
GS/OS
#1: Contents of System.Disk and System.Tools 1 of 13

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#1: Contents of System Software Distribution Disks
Revised by: Matt Deatherage June 1992
Written by: Matt Deatherage November 1988

This Technical Note describes the contents of the disks System.Disk and System.Tools and the
minimum files necessary to boot GS/OS starting with System Software 5.0.
Changes since January 1991: Now describes System Software 6.0. Changed the title to not
reflect disk names.

This Note gives a description of each of the files in the Apple IIGS System Software 6.0 package.
This package includes six disks: Install, SystemTools1, SystemTools2, Fonts, synthLAB and
System.Disk. System Software 6.0 requires at least 1 MB of memory, one 3.5” drive and another
storage device (either a second 3.5” drive or a larger capacity device). 2 MB of memory and a hard
disk are highly recommended.

System.Disk is a pre-configured boot disk for floppy-based users. Because all the files on
System.Disk appear on other disks in the 6.0 set, they are only listed and not described a second
time.

Contents of Install

ProDOS Every file system boots differently; the boot blocks
for ProDOS disks look for a file name ProDOS.
This is that file. It is the GS/OS file system stub
necessary to start the boot process.

System The directory containing most of the GS/OS files.
CDevs The directory containing all Apple IIGS Control Panel

Devices (CDevs) required for installing 6.0.
General Allows setting of general system parameters.
RAM Controls the size of the RAM disk and the GS/OS

Disk Cache.
SetStart Lets you choose which application to boot into.

Desk.Accs The directory containing all the classic and new desk
accessory files to be loaded at boot time.

ControlPanel The New Desk Accessory which allows users to
control almost all system parameters and choose
printers and file servers.

Drivers The directory containing all device drivers needed by
GS/OS and the Toolbox (including the Print
Manager and MIDI Tools).

AppleDisk3.5 The Apple 3.5 Drive device driver for GS/OS. Also
drives SuperDrives connected to the Apple II
SuperDrive interface card.

Apple II Technical Notes

GS/OS
2 of 13 #1: Contents of System.Disk and System.Tools

AppleDisk5.25 The driver for Apple 5.25” disk drives, including
Disk II drives and Apple UniDisk 5.25 drives. This
driver is required for GS/OS to recognize 5.25” disk
drives. In 6.0, it is up to 300% faster than in earlier
versions of system software.

Console.Driver The text screen and keyboard device driver for
GS/OS.

SCSI.Manager The GS/OS SCSI Manager, the supervisory driver
that arbitrates hardware-level usage of Apple’s
Apple II SCSI cards.

SCSIHD.Driver The GS/OS driver for SCSI hard disks. This driver
is required for GS/OS to recognize SCSI hard disks.

UniDisk3.5 The GS/OS driver for UniDisk 3.5 drives. This
driver is required for proper operation of UniDisk
3.5 drives. Using the UniDisk with GS/OS without
this driver eventually corrupts media.

Error.Msg A compiled file containing all error messages
required by GS/OS. This file is separate from the
GS.OS file to provide easier support for localization.

Fonts The directory containing all system fonts to be used.
FastFont This makes Shaston 8 text drawing much faster.

FSTs The directory containing the file system translators to
be loaded at boot time.

Char.FST The character device FST.
Pro.FST The ProDOS FST.

GS.OS The remainder of GS/OS.
GS.OS.Dev The GS/OS Device Manager and associated core

routines. Separate from GS.OS for speed reasons.
P8 The ProDOS 8 operating system.
SetStart.data An invisible file created by the SetStart Control Panel,

indicating which application the system should boot
into. On this disk, this points to the Installer.

Start The boot program. If this file exists, GS/OS always
launches it upon booting. Under 6.0, this program
usually reads the SetStart.data file and launches the
indicated application.

Start.GS.OS The file containing the GLoader and GQuit
routines. It loads the files GS.OS and GS.OS.Dev,
which contain the rest of the operating system.

System.Setup The directory containing all the initialization files to
be executed at boot time.

Resource.Mgr The Resource Manager. This is an initialization file;
the design of the Resource Manager requires it to be
present even when an application has not specifically
loaded it. The system does not boot if this file is not
present.

Sys.Resources A file containing system resources, available to the
system software and to applications.

Tool.Setup A required file that loads files which contain all the
patches to tools in ROM for ROM levels 01 (TS2)
and 03 (TS3). Tool.Setup would attempt to load TS1
if executed on a machine with ROM level 00, but
GS/OS does not boot on such a machine, therefore,
TS1 is not included. Tool.Setup also contains
patches common to both ROM 1 and ROM 3.

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 3 of 13

TS2 Patches to ROM tools for ROM 1.
TS3 Patches to ROM tools for ROM 3.

Tools The directory containing tool files for all tools not in
ROM.

Tool014 Window Manager .
Tool015 Menu Manager.
Tool016 Control Manager.
Tool018 QuickDraw Auxiliary.
Tool019 Print Manager.
Tool020 LineEdit.
Tool021 Dialog Manager.
Tool022 Scrap Manager.
Tool023 Standard File.
Tool027 Font Manager.
Tool028 List Manager.
Tool034 TextEdit.

Icons The directory containing all the Finder’s old-style
icon files as well as new Desktop database files and
file type descriptors.

FType.Apple The file type names used by the Finder (on all
systems).

Installer The Apple IIGS Installer program. This program
makes use of scripts found in the Scripts directory on
this disk to install parts of the system, as well as
third-party applications, without the user needing to
copy individual files.

Scripts This directory contains all the scripts for the Installer.
On launch, the Installer looks in its parent directory
for the Scripts directory and the scripts it contains. It
also reads MessageCenter message #1.

A2.RAMCard Script to install the driver for the Apple II Memory
Expansion Card (the slot-based, or “slinky” card).

Adv.Disk.Util Script to install the Advanced Disk Utility program.
Apple.Bowl Script to install the Apple Bowl game.
Apple.MIDI Script to install the Apple MIDI Interface driver and

tool set.
AppleDisk5.25 Script to install the 5.25” disk driver for GS/OS.
AppleShare Script to install AppleShare.
AppleShare3.5 Script that creates an 800K or 1440K GS/OS startup

disk which contains AppleShare.
Archiver Script to install Archiver, the new GS/OS-based

backup program.
Aristotle.Patch Script to install a change to Aristotle for easier class

transition.
ATImageWriter Script to install the ImageWriter printer driver for the

Print Manager, as well as the files necessary to work
with AppleTalk.

ATImageWriterLQ Script to install the ImageWriter LQ printer driver for
the Print Manager, as well as the files necessary to
work with AppleTalk.

Calculator Script to install the Calculator new desk accessory.
Card6850.MIDI Script to install the 6850-based MIDI Interface card

driver.

Apple II Technical Notes

GS/OS
4 of 13 #1: Contents of System.Disk and System.Tools

CDROM Script to install the High Sierra FST as well as the
SCSI Manager and SCSI CD-ROM driver for
GS/OS.

CloseView Script to install the CloseView NDA, which makes
the screen more legible to some visually-impaired
users.

DCImageWriter Script to install the ImageWriter printer driver for the
Print Manager, as well as the files necessary to
connect it to a serial port.

DCImageWriterLQ Script to install the ImageWriter LQ printer driver for
the Print Manager, as well as the files necessary to
connect it to a serial port.

DOS3.3.FST Script to install the read-only DOS 3.3 file system
translator.

Easy.Access Script to install the EasyAccess init, which provides
sticky keys and keyboard mouse to ROM 1 users.

Epson Script to install the Epson printer driver for the Print
Manager, as well as the parallel card driver.

Fonts Script to install the minimum suggested font set.
Fonts.Max Script to install all fonts provided with System 6.0.
Fonts.Std Script to install the standard font set.
HFS.FST Script to install the Hierarchical File System (HFS,

used on the Macintosh) file system translator.
Inst.Sys.Min Script to install a minimal GS/OS system on an

800K volume. Note that this is different than
5.0.x’s “Inst.Sys.Min” script, the 6.0 version of
which is in the file named “AppleShare3.5”.

Inst.SysF.NoFin Script to install a minimal GS/OS system,without the
Finder, on a given destination volume.

Instal.Sys.File Script to install a complete System Software 6.0
configuration, including new features, on a given
destination volume.

LaserWriter Script to install the LaserWriter printer driver for the
Print Manager, as well as the files necessary to work
with AppleTalk.

Local.Net.Boot Script to create a 3.5” floppy disk with minimal
system software that boots into a server selection
program (the network “Start” program from
SystemTools2).

MediaControl Script to install the Media Control toolset and all
Media Control drivers supplied with System 6.0.

MediaCtrl.CDSC Script to install the Media Control toolset and the
drivers to work with the Apple CD SC drive.

MediaCtrl.P2000 Script to install the Media Control toolset and the
drivers to work with the Pioneer 2000 series laserdisc
players.

MediaCtrl.P4000 Script to install the Media Control toolset and the
drivers to work with the Pioneer 4000 series laserdisc
players.

Namer Script to install the printer Namer Control Panel.
Namer II (a ProDOS 8 application) is not included
with System 6.0.

Pascal.FST Script to install the read-only Apple II Pascal file
system translator.

Quick.Logoff Script to add a quick logoff feature to AppleShare.

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 5 of 13

SCSI.Hard.Disk Script to install the SCSI Manager and SCSI hard
disk driver for GS/OS.

SCSI.Scanner Script to install the SCSI Manager and SCSI scanner
driver for GS/OS.

SCSI.Tape Script to install the SCSI Manager and SCSI tape
driver for GS/OS.

Server.Sys.File Script to install System Software 6.0 on an
AppleShare File Server.

Sounds.All Script to install all sounds provided with System
Software 6.0 into the “System:Sounds” folder of the
designated volume.

StyleWriter Script to install the StyleWriter printer driver for the
Print Manager, as well as the files necessary to
connect it to a serial port.

Teach Script to install the application Teach, which displays
and edits Teach files, text files, AppleWorks files,
MacWrite files and Installer scripts.

UniDisk3.5 Script to install the UniDisk 3.5 driver for GS/OS.
VideoKeyboard Script to install the Video Keyboard new desk

accessory, which allows users to type by using the
pointing device instead of the keyboard.

VideoMix Script to install the latest versions of the Apple II
VideoMix software and tools.

Contents of SystemTools1

Icons Additional icons for the Finder. This folder is
currently empty.

System A directory containing additional parts of the system
software.

Finder The Apple IIGS Finder, version 6.0.
CDevs Directory with additional Control Panel Devices.

DirectConnect Allows selection of direct-connected printers.
Keyboard Sets keyboard parameters.
Modem Controls modem port settings.
Monitor Sets 40-column or 80-column mode, monochrome or

color mode, and the color of text, text background,
and borders.

Printer Controls printer port settings.
Slots Allows selection of slot settings and startup slot.
Sound Sets user preference for sound pitch and volume.

Also allows the user to assign digitized sounds to
events that happen while using the computer.

Time Sets the internal clock’s time and display format and
optionally tracks Daylight Savings Time.

Desk.Accs Directory with additional desk accessories.
CDRemote An updated version of the CD Remote new desk

accessory which ships with the AppleCD SC.
FindFile A new desk accessory that finds files on volumes

GS/OS can read.
Calculator A calculator new desk accessory.

Drivers Directory with additional device drivers for GS/OS
and the Toolbox.

Apple II Technical Notes

GS/OS
6 of 13 #1: Contents of System.Disk and System.Tools

A2.RAMCard The GS/OS driver for slot-based memory expansion
cards. This driver is not required to use these cards
with GS/OS, but it does provide a substantial speed
improvement.

Apple.MIDI The Apple MIDI Interface driver for the MIDI Tools.
Card6850.MIDI The driver for 6850-based MIDI interface cards for

the MIDI Tools.
Epson The Epson® printer driver for the Print Manager.
ImageWriter The ImageWriter driver for the Print Manager.
ImageWriter.LQ The ImageWriter LQ driver for the Print Manager.

Starting with System Software 5.0.3, this driver uses
all the capabilities of the ImageWriter LQ.

Modem The modem port driver for the Print Manager.
Parallel.Card A driver for some parallel printer interface cards for

the Print Manager. This driver works with the Apple
Parallel Interface Card, as well as several other
parallel interface cards.

Printer The printer port driver for the Print Manager.
SCSI.Manager The GS/OS SCSI Manager, the supervisory driver

that arbitrates hardware-level usage of Apple’s
Apple II SCSI cards.

SCSICD.Driver The GS/OS driver for the AppleCD SC drive. This
driver is required for GS/OS to recognize CD-ROM
drives.

SCSIScan.Driver The GS/OS driver for the Apple Scanner or
OneScanner. This driver is required for GS/OS to
recognize Apple’s scanners.

SCSITape.Driver The GS/OS driver for the Apple Tape Backup 40SC.
This driver is required for GS/OS to recognize
Apple’s now-discontinued Tape Backup 40 SC.

StyleWriter The StyleWriter driver for the Print Manager.
Fonts Directory with additional fonts

Courier.09 9-point Courier font.
Courier.10 10-point Courier font.
Courier.12 12-point Courier font.
Courier.14 14-point Courier font.
Courier.18 18-point Courier font.
Courier.20 20-point Courier font.
Courier.24 24-point Courier font.
Geneva.10 10-point Geneva font.
Geneva.12 12-point Geneva font.
Geneva.14 14-point Geneva font.
Geneva.16 16-point Geneva font.
Geneva.18 18-point Geneva font.
Geneva.20 20-point Geneva font.
Geneva.24 24-point Geneva font.
Helvetica.9 9-point Helvetica font.
Helvetica.10 10-point Helvetica font.
Helvetica.12 12-point Helvetica font.
Helvetica.14 14-point Helvetica font.
Helvetica.18 18-point Helvetica font.
Helvetica.20 20-point Helvetica font.
Helvetica.24 24-point Helvetica font.
Shaston.16 16-point Shaston font.
Times.09 9-point Times font.

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 7 of 13

Times.10 10-point Times font.
Times.12 12-point Times font.
Times.14 14-point Times font.
Times.18 18-point Times font.
Times.20 20-point Times font.
Times.24 24-point Times font.
Venice.12 12-point Venice font.
Venice.14 14-point Venice font.
Venice.24 24-point Venice font.

FSTs Directory with additional File System Translators.
DOS.3.3.FST The DOS 3.3 FST, which allows GS/OS to access

5.25” disks formatted in DOS 3.3 format. This FST
is read-only; it only performs read operations.

HS.FST The High Sierra FST, which allows GS/OS to access
CD-ROM discs formatted in the international
standard High Sierra or ISO 9660 formats. This
FST is read-only; it only performs read operations.

HFS.FST The HFS FST, which allows GS/OS to read and
write any disk in the Macintosh’s HFS format.

Pascal.FST The Apple II Pascal FST, which allows GS/OS to
access any disk formatted in Apple II Pascal format.
This FST is read-only; it only performs read
operations.

Tools Directory with additional tools.
Tool025 Note Synthesizer.
Tool026 Note Sequencer.
Tool029 ACE Tools.
Tool032 MIDI Tools.

Adv.Disk.Util The Advanced Disk Utility program which allows for
partitioning of SCSI hard disks, as well as erasing,
initializing, and zeroing volumes or partitions.

BASIC.System The ProDOS 8 BASIC command interpreter.

Contents of SystemTools2

Icons Additional icons for the Finder. This folder is
currently empty.

AppleTalk This directory contains additional AppleTalk files and
utilities for AppleShare and AppleTalk.

Boot.Driver A driver for AppleShare that GS/OS loads before the
other drivers are loaded and which remains resident
in memory after the boot process is finished.
Installed on servers by the Installer script
Server.Sys.File.

Display.0 An update to the Aristotle program installed by the
“Aristotle.Patch” script.

QuickLogoff An initialization file used to add a quick logoff
feature to AppleShare.

Start The AppleShare startup program which is installed
instead of the standard Start program on AppleShare
volumes. It allows the user to log on and then
launches the server startup program for the user’s
machine.

Apple II Technical Notes

GS/OS
8 of 13 #1: Contents of System.Disk and System.Tools

System A directory containing additional parts of the system
software.

CDevs Directory with additional Control Panel Devices.
AppleShare Allows users to choose and log onto AppleShare file

servers.
FolderPriv Allows users to set default folder privileges on

AppleShare file server volumes.
MediaControl Allows users to set up the Media Control tool set and

the drivers they wish to use.
Namer Allows users to rename AppleTalk-based

ImageWriter, ImageWriter LQ and LaserWriter
printers.

NetPrinter Allows users to choose AppleTalk-based
ImageWriter, ImageWriter LQ and LaserWriter
printers.

Desk.Accs Directory with additional desk accessories.
MediaControl A new desk accessory that’s like a “super” remote

control for all devices the Media Control toolset can
control.

VideoKeyboard A new desk accessory that allows users to type with
the pointing device instead of with the keyboard.

VideoMix An updated version of the VideoMix new desk
accessory which ships with the Apple II Video
Overlay Card.

Drivers Directory with additional device drivers for GS/OS
and the Toolbox.

AppleTalk The AppleTalk port driver for the Print Manager. It
works with either serial port when configured for
AppleTalk.

ATalk The main AppleTalk GS/OS driver.
ATP1.ATROM AppleTalk protocols to patch the IIGS ROM.
ATP2.ATRAM AppleTalk protocols not in ROM.
IWEM PostScript® program which allows a LaserWriter

emulate an ImageWriter. A user can load it into the
LaserWriter with the LaserWriter Control Panel, and
it is automatically invoked when printing through the
slot associated with AppleTalk.

LaserWriter The LaserWriter driver for the Print Manager. This
driver works with any LaserWriter with PostScript.
It does not work with the LaserWriter IIS C or
Personal LaserWriter LS. This driver doesn’t always
print color patterns correctly to PostScript Level 2
printers, such as the LaserWriter IIf, LaserWriter IIg
or Personal LaserWriter NTR.

Media.Control Drivers for the Media Control toolset
AppleCDSC Media Control driver for the Apple CD SC drive.
Pioneer2000 Media Control driver for the Pioneer 2000 series of

laserdisc players.
Pioneer4000 Media Control driver for the Pioneer 4000 series of

laserdisc players.

SCC.Manager The GS/OS supervisory driver that arbitrates
hardware-level usage of the serial communications
controller in the Apple IIGS.

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 9 of 13

Fonts Directory with additional fonts. Currently, this
directory on this disk is empty.

FSTs Directory with additional file system translators.
AppleShare.FST The AppleShare FST which allows GS/OS to access

AppleShare file servers.
Sounds A folder with sounds provided for the new Sound

Control Panel. The file names are fairly self-
explanatory; the sounds are not described here.

Ahh
Doorbell
Droplet
Eastern
Frog
PipeOrgan
Quack
SimpleBeep
Sosumi
Swish
Trumpets
Whoosh

System.Setup Directory with additional initialization files.
AppleIIVOC.INIT An initialization file used by the Apple IIGS Video

Overlay Card tool set.
ATInit The AppleTalk initialization file.
ATResponder The AppleTalk Responder, used for AppleTalk

network management.
CloseView A new desk accessory (installed by an init) that

magnifies the screen to make it more visible to some
users with visual impairments.

EasyAccess An initialization file that brings Sticky Keys and
Keyboard Mouse to ROM 1 users.

EasyMount An initialization file that creates file server aliases in
the Finder.

Tools Directory with additional tools.
Tool033 VideoMix toolset (for the Video Overlay Card).
Tool038 Media Control toolset.

Archiver A GS/OS based backup and restore program.
Teach A simple editor that uses TextEdit to display and edit

text files, Teach files, Installer scripts and
AppleWorks and MacWrite documents.

Read.Me Last-minute news and information about the System
Software. Read with Teach.

Shortcuts A Teach file with time-saving system tips and
information.

Apple II Technical Notes

GS/OS
10 of 13 #1: Contents of System.Disk and System.Tools

Contents of Fonts

Goodies A directory with files that are only related to system
software in the vaguest sense.

Apple.Bowl A GS/OS conversion of an old Apple II bowling
game.

Read.Me Documentation on Apple Bowl.
Icons Additional icons for the Finder.

AppleBowl.Icon The icon for the Apple Bowl game.
System A directory containing additional parts of the system

software.
Fonts Additional fonts.

Courier.27 27-point Courier font.
Courier.28 28-point Courier font.
Courier.30 30-point Courier font.
Courier.36 36-point Courier font.
Courier.42 42-point Courier font.
Helvetica.27 27-point Helvetica font.
Helvetica.28 28-point Helvetica font.
Helvetica.30 30-point Helvetica font.
Helvetica.36 36-point Helvetica font.
Helvetica.42 42-point Helvetica font.
Helvetica.48 48-point Helvetica font.
Helvetica.60 60-point Helvetica font.
Helvetica.72 72-point Helvetica font.
Helvetica.96 96-point Helvetica font.
Times.27 27-point Times font.
Times.28 28-point Times font.
Times.30 30-point Times font.
Times.36 36-point Times font.
Times.42 42-point Times font.
Times.48 48-point Times font.
Times.60 60-point Times font.
Times.72 72-point Times font.
Times.96 96-point Times font.

Contents of synthLAB

synthLAB The synthLAB application, a demonstration se-
quencer for the MIDI Synth toolset.

Tool035 MIDI Synth toolset.
MIDI The MIDI Control Panel. Lets you choose a MIDI

driver.
Seq.and.Instr A directory containing demonstration sequences

(files that end in “.seq”), wave forms (files that end
in “.wav”) and sound banks (files that end in
“.bnk”) for use with synthLAB and MIDI Synth.
The files are only listed; their sound is not described
here.

Synth.bnk
Synth.seq
Synth.wav
Bee.seq

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 11 of 13

Capri.seq
Combo.bnk
Combo.wav
Demo.bnk
Demo.wav
Fugue.seq
Midsummer.seq
Orch.bnk
Orch.wav
Piano.bnk
Piano.wav
Rhythm.seq
Sonata.seq

Reference A Teach document with the electronic manual for
synthLAB.

Contents of System.Disk

Files are only listed here; they are described earlier in this Note where they first appeared.

ProDOS
System

Start.GS.OS
GS.OS
Error.Msg
GS.OS.Dev
FSTs

Pro.FST
Char.FST

Drivers
AppleDisk3.5
AppleDisk5.25
Console.Driver

System.Setup
Tool.Setup
TS2
TS3
Resource.Mgr
Sys.Resources

Desk.Accs
ControlPanel

CDevs
Printer
Time
Start This is the Finder, not the SetStart program or

the AppleShare program.
Tools

Tool014
Tool015
Tool016
Tool018
Tool019
Tool020
Tool021

Apple II Technical Notes

GS/OS
12 of 13 #1: Contents of System.Disk and System.Tools

Tool022
Tool023
Tool025
Tool027
Tool028
Tool034

Fonts
P8

Icons
Ftype.Apple

BASIC.System

Minimum GS/OS System Disk Requirements

The following files are required for GS/OS to boot from a local disk. This list does not address
files needed by the Finder or the IIGS Toolbox. Those files only required in certain circumstances
are noted as such. Those files that may be excluded only when disk space or memory limitations
make it absolutely necessary are marked with asterisks (*).

ProDOS
System

Start.GS.OS
GS.OS
GS.OS.Dev
Error.Msg
FSTs

Pro.FST
*HS.FST Required for High Sierra or ISO 9660 discs.
Char.FST
*AppleShare.FST Required to use AppleShare file servers
*DOS3.3.FST Required to use DOS 3.3 disks
*Pascal.FST Required to use Apple II Pascal disks
*HFS.FST Required to use HFS disks

Drivers
*AppleDisk3.5 Required for Apple 3.5 Drives or SuperDrives.
*AppleDisk5.25 Required for 5.25” drives.
*UniDisk3.5 Required for UniDisk 3.5 drives.
*SCSI.Manager Required for SCSI devices.
*SCSIHD.Driver Required for SCSI hard disks.
*SCSICD.Driver Required for AppleCD SC drives.
*SCSIScan.Driver Required for Apple scanners.
*SCSITape.Driver Required for Apple Tape backup.
Console.Driver
*ATalk Required for AppleTalk (including AppleShare).
*ATP1.ATROM Required for AppleTalk (including AppleShare).
*ATP2.ATRAM Required for AppleTalk (including AppleShare).
*SCC.Manager Required for AppleTalk (including AppleShare).

System.Setup
Tool.Setup
TS2
TS3
Resource.Mgr
Sys.Resources

Developer Technical Support June 1992

GS/OS
#1: Contents of System.Disk and System.Tools 13 of 13

CDevs
*AppleShare Required for selecting AppleShare file servers.
*NetPrinter Required for choosing printers.
*DirectConnect Required for choosing printers.
*General
*RAM Should always be included if space allows. Provides

the only way to set the size of the GS/OS Disk
Cache.

Desk.Accs Required for desk accessories; any desk accessories
should be installed in this directory.

*ControlPanel Required if you ship any Control Panels (CDevs).
*Start Must be present for GS/OS to boot or some other

file that GS/OS can boot into must be present in its
place.

Tools Required for any of the RAM-based tools; any
RAM-based tools should be installed in this
directory.

Fonts Required for the Font Manager.
*FastFont This makes Shaston 8 text drawing much faster and

should be included unless absolutely impossible.
*P8 Required for ProDOS 8.

*BASIC.System Required for AppleSoft BASIC.

Further Reference
• GS/OS Reference
• Apple IIGS Technical Note #100, VersionVille

Epson is a registered trademark of Seiko Epson Corporation.
PostScript is a registered trademark of Adobe Systems, Incorporated.

GS/OS
#2: GS/OS and the 80-Column Firmware 1 of 2

Apple II
Technical Notes

Developer Technical Support
GS/OS
#2: GS/OS and the 80-Column Firmware

Written by: Matt Deatherage November 1988

This Technical Note discusses the changes in handling the 80-column firmware between GS/OS
and ProDOS 16.

For compatibility with the Apple IIe, the Apple IIGS does not treat slot 3 like it treats other slots.
Instead of using a bit in the Slot Register ($C02D) to control the mapping of ROM in slot 3
between the built-in 80-column firmware and any peripheral card physically in slot 3, the soft
switches SETINTC3ROM ($C00A) and SETSLOTC3ROM ($C00B) are used instead. On the
Apple IIe, these soft switches (referred to by the single label SLOTC3ROM) respectively map the
ROM at $C300 to the internal 80-column firmware (which works with the auxiliary-slot 80-
column card in most IIe computers) or to a peripheral card in slot 3. Note that writing to
SETSLOTC3ROM on a IIe or IIGS with no card in slot 3 results in floating bus addresses in the
$C300 space.

ProDOS 8 will not allow an Apple IIe or later model computer to have a card other than an 80-
column card in slot 3. ProDOS 8 needs the 80-column firmware on a 128K machine for use in
the /RAM driver, and the enhanced Apple IIe has some of the interrupt firmware in the $C300
space. When ProDOS 8 is loaded in an Apple IIe or later, it writes to SETSLOTC3ROM and
looks at five identification bytes. If all five of these bytes do not match, ProDOS 8 will write to
SETINTC3ROM to use the internal firmware. If all five bytes match, the external slot 3 ROM is
left mapped in.

ProDOS 16 fell victim to a bug in ProDOS 8 versions 1.2 through 1.6 which always switched in
the internal 80-column firmware, regardless of the user’s Control Panel setting. GS/OS does not
have this bug; a card in slot 3 of a IIGS other than an 80-column card will not be mapped out by
GS/OS.

Application programmers who require the 80-column firmware should be familiar of the
following points:

• If your program contains a routine to insure that the 80-column firmware is
indeed available, it could be buggy. Since ProDOS 16 always made the 80-
column firmware available, your routine to check that condition may never have
been executed.

• If your program requires the 80-column firmware and it is not available, your
program should display a message on the screen informing the user that he must

Apple II Technical Notes

2 of 2 Developer Technical Support

set Slot 3 in the Control Panel to Built-in Text Display for your program to
execute, then gracefully exit. Switching the $C300 ROM space, even with the
user’s permission, is not recommended. Slot 3 could contain an operating GS/OS
device, perhaps even the one your program was launched from. Remember, it is
possible to boot GS/OS from slot 3.
Do not try to be clever in a situation like this. For example, do not go looking at
ID bytes in slot 3 to try to determine the type of device present so that you can
switch it out if you identify it as a non-disk device. Slot 3 could contain an active
device being operated by a loaded GS/OS driver.
Your program should not ask the user’s permission to switch ROM space between
ports and slots (or in this case, the internal firmware versus the external card).
That is why there is a Control Panel. Simply display a message informing the
user that he must set Slot 3 in the Control Panel to Built-in Text Display for your
program to execute. You may offer to change the battery RAM parameter for the
user and restart the system (using the OSShutdown call), but under no
circumstances should you hit the soft switch yourself, even with the user’s
permission.

Further Reference
• GS/OS Reference, Volume 1
• ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3

GS/OS
#3: Pointers on Caching 1 of 2

Apple II
Technical Notes

Developer Technical Support
GS/OS
#3: Pointers on Caching

Written by: Matt Deatherage November 1988

This Technical Note discusses effective use of the GS/OS cache.

Introduction

GS/OS is the first Apple II operating system to offer a sophisticated caching mechanism.
However, using the cache and using it wisely are two different things. This Note presents some
concepts which should lead to higher performance for your application if it uses the cache.

What’s Cached Automatically?

All blocks on a GS/OS readable disk could be classified into one of two categories. “Application
blocks” are all blocks on the disk contained in any file (except a directory file), while “system
blocks” are other blocks on the disk. System blocks belong to the file system and include
directory blocks, bitmap blocks, and other housekeeping blocks specific to the file system.

GS/OS always maintains at least a 16K cache, even if the user has set the disk cache size to 0K
with the Disk Cache new desk accessory. When the system (usually an FST) goes to read a
system block, the block is identified as a candidate for caching and is cached if possible.
Applications define blocks as candidates for caching by using the cachePriority field of
many class 1 GS/OS calls. Note that class 0 calls do not have this field, thus applications using
exclusively class 0 calls will not be able to cache any application blocks.

Although this difference may seem like a limitation, it in fact improves performance. On the
Macintosh, most applications that work with files (like database managers) leave the file with
which they are working open while they need it; the file is only closed when the window
containing it is closed. Apple II programs historically are quite different—they usually read an
entire file at the beginning, modify it in memory, and write it when the save function is selected.
A moment’s thought will show that if GS/OS arbitrarily cached most or all application blocks,
system blocks that would be used again (such as directory blocks) will be kicked out to make
room for them. We will see that this is probably a bad thing to do.

Apple II Technical Notes

2 of 2 Developer Technical Support

How to Cache Effectively

The first tendency of many programmers is to attempt to completely cache any given file, but
this usually leads to a degradation in performance, not an improvement. In small caches such
strategies can slow the system to a crawl, and large caches offer no significant improvement.
Remember that until the cache memory is needed, it is available to the system. The cache size
for GS/OS as set by the user is the maximum to be allotted, not the minimum.

Suppose you are attempting to cache a 40K file (80 512-byte blocks). If the cache is set to less
than 40K, the entire cache will be written through, kicking out all system blocks currently
cached. A cache of this size slows system performance for little gain, since the entire file could
not be cached anyway. Even if the cache is large enough to hold the entire file, you are
needlessly taking twice the amount of memory with the same file (by reading it into memory you
have obtained from the Memory Manager and by asking GS/OS to keep a copy in the cache).

It is evident that the system makes the best use of the cache automatically, freeing your
application from the duty of caching system blocks, but there are certain instances where caching
application data can improve system performance.

An application which does not limit document size to available memory will often only keep a
portion of the document in memory at any given time. Suppose that the beginning of such an
application’s document file contains a header which to various parts of the document file.
(These parts could be chapters for a word processor, report formats for a database manager, or
individual pictures for an animation program.) This document header is probably not very long,
but the application will likely need to read it quite often to quickly access various portions of the
document file.

This header is a prime candidate for caching since it is a part of the file which will definitely be
read many times during the life of the application. Contrast this with arbitrarily caching the
entire file, which needlessly wastes both cache space and available memory to keep a duplicate
copy of something that may or may not be read from disk again.

Although caching provides enormous benefits to GS/OS, indiscriminate use of the cache will
waste memory and degrade overall system performance. Be prudent and limit your use of the
cache to those portions of your document files which will be read from disk many times.

Further Reference
• GS/OS Reference, Volume 1

GS/OS
#4: A GS/OS State of Mind 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#4: A GS/OS State of Mind

Revised by: Matt Deatherage March 1991
Written by: Matt Deatherage January 1989

This Technical Note discusses GS/OS concepts and practices.
Changes singe July 1989: Includes more information about thinking for non-ProDOS file
systems.

Although GS/OS bears many similarities to ProDOS, GS/OS is a much wider-reaching operating
system, working not only with multiple file systems but also with character devices. Some
things which work under ProDOS cause problems under GS/OS, and application programmers
need to be aware of the differences, particularly those developing text-based programs.

GS/OS Hints

Be aware of character devices. A legal GS/OS pathname, perhaps entered by a user in
response to a prompt, could map to a character device, with potentially disastrous results. Error
$58, Not a Block Device, can protect you against this on many calls, including Create,
but you must still take precaution. DInfo tells you if a device is a character device or block
device; bit seven of the characteristics word is set if the device is a block device.

Don’t preprocess pathnames. A user input routine which prevents users from entering
pathnames that don’t follow ProDOS syntax may help prevent Illegal Pathname Syntax
errors, but it also keeps users from creating files on non-ProDOS disks with anything but
ProDOS pathname syntax, and it could keep them from accessing files on non-ProDOS disks
which they created with another GS/OS application. Since the only FST which allowed you to
write to a device under System Software 4.0 was ProDOS, you didn’t see this problem right
away. However, System Software 5.0 includes an AppleShare FST which, compared to
ProDOS, is fast and loose with pathnames. “How about an anti-ProDOS name?” is a legal
AppleShare filename. To allow compatibility with present and future non-ProDOS FSTs, Apple
suggests you pass user-entered pathnames directly to GS/OS, with no application preprocessing.

Remember that under GS/OS both colons and slashes are valid separators, and colons can only
be separators. In addition, all eight bits of each byte of a pathname are significant. Refer to
GS/OS Reference, Volume 1 for more information on GS/OS pathname syntax. Using all eight
bits of each byte may be particularly difficult for text-based applications, which have no way to
force the standard Apple II character set to display characters such as sigma () or the copyright

Apple II Technical Notes

GS/OS
2 of 3 #4: A GS/OS State of Mind

symbol (©); they can fiddle to get characters like the sterling pound sign (£) and an Apple ().
Some programs may wish to adopt special typographical conventions for these special characters
while others may choose not to create files with such characters in their names. These programs
could present the user with a list of existing filenames (with some substitution for the characters
which are unavailable), while providing a method of choosing one, to retrieve such files. Any
way around this problem for a text-based program will be less than optimal.

Avoid the Text Tools and all slot dependencies. Preliminary GS/OS documentation points to a
System Service call named DYN_SLOT_ARBITER. This mechanism, which is not fully
implemented in System Software 5.0, eventually will allow the operating system to use internal
ports and external slots for the same “slot” in the same session, instead of requiring the user to
reboot the system to safely change between ports and slots. Applications which have hard-coded
slot dependencies (as the Text Tools unfortunately require) make this transition very difficult,
both for GS/OS and for the applications and users. We recommend that applications use the
GS/OS loaded and generated character device drivers for text output. A DInfo call will tell you
what slot or port a driver controls, and whether or not it is a character device.

Avoid other file system dependencies. Many of the things ProDOS programmers are used to as
facts of life just are not true any longer. For example, filenames don’t have to be 15 characters
or less under GS/OS. When making class one calls, GS/OS will tell you if you don’t have
enough room for the pathname by returning a Buffer Too Small error ($4F). Avoiding file
system dependencies means handling this error intelligently: if you receive it, allocate more
space for the buffer and try the call again. GS/OS will tell you how much space is needed. If
you absolutely must hard code pathnames, such as volume names, be sure to use the colon as the
separator, because if you do not, filenames with slashes will cause problems. Similarly, don’t
assume any of the following:

• There can only be 51 files in the volume directory
• All devices are named “.Dn,” where n is the device number
• All blocks are 512 bytes long
• All devices are block devices
• Any other ProDOS-specific characteristics

Your application may have hidden file system assumptions as well. For example, while a
directory behaves like a directory under all GS/OS file system translators, reading from a
directory is not always as fast as it is for ProDOS disks. ProDOS directories are fairly linear and
can be searched quickly; but other file systems may have more complicated directory structures
(HFS and AppleShare, for example, have B-trees that store directory entries in alphabetical
order). To get optimal speed, try to do as many GetDirEntry calls as you can in succession
without other GS/OS calls intervening—this allows Apple to optimize file system translators for
fast directory reading.

Also remember that other file systems may not support the concept of orderable directories, so
don’t depend on directory order in your application.

Don’t hog all of the memory. While this is never a good idea on the IIGS, it’s even worse under
GS/OS. To process things like pathnames, GS/OS allocates memory through the Memory

Developer Technical Support July 1989

GS/OS
#4: A GS/OS State of Mind 3 of 3

Manager. If you’ve allocated all of available memory (i.e., for a disk copy procedure), GS/OS
will be forced to return an Out of Memory error ($54). If the condition is so severe that
GS/OS can no longer function, it will return a fatal GS/OS error with an ID = 2, and the user will
be asked to restart the system.

(A common cause of fatal GS/OS error 2 during development is using a length byte instead of a
length word on a class one string. Doing so almost always causes the first word to be greater
than 8K, which is the maximum length of pathnames under GS/OS. GS/OS then dies for your
enjoyment, as it is unable to allocate the memory for the pathname because it’s too big, even if
more than 8K is available.)

Hard code as little as possible. Even seemingly static things like device names should not be
hard coded, since a new loaded driver could change the name of the same device at any time.
Also, it may be possible in the future for users to rename devices.

Only ask for the access you need. If you’re just going to read a file, make a call to Open the
file with read permission only. In file systems where access privileges mean more than they
traditionally have in ProDOS (where things are usually “Locked” or “Unlocked”), this could
save some trouble. For example, AppleShare allows the same file to be opened multiple times as
long as each open is with read-only access. If your program is only going to read a file, opening
it with read and write access needlessly denies others on the server access to the file.

Copy all GS/OS information with files. Applications that copy files need to do more than copy
the data fork of the file. If the file is extended, the resource fork of the file should be copied as
well. In addition, when requested, each FST returns an option_list that contains
information specific to the host file system that GS/OS does not use (i.e., AppleShare’s
option_list includes Finder information and access privileges). Calls to GetFileInfo
and Open can return the option_list, while a call to SetFileInfo can set it. An FST
will not set parameters in the option_list which should not be altered (just as
SetFileInfo skips the EOF fields in GetFileInfo records). To ensure that the duplicate
has as much host file system information from the original as can reasonably be transferred,
always copy the option_list.

However, if you want to change something in an existing file’s GetFileInfo list, do not use
an option_list . The option_list could override the other parameters to
SetFileInfo without your knowledge.

Further Reference
• GS/OS Reference, Volumes 1 and 2

GS/OS
#5: Resource Fork Formats 1 of 1

Apple II
Technical Notes

Developer Technical Support
GS/OS
#5: Resource Fork Formats

Revised by: Matt Deatherage July 1989
Written by: Matt Deatherage January 1989

This Technical Note discusses the resource fork format of GS/OS extended files.
Changes since January 1989: Documented the location of resource fork format information.

Due to an omission in GS/OS Reference, Volume 1, some developers are not aware that the
format of the resource fork of any file is reserved by Apple Computer, Inc. With the release of
System Software 5.0 for the Apple IIGS, a Resource Manager is available to manipulate discrete
chunks of data stored in the resource forks of files. To prevent corruption of media, information
should only be stored in any resource fork in this format.

The Resource Manager should always be used to manipulate the data in resource forks. Some
utilities may find this impossible and will require direct manipulation of resources without the
Resource Manager. Information on the format of the resource forks is in the Resource Manager
chapter of Volume 3 of the Apple IIGS Toolbox Reference.

Further Reference
• GS/OS Reference
• Apple IIGS Toolbox Reference, Volume 3

GS/OS
#6: Drivers and GS/OS Direct Page 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#6: Drivers and GS/OS Direct Page

Revised by: Matt Deatherage & Dave Lyons November 1990
Written by: Matt Deatherage March 1989

This Technical Note corrects an error in the preliminary GS/OS documentation and provides an
alternate suggestion for developers who are writing GS/OS drivers.
Changes since July 1989: Updated the list of calls which do not require the GS/OS direct page
and updated the documentation references.

Preliminary GS/OS documentation, including the beta draft of GS/OS Reference, Volume 2,
incorrectly states that locations $5A through $5F are available for device drivers, and that
locations $66 through $6B are shared by device drivers and supervisory drivers (and may be
corrupted by either a driver or supervisory driver call).

This is not correct. The locations in question are used by GS/OS; destroying these locations can
cause system failure and media corruption.

Drivers which require direct page space of their own should request it from the Memory
Manager when they are started. Upon receiving a call, a driver can save the value of the D
register (containing the GS/OS direct page) and switch to its own direct page. The driver may
keep the value of its direct page inside the driver itself; no space on GS/OS direct page is
available for this purpose. The driver must restore the D register to point to the GS/OS direct
page before returning from the call, and it should also dispose of its direct page space when it
shuts down.

The driver must also set the D register to point to the GS/OS direct page before making any
system service call other than SET_SPEED, DYN_SLOT_ARBITER, MOVE_INFO, SIGNAL,
and INSTALL_DRIVER.

Note: The location of the GS/OS direct page is guaranteed to remain the same between
Driver_StartUp and Driver_ShutDown calls.

Further Reference
• GS/OS Device Driver Reference

GS/OS
#7: Behavior of SET_DISKSW 1 of 1

Apple II
Technical Notes

Developer Technical Support
GS/OS
#7: Behavior of SET_DISKSW

Written by: Matt Deatherage July 1989

This Technical Note discusses changes to the documented behavior of SET_DISKSW in System
Software 5.0. This Note is primarily of interest to device driver authors.

GS/OS Reference, Volume 2, states that the system service call SET_DISKSW ($01FC90) will
remove a device’s blocks from the cache and place its volumes off line.

With System Software 5.0, this behavior is slightly changed. SET_DISKSW also posts insertion
and ejection notices to the GS/OS Notify Procedure queue, so that notification procedures may
be called. This requires SET_DISKSW to check the current status of the device to know if the
disk switched condition indicates an insertion or an ejection (by comparing the current device
status against the device-dispatcher maintained status).

A GS/OS driver may have an interrupt handler present to handle interrupts generated by its
device on insertion or ejection (if the hardware is capable of generating such interrupts). Such an
interrupt handler will probably want to call SET_DISKSW when an insertion or ejection is
detected to make the rest of the operating system aware of it. However, SET_DISKSW obtains
the device’s status based on the deviceNum and callNum on the GS/OS direct page.

Any driver or interrupt handler calling SET_DISKSW must first save the values for
deviceNum and callNum on the GS/OS direct page, replacing callNum with the number of
a driver call that accesses media (Apple suggests Driver_Read, $0002) and replacing
deviceNum with the number of the device for which SET_DISKSW is being called. The caller
must restore the original values after SET_DISKSW returns.

Although SET_DISKSW saves and restores the GS/OS direct page, the caller must know where
the GS/OS direct page is located so it can place the proper parameters there. The value used for
the GS/OS direct page should be the value of the D register when the driver receives its
Driver_StartUp call. The GS/OS direct page is now guaranteed to remain constant between
Driver_StartUp and Driver_ShutDown calls.

Further Reference
• GS/OS Reference, Volume 2

GS/OS
#8: Filenames With More Than CAPS and Numerals 1 of 2

Apple II
Technical Notes

Developer Technical Support
GS/OS
#8: Filenames With More Than CAPS and Numerals

Written by: Matt Deatherage July 1989

This Technical Note discusses the problems some applications may have when dealing with
filenames containing lowercase letters for the first time.

With System Software 5.0, lowercase filenames enter GS/OS en masse for the first time.
Lowercase filenames are inherent to the AppleShare filing system and have been added to the
ProDOS filing system through the ProDOS FST. However, since Apple II filing systems never
had lowercase characters in filenames before, this change undoubtedly causes problems for some
applications. This Note gives general guidelines to help developers avoid such problems.

How the ProDOS FST Does It

“Wait,” you say (not for any particular reason, other than a general fondness for monosyllables).
“If you put lowercase characters in the ProDOS directory entry, it’s going to cause all kinds of
problems. What’s gonna’ happen on][+ machines?”

Two previously unused bytes in each file’s directory entry are now used to indicate the case of a
filename. The bytes are at relative locations +$1C and +$1D in each directory entry, and were
previously labeled version and min_version. Since ProDOS 8 never actually used these
bytes for version checking (except in one case, discussed below), they are now used to store
lowercase information. (In the Volume header, bytes +$1A and +$1B are used instead.)

If version is read as a word value, bit 7 of min_version would be the highest bit (bit 15) of
the word. If that bit is set, the remaining 15 bits of the word are interpreted as flags that indicate
whether the corresponding character in the filename is uppercase or lowercase, with set
indicating lowercase. For example, the filename Desk.Accs has a value in this word of
$B9C0, or binary 1011 1001 1100 0000. The following illustration shows the relationship
between the bits and the filename:

Bits in WORD: 1011100111000000
Filename: Desk.Accs
Uppercase or Lowercase: ULLLUULLL

Note that the period (.) is considered an uppercase character.

Apple II Technical Notes

GS/OS
2 of 2 #8: Filenames With More Than CAPS and Numerals

Developer Technical Support July 1989

GS/OS
#8: Filenames With More Than CAPS and Numerals 3 of 2

What it Means

Because no lowercase ASCII characters are actually stored in the filename fields of the directory
entries, all ProDOS 8 software should continue to work correctly with disks containing files with
lowercase characters in the filenames. Neither ProDOS 8 nor the ProDOS FST are case sensitive
when searching for filenames: ProDOS is the same file as PRODOS is the same file as prodos.

The main trouble applications have is when a filename has been “processed” by the application
before passing it to GS/OS. For example, if a command shell automatically converts filenames
to all uppercase characters before passing them to ProDOS 16, the chosen uppercase and
lowercase combination for the filename will never be seen by the user without any apparent
reason. Some developers have considered it okay to ignore lowercase considerations, thinking
that they would only apply to file systems other than ProDOS (and file systems which would not
be available on the Apple II for a long time, if ever). These developers were mistaken.

A more pressing problem is that of an application that is looking for a specific file, perhaps a
data file or a configuration file. If the application simply passes a pathname to GS/OS and asks
for that file to be opened, it will be opened if it exists. The case of the filename is irrelevant
since file systems are not case sensitive. However, if the application makes GetDirEntry
calls on a specific directory, looking for the filename in question, there could be trouble: the
application won’t find the file unless its string comparison routine is not case sensitive. If the
user has renamed the file MyApp.Config, and the string comparison is looking for
MYAPP.CONFIG, then the application will report that the file does not exist.

It is repeated here that when dealing with normal OS considerations, it’s almost always better to
ask for something and respond intelligently if it’s not there than it is to go looking for it yourself.
The OS already has a lot of code to look for things (or expand pathnames, or examine access
privileges, etc.), and reinventing the wheel is not only tedious, it can be detrimental to future
compatibility.

The One Exception

In the past, ProDOS 8 did look at the version bytes when opening a subdirectory. The code to do
this has been removed from ProDOS 8 V1.8. Please be aware that earlier versions of ProDOS 8
will be unable to scan subdirectories with lowercase characters in the directory name, even to
find files in those directories.

Conclusion

Most user-input routines (including the Standard File tool set) return filenames or pathnames that
can be passed directly to GS/OS without preprocessing. Doing so may return “pathname syntax
errors” more often than not doing so, but it also enables applications to take advantage of future
versions of the System Software that loosen the restrictions on syntax (or new file systems that
never had such restrictions). Under GS/OS, even ProDOS disks aren’t what they used to be.

Apple II Technical Notes

GS/OS
4 of 2 #8: Filenames With More Than CAPS and Numerals

Further Reference
• GS/OS Reference

GS/OS
#9: Interrupt Handling Anomalies 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#9: Interrupt Handling Anomalies
Revised by: Matt Deatherage May 1992
Written by: Dave Lyons January 1990

This Technical Note discusses anomalies in the way GS/OS handles interrupts.
Changes since May 1990: Added discussions about changes to GS/OS interrupt handling since
System Software 5.0.2.

Problems Installing Interrupt Handlers

If your application calls ALLOC_INT to install an interrupt handler for an external interrupt source,
it works fine unless the SCSI Manager (GS/OS file SCSI.Manager) is installed, in which case the
system eventually grinds to a halt with a message about 65536 unclaimed interrupts.

The Problems

If any interrupt handlers are bound (using BindInt) to reference number $17 (IRQ.OTHER), the
unclaimed interrupt count gets incremented if none of the BindInt routines claims the interrupt,
even though any handlers installed with ALLOC_INT routines still need a chance to claim it. The
5.0.2 SCSI.Manager triggers this problem because it calls BindInt with vector reference number
$17.

In addition, if one or more interrupt handlers are bound to the IRQ.OTHER vector (VRN $17), the
interrupt is passed to the ALLOC_INT handler even if it was already claimed by a BindInt
routine. If no ALLOC_INT routine claims the interrupt, the unclaimed-interrupt count is
incremented. As documented in Apple IIGS Technical Note #18, Do-It-Yourself SCC Interrupts,
you cannot successfully call BindInt with vector reference number $0009.

The Solution

An application may install both a BindInt routine and an ALLOC_INT routine. If they both
claim the external interrupt, the unclaimed count does not get incremented. The solution is
compatible with future System Software releases, since it does not depend upon the ALLOC_INT
routine ever getting called.

Your application’s BindInt routine sees the interrupt before your ALLOC_INT routine does, so
the BindInt routine should figure out whether the interrupt was caused by your external device,
and claim it if so. Your ALLOC_INT routine should claim an interrupt it sees if and only if your
BindInt routine claimed the last interrupt it saw.

Starting with GS/OS version 3.2 (released with the Apple II High-Speed SCSI Card), the system
no longer treats too many unclaimed interrupts as a fatal error. However, before version 6.0, it still
counts the unclaimed interrupts so it can do something like display a dialog asking you to restart
even though choosing “restart” returns you to the application unharmed (GS/OS version 3.2), or

Apple II Technical Notes

GS/OS
2 of 2 #9: Interrupt Handling Anomalies

sometimes display a dialog box sending you to your dealer and sometimes not (version 3.3), or do
nothing about it at all (version 4.0 and later). This is obviously as confusing to most of us as it was
to the system itself, so fortunately GS/OS now ignores unclaimed interrupts and doesn’t even
bother counting them.

Problems Removing Interrupts Handlers

The GS/OS Reference suite says that device drivers may make BindInt and UnbindInt calls,
noting this as an exception to the general rule that drivers may not make GS/OS system calls.
What the references fail to note is that these calls may fail for an incredibly annoying reason—the
OS may be busy.

GS/OS takes special pains to avoid this while starting and while switching to ProDOS 8, but it does
not avoid this condition during an OSShutDown—a real shutdown of the OS, not a switch to
ProDOS 8.

Driver authors can work around this problem by using a new system service call provided in
GS/OS version 3.2 and later. The call, named UNBIND_INT_VECTOR, provides the functionality
of UnbindInt to FSTs and drivers only to avoid the OS reentrancy issue. The vector is at
$01/FCD8 and takes an interrupt identification number (as returned from BindInt) in the
accumulator.

Further Reference
• GS/OS Reference
• Apple IIGS Technical Note #18, Do-It-Yourself SCC Interrupts

GS/OS
#10: How Applications Find Their Files 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#10: How Applications Find Their Files
Revised by: Matt Deatherage May 1992
Written by: Dave Lyons January 1990

This Technical Note explains how applications should find configuration and other application-
related files.
Changes since September 1990: Lists new ways to access the @ prefix under System Software
6.0 and later.

When an application is launched, GS/OS sets prefix 9 to the application’s parent directory. It also
sets prefix 1 to the same directory if the length of the pathname is within a 64-character limit. It
does not set prefix 0 to any special value.

If your application uses a partial pathname and depends upon prefix 0 to find files at the same
directory level, it may be working by accident (prefix 0 is accidently set to the right directory), and
sooner or later it won’t work.

If your application needs to load a file named TitleScreen, the best way is to use the pathname
9:TitleScreen. If you just use TitleScreen, you are using prefix 0, and you may or may not be
looking in the right directory.

Files storing user-specific data should be stored in the at sign (@) prefix—this is just like prefix 9,
except that it is set to the user’s user folder on an AppleShare server if the application was launched
from a server. Use @:MySettings rather than 9:MySettings or MySettings. (If you want to
retrieve the value of the @ prefix, you can call ExpandPath on the pathname “@:”.) Note that
the @ prefix was introduced in System Software 5.0.

The @ prefix is useful only for applications, not for Desk Accessories, CDevs, initialization files, or
anything else; this type of code can get the path of the user’s folder by using the AppleShare
FST’s FST-Specific call GetUserPath.

Starting with System Software 6.0, you can also retrieve the value of the @ prefix by passing
$FFFF (–1) to GetPrefix. You may also set the value of the @ prefix by passing $FFFF to
SetPrefix, but only applications or system-wide utilities should ever change the @ prefix.
Specifically, any DAs, CDevs, initialization files or others should not mess with the @ prefix to
make their own file handling simpler.

Further Reference
• GS/OS Reference
• AppleTalk Technical Note #8, Using the @ Prefix

GS/OS
#11: About EraseDisk and Format 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#11: About EraseDisk and Format

Revised by: Matt Deatherage November 1990
Written by: Dave Lyons & Matt Deatherage July 1990

This Technical Note explains how an application can tell when a user chooses Cancel from an
EraseDisk or Format dialog box and explains why the file_sys_ID field is ignored in
class-zero calls.
Changes since July 1990: Noted that System Software 5.0.3 fixes some of these anomalies.

Detecting a Canceled Erase or Format Dialog Box

GS/OS Reference says that EraseDisk and Format return with the carry flag set and A equal
to zero when the user cancels the operation. This is great, except that the calls actually return
with the carry clear, making a Cancel hard to distinguish from a successful EraseDisk or
Format operation. This happens in System Software 5.0.2 and earlier; it works as documented
in GS/OS Reference in System Software 5.0.3 and later.

If you must use 5.0.2 or earlier versions of the system software, this Note presents a safe way
around the problem, which works with all versions of the System Software:

1. In the parameter block for class-one EraseDisk or Format , set the
fileSysID field to zero. (See note below.)

2. Make the call.
3. If the error code is non-zero, there was an error. Handle it.
4. Otherwise, the error code is zero. Check the fileSysID field in the parameter

block. If it is still zero, the user chose to cancel the operation.

Note that this method only works for class-one calls. For the class-zero ERASE_DISK
and FORMAT calls, the file_sys_ID word is only an input parameter and always
remains unchanged.

Apple II Technical Notes

GS/OS
2 of 2 #11: About EraseDisk and Format

About the Class-Zero file_sys_ID Parameter

Even though fileSysID is an input parameter for the class-zero calls ERASE_DISK and
FORMAT, all versions of the system software ignore the supplied value and always give the user
a dialog for selecting a file system. This means no functionality is lost by putting a zero there.

The reasons for this decision are historical. Although the Apple IIGS ProDOS 16 Reference
indicates that the input parameter file_sys_ID would be used in future versions to choose
destination file systems, ProDOS 16 always returned an error if the file system specified was not
$0001 (ProDOS).

Since this effectively means no ERASE_DISK or FORMAT call can be made under ProDOS 16
with any file_Sys_ID other than $0001, the GS/OS team chose to ignore the parameter and
always give users the choice when using class zero calls. Otherwise, no program that existed
when GS/OS was released would ever allow users to choose interleaves or file systems (they
would always format for ProDOS, file system $0001). (Note that the class-one Format and
EraseDisk calls have a new reqFileSysID parameter; if this field is present, the dialog
box is bypassed.)

Further Reference
• GS/OS Reference
• Apple IIGS ProDOS 16 Reference

GS/OS
#12: All About Notify Procs 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#12: All About Notify Procs

Written by: Matt Deatherage September 1990

This Technical Note discusses the GS/OS notification procedure new to System Software 5.0 and
enhances the discussion of these procedures in the Addison-Wesley GS/OS Reference.

Why Do I Want To Be Notified?

GS/OS notification procedures (or “notify procs”) are handy ways to let the operating system tell
you when interesting things are happening. As documented in GS/OS Reference, they can tell
you when you’re switching to ProDOS 8 (and back), when disks are inserted or ejected, when
GS/OS is shut down, and even when a change occurs to a volume.

However, getting these notifications is not as simple as installing a procedure. Some behaviors
are due to the way device drivers are designed and some are due to the design of GS/OS or
device hardware. This Note discusses a few slightly unusual situations you can encounter when
dealing with notification procedures.

I Get “Parameter out of range,” and There’s Only One Parameter

It seems incongruous to get error $0053 (“Parameter out of range”) when there’s only one
parameter, a pointer to the notification procedure. However, GS/OS checks the procedure header
to ensure consistency. In particular, the flags field must not have any of the reserved bits set.
Having any bits other than one through six set results in error $53; it ensures you do not get
strange behavior or are not passed values you cannot comprehend.

I’m Not Getting Notified

You’ve written your notification procedure correctly and tested it, but when you run your
application you can eject and insert disks until your arm falls off and your code is never called.

This is a side effect of the design of most Apple II peripherals—no hardware interrupt is
generated when you eject a disk. Without an interrupt to grab the CPU’s attention, the drive just
sits there until someone actually asks the drive if a disk is present.

Apple II Technical Notes

GS/OS
2 of 2 #12: All About Notify Procs

Well-designed GS/OS drivers look to see if a disk has been switched every time they get control
and call the System Service routine SET_DISKSW, which in turn causes the notification
procedures to be told the disk has been switched. However, the driver cannot set this chain in
motion until it gets control.

The easiest way to do this is to loop through all on-line devices, issuing a device call to each in
turn. When the driver gets control, it starts the ball rolling. Note that you must make a device
call that actually causes driver code to be executed. This includes all the application level device
calls with less than two parameters, except DRename and DInfo (the third parameter is a block
count, which causes a Driver_Status call to the driver). These calls are handled entirely by
the Device Manager without actually transferring control to any driver code. DStatus with a
transferCount = 2 is a good choice.

I Get Notified About Insertion at Weird Times

When coming back to GS/OS from ProDOS 8, you get “insertion” notification even though no
disks have actually been inserted. This is done for you by most drivers, which pretend that any
media in the device has just come online at driver startup time—which is true as far as any
application is concerned.

General Truths

Be careful when installing notification procedures from an application. Applications either go
away or are made purgeable when they quit, and that means your notification procedure can get
disposed. GS/OS tries to call the address anyway, and this is generally a bad idea. Make sure
you remove all notification procedures before their code goes away.

Even though you have to poll to ensure you get disk insertion and ejection events, it’s still useful
to install notification procedures. The notification queue allows everyone who’s interested in
GS/OS events to be notified about them. Check the “disk has been switched” bit of the status
word is not suitable, because this bit is only set once. If a desk accessory makes a status call to a
switched device, it sees the “disk has been switched” bit and your application does not, so use
the notification queue.

Operating system calls (i.e., Write) can generate volume changed events during execution;
therefore, GS/OS could be busy when it calls your notification procedure. Volume changed
events are not necessarily generated immediately. The AppleShare FST checks for volume
changes approximately every 10 seconds, but it only generates these events for a given volume if
it contains an open folder.

GS/OS can call your notification procedure from inside an interrupt, so make it short and sweet.
One approach is setting a flag which you can check periodically from your main code; when the
flag is set, you can process the event and clear the flag.

Developer Technical Support September 1990

GS/OS
#12: All About Notify Procs 3 of 2

Further Reference
• GS/OS Reference

GS/OS
#13: GS/OS Reference Update 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#13: GS/OS Reference Update
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage & Dave Lyons November 1990

This Technical Note corrects and updates the Addison-Wesley Apple IIGS GS/OS Reference.
Previous versions from APDA labeled Volume 1 or 2 are obsolete, and should no longer be used.
Changes since December 1991: Added new information about resource_eof and
resource_blocks parameters.

Chapter 4, “Accessing GS/OS Files”

Page 72: The System File Level: How to Protect an Open File From the Application

The class 1 SetLevel and GetLevel calls have a special option that allows you to open a file at
an “internal” file level, so that it cannot be closed by an application making a Close call with
reference number zero at any application level.

GetLevel and SetLevel actually accept two parameters, not just the one parameter (level)
documented in Chapter 7. The second parameter, level_mode, is a Word that controls the
internal range of the file level.

Only two values for level_mode are supported. A value of $8000 is the same as if the
parameter wasn’t present at all—the level calls behave just as documented in GS/OS Reference. A
value of $0000 sets a special “system” or “internal” level—all files opened with an internal level
are unaffected by any non-internal level.

The steps to open a file at an internal file level are:

1. Call GetLevel with pCount=2, level_mode=$0000. Save the returned level.
2. Call SetLevel with pCount=2, level = $0080 and level_mode = $0000.
3. Open a file or files with a class 0 or 1 Open call, or with OpenResourceFile

(OpenResourceFile on System Software 5.0.4 and earlier does not try to
protect your resource files from being accidentally closed by a Close(0)).

4. Call SetLevel with pCount=2, level_mode=$0000, and level = saved
level.

You can use two parameters in all your level calls and set the second level_mode parameter to
$8000 instead of omitting it if it will make writing your program easier.

To close your protected file, simply do a Close with the reference number. There is no need to
fiddle with the file level when closing by reference number.

NDAs should close all their files at or before DeskShutDown time.

Apple II Technical Notes

GS/OS
2 of 4 #13: GS/OS Reference Update

Chapter 6, “Working with System Information”

Page 92: Using the optionList parameter

The optionList parameter resembles a GS/OS output buffer in most important respects—it
starts with a word indicating the size of the buffer, and each FST fills in the size of the actual data
placed in the buffer in the second word. If the buffer is too small to hold the data, the necessary
size is placed in the second word and the FST returns the “buffer too small” error ($004F).

Usually, GS/OS input buffers only have one length word, because if you know how large the data
is (and you do if you’re the one passing it to GS/OS), you don’t need another word telling you the
same thing. However, if you’re trying to copy something like an optionList, you can wind up
in a bit of a pickle. Just because the buffer you’ve allocated is big enough to hold file system-
specific information, that doesn’t mean the information is necessarily present.

A good example of this problem is found in the System Software 6.0 ProDOS FST. In 6.0 and
later, the ProDOS FST will take HFS Finder information (as returned by the AppleShare and HFS
FSTs) in the optionList and place that information in an extended file’s extended key block, so
the file can be copied to and from ProDOS disks with no loss of Macintosh-specific information
(such as the longer file types and creator types necessary to identify Macintosh files). The FST
returns the same information (if present) in the output optionList.

However, previous versions of the ProDOS FST returned no information in the optionList.
Suppose you archived a file and stored the optionList with the file’s information under 5.0, and
attempt to restore the file under 6.0 using a nice, large optionList buffer. The FST can’t know
whether the large buffer contains any information or not.

To remedy this problem, the second word of the optionList structure (reqSize in the figure
on page 92) is now defined on input as well as output. On input, the word must contain the actual
size of the data in the optionList; the first word continues to indicate the size of the entire
buffer. If the buffer size and the actual data size are too small to make sense, any affected FSTs
will ignore the input, knowing that it must be garbage.

Further details on how the ProDOS FST stores HFS Finder information can be found in ProDOS
8 Technical Note #25, “Non-Standard Storage Types.”

Chapter 7, “GS/OS Call Reference”

Pages 98-99: ChangePath

On page 98, the Reference states that a subdirectory may not be moved into itself or into a directory
the first subdirectory already contains. For example, you may not change /v to /v/w or /v/w to
/v/w/x. Although this is correct, the System Software 5.0.x implementations of the ProDOS
FST trash your disk if you try this with ChangePath. Do not try it on disks you want to keep.

On page 99, error $4E is described as “file not destroy-enabled.” No, ChangePath doesn’t
destroy the file. The error should read “file not rename-enabled.”

Page 120: DInfo Characteristics Word

The diagram for the characteristics word in the DInfo parameters has incorrect
descriptions for bits 14 and 13. The diagram says bit 14 is set if the device is a linked device; in

Developer Technical Support May 1992

GS/OS
#13: GS/OS Reference Update 3 of 4

fact, bit 13 is set if the device is a linked device. Bit 14 is set if the device in question has a
generated driver; the bit is clear for loaded drivers.

Page 129: The Character Device Status Word

The diagram on the top of page 129 says that if bit 5 is set, the device is in no-wait mode. This is
incorrect. To determine if a device is in no-wait mode, make the GetWaitStatus subcall
described on page 130.

Bit 5 of the character device status word is set if there are one or more characters waiting to be read
from the device. This is an assistance for developers, since generated character drivers don’t
support no-wait mode.

Page 132: GetFormatOptions Flags Word

The diagram describing the flags word of GetFormatOptions is incorrect. Bits 0 and 1 are
actually the format type, while bits 2 and 3 are the size multiplier. In other words, the two labels are
backwards.

Page 142: Flush

The Flush call, under System Software 5.0.3 and later (GS/OS version 3.3) accepts a maximum
of two parameters. If the second parameter is present, it is the flushType. The flushType
Word specifies the type of flush to be performed. A flushType of $0000 is the standard flush,
where all dirty blocks are written to disk. If flushType is $8000, however, only dirty data
blocks are written to disk. Certain dirty system blocks (blocks that don’t hold file data) may not
be flushed in this fast flush, but volume and file integrity is maintained.

Page 151: GetDirEntry
Page 156: GetFileInfo
Page 176: Open

Each of the above calls has optional resourceEOF and resourceBlocks paramters that are
listed as “undefined” if the file has no resource fork. In System Software 6.0 and later, these
fields are guaranteed to be zero if a given file has no resource fork.

Apple II Technical Notes

GS/OS
4 of 4 #13: GS/OS Reference Update

Appendix A, “GS/OS ProDOS 16 Calls”

Page 386: GetDirEntry buffer description incorrect

On page 386, nameBuffer is described as a pointer to a buffer in which GS/OS returns a Pascal
string containing the name of the file or directory entry (in GetDirEntry). This is incorrect; all
versions of GetDirEntry return GS/OS (word-length) strings for the directory entry.

Further Reference
• GS/OS Reference
• Apple IIGS Technical Note #71, DA Tips and Techniques
• ProDOS 8 Technical Note #25, Non-Standard Storage Types

GS/OS
#14: The Console Driver Technical Note 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#14: The Console Driver Technical Note
Written by: Matt Deatherage May 1992

This Technical Note discusses the GS/OS Console Driver and related issues.

New 6.0 Character Features Don’t Work In Version 3.2

The System Software 6.0 documentation (as of this writing, the GS/OS ERS) refers to a new
Console Driver feature. The Console Driver now has the capability to return direct character-in and
character-out vectors for improved throughput (gained by bypassing most of GS/OS’s overhead).
The vectors are obtained through new DStatus device-specific call $8007, GetVectors.

Unfortunately, in version 3.2 of the Console Driver (which ships with System Software 6.0), this
call returns addresses which are almost the correct ones (in other words, they’re wrong). If DInfo
says the Console Driver is version 3.2 or earlier, don’t try to use the GetVectors feature.

No-Wait Mode and User Input Mode Conflict

When you read from a GS/OS driver in no-wait mode, the driver is supposed to return as quickly
as possible, reading as much information as possible and returning as soon as the request is filled
or no more information is instantly available. This is the opposite of wait mode, where the driver
waits until the read can be finished even if it takes forever.

This philosophy directly conflicts with the Console Driver’s user input routine (UIR) mode, where
standard human interface editing functions are available. For example, if you want to read seven
characters from the Console Driver in UIR mode, the user should be able to type four characters
and hit three backspaces and not worry that the read request will end since he pressed seven keys.
The entire concept of UIR mode is that the user can take his time and edit his input until he’s happy
with it, then press a terminator key to end editing.

This is how the Console Driver works, in fact, even in no-wait mode. If you ask for even one
character in UIR mode and no-wait mode, the Console Driver will let the user edit the one character
until he presses a terminator.

If you want instant feedback, you must use raw input mode.

Further Reference
• GS/OS Reference
• System 6.0 Documentation for GS/OS

	01. Contents of System Software Distribution Disks
	02. GS/OS & the 80-Column Firmware
	03. Pointers on Caching
	04. A GS/OS State of Mind
	05. Resource Form Formats
	06. Drivers & GS/OS Direct Page
	07. Behavior of SET_DISKSW
	08. Filenames with More than CAPS & Numerals
	09. Interrupt Handling Anomalies
	10. How Applications Find Their Files
	11. About EraseDisk & Format
	12. All About Notify Procs
	13. GS/OS Reference Update
	14. The Console Driver Technical NOte

