Universe Toolbox Update 2/3/89

Chapter 25
Text Edit

The GS TextEdit package has been designed to provide text editing capabilities for any application. It can
be used as a complete text editor, as the core of a word processor, or just to allow entering text in a dialog
box. TextEdit has been designed around three main criterion:

* Ease of use by the application programmer. Only a few routines need to be called 1o use a “plain
vanilla” text edit box and no extra support routines need to be written.

* Speed. All operations must happen with no or minimal delays. The code will handle special cases
separately in order to do this.

* Expansibility. TextEdit is able to be expanded without rewriting the entire package. It is possible o
add your own custom objects or to do text operations your own way with “hook routines”

GS TextEdit has been loosely based on the Macintosh version, but a number of enhancements have been
added. A feature list follows.

FEATURES

* TextEdit can edit any amount of text that will fit in memory. There are actually several internal limits on
the total number of characters in the text and the total number of lines, but these limits ran ge from about
128 million characters on upwards so they should never be reached.

* Mouse actvity is translated into text selection:
* Single clicking moves the cursor to that spot and dragging selects a block of text.
* Double clicking selects a word and subsequent dragging moves by words.
. + Triple clicking selects a line of text and subsequent dragging moves by lines.

* The text is word wrapped. that is when a line becomes too long it is automadcally wrapped to the next
line. Note that these are “soft” line breaks; no carriage returns are inserted.

* Cutting, Copying and Pasting of text is supported in the standard manner. These operations transfer the
text directly to and from the scrap manager and they can operate on as much text as the scrap manager
can handle.

* Intelligent cut and paste is optionally supported. This is a way of adjusting cut and paste operations so as
1o support word selections more fully. The rules for this adjustment are as follows: When a cut operation
is done, remove all spaces to the left of the selection. If there are no spaces to the left of the selection,
then remove all spaces to the right of the selection. When a paste operation is done, if the character either
to the left or the right of the current selection is part of a word, then insert a space first and then do the
paste. This allows the user to double-click a word, cut it and then paste it somewhere else without

\4 V! .

Chapter 25: Text Edit Page 25-1

Universe Toolbox Update 2

* Certain “control” keys perform text manipulation:

* DELETE & CTRL-D remove the current selecton if there is one or if there isn't they remove the
character before the cursor.

* CTRL-F removes the current selection or the character jp front of the cursor.

* CTRL-Y removes all the characters untl the end of a line gven if there is a selection. It does not
remove the last CR in the line (if there is one).

* CLEAR removes the current selection if there is one and does nothing if there isn't.

* CTRL-X cuts the current selection. If there is no selection this will have no effect on the current
clipboard. (Note: TextEdit gan tell the difference between CTRL-X and CLEAR; it looks to see if the
CONTROL key is down 1o tell if CTRL-X was pressed instead of CLEAR.

* CTRL-C copies the current selection. If there is no selection this will have 0o cffect on the current
clipboard.

* CTRL-V replaces the current selection by whatever was last cut or copied. If there is no selection, the
current clipboard (whatever was last cut or copied) is inserted at the current selection.

* Cursor movement keys (the arrow keys) are fully supported with the following enhancements:
* Holding down the COMMAND key will move by words or by pages. ‘
* Holding down the OPTION key will move to the beginning and end of the current line or the top and

* The text can contain any number of stylistic variations put anywhere in the text. Stylistic variations are
changes in Font, Style, Size, or Color.

* The text can contain a “Ruler” that specifies formatting information such as: left margin, left indent,
right margin, justification, and tab stops.

* Four types of justification are supported: left, center, right, and full. When tab stops are being used, the
document justification applies only to the last field in the line. All fields before the last one are left
Justified.

* Tabs are automaucally supported in three separate ways:
* No tabs. This is the fastest and takes up the least amount of space.
* Tab stops are put evenly every X number of pixels. This could be used to implement MPW style
tabs.

* Tab stops move to particular pixel increments (MacWrite style tabs). Currently only left justified tab
stops are supported.

* The maximum amount of text that can be entered can be limited to a particular number of lines, or a
particular number of characters, or what will fit in a particular rectangle.

* Primitive support for automatic pagination is built in to TextEdit. If the application indicates that it wants
page breaks kept track of, TextEdit will automatically keep track of pages and display the whitespace
between pages. TextEdit will also allow the user to insert and remove explicit page breaks from the text.

* Text can be vertically scrolled in a window.

* Text is automatcally scrolled to the current selection when the user types and when text is bein g'sclcctgd
with the mouse, dragging outside the text box will automatically scroll the text in that directon. T
arrow keys will also scroll to the current selection as will cut and paste. Note that COpy operations w
not scroll to the current selection.

* Text selection, insertion, deletion, and scrolling must be very fast

Chapter 25: Text Edit N a-oa

Universe Toolbox Update 2/3/89

GENERAL QVERVIEW

GS TextEdit is implemented as a combination of a super control and a toolset. The reason for this is that as
a control TextEdit shouidn't require very many toolbox calls (the control manager will do a lot of the
housekeeping) and as 2 toolset, people will be able to call TextEdit in a familiar manner (they won'’t have
to learn how to call 2 custom defproc). TextEdit can also be told 0of to create a conwol for any given
record. This allows = TextEdit record to be used in a port that is not a window, but it makes life more
difficult for the app:icarion programmer so it should only be used sparingly.

GS TextEdit conta:- - calls to setup and dispose of text boxes (places to edit text), extract text from them,
process simple ever .- (mouseDown, keyDown, etc) and to support complex events (menu selections). If
the application is vs:~.g TaskMaster, things get even simpler; TaskMaster automatically passes most events
directly to TextEd:: and the application only has to allocate and dispose of the record. The following is a
simple flowchart of what an application needs to do to have a TextEdit record using TaskMaster:

TENewshould be called after the
call TENew window is created to allocate a
new TextEdit record.

TaskMaster handles all the
events; it inserts all the keys that
the user types, handles all the
—»+ call TaskMaster mouse activity and takes care of
blinking the cursor. It even calls
TECut, TECopy,TEPaste and
TEClear for the TextEdit record.

loop until done

TEGeiText should be called
before the window is disposed of

call TEGetText to save the text and style

information the user has typed.

Note that TEKill need not be called, since closing the window will dispose of all the controls in the
window including the TextEdit record. This means that for a simple, single-style TextEdit record only
three calls are needed ! If the application wants the user to be able to use multiple styles, it must provide a
way for the user to choose the font/style and it must provide some way of displaying what the current style
is. To do this it will need to make two more calls (TEGerSelectionStyle and TEStyleChange).

Chapter 25: Text Edit Page 25-3

Universe Toolbox Update 2

If the applicadon is not using task master it needs to make the following calls in place of it:

—»| call TEIdle

Loop until done
call GetNextEvent
updue: event mcDolwn event keyDow?aluoney event
call DrawControl call FindWindow call TEKey
1
inM‘enu inCc:mcm
call MenuSelect callFindControl
inMenu call TEClick
i I I]
Cut {um Copﬂ Item Pmel Item Ck-.axl Item
call TECut call TECopy call TEPaste call TEClear
call TEGetText

If the application creates a TextEdit record that is not a control, it will need to do even more. First. & mus:
call TEUpdate for gyery record in the port to be redrawn, instead of DrawControls. Second, TEAcs. -ic
and TEDeavtivare must be called when the application switches between windows (or between TextEdit
records). Finally, when the application receives a mouseDown event, it has to determine which TextEdit
record was clicked in on it's own; FindControl will not work. Note that all the TextEdit routines that wake
and return control handles work the same way; the handle has exactly the same structure as when a control
record has been allocated. The oply difference is that these record handles cannot be passed to the control
manager for anything.

Chapter 25: Text Edit Page 25 4

Universe Toolbox Update 2/3/89

Internals

[mcma.!ly TextEdit uses background processing and allocates extra memory to improve response time.
TextEdit’s basic philosophy is that memory is cheap, but speed is critical. This doesn’t mean that TextEdit
won't work in limited memory situations; it does mean that TextEdit will be much faster if it has more
memory. Of course TextEdit does require a certain amount of free memory to operate. This is currently
about 8K. Also TextEdit stores other information in addition to the text itself. This overhead is currently
approximately 20% of the text, so for cxample, if an application wanted to put 20K of text into a TextEdit
record there would have to be about 20K + 4K + 8K (32K) of free memory.

The scroll bars for a TextEdit record are separate controls that are loosely tied to the main control. TextEdit
replaces the actionProcPrr field of the scroll bar with a pointer to it’s own scrolling routine.

The “extended” control record that TextEdit uses is a super-set of the super control record as defined in
Chapter 4 of the Universe Toolbox Update. This means that TextEdit records can be created with
NewControl2.

Chapter 25: Text Edit -~ a- -

Universe Toolbox Update

HIGH LEVEL DATA STRUCTURES

?truct TERuler

the number of pixels to indent from the Jeft edge of the text rectangle
ph

for all lines except the start of a paragraph.

the number of pixels to indent from the left edge of the text rectangle

for the start of a paragraph.

the right boundary of the text measured in pixels from the Jeft edge
- (used for word wrapping and justification)

This parameter has four states: 0 (left), 1 (right), 2 (center), and 3

(full). Left and right justified text starts from the left and right

margins respectively. Center justification centers the text between

the left and right margins. Full justification adds extra pixels to

every space character to make the text flush with both the right and

the left margins.

the number of pixels to add between the lines of text. This can even

be a negative number, but if it is the lines may overiap.

set of bit flags — see the following flag documentation

This will be used for future expansion

This tells what type of tab data follows. O=no tabs, l=every X

number of pixels, and 2=absolute pixel positions. The next two

fields arc only there is tabType = 2. In all other cases they ar»

this is an array of tabltems, one for each tab stop

this parameter depends on tabType. If tabType = 0, this is not
even here (the structure ends with tabType). If tabType = 1, this is
the number of pixels that each tab will move to a mulaple of. If
tabType =2, this is $FFFF to terminate the array.

Equal line spacing. This uses the maximum line spacing for every line in the
block. This must be clear in vl1.0. -
Show invisible characters. (Space, Tab, Retumn). This must be clear in

word leftMargin;
word leftindent;
word nightMargin;
word just;
word extralS;
word flags;
long userData;
word tabType;

omitted.
Tabltem theTabs(];
word tabTerminator;

flags:
bit ¢ npame if SET
bit 15: {EquallineSpacing
bit 14: fShowlnvisiBles
vl.0.

bit13-0: ---.. Reserved.

struct Tabltem

{

word
word

tabKind;
tabData;

this is the kind of tab stop (left, center, right, and decimal)
this is the pixel offset (from the left of the text rectangle) to move to

Chapter 25: Text Edit

Page 25-6

Universe Toolbox Update

2/3/89

?truct TEStyle

long fontID;
word foreColor:
word backColor;
long userData;

the fontID for the text in this style
the foreground color for the text
the background color for the text
Reserved o+ future expansion

s{;truct StyleItem
long length;

long offset;

this is the number of characters in the text that are in the following

style.
this is an offset into the style list that specifies the actual style.

?truct TEStyleRecord

word version;
long rulerListLength;
TERuler theRulerList(];

long styleListLength;
TEStyle theStyleList(];

long numberOfStyles;

Styleltem theStyles[]); -

this is the style record version number. It is currently $0000.

this is the length of the following ruler in bytes.

this is the initial ruler for the text. Note: this is ot a pointer; the data
for the ruler is embedded in the StyleRecord

this is the length of all of the following styles in bytes.

this is a list of all the unique styles in the text. It is pot a pointer,
these are the actual styles embedded in the record. These styles
should all be unique — do NOT duplicate styles.

this is the number of style items that follow. Each style item consists
of a length and a style offset. : .
this is an array of all the style items.

Chanter 7§ Tave FAit

Universe Toolbox Update . f

Explanation of fieids o 3 TESCLRe T

This record allows an application to set the format and style of any block of text that it is going to insert
into a2 TERecord. The style record is fairly complicated and TextEdit is not tolerant of mistakes in the
record, so be careful. These are the important things to know about style records:

Lets start with the version field. It tells TextEdit what version of the style record to expect. Future versions
of TextEdit may have a completely different style record format, but they will still be able to accept older
style records since they can tell the difference by the version field.

The rulerListLength field tells TextEdit how many bytes will follow for the ruler List. This length does pot
include itself; do not add another four bytes for the rulerListLength field! This ruler list is copied directly
into the TERecord that it pertains to and used as the initial ruler, This version of TextEdit will only look at
the first ruler in the ruler list, but more than one ruler may be specified; the rest will just be ignored. Also
note that this version of TextEdit ignores the passed ruler information in every call except for TENew and
TESetTex:. This means that the application can specify an initial ruler for the entire record, but it can't
insert or paste a new one into the record.

The rulerList field is the actual data for the initial ruler. It is in the format of a TERuler and is not a fixed
size. Note that the StyleRecord description allows for more than one ruler to be passed but for this version
of TextEdit, only the first one is used. There is one disadvantage of passing more than one ruler: memory
is allocated for ALL the passed rulers!

The styleListLengrh field tells TextEdit how many bytes will follow for the style list. The style list con.
of all the unique styles in the TERecord. Note that this field is the total number of bytes for all of the
following styles and it does pot include itself.

The styleList field is a list of all the unique styles in the TERecord. Each style is a TEStyle record (12
bytes long) and each style must be different than all the others. If the application wants to use the same
style twice, it just makes the two style items point to the same unique style in this list

The numberOfStyles field is the number of style items that follow; it is not the number of bytes that these
items take up. -

The theStyles array consists of style items. Each style item first tells the number of characters in the text
that will be in the specified style and then it supplies an offset into the style list that specifies the actual
style. Note that this offset is an offset into the styleList field, NOT into the entire StyleRecord. This means
that $0000 0000 is the first style in the style list. Also note that this is a byte offser; to get the second style
in the style list the offset would be $0000 000C, not two. The length field of the item does not specify
position information; it is purely relative. This means that you must be very careful how you specify the

length.

Chapter 25: Text Edit -~ ae-

Universe Toolbox Update

2/3/89

?truct TEColorTable

word
word
word

word
word
word

long
word

long

}

contentColor;
outlineColor:

pageBoundaryColor;

hilightForeColor;
hilightBackColor;

ventColorDescripter

vertColorRef
horzColorDescripter

horzColorRef

color for the inside of the entire boundsRect.

color for the box drawn around the record.

color for the boundaries of pages, that is the space between the
bottom of the footer of one page and the top of the header of the
next.

foreground color for the hilited text to be drawn in.

background color for the hilited text to be drawn in. This is the
color used for the caret.

bits 2 and 3 specify the color table reference descripter, exactly
like the moreFlags field of the scroll bar template.

reference to the color table for the vertical scroll bar.

bits 2 and 3 specify the color table reference descripter, exactly
like the moreFlags field of the scroll bar template.

reference to the color table for the vertical scroll bar.

All of the bits in all of the coior words in the TEColorTable are significant. The way a color pattern is
formed is by taking the color word and copying it sixteen times to form a pattern.

Chapter 25: Text Edit

Page 25-9

Universe Toolbox Update

2/3/89
4

?truct TEParamBlock

word

long
Rect

long
word
word
long
long

pCount;

ID;
boundsRect;

procRef;
flags;
moreFlags;
refCon;
textFlags;

this is the number of parameters that follow. The minimum count is
7 and the current maximum is 25.

this is the control ID that TaskMaster will use.

this rectangle will contain the entire TextEdit control including the
scroll bars and any outline drawn around the text.

this must be $85000000.

see below.

see below.

for application use.

see below.

-------------.-.----------.-.---.------------o-

..........................

vertAmount;

horzBar;
horzAmount:

styleRef;

textDescripter;

textRef;

each coordinate of this rectangle specifies the amount of white space
to leave between that edge of the boundsRecr and the text itself. To
use the default value for a particular coordinate use SFFFF. The
default values are (2,6,2,4) in 640 mode and (2,4,2,2) in 320 mode
this is a handle to the vertical scroll bar to use. NULL => the record
doesn’t have a vertical scroll bar. SFFFFFFFF => create a scrol] bar
just inside the right edge of the boundsRec:.

this is the number of pixels to scroll whenever the up or down arrow
on the vertical scroll bar is pressed. $0000 => default of 9 pixels.
reserved. This currently must be NULL.

reserved. This currently must be $0000.

this is a reference to the initial style information. NULL => use the
default style and ruler information. Bits O and 1 of the moreFlags
field are used to specify how this is used.

this is an input text descripter that specifies how the initial text is
referenced and what format it is in.

this is the reference to the initial text. If this is NULL, then there is no
initial text.

this is the initial text length for all descripters that require one.

this is the maximum number of characters allowed in the text. NULL
=> no limit on characters.

this is the maximum number of lines allowed in the text. NULL =>
no limit on lines. This must be NULL in v1.0

this is the maximum height of the document in pixels. NULL => no
limit on the total height of the text. Note: all these max fields are
cumulative; they will all be respected. This must be NULL.

a------.------.---------a---------------------

A IR I

Chapter 25: Text Edit

this is the height of a page in pixels. If this parameter is $0000, then
page breaks will not be kept track of and the user will not be allowed
to insert explicit page breaks.

this is the number of pixels to allocate from the top of the page for
the header. This muyst be less than (pageHeight - footerHeighs).

this is the number of pixels to allocate from the bottom of the page
for the footer. This must be less than (pageHeighs - headerHeighr).
this is the number of pixels between the footer of one page and th
header of the next. It is used to visibly indicate page breaks. $FFi
means use the default value of 4 pixels.

..

Page 25-10

Universe Toolbox Update

-.---.-----------------.--.---------------------...---

long colorRef; see the description of the colorTable record. Bits 2 and 3 of the
moreFlags field are used to specify the way the color table is
referenced.
word drawMode this is the text mode that quickdraw uses to draw the text in. The
default mode is $0000 (modeCopy).
Nags:
hit_# hame ifSET
bit1s-8 Reserved. Must be CLEAR,
bit 7: cdlnvis The control will be invisible.
bit6-0: Reserved. Must be CLEAR.
moreFlags:
bit_# —lame L SET
bit 15: fCtlActive The control is active. Must be CLEAR to start with.
bit 14: fClCanBeActive Must be SET.
bit 13: fCUWantsEvents Must be SET.
bit 12: fCuProcRefNotPtr Must be SET.
bit 11: {TellAboutGrow mmﬁﬂmwwhenmwmdowchmgasiu.
bit10-4: Reserved. Must be CLEAR.
bit 3 - 2: colorDescripter 00 = ptr, 01 = handle, 10 = resource, 11 is invalid.
bit1-0: styleDescripter 00 = ptr, 01 = handle, 10 = resource, 11 is invalid.
textFlags:
bhit # _flame if SET
bit 31: fNotContol Don't allocate a custom controt for the TextEdit record.
bit 30: fSingleFormat Allow only one ruler in the text. (Currently this bit is ignored)
bit 29: fSingleStyle Allow only one style in the text.
bit 28: fNoWordWrap Do pot word wrap the text; only break lines on CR's.
bit 27: fNoScroll Do pot aliow any manual or auto scrolling.
bit 26: fReadOnly Do not allow editing of the text. Note that copy operations may still be
. armed.
bit 25: {SmanCutPaste ﬁ&um cut and paste will be supported as described in the initial feature list
for GS TextEdit
bit 24: fTabSwitch When the user types a TAB, switch to the next control in the control list that
cmbewﬁvu&(ueﬂwhﬁﬁalfammrammdcaﬂs)
bit 23: fDrawBounds Draw a box around the TextEdit control, just inside the boundsRect. The pen
size for the box is (2,1)mv).
bit 22: fColorHilight Use the color 1able to do color hilighting. This is slower than the default of
just inverting the hilighted text. (Currently this bit must be CLEAR)
bit21-0: -.--. Reserved. Must be CLEAR.

Chapter 25: Text Edit

Universe Toolbox Update 2

REFERENCE and TEXT DESCRIPTERS

Reference descripters are parameters that describe how other parameters are referenced. For instance, a
certain routine may take a styleDescripter and a styleRef as parameters. The styleDescripter would tell the
routine whether the styleRef was a pointer to the data, a handle to the data, or a resource ID to the data.
Descripters can also be used to tell a routine what kind of data to expect; the descripter dara/sPS tring tells a
routine to expect the data to be a pascal string (a length byte followed by the string itself).

TextEdit uses two different types of descripters. The first type are the Reference Descri pters, which
are used for passing and returning style information. These descripters indicate whether the data is
referenced by a pointer, a handle, or a resource ID.

The second type of descripters, Text Descripters, are used for passing and returning text from a
routine. Text descripters have two parts: the lower three bits (0-2) specify what kind of data is being
passed or returned and the next two bits (3-4) are a reference descripter to the data. Text descripters
modify two other parameters, the reference parameter and the length parameter, but in some cases the
length parameter and even the reference parameter are ignored.

When text descripters are used for passing text to a routine, the length parameter is significant only for
datalsTextBox2 and datalsTextBlock descripters; it is ignored in all other cases. Also the text/sNewHandle
field is invalid when the descripter is describing input parameters (passing text (o a routine). When the
descripter is being used to describe output parameters (getting text back from a routine), the length
parameter is the size of the buffer that is to be filled with the text. Note that this is the total size of the
buffer; it must include space for any length words or terminating zero bytes.

Reference Descripters:

Descripter Name What it means

$0000 reflsPointer The reference parameter points to the block of data. The len gth
must cither be fixed or it must somehow be specified by the block
of data.

$0001 refIsHandle The reference parameter is a handle to the block of data.

$0002 refIsResource The reference parameter is a resource ID which can be used to get
the block of data.

$0003 reflsNewHandle A new handle will be created to store the data; the reference
parameter is a pointer to a four byte buffer to store this new

e. Thisi valid f

Chapter 25: Text Edit Page 75-17

Universe Toolbox Update

2/3/89

Text Descripters:

000 datalsPString
001 dawalsCSting
010 datalsCllnput

011 datalsClOutput

100 datalsTextBox2

101 datalsTextBlock

The data starts with a length byte and is followed by the text itself,
The data starts with the text and is followed by a zero byte.

The data is in the same format as a GS/OS class one input sting.
The buffer will start with a length word and will be followed by the
text itself.

The data is in the same format as a GS/OS class one output string.
The buffer will start with a buffer length word, followed by the text
length word, and will end with the text itself,

The data is in the same format as what LineEdit's TextBox2 call

‘a!‘fl& e . (oA s F !
Vv .
The length parameter contains the length of the text.

The data is just raw text; the length of the data is passed in the length
parameter.

invalid.

invalid.

w

00 textsPointer

01 textisHandle

10 texdsResource

11 textIsNewHandle

The reference parameter points to the text. This is valid for both
inputs and outputs.

The reference parameter is a handle to the text, This is valid for both
inputs and outputs.

The reference parameter is a resource ID to the text. This is valid for
both inputs and outputs. '

A new handle will be created to store the text; the reference
parameter is a pointer to a four byte buffer to store this new handle.

Vi

Chapter 25: Text Edit

Page 25-13

Universe Toolbox Update

HIGH LEVEL CALLS

The calls in bold do not need to be used if you are using custom controls and TaskMaster.

Call Descrinti

TEBootInit
TEStartup
TEShutdown
TEVersion
TEReset
TEStatus

TENew
TEKill
TESetText
TEGetText
‘TEGetTextInfo

TEIdle
TEActivate
TEDeactivate
TEClick
TEUpdate

TEPaintText

TEKey
TEInsertPage Break

TECut
TECopy
TEPaste
TEClear
TElnsen
TEReplace

TEGetSelection
TESetSelection

TEGetSelectionStyle
TEStyleChange

TEGetHooks
TESetHooks
TEGetDefProc

Required for every toolset.

Must be called before any other TextEdit call.
Must be called when an application quits.
Returns the version number of TextEdit.
Required for every toolset.

Returns the status of TextEdit.

Allocates a new TextEdit record.

Disposes of a TextEdit record.

Sets all the text in a preexisting TextEdit record to the passed text.
Returns the text in the specified TextEdit record.

Retumns information on the specified TextEdit record.

Called periodically to blink the cursor & do background tasks.

Activates the selection.

Makes the selection inactive

Activates a TextEdit record, then selects text in it.
Redraws a TextEdit record.

Paints the text of a TextEdit record into an offscreen port. Used for printing.

Inserts a character into the active TextEdit record.
Inserts a page break into the text.

Cuts the current selection into the desk scrap.
Copies the current selection into the desk scrap.
Pastes the contents of the desk scrap into the text.
Clears the current selection.

Inserts the passed text just before the current selection.
Replaces the current selection with the passed text.

Returns the starting and ending offset of the current selection.
Sets the selection to the starting and ending offset passed.

Retumns style information for the current selection.
Changes the style of the current selection.

Returns a record that contains pointers to the low level hook routines.
Sets the low level hook routines to the passed pointers.
Retumns a pointer to TextEdit’s custom defproc.

Chapter 25: Text Edit

Page 25-14

Universe Toolbox Update 2/3/89

$0122 TEBootInit
This call does nothing.

Parameters: None.

Errors: None.

Chapter 25: Text Edit Pace 78,15

Universe Toolbox Update

[

$0222 TEStartup

This call starts up the toolset and must be called by every application that uses
TextEdit. It allocates space for all the TextEdit global variables and sets up
TextEdit’s direct page. .

Parameters:

Stack before call

I previous contents
|

I
I userlD : Word - The user ID of the application.
: directPage : Word - TextEdit needs gpe page of direct page.
: : <— SP
Stack after call
I previous contents |
: : <— SP
Errors: $2201 - teAlreadyStarted. TextEdit is already started.

Chapter 25: Text Edit Page 25-16

Universe Toolbox i pdate 2/3/89

$0322

Parameters:

Errors:

TEShutdown

This call must be called by every application that uses TextEdit when the application

itself allocated. Note that the application must dispose of each TextEdit record in
tumn; this call only deallocates TextEdit's global vanables.

None

$2202 - teNotStarted. TextEdit was never started.

Chanter 25- Tayt Fdir

Universe Tooibox Update 23

$0422 TEVersion

This call returns the version number of TextEdit. This works whether or not
TextEdit is active, although it always must be loaded.

2arameters:

Stack before call
| previous contents

I wordspace Word - Space for result.

| <— SP

Stack after call
| previous contents

versionlnfo Word - Version number of TextEdit.

I
l
|

Errors: None

Chapter 25: Text Edit Dama 7€ 10

Universe Toolbox Update 2/3/89

$0522 TEReset
This call is made by the system when CTRL-RESET is pressed. Currenty, it does
nothing.

Parameters: None

Errors: None

Chanter 25: Text Fdie

Universe Toolbox Update

$0622

Parameters:

Stack before call

| previous contents
|

wordspace

previous contents

acnveFlag

-Stack after call
|
|
|
|
|

Errors:

TEStatus

This call retumns the status of TextEdit.

!
]
I Word - Space for result.
|
| <— SP

|
|
! Word - SFFFF if TextEdit is active, $0000 if not active
]
| <—SP

None

Chapter 25: Text Edit

Universe Toolbox Update 2/3/89

$0922

Parameters:

Stack before call
| previous contents

longspace

]
|
| parameterBlock
|
|
I

tack after call

teHandle

S

| previous contents
|

|

f

I

]

TENew

This call allocates a new TextEdit record in the current port. The parameter block

that it takes is exactly the same one that would be passed to NewControl2. The only

difference is that this call creates one and only one TextEdit record; NewControl2

can create a entire list of controls. Unless you are not using controls, you should
c

Long - Space for result.

Long - Pointer to parameter block. See the Data Structures section.

— o —— — —— — —— oo

<— SP

Long - Handle to the new TextEdit record.

<— SP

32202 - eNotStarted. TextEdit was never started.

$2204 - telnvalidDescripter. The descripter in the parameter block was invalid.
$2205 - telnvalidFlag. The flag word in the parameter block was invalid.
$2206 - telnvalidPCount. The parameter count was invalid.

$2207 - telnvalidRect. The view rect must be at Jeast twenty pixels wide.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit

Danma 78 M

Universe Toolbox Update 23

$0A22 TEKill

This call deallocates the passed TextEdit record and all associated memory but it
docs not erase or invalidate the screen: the application needs 1o do that for itself.
Make this call only when you are completely through with the record; all the texrin

it will be lost after this call. If the active record is killed, then no record will be left
active; it is the application’s responsibility to activate any other record if it wants to.

If the application is using TextEdit controls, it doesn’t need to make this call; calling
KillControls or DisposeControl will do the same thing.

Parameters:
Stack before call

"I previous contents
|

!
|
I teHandle I Long - Handle to the TextEdit record to dispose of.
! |
I I
I |

Stack after call

I previous contents
I
!

<— SP

Zrrors: $2202 - teNotStarted. TextEdit was never started.
$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit ~ Asan

Universe Toolbox Update 2/3/89

$0B22

Parameters:

Stack before call
I previous contents

I
teHandle

textDescriprer

textRef

styleDescriprer

styleRef

I
!
I
|
!
|
|
|
I texiLength
|
|
I
!
|
I
!
|

previous contents

Stack after call
|
|
|

Errors:

TESetText

This call replaces the text in a TextEdit record with the passed text. It updates all the
internal information and if the record is a TextEdit control, it invalidates the entire
text rectangle (the next update event will redraw it). Otherwise it will redraw the
entire text rectangle. This routine accepts text in a large variety of formats; which
format you are using depends on the textDescripter parameter (see the section on
reference and text descripters).

Long - Handle to the TextEdit record to change.

Word - The input text descripter that tells what form the passed text is in.

Long - Reference to the text.
Long - Length of the text (only valid if the text descripter requires a length).

Word - The reference descripter that tells what form the style info is in.

Long - Reference to the style information to use. if styleRef is NULL,
then use the first style in the existing record.

TS s e e v e et o e A " —— -t — — —

<— SP

<— SP

$2202 - teNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.
$2204 - telnvalidDescripter. The descripter was not valid.

$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit

) g PR ¥ e

Universe Toolbox Update 2/

$0C22

Parameters:

Stack before call
| previous contents

" longspace

teHandle

bufferDescripter
bufferRef

bufferLength

styleDescripter

styleRef

!
I
I
|
I
I
!
|
!
!
I
I
!
|
I
l
!
I
|
|

Stack after call

| previous contents
I

|

!

|

|

textlength

TEGetText

This call returns the text and the style information from the passed TextEdit record
in a wide varicty of formats (see the section on reference and text descripters). It
returns the otal length of the text, even if the buffer is too small to contain it. If
there is more text than will fit in the buffer, the buffer is first filled, then a buffer
full error is returned. The same thing will happen if the text will not fit in the
required format — for example, if there are 300 characters and the programmer
asks for a Pascal string.

Long - Space for result.
Long - Handle to the TextEdit record to extract the text from.

Word - The output text descripter that tells what form to put the text in.

Long - Reference to the buffer.
Long - Length of the buffer (or ignored depending on the text descripter).
Word - The reference descripter that tells what form to put the style info into.

Long - Reference to where the style information is to be stored. if
styleRef is NULL, then don’t return any style information.

T T T e e e e e e e e e e s — e+ e e

<— SP

|
|
: Long - Total length of all the text in the record.
|
|

<— SP

$2202 - eNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.
$2204 - teInvalidDescripter. The descripter was not valid.

$2208 - teBufferOverflow. The buffer was too small.

$220C - telnvalidTextBox2. The TextBox2 format codes were inconsistant.
$02xx - Memory manager ermre are nronagared,

Chapter 25: Text Edit

Dama 7€ 21

Universe Toolbox Update 2/3/89

$0D22 TEGetTextInfo

This call returns information about the passed TextEdit record. It allows the
application programmer to control how many parameters (not bytes) the call will
return. Currently this call returns five parameters, but future versions of TextEdit
may return more.

Parameters:

Stack before call

I previous contents
|

|
I
! teHandle I Long - Handle to the TextEdit record to get information on.
! !
I |
I infoRecP:r | Long - Pointer to the buffer for the Information Record.
| !
I I
I parameterCount | Word - Number of parameters to be returned in the buffer.
| |
! | <—SP
Stack after call
| previous contents |
I I
! | <—SP
Zrrors: $2202 - weNotStarted. TextEdit was never started.

52203 - telnvalidHandle. The handle was not a valid TERecord.
32206 - teinvalidPCount. The parameter count was too large for this version of
TextEdit.

Information Record Description:

These are the parameters that will be returned into your buffer. Future versions of TextEdit may add more
parameters to the end of this record, but they will not change the contents or positions of the existing
parameters.

Offset Size Name What i
$0000 long charCount The number of characters in the Text Record.
$0004 long lineCount The number of lines in the Text Record.

$0008 long formatMemory The amount of memory needed to contain the styleinfo.
$000C long tomlMemory The total number of bytes used by the current TextEdit

record.
$0010 long styleCount The number of ynique styles in the Text Record.
$0014 long rulerCount The number of rulers in the Text Record.

Chaptcr 25: Text Edit Paoe 75.9<

Universe Toolbox Update .

$0E22

Parameters:

Zrrors:

TEIdle

This routine should be called as often as possible; usually every time through the
main event loop and periodically during time consuming operatons. What it does is
blink the cursor in the active TextEdit record and run TextEdit background tasks.
Note that no matter how many times you call TEldle, the time between cursor
blinks will never be less than the user’s control panel setting.

If the active record is a TextEdit control, the application doesn't need to call TEIdle;
TaskMaster will take care of it.

None

$2202 - teNotStarted. TextEdit was never started.

Chapter 25: Text Edit

Universe Toolbox Update 2/3/89

$0F22

Parameters:

Stack before call
I previous contents

|
teHandle

I
I
I
I

previous contents

Stack after call
[
|
|

Zrrors:

TEActivate

This call activates the passed TextEdit record; the selection is rehilighted in it's
actve state and all future editing actions apply to the new record.

If the application is using TextEdit controls, it doesn't need to make this call;
TaskMaster will take care of it.

Long - Handle to the TextEdit record to acti&axc.

<— SP

<— SP

$2202 - teNotStarted. TextEdit was never started.
$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit

Pagce 7897

Universe Toolbox Update 2/3/

$1022 TEDeactivate

This call deactivates the passed TextEdit record; the selection is hilighted into its
inactive state and future editing operations, such as keys, cut & paste, etc are
ignored. '

If the applicaton is using TextEdit controls, it doesn’t need to make this call;
TaskMaster will take care of it.
Parameters:

Stack before call

| previous contents
|

|
|
I teHandle I Long - Handle to the TextEdit record to deactivate.
| |
| |
[| <— SP
Stack after call
| previous contents |
| |
| | <— SP
Errors: $2202 - teNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chaptcr 2S: Text Edit Dama A€ "0

Universe Toolbox Update 2/3/89

$1122

Farameterss:

Stack before call
| previous contents
|

teHandle

|
i
]
: eventRecordPtr
|
|

Stack after call

I previous contents
|

|

Errors:

TEClick

This call will first activate the TextEdit record that was passed to it if it’s not already
active. After this, it will rack the mouse selecting all the text that it passes over undl
the user lets up on the mouse button. If the shift key is held down, the selection will
be extended. This call will automatically scroll the text in the appropriate direction if
the mouse is dragged outside of the text rectangle. This call will also handle double
and triple clicks. Ir the case of a double click, a word will be selected and dragging
will expand (or shorten) the selection by words. In the case of a triple click, the
entre line will be selected and the selection will be expanded (or shortened) by
lines.

If the application is using TextEdit controls, it doesn’t need to make this call;
TaskMaster will take care of it.

Long - Handle to the TextEdit record to that was clicked in.

Long - Pointer to the event record for the click.

$2202 - eNotStarted. TextEdit was never started.
$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit

Pace 75.7Q

Universe Toolbox Update 22

$1222

Parameters:

Stack before call

| previous contents
|

teHandle

!
I
|
!

Stack after call

I previous contents
!
|

Zrrers:

TEUpdate

This routine redraws the contents of the TextEdit record that was passed to it. Only
the part that needs to be redrawn is actually redrawn (this is determined by looking
at the visRgn). This call should be made after a BeginUpdate and before a
EndUpdate. If the application is using TextEdit controls, it doesn’t need to use this
call; it should just call DrawControls instead. If not, the application should make
this call for gvery TextEdit record in the window. TextEdit will check to see if it
needs to do any drawing at all and if it doesn’t it will return very quickly (less than
7 ms).

!

|

I Long - Handle to the TextEdit record to be redrawn.
!

|

|

<— SP

<— SP

$2202 - teNotStarted. TextEdit was never started.
$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit

Dama 7€ 1IN

Universe Toolbox Update 2/3/89

$1322

Parameters:

Stack before call
| previous contents

longspace

grafPort

teHandle

starnngValue

rectPir

flags

tack after call

S

| previous contents
I

!

!

l

I

TEPaintText

This routine is for printing a TextEdit record; it draws the contents of the passed
record into the specified grafport. If the record supports page breaks (the
pageHeight field of the TENew parameter block is non zero) the startingValue field
is the page to print. In this case this routine will draw the page that was specified
(clipped to rectPir, of course) and then return the next page number. If the record
does not support page breaks, the startingValue field is the first line to print. In this
case TEPainsTexr will draw all the lines that fit into the rectangle specified by
rectPtr, and then return the next line to draw. The flags field allows the application
to skip certain pages or draw lines that get split between pages.

Long - Space for result.

Long - A pointer to the GrafPort to draw into

Long - The TEHandle 1o draw from

Long - The page number to draw (or the starting line number)
Long - pointer to the rectangle to draw into

Word - flags. Sec the following description.

I
!
nextValue I Long - The next page (or line number) to draw
!
!
| <—SP
flags:
bit 15: fPartialLines Display al] the lines that fit in rectPir, even if the last one is clipped.
bit 14: fDontDraw Only calculate how many lines there are on this page (don’t actually draw anything.

Chapter 25: Text Edit

Universe Toolbox Update 2ye '

Zrrors: $2202 - cNotStarted. TextEdit was never started.
$2209 - telnvalidLine. The starting line number exceeded the number of lines in
the text. (you are through displaying)

Chapter 25: Text Edit -

Universe Toolbox Update 2/3/89

$1422 TEKey

This routine shouid be called whenever a KeyDown or AutoKey event occurs. The
only parameter is a pointer to the event record (this does not have to be a
TaskMaster record; a simple event record is all that is needed). This routine will
insert the key into the text of the active TextEdit record if it is not a *“control key”. If
it 1s a “control key”, TextEdit will perform the appropriate action as described in the
Standard Editing Keys section.

If the application is using TextEdit controls, it doesn’t need to make this call;
TaskMaster will take care of it.

Parameterss:

Stack before call

| previous contents
I

eventRecordPir

|
|
I
I

<— SP
Stack after call
| previous contents |
{ |
| | <— SP
Zrrors: $2202 - teNotStarted. TextEdit was never started.

$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit P AE A5

Universe Toolbox Update

[

$2322

Parameters:

Errors:

TEInsertPageBreak

This routine inserts a page break into the text, just before the start of the current
selection. It will pot replace the current selection. This call only works on records
that have a non zero pageHeight field. '

None

$2202 - teNotStarted. TextEdit was never started.
$2204 - telnvalidCall. This TextEdit record does not support page breaks.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit

Paoce 784

Universe Toolbox Update 2/3/89

$1622

Parameters:

.—'— -
SII3rs:

TECut

This call copies the current selection to the desk scrap, scrolls to the beginning of it,
deletes it and finally redraws (not invalidates!) the screen. In the process, the old
desk scrap is destroyed. The style information will also be copied to the desk scrap
along with the text. This call acts on the active TextEdit record, but if there is no
active record, then it simply does nothing; no error is returned. Similarly, if there is
no selection, this call will do nothing; it will NOT destroy the old desk scrap.

If the application is using TextEdit controls, it doesn’t need to make this call:
TaskMaster will take care of it.

None

$2202 - teNotStarted. TextEdit was never started.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit

Page 25-35

Universe Toolbox Update 232

$1722 TECopy

This call copies the current selection to the desk scrap. In the process, the old desk
scrap is destroyed. The style information will also be copied to the desk scrap along
with the text. This call acts on the active TextEdit record, but if there is no active
record, then it simply does nothing; no error is returned. Similarly, if there is no
selection, this call will do nothing; it will NOT destroy the old desk scrap. The text
will not be scrolled to the current selection whether or not there was one.,

If the application is using TextEdit controls, it doesn’t need to make this call;
TaskMaster will take care of it.

Parameters: None

=rress: $2202 - teNotStarted. TextEdit was never started.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit Paas 78,24

Universe Toolbox Update 2/3/89

$1822 TEPaste

This call replaces the current selection with the contents of the desk scrap, then it
redraws (not invalidates!) the screen. If there is style information in the scrap, this
will also be pasted in. This call operates on the active TextEdit record. If there is no
actve record, it will do nothing; it will not return an error. Note: Even if there is
nothing in the desk scrap the selection will always be deleted. '

If the application is using TextEdit controls, it doesn’t need to make this call:
TaskMaster will take care of it.

Parameters: None

Brrors: $2202 - teNotStarted. TextEdit was never started.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit Pace 76.37

Universe Toolbox Update

[

$1922

Parameters:

Errors:

TEClear

This call removes the current selection in the active TextEdit record, then it redraws
(not invalidates!) the screen. If there is no active TextEdit record, this call will do
nothing and return no error. If there is no selection, this call will also do nothing
and return no error. Note: this call does not affect the desk scrap.

If the application is using TextEdit controls, it doesn’t need to make this call;
TaskMaster will take care of it.

None

$2202 - teNotStarted. TextEdit was never started.

Chapter 25: Text Edit

Universe Toolbox Update 2/3/89

$1A22

Parameters:

Stack before call
i previous contents

textDescriprer

texiRef

textLengrth

styleDescriprer

styleRef

!
|
!
!
[
|
|
!
!
I
|
I
!
I
i

Stack after call

I previous contents
I
|

Zrrors:

TEInsert

This call inserts the passed text just before the current selection range in the active
TextEdit record and then it redraws the text. The current selection is not deleted or
even unselected. It accepts the same text and reference descripters that TESetText
does — sec the section on text and reference descripters. If there is no active
TextEdit record, this call will do nothing; it will not return an error. This call does
not affect the desk scrap. Note: this call always redraws the text: it never generates
an update event.

Word - The input text descripter that tells what form the passed text is in.

Long - Reference to the text to insert.

!

|

!

|

|

|

]

| Long - Length of the text to insert (only valid if the text descripter requires
I a length).

|

! Word - The reference descripter that tells what form the style info is in.
|
|
]
!
I

Long - Reference to the style information to use. if styleRef is NULL,
then use the first style in the selection.

<— SP

<—SP

$2202 - teNotStarted. TextEdit was never started.
$220C - teInvalidTextBox2. The TextBox?2 format codes were inconsistant.
$02xx - Memory manager errors are propagated.

Chapter 25: Text Edit

Page 25-3¢

Universe Toolbox Update Yy

$1B22

Parameters:

Stack before call
| previous contents

textDescripter

textRef

textLength

styleDescripter

styleRef

I
I
|
I
|
|
!
!
!
|
!
|
|
I

previous contents

Stack after call
|
|
|

Errors:

TEReplace

This call replaces the current selection in the acuve TextEdit record with the passed
text and then redraws the text. It accepts the same text and reference descripters that
TESetText does — see the section on text and reference descripters. If there is no
active TextEdit record, this call will do nothing; it will not return an error. This call
does not affect the desk scrap. Note: this call always redraws the text; it never
generates an update event.

Word - The input text descripter that tells what form the passed text is in.
Long - Reference to the new text.
Long - Length of the new text (only valid if the text descripter requires
a length).
Word - The reference descripter that tells what form the style info is in.

Long - Reference to the style information to use. if styleRef is NULL,
then use the first style in the selection.

TE S e e v e e e e e - - ——— —

<— SP

<— SP

$2202 - teNotStarted. TextEdit was never started.
$220C - telnvalidTextBox2. The TextBox2 format codes were inconsistant.
2xx - Memory manager errors are propagated.

Chapter 25: Text Edit

Page 25-40

Universe Toolbox Update 2/3/89

$1C22 TEGetSelection

This call returns the starting and ending offsets of the current selection.

Parameters:

Stack before call

| previous contents
!

!
|
! teHandle I Long - Handle to the TextEdit record to get the selection from
I |
I |
| selecrionStat | Long - Pointer to where 10 store the starung offset of the selection
| !
I |
| selecnonEnd I Long - Pointer to where to store the ending offset of the selection
! !
I |
I | <—SP
Stack after call
| previous contents |
l |
| I <— SP
Zrrors: $2202 - teNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit Pace 75.41

Universe Toolbox Update Y

$1D22 TESetSelection

This call sets the selection to the passed starting and ending offsets. If the starting
offset is greater than the ending offset, they will be swapped. Also if either offset is
beyond the end of the text, it will be clipped to the end of the text.

Parameters:

Stack before call
I previous contents
!

|
|
: teHandle I Long - Handle to the TextEdit record to set the selection.
|
| |
| selecnonStart | Long - The starting offset for the new selection.
I |
! |
' selecrionEnd I Long - The starting offset for the new selection.
I |
| |
I | <—SP
Stack after call
I previous contents |
| |
! | <— SP
‘Zrrors: $2202 - teNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.

Chapter 25: Text Edit Paoe 75.4

Universe Toolbox Update 2/3/89

$1E22

Parameters:

Stack before call
| previous contents
|

wordSpace

commonStyleP:r

|
|
|
I
]
| styleHandle
|
|
|

previous contents

- commonflag

Stack after call
|
|
|
|
!

Zrrors:

TEGetSelectionStyle

This routine returns the all styles contained in the current selection. It also processes
them and builds a common style that contains all the style elements that are common
to the entire selecton. The returned flag word indicates which parts of the common
style record are significant. If the bit in the flag word is clear it means that there is
no common corresponding style element in the selection.

I

|

' Word - Space for result.

|

| Long - Pointer to a TextStyle record. The common style will be returned
| here.

|

| Long - Handle to a buffer to fill with style info.

|
I
!

<— SP

Word - This indicates what parts of the common style are significant.

<— SP

$2202 - eNotStarted. TextEdit was never started.

commonkFlag: This tells what part of the common style record is significant.

bit # Rame i SET

bit15-6: --.-- Reserved. Must be CLEAR.

bit 5: fUseFont The font family part of the fontD in the common style record is significant.

bit 4: fUseSize The size part of the fontID in the common style record is significant.

bit 3: fUseForeColor The foreground color in the common style record is significant.

bit 2: fUseBackColor The background color in the common style record is significant.

bit 1: fUseUserData The user data field in the common style record is significant.

bit 0: fUseAttributes The attributes part of the fontID of the common style record is significant.
Buffer Description:

ward count; /* this is the number of styles in the current selection */

TextStyle stylel; /* the first style record */

TextStyle - stylea /* the last style record */

Chapter 25: Text Edit

Universe Toolbox Update 2.

$1F22

Parameters:

Stack before call
| previous contents
|

|
I
|
|
I
|

flags

stylePtr

TEStyleChange

This routine changes the style of the current selection in the active TextEdit record.
If there is no active record, this call does nothing and retumns no error. If there is an
active record, but no selection then this call acts on the “null style record”, which is
the style that is used for future insertions. Note that the “null style record” gets reset

Very tj i - This call has a flag word that tells what parts of
the passed style record are significant and how to use them.

Word - This indicates what parts of the style record are significant.

Long - Pointer to a TextStyle record. see the Data Structures section.

- — v — — —— — a——

<—SP
Stack after call
| previous contents |
| I
| | <— SP
Zrrors: $2202 - teNotStarted. TextEdit was never started.
$2205 - telnvalidFlag. The flag word that was passed is invalid.
Flags:
bit_# —Dame if SET
bit1s-7. Reserved. must be CLEAR.
bit 6: fReplaceFont replace the font of all the styles in the current selection.
bit 5: fReplaceSize replace the size of all the styles in the current selection.
bit 4: fReplaceForeColor replace the foreground color of all the styles in the current selection.
bit 3: fReplaceBackColor replace the background color of all the styles in the current selection.
bit 2: fReplaceUserField replace the user field of all the styles in the current selection.
bit 1: replace the font attributes of all the styles in the current selection.
bit 0: fSwichAuribuses If the entire selection contains the specified atributes, they will be removed

from the selection. If only part of the selection contains the specified
auributes, they will be added to the entire selection.

Note that bits 0 and 1 are mutually exclusive; if both are set, the telnvalidFlag error will be returned.

Chapter 25: Text Edit

Dawa A ¢ a

Universe Toolbox Update 2/3/89

$2022

Parameters:

Stack before call
| previous contents
|

teHandle

bufferPir

cow

|
|
I
I
|
!
I
|
I

Stack after call

| previous contents
|
|

Zrrers:

TEGetHooks

This routine returns a record of hook routines that TextEdit uses to do low level
operations. See the list of hook routines for a description of the buffer format as
well as a description of each hook routine.

Long - Handle to the TextEdit record to get the hooks from

f
I

I

I

|

| Long - Pointer to a buffer to fill with hook routines.
|

I

I

!

|

$2202 - teNotStarted. TextEdit was never started.
$2203 - telnvalidHandle. The record handle was not a valid TERecord.
$2206 - telnvalidPCount. The application asked for too many hook pointers.

Chapter 25: Text Edit

Universe Toolbox Update 2

$2122 TESetHooks

This routine sets the hook routines that TextEdit uses to do low level operations.
See the list of hook routines for a description of the buffer format as well as a
description of each hook routine. .

Parameters:

Stack before call

| previous contents |

| |

: teHandle : Long - Handle to the TextEdit record to set the hooks for.

| |

: bufferPrr I Long - Pointer to a buffer that contains pointers to the hook routines
|

| |

: count | Word - Number of hook routines the application is setting.
]

| | <—SP

Stack after call

: previous contents |
|

| | <— SP

Zrrors: $2202 - teNotStarted. TextEdit was never started.

$2203 - telnvalidHandle. The record handle was not a valid TERecord.
$2206 - telnvalidPCount. The application is settng too many hook pointers.

Chapter 25: Text Edit Pace 75.4A

Universe Toolbox ! ~date 2/3/89

$2222 TEGetDefProc
This routine returns a pointer 1o TextEdit’s custom defproc. It is normally called
only by the Control Manager.

2arameters:

Stack before call
| previous contents

|
|
! longspace | Long - Space for result.
| |
] |
I | <— SP
Stack after call
| previous contents |
! |
I defProcPir I Long - Pointer to the defProc
| |
|]
I | <— SP
Errors: $2202 - teNotStarted. TextEdit was never started.

Chapter 25: Text Edit Dane V& 47

Universe Toolbox Update 23

RROR DES:
Number Name Description
$2201 teAlreadyStarted TextEdit has already been started.
$2202 teNotStarted TextEdit has not been started yet.
$2203 telnvalidHandle The TERecord handle was not a handle to a valid TextEdit record.
$2204 telnvalidDescripter The descripter that was passed is not supported by this call.
$2205 telnvalidFlag The flag that was passed was invalid.
$2206 teInvalidPCount 'Ihc'paramctcr count passed to the call was invalid.
$2207 telnvalidRect The view rectangle was not valid. (it was less than twenty pixels
wide)
$2208 teBufferOverflow The buffer was too small. It is still filled with whatever text will fit.
$2209 telnvalidLine The line number that was passed was to large.
$220A telnvalidCall This call is not allowed on the current TextEdit record.

$220B telnvalidParameter Some parameter that was passed was invalid.
$220C telnvalidTextBox2 The embedded formatting codes in the TextBox2 format are
inconsistant.

Chapter 25: Text Edit Page 25-48

Universe Toolbox Update

2/3/89

LIST OF HOOK ROUTINES:

.

Each TextEdit record has a number of standard hooks that the application programmer can install routines
into. This allows applications to customize TextEdit so as to add features casily. The call for finding the

address of the current hooks is TEGetHooks and the call for installing new hooks is TESetHooks. The
following is a list of all the hook routines and their offsets into the buffer passed to TEGetHooks or

TESetHooks:
£ What it does

$0000 charFilter This routine takes each character the user types and translates it into a
TextEdit editing code or a character to insert.

$0004 wordWrap This routine takes a character and returns whether or not it is a word
break character. It is called only when TextEdit is word wrapping.

$0008 wordBreak This routine takes a character and returns whether or not it is a word
break character. It is called only when TextEdit is checking for a double
click.

$000C drawText This routine is called when TextEdit redraws the text.

$0010 craseText This routine is called when TextEdit erases a rectangle.

Format for the hook routines will follow in a future version of this chapter

Chapter 25: Text Edit

Dama M8 AN

Universe Toolbox Update

CONTROL MANAGER CALLS:

TextEdit records that are custom controls that support the following control manager calls. Note that the
term “TextEdit control” is used to mean the actual TextEdit conwol itself and all it’s associated scroll bars.

DisposeControl This call disposes of the TextEdit control, just as if TEKill was called.

KillControls This call disposes of all the TextEdit controls, just as if TEKill was called on
cach one of them.

HideControl This will hide the TextEdit control. Note: this will pot deactvate the TextEdit
control; it will still take keystrokes and accept cut, copy, and paste operations.
The only difference is that nothing will be displayed until the conwol is
reshown.

EraseControl This will erase the TextEdit control. It works just like HideControl except the
control’s bounding rectangle is not invalidated.

ShowControl This will show the TextEdit control, undoing the effect of a Hide or Erase.

DrawControls This will draw all the TextEdit controls in the window.

DrawOneCil This will draw the TextEdit control.

HilightControl This will activate or deactivate the TextEdit control. Note: all part codes except
for 0 and 255 are invalid.

FindControl This will rerurn $xxxx if the point was in a TextEdit control.

TestControl This will return $xxxx if the point is in the TextEdit control.

TrackControl This will select text just as if TEClick was called. It MUST be called with a
negative number for the actionProcPtr to make the control manager call the
built-in action procedure.

MoveControl This will move the TextEdit control to it’s new position and update all the
intenal fields that it needs to.

DragControl This will let the user drag the TextEdit control around and reposition it.

SetCuRefCon This works normally; the RefCon field is reserved for the application.

GetCuRefCon This works normally; the RefCon field is reserved for the application.

These calis MUST NOT be made with a TextEdit control: SerCtlTitle, SerCtlVaiue, SetCilActior

SetCrlParams

These calls should not be made with a TextEdit control: GerCilT, itle, GerCtlValue, GetCilAction,

GexCuPzrams

Chapter 25: Text Edit

Da~a M€ &N

Universe Toolbox Update

STANDARD EDITING CHARACTERS:

Key Ali
LEFT-ARROW CTRL-H
RIGHT-ARROW CTRL-U
UP-ARROW CTRL-K
DOWN-ARROW CTRL-J
DELETE CTRL-D
CLEAR

CTRL-F

CTRL-Y

CTRL-X

CTRL-C

CTRL-V

2/3/89

Moves the insertion point to the previous character in the text. If the
command key is held down, the insertion point will be moved to the
previous word. If the option key is held down the insertion point will
be moved to the beginning of the line. If the shift key is held down the
selection will be extended from the start. shift cap be used in
conjunction with option and command. Note: option overrides
command .

Moves the insertion point to the next character in the text. If the
command key is held down, the insertion point will be moved to the
next word. If the option key is held down the insertion point will be
moved to the end of the line. If the shift key is held down the selection
will be extended from the end. shift can be used in conjunction with
option and command. Note: option overrides command .

Moves the insertion point to the next line up. If the command key is
held down the insertion point will be moved to the beginning of the
current page. If the option key is held down the insertion point will be
moved to the top of the entire document. If the shift key is held down
the selection will be extended from the start. shift can be used in
conjunction with option and command. Note: option overrides
command .

Moves the insertion point to the next line down. If the command key is
held down the insertion point will be moved to the end of the current
page. If the option key is held down the insertion point will be moved
to the bottom of the entire document. If the shift key is held down the
selection will be extended from the end. shift can be used in
conjunction with option and command. Note: option overrides
command .

Removes the character to the left of the insertion point if there is no
selection. If there is a selection, then only the selection is removed.

Clears the current selection if there is one. Does nothing if there is no
selecton. NOTE: TextEdit distinguishes clear from ctrl-x by checking
the controlKey bit of the keyboard modifiers field.

Removes the character to the right of the insertion point if there is no
selection. If there is a selection, then only the selection is removed.

Clears all characters up to the end of the line whether or not there 1s a
selection. If the line ends with a CR, it is Dot removed.

Cuts the text into the clipboard (same as TECus).
Copies the text into the clipboard (same as TECopy).
Pastes from the clipboard (same as TEPaste).

Chapter 25: Text Edit

MNe . ™FE Fo

Universe Toolbox Update

Revision History

DRate Yersion
12/16/88 0.19
2/7/88 0.20
1/9/88 0.21
1/17/89 0.22
2/3/89 0.23

Chapter 25: Text Edit

N
-

Descrinti

Changed the TEPaintText and TEStyleChange calls. Changed the initial
parameter block and made it incompatible with previous versions.

Converted to Microsoft Word. Also this document became a chapter in the
Universe Toolbox Update instead of a seperate ERS.

Changed the initial parameter block. Once again it is incompatible. Changed
the TEInsert and TEReplace calls to allow the style information to be passed
as a pointer, handle, or resource ID. Cleaned up the format of the
document. Changed how verbs (henceforth, reference descripters) are

specified.

Added a word to the color table to specify the color of the area between
pages. Removed the count field of the ruler structure. Changed the names of
the ruler, style and color table structures. Changed the flowchart of using
TextEdit without TaskMaster. Added a new structure: the StyleRecord.

Removed the fTransparentText bit from the TextFlags field. Also added a
parameter to the TENew parameter block. Note: the parameter was added at
the end, so old records are sdll valid ! Changed the description of
TEPaintText call. The only parameter that actually changed is the fle,
parameter. Fixed description of TEInsertPageBreak. Documented that the
maxLines and maxHeight fields are illegal in TextEdit v1.0. Added a new
error code

Dome 78 &

