Universe Toolbox Update 2/2/89

Chapter 12
Memory Manager

The new version of the memory manager has quite a few new features to improve overall system
performance. For users of the new Discovery ROM we have added an Improved memory peeker that
can be interupted with the escape key during a listing. For Universe and discovery users we have added
a faster memory search that allows allocation of handles to be much faster. This new scheme .
remembers the last handle allocated and stans searching for free memory after that handle the next time
newHandle is called. And finally we have added an out of memory queue (OOMqueue) for improved
application memory management. ‘

OutOfMem Queue

When the memory manager cannot make a handle with memory in its current configuration it calls an
internal routine that will do the following.

Y—

Run each entry in the OOMQueue untl one of the routines reports that it has freed enough
memory. If this happens the memory manager will try to allocate the new handle again.
Compact memory and try allocation again.

Purge Level 3 handles, if enough memory has been freed, compact memory and try allocation
again.

Purge Level 2 handles if enough memory has been freed, compact memory and try again.
Purge Level 1 handles if enough memory has been freed, compact memory and try again.
Run the OOMQueue if the user freed enough memory, purgeall purgables, compact memory
and try allocadon for the last time.

[« QU I N w N

If after all this the memory manager can still not allocate enough memory, it will report out of memory
to the applicaton.

Any applicaiton/DA/Init that installs itself in the OOM Queue is responsible for de-installing itself
before it leaves memory. OOM Queue routines are installed and removed with AddToOOMQueue and
RemoveFromOOMQueue. The OOM routine starts with a header record followed directly by its code,
the header record looks like this:

Reserved LONG used as link to next task in queue :
Version WORD Must be zero. Indicates what kind of OOM routine this is. Lets us
change inputs in future. e
Signature WORD $AS5A signature (like heartbeat task header)

CodeEntry your code starts right here

When an OOM routine is run, the memory manager pushes space for a long output on the stack, pushes
two inputs on the stack and "js1"s to the CodeEntry point. The OOM routine is responsible for
stripping the inputs off the stack and returning in the result long, the amount of memory freed.

If the Memory Manager finds that one of the Queue routines is not valid (the signature is SAS5A), a
system death will occur. The new system death error code is $0209.

When the OOM routine gets control the stack will look like:

Space LONG Space for resulting long
BytesNeeded LONG # Bytes needed by memory mgr

Chapter 12: Memorv Manager Page 12-1

Universe Toolbox Update 2/2/89

Stage WORD word indicating the stage of the memory failure. O=before memory
manager tried to do anything. l=after memory manager tried to do
anvthing.

RTLAdr 3 bytes return address

Just before the the OOM routine retumns to the memory manager thw stack should look like:

AmountFreed LONG Number of bytes freed
RTLAdr 3 bytes return address

While your routine is running it may call any memory manager routines it wishes. When calling any
routine that might allocate more memory (like NewHandle) you must insure that you have enough
memory for the new handle before you make the call. For instance, if you want your out of memory
routine to save some data to disk before you purge it. be sure that you keep in mind that openning a file
will cause memory allocation, and if you do not have enough memory 10 perform that allocation, you
might end up having your routine calied infinitely.

AddToOOMQueue Call $0C02
Input

HeaderPtr LONG
Output

None

Adds the indicated routine 10 the out of memory queue. The input should be a pointer to the out o
memory queue header at the start of your data space.

Possible Errors:

InvalidTag the SASSA signature was not where it was supposed to be, or is not present
. DeleteFromOOMQueue Call $0D02
Input
HeaderPrr LONG
Output
None

Removes the indicated routine from the out of memory queue.

Possible Errors:
NotlnList the pointer you passed is not a valid queue entry.)
InvalidTag the $AS5A signature was not where it was supposed to be, or is not present

Chapter 12: Memory Manager Page 12-2

Universe Toolbox Update 2/2/89
An OOMqueue example

The following is an example out of memory queue routine that you might use in your application. The
basic idea of this routine is that most times when an application runs out of memory, it may stll want to
perform some actions that require memory, like notifying the user of the low memory situation with a
dialog box and then giving the user the oportunity to save their work. To implement a friendly low
memory system you might try the following idea, when your application starts up, it should allocate a
handle with enough reserve memory to complete most common operations, put up a dialog box, and *
save the work. In addition to all of this, you might want to have a flag in your data storage area that you
can set to inform your event loop that its ime to tell the user to leave.

This first routine is an example of how to install the OOMQueue routine (as well as allocatdng the
reserve memory).

; first allocate a handle with enough memory for our low memory exit
; this example will use a 16k handle

pha ; room for result

pha

PushlLong #54000 ; size of handle

PushWord MyID ; my applications ID

PushWord #0 ; no bits set, unlocked and moveable
PushlLong #0 ; address (Not used)

_NewHandle ‘

Pulllong ResvHand ; and pull off the reserve handle

PushLong #MyOOMRtn
ldx #50C02
jsl >SE10000

address of the OOM header
function number for AddToOOMQueue
and call the tool dispatcher

Se Sy S

stz OOMFlag ; zero our low memory indicator
The following is the actual OOMqueue entry itself. It has been written for the MPWTIgs assembler.

This is the OOMQueue header for our routine

MyOOMRtn Record

ds.L 0 ; used by queue manager

dc.Ww 0 ; OOMEntry version

dc.W SASSA ; queue entry signature

EndR
; Now for my out of memory routine
MyOOM proc
; first set up the equates for the stack frame passed to us by the memory mgr
RTLAdr equ 1 ; return address we will go back to
Stage equ RTLAdr+3 ; indicates when called
BytesNeeded equ Stage+2 ; number of bytes the mem mgr needs
Result equ BytesNeeded+4 ; return number of bytes freed
; before we start we should zero out the result

lda #0

sta Result, s ; zero the result on the stack

sta Result+2,s

; Since this routine can be called before and after purging data
; we want to wait till the memory manager has purged everything it can
; before we panic so the first thing we do is test the Stage
lda Stage,s ; get the passed stage
beq OOMEnd ; if 0 then don't free anything

Chapter 12: Memory Manager Page 12-3

Universe Tooibox Update

272/89

; Now that we know zhat the memory manager has tried everythign else, we tes:
; T0 see if we have dcne this before by testing the COMFlag
; must use long address CB=unknown

lda >OOMFlag
bne OOMEnd

if non-zero then memory already fr-ee

/ since we know that we have not freed the reserve memory yet, we will do so

/ now and set the flag.
PushLong >ResvHand
_DisposeHandle

lda #SFFFF
sta >00MFlag

1lda #54000
sta Result,s

’

e e e we

..

handle to our reserve space
and dispose of it

now set our flag to true
so that the event loop knows low mem

and signal the memory manager how
much mem we freed

; Now return to the memory manager first adjusting the stack to remove the

; Fassed params

COMEnd
LongA Off
SEP #S520

pla
Ply

plx
plx
plx

phy
pha
LongA On
REP #520

RTL

Chapter 12: Memory Manager

~

.

.

turn on 8 bit accumulater
load the return address fcr safe
keeping for a sec

now pull off 6 bytes of parameters

put the return addr back

turn on 16 bit accumulator

and return

Page 12-4

