RETL-RETH, and push it
LDA RETL ;on the stack
PHA
LIF SYSSIZE<>48. ;If the BIOS is in main

;memory

LDA OCO8B ;...fold in the interpreter
.ENDC
LDA TTH ;Restore the AREG
RTS iReturn to Pascal

Calling BIOS Routines 57

H Handling Special Characters

581

Three types of special characters are handled by the Pascal
system:

® Type A Characters used to control the 40-column display:
CONTROL-A and CONTROL-Z (also CONTROL-W and
CONTROL-E on an Apple It or Apple I Plus).

® Type B Characters to control output to the console: the
START/STOP character, the FLUSH character, and the
BREAK character.

® Type C Characters handied by the RSP: CONTROL-C, DLE
(for blank compression), and CR (an LF may be inserted after
each CR).

Characters ot Type A or B are processed by the BIOS routine
CONCK. This special handling can be turned off for the duration of
a call to UNITWRITE. This is done by setting bits in the MODE
parameter. (See Figure 2-1 for a diagram of the MODE
parameter.)

The RSP inspects the MODE parameter and sets bits in a byte
called SPCHAR according to the MODE parameter’s value. When
CONCK is called, it inspects SPCHAR, and processes (or does
not process) special characters according to this scheme:

e If bit 4 in MODE is set, then bit 0 in SPCHAR is set—and Type
A characters (40-column control) are not handled.

¢ If bit 5 in MODE is set, then bit 1 in SPCHAR is set—and Type
B characters (STOP, FLUSH, and BREAK) are not handled.

if your program directly sets bits 0 or 1 in SPCHAR, then the
associated special character checking will be turned off until either
you reset the bits or the Pascal system is restarted. When special
character checking is turned off, characters of Type A and Type B
are passed back to the Pascal level without modification. You can
use this feature if you wish to use some Type A or Type B
characters for a special purpose in a particular application
program, or if you simply wish to disable special character
handiing.

Chapter 5: Special BIOS Considerations

Redefining the Value of Type B Characters: Default values
for the three Type B special characters are CONTROL-S for
START/STOP, CONTROL-F for FLUSH, and CONTROL-@ for
BREAK. You can redefine the value of these characters using
the system reconfiguration utility. This utility saves a variety of
information in the file SYSTEM.MISCINFQ. The contents of
SYSTEM.MISCINFO are in turn loaded into the Pascal system’s
SYSCOM bufter at startup time. For more information, see
Appendix E or the section entitled System Reconfiguration in
Chapter 8 of the Apple Pascal Operating System Reference
Manual for the Apple H.

Special characters of Type C (CONTROL-C, DLE, and CR) are
handled directly by the RSP.

If bit 2 (NOSPEC) of the MODE parameter equals 1, this disables
the expansion of DLE blank compression codes. If bit 3 (NOCRLF)
of the MODE parameter equals 1, this disables CR-LF expansion.
If the MODE parameter is not included in a Pascal call to
UNITREAD or UNITWRITE, it is passed as its default value of 0
(no bits set).

The CONTROL-C character (ASCIlI ETX) is used in the Pascal
system to indicate the end of a file (except in the Editor, where
CONTROL-C receives special treatment). If the Pascal Filer reads
a CONTROL-C, it quits and returns to the operating system, which
is reinitialized. If the Pascal operating system reads a
CONTROL-C, it is reinitialized.

Handling Special Characters [59

| Managing the Type-Ahead Buffer

The type-ahead buffer saves input from the CONSOLE: device. It
is managed by the CONCK routine.

Generally, the type-ahead buffer is read only by Pascal system
programs. It isn’t a good idea for your programs to take characters
from this buffer. It is conceivable, though, that you might want to
place characters from some device other than CONSOLE: into this
buffer so that they will be read by the system.

The type-ahead buffer has room for 64 characters ($40 hex). The
first character in the buffer is located at $03B1.

To manage the buffer, CONCK uses two pointers: a read pointer,
RPTR (iocated at $BF18), and a write pointer, WPTR (located at
$BF19). Whenever CONSOLE: is initialized, WPTR is set equal to
RPTR.

When CONCK detects a character from CONSOLE:, it compares
WPTR to $40. If WPTR equals $40, it is reset to $0 (note that this
means the buffer is circular). CONCK then compares WPTR to
RPTR. If the values are equal, the buffer is full and the character
is ignored. If the buffer is not full, then the character is stored at
($03B1 + the value in WPTR).

To read from the type-ahead buffer, compare RPTR to WPTR. If
the values are equal, the buffer is empty and the program must
loop on a call to CONCK until a character is typed. If the values
are not equal, RPTR is incremented and then compared to $40. If
RPTR equals $40, it is reset to $0. The character to be read is
now at (803B1 + the value in RPTR).

601 Chapter 5: Special BIOS Considerations

M Permanent Locations Used by the BIOS and
Interpreter

The BIOS uses variables stored in three permanent locations: the
zero page, the $BF0O0 page, and the $FF00 page within the $F800
bank that contains interpreter values and jump tables. The tables
below show the most significant of these locations, including
locations mentioned in the preceding sections of this chapter.

A Warning
The tables in this section are meant to show certain important
memory locations. They are incomplete. You must not assume
that if a memory location is not shown below, it is not used by the
BIOS or the interpreter.

Tabie 5-2. Zero Page Locations

Name Location Description
ACJVAFLD 0E2 Pointer to heap copy of BIOSAF
OE3 (set up by SYSTEM.ATTACH).
RTPTR 0E4 Pointer to READTBL
0ES (see Appendix E)
WTPTR OEB Pointer to WRITTBL
0E7 (see Appendix E)
UDJVP OES8 Pointer to UDJMPVEC table
OE9
DISKNUMP 0EA Pointer to DISKNUM table
0EB
JVBFOLD OEC" Pointer to jump table before foid
0ED (that is, to BIOS in the interpreter)
JVAFOLD OEE Pointer to jump table after fold
OEF (that is, 1o BIOSAF in the BIOS)
BAS1L 0FO0 Pointer to screen 1: low byte
BAS1H OF1 high byte
BAS2L 0F2 Pointer to screen 2: low byte
BAS2H OF3 high byte
CH 0F4 Horizontal cursor location, 0...79
Cv OF5 Vertical cursor location, 0...23
FTEMP1 OF6
FTEMP2 0F7
FSYSCOM 0F8 Pointer to SYSCOM
0F9 (Pascal system communication area)
CONFLGS OFA Used to flag Type B characters

Permanent Locations Used by the BIOS and Interpreter l61

Table 5-3. $BF00 Page Locations

Name Location Description
CONCKVECTOR 0BFOA Vector to call CONCK
0BF0OB {do not use in a user-defined driver)
0BFOC
0BFOD
SCRMODE 0BFOE Screen mode byte
LFFLAG 0BFOF Line feed flag
EORCHAR 0BF11
CURSFLAG 0BF12
RANDL 0BF13 Random number seed: low byte
RANDH 0BF14 high byte
KEYCOUNT 0BF15
BREAK 0BF16 BREAK vector
0BF17
RPTR 0BF18 Read pointer for type-ahead buffer,
$0...40
WPTR 0BF19 Write pointer for type-ahead buffer,
$0...40
RETL 0BF1A Addr for return from BIOS call: low byte
RETH 0BF1B high byte
SPCHAR 0BF1C Status of Type A and B character
handling
IBREAK 0BF1D Address of BREAK
0BF1E
ISYSCOM 0BF1F Address of SYSCOM
0BF20

(IBREAK and ISYSCOM are used by
CONINIT; see Appendix E)

VERSION 0BF21 Version number: 0 = Pascal 1.0
2 = Pascal 1.1
3 = Pascal 1.2
FLAVOR 0BF22 “Flavor” of system—development,
runtime, etc. (see the Pascal 1.2
Update)
SLTTYPS 0BF27 Table of I/0 card types
0BF28 (see Appendix D)
0BF29
OBF2A
0BF2B
0BF2C
0BF2D
0BF2E
XITLOC 0BF2F
0BF30
HEFLAG 0BF31 (See the Pascal 1.2 Update)

62! Chapter 5: Special BIOS Considerations

Table 5-4. $FF00 Page Locations

Name Location Description

(no name) FFF6 Version word (for internal use)
FFF7

(no name) FFF8 The start vector
FFFQ

(no name) FFFA Nonmaskable interrupt vector (NMI)
FFFB

{no name) FFFC RESET vector
FFFD

{no name) FFFE Interrupt request vector (IRQ)
FFFF

Permanent Locations Used by the BIOS and Interpreter l63

Appendix A

Sample Code for a Device Driver

641 Appendix A: Sample Code for a Device Driver

:Locations 0..35 hex may be used as pure
;temps. You should never assume the data

:in these locations will be safe if you
;leave the environment of the driver itself.
iLeaving includes calls to CONCK.

CONCKAD CEQU 2

;0nly one .PROC may occur in a driver. Each
;driver to be attached must be assembled
;separately using the Pascal Assembler, and
.can have no external references.

.PROC U128DR

STA TEMP 1 :Save AREG contents (dev #)
PLA

STA RETURN

PLA

STA RETURN+1

TXA ;Use the XREG to tell you

;what kind of call this is
;(INIT, READ, etc.)

CMP #2

BEQ INIT
CcMPpP #4

BEQ STATUS
CMP #0
BEQ PMS
CMP #1

BEQ PMS

.In case the XREG isn‘t valid
JMP RET

Appendix A: Sample Code for a Device Driver l65

661

PMS PLA

STA BLKNUM

PLA

STA BLKNUM+ 1

PLA

STA BYTECNT

PLA

STA BYTECNT+1

PLA

STA BUFADR

PLA

STA BUFADR+ 1

PLA

STA UNITNUM

PLA

STA UNITNUM+ 1

PLA

STA CONTROL

PLA

STA CONTROL+1

TXA

BNE WRITE
READ JSR GOTOCK

;Get the parameters off the
i stack
; BLOCKNUMBER

s LENGTH

; Address of ARRAY

;Also saved in TEMP1

;Should always be 0

; MODE

iYour driver’s code for a read goes HERE
: (If your driver handles more than one

;device, this code could jump to various

iptaces depending

;in TEMP1)
JMP RET
WRITE JSR GOTOCK

on the device # saved

;Your driver’s code for a write goes HERE

JMP RET

;If you wanted to

call CONCK whenever your

;device did a read or write, you would

yuse this routine:
CKR .WORD CONCKRT- 1
GOTOCK LDY #55.

LDA ®0E2,Y

STA CONCKAD

INY
LDA OE2.Y
STA CONCKAD+ 1

Appendix A: Sample Code for a

;0ffset to address of CONCK

Device Driver

LDA CKR+1 ;Set it up so you return to

PHA ; CONCKRT after the CONCK cal!l
LDA CKR
PHA
Jmp @CONCKAD ;Jump to CONCK
CONCKRT RTS ;Return to calier
INIT ;Your driver’s code for initializing goes
;HERE
JMP RET
STATUS PLA :Get parameters
STA BUF ADR ;Address of status record
; (PAB)
PLA
STA BUF ADR+ 1
PLA
STA CONTROL ;Control parameter
PLA
STA CONTROL+1
;Your driver’s code for status information
;goes HERE
RET LDA RETURN+1
PHA
LDA RETURN
PHA
LDA TEMP 1
RTS
RETURN .WORD O ;Can’t use O page for these
TEMP 1 .WORD O ;since we leave our
;environment when going to
; CONCK
CONTROL .WORD ©
UNITNUM .WORD ©
BUFADR .WORD O
BYTECNT .WORD O
BLKNUM .WORD O
.END

Appendix A: Sample Code for a Device Driver (67

Appendix B

Sample Code for an Interrupt-Based Driver

681 Appendix B: Sample Code for an Interrupt-Based Driver

;This sample driver is a user-defined device
;driver. It shows both the overall skeleton
;of a user driver and more importantly it
;shows how to write an interrupt-bacsed device
;driver that uses the interrupt manager (IM).

;Macro subroutines

;Save/restore word off the stack (used to
;save return addresses)

.MACRO POP
PLA

STA %o 1
PLA

STA %1+ 1
. ENDM
.MACRO PUSH
LDA %1+ 1
PHA

LDA % 1
PHA

. ENDM

;The o1’ switch macro (see Chapter 6 of the
;Apple 111 Pascal Technical Reference Manual
;for description)

.MACRO SWITCH

LIF HoL4M <>

LDA %1

Appendix B: Sample Code for an Interrupt-Based Driver l69

701

$010

CSLIST
CTRLWORD

IRQ
FLAGEB22

.ENDC

LIF "%2" <> o
CcMmpP #%2+ 1

BCS $010

.ENDC

ASL A

TAY

LDA %34+1,Y

PHA

LDA %3,Y

PHA

.IF N4 <> hxv
RTS

.ENDC

. ENDM

;Move first word into the second
.MACRO MOVL

LDA %1

STA %2

LDA %1+ 1

STA %2+ 1

. ENDM

;Equates

;Zero page (0-$35 is available) is used for
ireturn addresses and global temps

;Zero page temporary locations

.EQU o} ;Buffer address

.EQU 2 ;Storage for control word
.EQU OFFFE IRQ vector location

.EQU OC2ED ;Interrupt flag register for

ihypothetical card in slot 2
;Error code equates

Upon completion of the driver, the X
;Register will hold an appropriate error
;code that will be converted into the Pascal
;reserved variable IORESULT. The Pascal

Appendix B: Sample Code for an Interrupt-Based Driver

;program should check IORESULT after all
;UNITSTATUS calls made to the driver. Error
;code numbers 128-2855 are to be used by your

;driver.
XNOERRS .EQU o} ;No errors encountered
XBADCMD .EQU 3 ;Bad command to driver
ERRCODE .EQU 128. ;User-defined error message

.PROC SAMPLE

;This is the main entry point for the ATTACH
;driver. This driver is defined as a user
;device and therefore will only be used from
;Pascal using direct I/0 (i.e, UNITSTATUS,
;UNITREAD/WRITE).

;Upon entrance, the X Register will contain
;the type of call requested (UNITREAD, WRITE,
;CLEAR, etc.). See Chapter 2 for more
;details on the stack setup.

START
POP RETURN ; Save return address
TXA ;Get type of call
SWITCH ,4,IDTABLE
BADREQ LDX #XBADCMD ;If you got here, the call
;is in error!
BNE GOBACK ;Always taken
GOBACKOK LDX #XNOERRS ;Go here if you want to
;return with no errors
GOBACK PUSH RETURN ;0r return with X Register
;holding error code
RTS Main exit point
IDTABLE .EQU *

.WORD READ-1
.WORD WRITE-1
.WORD INIT-1
.WORD BADREQ-1
.WORD U_STATUS-1

Appendix B: Sample Code for an Interrupt-Based Driver 71

721

INIT

$001

$090

INTADR
JUMPTO

TYPE

RETURN

;INIT does two things: 1) moves the IRQ
.vectors to the appropriate locations the
;first time called and 2) every additional
;call will be meant to issue an appropriate
initialization reguest to the driver (if
;regquired).

PHP

SEI ;Disable interrupts

LDA TYPE

BEQ $001 ;1f zero then do init stuff

Any UNITCLEAR call after the initial one by
the system will jump to this area

JMP $090 ;Always taken
INC TYPE ;Bump type field so next
;time we don‘t do it

;This next section moves the IRQ vector into
;a temporary location. The MOVE macro is a
;16-bit move instruction. See above macros
;for an explanation.

MOVE IRQ, JUMPTO
MOVE INTADR, IRQ ;Patch IRQ location and jump
;vector

More code for initial initialization call

PLP

JMP GOBACKOK

.WORD INTHNDLR ;Interrupt handlier address

.WORD © ;Save area for next
;interrupt svc routine

.BYTE O y1f zero then init call;
;else cleanup call

.WORD © ;Return address for Pascal

Appendix B: Sample Code for an Interrupt-Based Driver

;READ is called when the program generates a

sUNITREAD
READ
Code for the UNITREAD call
LDX #ERRCODE ;Error completion code
JMP GOBACK
iWRITE is called when the program generates a
;UNITWRITE
WRITE

Code for the UNITWRITE call

LDX #ERRCODE ;Error completion code
JMP GOBACK

;U_STATUS is called when the program executes
;a UNITSTATUS call to this particular device.
;The order of the stack (four bytes) is:
;TOS =>POINTER TO STATUS RECORD
; CONTROL WORD
: bits 15..13 12..2 1 0]
; user reserved status/ dir.
H defined for future control
; direction - O = status of output channel
1 = status of input channel
; status/ctrl - O = status call
1 = control call

. Bits 13-15 should have the number of the
; control/status request.

Appendix B: Sample Code for an interrupt-Based Driver (73

;From Pascal, the call should be:

H UNITSTATUS(130,BUFFER,OPTION)
iwhere:

: 130 = Device driver number (currently
; 130 is used by this driver)

; BUFFER = PACKED ARRAY [0..??] OF 0..255;
H This array is as big as needed

H by the code called.

; OPTION = PACKED RECORD

H DIRECTION : O..1;

H STAT_CTRL : O..1;

H RESERVED : 0..2047;

; CODE : 0..7;

; END;
U_STATUS
POP CSLIST ;See above
popP CTRLWORD ;Ditto
LDA #02 ;Mask for status/control bit
BIT CTRLWORD If bit 2 is set, zero flag
;will be cleared
BNE CONTROL ;Go do a control catdl
JMP STATUS ;Status reqguest
;iThis is the unitstatus call, control reqguest
;section
CONTROL
LDA CTRLWORD+1 ;Get control word
AND #OEQ ;Is it #0 ;0000 0000
BEQ CODE_ZERO ;Yes
CMP #20 Is it #1 : 0010 0000
BEQ CODE_ONE ;Yes
[of 1= #40 ;Is it #2 ;. 0100 0000
BEQ CODE_TWO
CMP #60 ;Is it #3 : 0110 0000
BEQ CODE_THREE
LDX #XBADCODE ;Completion code error

JMP GOBACK

74 Appendix B: Sample Code for an Interrupt-Based Driver

CODE_ZERO
Code for control code zero

LDX #ERRCODE ;Completion code error

JMP GOBACK ;And report it
CODE_ONE
Code for control code one
LDX #ERRCODE ;Completion code error
JMP GOBACK ;And report it
;Repeat for codes 2 and 3
CODE_TWO
LDX #ERRCODE ;Completion code error
JMP GOBACK ;And report it
CODE_THREE
LDX #ERRCODE ;Completion code error
JMP GOBACK ;And report it
:This is the unitstatus call, status reguest
;section
STATUS
LDA CTRLWORD+1 ;Get control word
AND #OEO Is it #0O ;0000 0000
BEQ SCODE_ONE ;Yes
CMP #20 ;Is it #1 . 0010 0000
BEQ SCODE_TWO ;Yes
LDX #XBADCODE
JMP GOBACK

Appendix B: Sample Code for an Interrupt-Based Driver 175

SCODE_ONE
Status code one

LDX #ERRCODE ;Completion code error

JMP GOBACK ;And report it

SCODE_TwO
Status code two
LDX #ERRCODE ;Completion code error
JMP GOBACK ;And report it
;This is the interrupt handier. Remember that
ywe don’t have to save the context of the
isystem. The code used to check for an
;interrupt will have to be changed depending
0N your hardware,

INTHNDLR

;First we check to see if we generated the

interrupt

LDA FLAGE522 ;Check for 6522 int flag

BPL GOAMHEAD ;If bit was set, we
;generated it

JMP NEXT ;0therwise go to the next

vinterrupt hndir

;Since we generated the interrupt, we service
i1t and then return to the interrupt manager
iwith an RTI

761 Appendix B: Sample Code for an Interrupt-Based Driver

GOAHEAD
Interrupt handler code for our card

RTI ;Go back to the interrupt
; manager

;If we got to NEXT, we must have decided that
:the interrupt was not generated by us.

NEXT
JMP @JUMPTO
.END

Appendix B: Sample Code for an Interrupt-Based Driver

[77

Appendix C

Information Contained in ATTACH.DATA

78] Appendix C: Information Contained in ATTACH.DATA

This information is contained in an attach data record, created by
running the program ATTACHUD:

e The name of the device driver.
® The device number(s) (unit numbers) attached to this driver.
¢ Whether to initialize the device(s) at startup time.

® Whether the driver's code is aligned. If so, to which byte
boundary (0-256).

e Whether the driver can be placed in the first HiRes graphics
page.

e Whether the driver can be placed in the second HiRes
graphics page.

e Whether the driver uses interrupts.

e Whether the driver has transient initialization code. If it does,
the name of the transient module. Whether the transient

module’s code is aligned. If so, to which byte boundary
(0-256).

Under Apple !l Pascal version 1.2, this information is saved in the
format defined by the following declarations.

Warning

This record format is valid only for version 1.2. It is not the same
as the version 1.1 format, and there is no guarantee that it will
remain the same in future versions of Apple Il Pascal.

Apppendix C: Information Contained in ATTACH.DATA 179

alpha = packed array [0..7] of char;

punits = (undefu, consu, systu, graphu, dddu, ddbu,
printu, remiu, remou, ddSu, ddiOu, ddiitu,
dd12u, ddi3u, ddi4u, ddibu, ddicéu, ddi7u,
ddi8u, ddi19u, dd20u, udi128u, udi29u, udi30u,
udi31u, ud132u, udi33u, udi134u, udi35u,
udi136u, ud137u, udi38u, udi139u, udi40u,
udidiu, ud142u, udid3u);

sopunits = set of punits;

devrec = packed record

devname: alpha;
{Name of .PROC in the assembly code file
for this device.}

uattached, initunits: sopunits;
{Units this device driver is to be attached
to. 1...20 for the system units and 21...36
for user device units 128...143.}

drivalign: 0..256;
{This tells SYSTEM.ATTACH if the driver has
to be on some N byte boundary. N=0O =>
driver can be loaded anywhere (0 is
default). N=8 => driver must be loaded on
an 8 byte boundary (0, 8, 16, etc.). N=256
=> driver must be loaded on a page
boundary.}

ufhrp, ushrp: boolean:
{True if attach can use the associated
hires page to put its drivers into.
UFHRP is for the 2000..3FFF page.
USHRP is for the 4000..5FFF page.}

has_interrupts: boolean;
{If the driver will use interrupts, this
will be TRUE.}

transname: alpha;
{Name of the .PROC in the assembly code
file for the driver’s transient
initiatization code if it exists, else
spaces.}

80 Appendix C: Information Contained in ATTACH.DATA

transalign: 0O..256;
{This tells SYSTEM.ATTACH

has to be on some N byte boundary.
Onty used if transname is

if the transient
See

drivalign above.
nonblank.}

end;

Apppendix C: Information Contained in ATTACH.DATA l81

Appendix D

Peripheral Card Firmware Protocol

82| Appendix D: Peripheral Card Firmware Protocol

This is a summary of the protocol for peripheral card firmware that
is to communicate with programs in Apple 1l Pascal, version 1.2.

For more information, refer to the Apple lle Design Guidelines
manual.

Certain card slots are automatically assigned to Pascal devices. A
firmware card in slot 1 is PRINTER: (unit #6), a firmware card in
slot 2 is REMOTE: (unit #7 and #8, REMIN: and REMOUT:), and
a firmware card in siot 3 is CONSOLE: and SYSTERM: (unit # 1
and #2).

The /O routine entry point branch table is located near the
beginning of the $Cs00 address space (where s is the slot number
where the peripheral card is installed).

Before the BIOS calls firmware routines, it disables the $C800
ROM space of all other firmware cards. Then it checks four
firmware bytes to identify the peripheral card.

Both the identifying bytes and the branch table are near the
beginning of the $Cs00 ROM space. The identifiers are the
following:

Address Value

$Cs05 (See the following table)

$Cs07 (See the following table)

$Cs0B $01 (Generic indication of a firmware card)
$Cs0C $ci (Device signature; see below)

At startup time, the system initializes the table called SLTTYPS
(located at $0BF27-0BF2E; see Table 5-3). This table contains an
entry for each of the eight card slots on the Apple Il. The value of
the entry indicates the type of peripheral card that the slot

Appendix D: Peripheral Card Firmware Protocol l83

"84

contains, as follows:

Value in Value in
SLTTYPS Meaning $Cs05

0 No PROM on card —-

1 Card not recognized —-

2 Disk controller card $03

3 Com card $18

4 Serial card $38

5 Printer card $48

6 Firmware card $48

Value in
$Cs07

$3C
$38
$18

$48
$48

The four high-order bits, ¢, of the device signature byte identify

the device class. They are as follows:

Value of ¢ Class

$0 Reserved

$1 Printer

$2 Joystick or other X-Y input device
$3 Serial or parallel I/0 card

$4 Modem

$5 Sound or speech device

36 Clock

$7 Mass storage device

$8 80-column card

$9 Network or bus interface

$A Special purpose (none of the above)
$B - $F Reserved for future expansion

The four iow-order bits, i, of the device signature byte are an
identifier for the card assigned by the card’s manufacturer. It is not
guaranteed to be unique. For example, the Apple lle 80-Column
Text Card has a device signature of $88. Application programs can
use the device signature to identify specific devices. The value of |

is ignored by the BIOS.

After Pascal has identified the peripheral card, it uses these

branch table locations:

Address Contents

$Cs0D Initialization routine offset (required)

$CsOE Read routine offset (required)

$CsOF Write routine offset (required)

$Cs10 Status routine offset (required)

$Cs11 $00 if control and interrupt routines are handled by the firmware

Notice that $Cs11 contains $00 only if the contro! and
interrupt-handling routines are supported by the firmware.

Appendix D: Peripheral Card Firmware Protocol

Here are the entry point addresses, and the contents of the 6502
registers on entry to and exit from Pascal /O routines:

Addr Oftset for XREG YREG AREG
$Cs0D initialization

On entry: $Cs $s0

On exit: error code (unchanged) {unchanged)
$CsOE Read

On entry: $Cs $s0

On exit: error code (unchanged) character read
$CsOF Write

On entry: $Cs $s0 character to write

On exit: error code (unchanged) (unchanged)
$Cs10 Status

On entry: $Cs $s0 request (0 or 1)

On exit: error code (changed) (unchanged)

Request code 0 means “Are you ready to accept output?”
Request code 1 means “Do you have input ready?” On exit, the
reply to the status request is in the carry bit: carry clear means no,
carry set means yes.

Appendix D: Peripheral Card Firmware Protocol [85

Appendix E

Drivers for Standard Devices

861 Appendix E: Drivers for Standard Devices

Although it is not a recommended practice, it is possible to write a
device driver that replaces one of the standard Pascal system
device drivers. Standard drivers have special requirements, which
are described in this appendix.

The PSUBDRY routine in the BIOS enables the RSP to call a
user-defined substitute for a standard driver. See Chapter 5 for a
description of this mechanism.

. Character Devices

The standard system character devices are unit #1 and #2
(CONSOLE: and SYSTERM:, which refer to the same device), unit
#6 (PRINTER:), and unit #7 and # 8 (REMIN: and REMOUT:,
which also refer to thé same device; we wili call this device
REMOTE: for convenience).

Character I/O is accomplished one character at a time. The
character is placed in the A Register, and the BIOS routine is then
called. The Y Register must contain the unit number, which can
be referred to if a single driver is to access more than one device.

Note that this differs from a call to regular user-definad devices,
where the A Register contains the unit number.

Also note that DLE codes, CR-LF expansion, and CONTROL-C
are all handled by the RSP. The START/STOP, FLUSH, and
BREAK characters are handled by CONCK. (These characters can
be disabled by setting bits in SPCHAR, in which case they are not
handled at all. See Chapter 5.)

Character Devices [_87

881

The interpreter contains two tables that tell the RSP whether input
and/or output is allowed for a particular character device. These
tables are called READTBL and WRITTBL. They both have the
same format, so we will use READTBL as an example.

READTBL ;Table of routine addresses to be
;used when making a READ call
;to a standard device
;iNot used with block-structured devices
.WORD BIOS+CONREAD ;CONSOLE:, unit #1
.WORD BIOS+CONREAD i SYSTERM:, unit #2

.WORD © ;unit #3

.WORD © ;Unit #4, a disk

.WORD © ;Unit #5, a disk

.WORD © iPRINTER:, unit #6, read only

.WORD RBIOS+REMREAD ;REMIN:, unit #7, remote
yread only

.WORD © ;REMOUT :, unit #8, remote
iwrite only

In this table, the address called BIOS is the base address of the
jump table before the BIOS itself has been folded in. CONREAD is
the offset to the address of the CONSOLE: read routine (CREAD),
and REMREAD is the offset to the address of the REMIN: read
routine (RREAD).

If an entry in this table is 0, then the device is write-only.

WRITTBL has exactly the same format, but the nonzero entries
correspond to standard write routines (for example, CWRITE for
the CONSOLE:).

If your substitute for a standard device driver supports a write or
read that is not normally allowed (for example, your printer can
send characters as well as receive them), then you will have to
modify READTBL or WRITTBL accordingly. This must be done at
startup time.

The value of an entry that allows a read or write for a substitute
driver must be the base address of the jump table before the fold
(JVBFOLD) plus the offset to the PSUBDRYV routine (this offset
equals 60).

The pointer to READTBL is called RTPTR, and resides at
$0E4-0ES. The pointer to WRITTBL is calied WTPTR, and resides
at $0E6-0E7.

The address of the BIOS jump table before the fold, is stored in
JVBFOLD at $0EC-0ED.

Appendix E: Drivers for Standard Devices

A single driver can be attached to more than one of the system’s
character devices. if this is the case, the first thing the driver must
do when it is called is check the PRINTER: and/or REMOTE:
devices, and place any characters received into its own PRINTER:
or REMOTE: gqueue.

After this, it must call CONCK in order to maintain the CONSOLE:
buffer. Then the call can be handled in the usual way, except that
its read routine must check the unit number (passed in the Y
Register), and return the next character in the type-ahead buffer if
YREG equals 1 or 2, the next character in the PRINTER: buffer if
YREG equals 6, or the next character in the REMOTE: buffer if
YREG equals 7 or 8.

CONSOLE: and SYSTERM:

The devices CONSOLE: (unit #1) and SYSTERM: (unit #2) must
be driven by the same driver. Calls to CONSOLE: and SYSTERM:
are equivalent from the driver’s point of view: the RSP decides
whether it should or should not echo a character that is typed.

Sample code for a CONSOLE: driver appears at the end of this
appendix.

The CONCK routine will call the CONSOLE: driver (as well as vice
versa). If your substitute driver has a routine that gets or
processes characters, the first three bytes of the driver code must
be a jump to this routine; otherwise, the first three bytes must be
no-ops.

All other calls to your driver (calls through PSUBDRV) will jump to
three bytes beyond the beginning of your driver’'s code. This
should be the .PROC entry point.

For example, the beginning of your CONSOLE: driver’s code
might look like this:

JMP MY CONCK :The first three bytes
.PROC OWNCON ;The normal entry point
STA TEMP {

PLA

Et cetera

When the CONSOLE: must do a read or write, the only thing
passed on the stack is the return address (at top of stack). The
character to be read or written is in AREG.

Character Devices @

901

When the CONSOLE: is initialized, the stack contains parameters
as follows (these are all one word):

top of stack — > return address
pointer to SYSCOM
pointer to BREAK
address

The BREAK and SYSCOM pointers must be stored in
$BF16-BF17 and $00F8-00F9, respectively. Also, the FLUSH and
START/STOP conditions must be reset, and the type-ahead buffer
cleared. This means setting SPCHAR, RPTR, and WPTR to 0
(see Chapter 5).

When CONSOLE: receives a status call, the stack contains these
parameters (all one word):

top of stack — > return address
control word
pointer to status
record

The control word has the format described in Chapter 2 (see
Figure 2-2). The number of characters in the type-ahead queue
must be stored in the first word of the status record. This value is
the absolute value of (WPTR - RPTR). If type-ahead is not being
used, a request for the status of output should always set the
status record word to 0, and a request for the status of input
should set the status record word to 1 if a character is waiting to
be read, or 0 if no character is pending.

if the CONSOLE: read routine receives a character whose value is
greater than or equal to 128, this is a control character such as d&.
The next character in the buffer will be the character that was
typed at the same time as the control key(s), and if it was pressed
along with &, its high bit will also be set.

The control character byte can have the following values:

$84 means ¢ was pressed (bits 7 and 2 are set)
$90 & was pressed (bits 7 and 4 are set)
$Co &-SHIFT was pressed (bits 7 and 6 are set)

If you have written your own version of CONCK to support a
keyboard that does not have these special key combinations, the
new CONCK routine must ensure that the high bit is clear for
every character that it reads.

Appendix E: Drivers for Standard Devices

If the device your driver controls does not handie lowercase
characters, the CONSOLE: write routine must map lowercase to
uppercase.

The CONSOLE: write routine must handle certain special
characters as described here:

CR ($0D) A carriage return must move the cursor to the
beginning of the current line.

LF ($0A) A line feed must move the cursor to the
same column of the next line. lf the cursor
begins at the last line of the screen, the
screen should be scrolled up one line.

BELL ($07) If possible, a sound should be made when
this character is received. If this isn’t
possible, ignore BELL.

SP (820) Place a space at the cursor’'s current
position, writing over whatever is there. Move
the cursor to the next column. if the cursor is
in the last column of the screen, do not move
it. If the cursor is in the last column of the
screen’s last line, do not move it and do not
scroll the screen. (The end-of-line and
end-of-screen actions are not possible on all
displays, and strictly speaking the cursor’s
action under these conditions is undefined.)

NUL ($00) Delay for the amount of time required to write
one character, but do not write anything.

Any Printable Character
Write the character to the screen and move
the cursor as defined for SP.

The Type B characters—START/STOP, FLUSH, and BREAK—are
soft characters. The default values are CONTROL-S,
CONTROL-F, and CONTROL-@, respectively, but the user can
change their values when the system is configured, as mentioned
in Chapter 5. The current values are stored in the SYSCOM area.
‘“The zero page location FSYSCOM (see Table 5-2) contains a
pointer to SYSCOM, and the offsets for these characters are as
follows:

FLUSH $053
BREAK $054
START/STOP $055

Character Devices [9—1

921

PRINTER:

In a PRINTER: (unit #6) read, write, or initialize call, the stack
contains only the return address (on top of stack).

A PRINTER: init call should cause the printer to do a carriage
return followed by a line feed. The printer’s buffer should be
cleared. The init routine should not do a form feed.

A PRINTER: status call has the same parameters as CONSOLE:
status. The first word of the status buffer shouid be set to the
number of characters in the printer’s buffer for the direction
requested (that is, input or output). If this can’t be determined, set
the status word to 0.

If your printer is a write-only device, then a call to PRINTER: read
should set the IORESULT (that is, the X Register) to the error
code 3. If your printer can read characters, you will have to have
changed the READTBL.

If your printer is one that must receive an entire (buffered) line at
once, the PRINTER: driver’'s write routine is responsible for the
butfering.

The PRINTER: write routine must handie certain special
characters as described here:

CR (30D) Print the current line and return the carriage
to the first column. Don’t do an automatic line
feed.

LF (S0A) Advance to the next line. If a carriage return
must be sent with each line feed, it is all right
to do so.

FF ($0C) Move the paper to the top of form and then
do a carriage return. If your printer cannot
move to top of form, simply do a carriage
return followed by a line feed.

REMIN: and REMOUT:

REMIN: (unit #7) and REMOUT: (unit #8) refer to a single device
and are handied by a single driver. In Pascal, REMIN: is used to
read from the device, and REMOUT: is used to write to it. This
appendix calls the device REMOTE: for convenience.

Appendix E: Drivers for Standard Devices

Most often, the REMOTE: device is an RS-232 serial line. This is
used in many different applications. REMOTE: should transfer data
without modifying it in any way. The default rate of transfer is 9600
baud.

The stack format of calls to REMOTE: is the same as for
PRINTER:. REMOTE: status should behave in the same way as
PRINTER: status. REMOTE: init should do whatever is necessary
to make the device ready to send and receive characters.

It is best if the input to REMOTE: can be buffered in the same way
as input to CONSOLE:, but this is not a requirement.

Special Use of Unit #3

Unit #3 is not defined to access any device, but in Apple |l
Pascal, a UNITCLEAR call to unit # 3 sets the screen to text
mode. The Pascal system uses this feature, so you should not
assign unit # 3 to any driver.

- Block-Structured Devices

The standard system block-structured devices have numbers 4, 5,
and 9-12.

The driver for a block-structured device is responsible for mapping
Pascal system block numbers into physical track-and-sector
addresses. ,

Unit #4 (drive #0) is required to be the startup disk for the
Pascal system. Once the system has started up, you can
substitute the driver for unit # 4, but the substitute device must
have the same volume name as the disk that contained the
bootstrap, and must have a copy of the file SYSTEM.PASCAL. In
addition, the copy of SYSTEM.PASCAL must be identica! to the
copy on the startup disk (it must be exactly the same version), and
it must be in the same location on the substitute disk (it must start
at the same block number).

When a disk driver is called, the unit number is in the A Register
(as it is for user-defined character devices).

In calls to disk drivers, the stack is set up as described in Chapter
2.

Block-Structured Devices F§:=T

A status call to a disk driver must store the following information in
the status record:

word 1: The number of bytes buffered in the requested
direction (input or output). Return 0 if this is
unknown,

word 2; The number of bytes per sector.
word 3: The number of sectors per track.
word 4: The number of tracks per disk.

As you can see, the last three words returned by the status
request are constant for the type of disk drive being accessed.

As mentioned in Chapter 2, it is always safe to transfer a full block
with UNITWRITE, but 2 full block should be transferred by
UNITREAD only if LENGTH is a multiple of 512. If it is necessary
for your driver to always transfer a full block, then your driver’s
UNITREAD routine must buffer the block itself, and then transfer
no more than LENGTH bytes into the read buffer (the ARRAY
parameter in a call from Pascal).

B sample Code for a CONSOLE: Driver

The foliowing code includes the actual BIOS source for the
console’s INIT, READ, and WRITE routines.

;Initialize CONSOLE:

CINIT PLA
STA FTEMP 1 ;Save return address
PLA
STA FTEMP2
PLA
STA FSYSCOM ;Save pointer to syscom area
PLA
STA FSYSCOM+1
PLA
STA BREAK ;Save break address
PLA

STA BREAK+ 1

LDA FTEMP2

PHA ;Restore return address
LDA FTEMP 1

PHA

94 Appendix E: Drivers for Standard Devices

LDA
STA
L.DA
AND
STA

JSR

LDX

STX
RTS

RPTR ;Flush type-ahead buffer

WPTR

CONFLGS

#0O3E

CONFLGS ;Clear STOP, FLUSH,
;AUTO-FOLLOW bits

TAB3 ;No, horizontal shift full
;1eft

#0 ;Clear IORESULT

KEYCOUNT ;Set # chars buffered = 0O
;And return

;Read from CONSOLE:
i Keyboard, com or serial card in slot 3

CREAD LDY
LDA
CMP
BNE
JSR
AND
RTS
CREAD2
CMP
BEQ
CMP
BEQ
JSR
PHA
DONTRMOV PLA
LDX
DONTCURS RTS

SHOWRMOV LDA
BNE
JMP

CREAD4 JMP

#030 ;Stot 3

SLTTYPS+3 ;What type of card?
#a ;Is it a serial card?
CREADZ2 ;No, continue

RSER iYes, read it

#TF ;Mask off top bit

#3 ;Is it a com card?
CREAD4

#6 ;Is it a firmware card?
CREAD4

CREAD4 ;Read the character

; Save the character

#0O ;Zero IORESULT

CURSFLG ;Cursor on?

DONTCURS ;No, return

INVERT ;Apple screen: show cursor

;Note INVERT will compliete
;subroutine with RTS
;This routine space
;optimized to save 1 byte

REALC4

;Write to CONSOLE:
:Video screen, com or serial card in slot 3

Sample Code for a CONSOLE: Driver

lo5

CWRITE

CLRIO

WFIRM

METAVEC

BUMP

JSR CONCK ;CONSOLE character
;available?

BIT CONFLGS iIs FLUSH flag set?

BVS CLRIO ;Yes, discard character and
;return

TAX ;Save character in X

LDY #030 ;Slot 3;010

LDA SLTTYPS+3 ;What kind of card?

CMP #3 ;Com card?

BEQ wWCOM ;Yes, write to com card slot
73

CMP #4 ;Serial card?

BEQ WSER iYes, write to serial card
;slot 3

CMP #6

BEQ WF IRM

STX FTEMP 1 ;Send character to screen

JSR SHOWRMOV ;Remove cursor if it’s
;turned on

LDY CH

JSR vouT2 ;Do the business

JSR SHOWRMOV ;Show cursor if it‘s
;turned on

LDX #0O iClear IORESULT

RTS ;Return from VIDOUT

TXA

PHA

LDA #0

JSR IOWAIT

JSR SER1

LDY #OF

JMP FVECH

;Bump ring-buffer index routine for CONSOLE

INX ;Bump buffer pointer with
;wraparound

CPX #CBUFLEN

BEQ ZERID ;More crude space
;optimizations

RTS

; CONSOLE read loop

96| Appendix E: Drivers for Standard Devices

CREAD3 JSR ADJUST ;Horizontal scroll if

;necessary
REALC4 JSR CHARTEST ;Test character
BEQ CREAD3 sLoop till something in
;buffer
DEC KEYCOUNT ;Update # of chars buffered
;excl prefixes
JSR NEWBUMP ;Get the char into the

;accumulator
;Note: hi bit will be set
;only if key was prefixed
BPL 2ERIO ;CO063 and/or OPEN and/or
;SOLID APPLE code?
;No, clean up and leave
JSR NEWBUMP ;Get the corresponding char
;into the accumulator
;Note: don’t need to
;validate X since OPEN
;and/or SOLID APPLE code
;always followed by
;corresponding character

ZERIO LDX #0 ;Clear IDRESULT
RTS ;And return to Pascal
NEWBUMP LDX RPTR ;Make X point to the

;character to be read
JSR BUMP

STX RPTR ;Bump read pointer
LDA CONBUF , X ;Get character from buffer
RTS
CHARTEST JSR CONCK ;Service keyboard
LDA KEYCOUNT ;Set up Z flag for keypress
s function
RTS

Sample Code for a CONSOLE: Driver [97

Appendix F

IORESULT Codes

"g8] Appendix F: IORESULT Codes

Device driver subroutines must return one of these IORESULT
codes in the X Register:

0 No error

1 Bad blcck, parity error

2 Bad device number

3 lilegal /0 request (such as attempting to UNITREAD
from PRINTER:)

4 Data-com timeout

5 Volume went off-line

6 File lost in directory

7 Bad filename

8 No room on volume

9 Volume not found

10 File not found

11 Duplicate directory entry

12 File already open

13 File not open

14 Bad input format

15 (Not used)

16 Disk is write-protected

17 lllegal block number

18 llegal buffer address

19 Must read a muttiple of 512 bytes (this is a ProFile
error)

20 Unknown ProFile error

64 Device error: failed to complete a read or write

128 - 255 (Available to user-defined devices)

Appendix F: IORESULT Codes ER)

Index

100 index

A

A Register 12
ABSOLUTE directive 11, 23
ADMERG 31-32
ADMERG.CODE xii
ARRAY parameter 16, 17
attach data record 26
contents 79
format 80-81
ATTACH TOOLS disk xii, 25,
26, 48
ATTACH.DATA 8, 27, 79-81
ATTACH.DRIVERS 8
attaching a driver 7-9, 25-26
ATTACHUD 26-30
ATTACHUD.CODE xii

B

bank switching 51-52

Basic Input/Output Subsystem
(BIOS) 3-4

$BFO00 page locations 62

BIOS See Basic Input/Output
Subsystem

BIOS memory locations 61-63

BIOS routines 55

calling 51-57
BIOSAF See jump tables

Index

0T

102

blank-compression code 17-18,
59

block-structured devices 5

standard 93-94

BLOCKNUMBER parameter
16, 17

blocks 5, 17

break bit 39, 40, 41

BRK instruction 38, 40

byte boundary, aligning on 29

o

character devices 5
standard 87-93

CONCK 14, 55, 57, 58, 60

CONSOLE: 89-92

CONTROL parameter 19-21

CONTROL-C 59

CONVAD 33-34

CONVAD.CODE xii

CR-LF expansion 17, 59

D

device drivers, standard 4,
87-97

device numbers 6, 28

devices
block-structured 5
character 5

DIRECTION 20

Disk I 5

DISKNUM See jump tabies

E

error messages at startup time
34-35
error numbers, IORESULT 13

F

$FFO0 page locations 63
firmware cards 83
protocol for 83-85

Index

G
GOBACK routine 57

H

handling interrupts 37-42
HiRes pages 27

IM See Interrupt Manager
IM.CODE xii, 47-49
INIT 12
initialization 8, 15
transient 9
initialize subroutine 15
interpreter, Pascal 51, 57
interrupt flag register 39
interrupt handling 37-42
interrupt Manager (IM) 37, 38
installing 48-49
interrupt service routine 37-46
initializing 43
interrupt-based driver
attaching 47
writing 42-47
interrupts
disabling 42-43
enabling 42-43
handling 37-42
recognizing 44
IORESULT 13
codes 13, 99
IORTS 55
IRQ vector 38, 40

J, K

JMP byte, offset to 54-55
JMP instruction 54
jump tables
BIOSAF 54
DISKNUM 56
interpreter’s (BIOS) 53
UDJMPVEC 55

index

103

104

L

LENGTH parameter 16, 17
LIBRARY utility 25, 26
LIBRARY.CODE 25
line-feed character 17

M, N, O

memory locations 61-63
MODE parameter 17-19, 58,
59

Mouse 6, 41

P,Q

PAB parameter 19

parameters
ARRAY 16, 17

BLOCKNUMBER 18, 17
CONTROL 19-21
LENGTH 186, 17
MODE 17-19, 58, 59
PAB 19
UNITNUMBER 12, 17
partial blocks, transferring 17
Pascal interpreter 51, 57
PRINTER: 92
.PROC directive 12, 23
ProFile 6
PSUBDRYV routine 58, 57
PURPOSE 21

R

READ 12

read subroutine 16

relocatable code 11

REMIN: 92-83

REMOUT: 92-93

RSP See Runtime Support
Package

RTl instruction 42, 44

runtime support 3-4

Index

Runtime Support Package
(RSP) 3-4, 51, 53
Runtime Systems xii, 37

S

SAVERET routine 53-54
sectors 5
SHOWAD 32
SHOWAD.CODE xii
6502 Assembler 11
soft switches 46
special characters 58-59
Type A 58
Type B 58, 59
Type C 58, 59
standard device drivers 4,
87-97
standard devices 3, 21
startup disk 8, 25, 35
startup time
error messages at 34-35
initializing at 15
STATUS 12
status subroutine 19
subroutines, device driver
15-21
initialize 15
read 16
status 19
write 17
SYSCOM buffer 58
SYSTEM.ATTACH xii, 8, 9, 15,
34, 35
SYSTERM: 89-92

T

tracks 5
transient initialization
code 29, 30
modules 22-23, 42, 43
Type A characters 58
Type B characters 58, 59

Index 105

Type C characters 58, 59
type-ahead buffer 14, 41, 60

U v

UDJMPVEC See jump tables

UDRWI routine 55

unit #3 93

unit I/O procedures 5

unit numbers See device
numbers

UNITCLEAR 5,7, 9, 12, 15

automatic 45

UNITNUMBER parameter 12,
17

UNITREAD 5, 7, 12, 15, 16-19

UNITSTATUS 5, 7, 12, 15,
19-21

UNITWRITE 5, 7, 12, 15,
16-19

w

WRITE 12

write subroutine 17
XY

X Register 12
completion code in 13
values 12

XREG See X Register

z

zero page locations 61
ZEROSTAT routine 55

106 Index

