Now That You Know
APPLE ASSEMBLY LANGUAGE:

What Can You Do With It?
Jules H. Gilder




TABLE OF CONTENTS

CHAPTER 1 - BEFORE YOU GET STARTED

7715 should not be your first book 1
What is an assembler? 1

CHAPTER 2 - GETTING INFORMATION
OUT OF YOUR COMPUTER

How the Simple Message Printer works 4
Pseudo op codes tell the assembler whattodo 5
About high bits and ASCIIcode 6
Improving the Simple Message Printer 7
How the Improved Message Printer works 7
Printing very long messages 9
Another way to print long messages 10
An interesting way to use the stack 12
Decimal numbers can be output too 12
Branching instead of jumping 15
Separating the nibbles 17

. Use the ROMs to help print decimals 20

| Applying a number printing routine 21

Counting Applesoft program lines 22

3 Using the Applesoft Line Counter 26
Drawing borders and boxes on the screen 26

CHAPTER 3 - GETTING INFORMATION
INTO YOUR COMPUTER

A better way to read the keyboard 31
Entering text a line at a time 31
Entering as much text as you want 32
Entering decimal numbers 35

29

A%




Hexadecimal numbers can be entered too 40
Use alibrary to make programming easier 43
How to write a menu program 44

Using the stack to jump to a subroutine 45
Using an alphabetic menu 49

CHAPTER 4 - STEALING CONTROL OF THE OUTPUT 55

Fixing a problem with some parallel printers 56

Getting more out of your Epson printer 58

Set up your printer automatically 61

How to TAB past 40 columns 65

Getting rid of lowercase letter the easy way 70

Looking at those invisible control characters 72
Black-on-white video with no hardware modifications 74
Format your text into pages 76

Send your output to the disk instead of the printer 78

CHAPTER 5 - STEALING CONTROL OF THE INPUT 82

Customize your cursor 83

Dump your screen to a printer 84

Add a numeric key pad for free 88

Supplying characters from a different source 91
EXECing without a disk drive 92

Save keystrokes by using Applesoft shorthand 96
Teach your Apple to recognize lowercase letters 101
Taking advantage of the SHIFT key modification 103

CHAPTER 6 - USING SOUND IN YOUR PROGRAMS 108

How to generate a simple tone 109

Figuring out the frequency 109

Examining the Apple BELL routine 11

Let your keyboard tell you what’s happening 12
RAT-A-TAT-TAT here’s the Apple machine gun 112
Use swooping lasers for space games 114

Do your blasting with less memory 115

Fifteen bytes to an alarm signal 1n7

Simulate a Touch-Tone generator with your Apple 118
Let your computer send Morse code like a pro 121
How to copy any cassette program 126

VIII




LIST OF PROGRAMS

CHAPTER 2 - Getting Information Out of Your Computer

VOO A W —

Simple Message Printer 6

Improved Message Printer 8

Long Message Printer # 1 For Grouped Messages 10
Long Message Printer # 2 For In-Line Messages 11
Output A Decimal Number # 1 15

Output A Decimal Number # 2 19

Output A Decimal Number # 3 21

Applesoft Line Counter 24

Title Box 27

CHAPTER 3 - Getting Information Into Your Computer

XN AL~

Simple Read Keyboard Routine 30
Improved Read Keyboard Routine 31
Text Input Routine 32

Improved Text Input Routine 33
Input Integer Routine # 1 37

Input Integer Routine # 2 39

Input A Hex Number Routine 42
Sample Menu Program 46
Alphabetic Menu Program 50

CHAPTER 4 - Stealing Control of the Qutput

e B

Parallel Printer Patch 57
Epson Printer Patch 59
Printer Setup Program 63
Printer Tabbing Driver 66
Lowercase Letter Filter 71
Show Control Characters 73
Screen Reverser 75

Page Formatter 77

Print To Disk Spooler 79

XI



CHAPTER 5 - Stealing Control of the Input

SNk W~

Custom Cursor 83

Screen Printer 86

Numeric Key Pad 90
In-Memory EXEC Simulator 93
Applesoft Shorthand 98
Lowercase Input Driver 104

CHAPTER 6 - Using Sound in Your Programs

© 0 NO R W~

Simple Tone Routine 110
Apple BELL Routine i
Keyboard Clicker 113
Machine Gun Noise 115
Laser Swoop 1 116

Laser Swoop 2 17

Siren Program 118
Touch-Tone Simulator 120
Morse Code Generator 124

10. Cassette Duplicator 127

CHAPTER 7 - Learning to Use the Ampersand

B -

Hex/Dec/Hex Converter 130
Applesoft Line Finder 137
Applesoft Append 142
&RESTORE 147

CHAPTER 8 - Expanding Applesoft BASIC

w ok W=

APPENDIX D - Adapting Programs to Work With ProD()S

X1

L.

Computed GOTO, GOSUB and LIST 153
Double Byte POKE 157

Double Byte PEEK 160

Applesoft Program Sharer 164

Applesoft Function Keys 171

Show Control Characters ProDOS Version 184

PREFACE

This book is designed to be used by the newcomer to assembly language pro-
gramming, who has already spent the time required to learn assembly language
programming for the 6502 microprocessor and is now anxious to put his or her new
found knowledge to work.

The book comprises a work that took over six months to write and was totally
produced, from program writing to typesetting, on an Apple Il computer. There
are over 50 programs in the book ranging from simple routines to help you input
and output data, to more sophisticated programs that improve on the hardware —
such as the Lowercase Input Driver — and programs that expand the Applesoft
language — such as those in Chapter 8.

In addition, there are many interesting programs that you will find useful in your
day-to-day work with the Apple. These include programs to help recover acciden-
tally erased Applesoft programs, to format program listings and to improve the
interface to your printer, to name a few.

Most of the programs in Chapter 6 were reprinted through the kind permission
of Bob Sander-Cederlof of S-C Software. All of these programs deal with the
generation of sound on the Apple. Bob puts out a monthly newsletter called Apple
Assembly Line which is chock full of useful information for assembly language
programmers. He also sells one of the best assemblers for the Apple, the S-C
Macro Assembler. All of the programs in this book were written on that assembler.
A special 10-byte patch to the assembler was provided by Bob, so that all of the
ussembled listings could be written directly to a text file. This file was then read by
the word processing program and incorporated into the text of the book. As a
result, none of the program listings were retyped, and thus you can be confident
that all program listings will run as they are.

The programs in this book will work with the entire Apple II series of com-
puters. There are some changes in the F8 ROM in the //c and //e that make it
slightly incompatible with the II Plus. These occur in the KEYIN2 routine
($FD21). This entry point should not be used and programs should try to use the
KEYIN entry point (§FD1B). All the programs in this book have been designed to
vvercome the difficulty posed by the differences in the input software.

These programs have been designed to run under DOS 3.3 although, in general,
with minor changes, they can be used with ProDOS as well. Appendix D provides
Information you’ll need to use these programs with ProDOS.

['d like to say a special word of thanks to Dave Gordon, president of DataMost,
for all the enthusiasm, encouragement and help that he has given me in producing
this book.



Chapter 1
BEFORE YOU GET STARTED

The 6502 microprocessor is probably the most widely used microprocessor in
personal computers. It is found in the Apple IT and Apple /// families of computers,
the PET, CBM and VIC computers from Commodore, the Atari 400 and Atari 800
computers, and a variety of other computers and video games. Because of the
popularity of the 6502, many books have been written on how to program in 6502
assembly language.

With so many books on 6502 assembly language programming already availa-
ble, you might be tempted to ask why another book is needed. That’s easy. Few of
these books are machine specific, and even fewer were written especially for the
Apple computer. In addition, while these books can be helpful in learning the
basics of assembly language programming and familiarizing you with the various
op codes and their mnemonics, they fall short when it comes to supplying the
reader with hard information on how to perform specific tasks in assembly lan-
guage.

This should not be your first book

This book is designed to pick up where the others leave off. Most of the books
that currently exist are designed to be used as a first book in assembly language
programming. This book is designed as a second book. This means that the book
was written with several assumptions in mind.

First, it is assumed that you have already read one of the existing books that
teach 6502 assembly language and that you are familiar with the mnemonics.
Another assumption that is made is that you have, or have access to, an Apple
computer and know how to operate it. Finally, it is desirable that you have an
assembler to use with your Apple.

What is an assembler?

For those of you who are not familiar with what an assembler is or does, it is a
program that allows you to write other programs using the assembly-language
mnemonics. Of course, it’s possible to write the program out on paper, convert the
op codes to their hexadecimal equivalents and either enter the program from the
monitor, or POKE it into memory from BASIC, but that is a combersome and time
consuming way of doing things. By using an assembler program, we let the com-
puter do all of the hard work. In addition, we gain a lot of flexibility as well as the

1



2 / Chapter 1

ability to make changes easily. Generally, an assembler consists of two major
parts:
(1) an editor that allows you to enter and manipulate your
program listing and descriptive comments, and

(2) a translator that converts the mnemonic codes to machine
code (hexadecimal numbers) and stores the resulting machine
language program in memory, or on tape or disk.

Some assemblers contain a third part, a printer module, that allows you to print
out the program that you entered with mnemonics along side of the machine-
language translation of the mnemonics. However, most assemblers build this capa-
bility into the translator module.

The various modules of the assembler can all be in memory at the same time
(coresident), or they can be loaded in separately as needed. The coresident assem-
bler has the advantage that it works faster. There are probably at least a dozen
assemblers available for the Apple computer, but three of the best are the S-C
Macro Assembler from S-C Software, Merlin from Southwestern Data Systems
and Big MAC from Call A.P.PL.E., which is only slightly less powerful than
Merlin (they were written by the same person), but is a lot less expensive. The
programs in this book were all written with the S-C Macro Assembler.

For those of you who are not too familiar with assemblers, I will explain just a
few of the features of the S-C Assembler that are used here. These may differ
slightly in the way they are implemented on other assemblers. To begin with, there
are pseudo op codes, which are really instructions to the assembler itself. All
pseudo op codes begin with a period. Some of the pseudo op codes that are used in
these programs are:

.OR means ORigin and it tells the assembler where the program that is being
assembled is designed to run in memory. If this location does not conflict with
memory locations used by the assembler, as the program is assembled, the object
code (program) it produces is stored at this location. If no origin address is speci-
fied, it is assumed to be $800.

.TA means Target Address and defines where the program code will be stored as
it is generated by the assembler. This pseudo op code must be used when the origin
of the program conflicts with the memory locations used by the assembler. In
practice, after the code has been assembled, it must by moved, with the Apple’s
block memory move command, to the location in which it is designed to work. If
no target address is specified, it is assumed to be the same as the origin address.

.EQ means EQuate and is used to assign a value to a label. This value may be a
single or a double byte and it may represent an address or data.

.AS means ASCII String and is used to store the binary value of the ASCII
characters that follow it. The string itself must be enclosed in delimiters that the
user can define. [ have chosen to use quotation marks for these delimiters. If the
first delimiter is preceded by a minus sign, the hexadecimal code generated will

Before You Get Started / 3

have the high bit set (which is used throughout this book). If the minus sign is not
present the high bit will not be set.

.HS means Hex String and is used to enter hexadecimal data, such as may be
found in conversion, or address tables. It assumes the presence of two digits for
every byte.

.DA means DAta and is used to define constants and/or variables.

Frequently in assembly language programs, it is necessary to find the address of
a labelled subroutine. In the programs listed in this book, to define the low byte of
the address the pound sign (#) is used and to define the high byte, the slash (/) is
used. Thus, if COUT equals $FDED>#COUT will return the value $ED,Ywhile
JCOUT will return the value $FD. One final comment, all lines that start with an
asterisk (*) are considered comment lines by the assembler, and are ignored by it.

As a matter of convention, in this book all hexadecimal (hex) numbers will be
preceded by a dollar ($) sign. Thus $10 is a hexadecimal number which is equal to
16 in decimal and 10 (without the dollar sign) is the decimal number ten.



Chapter 2

GETTING INFORMATION OUT OF
YOUR COMPUTER

Newcomers to assembly language programming often find that printing out text
from an assembly language program is difficult and inconvenient do to. Conse-
quently, they frequently resort to combining machine language and BASIC pro-
grams together so that BASIC can handle the message printing. However, by
developing some standard message printing routines in assembly language, you
will find that it is just as easy to print text from assembly language as it is from
BASIC.

To give you an idea of just how easy things can be, take a look at the program
listing for the SIMPLE MESSAGE PRINTER. The actual program itself (from
$800 to $80D) is only 14 bytes long. The bulk of the memory occupied by this
routine is for the text itself ($80E to $838) which is 43 bytes long, including the
terminating zero byte.

How the SIMPLE MESSAGE PRINTER works

The program starts out by initializing the Y-register to zero in line 1160. This is
used as a pointer to the next character and is incremented by one (line 1200) each
time a character is printed. The character to be printed is fetched when the instruc-
tion inline 1170 is performed. Here, the program is telling the computer to gotothe
location to which the label TEXT has been assigned. Now, add the value that is in
the Y-register to this address and load the character that is located at this new
address into the accumulator. This method of loading the accumulator is known as
Indexed Addressing.

To see how this works, let’s take a look at an example. In this program, when the
value in the Y-register is 2, the character that is loaded into the accumulator is ‘T’
whose hexadecimal equivalent is D4. This is because TEXT = $80E and it begins
with two carriage returns (the .HS8D8D in line 1240). When $2 is added to $80E,
the result is $810. Looking at the listing you can see that the character located at
$8i0is D4 ora ‘T’.

After the character is loaded into the accumulator, a check is made in line 1180 to
see if the character was a zero. Ifit was, this is a sign that the end of the text has
been reached and the program then branches, without printing, to label ENDPRT
where an RTS instruction (return from subroutine) is executed, and control is
returned to the calling program or mode.

4

Gettng, IntOrmation Out OF Your Computer /5

1 the character was not a zero byte, then the COUT ($FDED) subroutine in the
Apple’s ROM is called to printout the churzlcl.gr in the accumulutor'. Upon return-
g from that subroutine call, the Y-register is incremented by one (line 1200) and a
cheek is made to see if the value in the Y-registe r passed 255 and returned to zero. If
it hasn't, and it shouldn’t, the program branches back to line 1170 and the next
character is fetched.

The message to be printed starts at line 1240 and ends in line 1260 with a BRK
instruction. The BRK was used because when it is assembled it generates a zero
byte. As an alternative .HS 00 could have been used to generate the requir?d zero
byte. The message begins with two carriage returns, followed by the text listed in

line 1250.

Pseudo op codes tell the assembler what to do

Looking carefully at lines 1240, 1250 and also at line 1120, you will notige the
pscudo op codes that we spoke about earlier. These commands do not appear in the
final assembled program: They merely contain instructions to the asscmbler to
perform certain functions. In line 1120 the .EQ pseudo op code tells the assembler
to assign the address SFDED to the label COUT. In line 1240, the .HS pseudo op
code tells the assembler that all the data that follows should be considered hexade-

cimal data.




6/ ('huplcr 2

The . AS pseudo op code in line 1250 tells the assembler that the information that
follows, is an ASCII string (text). Most assemblers require that the text be enclosed
by delimiters (quotation marks, slashes, etc). This assembler has an additional
feature in that it allows you decide whether or not you want the high bit of the
character set or not. This is done by the presence or absence of a hyphen, or minus
sign, (-) after the . AS pseudo op code and before the quotation mark. If the hyphen
is present, the high bit is set, if it is absent, the high bit remains a zero.

About high bits and ASCII code

Numbers, letters and certain standard symbols can be represented in the com-
puter by a special code known as ASCII (for American Standard Code for Informa-
tion Interchange - see Appendix A). This code uses 7 bits to code 128 numbers,
letters and symbols. Since there are 8 bits in a byte, there’s one extra bit left over.

The Apple computer uses the eighth (or high) bit to determine whether or not the
character displayed on a video screen will be displayed normally or in a flashing
mode. If the high bit is not set, the character will flash, if it is set it will be displayed

1000 *kkdhokkkdkk ok ke kdkokddkhkk Kk kkkkkkkkrkkhhh
1010 *** *kk
1020 *** SIMPLE MESSAGE PRINTER *kk
1030 *** *kk
1040 *dkhkdkdhhhhhdkihhhhkxhrrhkikis kkkkk
1050 *
1060 *
1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
FDED- 1120 cour .EQ $FDED
1130 *
1140 *
1150 *
0800~ A0 00 1160 LDY #$0 Initialize pointer
0802- B9 OE 08 1170 LOOP LDA TEXT,Y Get character
0805- FO 06 1180 BEQ ENDPRT Done yet?
0807- 20 ED FD 1190 JSR COUT No, print character
080A- C8 1200 INY Increment pointer
080B- DO F5 1210 BNE LOOP Get next character
080D~ 60 1220 ENDPRT RTS Return to caller
1230 *

080E- 8D 8D 1240 TEXT .HS 8D8D
0810- D4 C8 C9

0813~ D3 A0 C9

0816~ D3 A0 D4

0819- C8 €5 A0

081C- D3 C1 CD

081F- DO CC C5

0822- A0 CD C5

0825- D3 D3 C1

0828~ C7 C5 AO

082B- D4 CF A0

082E- C2 C5 AOQ

0831- DO D2 C9

0834- CE D4 C5

0837- c4 1250 -AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
0838- 00 1260 BRK

Gietting lnlin‘nmlinn Out OFf Y()lll'_(‘(V)IIIDEI_I'SI'W/W—/'

normally. A bit is said to be set, oron, when its value is equal to | and reset, or off,

when its value is equal to 0.

Improving the SIMPLE MESSAGE PRINTER

Whilc the SIMPLE MESSAGE PRINTER can bet easily used to output text frorp
an assembly language program, it does have a major drawback. The prograrr: :s
what can be referred to as an in-line routine, meaning that every tlme you wan ,(;
print out a message, you have to add another 13 bytes (most of the Fm?e you won
need the RTS instruction at the end) to your program for .the pr1nt1ng routlrl;e.t
Whilc that might not seem like a lot, you'd be surprised at just how quickly thal
adds up. . .

A more reasonable way to do things is to conveﬂ the program into a subroutlr}e
that can be jumped to whenever it is needed. That is exactly what bas been dpqe in
the IMPROVED MESSAGE PRINTER. As you can see by glar?cmg at the llsgltl}%,
the program has been broken down into two major parts: the main program and the

message printing subroutine.

How the IMPROVED MESSAGE PRINTER works

The main program illustrates how the printing suproutine i.s called. In linell200
the low-order byte of the address of the label TEXT is loaded into thcla fclu'mlu a(tjor(i
while in line 1210, the high-order byte of the address of the TEXT label is loa te;
into the Y-register. Now that the program k.no'ws where the message t.hat. we wgn (3
print is located in memory, all it has to do is jump to the message printing subrou
tine which begins on line 1280. ‘ ' f

The first thing that the message printing subroutine does is to store the addrc;lsstq
the text to be printed in a two-byte pointer (l(?w byte first) on zero page. On'cedt a t](s)
done, the Y-register is reset to zero, so that it can be used as a pointer (or index)

next character. o
theOne important point you should realizg when using this subrqutme is that .\th;n
ever is in the accumulator and the Y—reg.lster before you use th.lS .routme will be
destroyed. So if you need that information, you should store it 1rt1) a te.mpoilar.y
jocation until you exit the printing routine and then load the values back into their

spective places. o
res’?lie typ: of indexed addressing (line 1310) used in .the subroutine is s.lxght}lly
different from that used in the previous program. This method' of loading (; e
accumulator is known as Indirect Indexed Addressing, also someFlme.s rer,ferr(i1 l;o
as Post-Indexing. In this mode, the computer goes to tbe location indicate );
TXTPTR, which has been defined in line 1130 as location $06 on page zero t())
memory, and looks in locations $06 and $07 for the addr.ess of the text to be
printed. Once it has this address, it adds to it the value stored in tbe Y—reglster to get
the real address that is desired and then 10ads'the a.ccumulator with the 1pformatlo:
from that address. The rest of the program is identical to that of the previous one.



R/ (‘huplvr 2

testis made for a zero byte and if none is f
az ‘ ne s found, the chars 1S pri i
e ton g vt ¢ character is printed and the next
T :, . 1¢ M £

- li]tlls];)r(l))grdm is :jqunc uscful and as you progress through this book you will find

§ been used extensively as a subroutine i :
' ' § n other programs. Th i
itself is 17 bytes long and requi ; 10 the mapne
: equires 7 bytes of code to set up th
tine. So, it is easy to see that i R essages o eoprot:

, at if you have more than 2 int i

! . messages to print i

program, 1t pays to use this program rather than the former one : P n

1000 *************************************

1010 ***
1020 *** b
1030 wex IMPROVED MESSAGE PRINTER Fkk
1040 **kkkkrikkk b
1828 igiaieitioiohelicdotob b L T S ey
1060 *
1070 *
1080 *
1090 *
1100 *
1110 * EQUATES
0006 1120 *
~ 1130 TXTPTR .EQ $06
FDED- 1140 cour .
LE Fi
1150 * Q $FDED
1160 *
i};g : Tgis is the main program, which calls
1190 * the message printing subroutine.
0800- A9
0802 A0 o 1210 Loy ﬁgg Got adaress Low byce.
804_ 20 08 08 1250 et address high byte.
0807 o0 1550 ggg MSGPRT Print text. Y
1240 *
1250 *
1260 * This i inti
oo 1260 is is the message printing routine.
080A: SZ gg }%gg MSGPRT STA TXTPTR Store pointer
0800_ a0 oo 13 STY TXTPTR+1 to text.
0805 B2 00 ]3?8 LDY #$0 Init counter
0830- ps oo 1310/LOOP  LDA (TXTPTR),Y Get characcer
0810~ F0 06 1320 BEQ ENDPRT Done yet? )
0815 o9 329 ggR couT No, print character.
Y Increment counter.

0816- DO F6 1350
BNE LOOP
0818- 60 1360 ENDPRT RTS Rerure o haracter.
1390 & urn to caller.

0819- 8D 8D
0815 b4 o8 co 1380 TEXT .HS 8D8D
081E~ D3 A0 €9
0821~ D3 A0 D4
0824- C8 C5 AD
0827- p3 €1 cD
082A- DO CC C5
082D- A0 CD C5
0830- D3 D3 C1
0833- C7 C5 A0
0836- D4 CF AQ
0839- C2 ¢5 AD
083C- DO D2 €9
8225— CE D4 C5
- C4 1390 "
0843 oo a0 éﬁﬁ —~"THLS IS THE SAMPLE MESSAGE TO BF PRINTED"

Getting lnlin'nmﬁnn()ul Of Your Computer /9

Printing very long messages

As | indicated carlicr, you will find that the IMPROVED MESSAGE PRINTER
can be used for most of your text output applications. It is possible however, that
under certain circumstances, you will find that not all of your text is being printed
and there is no apparent reason for it. It’s not really as mysterious as it may seem,
because the two printing routines that we have discussed until now have had one
thing in common, they are limited to a maximum message length of 255 charac-
ters. The reason for this can be found in lines 1340 and 1350 of the IMPROVED
MESSAGE PRINTER program.

In line 1340, the Y-register is incremented. The INY instruction affects the Zero
(or Z)) flag bit in the status register, and if the INY operation results in the Y-register
being set equal to zero, the Z flag is set. If the Y-register does not become zero, the
7. flag is reset. In line 1350, the BNE instruction is used to see if the Y-register has
been incremented past 255 and returned to zero (remember the Y-register is an 8-
bit register and can only hold values up to 255).

In most cases, the Y-register never gets to zero and the message printing subrou-
tine is terminated instead by the zero that follows the text. But for text containing
more than 255 characters, the terminating zero that follows the text is never

reached and instead, the Y-register becomes zero and terminates the routine. You
can check this out yourself by simply using the previous program and putting in a
message that is longer than 255 characters.

To overcome this size limitation, instead of using the single byte Y-register as the
text pointer, we must use a two-byte pointer to the text. Such a pointer will techni-
cally enable us to print out up to 65,536 characters. In real life, we must leave some
space in memory for the program and various parts of the Apple’s operating
system. But in essence, a two-byte pointer will letus print out messages of virtuaily

any length.

The changes required to accommodate a two-byte pointer can be seen in the
listing for Long Message Printer No. 1. The method used to call the printing
subroutine (starting at line 1200) remains the same as that for the previous pro-
gram, as does most of the remainder of the program. The only difference is that the
INY in line 1340 of the previous program has been replaced by three lines of code
that increment TXTPTR instead of the Y-register.

Line 1340 increments the low byte of TXTPTR, while line 1350 checks if this
incrementing has caused this low byte to increment past 255 and back to zero. If it
has, then the high-order byte, TXTPTR + I, is also incremented by one. In any
case, after adjusting TXTPTR, the program jumps back to LOOP in line 1310
where the next character is fetched.



10 / Chapter 2
1000 Frkkhmhhkrrxhhkhkksrhirikhkihrrrdkhirk
1010 ***% *kk
1020 ***  LONG MESSAGE PRINTER NO. 1 ***
1030 *** FOR GROUPED MESSAGES kol
1040 *** *kk
1050 Fxkkrkkrkhkrkkdhkhrrdrrhhhkhkkdkrixhhrk
1060 *
1070 *
1080 *
1090 *
1100 *
1110 * EQUATES
1120 *
0006- 1130 TXTPTR .EQ $06
FDED- 1140 COUT .EQ $FDED
1150 *
1160 *
1170 * This is the main program, which calls
1180 * the message printing subroutine.
1190 *
0800 A9 1E 1200 LDA #TEXT
0802- A0 08 1210 LDY /TEXT
0804~ 20 08 08 1220 JSR MSGPRT
0807- 60 1230 RTS
1240 *
1250 *
1260 * This is the messag~ printing routine.
1270 *
0808- 85 06 1280 MSGPRT STA TXTPTR Save address of TEXT in
080A~ 84 07 1290 STY TXTPTR+1 TXTPTR and TXTPTR¥1.
080C- A0 00 1300 LDY #$0 Initialize offset to zero.
080E- B1 06 1310 LOOP  LDA (TXTPTR),Y Get next character to print.
0810- FO OB 1320 BEQ ENDPRT Done yet?
0812- 20 ED FD 1330 JSR COUT No, print character.
0815- E6 06 1340 INC TXTPTR Increment TXTPTR low byte.
0817- DO F5 1350 BNE LOOP If not zero get next character.
0819- E6 07 1360 INC TXTPTR+1 Otherwise increment TXTPTR+1.
081B- DO F1 1370 BNE LOOP Get next character.
081D- 60 1380 ENDPRT RTS Return to caller.
1390 *

081E- 8D 8D 1400 TEXT .HS 8D8D
0820- D4 C8 C9

0823- D3 A0 C9

0826- D3 A0 D4

0829~ C8 C5 A0

082C- D3 €1 CD

082F- DO CC C5

0832- A0 CD C5

0835~ D3 D3 C1

0838~ C7 C5 AOQ

083B- D4 CF AO

083E- C2 C5 A0

0841- DO D2 C9

0844~ CE D4 C5

0847- C4 1410 .AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
0848- 00 1420 BRK

Another way to print long messages

For those of you who firmly believe that ““Variety is the spice of life””, we have
another method of printing out long messages. This one has a little different
structure than all of the previous programs. Whereas former programs looked at
the label associated with the text to be printed and passed its location to the printing
subroutine, this program doesn’t even require the message to have a label. I've only
left it in for purposes of continuity.

Getting Information Out Of Your Computer / 11

0006-
FDED-

0800-
0803~
0805-
0808~
080B-
080E-~
0811~
0814-
0817-
081A-
081D-
0820-
0823~
0826-
0829~
082C-
082D-
082E-

082F-
0830-
0832-
0833-
0835-
0837~
0839-
083B~
083E-
0841-

0844~
0847-
084A-

084D
0841
0851

0851

20
8D
D4
D3
D3
Cc8
D3
DO
AOQ
D3
Cc7
D4
Cc2
Do
CE
C4
00
60

68
85
68
85
AO
Bl
FO
20
20
4C

20
20
6C

K6
DO
156
60

06

07
01
06
09
ED
4D
37

4D
4D
06

06
0?2
07

FD
08

08
00

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1980

dkkkkkkkhkkkhkkkkkhkhkkkhihhkhkhhkkhkkkkkhk
*kk *kk
*%k  LONG MESSAGE PRINTER NO. 2 #%%
*kk FOR IN-LINE MESSAGES dokok
*k% *k*x
khkkkhkkkkkhkkkhhhkhkhhkrhhkhkhhkkikhhhhhhhohhhix
*

*

*

*

* EQUATES

*

TXTPTR .EQ $06

CouT .EQ $FDED

*

*

*

* This is the main program, which calls
* the message printing subroutine.

*

JSR MSGPRT Print message that follows.
TEXT .HS 8D8D

.AS -"THIS 15 THE SAMPLE MESSAGE TO BE PRINTED"

BRK End of message marker.
RTS

*

*

* This is the message printing routine.

*

MSGPRT PLA Pull address of TEXT-1
STA TXTPTR off the stack and save it
PLA in TXTPTR and TXTPTR+1.
STA TXTPTR+1
LDY #$01 Set Y-register to 1.

LOOFP  LDA (TXTPTR),Y Get next character to print.
BEQ ENDPRT Done yet?
JSR couT No, print character.
JSR INCPTR Increment TXTPTIR by 1.

N JMP LOOP Get the next character.

*

* The end of the text has been reached

* so increment TXTPTR twice to get the

* correct address to return to.

*

ENDPRT JSR INCPTR
JSR INCPTR
JMP (TXTPTR)

*
*

* This is where TXTPTR is incremented.
* First the low byte is incremented and
* if it passes zero as it's incremented,
: then the high byte is incremented too.
INCPTR INC TXTPTR

BNI RETURN

INC TXTITR
RETURN R'TS



12 / Chapter 2

At first glance, the operation of the program is unclear and it even looks like it is
going to crash right after it returns from its jump to the message printing subrou-
tine, because it looks like it is going to try to execute the text as machine language
instructions. Let me assure you this is not going to happen.

An interesting way to use the stack

Whenever the 6502 microprocessor executes a JSR instruction, as it does in line
1200, the address minus one, of the next instruction to be executed is pushed onto
the stack (which takes up page | of memory). Data are pushed onto the stack
starting at $1FF and work their way down to $100. When the JSR in line 1200 is
executed, the microprocessor doesn’t know that what follows the JSR is not an-
other instruction, but just data, so it automatically pushes the address of TEXT-1
onto the stack. The address is pushed onto the stack high byte first, low byte last.

The first thing that the message printing subroutine does is to pull the address off
the stack, low byte first (line 1290) and store it in TXTPTR and TXTPTR + 1. To
compensate for the minus 1, TXTPTR could either be incremented or the Y-
register can be set to 1 instead of 0, which is what was done here (line 1330). This
will not pose us any problems later on because the Y-register always remains the
same. Only TXTPTR and TXTPTR + 1 get incremented.

In lines 1340 to 1360 the program gets the next character, checks to see if the end
of the message has been reached and prints out the character if it hasn’t. In line 1370
the program jumps to a subroutine that increments TXTPTR and TXTPTR + 1 if
necessary. After that, the program goes back to get the next character.

When the program does detect the end of message marker (the zero byte) it
branches to ENDPRT in line 1450 where TXTPTR is incremented twice. It is
incremented once to get past the BRK instruction, to which it is pointing as it enters
ENDPRT, and incremented a second time to compensate for the -1 associated with
the original address of TEXT. After incrementing it twice, therefore, TXTPTR is
pointing to the instruction immediately following the BRK. This turns out to be the
RTS instruction in line 1240. So on exiting ENDPRT, the program does an indirect
jump through TXTPTR (line 1470) to return to its proper place in the program.

Decimal numbers can be output too

Until now, we’ve seen how we can print out textual information. But what do we
do if we want to print out some numbers that were generated by our machine
language program and reside in memory in a hexadecimal form? If we wanted to
print out the number in hexadecimal, all we’d have to do is to load the byte(s) into
the accumulator and then jump to the PRBYTE routine in the Apple monitor
ROM, located at SFDDA.. But, if we want to print the hexadecimal number out as a
decimal number, which most of us are more familiar with, then we have to do some
sort of number conversion. Both the 6502 microprocessor and the Apple system
are very versatile, and you will quickly realize that there is more than one way to
write an assembly language program. To illustrate this point, the next three pro-

Getting Information Out Of Your Computer / 13

gram will all perform the same task: printing out the decimal equivalent of a two-
byte hexadecimal number. If you look carefully at the previous sentence, you'll
notice that I indicated that the task was printing out the decimal equivalent and not
necessarily converting to the decimal equivalent. The distinction will be made
clear shortly when we look at the first of the three programs.

‘ The heart of this first program is a short routine that Steve Wozniak, one of the
founders of Apple, wrote a few years ago and was published in the San Francisco
Apple Core’s Cider Press Magazine. Normally, when converting an integer from
one base to another, the integer is repeatedly divided by the desired base. The
remainder of each division becomes successively more significant digits of the
answer. The process continues until the base can no longer be divided into the
argument. To illustrate how this works let’s convert 32 in decimal to its hexadeci-
mal equivalent.

32/16 =2 with a remainder R =0
2/16=0and R=2

Before you get excited and say that 2/16 is .125, remember that we are dealing
with integer numbers only, no fractions. So if a result is less than 1, it’s set equal to
scro and a remainder. Earlier we said that as the division progresses, the remain-
ders become successively more significant digits of the answer. This means that
the last remainder (2) is the most significant digit of the answer. Hence, 32 decimal
is equal to $20 hexadecimal.

The process works in the reverse direction just as well. Let’s convert $20 hex
back to its decimal equivalent.

$20/$A=%$3and R=2

$3/$A=%$0and R=3

Here we.divide $20 by the base we wish to convert to, which is 10 decimal or $A
in hexadecimal. Once again, by taking the last remainder as our most significant

- digit and reading back we find that $20 hex is equal to 32 decimal, which is really

no great surprise.

A shorter and faster conversion method can be implemented on microproces-
wors that have a decimal mode, such as the 6502. In this program, the two-byte hex
number that is to be converted is stored on page zero in locations $50 and $51
which are known as LINNUM and LINNUM + 1. The answer, in binary coded
decimal (BCD) form is stored in location TEMP and the two locations that follow
it. These are located from $6 to $8 on page 0 of memory. TEMP contains the lowest
order digit and TEMP + 2 the highest order.

For those of you who are unfamiliar with just what a binary coded decimal is, let
me explain. If from BASIC you typed POKE (),32 and then you went into monitor
mode and looked at location 0, you'd find the hexadecimal number $20 there,




14 / Chapter 2

which we already know is the hex equivalent of 32. However, if I had a program
that converted $20 to decimal and stored the digits 3 and 2 as a single byte in a
single memory location, I would have a binary coded decimal. So, if from the
monitor you were to type 0:32 and then a press RETURN, you could say that you
stored 32 as a binary coded decimal into location zero. Having done this, you can
now use the Apple’s monitor routine PRBYTE to print the byte out to the screen.

Thus if you load the accumulator with 32 and do a JSR to PRBYTE ($FDDA),
the number 32 will appear on you screen. You can see therefore, that we can
convert a number to BCD and then use the PRBY TE routine to display it. As far as
the viewer is concerned, he is seeing a decimal number, even though if he looked in
memory he would actually see BCD numbers. The advantage to using BCD num-
bers is that they require less memory. A 5-digit decimal number requires 5 mem-
ory locations, one for each digit. The same number in BCD form only requires 2.5
memory locations because 2 digits are packed into every byte. Thus the number
65535 would be represented in BCD as the three bytes 06 55 35. In our program,
these numbers are stored in memory in reverse order: 35 55 06.

In the program, OUTPUT A DECIMAL NUMBER #1, the section of code
from 1280 to 1450 converts the two-byte hex number in LINNUM to its BCD
equivalent. Lines 1280 to 1300 clear the two low order bytes of the answer. The
high order byte does not have to be cleared because any data stored there will be
shifted out automatically during the calculation. In line 1310, a flag is initialized to
zero. The flag will be used to determine whether or not a zero that is to be printed
out is a leading zero. This is done to enable us to suppress leading zeroes so we
don’t get 065535 instead of 65535, which is what we really want.

The next thing that is done is to switch the 6502 into its decimal arithmetic mode
in line 1320. In line 1330, we are setting up a loop that will be performed 16 ($10)
times. Within this loop, the numbers in LINNUM and LINNUM + 1 will be
shifted left, pushing the most significant bit into the carry. Then, the values in
TEMP, TEMP + 1 and TEMP + 2 are doubled and the carry is added to them.

The low and middle order bytes are doubled by adding each byte to itself (lines
1360 to 1410). The high order byte is doubled by shifting its contents left once (line
1420). By doing this, there is no need to initialize TEMP + 2 to zero at the begin-
ning, because the original contents will be shifted out during execution.

This entire process (lines 1340 to 1440) is performed 16 times to convert both
hex bytes into 5 BCD digits. When the calculations are done, it is very important to
return the 6502 microprocessor to its hexadecimal calculation mode by executing
the CLD (clear decimal mode) instruction. Otherwise the remainder of the pro-
gram will not work properly.

Once the conversion has been completed, the program then proceeds to print out
the numbers. Since most of us are not used to seeing numbers with leading zeroes,
I’ve included routines that check to see if a zero that is a candidate for being printed
is a leading zero and if it is, to skip it and get the next digit.

The routine starting at line 1580 sets up a loop that retrieves the three BCD bytes.
As a byte is loaded into the accumulator (line 1600), a check is made to see if its

Getting Information Out Of Your Computer / 15

value is zero. If it is, a second test is performed to see if this is the first digit to be
printed. If it is the first digit, LZFLAG will be 0 otherwise it will contain some
nonzero value. If a zero byte is the first byte to be printed, the byte is discarded (line
1630) and the program jumps back to line 1590 to get the next byte.

[f the whole byte is not equal to zero, a test is made (at lines 1720 and 1730) to see
if the most significant digit (nibble) of the byte is zero. (NOTE: This will always be
the case with the byte at TEMP + 2.) If it’s not, then LZFLAG is set to indicate that
a digit has already been printed, the complete original byte is retrieved (we had to
modify it to do our test) and the byte is printed.

On the other hand, if the most significant nibble of the byte is zero, then the
program jumps to line 1990 to find out if a byte has already been printed. If one has
then this one is also printed. If nothing has been printed yet, the original byte (with
its leading zero) is retrieved and stored in LZFLAG to make it nonzero, and then
the right most, or least significant digit of the byte is printed using the PRHEX
routine in the Apple ROM. Finally, in line 2100 the V flag of the status register is
cleared and in line 2110 a branch on V clear instruction is executed. This causes the
program to branch back to line 1820 and check to see if there are anymore digits to
be printed.

Branching instead of jumping

Instead of using the CLV and BVC op codes in 2100 and 2110, we could simply
have put in a JMP instruction. However, I wanted you to see how it’s possible to
implement a function — branch always — that does not exist in the 6502. Other
microprocessors, such as the 6800 and the 65C02, have a BRA instruction which
unconditionally branches to the desired location.

Inthe Apple, the V flag of the status register is very rarely used, so it’s generally
fairly safe to clear it and then execute a BVC instruction. Here’s the listing of the
program we have been discussing.

1000 ***kkkkikkhkhhkhhkkhkkhhrhhhkhkrrhkhhdhhrrx

1010 *** kkk
1020 *** OQUTPUT A DECIMAL NUMBER # 1 %%
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *ikk
1060 *** ALL RIGHTS RESERVED kK
1070 *** *kk
1080 Fkkkkkkkkkkhkkhhhhkhhhkkkkkrkkhhhhdrtdd
1090 *
1100 *
1110 * EQUATES
1120 *

0006- 1130 TEMP .EQ $6

0009- 1140 LZFLAG .EQ $9

0050~ 1150 LINNUM .EQ $50

FDDA- 1160 PRBYTE .EQ $FDDA

FDE3- 1170 PRHEX .EQ $FDE3
1180 *
1190 *
1200 * This section of code converts a
1210 * 2 byte unslgned binary argument in
1220 * LLINNUM and LINNUMi1 to a binary coded
1230 * decimal number packed (nto 3 ad jacent
1240 * locatfons ntarting at TEMP, tow byte



16 / Chapter 2

0800~
0802-
0804
0806-
0808
0809-
080B-
080D-
080F-
0811-
0813-
0815-
0817-
0819-
081B-
081D—
081E-
0820-

0821~
0823-
0824
0826-
0828-
082A-
082C-

082E-
082F-
0831-
0833~
0835-
0836-

0839-
083B-
083D-

A9
85
85
85
F8
AOQ
06
26
A5
65
85
AS
65
85
26
88
DO
D8

A2
CA
BS5
DO
c5
FO
DO

48
29
FO
85
68
20

EO
DO
60

03
06
09

F7
08

FO
OB
09

DA

00
E6

FD

1250 * first.

This conversion routine was

1260 * written by Steve Wozniak.

1270 *

1280 LDA #$0

1290 STA TEMP Clear result

1300 STA TEMP+1

1310 STA LZFLAG Clear leading 0 flag.
1320 SED Set decimal mode.
1330 LDY #$10 Set for 16 bits

1340 LOOP ASL LINNUM Shift bit out

1350 ROL LINNUM+1 of binary argument.
1360 LDA TEMP

1370 ADC TEMP

1380 STA TEMP

1390 LDA TEMP+1 Double decimal

1400 ADC TEMP+1 result and add carry.
1410 STA TEMP+1

1420 ROL TEMP+2 Shift last bit

1430 DEY

1440 BNE LOOP Repeat 16 times.
1450 CLD Clear decimal mode.
1460 *

1470 *

1480 * This section contains the loop that
1490 * fetches each of the 3 bytes that

1500 * contain the packed binary-coded

1510 * decimal number and checks to see if
1520 * both numbers in the byte are zero.

1530 * If they are, a further check is made
1540 * to see if this is the first byte to
1550 * be printed, in which case the whole
1560 * byte is discarded.

1570 *

1580 LDX #$3 Count 3 bytes.

1590 NEXT DEX

1600 LDA TEMP,X Get a byte.

1610 BNE CHKLDO Check for leading zero.
1620 CMP LZFLAG Yes, is it the first?
1630 BEQ NEXT Yes, discard.

1640 BNE PRINT2 No, print the byte.
1650 *

1660 *

1670 * This section checks to see if the

1680 * byte being processed contains a

1690 * leading zero.

1700 *

1710 CHKLDO PHA Save the accumulator.
1720 AND #$FO Leading zero?

1730 BEQ LEADO I1f zero, process it.
1740 STA LZFLAG Tt's not so set flag.
1750 PRINT1 PLA Restore accumulator.
1760 PRINT2 JSR PRBYTE Print byte in accumulator.
1770 *

1780 *

1790 * Here the program checks to see if

1800 * there is anymore data to output.

1810 *

1820 CHKDON CPX #$0

1830 BNE NEXT

1840 RTS

1850 *

1860 *

1870 * This routine checks to see if the

1880 * byte containing the leading zero is
1890 * the first byte to be output. [If it
1900 * is it throws away the zero and prints
1910 * a single digit. If it isn't, it

1920 * restores the byte (which has been

1930 * destroyed by the testing) and prints
1940 * it out. The leading zero flag is

1950 * also sct here so that the program

1960 * will know it doesn't have to worry
1970 4 about them any more.,

Getting Information Out Of Your Computer / 17

1980 *

083E- A5 09 1990 LEADO LDA LZFLAG First digit?

0840- DO F3 2000 BNE PRINT1 No, print it.
0842- 68 2010 PLA Yes, set flag.
0843- 85 09 2020 STA LZFLAG

2030 *

2040 *

2050 * This section takes a byte with a
2060 * leading zero and prints it out as a
2070 * single digit without the leading zero

2080 *
0845~ 20 E3 FD 2090 JSR PRHEX Print 1 digit
0848- B8 2100 CLV Relative jump
0849- 50 EE 2110 BVC CHKDON always taken.

As I mentioned earlier, while the previous program will print out decimal num-
bers to the screen, it doesn’t actually generate them as five individual bytes. In
some cases, it is desirable to generate the ASCII equivalent of each of the individ-
ual digits. To produce numbers on the Apple in normal mode, the digits should be
in the $BO to $B9 range (for 0to 9).

By using the same conversion routine we used in the previous program, we can
quickly write a new program that will generate the ASCII code for each individual
digit. The first part of this new program (lines 1290 to 1460) is identical to the
routine in lines 1280 to 1450 of the previous program. After the conversion to a
binary-coded decimal has been made, all we have to do is retrieve the individual
digits that have been packed into three bytes starting at TEMP, and OR them with
the hex value $BO to make them ASCII. This is what happens starting at line 1550
in the second program that outputs decimal numbers.

Separating the nibbles
Indexed addressing with the X-register (line 1560) is used to retrieve the BCD

data, least significant byte first. The first thing that is done is to separate the two
digits that have been combined to form a single byte, into individual bytes. In line
[570 the least significant digit of the byte is extracted by zeroing out the most
significant digit. So, if the BCD value of a byte was $13 and we ANDed it with $OF,
we'd get:

00010011 =$13

00001111=$0F

00000011=$03

This value is then ORed in line 1580 with $BO to produce the ASCII value and
the newly converted digit is temporarily stored on the stack (line 1590) until all
digits have been processed and we’re ready to print them.

The next thing to do is to retrieve the high order digit of the same byte. So, we
reload that byte into the accumulator (line 1600) and then perform the logical shift
right (LLSR) instruction four times (lincs 1610 to 1640). What this does is to move
the most significant digit of a byte into the least significant position while at the
sume time storing a zero in the most significant digit. So, for the same byte
containing the binary coded number $13, we get:



18 / Chapter 2 Getting Information Out Of Your Computer / 19

1000 **dhkrhkkrdihhhhkhkhhhkhhkhhhhkkrAhkdkrhrhhhirr

1010 *** *k%k
1020 *** OUTPUT A DECIMAL NUMBER # 2 #%%
1030 **%x*x *kk
1040 *kx COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *kk
1060 **x* ALL RIGHTS RESERVED *kk
1070 **% *kk
1080 *ikkkhkkkhhkhhhhhkhkrxhhhdhhhkdhkhhhdhtrhd
1090 *
1100 *
1110 * EQUATES
1120 *
0006- 1130 TEMP  .EQ $6
0009- 1140 LZFLAG .EQ $9
0018- 1150 YSAVE .EQ $18
0050 1160 LINNUM .EQ $50
FDED- 1170 COUT  .EQ $FDED
1180 *
1190 *
1200 * This section of code converts a
1210 * 2-byte unsigned binary argument in
1220 * LINNUM and LINNUM+1 to a binary coded
1230 * decimal number packed into 3 adjacent
1240 * locations starting at TEMP, low byte
1250 * first. This conversion routine was
1260 * written by Steve Wozniak.
1270 *
1280 *
0800~ A9 00 1290 LDA #$0
0802- 85 06 1300 STA TEMP Clear result
0804— 85 07 1310 STA TEMP+1
0806~ 85 09 1320 STA LZFLAG Clear leading O flag.
0808- F8 1330 SED Set decimal mode.
0809- A0 10 1340 LDY #$10 Set for 16 bits
080B- 06 50 1350 LOOP ASL LINNUM Shift bit out
080D- 26 51 1360 ROL LINNUM+1 of binary argument.
080F- A5 06 1370 LDA TEMP
0811- 65 06 1380 ADC TEMP
0813- 85 06 1390 STA TEMP
0815- A5 07 1400 LDA TEMP+1 Double decimal
0817- 65 07 1410 ADC TEMP+1 result and add carry.
0819- 85 07 1420 STA TEMP+1
081B- 26 08 1430 ROL TEMP+2 Shift last bit
. . 081D- 88 1440 DEY
Separating the nibbles of a byte. 081E— DO EB 1450 BNE L0OP Repeat 16 times.
0820 D8 1460 CLD Clear decimal mode.
1270 *
. . e : 1480 *
Ist shift 2nd shift 3rd shift 4th Qh(l)%o 1490 * This section of code converts the
— —> 10— 0000 | 1500 * packed binary-coded decimal number
00010011— 00001001 00000100 000000 . . 1510 * into ASCII characters (low order byte
Once this operation is completed, that value in the accumulator is ORed with };gg x £;rs§i 2Ed stores them temporarily on
Y H . € a .
$BO (line 1650) and so another ASCII digit is created and temporarily stored on the 1240 *
. - . : s oite Gineludi adi ; 0821- A2 00 155 LDX #$0
stack. This operation continues until all 6 digits (including the leading zero) in the 0823 B2 oc 1568 NEXT X #gMP,X Get byte and
; 0825- 29 OF 1570 AND #$OF mask off 4 MSB
three bytes are converted. ) 0827- 09 BO 1580 ORA #$BO make it ASCII.
After all of the ASCII numbers have been stored on the stack, they are pulled oft 0829- gg o }238 PHA e x Save on stack.
. . s L Y . A- EMP, et same te
one at a time (line 1790), a check is made to see if the number is a leading zero and 082C- 4A 1e30 Lo Get same 4yMSB
if it’s not the number is printed using the Apple’s standard output routine COUT E;gi:): 2: }g%g }2& to 4 LSBs.
($FDED). After all of the numbers have been pulled off the stack and printed, the 0B2F- 4A 1640 ISR
' . . . I to the calling program or 0830~ 09 RO 1650 ORA #$BO Make it ASCIT.
program exccutes an RTS instruction, returning contro g prog 0837 48 1660 PHA Save on stack.
0833 . 18 1670 INX
mode. 0834 EO 03 1680 HETY Done yet?

0836 DO KB 1690 BNE NEX'T No, get more.
1700 *
1710 #



20 / Chapter 2
1720 * This section of code pulls the
1730 * converted ASCII digits off the stack
1740 * and prints them. Tn doing this it
1750 * checks for leading zeroes and
1760 * discards them.
1770 *
0838- A0 06 1780 LDY #$%6 Set for 5 numbers.
083A- 68 1790 PRINT1 PLA Get a number.
083B- C9 BO 1800 CMP #$BO Is it a zero?
083D~ DO 0A 1810 BNF. PRINT2 No, print it.
083F- A6 09 1820 LDX LZFLAG Yes, is it first 07
0841- DO 06 1830 BNE PRINT2 No, print it.
0843~ 88 1840 DEY Is it the last number?
0844- DO F4 1850 BNE PRINT1 No, throw it away.
0846 4C ED FD 1860 JMP COUT Yes, print it.
0849~ 85 09 1870 PRINT2 STA LZFLAG Set leading zero flag.
084B- 20 ED FD 1880 JSR COUT Print the number.
084E-~ 88 1890 DEY Done yet?
084F- DO E9 1900 BNE PRINT1 No, get next number.
0851~ 60 2000 RTS Return to caller.

Use the ROMs to help print decimals

Now that you've seen how to convert hexadecimal numbers to decimal numbers
the hard way, let me show you a much easier way todo it, and it only takes up seven
bytes of memory. You all know that Applesoft is capable of taking a two-byte
hexadecimal number and printing out its decimal equivalent. It’s done all the time
when you list an Applesoft program, because the line numbers of a program are
stored as two hex bytes. Now, if we could find some way to use the routines that
Applesoft uses, we could save a lot of time and effort.

It turns out that the task is really quite simple. In the Applesoft ROMs, at
location $SED24, is the start of a routine called LINPRT. What this routine does, is
take the data that are stored in the accumulator and the X-register, and convert
them to decimal and print them. So, if we use the same convention that we have
used in the previous examples, and store the two bytes of the number to be con-
verted in LINNUM and LINNUM + |, all our program has to do is load the most
significant byte into the accumulator and the least significant byte into the X-
register. Then all that’s left to do is jump to the LINPRT routine.

If you look at line 1230 closely, you will see that the instruction is a JMP and not
a JSR. At this point you might well be asking yourself, what happens after the
numbers are printed out? Where does control return to? To answer the question,
control is returned to the original mode or routine that called the decimal printing
program to begin with. The reason is, that at the end of the LINPRT routine is an
RTS. If our program had a JSR instead of a JMP, LINPRT would have returned
control to our program, where we would simply have executed an RTS to return to
the caller. We can save that extra byte required by the RTS in our program, by
simply letting the RTS in the LINPRT routine return control to the caller.

While this method of printing decimal numbers is the simplest, it’s not always
the best because the minute you use the LINPRT routine you are limiting your
program to running only on machines that have Applesoft in ROM or on the
language card. Your program will not run onan Integer machine. Worse than that,

Getting Information Out Of Your Computer / 21

in machines that have both Integer BASIC and Applesoft, if you use this program

you have to make sure that the Applesoft ROMs have been turned on. So, thi;
approach to printing decimal numbers can only safely be used on Applesoft only
machines, unless your program specifically turns on the Applesoft ROM:s.

1000 **kkxkxkihk kAo kkkkhkhhkkkhkk *%

1010 *** kkk
1020 *** OUTPUT A DECIMA *kk
1030 %xx L NUMBER # 3 .
1040 *kkddkhkhdhrkrkhhkhhhhhrkhkdhdhthrttik
1050 *
1060 *
1070 * EQUATES
1080 *

0050~ 1090 LINNUM .EQ $50

ED24- 1100 LINPRT .EQ $ED24
1110 *
1120 *
1130 * This subroutine is entered with
1140 * hexadecimal number to be printedt?g
1150 * LINNUM (low byte) and LINNUM+1 (high
1160 * byte). LINPRT is an Applesoft
1170 * routine that converts the data in
1180 * the X-register and the accumulator
1190 * to decimal and prints it.

0800- A5 51 }%28 ¥

- LDA LINN
0802- A6 S50 1220 LDX LINNH$+1
0804~ 4C 24 ED 1230 JMP LINPRT

Applying a number printing routine

Now that we have learned several ways to print out a decimal number from a
h‘cxudecimal number, let’s see how we can apply what we’ve learned to a handy
little utility program. It is frequently desirable, useful or necessary to know how
many lines are contained in an Applesoft program. There are several alternatives.
You can print out a listing of the program and count the lines manually, you can
renumber the program starting with one, in increments of one, or you can run this
short APPLESOFT LINE COUNTER program. The easiest by far is the last.

‘To understand }.10w. this program works, you should first know how Applesoft
Mtores a program line in memory. Let’s take a simple line such as the following:

10 PRINT 123

I.I' we were to look directly into memory, we'd see that this line is stored in the
following way:

Address | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809
Contents | 0A | 08 [OA [00 [ BA |31 132 |33 |00

lnu!(ing at locations $801 and $802 we sce two numbers $0A and $08 which
comprise the hex number $80A. In 6502 microprocessor systems, numbers are



22 / Chapter 2

always stored in memory with the low-order byte first, followed by the high-order
byte, hence $080A or $80A. This number, represents the location in memory of
the start of the next line in the Applesoft program. So if we were to add another line
to our program, it would start at $80A. Thus, the first two bytes of any Applesoft
program are called the “‘next line pointer”.

The next two bytes at $803 and $804 hold the hexadecimal equivalent of the line
number. Since our line number is less than 255, only the low-order byte is used (it’s
set to $0A which equals 10 in decimal). The high order byte is set to zero. Next, on
the fifth byte ($805) we have the start of our program. You will notice that $805
contains the value $BA, which is a code that represents the word PRINT. In order
to conserve memory space, the programmers who wrote Applesoft decided to take
all the Applesoft keywords and assign each of them a one-byte code. Thus, every
time a word such as PRINT is used, it’s only necessary to store the one-byte code
instead of the five letters that make up the word PRINT. By the way, these special
codes are called ‘tokens’. For a complete list of tokens and their decimal and
hexadecimal equivalents, see Appendix B. ‘

Following the PRINT token we have the value $31 stored in $806. If we check
our chart of ASCII equivalents (Appendix A) we see that $31 is the hexadecimal
equivalent of the number 1. Similarly $32 and $33 that are in locations $807 and
$808, represent the numbers 2 and 3. Finally we see that location $809 contains a
zero. This zero is what is called an end of line marker. It tells the Applesoft
interpreter that there is no more information on the current line and that it should
get ready for the next line.

Now we have almost all of the information we need to understand this next
program. We just need one more piece of data, “‘How does the Applesoft inter-
preter know when it has reached the end of the program?”” The answer is simple. It
follows the end of line indicator of the last line in the program with two more zeros.
So, in our example above, if line 10 were the only line in our program, locations
$80A and $80B would contain zeros instead of a pointer to the next program line.

Counting Applesoft program lines

The line counting program starts out by clearing the screen, printing out the
program title and copyright notice and prints out the first half of the message that
tells the user how many lines are in the Applesoft program. This program then goes
on to count the number of lines. It starts by storing zeros in the two locations that
are going to hold the line count (lines 1380 to 1400).

A pointer to the start of an Applesoft program is stored in locations $67 and $68.
Generally it is set to $801, but it can change, so we pick it up instead of assuming it
is $801. This is done in lines 1410 and 1420 and this information is stored in
POINTER and POINTER + 1 (lines 1430 and 1440).

The next part of the program consists of a loop that examines the next line

pointers of each Applesoft line and looks for a next line pointer that is equal to
zero. This is an indication that the end of the program has been reached. In line

Getting Information Out Of Your Computer / 23

1450, the Y-register is set to zero and in line 1460 the contents of the location
pointed to by POINTER plus any offset produced by the Y-register, is loaded into
the accumulator. Since POINTER contains the address of where the next Apple-
soft line is stored in memory, the data that is loaded into the accumulator is the
value of the next ‘next line pointer’. This information is temporarily stored in
location TEMP and TEMP + 1 (the program goes through this loop twice for each
new line and increments the offset of the Y-register to 1, hence TEMP + 1),

After the value of the next line pointer has been retrieved and stored in TEMP
and TEMP + 1, the value that has been stored in TEMP + 1, which is still in the
accumulator, is stored in POINTER + 1 (line 1510) and then temporarily saved in
the X-register (line 1520). Next, the low-order byte of the next line pointer (now in
TEMP) is transferred to POINTER, completing the updating of POINTER for the
next Applesoft line.

Earlier we said that at the end of an Applesoft program, the next line pointer of
the last line points to the two zeros that follow the end of line marker of the last line.
So, if we test for the presence of the third zero, and it’s there, we know that we have
reached the end of the program. That’s exactly what we do in line 1550. We
transferred the high-order byte of the next line pointer to the X-register a few
moments carlier. If this is a zero, it would be the third zero and the program would
poto lines 1570 and 1580, where the accumulator and the X-register are set up for a
JSR to the LINPRT routine, which will print out the number of lines counted (line
1590) and the remainder of the text message (lines 1600 to 1620). Finally, the
program exceutes an RTS which returns control to the caller.



24 / Chapter 2 Getting Information Out Of Your Computer / 25

If it turns out that the end of the program has not been reached, the program 0333~ 20 47 03 1620 JSR MSGPRT Print it.
branches to line 1700 where both bytes of the line count are retrieved and 1 is added 0336- 60 igzg * RTS Return.
to the count with any carry that’s generated being added to the high-order byte. }228 x Thi N
; . is subroutine incremen
After that, the program jumps back to line 1450 to get the address of the next 1670 * count and then goes bagktiotgﬁe}:;n?or
progranlllne. }ggg : another line.
0337- 18 1700 ADDCNT CLC Clear carry bit
0338- A5 06 1710 LDA LINECNT Get currenz count low byte.
033A- 69 01 1720 ADC #$1 Add 1 to it.
1000 Fxkdkdskiokdokkrhhhddhhihkhrirkkhhkihikk 033C- 85 06 1730 STA LINECNT Save it.
1010 *** ExK 033E— A5 07 1740 LDA LINECNT+1 i
1020 ***  APPLESOFT LINE COUNTER kK 0340- 69 00 1750 ADC #$0 Add 81%2 Zgéeczfrcount'
1030 *%* *kk 0342- 85 07 1760 STA LINECNT+1  Save it. v
1040 *** COPYRIGHT (C) 1982 BY *kk - 4C 10 03 1770 JMP GETADD 5 i
1050 *** JULES H. GILDER *kk 1780 * R Get address of next line.
1060 *** ALL RIGHTS RESERVED *hk 1790 *
1070 *** ok 1800 * This is the message printing routine.
1050w mpmemmm——— 0347- 85 18 1820 m
1090 * - 1820 MSGPRT STA TXTPTR Set TXTPTR to addres
1100 * 0349- 84 19 1830 STY TXTPTR+1 text to be printed. s of
1110 * 034B- A0 00 1840 LDY #$0 Zero character counter.
1120 * 034D- B1 18 1850 LOOP2 LDA (TXTPTR),Y Get character.
1130 * EQUATES 034F- FO 06 1860 BEQ ENDPRT End if it's zero.
1140 * 0351- 20 ED FD 1870 JSR COUT Print character.
0006- 1150 LINECNT .EQ $6 0354- C8 1880 INY Increment character counter
0008~ 1160 POINTER .EQ $8 0355- DO Fé 1890 BNE L0OOP2 Get next character. '
0018 1170 TXTPTR .EQ $18 0357- 60 1900 ENDPRT RTS Return to sender.
0067- 1180 TXTTAB .EQ $67 1910 *
02F6- 1190 TEMP  .EQ $2F6 1920 *
ED24- 1200 LINPRT .EQ $ED24 1930 *
FC58- 1210 HOME .EQ $FC58 0358- C1 DO DO
FDED- 1220 COUT .EQ $FDED 035B- CC C5 D3
FF58- 1230 RETURN .EQ $FF58 035E~ CF C6 D4
1240 * 0361- A0 CC C9
1250 * 0364- CE C5 AO
1260 .OR $2F8 0367- C3 CF DS
1270 * 036A— CE D4 C5
1280 * 036D- D2 1940 TEXT1 .AS -"APPLESOFT LINE COUNTER" |
1290 * This is the main program where the 036E- 8D 8D 1950 .HS 8D8D |
1300 * program title is printed out and 0370- C2 D9 A0 ‘
1310 * the lines of the Applesoft program 0373~ CA D5 CC
1320 * are counted. 0376~ C5 D3 A0
1330 * 0379- C8 AE A0
02F8- 20 58 FC 1340 JSR HOME Clear screen. 037C- C7 €9 CC
02FB- A9 58 1350 LDA #TEXT1 Point to text 037F- C4 C5 D2 1960 .AS -"BY JULES H. GILDER"
02FD- A0 03 1360 LDY /TEXT1 to be printed. 0382~ 8D 1970 .HS 8D
02FF- 20 47 03 1370 JSR MSGPRT Print it. 0383~ C3 CF DO
0302- A9 00 1380 LDA #$0 Initialize 0386~ D9 D2 C9
0304- 85 06 1390 STA LINECNT counter to 0389- C7 €8 D4
0306- 85 07 1400 STA LINECNT+1 zero. 038C- A0 A8 C3
0308- A5 67 1410 LDA TXTTAB Store program 038F- A9 A0 B1
030A- A4 68 1420 LDY TXTTAB+1 starting 0392- B9 B8 B2 1980 .AS —"COPYRIGHT (C) 1982"
030C- 85 08 1430 STA POINTER address in . 0395- 8D 1990 .HS 8D
030E- 84 09 1440 STY POINTER+1 POINTER. 0396- C1 CC CC
0310- A0 00 1450 GETADDR LDY #$0 Get address of 0399~ A0 D2 C9
0312- B1 08 1460 LOOP1 LDA (POINTER),Y next line & 039C- C7 C8 D4
0314~ 99 F6 02 1470 STA TEMP,Y save it. 039F- D3 AO D2
0317- C8 1480 INY 03A2- C5 D3 C5
0318- CO 01 1490 CPY #$1 Got high byte? 03A5- D2 D6 C5
031A- FO Fé6 1500 BEQ LOOP1 No, go get it. 03A8- C4 2000 .AS -"ALL RIGHTS RESERVED" !
031C- 85 09 1510 STA POINTER+1 Save high byte. 03A9- 8D 8D 8D
031E- AA 1520 TAX Prepare for zero test. O3AC- 8D 2010 -HS 8D8D8DSD
031F- AD F6 02 1530 LDA TEMP Get next line O3AD- D4 CB C5
0322- 85 08 1540 STA POINTER low byte & save it. 03IB0- A0 DO D2
0324- EO 00 1550 CPX #$0 Last line? O3B3 - CF C7 D2
0326- DO OF 1560 BNE ADDCNT No, increment count. 0386 C1 CD A0
0328- A5 07 1570 LLDA LINECNT+1 Yes, get ready 0IB9. €8 C1 DY
032A- A6 06 1580 LDX LINECNT to print count 0IBC AD 2020 LAS THE PROGRAM HAS
032¢C- 20 24 ¥D 1590 JSR LINPRT Print fit. 0381 00 2010 A8 00

032F A9 BE 1600 LOA HTEXT2 Point to text 81 A0 CC €O
0331 AQ 03 1610 DY /TEXT? to be printed, O1C1 CF G DY



26 / Chapter 2

03C4- A0 C9 CE
03C7- A0 C9 D&

03CA- AE 2040 TEXT2 .AS -" LINES IN IT."
03CB- 8D 00 2050 .HS 8D00
Using the Applesoft line counter

The program has been assembled starting at location $2F8 so that it can be
loaded into an area of memory that is not affected by Applesoft. The program can
be loaded before or after an Applesoft program has been loaded into memory. To
run the program it is simply necessary to type CALL 760.

Once loaded, the program will remain in memory available for use whenever
you need it. There is one exception to this. Since the program starts at $2F8, it uses
the last 8 bytes of the input buffer. This was done because assembling the program
at $300, which is what is normally done, would cause the program to wipe out
some memory locations that are used by DOS.

Very rarely is the entire input buffer filled, so this doesn’t usually pose a prob-
lem. On top of that, Applesoft limits line lengths to 239 characters, much less than
the 256 character capacity of the buffer. Nevertheless, if for some reason the input
buffer is filled up completely (256 characters are entered before a carriage return is
pressed), part of the program will be wiped out and it will have to be reloaded.
After considerable use however, this problem has never occurred.

Drawing boxes and borders on the screen

Now that we’ve learned how to print out text and numerical data to the screen,
let’s see how we can come up with a way of making our screen look a little more
attractive. One way of doing this is to use a border around the whole screen, or a
box around just a portion of it.

Most programmers don’t take the time to develop a border printing routine and
thus when they need to draw one, usually wind up doing it in a very inefficient
manner. The routine presented here is a simple one, and not very long. Neverthe-
less, it is quite a versatile routine, and by changing only four parameters you can
completely change the size and shape of the box, as well as the symbol used to
draw it.

The program starts out by clearing the screen in line 1250. If you want to enclose
some text within the box, the routine to do it can be inserted here, or you can
position the cursor to the spot you’ll want to start printing at after the box is drawn.
Next, the current position of the cursor is saved (lines 1260 to 1290) so that the
cursor can be restored to its position after the border has been drawn. The routine
that draws the border starts at line 1360 where the cursor is positioned to the top
left-hand corner of the screen (lines 1360 to 1390). Next, the program jumps to line
1580 where it prints out a full line of symbols (the first line of the box).

To find out how many blank lines there will be inside the box, the program goes

Getting Information Out Of Your Computer / 27

to the location labeled BOXLEN and stores the number found there in the X-
register. The blank lines with left and right borders on them are printed next. Lines
1430 to 1450 print the left-hand border of the blank line, while lines 1460 to 1490
print the right-hand border. Line 1490 checks to see if all the blank lines have been
printed and if so, line 1500 finishes printing out the right-hand border of the last
blank line. Then the program falls into the LINSYM routine which prints out the
bottom line of the box. After this last line is printed, the program returns to line
1310, where the program then jumps to a routine that restores the cursor’s original
position. This cursor restoring routine starts at line 1690. The program ends on line
1740 where a return from this whole program is executed.

Constants that are used by the program are stored starting at line 1800 where the
the number of blank lines within the box are stored. In line 1810 the location where
symbols on the left side of a blank line stop is stored, while the start of symbols on
the right side of a line are stored in line 1820. Finally, the symbol used to draw the
box is stored in line 1830. Try running this program and varying the constants.
You'll be pleased and surprised at the results.

1000 ***dkkhkkhkkkhhhhkhkhhhkhkkhkhrhrhkhrrihkhdhtk

1010 * %k *kk
1020 **x TITLE BOX ko
1030 * kK *kk
10&0 B R e e L L S v
1050 *
1060 *
1070 *
1080 *
1090 * EQUATES
1100 *

0018- 1110 cv2 .EQ $18

0019- 1120 CH2 .EQ $19

0024 1130 CH (EQ $24

0025- 1140 cv .EQ $25

FC22- 1150 BASCAL .EQ $FC22

FC58- 1160 HOME  .EQ $FCS58

FDED- 1170 COUT  .EQ $FDED
1180 *
1190 *
1200 *

1210 * Clear the screen, and save the
1220 * current location of the cursor for
1230 * later.

0800- 2 brrod
- 20 58 FC 1250 JSR HOME Clear the screen
0803- A5 25 1260 LDA CV Save the current
0805- A4 24 1270 LDY CH cursor position.
0807~ 85 18 1280 STA CV2
0809- 84 19 1290 STY CH2
080B- 20 11 08 1300 JSR BOX Draw the box
080E- 4C 40 08 %g%g N JMP POSCUR Restore old cursor position.
1330 *
1340 * Print a box on the screen.
1350 *
081]7 A9 00 1360 BOX LDA #$0 Place cursor
0813~ 85 25 1370 STA CV at the start
0815 85 24 1380 STA CH of the first
8:}7 38 22 FC 1390 JSR BASCAL line.

A 35 08 1400 JSR LINSYM Print a line of bol
OH}D AH 4C 08 1410 L.DX BOXLEN Set box depth0 Symbote:
UH?Q 20 KD FD 1420 NEXT JSR cour Print left
”H!l A 24 1430 LY CH side of box.

OR2h  CC 4D 08 1440 C1Y LIIMRG Pone?



28 / Chapter 2

0828-
082A-
082D
082F-
0830~
0832-

0835~
0838~
083B-
083D-
083F-

0840-
0842-
0844
0846-
0848-
084B-

084C-
084D
084E—
084F-

AS
Al
85
84
20
60

15
01
27
AA

F6
4F 08
24

EE
35 08

4F 08
ED FD

F9

19
18
24

22 FC

1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

BNE NEXT No, do more.
LDY RTMRG Print right
STY CH side of box.
DEX End of box?
BNE NEXT No, do more.
JSR LINSYM Yes, finish.

*
*
* This subroutine prints out a line of
* symbols. It checks CH to see if
* it has past the 40th column and
* wrapped around to column O.

*

LINSYM LDA SYMBOL
PRTSYM JSR COUT

Get the symbol to be used.
Print it.

LDY CH Get horizontal position.
BNE PRTSYM If not zero, print again.
RTS Return to caller.

*

*

* This subroutine restores the cursor

* to its original position before the

* box was drawn.

*

POSCUR LDA CH2 Get original cursor

LDY CV2 position.

STA CH Save in proper locations.
STY CV

JSR BASCAL Send cursor there.

RTS Return to caller.

*

*

* These are constants that are used by
* the program.

*

Number of lines in box.
End of symbols on left side.

BOXLEN .HS 15
LFTMRG .HS 01
RTMRG .HS 27

SYMBOL .HS AA Character used to draw border.

Start of symbols on right side.

Chapter 3

GETTING INFORMATION INTO
YOUR COMPUTER

You can write a lot of useful assembly language programs that only use the
computer’s output capabilities, but sooner or later, you're going to want to be able
to input data while your program is running. Getting information into your Apple
is not difficult at all as you can tell by looking at the fairly short program listing for
the Simple Read Keyboard Routine.

One of the things that makes it easy to input data is the configuration of hardware
i the Apple computer. Apple’s designer’s arranged things so that the keyboard
looked like a particular memory location. So, by looking at the right place in
memory, we can see if a key has been pressed and determine exactly which key it
Was.

As it turns out, if you look at location $C000 you can see if a key has been
pressed. As long as no key is pressed, any value that is retrieved from location
$C000 will be less than 128. When a key is pressed., $80 is added to the ASCII value

’;’;'%

[] ' 27070748,
i




30/ Chapter 3

of the key pressed and that value remains in location $C000 until a command to
clear that location is given or another key is pressed. . o

In our program, the memory location associated with the keyboard is .read in line
1180 and in line 1190 a test is made to see if a key was press.ed by chec.kmg blt 7 of
the byte retrieved from $C000. Ifbit 7 is zero, the keyboard isread again until it h;lS
changed to 1. Once we’ve loaded the accumulator with th.e character 1f1put from the
keyboard, we should clear this memory location, otherw1se .the next tlmfz vye checfk
to see if a key has been pressed, we’ll get an indication that it has, even if it hasn t,
and get the last character that was entered. In order to clea.r this memory locgflopi
it is only necessary to zero out bit seven of the data stored in $C000, since this wil
make any value stored there less than 128. N .

The Apple hardware has been arranged in a special way s0 that it is posmb]e? to
turn off bit 7 by simply accessing another memory 1008.119[]1 $Cpl(?. If this locgtlon
is accessed in any way with an LDA, STA or BIT instruction, b?t 7 in $C000 will be
converted from a 1 to a 0. Location $COI0 is called by a'spe01al name, K?yboard
Strobe, and in our program, it is activated in line 1200 yv1th a BIT instruction. We
could just as easily have used an LDA instructiqn to achlevc? the same results. Some
programmers use an STA instruction to clear bit 7, and Whlle this will work, it can
be a problem on those Apples that have been modified to include a keyboard .buff.e’r:
The reason for this is that the STA instruction actually refercnpes the .locatlon .1t s
storing data to twice. So, with a keyboard buffer and an §TA .mstrucnor? clearing
the keyboard strobe twice for every character read,.you 11 \fvmd up losing every
other character. For best results use the LDA or BIT instructions.

After we clear bit 7 of $C000, our program prints out the character to the screen
so we can see what letter we pressed (line 1210) and it then jumps back to get

another character.

1000 **********************************:::
*kK

}858 #%k SIMPLE READ KEYBOARD ROUTINE

10 30 o X RRERKRKEK

1040 kkKhkhkhkkkhkAAAAARK * *kkkikk

1050 *

1060 *

1070 *

1080 *
*
*

1090

1100 *

1110
Cc000- 1120 KEYBRD .EQ $C000
C010- 1130 KBDSTRB .EQ $C010
FDED- 1140 CoUT .EQ $FDED

1150 *

1160 *

00 CO }i;g zETKEY LDA KEYBRD Read keyboard .

8382: ?g FB 1190 BPL GETKEY If no key pressed, readbagaln.
0805- 2C 10 €O 1200 BIT KBDSTRB Key pressed, clear ssrone.
0808- 20 ED FD 1210 JSR COUT Echo character to screen.
080B- 4C 00 08 1220 JMP GETKEY Get next character.

EQUATES

This program works fine for very short keyboard entries, but becomes inconven-
icnt to use for long entries. To begin with, this program doesn’t print any prompt

Getting Information Into Your Computer / 31

character, so you don’t know where the text entry on the screen is required. In

addition, the program doesn’t allow for any way of terminating text input except by
pressing RESET.

A better way to read the keyboard

The problems encountered with the previous program can be eliminated by
taking advantage of one of the monitor ROM routines and making a small change
in the program. Instead of having our program look at the keyboard directly, we
can use the RDKEY routine (line 1170) in the ROM, at location $FDOC, to do that
job for us. This routine puts a flashing cursor on the screen at the location where an

input is expected, reads the keyboard location ($C000) and clears the strobe
($C010).

To allow us to terminate the input of data we can designate a special character as
the terminator and test for its presence. In this case, the ESCape character ($9B) is
used. Line 1180 checks to see if an ESCape has been entered. If it has, the program

returns to the calling mode or program, if not, the character is printed out and a
new character is fetched.

1000 *************************************
1010 ***% *kk
1020 *** IMPROVED *kk
1030 **x* READ KEYBOARD ROUTINE Kk
1040 *** *hk
1050 *kkkkkionk HH KX F A TR IK I KRR *okkhdk
1060 *
1070 *
1080 *

*

*

*

1090
1100
1110
FDOC- 1120 RDKEY .EQ $FDOC
FDED- 1130 CouT .EQ $FDED
1140 *
1150 *
1160 *
0800- 20 OC FD 1170 GETKEY JSR RDKEY

EQUATES

Read the keyboard.

0803- €9 9B 1180 CMP #$9B Was key pressed ESC?
0805- FO 06 1190 BEQ QUIT Yes, quit program.
0807- 20 ED FD 1200 JSR couT No, print key pressed.
080A- 4C 00 08 1210 JMP GETKEY Get the next key.
080D- 60 1220 QUIT RTS Return to caller.

Both of the previous routines input text one character at a time and neither allows
you to make corrections on inputted data. The reason you can’t make corrections is
that the text being entered is not stored in any buffer before it is processed. If it
were, then if an error were caught it could be corrected while it was still in the
buffer and before it was processed.

Entering text a line at a time

By taking advantage of another routine in the monitor ROM (GETLN which is
located at $FD6A) we can input text into the input buffer on page 2 of memory




32 / Chapter 3

($200 to $2FF) and use all of the Apple’s normal editing capabilities. As long as
you don’t press the RETURN key, it is possible to backspace and change any
character and then copy over the rest of the line.

This type of program comes in particularly handy when you want the user to
enter some text that is going to be printed out again later under program control.
The reason is, it stores the entered text in memory the same way text that is used
with the MSGPRT routine is stored. That is, it’s stored with the high bit set and is
terminated by a zero. One place where you’ll find this routine a must is when you
ask the user for the name of a file to be loaded or saved to. After the user inputs that
name, it must be stored for later use.

The GETLN routine at $SFD6A prints out the prompt that is currently stored in
$33 before it waits for the user’s input. More often than not, you’ll want to ask for
the user’s input without using this prompt, as is the case here. To do this, another
entry point into this routine, which I call GETLN1 and is located at $FD6F, is used
(line 1180). Upon returning from GETLN]1, the corrected text that the user entered
is stored in the input buffer. It must be moved from there immediately (lines 1200 to
1240) because it could get wiped out by the next data that are entered. The end of
the data in the input buffer is indicated by a carriage return ($8D). Since we want
our text to be terminated by a zero and not a carriage return, the carriage return is
replaced by a zero and stored at the end of the text in the user designated buffer
(lines 1250 to 1260).

1000 **kkkhkkrkrkrrirkkrhkhrrrhhrdrkrxkrrrrrs

1010 *** *kk

1020 *** TEXT INPUT ROUTINE *okk

1030 *** *kk

1 040 *kkhkkhhkhkhkhhkrkhhkihkhhhhhkhkhkhhhhhthkhhk

1050 *

1060 *

1070 *

1080 *

1090 * EQUATES

1100 *
0200- 1110 IN .EQ $200
0300~ 1120 BUFFER .EQ $300
FD6F - 1130 GETLN1 .EQ $FD6F
FDED- 1140 COUT  .EQ $FDED

1150 *

1160 *

1170 *
0800- 20 6F FD 1180 JSR GETLN1 Get a line of text, no prompt.
0803~ A0 FF 1190 LDY #$FF Initialize character
0805~ C8 1200 LOOP INY counter to zero.
0806- B9 00 02 1210 LDA IN,Y Get a character
0809- 99 00 03 1220 STA BUFFER,Y and store it in buffer.
080C- C9 8D 1230 CMP #$8D Is it a carriage return?
080E- DO F5 1240 BNE LOOP No, get next character.
0810- A9 00 1250 LDA #3$0 Yes, make it a zero
0812- 99 00 03 1260 STA BUFFER,Y to indicate end of text.
0815- 60 1270 RTS Return to caller.

Entering as much text as you want

You will find the TEXT INPUT ROUTINE a useful program to us¢ when it is
necessary to enter a line of text. It does have the Limitation, however, that you

Getting Information Into Your Computer / 33

cannot enter more than 256 characters with it. The reason is that the Y-register is
uscd as the pointer from a base address to where the next character is to be stored.

If you want to be able to store unlimited amounts of text into memory (up to the
capacity of your computer that is) then the IMPROVED TEXT INPUT ROUTINE
is just what the doctor ordered. This program uses a 2 byte pointer on page zero
called BUFPTR to indicate the location of the next character to be stored.

The IMPROVED TEXT INPUT ROUTINE is fairly similar the previous pro-
pram, with a few exceptions. It takes text out of the input buffer every time the
carriage return is pressed and stores everything, including the carriage return, in
the user defined buffer. Then the program goes back and gets another line of text.
‘This continues until the program encounters a Control-Q (line 1520), at which
point it replaces the Control-Q with a zero and exits to the last active BASIC.

Because this program uses the input buffer to enter text, a maximum of 255
characters can be entered before a carriage return must be pressed. Chances of
having a single line that is greater than 255 characters are small, so this should not
pose any problem. If you will want to print this text out again, it will be necessary
(o use one of the long message printing routines that were discussed in the last
chapter. And in fact, if you combine this program, with one of those, you have two
major parts of a rudimentary text editor. By doing a little additional work to
develop an in-memory byte editor, it’s possible to write a simple text editor.

You should notice that this program uses the IMPROVED MESSAGE
PRINTER that was discussed in the last chapter. Since this routine is only being
used to print out a few short messages, its limitation to 256 characters is not a
problem. Wherever possible throughout this book, you will find that previously
developed programs are used as subroutines.

1000 **dkkkkhkk Kkddekhkk kK kkhkkhkrhkhhhkk
1010 *** *kk
1020 *** [MPROVED TEXT INPUT ROUTINE ***
1030 **% *xk
1040 **%x COPYRIGHT (C) 1982 BY *hk
1050 *** JULES H. GILDER Fkk
1060 *** ALL RIGHTS RESERVED *k%
1070 *** Kk

1080 *AkAkhkrkrhbhdhhdhhshkrrrrkrdrs *kk

EQUATES

o
—
-
]

% ok % Sk ok F

0006 - 1150 BUFPTR .EQ $6
0008 1160 TXTPTR .EQ $8
0200 - 1170 IN .EQ $200
0300~ 1180 WARMDOS .EQ $3DO
9000 1190 BUFFER .EQ $9000
1000 - 1200 BASIC  .EQ $E000

ICHE 1210 HOME .EQ $FC58

FDOC 1220 RPKEY  .EQ $FDOC

FDo 1230 GETIN1 LEQ $FD6F

FhED 1240 CcouT KQO$FDED
1250 *
1760 *
1270 4 Print out the title and copyright
1280 A not e and wait tor the user Lo press
1790 A any key,



34 / Chapter 3

0800-
0803-
0805-
0807-
080A-

080D~
0810-
0812-
0814
0816-
0818-
081B-
081D-
081F-
0822-
0824~
0826-
0828-
0829-
082B-
082D~
082F-
0831--
0833-
0836
0838~
083A-
083D-
083F-
0841-
0844

0847~
0849-
084B-
084D-
084F-
0851-
0854
0855-
0857-

0858~
085B-
085E-
0861~
0864
0867-
086A-
086D-
0870-
0873-
0875-
0878-
087B-
087E-
0881-
0884
0887-
0888~
088B-
088E-
0891-
0894 -

20
A9
AQ
20
20

58
58
08
47
oc

FC

08
FD

FC

FD

02

08

03

03
EO

FD

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810

1820
1830

1840
1850

JSR
LDA
LDY
JSR
JSR

Clear the
text from
a time.

% % b ok oF %

JSR
LDA
LDY
STA
STY
START  JSR
L.DY
LDX
LOOP1  LDA
STA
CMP
BEQ
INX
INC
BNE
INC
NEXT CMP
BNE
JIMP
ENDIT  LDA
STA
LDA
CMP
BNE
JMP
NODOS  JMP
*

*

* This is t

*

MSGPRT  STA
STY
LDY

LOOP2  LDA
BEQ
JSR
INY
BNE

ENDPRT RTS

*

TEXT .AS
.HS

.AS
-HS

HOME Clear screen.
#TEXT Get text to be
/TEXT printed.
MSGPRT Print it.
RDKEY Get key press.

screen and start getting
the keyboard, one line at
Store text in buffer area.

HOME
#BUFFER Get location
/BUFFER of text buffer
BUFPTR and store in
BUFPTR +1 buffer pointer
GETLN1 Input a line.
#3$0
#$0
IN,X Get input and
(BUFPTR),Y save in buffer.
#$91 End of input?
ENDIT Yes, finish up
No, increment
BUFPTR indices and
NEXT get more data.
BUFPTR+1
#$8D Carriage return?
LOOP1 No, get a character.
START Yes, new line.
#$0 Done, store a
(BUFPTR),Y =zero as the last byte.
WARMDOS Check if DOS is
#$4C present.
NODOS It's not, return via BASIC.
WARMDOS It is, return through DOS.
BASIC+3 Jump to BASIC warm start.

he message printing routine.

TXTPTR
TXTPTR+1
#30
(TXTPTR) ,Y
ENDPRT
COUT

LOOP2

-"IMPROVED TEXT INPUT ROUTINE'"

8D8D

-"BY JULES H. GILDER"
8D

Getting Information Into Your Computer / 35

0897~ B9 B8 B2 1860 .AS -"COPYRIGHT (C) 1982"
089A- 8D 1870 .HS 8D

089B- C1 CC CC

089E- A0 D2 C9

08A1- C7 C8 D4

08A4— D3 A0 D2

08A7- C5 D3 C5

08AA- D2 D6 C5

08AD- C4 1880 .AS -"ALL RIGHTS RESERVED"
O08AE- 8D 8D 8D
08B1- 8D 1890 -HS 8D8D8D8D

08B2- DO D2 C5
08B5- D3 D3 A0
08B8- C1 CE D9
08BB- A0 CB C5
O08BE- D9 A0 D4
08Ci- CF AO C3
08C4- CF CE D4
08C7- C9 CE D5

08CA- C5 1900 .AS -"PRESS ANY KEY TO CONTINUE"
08CB- 00 1910 .HS 00
Entering decimal numbers

In the last chapter we saw how it was possible to take hexadecimal numbers and
convert them so that they printed out as decimal numbers. Now we’re going to do
the reverse. We're going to enter decimal numbers (whole integers only) and
convert them into hexadecimal numbers that can be used by our program. It is not
necessary to use this approach if all you're going to do is enter a single digit, such
as a number for a menu selection, because it’s easier to check for the number as an
ASCII character. But for entering numbers that are going to be used in calcula-
tions, you’ll need this program.

The program starts our by getting a line of text from the user (line 1330). This
line should contain only the decimal digits of the number we want to convert and
the number should not contain more than five digits, which is the maximum
number of digits that can be represented by two bytes.

The program has some simple error checking built into it. The first thing it does
is check to see if a number was entered or the RETURN key was just pressed. If the
return key was pressed, the length of the text entered, which is stored in the X-
register in the GETLN1 routine, is zero. Since the input of this routine must be at
lcast 1 digit, this generates an error (lines 1340 and 1350). Next is the check for a
number that has more than 5 digits and its appropriate error message (lines 1360
and 1370). By the way, the error routine, which begins at line 1970, uses one of the
routines in the Apple ROM. This routine, PRERR which is at $FF2D, rings the
hell and prints out the message ERR. After an error is detected and the user is
informed, he is given an opportunity to start over again (line 1990).

Getting back to our main program, the length of the digit entered is stored in a
location called LENGTH (line 1380), for use later on when we want to see if we’'ve
processed all digits of the number. Next the two locations that will be used to hold
the converted number — LINNUM and LINNUM + | — are initialized to zero and
one last cheek is made to make sure that only numbers and no letters or symbols



36 / Chapter 3 ' '
Getting Information Into Your Computer / 37

1000 ***kkkkhhkhkhkkrhhhkhrrkhhhhhhrhrrhkrhkrrhhrtdt

1010 *** *okk
%8§8 k%% INPUT INTEGER ROUTINE NO. 1 #x
*kk
1040 **x COPYRIGHT (C) 1982 BY *kk
1050 sk JULES H. GILDER Kk
iggg Kk ALL RIGHTS RESERVED Fkk
1080 **kkkkkhkkkhhkhkhkrhhkhkhik *kkkhkhkk *::
1090 *
1100 *
1110 *
}g(o) * EQUATES
0006 1140 LENGTH .EQ $6
8288- }150 LINNUM .EQ $50
)200- 160 IN .EQ $200
FD6F- 1170 GETLN1 .EQ $FD6F
FDBE- 1180 CROUT .EQ $FDSE
FF2D- };38 PRERR  .EQ $FF2D
1210 *
1220 * This section of code h
1230 * of the number fro: iheaggigza$SCEZd
i%gg : then ;ﬁecks each digit to see that it
- 1260 % the 4 most sigaiticent bots (Mspol
1270 * are set to zero to jus digi
. get just the digit
1280 * by itself. It also checks to see %%
1290 * more than 5 digits have been entered
1300 * If an error is detected an error )
| . . . 1310 * message is generated.
were entered (lines 1420 to 1470). An error message 1s generated if anything other u 0800- 20 6F FD g%g ;TART JSR GETLN1
than numerals were entered. 3:8%‘ Eg 28 1350 A ﬁﬁ; ang;ﬂ;er
. . . . - 1350 BEQ ERROR -
Data that are cntered via the GETLNI1 routine consist of the ASCII code for the 0809 gg 22 1370 BCS FAR I;Z,)(;Od?;?gv
character to which $80 has been added. This means that the digits O through 9 will 080B- 86 06 3;8 STX LENGT Save number o
. ‘ : \ 080D A9 0o STX LENGTH Save number of digits.
appear as $B0 through $B9. If somechow we were able to make the left nibble of the 080F- 85 50 1233 I§DA i ex umber
: ' : ‘ ibble - TA LINNUM
byte equal to zero, we'd have the decimal equivalent of all of the digits in the oplss B0 ob 1410 STA TN sevor
’ leci . of m - A0 00 ’
number. That’s exactly what we do in line 1480. This conversion is done within a (815~ B9 00 02 }2%8 LooP II:gX ‘I#rﬁOY G h
. .. . . . . > et a c ter.
loop that retrieves one digit at a time and stores it tem orarily on the stack (line o818- €9 BO 1540 CMP #1880 Test to se it
y 081A- 90 34 1450 BCC ERROR it i Stoie
1490). Next, the current contents of LINNUM and LINNUM + | are multiplied by ORIC- C9 BA 1460 CMP #$BA from 0"co 5.
. rent cor M _ 81E- BO 30 ’
ten by a routine starting 1n line 1550 so the digits can be added to cach other to build 0820- 29 OF 1257;8 Kgg ﬁgggR M
2( k out
a1 1042 = 12 0822- 48 iggg . PHA Save gl{‘gié MSBs.
The multiplication by ten is accomplished by multiplying by two (lines 1550 and 1250 *
' , o (lir : 220 * Thi ) .
1560), saving the the results (lines 1580 to 1600) and then multiplying again by 1530 * ¥2i§i§e§f,;,‘;2r°£t§2$§ ?ﬁlﬁgl{‘éﬁsbs 10
four. to get a total multiplication of 8 (lines 1610 to 1640). Then the 8 and 2 0823~ 06 50 iggg :‘IULT ASL LINN .
| ( ‘ ‘ . UM Multi
multiples are added together to get the final multiple of 10 (lines 1650 to 1700). a2~ a6 31 1360 Ror Lin
Finally, the digit that was stored on the stack is retricved and added to the contents 0829 48 };;8 1532 LI Sa\{i'nlljmbceir
‘ ' ‘ dd 29- multiplied b
of LINNUM (lines 1710 to 1730). If a carry 1s generated, it is added to LIN- 82;{\ 23 o %238 ]53: I Ffor Lattor.
NUM + 1 (lines 1740 to 1760). This whole process is carried out until all of the OHID- 06 50 1610 ASL LINNUM Multiply by 4
u OB?F - 26 51 1620 ROL LINNUM A
digits of the number that was entered have been processed. When done, the hex- 0813106 50 1630 ASL LTNWM | malEiplicacion
. . . 3 ( L multiplicati
adecimal equivalent of the number entered can be found in LINNUM and LIN- 8::: ég ! }ggg e T
' 8 PLA Add the 2 & 8
NUM + 1. :;::: oy ";8 }g?g ggc LINNUM multiples to
If you want to limit your programs to operating on a computer with Applesoft in ORIA - 68 1680 A ﬁﬁ%t?f’i?mi'
) ORIB 65 catton
ROM., then you can use INPUT INTEGER ROUTINE NQO. 2 to enter data. This ”’”i b o1 1700 STA Linwmin C
mn:-)' :«}; i 1700 STA LINNUM+1
h 1710 PLA Get current

program was originally written by Peter Meyer and was published in S-C Soft- OW . .
WO 6h 50 1720 ADC T.INNUM digit & add it




38 / Chapter 3 Getting Information Into Your Computer / 39

1000 **kkkkkkkhkhkkhhkhkkhkhkhhhhhkhhhhhkhhkhkhikx

0842- 85 50 1730 STA LINNUM to the partial ol *
0844— A9 00 1740 LDA #$0 sum. 1010 *x
0846- 65 51 1750 ADC LINNUM+1 1020 *** INPUT INTEGER ROUTINE NO. 2 *%*%
0848- 85 51 1760 STA LINNUM+1 1030 *** bl
1770 * 1040 *** BY PETER MEYER *kk
1780 * 1050 ***  FROM APPLE ASSEMBLY LINES  ***
1790 * This section checks to see if all of 1060 ***  PUBLISHED BY S-C SOFTWARE  ***
1800 * the digits have been processed and if 1070 *%* Hkok
1810 * not gets another digit until there 1080 **kkkkkkhhkhhkhhkhkhkhhkhhkhhhkhkhkhkrhkhkrkk
1820 * are no more. 1090 *
1830 * 1100 *
084A- C8 1840 INY 1110 *
084B- C4 06 1850 CPY LENGTH Finished? 1120 .
084D- DO C6 1860 BNE LOOP No, get more. 1130 x EQUATES
084F- 60 1870 RTS Yes, no more. . 1140
1880 * 0050 - 1150 LINNUM .EQ $50
1890 * 009n- 1160 FACEXP .EQ $9D
1900 * This subroutine rings the bell and HOAD- 1170 FACMO  .EQ $A0
1910 * prints out the message ERR followed HOAT - 1180 FACLO  .EQ $A1
1920 * by a carriage return. Control is OOA? - 1190 FACSGN .EQ $A2
1930 * then passed back to the beginning of hon7— 1200 CHRGOT .EQ $B7
1940 * the program so that a valid number HOBS - 1210 TXTPTR .EQ $B8
1950 * can be entered. 07200- 1220 1IN .EQ $200
1960 * 139 1230 GDBUFFS .EQ $D539
0850— 20 2D FF 1970 ERROR JSR PRERR Error message bl 1240 QINT -EQ $EBF2
0853- 20 8E FD 1980 JSR CROUT Output a carriage return. kAR~ 1250 FIN .EQ $EC4A
0856— 4C 00 08 1990 JMP START Start over. K075~ i%gg NXTCHR  .EQ $FD75
1280 *
1290 * This section gets a character from
> : 3 : _ 1300 * the keyboard and stores it in the
waresApple Assembly I.Jme. The program makes extensive use of internal Apple 1310 * input buffer ($200 to $2FF).
soft routines and will give us an opportunity to see how things are done inside 1320 *
\ 1 . . DROO - A2 00 1330 LDX #$0
Applesoft. One thing should be pointed out here, and that is that using ROM OKO? - 20 75 FD 1340 JSR NXTCHR  Get character, put in buffer.
. T fee . : OHOYS - BA 1350 TXA Check for null entry.
routines doesn’t always save you a 10t' of memory over writing dedicated routxpes. OKOL - FO 27 1360 BEQ ERROR Bull. sof carfy.
If you take a look at the length of this program and at the length of the previous 1370 %
program, you’ll see that this one is only 13 bytes shorter than the former. 1390 * This checks for alpha input and also
. . . . . 1400 * eliminates entries that would se
The first thing that the program does is to input a line of text into the keyboard 1410 * an overflow condition ow@ cau
; ; 1420 *
buffer (lines 1330 gnd 1340). Once a carriage return has been pressed, the program OHOB 48 1430 PHA Save length.
then checks to see if at least one character was entered. If not, the program jumps to 0809 20 39 D5 1440 JSR GDBUFFS  Put 0 at end of input buffer.
. . . . . OROC 68 1450 PLA Retrieve length.
an error routine that sets the carry bit. If a return from this routine has the carry bit OROD €9 06 1460 CMP #$06 More than 5 digits entered?
. . . : OHOr  BO 1E 1470 BCS ERROR Yes, set carry.
clear, the calling program will know that no errors took place. If no error is ORI AA 1480 TAX No. use lemgth as index.
generated, the program goes on to temporarily save the length of the number 8:17 CA 00 02 1238 DEX
s . . 17 BD 1 LOOP  LDA IN,X Get character from buffer.
entered on the stack while it does a subroutine jump do an Applesoft ROM routine OR16 €9 41 1510 oMP A Ts it alphat o oeT
OHI8 BO 15 1520 BCS ERROR Yes, set carry.
called GDBUFFS. OHIA  CA 1530 DEX No, decrement char. count.
The GDBUFFS routine, which is located at $D539, puts a zero at the end of the ORIB 10 F6 %2‘5*8 . BPL LOOP Get next character.
input buffer. It then proceeds to mask off (or zero out) the most significant bit (bit 7) 1560 *
. . .. . . 1570 * Get th b £ the i t buff
on all bytes in the input buffer. This is equivalent to subtracting $80 from all bytes. 1580 * and load it into the floating point
The result is that all of the data in the input buffer are in their true ASCII form. }238 * accumulator.
Upon returning from GDBUFFS, the length of the number is retrieved from the ORI A9 00 1610 LDA #IN Get address of
. . . . ORLEF A0 02 1620 LDY /IN input buffer
stack (line 1450) and a check is made to see if more than five digits were entered OR21 85 B8 1630 STA TXTPTR  and save it in a
i . If so an error is generated and the carry is set. If not, the length is OK25 84 B9 1640 STY TXTPTR«1 =zero page pointer.
(line 1460) If soane . g L. . Ty R L g O 20 B7 00 1650 JSR CHRGOT Get number from buffer.
transferred to the X-register, where it is used as an index into the input buffer (lines ONZ8 20 4A EC 1660 JSR FIN Put it in floating pt. acc.
1670 *
1480 to 1500). 1680 *
1690 * Check to nee 11 the number i
1700 * nogative. 11 1t In net the carry bit
1710 #
OHZK AY A7 1120 1DA FACHUN See B number fa negat fve,



40 / Chapter 3

082D- 10 02 1730 BPL CHKSIZE No, check size of number.
082F- 38 1740 ERROR SEC Yes, error.
0830~ 60 1750 RTS
1760 *
1770 *
1780 * Check to see if the number is too big
1790 *
0831~ A5 9D 1800 CHKSIZE LDA FACEXP
0833- €9 91 1810 CMP #$91
0835- BO 0OC 1820 BCS END Too large.
1830 *
1840 *
1850 * Convert the number, which is now in
1860 * the floating point accumulator into
1870 * an integer and store it in LINNUM.
1880 *
0837- 20 F2 EB 1890 JSR QINT Integer conversion.
083A- A5 Al 1900 LDA FACLO Transfer number to LINNUM.
083C~ A4 AQ 1910 LDY FACMO
083E- 85 50 1920 STA LINNUM
0840- 84 51 1930 STY LINNUM+1
0842~ 18 1940 CLC Value is ok.
0843~ 60 1950 END RTS

In the loop starting at line 1500, each of the characters that was entered is
checked to see if it is an alpha character. If it is, an error is generated, otherwise the
program falls into a routine that takes the number from the input buffer and puts it
into the floating point accumulator (line 1610). To do this Applesoft’s CHRGOT
routine at $B7 on page zero is used. Before jumping to this routine however, it is
necessary to set a text pointer that this routine uses to point to the first digit of the
number. This is done in lines 1610 to 1640 and CHRGOT is jumped to in line 1650.
Finally, a jump is made to another Applesoft routine called FIN, which is located at
$EC4A. This routine takes the number retrieved by the CHRGOT routine and
converts it to floating point format and places it in the floating point accumulator
(line 1660).

Once the number is in the floating point accumulator, two more tests are per-
formed on it, one to check for a negative number (lines 1720 to 1730) and one to
check for too large a number (maximum size number is 65535). Finally, if the
number entered passes all of these tests, it is converted into an integer number (line
1890) by still another Applesoft routine: QINT which is located at SEBF2. QINT
stores the converted number, as a hexadecimal number in two locations of the
floating point accumulator: FACLO and FACMO. From there, the number is taken
and stored in LINNUM and LINNUM + 1 (lines 1900 to 1930), the carry bit is
cleared indicating no errors were encountered.

While this program was assembled to operate at $800, it can be loaded as is into
any memory range and work properly. This is because there are no absolute jumps
to any routines within the program. All jumps are relative branches (¢.g. move
down 30 locations as opposed to move to location $81E). Thus the program is
completely relocatable.

Hexadecimal numbers can be entered too

While most of the number entry your programs will do will probably deal with
decimal numbers, occasionally it will be necessary to allow the user to enter

Getting Information Into Your Computer / 41

hexadecimal numbers as well. The general technique used is similar to the one that
we used for entering decimal numbers in the program INPUT INTEGER ROU-
'TINE NO. I. First a line of text is requested from the user and then it is checked for
the proper number of digits. In the case of hexadecimal numbers, we only wish to
permit 4 digits, instead of the 5 allowed for decimal. This change is reflected in line
1350.

After the data have been entered, a check is made to see if the characters entered
arc numbers in the O to 9 range, just as was done in the integer program. Next,
however, a check is also made to see if any of the non-digits are letters of the
alphabet from A to F (lines 1470 to 1490), which are legal hex digits. Once all of the
checking is done, the program goes about converting the legal alpha characters A
10 1V to the numerical range of $BA to $BF. This is done by subtracting 6 from the
current alpha value (line 1620).

At this point, all of the hexadecimal digits that have been entered have the proper
hex digit in the right-most (least significant) nibble and a $B in the left-most (most
sipnificant) nibble. If we can get rid of the $B and combine the four least significant
mbbles in the proper order, we can produce the hex number we require. This is




42 / Chapter 3

what is done in lines 1630 to 1720. From 1630 to 1660, the low-order nibble is
shifted left four times so that it becomes the high order nibble. The $B that was
there previously is thus eliminated.

Now that we have the first digit of our hexadecimal number as the high-order
nibble of the accumulator, all we have to do is shift it into LINNUM and from there
into LINNUM + 1. This is done by the code in lines 1670 to 1720. Now, if this
whole process is repeated for each digit of the hex number, starting with the most
significant digit (as we have here), the answer will appear in locations LINNUM
and LINNUM + 1. As each digit is added, it gets shifted from the low-order byte of
LINNUM to the high-order byte of LINNUM and then to the low-order byte of
LINNUM + 1 and finally to the high-order byte of LINNUM + 1.

Throughout the last two chapters we have looked at a variety of ways of getting
information into and out of the computer. We’ve even learned how to draw borders
on the screen. Now, let’s put a few of the things we’ve learned together to produce a
program subroutine that all assembly language programmers have had to write at
one time or another. We'll write a selection menu program that will print out a title
and several selection choices, allow the user to pick a choice and then jump to the
appropriate routine. The task of allowing the user to select one option from a list of

1000 **kkkkkkkhkhhkhkhhkkkhkhkhkhkhkkkkrkhkikkhkkhk

1010 ***% Kok
1020 *** INPUT A HEX NUMBER ROUTINE *kk
1030 ***% Kk
1040 *** COPYRIGHT (C) 1982 BY kK
1050 *** JULES H. GILDER *dk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** Fkk
1080 **kkkdkkkhkdkhkhhhkhdhhhihkdhkiikhkkkkrrk
1090 *
1100 *
1110 * EQUATES
1120 *
0006 1130 LENGTH .EQ $6
0050- 1140 LINNUM .EQ $50
0200- 1150 IN .EQ $200
FD6F - 1160 GETLN1 .EQ $FD6F
FD8E- 1170 CROUT .EQ $FDSE
FF2D- 1180 PRERR .EQ $FF2D
1190 *
1200 *
1210 *
1220 *
1230 * This section of code handles entry
1240 * of the number from the keyboard and
1250 * then checks each digit to see that it
1260 * is valid. It also checks to see if
1270 * more than 4 digits have been entered.
1280 * If an error is detected an error
1290 * message is generated.
1300 *
1310 *
0800~ 20 6F FD 1320 START JSR GETLN1 Get a number
0803- EO 00 1330 CPX #$0 Any entry?
0805- FO 37 1340 BEQ ERROR No, do over.
0807- EO 05 1350 CPX #$5 Is it >4 digits?
0809- BO 33 1360 BCS ERROR Yes, do over.
080B- 86 06 1370 STX LENGTH Save number of digits.
080D- A9 00 1380 LDA #$0 initialize
080F- 85 50 1390 STA 1.INNUM hex number to
0811~ 85 51 1400 STA LINNUMil  zero.

Getting Information Into Your Computer / 43

0813- A0 00 1410 LDY #$0
o815~ B9 00 02 1420 LOOP LDA IN,Y Get a character.
()818- C9 BO 1430 CMP #$BO Test to see if
O81A- 90 22 1440 BCC ERROR it is a digit
081C- C9 BA 1450 CMP #$BA from 0 to 9
081k- 90 0A 1460 BCC OKAY or A through F
0820- €9 C1 1470 CMP #$C1
0822- 90 1A 1480 BCC ERROR
0824- C9 C7 1490 CMP #$C7
O826- BO 16 1500 BCS ERROR
1510 *
1520 *
1530 * This section of code converts the
1540 * letters A through F to the
1550 * hexadecimal values $BA through $BF
1560 * by subtracting 6 from the value of
1570 * the letter. The low order nibble of
1580 * the accumulator is moved into the
1590 * high order nibble and the accumulator
1600 * is shifted into LINNUM and LINNUM+1.
1610 *
0828- E9 06 1620 SBC #$6 Convert A-F
OR2A— 0A 1630 OKAY ASL Shift lo order
O82B- 0A 1640 ASL nibble to hi
082C~ 0A 1650 ASL order nibble.
082D~ OA 1660 ASL
082E- A2 04 1670 LDX #$4
0830 0A 1680 SHIFT ASL Shift
0831- 26 50 1690 ROL LINNUM accumulator
0813- 26 51 1700 ROI. LINNUM+1 into LINNUM
0835~ CA 1710 DEX and LINNUM+1
0836~ DO F8 1720 BNE SHIFT
1730 *
1740 *
1750 * This section checks to see if all of
1760 * the digits have been processed and if
1770 * not gets another digit until there
1780 * are no more.
1790 *
0O838- C8 1800 CHKDONE INY
O839- C4 06 1810 CPY LENGTH Finished?
083B— DO D8 1820 BNE LOOP No, get more.
OXID- 60 1830 RTS Yes, no more.
1840 *
1850 *
1860 * This subroutine rings the bell and
1870 * prints out the message ERR followed
1880 * by a carriage return. Control is
1890 * then passed back to the beginning of
1900 * the program so that a valid number
1910 * can be entered.
1920 *
OB4F- 20 2D FF 1930 ERROR JSR PRERR Error message.
OKA41- 20 8E FD 1940 JSR CROUT Output a carriage return.
OB44 - 4C 00 08 1950 JMP START Start over.

many and then jumping to the appropriate routine is not difficult. But frequently it
Ix done in an inefficient manner. Here is a general purpose routine that I'm sure
you'll find very useful.

Use a library to make programming easier

The SAMPLE MENU PROGRAM uses all or part of three programs that we
hive already discussed: LONG MESSAGE PRINTER NO. 2, TITLE BOX and the
IMPROVED READ KEYBOARD ROUTINE. In fact, if you examine the pro-
prim carefully, you'll see that only about 30% of it is new, the remainder is just



44 / Chapter 3

routines that we have already discussed. This situation illustrates a very important
concept, that the best way to program is to use routines from a library of programs
that you have already developed.

It also illustrates another important concept, that the programming task should
be broken down into individual modules and programmed one module at a time.
This makes the programming task more manageable and also makes troubleshoot-
ing a program a lot easier. Remember, programs don’t always work the first time
out.

How to write a menu program

Getting back to our menu program, after clearing the screen, our program
jumps immediately to the message printing subroutine. This routine is different
than the ones we've used recently. It is the in-line message printing routine that we
examined in the last chapter. One advantage of this subroutine, is that it is a little
easier to follow the flow of the program because the messages that are printed out
are integrated into the program at exactly the spot they are needed. There are two
distinct disadvantages to this approach however. One is that if you are trying to
trace the operation of a program with an in-line printing routine and you don’t have
an original source code listing, it is very difficult to do. The second is that if you
ever decide to do foreign language translations of your program, it is a lot easier to
do if all of the text is grouped in one specific place.

The program prints out the title, the menu of choices and the prompting message
asking for the user’s choice. The next thing it does, is it stores the current position

of the cursor (lines 1610 to 1640), which is one space after the colon on the line :

‘ENTER CHOICE: ’ and then goes back and draws the box around the title (line
1650). After drawing the box, the program them restores the cursor to its former
position right after the choice prompt. It then reads the keyboard (line 2230)
looking for any number in the range of 1 to 7. If anything other than a number
within this range is pressed, the entry is ignored.

If a number in the 1 to 7 range is selected, the number is converted from ASCII
with the high bit set, to hexadecimal and 1 is subtracted from the number to put it in
the O to 6 range (line 2380). Next, this number is going to be converted into an
index into a table of addresses that will be used to retrieve the address of the
subroutine that is desired. Since the addresses in the table all require two bytes, the
number that we got from line 2380 must be doubled (line 2390). Thus, if we
selected item 1, line 2380 resulted in the number 0, this is doubled and we still have
zero, so the address information we want starts at the beginning of the table with no
offset. If we had selected item number 4, that number would be converted to 3
which would be doubled to 6. This means that the address we want starts at the 7th
byte from the beginning of the table. If each address takes of up two bytes and there
are 3 choices before this one, six bytes have already been used. So it’s easy to see
why the information we want is at the 7th byte. The byte we retrieved with the offset
of six (line 2410), was the seventh byte because we started counting from zero.

Getting Information Into Your Computer / 45

. Using the stack to jump to a subroutine

Once we have the correct index into the jump table, the address of the routine we
want to jump to is loaded into the accumulator and then pushed onto the stack (lines
2410 to 2450), HIGH BYTE FIRST! I emphasize this, because all other two-byte
operations with the 6502 deal with the low byte first. We push the address on the
stack in this manner, because the stack has a LIFO (Last In, First Out) structure.
‘That means that when the address is pulled off the stack to jump to the appropriate
subroutine, it will be pulled off in the conventional manner, low byte first.

It you take a careful look at the table of jump addresses that begins at line 2860,
you'll notice two things. The first is that the addresses have been stored in the table
high-byte first. This makes it easier for the programmer to read when he’s looking

.t the source listing and also makes it easier to push the address on the stack in the

proper order. More important than that, if you look at the addresses in the table and
the actual address of the start of the various routines, you’ll find that the address in
the table is always one less than the real address. The reason for this is simple. By
pushing the address on the stack, we’ve fooled the 6502 processor into thinking
that the program executed a JSR instruction. So, when an RTS instruction is
exceuted (line 2460), the 6502 pulls the first two bytes off the top of the stack, low-
byte first, it increments the low-byte by one, and then jumps to the address, thinking
it 18 returning from a subroutine call to execute the next available instruction. This
method of implementing an absolute jump to another part of the program, based on
icdresses retrieved from a table is a fairly efficient way of doing things.

‘That's the meat of the program. The only thing left to go over is the code from



46 / Chapter 3

lines 2570 to 2770. This code simple implements a demonstration program that will
tell us that the menu selection routine works. What it does is ring the bell the same
number of times as the menu selection number. So, if item number four on the
menu is chosen, the bell rings four times and if item number five is chosen it rings
five times, etc. If itern number seven is chosen, the program does an RTS and goes
back to the calling routine or mode.

1000 *xkkkkkkkkkkdkkkkhkkkkkkhkkhkkkkhkkkkixk

1010 *** Fkk
1020 *** SAMPLE MENU PROGRAM *kk
1030 *** Kk
1040 **kdrkkkkiirkxhhrrhkhhrkkhrrrkhrrrrrrs
1050 *
1060 *
1070 *
1080 *
1090 * CONSTANTS
1100 *

0003- 1110 BOXLEN .EQ $03

0003~ 1120 LFTMRG .EQ $03

0025~ 1130 RTMRG .EQ $25

00AA- 1140 SYMBOL .EQ $AA
1150 *
1160 *
1170 * EQUATES
1180 *

0006- 1190 TXTPTR .EQ $06

0018- 1200 Cv2 .EQ $18

0019- 1210 CH2 .EQ $19

0024 1220 CH .EQ $24

0025~ 1230 ¢Cv .EQ $25

FC22- 1240 BASCAL .EQ $FC22

FC58- 1250 HOME .EQ $FC58

FC9C- 1260 CLREOL .EQ $FC9C

FDOC- 1270 RDKEY .EQ $FDOC

FDED- 1280 couT .EQ $FDED

FF3A- 1290 BELL .EQ $FF3A

FF58- 1300 RETURN .EQ $FF58
1310 *
1320 *
1330 * Clear the screen, print out the title
1340 * of the program and the selection menu
1350 * and save the position location of the
1360 * cursor for later.
1370 *

0800~ 20 58 FC 1380 START JSR HOME Clear the screen.
0803~ 20 41 09 1390 JSR MSGPRT Print the message that follows.
0806- 8D 8D 1400 .HS 8D8D

0808- A0 A0 AO
080B- A0 A0 AO
080E- A0 A0 AO
0811~ A0 D3 C1
0814- CD DO CC
0817- C5 A0 CD
081A- C5 CE D5
081D- A0 DO D2
0820~ CF C7 D2
0823- C1 CD 1410
0825- 8D 8D 8D
0828- 8D 8D 1420 .HS 8D8D8D8D8D
082A- C5 CE D4

082D~ C5 D2 AOQ

0830- D4 C8 C5

0833- A0 CE D5

0836- CD C2 C5

0839- D2 AO CF

083C- C6 AO C2

OB3F  CH CC G(

.AS =" SAMPLE MENU PROGRAM"

Getting Information Into Your Computer / 47

OR42 -
R4S
OR48—
O84B—
ORGE—
0851
0854
0857 -
OH59 -~
O85C-
OKSF -
OH60-
GR61-
0864 —
0867 -
OH68 -
0OR69-
OR6C~
OB6F-
0872-
0873~
0876~
0879~
08 /78—
087C-
O8/F-
OB82—
(884 —
OB8S5-—
(888~
OX8B-
OBBC-
OBBD-
0890~
OB93-
OR95 -
0897
OB9A—
OB9ID-~
OBAO-
O8A3-
OBAS-
OBA6-
OBA8-
(HBAA-
OBAC-
OBAE-
OHB1-

O8B4~
OBB6-
OBB8-
O8BA-
08BD-
0BCO-
OBC2-
O8CS5-
OBCT -
0O8C9-
O8CB-
OBCD-
ORCF-
OHDO-
O8D2 -

D3
CF
D7
D4
CF
AQ
CE
8D
BC
AQ
Cc5
8D
BC
A0
CF
8D
BC
AO
D2
8D
BC
A0
D5
8D
BC
AQ
D6
8D
BC
AOQ
D3
8D
BC
AD
Cc9
8D
C5
C5
Cc3
c9
BA
00
A5
85
A5
85
20
4C

A9
85
85
20
20
A2
20
AL
co
DO
AQ
84
CA
DO
20

B2
D4

B3
D4
Cc5

B4
Cé
D2

BS
Cé
C5

B6
D3

B7
D1
D4
8D
CE
D2
c8
Cc3
AOQ

25

24
19
B4
DF

BE
D7

BE
c8
Cc5

BE
CF

BE
Cc9

BE
c9

BE
D5

D4
AO
CF
C5

08
08

FC
08

FD

08

1430
1440

1450
1460

1470
1480

1490
1500

1510
1520

1530
1540

1550
1560

1570
1580

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

.AS -"ENTER THE NUMBER OF BELLS YOU WANT TO RING:"

.HS

.AS

8D8D

~"<1>

.HS 8D

.AS
.HS

.AS
.HS

-AS
.HS

.AS
.HS

.AS
-HS

.AS
.HS

.AS

LDA
STA
LDA
STA
JSR

JMP
*

*

="<5>
8b

-"<6>
8D

="<7>
8D8D

ONE"

TWG"

THREE"

FOUR"

FIVE"

SIX"

QuIrT"

-"ENTER CHOICE: "
.HS 00

cv

Ccv2

CH

CH2
BOX
CURPOS

Save the current vertical
position of the cursor.

Save the current horizontal
position of the cursor.

Draw a title box.

Restore original cursor position.

* Print a box around the title of the

* program.
*

BOX LDA #$0 Start at row zero, column zero.
STA CV
STA CH
JSR BASCAL Position cursor.
JSR LINE Draw top line of box.
LDX #BOXLEN Get depth of box.
LOOP JSR COUT Draw middle lines
LDY CH of box.
CPY #LFTMRG At end of left margin yet?
BNE LOOP No, print more symbols.
LDY #RTMRG Jump to start of
STY CH right margin.
DEX End of box?
BNE LOOP No, finish right margin.
" JSR LINE Yes, finish right margin.
*
* This subroutine prints out a line of
* symbols. It checks CH to see if
* it has past the 40th column and
*

wrapped around to column 0.



48 / Chapter 3

08D5- A9
08D7- 20
08DA- A4
08DC- DO
08DE~ 60

08DF- A5
08E1- 85
08E3- A5
08E5- 85
08E7- 20
08EA- 20

08ED- 20
08F0- 20
08F3- C9
08F5- BO
08F7- €9
08F9- 90

08FB- E9
08FD- OA
O8FE- A8
08FF- C8
0900~ B9
0903- 48
0904 88
0905- B9
0908- 48
0909- 60
090A- 4C

090D- 20
0910~ 88
0911- DO
0913~ FO

AA
ED
24
F7

19
24
18
25
22
9C

0C
ED
B8
13
Bl
OF

B1

33

33

DF

3A

FA
F5

1930 *
1940 LINE LDA #SYMBOL Get symbol.
FD 1950 JSR COUT Print it.
1960 LDY CH Done yet?
1970 BNE LINE No, do more.
1980 RTS
1990 *
2000 *
2010 * This subroutine restores the cursor
2020 * to its original position before the
2030 * box was drawn so that it is ready to
2040 * prompt the user.
2050 *
2060 CURPOS LDA CH2 Get old horizontal position.
2070 STA CH Make it current position.
2080 LDA CV2 Get old vertical position.
2090 STA CV Make it current position.
FC 2100 JSR BASCAL Position cursor.
FC 2110 JSR CLREOL Clear to the end of line.
2120 *
2130 *
2140 * This subroutine checks the keyboard
2150 * to see if a key is pressed. When it
2160 * is, the key that is pressed is
2170 * printed out. Then it's value is
2180 * checked to see if it is less than 8
2190 * and equal to or greater than 1. If
2200 * is not, the program starts all over
2210 * again.
2220 *
FD 2230 JSR RDKEY Wait for a key press.
FD 2240 JSR COUT Print it.
2250 CMP #$B8 Was it greater than 77
2260 BCS RSTART Yes, restart.
2270 CMP #$B1 No, was it less than 17
2280 BCC RSTART Yes, restart.
2290 *
2300 *
2310 * If the key pressed is in the correct
2320 * range, value is normalized to numbers
2330 * in the 0 to 6 range and then doubled.
2340 * The number thus generated is used as
2350 * an index into the table of jump
2360 * addresses.
2370 *
2380 SBC #$B1 Normalize entered digit.
2390 ASL Multiply it by 2.
2400 TAY Put into Y-register as index.
2405 INY
09 2410 LDA TABLE,Y Retrieve address from table
2420 PHA and save it on the stack.
2430 DEY
09 2440 LDA TABLE,Y
2450 PHA
2460 RTS Jump to the subroutine chosen.
08 2470 RSTART JMP CURPOS Start over.
2480 *
2490 *
2500 * This is just a little routine that
2510 * been included to demonstrate that the
2520 * menu selection is working. It is
2530 * entered with the Y-register
2540 * containing the number of bell rings
2550 * desired.
2560 *
FF 2570 RNGBEL JSR BELL
2580 DEY
2590 BNE RNGBEL
2600 BEQ RSTART
2610 *
2620 *

2630 * The Y-register for the bell ringing
7640 * routine 1s set here,

Getting Information Into Your Computer / 49

2650 *
a915- A0 01 2660 ONE LDY #$1
0917~ 4C OD 09 2670 JMP RNGBEL
091A- A0 02 2680 TWO LDY #$2
091C- 4C OD 09 2690 JMP RNGBEL
091r- A0 03 2700 THREE LDY #$3
0921- 4C 0D 09 2710 JMP RNGBEL
0924- A0 04 2720 FOUR LDY #$4
0926~ 4C 0D 09 2730 JMP RNGBEL
0929~ A0 05 2740 FIVE LDY #$5
092B— 4C OD 09 2750 JMP RNGBEL
0921 A0 06 2760 SIX LDY #$6
0930~ 4C OD 09 2770 JMP RNGBEL
2780 *
2790 *
2800 * This is the table of jump addresses.
2810 * The address minus 1 of the subroutine
2820 * that is to be jumped to is entered
2830 * in this table with the high-order
2840 * byte first.
0933- 14 09 %850 T
33- 860 TABLE .DA ONE-1 Address of selecti
UQ}S— 19 09 2870 .DA TWO-1 Address of selecE;gE %.
0937- 1E 09 2880 .DA THREE-1 Address of selection 3.
00}9— 23 09 2890 .DA FOUR-1 Address of selection 4.
093B- 28 09 2900 .DA FMNE-1 Address of selection 5.
093D~ 2D 09 2910 .DA SIX-1 Address of selection 6.
0Y3F- 57 FF 2920 -DA RETURN-1 Address of selection 7.
2930 *
2940 *

2950 * This is the message printing
2960 * subroutine.

. 2970 *
0941- 68 2980 MSGPRT PLA Store address of text
t
0942- 85 06 2990 STA TXTPTR be printed in a zerg °
0944— 68 3000 PLA page pointer.
0945- 85 07 3010 STA TXTPTR+1
0947~ A0 00 3020 LDY #$0
0949- E6 06 3030 NEXT INC TXTPTR Incremen i
t 2-byt
094B- DO 02 3040 BNE CONTIN to text. yhe pointer
8320— E6 07 3050 INC TXTPTR+1
F- B1 06 3060 CONTIN LDA (TXTPTR),Y Get character
09?1— FO 06 3070 BEQ ENDPRT Done yet? ’
09:3- 20 ED FD 3080 JSR cout No, print it.
0?:6- 4C 49 09 3090 JMP NEXT Get next character.
8;397 A5 07 3100 ENDPRT LDA TXTPTR+1 Push the address of
093¢ A5 06 3126 IDA TXTPTR oot the seaek ¢ PTOETM
095k 48 3130 PHA ento the stack
095F- 60 3140 RTS and jump there.
Using an alphabetic menu

You should find that this menu program will fill most of your needs. But what
happens if you have more than nine items to choose from? This program is de-
nigned to work with a single key press, what can you do? The answer is simple.
Don’tuse numbers, use letters. If you use letters you will have the ability to have up
to 26 choices. And if you have more than that, you should consider using multiple
Noreens.

The ALPHABETIC MENU PROGRAM is almost identical to the numerical
menu program, and requires only a few minor changes to the original SAMPLE
MENU PROGRAM to produce. In this version, the number of items to choose
from was increased to 11 and the selections have been changed from 147 to A-K.
Aside from the obvious changes in the text that gets displayed on the screen,
changes were made in lines 2330 and 2350, In these lines we check to see if the




50/ Chapter 3

keypress was greater than ‘K’ or less than ‘A’ instead of greater than 7 and less than
1. Also, in line 2460, the data that was entered with the keypress is normalized to
the O to 10 range by subtracting the ASCII value plus $80 (altogether $C1) of the
letter ‘A’. The only other changes to the program were to put in the new addresses
for the routines in the jump table and to add the extra routines that were required.

While the ALPHABETIC MENU and the previous program SAMPLE MENU
are almost the same, I have included a complete listing of the ALPHABETIC
MENU so that you can compare the two listings and see exactly how the changes
were made.

1000 **kkkdkkkhkkhkkhkkkkkhkrhkhkkhhkhhkikiikkk

1010 *** *hk
1020 *** ALPHABETIC MENU PROGRAM Fkk
1030 *** *kk
1040 **rkxhkrhrkhkkhdrkrdrhrhhhhthrdxrorrkk
1050 *
1060 *
1070 *
1080 *
1090 * CONSTANTS
1100 *
0003- 1110 BOXLEN .EQ $03
0003- 1120 LFTMRG .EQ $03
0025- 1130 RTMRG .EQ $25
00AA- 1140 SYMBOL .EQ $AA
1150 *
1160 *
1170 * EQUATES
1180 *
0006- 1190 TXTPTR .EQ $06
0018- 1200 Cv2 LEQ $18
0019- 1210 CH2 LEQ $19
0024 1220 CH LEQ $24
0025- 1230 cvV .EQ $25
FC22- 1240 BASCAL .EQ $FC22
FC58- 1250 HOME .EQ $FC58
FC9C- 1260 CLREOL .EQ $FC9C
FDOC- 1270 RDKEY .EQ $FDOC
FDED- 1280 CoOUT .EQ $FDED
FF3A- 1290 BELL .EQ $FF3A
FF58- 1300 RETURN .EQ $FF58
1310 *
1320 *
1330 * Clear the screen, print out the title
1340 * of the program and the selection menu
1350 * and save the position location of the
1360 * cursor for later.
*

1370
1380
1390
1400

Clear the screen.
Print the message that follows.

START JSR HOME
JSR MSGPRT
.HS 8D8D

0800- 20 58 FC
0803- 20 84 09
0806- 8D 8D
0808- A0 A0 AO
080B- AQ0 A0 AQ
080E- A0 AO C1
0811- CC DO C8
0814- C1 C2 C5
0817- D4 C9 C3
081A- A0 CD C5
081D- CE D5 AO
0820- DO D2 CF
0823- €7 D2 C1
0826- CD

0827~ 8D 8D 8D
082A- 8D 8D
082C- €5 CE D4
082F- C5 D?2 AO

1410 .AS =" ALPHABETIC MENU PROGRAM"

1420 -HS 8D8DBDBDED

[
[RTIE
[T
THEAY
THE )
A
LI
14/
HAA
ONAD
1)
[T
OO
TR
(11T
e
ot
tne)
ey
imno
mno
LA
e
KO
/1
msn
I
(/N
M/
0w/
/e
[ILEN]
LI
({LET8
nn/
HA
N/LLIN
[ILT1H
LETS
“0,"1
[ .URS
L X1
[ D]
N
[ X1
BA?
BA S
WAL
NAY
BAK
AL
AL
L1V
8
[ LI
i/
NRA
LL#
LIS
L]
R4
N/
NCA
[ I¥#
nen
LIHY
LET
LTI
[ L1}
O8DH

Getting Information Into Your Computer / 51

D4
AO
CDh
D2
C6
C5
D3
CF
n7
D4
CF
AQ
CE
8D
BC
AO
C5
8D
BC
AO
CF
8D
BC
AO
D2
8D
BC
AQ
D5
8D
BC
AO
D6
8D
RC
AQ
D8
8D
BC
AO
6
8D

c8
CE
c2
AQ
A0
cC
AQ
D5
C1
AO

C2
D4

Cc3
D4
C5

C4
Ccé
D2

C5
Cé
C5

Cé
D3

Cc7
D3
C5

Cc8
C5
Cc8

c9
CE

. C5

CA
D4

. CB

D1
D4
8D
CE
D2
Cc8
Cc3
AOQ

25
18
24
19
DB
06

C5
D5
Cc5
CF
c2
CcC
D9
AOQ
CE
D4
AO
C9
BA

BE
CE

BE
D7

BE
c38
C5

BE
CF

BE
c9

BE
c9

BE
C5
CE

BE
c9
D4

BE
Cc9

BE
Cc5

BE
D5

D4
AOQ
CF
C5

08
09

1430
1440

1450
1460

1470
1480

1490
1500

1510
1520

1530
1540

1550
1560

1570
1580

1590
1600

1610
1620

1630
1640

1650
1660

1670
1680
1690
1700
1710
1720
1730
1740
1750 *
1760 *
1770 * Prim

-AS -"ENTER THE NUMBER OF BELLS YOU WANT TO RING:"

-HS

-AS
.HS

.AS
.HS

.AS
.HS

-AS
.HS

.AS
.HS

.AS
-HS

-AS
-HS

.AS
.HS

-AS
.HS

.AS
.HS

.AS
-HS

.AS

LDA
STA
LDA
STA
JSR
JMp

A box around the

8D8D

_"(A>
8D

-'"<B>
8D

~""<C>
8D

=<

—"<E>
8D

="<F>
8D

-"<G>
8D

~"<H>

="<I>
8D

="<J>

1 (K)
8D8D

ONE"

TWO"

THREE"

FOUR"'

FIVE"

SIX"

SEVEN"

ETGHT"

NINE'"

TEN"

QUIT"

~"ENTER CHOICE: "
.HS 00

cv

Ccv2

CH

CH2
BOX
CURPOS

Save the current vertical
position of the cursor.

Save the current horizontal
position of the cursor.

Draw a title box.

Restore original cursor position.

title of the



52 / Chapter 3
1780 * program.
1790 *
08DB- A9 00 1800 BOX LDA #$0 Start at row zero, column zero.
08DD- 85 25 1810 STA CV
08DF- 85 24 1820 STA CH
08E1- 20 22 FC 1830 JSR BASCAL Position cursor.
08E4- 20 FC 08 1840 JSR LINE Draw top line of box.
08E7- A2 03 1850 LDX #BOXLEN Get depth of box.
08E9- 20 ED FD 1860 LOOP JSR COUT Draw middle lines
08EC~ AL 24 1870 LDY CH of box.
O8EE-~ CO 03 1880 CPY HLFTMRG At end of left margin yet?
08F0- DO F7 1890 BNE LOOP No, print more symbols.
08F2- AO 25 1900 LDY #RTMRG Jump to start of
08F4- 84 24 1910 STY CH right margin.
08F6- CA 1920 DEX End of box?
08F7- DO FO 1930 BNE LOOP No, finish right margin.
08F9- 20 FC 08 1940 JSR LINE Yes, finish right margin.
1950 *
1960 *
1970 * This subroutine prints out a line of
1980 * symbols. It checks CH to see if
1990 * it has past the 40th column and
2000 * wrapped around to column 0.
2010 *
08FC- A9 AA 2020 LINE LDA #SYMBOI, Get symbol.
08FE-~ 20 ED FD 2030 JSR COUT Print it.
0901~ A4 24 2040 LDY CH Done yet?
0903- DO F7 2050 BNE LINE No, do more.
0905- 60 2060 RTS
2070 *
2080 *
2090 * This subroutine restores the cursor
2100 * to its original position before the
2110 * box was drawn so that it is ready to
2120 * prompt the user.
2130 *
0906~ AS 19 2140 CURPOS LDA CH2 Get old horizontal position.
0908~ 85 24 2150 STA CH Make it current position.
090A- A5 18 2160 LDA CV2 Get old vertical position.
090C- 85 25 2170 STA CV Make it current position.
090E~ 20 22 FC 2180 JSR BASCAL Position cursor.
0911- 20 9C FC 2190 JSR CLREOL Clear to the end of line.
2200 *
2210 *
2220 * This subroutine checks the keyboard
2230 * to see if a key is pressed. When it
2240 * is, the key that is pressed is
2250 * printed out. Then it's value is
2260 * checked to see if it is less than 'L’
2270 * and equal to or greater than 'A'. If
2280 * is not, the program starts all over
2290 * again.
2300 *
0914- 20 0C FD 2310 JSR RDKEY Wait for a key press.
0917- 20 ED FD 2320 JSR COUT Print it.
091A- C9 CC 2330 CMP #$CC Was it greater than 'K'?
091C- BO 13 2340 BCS RSTART Yes, restart.
091kE- C9 C1 2350 CMP #$C1 No, was it less than 'A'?
0920- 90 OF 2360 BCC RSTART Yes, restart.
2370 *
2380 *
2390 * If the key pressed is in the correct
2400 * range, value is normalized to numbers
2410 * in the 0 to 10 range and then doubled.
2420 * The number thus generated is used as
2430 * an index into the table of jump
2440 * addresses.
2450 *
0922- E9 Ci 2460 SBC #$C1 Normalize entered digit.
0924- 0A 2470 ASIL Multiply 1t by 2.
0925- A8 2480 TAY Put into Y register as index.
0926 C8 2485 [NY
0927  BY 610 09 2490 LDA TABLEY Ret rieve addiens {rom table

Getting Information Into Your Computer / 53

092A-
092B-
092C-
092F-
0930-
0931

0934
0937-
0938-
093A~

093C-
093E-
0941
0943—
0946-
0948-
094B—
094D-
0950-
0952-
0955-
0957-
095A—
095C-
095F-
0961-
0964
0966
(1969
096B-

096E~
0970-
0972
0974
0976-
0978-
097A-
097C-
097F-
0980-
0982

0984
0985~
(987
0984
OYBA

48
88
B9
48
60
4C

20
88
DO
FO

3B
40
45
4A
4F
54
59
5E
63
68
57

68
85
68
85
AD

6E

06

3A

FA
F5

06

071
00

09

FF

2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
1210
1220

PHA and save it on the stack.
DEY
LDA TABLE,Y
PHA
RTS Jump to the subroutine chosen.
RSTART JMP CURPOS Start over.
*
*
* This is just a little routine that
* been included to demonstrate that the
* menu selection is working. It is
* entered with the Y-register
* containing the number of bell rings
* desired.
*
RNGBEL JSR BELL
DEY
BNE RNGBEL
. BEQ RSTART
*
* The Y-register for the bell ringing
* routine is set here.
*
ONE LDY #$1
JMP RNGBEL
TWO LDY #$2
JMP RNGBEL
THREE LDY #$3
JMP RNGBEL
FOUR LDY #$4
JMP RNGBEL
FIVE  LDY #$5
JMP RNGBEL
SIX LDY #$6
JMP RNGBEL
SEVEN LDY #$7
JMP RNGBEL
EIGHT LDY #$8
JMP RNGBEL
NINE  LDY #$9
JMP RNGBEL
TEN LDY #$A
JMP RNGBEL

*
*
* This is the table of jump addresses.
* The address minus 1 of the subroutine
* that is to be jumped to is entered
* in this table with the high-order
* byte first.
*

TABLE .DA ONE-1 Address of selection A.

.DA TWO-1 Address of selection B.
.DA THREE-1 Address of selection C.
.DA FOUR-1 Address of selection D.
.DA FIVE-1 Address of selection E.
.DA SIX-1 Address of selection F.
.DA SEVEN-1 Address of selection G.
.DA EIGHT-1 Address of selection H.
.DA NINE-1 Address of selection I.
.DA TEN-1 Address of selection J.
.DA RETURN-1 Address of selection K.

* This is the message printing
* subroutine.
*

MSGPRT PLA Store address of text to
STA TXTPTR be printed in a zero
PLA page pointer.
STA TXTPTR 1
LDY Hi$0



54/ Chapter 3

098C-
098k
0990-
0992-
0994
0996-
0999-
099C-
099E-
099F-
09A1-
09A2-

L6
DO
F6
B1

20
4C
A5
48
A5
48
60

06
02
07
06
06
ED
8C
07

06

FD
09

32130
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340

NEXT

CONTIN

ENDPRT

INC
BNE
INC
LDA
BEQ
JSR
JMP
LDA
PHA
LDA
PHA
RTS

TXTPTR
CONTIN
TXTPTR+1
(TXTPTR},Y
ENDPRT
CouT

NEXT
TXTPTR+1

TXTPTR

Increment
to text.

2-byte pointer

Get character.

Done yet?
No, print
Get next
Push the
where to
onto the

and jump

it.
character.
address of
resume the program
stack

there.

Chapter 4

STEALING CONTROL OF THE
OUTPUT

Did you ever wish that there were some way that you could see the control
characters that some programmers hide in the names of programs saved out to a
disk? Have you ever had a need to customize the interface between your printer and
vour computer? Perhaps your printer doesn’t recognize a blank line and must be
sent a space character before a carriage return. Or maybe you want to print some-
thing out on your printer in expanded mode but are annoyed by the fact that the
cxpanded mode is cancelled automatically when the printer receives a carriage
return and must be reinitialized. Are you tired of continually typing “*CTRL-I
XON™ or some other setup string required by your printer?

It you are looking for ways to overcome these and other annoying situations that
deal with transferring data from your computer to some external device, fret not.

58



56 / Chapter 4

After you read this chapter, you should be able to find a way to let your Apple doall
the work for you. The secret to making the Apple do all of the work is two memory
locations on page zero known as CSWL and CSWL + 1 ($36 and $37). It is
through the proper use of these two locations, that you will learn how to steal
control away from the Apple’s normal output routines, and direct it to your own
machine language program.

If you were to get into the Apple’s monitor mode, by typing CALL -151 from
cither BASIC. and then entered the monitor command ‘FDEDL'. the first two lines
you would see printed on the screen would look like this:

FDED- 6C 36 00 JMP ($0036)
FDFO- C9 A0 CMP #3A0

The subroutine located at $FDED is called COUT and is the routine that the
Apple jumps to every time it wants to print out a character. You'll notice that the
first thing this routine does is jump indirectly, through page zero locations $36 and
$37. to the real output routine. In an Apple without DOS, if you were to examine
locations $36 and $37, you'd find that the Apple jumps right back to $FDFO, which
is the very next instruction after the indirect jump. $EDFO0 is called COUTI and is
the routine that prints everything out to the screen.

At first glance, this method of programming might seem a bit odd, but if you
think about it for a minute, you'll see that by adding the indirect jump instruction as
the first line of the routine, characters that are to be printed out can first be diverted
to any other desired subroutine. And this in fact, is what happens when DOS is
active or when a printer is connected to the system. When DOS is active, charac-
ters to be output are first passed to a routine that starts at $9EBD and when a printer
is active. characters are passed to ROM routines located on the interface card.
Now, if we place the address of our own output routine in locations $36 and $37,
and make sure it stays there despite DOS, then we'll be able to do all of the things 1
mentioned earlier, and more.

Fixing a problem with some parallel printers

The first program we're going to talk about in this chapter is what is usually
classified as a patch, because it fixes a specific problem that really shouldn’t have
occurred to begin with. For those of you that use Centronics or Centronics-com-
patible parallel printers you may encounter a problem where the printer will not
respond to a blank print statement such as this:

10 PRINT

Normally, statements such as this are put in a program to produce a formatted
output that is pleasing to the eye. Centronics printers, and some others as well, will

Stealing Control Of The Output / 57

not respond to a lone carriage return, which is what is generated by line 10, and
require that at least one character be printed on a line before the carriage return is
recognized. The PARALLEL PRINTER PATCH program intercepts all characters
that are being printed out and wherever it finds a carriage return, it first prints a
space and then the carriage return, insuring that printers experiencing this problem
will always respond as you originally intended.

This is done by replacing the address of the output routine, which is stored in
locations $36 and $37, with the address of this program. That job is handled by the
routine in lines 1230 to 1310.

Line 1230 gets the low byte of the address of the new output routine while line
1240 gets the high byte of that address. Lines 1250 and 1260 store the address of the
new output routine in the output hooks so that anytime a character is supposed to be
printed out, it is routed to our program first.

With programs like this, that alter output hooks, programmers usually have two
versions of the program: one that does an RTS right after line 1260 for systems

dhkkkkkkkkkkkkkhkhhkhkkhkhhhhhkrkkhkhkk

1000 *
1010 * ***% *kk
1020 * **% PARALLEL PRINTE *kk
10 ER PATCH .
1040 * *hkkkkhkkhkhhddhhkhrhkhkhkhhrrhrkkxkk
1050 *
1060 *
1070 *
1080 .OR $300
1090 *
1100 *
1110 * EQUATES
0036 1130 ¢
- 1130 CSWL .EQ $36
03D0- 1140 WARMDOS .Eg §3D0
03EA- 1150 CONNECT LEQ $3EA
C200- 1160 SLOT .EQ $C200
1170 *
1180 *
1190 * Replace the normal output routine
1200 * with this program by cﬁanging the
1210 * output hooks $36 and $37.
0300~ A9 13 }%%8 ¥
- LDA #START Get address of
8%82— gg gg i%ég égz /START  program and stoizazg ?ﬁ
- CSWL
0306- 84 37 1260 STY GRWL,y e output hooks.
- AD DO 03 1270 LDA WA i i
os- Ao DO 12ae CMg z$ngOS See if DOS is present.
030D- DO 03 1290 BNE NODOS No it's not, return.
8%?5» 28 EA 03 }%?8 NODOS égR CONNECT It is, connect through DOS.
10 s S Return to caller.
1330 *
1340 * Check the character that is being
1350 * output by the computer to see if it
1360 * is a carriage return. If it is print
1370 * a space first and then print a
1380 * carriage return.
o 1390 *
0}13 €9 8D 1400 START CMP #$8D I[s it a carriage return?
O}I)- Do 07 1410 BNE. PRINT No, print it.
O}I/ AQ AO 1420 IL.DA H$AO Yes, print a
0}1? 20 02 C?2 14130 JBROSLOTY? space first and then a
031C AS 8D 1440 LDA #H$8D carriage return. ‘
OFLE 4G 02 C2 1450 PRINT  IMIP SLOT 2 Print contents of aceumilator.



58 / Chapter 4 Stealing Control Of The Output / 59

without DOS, and one that does a JSR $3EA for systems with DOS. This latter one

1000 *** Kokde ook dedekok ok ok ok dedok ok deokkok ok ko deokekeok

is necessary for systems with DOS, because DOS modifies the hooks and sets up its 18;8 wek CPSON PRINTER. BRtCH ik
own output routine. The JSR $3EA makes sure there will be no conflicts. In 1030 *** -
. - P : is g 1040 **x COPYRIGHT (C) 1982 BY *hk
systems without DOS, the information in locations $3EA to $3EC is random and 1050 *5% R s o
could cause the machine to hang up if jumped to, hence the need for two versions of 18?8 ok ALL RIGHTS RESERVED *kk
1 *% *okk
the program. 1080 *¥kkkkhkkkkkkhhhkhhkkhhhhxdrrhhhhhhhrrs
) : : 1090 *
However, for the price of a few extra bytes of code, we can test to see if DQS is 1100 *
present in the computer and then connect the output hooks by the appropriate }}%8 * OR $0300
manner. That’s what the code in lines 1270 to 1310 does. 1120 x
. « thi i is 1140
The actual program patch starts at line 1400 where tbe first thing that is done is nes
the character being output is checked to see if it 1s a carriage return. If the character i igg * EQUATES
that is intercepted is a carriage return, first a space is printed out (lines 1420 and 0006 1180 NFLAG  .EQ $6
) A : .Ifit’s not, the 0008- 1190 TXTPTR .EQ $8
1430) and then a carriage return is printed out (lines 1440 and 14.150) If 1t. $ not, th ‘ 0036 1200 CSWL ‘EQ $36
program branches to line 1450 and prints the character on the printer, which here is 8%15):2_ 3 %8 zgﬁﬁggi Eg :ggg
connected to a card in slot 2. If your printer is in a different slot, just change lt;e C202- 1230 PRINTER .EQ $C202
.. : in lines 0, is for Apple FC58- 1240 HOME .EQ $FC58
equate in line 1160. The 2 that is added tq SWI‘ in lines 14?0 and 1450, . P}:). FDRD- 1520 cour "EQ $FDED
parallel interface cards. If an Apple serial interface card is used, and this patch is 3?8 :
required, a 7 should be used instead. i%gg : Here the program game and copyright
. N . < notice are printed out.
Printer interface cards from other manufacturers may require othe‘r numbers. To 1500 *
find out, plug your printer card with the printer attached to it and on, into slot 1 and gggg— ig ?)233 FC }g%g igﬁ g(T)bgT Sifii i(c)ri::t
b . —_
then type PR#1. Then, while the printer is activated, look at what number is stored 0305- AD 03 1330 LDY /TEXT to be printed.
c oD . : 0307- 20 42 03 1340 JSR MSGPRT Print it.
in location $36. This can be done by typing CALL -15! and then typing tlr:e nu)r(n;)ejr 1390 *
. aCarri | spond with 0036— XY, where 18 1360 * This subroutine sets the Control-N flag
36 and a carriage return. The computer will resp 1370 % (NFLAG) to sore amd sete up the
the number to be added to SLOT. 1380 * output hooks to point to the patch
L. [ adlv o) 1390 * program that begins on line 1680.
As you can see, this routine 1s very short (only 33 bytes long) and it can el;;gy s;: . , 1 200 . N
. . o thic o nctas ing P a 030A- A9 00 1410 LDA #$0 Set NFLAG to
in the unused portion of page three. To use thfs routine, instead ofty.p g ) 0300 85 06 1420 ora milac Sy
you do is type CALL 768. The routine can still be turned off by typing PR#0. 8;(135_ 28 (2)% %228 EB? ﬁgﬁg Get ﬁddrgss of
) A . . . - patch and save
This program showed you how it is possible to detect a particular character and 0312- 85 36 1450 STA CSWL it in output
: ; S Ak 0314- 84 37 1460 STY CSWL+1 hooks .
then send out another character or set of characters in its place. Ygu could easily 0316- AD DO 03 1479 DA WARNDOS  aooks. s ie
modify this program to send a line feed every time it detected a carriage return, for 83} g- gg gg }Zgg ggg ggggs ggesentt:. )
. H — return.
those printers that require it, or you could use it to send codes to the printer to 031D~ 20 EA 03 1500 JSR CONNECT  Comnect to DOS.
[SURT] ccihiliti . 0320- 60 1510 NODOS RTS Return.
change its mode from normal to expanded, or italics, etc. The possibilities are 10
. . o 1530 *
limited Only by your1n1ag1natu)n. 1540 * This routine checks to see if the
1550 * character being printed is a
1560 * Control-T, Control-N or a carriage
. pso rin 1570 * return. If it is a Control-T it
Gettlng more out OfyOllrE np ter 1580 * cancels the expanded mode. If it
. . ) . : availabl 1590 * is a Control-N it modifies NFLAG
The Epson printer is probably one of the most w1del‘y.used prmt.er's available 1600 * to indieate thar chodifies NFLAG
today. The reason for this is its low price and its versatility. The original Epson ig;g x ?EtizgéksIIEFi;Giioasgzr;ifa%Eereturn,
MX-80 was able to print in condensed, normal and expanded (double width) 1630 * Control-N mode is active. If it is,
L mbine 1640 * every time a carriage return is
modes as well as combinations of the above. For example, you could co 1650 * printed, s Control 8 in printes right
condensed and expanded to form a bold, or enhanced, mode. 1660 * after it.
When trying to usc the expanded mode, by itself or in combination with another 0321 Co 94 1680 START grg Heou Is te Control-T?
d . . . o the BEac I 2 3 5 . o es, to normal.
mode, you'll very quickly discover one of the shortcomings of the Epson printer: 0o b0 hp 1500 oMy veds yes, to mormal.
’ o e T o carriaee returm is Cneoun- 0327 bO 02 1710 BNE PRINT1 No, print character.
the expunded mode is automatically cancelled when a carriage retur oae om0 07 AT AL RINT Vol PRRmh S ract




60 / Chapter 4

032B- 20 02 €2 1730 PRINT1 JSR PRINTER Print character.

032E- C9 8D 1740 CMP #$8D Was it a carriage return?
0330- DO 07 1750 BNE RETURN No, next chargcter.
0332~ A5 06 1760 LDA NFLAG Control-N active?
0334- FO 03 1770 BEQ RETURN No, next character.
0336- 20 02 C2 1780 PRINT2 JSR PRINTER Keep active.
0339- 60 1790 RETURN RTS Return.
1800 *
1810 *
1820 * This subroutine cancels the Expanded
1830 * print mode, resets the Control-N flag
1840 * and leaves the user with the printer
1850 * active.
1860 *
033A- 20 02 C2 1870 CANCEL JSR PRINTER Print Control-T.
033D~ A9 00 1880 LDA #$0 Reset NFLAG to
033F- 85 06 1890 STA NFLAG zero.
0341- 60 1900 RTS Return.
1910 *
1920 * .
1930 * This is the message printing routine.
1940 *
0342- 85 08 1950 MSGPRT STA TXTPTR Save pointer to
0344- 84 09 1960 STY TXTPTR+1 text to be printed.
0346~ A0 00 1970 LDY #$0
0348- B1 08 1980 LOOP LDA (TXTPTR),Y Get character.
034A- FO 06 1990 BEQ ENDPRT Done yet?
034C- 20 ED FD 2000 JSR COUT No, print character.
034F- C8 2010 INY
0350- DO Fé 2020 BNE LOOP Get next character.
0352- 60 2030 ENDPRT RTS Return to caller.
2040 *
2050 *
2060 * This is the text printed by the program.
2070 *
0353- C5 DO D3
0356- CF CE AO
0359- DO D2 C9
035C- CE D4 C5
035F- D2 A0 DO
- C1 b4 C3
8%2%— 28 2080 TEXT .AS -"EPSON PRINTER PATCH"
0366- 8D 8D 2090 .HS 8D8D
0368- C2 D9 AO
036B~ CA D5 CC
036E- C5 D3 AO
0371- C8 AE AO
0374- C7 C9 CC
0377- C4 C5 D2 2100 .AS -"BY JULES H. GILDER"
037A~ 8D 2110 .HS 8D

037B- C3 CF DO
037E- D9 D2 C9
0381- C7 C8 D4
0384— A0 A8 C3
- A9 A0 B1
8%2;— QQ B8 B2 2120 .AS -"COPYRIGHT (C) 1982"
038D- 8D 2130 .HS 8D
038E- C1 CC CC
0391- A0 D2 C9
0394- C7 C8 D4
0397- D3 A0 D2
039A- C5 D3 C5
039D- D2 D6 C5

03A0- C4 2140 .AS —"ALL RIGHTS RESERVED"
03A1- 8D 8D 8D
03A4- 00 2150 .HS 8D8D8DO0

tered. This makes it impossible to list a program out in the expanded or bold
format. But all is not lost, by stealing control away from the output, as we've
learned to do with the last program, we can overcome the Epson’s design flaw.

Stealing Control Of The Output / 61

The expanded mode is activated by sending a Control-N to the printer and
deactivated by sending a Control-T to the printer or by the printer receiving a
carriage return. So, in order to retain the printer in the expanded mode, all we have
to do is detect when the printer is being sent a carriage return and the immediately
after that, send the printer another Control-N. This will insure that the printer will
remain in the expanded mode, or any other combination mode that requires the
cxpand option to be active (e.g. bold). To cancel the expanded mode, a Control-T
is sent.

This is exactly what the EPSON PRINTER PATCH program does. After print-
ing out the program title (lines 1310 to 1340), the program initializes NFLAG to
zero (lines 1410 and 1420). NFLAG is used to determine if a Control-N has been
sent at least once to the printer, so that the program will know if it must send a
Control-N after every carriage return. The next thing that the program does is to
find the starting address of the program, and store that address in the output hooks
(lines 1430 to 1460). As we did in the last program, a check is made to see if DOS is
present and the connection to DOS is made if it is (lines 1470 to 1510).

The actual program that does the checking starts on line 1680. The first thing that
is done here is to check if a Control-T has been entered. If it has, the program
jumps to a routine that cancels the expanded mode (line 1870) and also stores a
zero in NFLAG. If the character sent to be printed was not a Control-T, a check is
made to see if it is a Control-N. If it is, the Control-N is stored in NFLAG and then
sent to the printer (line 1730). If it wasn’t a Control-N, the program branches to
1730 to send the character to the printer.

After the character has been printed, it still remains in the accumulator so a
check can be made to see if it was a carriage return (line 1740). If it wasn’t, the
program executes an RTS instruction (line 1790) and returns to get the next charac-
ter, if any. If it was a carriage return, the program checks NFLAG to see if the
cxpanded mode is active. If it is, a Control-N is sent to the printer to keep it active
(lines 1760 to 1780) and then an RTS instruction is executed.

For those of you who do not own Epson printers, don’t despair, there are pro-
grams here that will help you too. Did you ever get frustrated because you wanted
to list a program so you typed PR# < slot> and the program started listing out in
40 column format? If you have, you’ll understand the frustration of having to reset,
activate the printer and try to remember to tell the printer to print 80 columns wide.
With the next program we’re going to look at, the PRINTER SETUP PROGRAM,
you'll no longer have to worry about making sure your printer is in the right mode.
All you do is enter your setup string the first time you use this program, and then,
for as long as power is applied and page three of memory remains intact, all you'll
have to do to activate the printer in the correct mode is to CALL 825.

Set up your printer automatically

Having your printer ready to operate in the mode you desire is made possible by
using a program  TEXT INPUT ROUTINE — that we developed carlier in the



6./ Chapter 4

hook in Chapter 3. In fact, if you look at lines 1750 to 1840, you’ll see exactly the
same program from Chapter 3. We'll come back to it later.

If you glance quickly at the PRINTER SETUP PROGRAM, you'll see that it
differs somewhat from the programs we have had until now, because all of the text
that is going to be printed out is at the beginning of the program instead of at the end
of it (lines 1360 to 1480). The reason for this is that the text is only going to be used
once, the first time that the program is run, and we want the part that’s going to be
used over again to remain in page 3 of memory. If the text were at the end of the
program, the section of the program we want to remain permanently would reside
in page 2, which is the input buffer. Thus, if a sufficiently long line of text were
entered, it would get wiped out. The JMP instruction that precedes the text mes-
sages is only there so that the program can be run from its starting address.

The program begins on line 1550, where the screen is cleared, the title and
copyright notice are printed, and the user is asked what slot his printer is in. Once
the slot number is entered (line 1590) it is checked to make sure that the number is
in the range of 0 to 7 (lines 1610 to 1640). If it’s not, then the program starts over
again. Once a legal entry has been verified, the most-significant nibble is set equal
to zero (line 1650), resulting in a byte that contains the actual slot number and not
its ASCII equivalent. This value is stored temporarily on zero page in a memory
location labelled SLOT (line 1660).

Now that the program knows what slot your printer interface card is in, it asks
the user what the setup string is that the printer requires (e.g. Control-I 80N, etc.).
The input of this string and the storage of it in memory is handled by the text input
routine that was discussed in Chapter 3 (line 1760). The data are taken in and stored
in a short buffer that starts immediately after the program ends.

In this chapter we have been discussing programs that stcal control away from
the output. Careful examination of the listing of the PRINTER SETUP PRO-
GRAM., will show you that the subroutine that loads an address into $36 and $37 is
conspicuously missing. How then are we affecting the output? The answer lies in
that portion of the program that begins on line 1930. Here, a routine in the Apple
F8 monitor ROM is used to simulate the PR# <slot> that we usually do from the
keyboard or a BASIC program. Whenever a PR# <slot> is executed, $36 and
$37 are automatically changed to point to the software that is in the ROMs on the
interface card. For Apple’s parallel interface and slot number 1 this would result in
$36 and $37 containing the address $C 102, low-order byte first.

Back to our program, in line 1930, the slot number that was saved earlier, is now
retrieved and placed into the accumulator and a jump is made to OUTPORT, to
simulate the PR # < slot > . Next, a check is made to see if DOS is present, and if it
is, the new output hooks are connected through DOS (lines 1950 to 1980). With the
printer now connected, the address of the buffer that contains the setup string is
pointed to by the accumulator and the Y-register and the program falls into the
message printing subroutine. This subroutine prints out the characters that we
entered carlier and sets the printer to the proper mode. Upon hitting the RTS of the
message printing subroutine, control is returned to the program that originally

Stealing Control Of The Output / 63

called PRINTER SETUP. Once the information has been entered in the buffer, and
assuming the slot number that is stored on zero page remains intact along with page
3, the printer can be initialized without doing a PR# < slot> but by simply doing a
CALL 825.

1000 *kFxxkkhkk ke dekekokok ok deok ko dededodkok e dek ok ok
1010 *** kK
1020 **%x PRINTER SETUP PROGRAM *kk
1030 **% *okk
1040 *** COPYRIGHT (C) 1982 BY Kkk
1050 **x% JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 **% Kok
1080 Fhkkkkkhkoksk sk dokkdkdkdkkdkrkkddok ek ok 3
1090 *
1100 *
1110 *
1120 .OR $238
1130 *
1140 *
1150 * EQUATES
1160 *

0006 1170 TXTPTR .EQ $6

0008- 1180 SLOT .EQ $8

0200~ 1190 IN .EQ $200

03D0- 1200 WARMDOS .EQ $3DO

FC58- 1210 HOME .EQ $FC58

FDOC- 1220 RDKEY .EQ $FDOC

FD6F -~ 1230 GETLN1 .EQ $FD6F

FDED- 1240 CoUT .EQ $FDED

FE95- 1250 OUTPORT .EQ $FE95
1260 *
1270 *

0238- 4C 00 03 i%gg JMP START Run the program.

These are the text messages printed
out by the program. The title is
printed first and then the printer
slot and setup string are requested.

-
W
N
(=)

¥ % % % ¥k %

023B- DO D2 C9
023E- CE D4 C5
0241~ D2 A0 D3
0244- C5 D4 DS
0247~ DO A0 DO
824A— D2 CF C7
24D~ D2 C1 CD 1360 TEXT1 .AS ~"PRINTE "
0250~ 8D 8D 1370 -HS 8D8D § SETUP PROGRAM
0252- C2 D9 A0
0255- CA D5 CC
0258- C5 D3 A0
025B- C8 AE A0
025E- C7 C9 CcC
0261~ C4 C5 D2 1380 -AS -"BY JULES H. GILDER"
0264- 8D 1390 .HS 8D
0265- €3 CF DO
0268- D9 D2 C9
026B- C7 C8 D&
026E- A0 A8 C3
0271- A9 A0 B1
0274~ B9 B8 B2 1400 .AS -"COPYRIGHT (C) 1982"
0277~ 8D 1410 .HS 8D
0278- C1 €CC CC
0278~ A0 D2 C9
0727k C7 C8 D4
0281 D3 A0 D?
07284 CH DY CH
0287 D7 DO CH



64 / Chapter 4

028A- C4 1420
028B- 8D 8D 8D 1430
028E- D7 C8 C1
0291- D4 AO D3
0294~ CC CF D4
0297~ A0 C9 D3
029A- A0 D9 CF
029D~ D5 D2 AQ
02A0~ DO D2 C9
02A3- CE D4 C5
02A6- D2 AO C9
02A9- CE BF AQO 1440
02AC- 00 1450

.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D

.AS -"WHAT SLOT IS YOUR PRINTER IN? "
.HS 00

02AD- 8D 8D 1460 TEXT2 .HS 8D8D

02AF- C5 CE D&
02B2- C5 D2 AO
02B5- D4 C8 C5
02B8- A0 D3 C5
02BB- D4 D5 DO
02BE— A0 D3 D&
02C1- D2 C9 CE
02C4- C7 AD D&
02C7- C8 C1 D&
02CA- AO D9 CF
02CD- D5 D2 AO
02D0- DO D2 C9
02D3- CE D4 C5
02D6- D2 CE C5
02D9- C5 C4 D3
02DC— A0 C1 CE
02DF- C4 AQ D&
02E2- C8 C5 CE
02E5- A0 DO D2
02E8- C5 D3 D3
02EB- AO D4 C8
02EE- C5 AO BC
02F1- D2 C5 D4
02F4— D5 D2 CE
02F7- BE A0 CB
02FA- C5 D9 BA 1470

.AS -"ENTER THE SETUP STRING THAT YOUR

PRINTERNEEDS AND THEN PRESS THE <RETURN> KEY:"

02FD- 8D 8D 00 1480
1490
1500
1510
1520
1530
1540
0300- 20 58 FC 1550
0303- A9 3B 1560
0305~ A0 02 1570
0307~ 20 4C 03 1580
030A- 20 OC FD 1590
030D~ 20 ED FD 1600
0310- C9 BO 1610
0312- 90 EC 1620
0314- C9 B8 1630
0316- BO E8 1640
0318- 29 OF 1650
031A~- 85 08 1660
1670
1680
1690
1700
1710
1720
031C- A9 AD 1730
031E- A0 02 1740
0320- 20 4C 03 1750
0323- 20 6F FD 1760
0326~ A0 FF 1770
0328 CH 1780
0129 B9 00 02 1790

.HS 8D8D00

*

*

* This section of code clears the

* screen and asks the user what slot

* the printer interface card is in.

*

START JSR HOME Clear screen.
LDA #TEXT1 Get pointer to
LDY /TEXT1 text to print.
JSR MSGPRT Ask for slot.
JSR RDKEY Get response.
JSR COUT Echo on screen
CMP #$BO Check that it
BCC START is between 0
CMP #$B8 and 7.
BCS START
AND #$F Make it a digit.
STA SLOT Save it.

*

*

* This section asks the user for the

* required setup string and stores it

* in a buffer area.

*
LDA #TEXT2 Get pointer to
LDY /TEXT2 text to print.
JSR MSGPRT Ask for setup string.
JSR GETLN1 Get string.
LDY {#$FF

1.00P1 INY
I.DA IN,Y Transnfer ntrlng to a

Stealing Control Of The Output / 65

032C- 99 5D 03 1800 STA BUFFER,Y buffer area.

032F- C9 8D 1810 CMP #$8D
0331- DO F5 1820 BNE LOOP1
0333- C8 1830 INY
0334~ A9 00 1840 LDA #$0 Terminate it with
0336- 99 5D 03 1850 STA BUFFER,Y a zero.
1860 *
1870 *

1880 * This is the warm entry into the
1890 * Printer Setup Program. When entered
1900 * here, the printer will be setup using
1910 * previously entered information.

1920 *
0339- A5 08 1930 PRNTRON LDA SLOT Get slot number.
033B- 20 95 FE 1940 JSR OUTPORT Do PR# <slot>.
033E- AD DO 03 1950 LDA WARMDOS Check for DOS.
0341~ C9 4C 1960 CMP #$4C
0343- DO 03 1970 BNE NODOS No DOS, continue.
0345- 20 DO 03 1980 JSR WARMDOS Connect through DOS.
0348- A9 5D 1990 NODOS LDA #BUFFER Send setup string
034A- A0 03 2000 LDY /BUFFER to the printer.

2010 *

2020 *

2030 * This is the message printing routine.

2040 *
034C- 85 06 2050 MSGPRT STA TXTPTR Get pointer to
034E- 84 07 2060 STY TXTPTR+1 text to print.
0350- A0 00 2070 LDY #$0
0352- B1 06 2080 LooP I.LDA (TXTPTR),Y Get character.
0354- FO 06 2090 BEQ ENDPRT Done?
0356- 20 ED FD 2100 JSR COUT No, print character.
0359- C8 2110 INY
035A- DO Fé 2120 BNE LOOP Get next character.
035C- 60 2130 ENDPRT RTS Return.

2140 *

2150 *

2160 * This is where the setup string buffer
2170 * starts.

2180 *
035D- 00 2190 BUFFER .HS 00
How to TAB past 40 columns

When writing an Applesoft program that is to produce a printed report of some
kind as an output, programmers often find it desirable to TAB to a location that is
greater than 40. Unfortunately, Applesoft will not respond to such a command
properly and instead, will treat any TAB to a position of greater than 40 as a SPC
command. This can reek havoc on formatted outputs.

A solution to this problem however has been found and publicized widely by the
International Apple Core. The solution they presented was a short machine lan-
guage program into which the user had to plug in the appropriate values. The
whole process was a bit cumbersome, so I wrote a program to automatically setup
the program with the appropriate data by the user simply answering two questions.
Known as the PRINTER TABBING DRIVER, this program asks the user what slot
the printer interface card is in (lines 1460 to 1490). The program waits until a key is
pressed (line 1500) and then echoes the character entered on the screen (line 1510).

Alter the number of the slot has been entered, the program checks to make sure
that a number between 1 and 7 was entered (lines 1520 to 1550) and then zeros out
the most significant nibble of the byte (line 1560). After storing this number inside



66 / Chapter 4 Stealing Control Of The Output / 67

the LDA instruction of the tabbing program (line 1570), the number, which is still 1420 * of code that's going to be customized
; A . ne . (1l it fohe 1430 * and adds $CO to it and stores it as
in the accumglator, has $C0 added Fo it (ln.le 1580) to cor.we'rt itinto tbe high .ord.er 1440 * the high-byte of a JSR instruction.
byte of the printer card address. This byte is then stored inside a JSR instruction in 1450 *
. . 0800~ 20 58 FC 1460 START JSR HOME Clear screen.
the tabbing program (line 1590). 0803- A9 CD 1470 LDA #TEXT1 Point to text
. . . . 0805~ i .
Next, the program asks what type of printer is being used: parallel, serial or a 038?- 12\8 2213 08 }238 32,‘{ ,ﬁ’ég’é}{% 5212‘2 lin&nmd
i 1 . TS HETE] 080A- 20 OC FD 1500 JSR RDKEY Get answer.
Silentype (lines 1.720 to 1740). The data entered is Lh.ecked t.o.malfe sure it is in the 080D- 20 ED FD 1310 JeR COUT Beho e - e,
range of 1 to 3 (lines 1760 to 1790), converted to a single digit (line 1800) and the 0810- C9 B1 1520 CMP #$B1 Make sure it's
be dis ¢ d ber in th £0to 2 by subtracti 0812- 90 EC 1530 BCC START between 1 & 7
number entered is converted to a number in the range of 0 to 2 by subtracting | 0814— C9 BS 1540 CMP #$B8 or start over.
; . o e o _regig 0816- BO E8 1550 BCS START
from it (lm.es 181(? to 1820). Thls number is then transferre.d to the X'rcglstcrto be 0818- 29 OF 1360 AND #$OF Make it a digit.
used as an index into a table (line 1830) and also temporarily stored in a zero page 081A- 8D 7A 08 1570 STA 2§cm+1 Save it.
. . 081D- 09 CO 1580 ORA co Convert it.
location labelled DEVICE (line 1840). 081F- 8D 98 08 1590 STA WARMPRT+2 Save it.
. . . - *
Using the X-register, the program proceeds to retrieve the low-order byte of the 12(1)8 *
printer address from the first of three data tables and stores it inside the JSR 1620 * Here, the user is asked if output is
. . R . R 1630 * to a parallel, serial or Silentype
instruction of the tabbing program (lines 1850 to 1860). Next, the program gets the 1640 * printer. The entry is converted to a
. - . . * gi igi 4 i
low-byte of the address of the location used by the interface card to hold the column 1228 * i;{‘ﬁlﬁaﬂi’é;tciﬁﬂa?ﬁiigdihi“piﬁgi;‘m
count and stores it in the tabbing program (lines 1880 and 1890). A little bit of iggg : mO{ilflgatl?nS- (fet index to TABLE3 by
. . . . . usin e formulia:
calculation is needed to retrieve the high-order byte of the column count location. 1690 * &
This is donc in lines 1890 to 2000. 1700 % Index - (DEVICE NMBR —1)%7 + S1OT-1
0822- A9 45 1720 LDA #TEXT2 Point to text
1000 #**kkkkhkhkikkkhkhkkhhhhkkhkkhhkhkikhik 0824- A0 09 1730 LDY /TEXTZ to be printed‘
1010 *** *kk 0826- 20 Al 08 1740 JSR MSGPRT Print it.
1020 *** PRINTER TABBING DRIVER ok 0829~ 20 OC FD 1750 REDO JSR RDKEY Get answer.
1030 *** Fhk 082C- C9 B1 1760 CMP #$B1 Make sure it
1040 *** COPYRIGHT (C) 1982 BY ek 082E- 90 F9 1770 BCC REDO is in 1 to 3
1050 *** JULES H. GILDER *kk 0830~ C9 B4 1780 CMP #$B4 range or redo.
1060 *** ALL RIGHTS RESERVED Fkk 0832- BO F5 1790 BCS REDO
1070 *** *kk 0834- 29 OF 1800 AND #$0OF Make a digit.
1080 *kkHkkkh Kk ek ok ok K 0836- 38 1810 SEC Subtract 1 to
1090 * 0837- E9 01 1820 SBC #$1 make an index
1100 * ' 0839- AA 1830 TAX Transfer to X.
1110 * 083A- 85 19 1840 STA DEVICE Save it too.
1120 * 083C- BD B2 08 1850 LDA TABLE1,X Get printer low
1130 * 083F- 8D 97 08 1860 STA WARMPRT+1 byte and save.
1140 * EQUATES 0842- BD BS 08 1870 LDA TABLE2,X Get high-byte of
1150 * 0845- 8D 9C 08 1880 STA COUNT+2 column count location.
0006- 1160 TXTPTR .EQ $06 0848- A5 19 1890 LDA DEVICE Get device
0019- 1170 DEVICE .EQ $19 084A- OA 1900 . ASL type number
0024- 1180 CH .EQ $24 084B— OA 1910 ASL multiply by 7
0036~ 1190 CSWL .EQ $36 084C— DA 1920 ASL (x 8 and -1)
003C- 1200 AlL .EQ $3C 084D- 38 1930 SEC
003D- 1210 A1H .EQ $3D 084E- ES 19 1940 SBC DEVICE Save result.
003E~ 1220 A2L .EQ $3E 0850- 18 1950 cLC
003F- 1230 A2H .EQ $3F 0851- 6D 7A 08 1960 ADC BEGIN+1 Add slot number.
0042— 1240 A4L LEQ $42 0854— AA 1970 TAX Transfer to X.
0043- 1250 A4H LEQ $43 0855- CA 1980 DEX Subtract 1.
03D0- 1260 WARMDOS .EQ $3DO 0856- BD B8 08 1990 LDA TABLE3,X Get column count
03EA- 1270 CONNECT .EQ $3FA 0859~ 8D 9B 08 2000 STA COUNT+1 low-byte and save
07F9- 1280 COLCNT .EQ $7F9 2010 *
C100- 1290 PRINTER .EQ $C100 2020 *
FC58-~ 1300 HOME .EQ $FC58 2030 * Here, the program moves the modified
FDOC- 1310 RDKEY .EQ $FDOC 2040 * section of code down to page 3 ($300)
FDED- 1320 cCouT .EQ $FDED 2050 * where it is designed to run.
FE2C— 1330 MOVE .EQ $FE2C 2060 *
FE95- 1340 OUTPORT .EQ $FE9S 085C— A9 79 2070 LDA #BEGIN Store start of
1350 * 085E- 85 3C 2080 STA AlL program address
1360 * 0860- A9 08 2090 LDA /BEGIN in Al.
1370 * This section of the program clears 0862- 85 3D 2100 STA AlH
1380 * the screen, prints out the title of 0864- A9 A1l 2110 [.DA #MSGPRT Store end of
1390 * the program and asks the user what 0866- 85 31 2120 STA A2l program addr.
1400 * slot the printer card is o, 1t then 0868- A9 (08 2110 LDA /MSGPRT in A2.
1410 *

stores the sltot number In the soct fon OB6A 85 IF 2140 STA A2H




68 / Chapter 4

086C-
086K
0870-
0872~
0874
0876-

0879~
087B-
087E-
0880-
0883~
0885-
0887-
0889--
088B—
088E-
0890-
0892-
0895-

0896-
0899-
089A-
089D
089F -
08A0-

08A1-
08A3-
08A5-
08A7-
08A9-
08AB-
08AE-
08AF-
08B1-

08B2-
08B5-
08B8-
O8BB-
08BE-
O8BF-
08C?

A9
85
A9
85
AO
4C

A9
20
A9
20
A9
85
A9
85
AD
c9
DO
20
60

20
48
AD
85
68
60

85
84
AOQ
B1
FO
20
Cc8
DO
60

02
07
F9
FC
FF
FQ
I°C

00 2150
42 2160
03 2170
43 2180
00 2190
2C FE 2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
01 2340
95 FE 2350
8D 2360
ED FD 2370
1D 2380
36 2390
03 2400
37 2410
DO 03 2420
4C 2430
03 2440
EA 03 2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
02 €1 2560
2570
F9 07 2580
24 2590
2600
2610
2620
2630
2640
2650
06 2660
07 2670
00 2680
06 2690
06 2700
ED FD 2710
2720
F6 2730
2740
2750
2760
2770
2780
2790
2800
07 07 2810
05 CF 2820
FA FB
FD FE
2830

A
FD

LDA #$0 Store $300 in
STA A4L Al which is
LDA #$3 start of
STA A4H destination.
LDY #$0 Zero Y-register.
JMP MOVE Move code.
*
*
* This is the actual tabbing driver
* program. It gets moved down to $300
* where it is designed to run. This
* segment of the program initializes the
* printer by doing the equivalent of a
* PR# <slot> and then sending a
* carriage return to the printer. It
* then modifies the output hooks $36
* and $37 to point to the part of this
* program that handles TABs.
*
BEGIN LDA #3501 Load slot number into accum.
JSR OUTPORT Do PR#<accum>.
LDA #$8D Print carriage
JSR COUT return.
LDA #$1D Change output
STA CSWL hooks.
LDA #$3
STA CSWL+1
LDA WARMDOS See if DOS is
CMP #$4C present and if
BNE NODOS so connect
JSR CONNECT through it.
NODOS RTS Otherwise, return.
*
*
* Here the character in the accumulator
* is printed out and also temporarily
* saved on the stack while the column
* count on the printer is picked up and
* stored in $24 (cursor horizontal
* position).
*
WARMPRT JSR PRINTER+2 Print character.
PHA Save it on the stack.
COUNT LDA COLCNT Get column count.
STA CH Save it in HTAB.
PLA Retrieve character from stack.
RTS

*
*
* This is the message printing routine.
*

MSGPRT STA TXTPTR Get the address
STY TXTPTR+1 of text to be
LDY #$0 printed.
LOOP LDA (TXTPTR),Y Get character.
BEQ ENDPRT Tf done, rtn.
JSR COUT If not print.
INY Increment pointer.
BNE LOOP Get next character.
ENDPRT RTS Return.
*
*
* These are the data tables that
* contain the modifications to the
* TAB DRIVER program.
*
TABLE1 .HS 020707

TABLE2 .HS 0705CF

TABLE3  .HS FIFAFBFCFDFEFF

Stealing Control Of The Output / 69

08C5- FE
08C6- 04
08C9-~ 04
08CC- 04

08CD- DO
08D0- CE
08D3- D2
08D6- Ci1
08D9- C9
08DC- A0
08DF- C9
08E2- D2
08E3- 8D
08E5- C2
O8E8- CA
08EB- C5
08EE- C8
08F1- C7
08F4- Ch4
08F7- 8D
08F8- C3
08FB- D9
08FE- C7
0901- AO
0904- A9
0907- B9
090A- 8D
090B- C1
090E- A0
0911- C7
0914- D3
0917- C5
091A- D2
091D~ C4
091E- 8D
0921~ D7
0924- D4
0927- CC
092A- A0
092D~ AO
0930- D5
0933- DO
0936- CE
0939- D2
093C- C1
093F- AO0
0942- BF
0944- 00
0945- 8D
0947- D7
094A~ D&
094D- D9
0950- A0
0953- A0
0956~ C9
0959~ C5
095C- C9
095F- C5
0962- C1
0965- AO
0968- A0
096B- D5
096F- AO
0971- D6
HAVE?"

0974 8D
0976 A0
0979 B¢

04
04

D9

8D
A)
L}

04
04

Cc9
C5
D4
c2
c7

C5

C1
Dé4
c5
Ccé
D2
D4
AO
D4
c6
C5
CF
CF
AOQ
Cc1
BF

A0
BK

2840

2850
2860
2870
2880
2890
2900

2910
2920

2930
2940

2950
2960

2970
2980

2990
3000
3010

3020

1010

.HS F9FAFBFCFDFEFE

.HS 04040404040404

5

These are the text messages that are
printed out by the program.

% % b b

TEXT1 .AS -"PRINTER TABBING DRIVER"
.HS 8D8D

.AS -"BY JULES H. GILDER"
.HS 8D

.AS -"COPYRIGHT (C) 1982"
.HS 8D

.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D

.AS -"WHAT SLOT IS YOUR PRINTER CARD IN? "
.HS 00
TEXT2 .HS 8D8D

.AS -"WHAT TYPE OF PRINTER INTERFACE DO YOU

LHS BDED



70 / Chapter 4

097C- A0
097F- D2
0982- CC
0985- 8D
0986- A0
0989- BC
098C- A0
098F- D2
0992- CC

Do
Cc1
c5

AO
B2
D3
Cc9

c1
cC

AO
BE
C5
C1

3040
3050

3060

LAS - <1> PARALLEL"
.HS 8D

.AS - <2> SERIAL"

Stealing Control Of The Output / 71

While this is certainly possible, it does mean that you can’t take advantage of the
lowercase adapter in machines that have it. A better way around the problem is to
usc the LOWERCASE LETTER FILTER program. This program is a short rou-
tine that steals control away from the output by replacing the output hooks (lines
1320 to 1400), and then tests each character that is to be printed to sce if it is a
lowercase letter. If it is, the letter is converted to it’s uppercase equivalent and then

0993- 8D 3070 .HS 8D

0994- A0 AQ AO

0997- BC B3 BE

099A- A0 D3 C9

099D- CC C5 CE

09A0- D4 D9 DO

09a3- C5 3080 JAS " <3> SILENTYPE"
09A4- 8D 8D 3090 .HS 8D8D

09A6- C5 CE D4

09A9- C5 D2 A0

09AC- C3 C8 CF

09AF- C9 C3 C5

09B2- BA AO 3100 .AS -"ENTER CHOICE: "
09B4- 00 3110 .HS 00

Finally, after the program has been properly configured, it is moved from its
current location down in memory to page three, where it is designed to run (lincs
2070 to 2200). After the move is made, control is returned to the calling program or
mode via the RTS instruction in the MOVE routine.

The actual tabbing routine starts at line 2340 and jumps to a monitor routine that
simulates the PR# <slot> command. Then a carriage return is sent to the printer
to activate it (line 2360). After that, the output hooks are changed so that they point
to the routine inside this program that permits the extended tabbing (lines 2380 to
2460). The routine that allows the extended tabbing starts at line 2560 and does so
by allowing CH, the location that stores the horizontal position on the screen, to
hold a number greater than 40. This number is picked up from the location that
holds the column count for the printer. In the process, whatever is in the accumula-
tor is temporarily stored on the stack.

To use the PRINTER TABBING DRIVER, BLOAD the program and then type
CALL 2048. The program will ask you a few questions. After you have answered
them, the program will end and return control to the immediate mode. This is a
sign that the program has completed the initialization phase, and is ready to use. To
do this, simply use the command CALL 768 instead of PR# < slot> any time you
want to use the printer. The printer can still be turned off by typing PR#0.

With the growing popularity of lowercase adapters for the Apple computer,
more and more programmers arc writing programs that use lowercase text. While
this can be helpful and even make programs appear more attractive, there is a big
problem for people who don’t have lowercase adapters and still want to run those
programs. Because of the way that lowercase letters are implemented on the Apple
computer, if they are displayed on a computer without a lowercase adapter, the
lowercase text will appear like an unrelated mess of numbers and symbols.

Getting rid of lowercase letters the easy way

One way ol avoiding the problem is to write programs in uppercasce text only.

printed.

The actual filtering routine, that handles the character checking and conversion
starts on line 1480. Lowercase letters on the Apple fall in the ASCII code range of
$E1 to $FA (a to z). Linc 1480 checks to see if the letter to be printed is less than

1000 *rkhikhikkkkkhkhkrkrhrhhkkrrrkkrrrhkrkrk
1010 *** *kk
1020 *** LOWERCASE LETTER FILTER *kk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *hk
1080 **rkdkkihkkkkhkhhkrkrhhkkhkhhdhrhrkhkhkhrk
1090 *
1100 *
1110 *
1120 .OR $300
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
0036- 1180 CSWL .EQ $36
03D0- 1190 WARMDOS .EQ $3DO
03EA- 1200 CONNECT .EQ $3EA
FDFO- 1210 COUT1 .EQ $FDFO
1220 *
1230 *
1240 * This section of code sets up the
1250 * output hooks at $36 and $37 so that
1260 * any characters that are being output
1270 * by the computer will first pass
1280 * through this subroutine. Also, a
1290 * test is made to see if DOS is present
1300 * or not.
1310 *
0300- A9 13 1320 LDA #START Get START low
0302- 85 36 1330 STA CSWL byte & save it.
0304- A9 03 1340 LDA /START Get START high
0306- 85 37 1350 STA CSWL+1 byte & save it
0308- AD DO 03 1360 LDA WARMDOS See if DOS is
030B- C9 4C 1370 CMP #$4C present.
030D- DO 03 1380 BNE NODOS It isn't, return.
030F- 20 EA 03 1390 JSR CONNECT Connect to DOS
0312- 60 1400 NODOS  RTS
1410 *
1420 *
1430 * This is the actual start of the
1440 * filter program. If a character to be
1450 * printed is lowercase, it is converted
1460 * to uppercase and then printed.
1470 *
0313- C9 E1 1480 START CMP #$E1 Is it lowercase?
0315- 90 06 1490 BCC PRINTIT No, use it.
0317 C9 FB 1500 CMP [{$FB Is it lowercase?
0319~ BO 02 1510 BCS PRINTIT No, use it.
OB 729 DI 1520 AND {$DF Yes, convert to uppercase.
O31D  AC FO KD 1530 PRINTIT OMP COUT1 Print the character.




72 / Chapter 4

$E1 if it is, it's printed, if not it’s checked to see if it is equal to or greater than $FB.
If so, it falls outside of the range defined for lowercase letters and is once again
printed. However, if it falls within the specified range, the ASCII value of the
character to be printed, which is in the accumulator, is ANDed with the value $DF,
to convert it to an uppercase letter (line 1520) and the character is then printed (line
1530).

Because this routine is so short, it is an ideal way to write dual function pro-
grams. Your original program can be written with lowercase text and when the user
runs the program he can be asked if a lowercase adapter is being used. If the answer
is no, all that has to be done is a CALL 768, and then all text will appear as
uppercase.

Looking at those invisible control characters

Did you ever save a program out to disk and accidentally hit two keys at the same
time while entering the program name? If you did, and didn’t catch your error,
chances are that you wound up with a file on your disk that you couldn’t load or
delete. Or maybe you bought a commercial piece of software and there are some
invisible files on the disk which you can’t access in the direct mode.

Wouldn'’t it be nice if you could somehow get to those files? You can. In both
cases, chances are that there are control characters imbedded in the program name.
Sometimes, hitting two keys together results in a control character being gener-
ated. And frequently, programmers will imbed backspaces or other control charac-
ters in a file name to make it either invisible or inaccessible. Now, with this simple
little program, you can determine immediately if any control characters have been
used, because they will displayed in inverse video whenever they occur.

The program first steals control away from the normal output routines (lines
1320 to 1400) and redirects it to the program that starts in line 1530. At line 1530,
the program checks to see if a carriage return has been entered. If the character is
not a carriage return, the program branches to a subroutine that checks to see if any
other control characters were entered (line 1540). If it is a carriage return, the
accumulator is saved on the stack and the program does a subroutine jump to the
routine that checks for control characters (line 1560) and prints out the inverse
letter instead. On returning from the subroutine, the $8D that was stored on the
stack is retrieved and printed out (lines 1570 and 1580).

The routine that checks for the presence of a control character starts in line 1680.
If the character is a control character, it will be in the range of $80 to $9F. If it’s not,
the character is simply printed out, otherwise, the character is exclusively ORed
with $80 to convert it to the $0 to $1F range (which is the range for inverse
characters) and is then printed out.

This program will display all control characters, including the carriage return,
which is displayed as an inverse M. If you wish to turn off the ability to display the
control-M replace the $1F in location $319 with a $12. This can be donc from
BASIC by typing POKE 793,18, "To restore the control-M feature place $1F in $319

Stealing Control Of The Output / 73

or POKE 793,31. What this poke does is change the JSR in line 1560 from the
routine that checks for control characters to an RTS instruction (e.g. nothing is
done).

1000 **kkkkhkkhkkhkkhkkkhkhkkhkkkkhkhhkhkdkhkkkkkkk

1010 *** Kkk
1020 *** SHOW CONTROL CHARACTERS *kk
1030 *** *kk
1040 ***x COPYRIGHT (C) 1982 BY k%
1050 *** JULES H. GILDER *kx
1060 *** ALL RIGHTS RESERVED *kk
1070 ***% *kk
1080 **kkkkkkkdkkkhkhkhkhrhhkdhkhkhihirikkkkdk
1090 *
1100 *
1110 *
1120 .OR $300
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
0036- 1180 CSWL .EQ $36
03D0- 1190 WARMDOS .EQ $3DO
O3EA- 1200 CONNECT .EQ $3EA
'DFO- 1210 COUT1 .EQ $FDFO
1220 *
1230 *
1240 * This section of code sets up the
1250 * output hooks at $36 and $37 so that
1260 * any characters that are being output
1270 * by the computer will first pass
1280 * through this subroutine. Also, a
1290 * test is made to see if DOS is present
1300 * or not.
1310 *
0300- A9 13 1320 LDA #START Get START low
0302~ 85 36 1330 STA CSWL byte & save it.
0304- A9 03 1340 LDA /START Get START high
0306- 85 37 1350 STA CSWL+1 byte & save it.
0308- AD DO 03 1360 LDA WARMDOS See if DOS is
030B- C9 4C 1370 CMP #$4C present.
030D- DO 03 1380 BNE NODOS It isn't, return.
030F- 20 EA 03 1390 JSR CONNECT Connect to DOS
0312- 60 1400 NODOS  RTS
1410 *
1420 *
1430 * This is the actual start of the
1440 * control character display program.
1450 * Here a check is made to see if the
1460 * character is a Control-M (carriage
1470 * return). If it is, an inverse M is
1480 * printed followed by a carriage
1490 * return. Otherwise control is passed
1500 * to a routine that checks to see if
1510 * the character is a control character.
1520 *
0313- €9 8D 1530 START  CMP #$8D Is it Cntrl-M?
0315~ DO 08 1540 BNE CHKCTRL No, inverse it.
0317- 48 1550 PHA Yes, save it.
0318- 20 1F 03 1560 JSR CHKCTRL To inverse.
031B- 68 1570 PLA Restore it.
031C~- 4C 29 03 1580 JMP PRINTIT Print a carriage return.
1590

*
1600 *

1610 * Here a check is made to see if the
1620 * character in the accumulator is a
1630 * control character. [If it's not, it
1640 * In printed as is. 1f it is, the

1690 * character is converted to inverse and
1660 * then printed.

1670 *»




74 / Chapter 4

031F- C9 80 1680 CHKCTRL CMP #$80

See if the accumulator
0321- 90 06 1690 BCC PRINTIT

contains a

0323- ¢9 9F 1700 CMP #$9F control character.
0325- BO 02 1710 BCS PRINTIT No, print it.
0327~ 49 80 1720 EOR #$80 Yes, inverse it.

0329- 4C FO FD 1730 PRINTIT JMP COUT1 Print character.

Black-on-white video with no hardware modifications

The Apple computer as it is delivered from the manufacturer normally displays
text as white characters on a black background. Some people like to read black text
on a white background however. To do this, they have developed a fairly simple
hardware modification. But hardware changes are not necessary. By simply using a
short machine language routine, called SCREEN REVERSER, you can imple-
ment this black-on-white feature on any Apple with no hardware modifications.

Once again, to implement this feature we have to steal control away from the
normal output routines and direct it to our program (lines 1330 to 1410). The output
is redirected to line 1800 where the program checks to see if the character to be
printed is an alphanumeric character. If it’s not, the whole screen is reversed (line
1810). If it is, the character is converted to an inverse character by ANDing it with
the value $3F. It and the value in the Y-register are then saved on the stack and the
routine that reverses the entire screen is set up so that only the last line on the screen

is reversed (lines 1870 and 1880). Then the program branches to line 1560 which is
in the middle of the screen reversing routine.

The screen reversing routine starts on line 1500, where the character that is
currently in the accumulator is stored on the stack along with the Y-register (lines
1500 to 1520). Next, the Y-register is set equal to zero and the low-order byte of
POINTER is set equal to zero (lines 1530 and 1540). Then the high-order byte of
POINTER is set to 4 so that POINTER and POINTER* contain the address $400,
which is the start of the screen storage area (lines 1550 and 1560).

The screen is reversed by using POINTER to point to the next character to be
picked up off the screen and inverted. The character is retrieved from the screen in
line 1570 and converted to an inverse character in line 1580 where it is ANDed with
$3F. Then, the character is placed back on the screen in its original position (line
1590) and the Y-register is incremented so that the next character can be retrieved.
This process continues until 256 characters have been converted.

After 256 characters, the high byte of POINTER is incremented by one (line
1620). After its incremented, a check is made to see if the end of the video screen
has been reached (lines 1630 and 1640). If not, the next character is retrieved and
reversed (line 1650). Otherwise, the contents of the Y-register and accumulator
before the routine was entered are retrieved from the stack and restored (lines 1660
to 1680). Finally, the character in the accumulator is output (line 1690).

Because of the relative jump in line 1890, the program is relocatable. This means
that although this program was assembled to run at $300, it can be moved anywhere

in memory and run. The only change required is the address that is stored in the
output hooks (lines 1330 and 1340).

Stealing Control Of The Output / 75

0018-
0036
03D0-
03EA-
FDFO-

0300-
0302-
0304
0306-
0308-
030B-
030D~
030F-
0312-

0313-
0314
0315-
0316-
0318-
031A-
031C-
031E-
0320-
0322-
0324
0325-
0327-
0329-
032B-
032D~
032F-
0330-
0331~
0332-

A9
AOQ

84
AD
Cc9
DO

60

DO 03

EA 03

> FO KD

1000 **kdkhhkdkdhkkhhkrkrkkhkrkhhhhhkrkrhkirrhri
1010 *** Kok
1020 *** SCREEN REVERSER *k%
1030 *** *kk
1040 **%* COPYRIGHT (C) 1982 BY *kk
1050 **%* JULES H. GILDER *kk
1060 *%* ALL RIGHTS RESERVED *kk
1070 *** *kk
1080 *kkkkkdkkkkkkkdhkrrkhhhhhkdhhkkkhrkkxkk
1090 *

1100 *

1110 *

1120 .OR $300

1130 *

1140 *

1150 *

1160 * EQUATES

1170 *

1180 POINTER .EQ $18

1190 CSWL .EQ $36

1200 WARMDOS .EQ $3DO

1210 CONNECT .EQ $3EA

1220 COUT1 .EQ $FDFO

1230 *

1240 *

1250 * This section of code sets up the

1260 * output hooks at $36 and $37 so that
1270 * any characters that are being output
1280 * by the computer will first pass

1290 * through this subroutine. Also, a

1300 * test is made to see if DOS is present
1310 * or not.

1320 *

1330 LDA #START Get START addr
1340 LDY /START and store it
1350 STA CSWL in output

1360 STY CSWL+1 hooks.

1370 LDA WARMDOS See is DOS is
1380 CMP #$4C present.

1390 BNE NODOS No, set hooks.
1400 JSR CONNECT Connect to DOS
1410 NODOS RTS

1420 *

1430 *

1440 * This is a routine that picks up every
1450 * character on the screen, converts it
1460 * to an inverse character by ANDing

1470 * with #$3F and puts it back on the

1480 * screen where it came from.

1490 *

1500 REVERSE PHA Save the

1510 TYA accumulator
1520 PHA and Y-register
1530 LDY #$0 Set to start
1540 STY POINTER of video

1550 LDA #$4 display.

1560 LOOP1 STA POINTER+1

1570 LOOP2 LDA (POINTER),Y Get character.
1580 AND #$3F Inverse it.
1590 STA (POINTER),Y Put it back.
1600 INY Increment character count.
1610 BNE LOOP2 Done a page?
1620 INC POINTER+1 Yes increment page.
1630 LDA #$8 All video

1640 CMP POINTER+1 inversed?

1650 BNE LOOP2 No, do more.
1660 PLA Yes restore
1670 TAY Y-register and
1680 PLA accumulator.
1690 JMP COUT Output character.
1700 *

1710 *

1720 * Thiw In where characters to be
1790 * outputted by the computer go to first.




76 / Chapter 4
1740 * Here a check is made to see if an
1750 * alphanumeric character is being sent.
1760 * If so, it is inversed and printed and
1770 * only the last line is reversed. If
1780 * not, the whole screen is reversed.
1790 *
0335- C9 A0 1800 START  CMP #$A0 Is it alphanumeric?
0337- 90 DA 1810 BCC REVERSE No, reverse whole screen.
0339- 29 3F 1820 AND #$3F Yes, reverse
033B- 48 1830 SAVEAY PHA and save it
033Cc- 98 1840 TYA and Y-register
033D- 48 1850 PHA
033E- A0 DO 1860 LDY #$D0 Set to reverse
0340- A9 07 1870 LDA #$7 the last line on
0342- B8 1880 CLV the video screen.
0343- 50 D7 1890 BVC LOOP1
Format your text into pages

When I first got my Apple computer and was writing BASIC programs, 1 always
wished that there was a way that [ could print out the program listings as individual
pages instead of as one continuous listing. Breaking it down into pages makes it
easy to organize in a folder or looseleaf binder.

Eventually, some printer manufacturers realized that programmers wanted this
capability and built it into their printers. But there are still many printers available
without this feature, so here is a short machine language program that will allow
you to format any kind of printed text into pages of any length with any number of
lines. The program is set up to print 60 lines on a page, and the page length is set to
66 lines per page. In addition, the program can be set to allow for a pause after each
page is printed, which is the default condition. But by changing one byte, this
feature can be eliminated and printing will complete automatically.

The program starts by initializing the carriage return, or line, counter to $FF,
and then sets up the output hooks so that they point to the start of the line counting
program (lines 1340 to 1440). The first thing that the new output routine does when
it is hooked in is to print the character that is currently in the accumulator (line
1540). Since the printing process is non-destructive, the character is still in the
accumulator when the program returns from the printing operation. Thus, it can be
checked to see if the character that was printed was a carriage return (line 1550). If
it wasn't, the program executes an RTS instruction and returns to get the next
character (line 1560). If it was, the line count (COUNT) is incremented by one (line
1570) and a check is made to see if 60 lines were printed yet (lines 1580 and 1590).
If not, the program returns to get the next character (line 1600).

If at least 60 lines have already been printed, the program checks to see if 66
lines have been printed (lines 1610 and 1620). When 66 lines have been printed, the
program branches to line 1670 where the line count is reset to zero (line 1630), and
then falls into a routine (line 1760) that allows the program to pause after each page
is printed. This is done by loading the accumulator with a $1 (line 1770) and then
checking to see if the value in the accumulator is zero (line 1780). Since it isn’t, the
program then reads the keyboard within a loop until a key is pressed (lines 1790 and
1800). Once a key is pressed, the strobe is cleared (line 1810) and the program
returns to get the next character (line 1820).

Stealing Control Of The Output / 77

By changing the value in location $337 from a one to a zero, the pause after each
page is printed can be eliminated. This can be done from the monitor or by typing
POKE 823,0 from BASIC. The pause feature can be restored by typing POKE
823,1.

If at least 60 lines have been printed and less than 66 lines have been printed, the
program proceeds to print out carriage returns until 66 lines have been printed.
This takes place in line 1640 to 1660. A relative jump is used here instead of an
absolute jump so that the program can be moved to and used from any location in
memory.

The number of lines printed per page is set to 60 in line 1590. This can be
changed from BASIC by typing POKE 803,X where X represents the number of
lines you wish printed on each page. The page length, also referred to as form
length, is determined in line 1620. It is set to a default value of 66 lines per page.
This is standard for an 11-inch long page printed at 6 lines per inch. If your page is
of a different length, or you are printing at a different density (maybe 8 lines per
inch) then just multiply the lines per inch that your printer works at by the length of
the paper being used (in inches). To change the page length, change the value that
is stored in location $329 to whatever value you desire. From BASIC, you can
change this value by typing POKE 809,X, where X is the new page length.

1000 **k%* kkkkkkkhkkkkkkkkhrk * **

1010 *** *k
1020 *%* PAGE FORMATTER Hokk
1030 *%k dokk
1040 *** COPYRIGHT (C) 1982 BY Kk
1050 *x% JULES H. GILDER Kk
1060 **% ALL RIGHTS RESERVED ok
1070 *k%k *kk
1080 *kkkkkhkhkhkhhkhkhhkhkhkhkkkhhkkkhkkhkkkkikkkkk
1090 *
1100 *
1110 *
1120 LOR $300
1130 *
1140 *
1150 * EQUATES
1160 *

0018- 1170 COUNT  .EQ $18

0036— 1180 CSWL .EQ $36

0200- 1190 IN .EQ $200

03D0- 1200 WARMDOS .EQ $3DO

03EA- 1210 CONNECT .EQ $3EA

C000- 1220 KYBRD  .EQ $C000

C010- 1230 STROBE .EQ $CO10

C200~ 1240 SLOT \EQ $C200

FD8E- 1250 CROUT  .EQ $FDSE

FE95- 1255 OUTPORT .EQ $FE95
1260 *

1270 *

1280 * This routine turns on the printer

1285 * in slot 1, initializes the carriage

1290 * return counter and sets the output

1300 * hooks to point to this program, which

1310 * counts the number of carriage returns

1320 * printed and pages the output.

1325 *

02FB- A9 O1 1330 LDA #$1 Set slot 1 for output
02FD- 20 9% FE 17335 JSROOUTPORT and turn it on.



Stealing Control Of The Output / 79

78 / Chapter 4

0300~ AO FF 1340 LDY #$FF Initilize carriage return
0302- 84 18 1350 STY COUNT counter.
0304- A9 17 1360 LDA #START Set output
0306- 85 36 1370 STA CSWL hooks to this
0308- A9 03 1380 LDA /START program.
030A- 85 37 1390 STA CSWL+1
030C- AD DO 03 1400 LDA WARMDOS Check to see
030F- C9 4C 1410 CMP #$4C if DOS is present
0311- DO 03 1420 BNE NODOS It isn't, return.
0313- 20 EA 03 1430 JSR CONNECT Yes it is, connect
0316- 60 1440 NODOS  RTS to it.

1450 *

1460 *

1470 * This is the actual start of the code

1480 * that counts the number of carriage

1490 * returns already sent. 1If 60 have

1500 * been sent, then send 6 more carriage

1510 * returns to get to the top of the next

1520 * page.

1530 *
0317- 20 02 C2 1540 START  JSR SLOT+2 Print character.
031A- C9 8D 1550 CMP #$8D Is it a carriage return?
031C- DO 24 1560 BNE RTN No, get next character.
031E- E6 18 1570 INC COUNT Yes, add 1 to COUNT
0320- A5 18 1580 LDA COUNT
0322- €9 3C 1590 CMP #$3C Does COUNT = 607
0324- DO 1C 1600 BNE RTN No, return.
0326- A5 18 1610 CHKPAGE LDA COUNT
0328~ C9 42 1620 CMP #$42 Does COUNT = 667
032A—~ FO 06 1630 BEQ RSTCNT Yes, reset it to zero.
032C- 20 8E FD 1640 JSR CROUT No, print a carriage return.
032F- B8 1650 CLV Relative jump
0330- 50 F4 1660 BVC CHKPAGE always taken.
0332- A9 00 1670 RSTCNT LDA #$0 Reset COUNT to
0334- 85 18 1680 STA COUNT zero.

1690 *

1700 *

1710 * This section allows the user to press

1720 * any key to continue printing after

1730 * each page. To eliminate this feature

1740 * change the LDA #$1 to an LDA #$0, or

1750 * eliminate the instruction altogether.

1760 *
0336- A9 01 1770 LDA #$1
0338- FO 08 1780 BEQ RTN
033A- AD 00 CO 1790 RDKYBRD LDA KYBRD Read keyboard until
033D- 10 FB 1800 BPL. RDKYBRD a key is pressed.
033F- 2C 10 CO 1810 BIT STROBE Clear the strobe.
0342- 60 1820 RTN RTS Return to caller.

Send your output to the disk instead of the printer

Sometimes, it is desirable to send the output that would normally be printed, toa
disk as a text file for printing at a later time, to be fixed up with an editor or to be
formatted with a word processor. Writing a text file is very easy from BASIC, all
you do is open the file, issue the write command and from then on, until the file is
closed, everything that gets printed out is sent to the text file.

Writing a text file from a machine language program is not quite as simple.
There are two ways it can be done. One is to use the file manager in DOS, but that
requires intimate knowledge of how the file manager works and can be somewhat
confusing. An easicr method is to fool the computer into thinking that an Applesoft
program is running, when a machine language program is really running, and then
issuing the OPEN and WRITE commands from the machine language program.

0006-
0008-
0009-
0033-
0036-
0075~
03EA-
AAB6-
FC58-
FDED-
FDFO-

02EE-
02F1-
02F3-
02F5-
02F7-
02F9-
02FC-
02FE-
0300-
0303~
0305~
0307-
0309-
030C-
030E-
0310-
0312~
0314
0317-

0318-
031A-
031C-
031F-
0321-
0323-
0326

20
A5
85
A9
85
AD
85
A9
8D
85
A9
AO
20
A9
AO
85
84
20
60

c9
FO
4C
A9
A0
20
AD

00
03
FO
B9
03
34
08

FC

03

03

FD

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720

khkkkkkhkhhhkhhkhhhhkhkhhkhkdhkhrhhhhhxihhhkiitx
*k%k *kk
*kk PRINT TO DISK SPOOLER *kk
*kk *k%k
*kk COPYRIGHT (C) 1982 BY Kk
*kk JULES H. GILDER *kok
*kk ALL RIGHTS RESERVED ok
*kk *kk
dhkkkkkkkkkkhkhkkkhkhkkhhkhkhhkhkhkhhrhkhkhhhkx
*
*
*
*

.OR $2EE
*
*
* EQUATES
*
TXTPTR .EQ $6

SAVPRM .EQ $8
SAVLANG .EQ $9
PROMPT .EQ $33
CSWL .EQ $36

CURLIN .EQ $75

CONNECT .EQ $3EA

LANG .EQ $AAB6

HOME .EQ $FC58

CouT .EQ $FDED

couT1 .EQ $FDFO

*

*

* This section of the program fools the

* computer into thinking that Applesoft

* is running instead of a machine

* language program. It then opens a

* file called TEXT FILE and sets it up

* to be written to. Then the output

* hooks are set up so that they point

* to a routine that checks for a 0

* which is an end-of-file marker.

*
JSR HOME Clear screen.
LDA PROMPT Save current
STA SAVPRM prompt.
LDA #$6 Change prompt
STA PROMPT to run value.
LDA LANG Save current
STA SAVLANG language flag.
LDA #$40 Tell computer
STA LANG APPLESOFT is running.
STA CURLIN+1 Show run mode.
LDA #TEXT1 Print title and
LDY /TEXT1 open TEXT FILE
JSR MSGPRT
LDA #START Point to new
LDY /START output routine
STA CSWL
STY CSWL+1
JSR CONNECT Connect to DOS
RTS

*

*

* This routine checks for end-of-file.

* If it is found all values changed on

* entry are restored.

*

START CMP #$0 End of file?
BEQ DONE Yes, end up.
JMP COUT1 No, print character.

DONE LDA #TEXT2 Close TEXT
LDY /TEXT2 FILE.
JSR MSGPRT
[.DA SAVPRM Restore prompt.




80 / Chapter 4 Stealing Control Of The Output / 81

8%%;%: ig 33 };Zg Egi gﬁgtﬁgc Restore This is the approach used in the program PRINT TO DISK SPOOLER.
8%%1?: 23 gg AA %;28 E’II;I[: ngg %23%22%2 flag. The program starts by clearing the screen (line 1410) in preparation for writing
0331 85 76 1770 STA CURLIN+1  immediate mode the title and copyright notice out and then saves the current value of certain loca-
0333- 60 %;gg N RTS Return. tions normally associated with Applesoft. In lines 1420 to 1450, the current value
ig(l)g * Ihis is the message printing routine of PROMPT is sav§d and‘replaced by the value that is normally found when an
1820 * ) o : Applesoft program is running. Next, the data that tells the Apple which language is
8%%2: gz (0)f7> {gzg MSGPRT gé ggg” alctive, is6 (s)aved and replaced by information that tells it that Applesoft is running
0338- A0 00 1850 LDY #$0 (lines 1460 to 1490). Now, if Applesoft is active, it must be operating on a particu-
0 B0 o0 190 %" R0 thvert Y lar line. So, in line 1500, we give the computer a phony line number so it will be
8%2? ég ED FD iggg leﬁ} couT convinced that an Applesoft program is running.
83212;: 28 F6 }g?g NOPRI ggg LOOP leth all tl;e d}:atails that fool it into thinking that an Applesoft program is running
1920 * taken care of, the program now goes on to print out the title of the program (lines
}‘;28 ¥ These are the various text mesages 1510 to 1530). The next thing that it does is to open a file. The name of the file is
}328 * printed out by this program. au;omatlcally §et to TEXT FILE in lli]neinS()l.lSinci the corgputerthinks an Apple-
0345- DO D2 C9 soft program is running, to open the file all we have to do is print at least one
0348- i D& A0 carriage return and then a control-D, followed by the phrase OPEN TEXT FILE.
034E- C4 C9 D3 This is done in lines 2040 and 2050. Following that, another carriage return and
8%22_ 33 22 83 } ’ e control-D are sent and the WRITE TEXT FILE command is issued.
8%2,7\_ gg gg b2 ‘11‘3;8 TEXT1 332 ng’ﬁINT 10 DISK SFOOLER Before returning control to the caller, the program gets the starting address of
8%;9: <C:§ gg ég the routine that will automatically close the open file when a zero is encountered.
8%22: gg Rg 28 This address is then placed in the output hooks (lines 1540 to 1580) and the
0368— 07 C9 CC program returns ready to start writing text to the file. Everything that is printed out
oy6B- ca C5 D2 2580 "AS o BY JULES H. GILDER™ will be stored in the text file as well until an ASCII zero is sent either by the
036F— €3 CF DO machine language program or from BASIC by sending CHR$(0).
0372~ D9 D2 €9
83;2: % gg 815 The routine that checks for the zero starts at line 1660. If the character is not a
037B- A9 A0 B1 zero, it is printed out (line 1680). But if it is a zero, a carriage return and a control-
9378 B9 B8 B2 2010 A8 g;COPYRIGHT (C) 1982 D are sent, followed by the words CLOSE TEXT FILE and another carriage
8%2%: f{}, gg gg return. This closes the file and prevents anything further from being written to the
0388 ©7 C8 D4 file. After that, the program restores the prompt and the language flag that were
8%32: gg Sg Ig% stored at the beginning of the program (lines 1720 to 1750) and stores an $FF in the
0391- D2 D6 C5 high-order byte of the current line number storage location to indicate that a
0394 ch b ap 00 -AS -"ALL RIGHTS RESERVED" program is not running and that the computer is in the immediate mode (lines 1760
8:3532: glF) gg o 2040 -HS 8D8D8D8D84 and 1770). Control is then returned to the calling program in line 1780.
8%28: Ic)g gz ﬁ(s) To use this subroutine, have your main machine language program do a JSR
03A3- C6 C9 CC : $2EE, or from BASIC do a CALL 750. All output will then go to a text file. To stop
3n6- Co oy 2030 A8 OPENTEXT FILET output to the file, print out an ASCII 0 or CHR$(0).

03A9- D7 D2 C9

03AC- D4 C5 D4

03AF- C5 D8 D4

03B2- A0 C6 C9

03B5- CC C5 2070 .AS -"WRITETEXT FILE"
03B7- 8D 00 2080 .HS 8D00

03B9- 8D 84 2090 TEXT2 .HS 8D84

03BB- C3 CC CF

03BE- D3 C5 AO

03C1- D4 C5 D8

03C4- D4 AO Cb

03C7- C9 CC €5 2100 A8 SMCLOSE TEXT FLLE"
03CA 8D 00 2110 LHS HDOO



Chapter 5
STEALING CONTROL OF THE INPUT

In the last chapter we saw how it was possible to steal control away from the
Apple’s normal output routines and direct the computer to send characters destined
to be printed to our programs instead. It’s possible to do the same thing with
characters that are being input to the Apple. Frequently, it is desirable to replace
the routine that manages the entry of data from the keyboard with another program
that either fetches the data from some other device (such as a disk drive) or first
processes the data being entered.

When writing a replacement input routine, there are several things you must
bear in mind. If the information being entered is to be echoed on the screen, the
contents of the accumulator must be stored at (BASL),Y — where BASL equals
$28. If the new input routine prevents the ESCape key and the Control-U key from
being entered, then the Y-register need not be saved. If it doesn’t, however, then the
Y-register must remain unaltered. This can be accomplished by saving the register
when entering the routine and restoring it when leaving. In all cases, the X-register
must remain unaltered, so if it is needed, the same storing and restoring procedure
will be necessary.

82

Stealing Control Of The Input / 83

The basic read-a-key routine is located in the Apple monitor ROM at location
$FDOC. Here the monitor picks up a character off the screen, converts it to its
flashing equivalent, stores it back on the screen (this is the way we get the flashing
box cursor). Then the program does an indirect jump through KSWL to the routine
that handles the inputting of data. In an Apple system with no DOS, the input hooks
are set for SFD1B, which is the location immediately following the indirect jump.
In a system with DOS, it is set for $9E81, which is the routine that checks for DOS
commands.

Customize your cursor

To illustrate how to steal control away from the input, the first program in this
chapter will show you how to replace the blinking white square that is normally
used as a cursor, with any other character you desire. In the example given, an
underline character is used.

The program starts off in lines 1320 to 1400 by stealing control from the input in
much the same way that we learned to steal control from the output. The big
difference here, comes in lines 1340 and 1350, where instead of using locations
CSWL and CSWL + 1, we use locations KSWL and KSWL + 1 ($38 and $39)
which are the input hook locations.

The actual replacement routine starts on line 1480 where the character that is
currently in the accumulator is saved temporarily by pushing it on the stack. Next,
the character that is going to be used as the cursor character is loaded into the
accumulator (line 1490) and stored on the screen (line 1500). Finally, the character
that was in the accumulator is restored and the program checks to see if a key has

1000 **kdkkkkkkhkkhrhhhhdrhhkhkdrrrhrhhrhkhhrid

1010 **%* *kk
1020 *** CUSTOM CURSOR *kk
1030 ***x *okk
1040 ***% COPYRIGHT (C) 1982 BY *h%k
1050 *** JULES H. GILDER kkk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *xk
1080 ***kkkhhhhhhrhkrkkhhrkhkhhrkhhkhrrrtort
1090 *
1100 *
1110 *
1120 *
1130 .OR $300
1140 *
1150 *
1160 *
1170 * EQUATES
1180 *

0028~ 1190 BASL .EQ $28

0038- 1200 KSWL .EQ $38

03D0- 1210 WARMDOS .EQ $3DO

03EA- 1220 CONNECT .EQ $3EA

C000- 1230 KEYBD .EQ $C000

C010- 1240 KBDSTRB .EQ $C010
1250 *
1260 *
1270 * This scction steals control of the
1280 * fnput and passes all characters to



84 / Chapter 5

1290 * be output to the routine beginning
1300 * with START.

1310 *
0300- A9 13 1320 LDA #START Get the address of the
0302- A0 03 1330 LDY /START start of the program.
0304- 85 38 1340 STA KSWL Store it in the
0306- 84 39 1350 STY KSWL+1 input hooks.
0308- AD DO 03 1360 LDA WARMDOS Is DOS present?
030B- C9 4C 1370 CMP #$4C
030D- DO 03 1380 BNE NODOS No.
030F- 20 EA 03 1390 JSR CONNECT Yes, connect to DOS.
0312- 60 1400 NODOS RTS Return.

1410 *

1420 *

1430 * This routine replaces the normal

1440 * flashing cursor with whatever

1450 * cursor character you want. Here, an

1460 * underscore is used as the cursor.

1470 *
0313- 48 1480 START PHA Save the accumulator.
0314- AD 28 03 1490 LDA CURSOR Get the cursor character.
0317- 91 28 1500 STA (BASL),Y Put it on the screen.
0319- 68 1510 PLA Restore the accumulator.
031A- 2C 00 CO 1520 GETKEY BIT KEYBD Key pressed? .
031D~ 10 FB 1530 BPL. GETKEY No, keep checking.
031F- 91 28 1540 STA (BASL),Y Yes, display accumulator.
0321- AD 00 CO 1550 LDA KEYBD Get keypress.
0324- 2C 10 CO 1560 BIT KBDSTRB Clear keyboard strobe.
0327- 60 1570 RTS

1580 *

1590 *

1600 * This is where the cursor character is

1610 * stored.

1620 *
0328- 9F 1630 CURSOR .HS 9F

been pressed (line 1520). If it hasn’t, the program loops back to 1520 and waits until
a key has been pressed (line 1530). Once a key has been pressed, the character that
is in the accumulator is displayed on the screen (line 1540). Next, the hexadecimal
value of the key that was pressed is retrieved and the keyboard strobe is cleared to
prepare the keyboard for the next keypress (lines 1550 to 1560).

The character that is used as the cursor is stored in the location labelled CUR-
SOR. Here an underline is used ($9F), but any other character can be used as well.

While the previous program was useful to illustrate how to steal control away
from the input routines, in all honesty I must admit that the application is one gf the
less urgently needed programs. A much more useful and practical program is th.e
SCREEN PRINTER program presented next. By simply pressing two keys, this
program will allow you to print out the text screen exactly as it appears on your
video display, onto a parallel or serial printer.

Dump your screen to a printer

As it is currently set up, this program will run with a parallel printer card in slot
2. This can be changed however by simply changing the value of WARMPRT,
which here is $C202. WARMPRT is the address to which the output hooks are set
after the printer card has been initialized. In order to find out what the value of
WARMPRT is for your printer interface card, simply activate it by doing a
PR# < slot> and while it's active typing;:

Stealing Control Of The Input / 85

CALL -151
36.37

If you do this, the computer will respond with two numbers which represent the
low and high bytes respectively of WARMPRT. For a parallel printer in slot 2 we
get:

0036- 02 C2

and for a serial printer in slot one we would get:
0036- 07 C1

The C1 and C2 represent slots 1 and 2 respectively. The low-order byte of
WARMPRT will vary with the interface card used. The values presented here are
for interface cards from Apple Computer Inc. Other manufacturer’s cards could
have different values. For example, one parallel printer interface card that I have
has a low-order byte of 21 instead of 2.

Getting back to the program, it starts out on line 1400 by retrieving the high-
order byte of WARMPRT and ANDs it with $OF (line 1410) to get the slot number
that the printer interface card is in. Once the program knows the slot number
(which is now in the accumulator) it uses that number to simulate a PR# < slot >
using the monitor’s OUTPORT routine (line 1420). This turns the printer on.
Next, a set-up string is sent to the printer (lines 1430 to 1480). This string of
characters consists of Control-I 40N. The reason for sending this to the printer is
that it will turn off the screen any time that the printer is activated. After the printer
has been initialized, it is turned off (lines 1490 and 1500) until it is needed.

Now that the initialization phase has been completed, the program replaces the
input hooks with the address of this program (lines 1600 to 1680). The replacement
input routine starts on line 1740, where the first thing that happens is a subroutine
Jjump to the monitor’s KEYIN routine. Once a character has been entered by this
routine, a check is made to see if that character was a Control-P (line 1750).
Control-P was the character chosen as the signal to the program that a dump of the
screen on the printer is wanted. Any other value could be used as well by simply
replacing the $90 in line 1750 with the desired character. If the character was not a
Control-P, the program returns to get the next character. If it was, it branches to the
PRTSCRN routine that starts at line 1830.

The first thing that the PRTSCRN routine does is to save all of the registers
(using the monitor ROM’s SAVE routine) so they may be restored before the
program is exited. In addition to that, the current horizontal location of the cursor
is saved so that it too may be restored later on (lines 1840 and 1850). Next, the
printer is turned on through its warm start address by sending it a carriage return
(lincs 1860 and 1870). The warm start address is used so that all of the printer
initialization that was dono previously will remain in effect. If the cold start ad-



RO/ Chapter 5

1000 *,*kdkhhhkhhkhkkhkhhdhhdhkhhhhhhrkhihkiiikk

1010 *%* kK

1020 *** SCREEN PRINTER *kk
1030 *** *xKk
104Q *** COPYRIGHT (C) 1982 BY Fkk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *k%
1070 *x* *kk
1080 **kkkkkhkkkkkkkkkrkikkkkikkkikhikrkkxkk
1090 *
1100 *
1110 *
1120 .OR $300
1130 *
1140 *
1150 * EQUATES
1160 *

0024- 1170 CH .EQ $24

0028- 1180 BASL .EQ $28

0038- 1190 KSWL .EQ $38

03D0- 1200 WARMDOS .EQ $3DO

03EA- 1210 CONNECT .EQ $3EA

C202- 1220 WARMPRT .EQ $C202

FBC1- 1230 BASCALC .EQ $FBC1

FDOC- 1240 RDKEY .EQ $FDOC

FD1B- 1250 KEYIN .EQ $FD1B

FDED- 1260 COUT .EQ $FDED

FE95- 1270 OUTPORT .EQ $FE95

FF3F- 1280 RESTORE .EQ $FF3F

FF4A- 1290 SAVE .EQ $FFaA
1300
1310
1320 Here the printer is initialized by
1330 * doing the equivalent of a PR# <slot>.

After that, the screen is turned off
by sending the printer a set-up

string consisting of Control-I 40N.
Finally, the printer is turned off by
doing the equivalent of a PR#O0.

-
w
&
o

% % ok ok Ok Sk Ok Xk

dress were used (e.g. $C200), the set-up string would have to be sent to the printer
again. This way it doesn’t.

Now that the printer is ready to print without disturbing the screen (we turned it
off remember?) the X-register, and subsequently the accumulator, are loaded with
the number of the first line we want to print. In hexadecimal we want to print lines
$0 to $17 which is O to 23 in decimal. The Apple video screen in structured in a
peculiar manner and text that appears continuous on the screen, is not continuous
in memory. To handle this strange layout, a special routine is used to calculate the
starting address in memory of any particular line. The routine is called BASCALC
and it is located at SFBC1 in the Apple’s monitor ROM. To use it, all you have to do
is place the number of the line you want in the accumulator and then jump to
BASCALC. This is what is done in lines 1890 and 1900. Upon returning from this
subroutine, the starting address in memory of the desired line is found in locations
BASL and BASL + 1 ($28 and $29) on page zero.

Once the program knows where the line starts in memory, it’s easy to pick up the
characters off the screen and send them to the printer. The routine starting at line
1910 does just that, and more. Indirect indexed addressing is used in line 1920 to
retrieve a character from the desired line on the screen. Once retrieved, the charac-
ter is tested to see if it is a normal white-on-black character. If it’s not, $40 is added
to it (line 1950) and it is checked again to see if it’s normal. 11 it's still not normal,

Stealing Control Of The Input / 87

1390 *
0300- A9 02 1400 LDA #WARMPRT Get printer
0302- 29 OF 1410 AND #$0F slot number.
0304~ 20 95 FE 1420 JSR OUTPORT Do PR#<slot>.
0307~ A0 00 1430 LDY #$0 Send printer
0309- B9 6C 03 1440 LOOP LDA TEXT,Y the set-up
030C- FO 06 1450 BEQ NEXT string.
030E- 20 ED FD 1460 JSR COUT
0311- C8 1470 INY
0312- DU F5 1480 BNE LOOP
0314~ A9 00 1490 NEXT LDA #$0 Do a PR#0.
0316- 20 95 FE 1500 JSR OUTPORT
1510 *
1520 *
1530 * This routine transfers the input
1540 * hooks ($38 and $39) from the keyboard
1550 * to this program, where a check can be
1560 * made to determine if a Control-P has
1570 * been pressed. If so, the screen is
1580 * then printed out.
1590 *
0319- A9 2C 1600 LDA #START Get program's
031B- A0 03 1610 LDY /START start address.
031p- 85 38 1620 STA KSWL Store in input
031F- 84 39 1630 STY KSWL+1 hooks.
0321~ AD DO 03 1640 LDA WARMDOS Check to see
0324- C9 4C 1650 CMP #$4C if DOS is present
0326~ DO 03 1660 BNE NODOS No, return.
0328- 20 EA 03 1670 JSR CONNECT Yes, connect
032B- 60 1680 NODOS  RTS to it.
1690 *
1700 *

1710 * Here the keyboard is checked to see
1720 * if a Control-P has been entered.

1730 *
032C- 20 1B FD 1740 START JSR KEYIN Get a key.
032F- C9 90 1750 CMP #$90 Is it Ctrl-P?
0331~ FO 01 1760 BEg PRTSCRN Yes print screen.
0333- 60 1770 RT No, return.

another $40 is added to it. By this point all characters must be normal. Characters
that appear on the screen in inverse video fall in the $0 to $3F range and thus must
pass through the CHKNORM loop twice to get $80 added on to their value, while
flashing characters, which are in the $40 to $7F range when displayed on the
screen, only have to pass through this loop once.

After a character has been converted to normal it is printed in line 1970. Then the
Y-register, which is used to point to the particular character on the line that is being
accessed, is incremented in preparation for retrieving the next character. Before
doing that, a check is made to see if we've already picked up the last character on
the line (line 1990). If we have not, the next character is retrieved (line 2000). But if
we have, a carriage return is sent to the printer, and the X-register, which is used as
the line counter, is incremented by one (lines 2010 to 2030). Before continuing, a
check is made to see if we have just finished printing the last line on the screen (line
2040). If we have not, the program jumps back to line 1890 where it gets the
address in memory of the next line and continues printing it out. If we’ve finished
printing out the last line on the screen, the horizontal cursor position is retrieved as
are the various registers (lines 2060 to 2080). Finally, the program does an absolute

jump to the monitor's RDKEY subroutine and waits for the next key to be pressed

(line 2090).



88 / Chapter 5

1780 *
1790 *
1800 * A Control-P has been entered so now
1810 * it's time to print the screen out.
1820 *
0334- 20 4A FF 1830 PRTSCRN JSR SAVE Save registers.
0337- A5 24 1840 LDA CH Save cursor's
0339- 48 1850 PHA horizontal position.
033A- A9 8D 1860 LDA #$8D Send printer a
033C- 20 02 C2 1870 JSR WARMPRT carriage return.
033F- A2 00 1880 DX #$0 Set up for 1st
0341- 8A 1890 GETLINE TXA screen line.
0342- 20 C1 FB 1900 JSR BASCALC Calculate video line.
0345~ A0 00 1910 LDY #$0 Init char counter.
0347~ B1 28 1920 GETCHAR LDA (BASL),Y Get character
0349~ C9 AO 1930 CHKNORM CMP #$A0 Is it normal?
034B- BO 04 1940 BCS PRINTIT Yes, print it.
034D- 69 40 1950 ADC #$40 No, adjust it.
034F- DO F8 1960 BNE CHKNORM Normal now?
0351- 20 02 €2 1970 PRINTIT JSR WARMPRT Yes, print it.
0354- C8 1980 INY Increment char counter.
0355~ CO 28 1990 CPY #$28 40 characters yet?
0357~ DO EE 2000 BNE GETCHAR No, get more.
0359- A9 8D 2010 1.DA #$8D Yes, print a
035B~ 20 02 C2 2020 JSR WARMPRT carriage return.
035E- E8 2030 INX Increment line counter.
035F- EO 18 2040 CPX #$18 24 lines yet?
0361- DO DE 2050 BNE GETLINE No, get more.
0363- 68 2060 PLA Yes, restore
0364- 85 24 2070 STA CH horiz. cursor.
0366- 20 3F FF 2080 JSR RESTORE Restore registers.
0369- 4C 0C FD 2090 JMP RDKEY Get a keypress.
2100 *
2110 *

2120 * This is the printer set-up string.
2130 * It consists of a Control-I 40N and is
2140 * followed by a carriage return.

2150 *
036C- 89 2160 TEXT .HS 89
036D- B4 BO CE 2170 .AS -"40N"
0370- 8D 00 2180 .HS 8D00
Add a numeric key pad for free

Business and accounting software often require that the user enter large amounts
of numerical data. This can be very inconvenient with the conventional Apple
keyboard, because the numbers are spread across the top row of the keyboard. To
solve this problem, many hardware manufacturers have developed accessory key
pads that plug into the Apple and provide the user with a calculator-like layout of
numerical keys. These key pads range in price from $80 to $300.

By now, you are probably aware that the Apple computer is a very versatile
machine and that most problems one encounters can be solved either in hardware
or in software. The vendors of accessory key pads have solved the problem using
hardware, at considerable cost. But here, you have a solution to the problem using
software, and it’s free.

Using the NUMERIC KEY PAD program, you’ll be able to treat a section of the
standard Apple keyboard as a numeric key pad. The software key pad uses the 7, 8
and 9 of the Apple keyboard as its top row. The three keys underncath these, the U,
I and O represent 4, 5 and 6 respectively, while the three keys under these — J, K
and L. - represent 1,2 and 3 respectively. In addition to these, o few other keys

Stealing Control Of The Input / 89

have been translated. The M key represents a 0, the semicolon represents a plus
sign (+) and the P key represents the multiplication (x ) sign. These last two
assignments mean that all mathematical operators are now available as single key,
unshifted entries. In addition to these keys, the Apple still recognizes the regular
number and mathematical operator keys.

Once the program is activated, it can be turned on by entering a Control-K and
turned off by entering a Control-Q. This toggling on and off requires the use of a
flag byte to determine what mode is currently active. The program starts off in line
1340 by setting the flag byte to a nonzero value to indicate that the key pad is active.
After that, control is taken away from the normal input routine and given to the
input routine of this program (lines 1360 to 1440).

The input routine for this program starts on line 1520, where a subroutine jump
is made to one of the monitor ROM’s input routines KEYIN. After this routine gets
a character from the keyboard and puts it into the accumulator, it returns to our
program where several tests are performed. The first one is a test to see if the
character that was entered was a Control-K (line 1530). If it was a Control-K, the
contents of the accumulator (which is $8B, the ASCII code for a Control-K) is
stored in FLAG (line 1550) to indicate that the key pad is active. Having done this,
the program then jumps to the monitor to read the keyboard once more (line 1560).
If it was not a Control-K, another test is made to see if the character entered was a
Control-Q (line 1570). If it was, the program jumps to a subroutine called TURN-
OFF (line 1820), which stores a zero in FLAG, effectively turning off the key pad.

S
LA
}\s\&v\;\f‘,

>
B



90/ ( 'Implvl h)

I'his toutine ends by jumping to a routine in the monitor to read the keyboard for
the next key pressed (line 1840).

If neither a Control-K or Control-Q are entered, the program proceeds to line
1590 where FLAG is checked to determine whether the key pad is supposed to be
active or not. If the value stored in FLAG is zero, the key pad is not active and an
RTS instruction is executed. This causes the character that was entered at the
keyboard, and which currently is in the accumulator, to pass through the numeric
key pad program unaffected. However, if the value of FLAG is not zero, the key pad
is active and any character that is entered passes through this program and is
checked to see if it is one of the nine characters which have been reassigned.

Each character that is entered when the key pad is active, is checked (line 1620)
against the table of values in line 1920. If no match is made with any of the nine
characters in TABLE 1, the character is allowed to pass through unchanged (line
1670). However, if a match is made (line 1630) the program branches to a routine
called SWITCH at line 1740, which substitutes a character in TABLE 2 for the
current character in the accumulator.

1000 **kkkkhkkkkkhkkkkhkhkhhkkhhkhhkrhhhhhhktrhhkk

1010 *** *kk
1020 *** NUMERIC KEY PAD *okk
1030 *** Hkk
1040 *** COPYRIGHT (C) 1982 BY kK
1050 *** JULES H. GILDER *kk
1060 *** ALL RTIGHTS RESERVED *kk
1070 *** *hk
1080 kKKK R S e Ty
1090 *
1100 *
1110 *
1120 *
1130 .OR $300
1140 *
1150 *
1160 *
1170 * EQUATES
1180 *
0006~ 1190 SAVKSWL .EQ $6
0008~ 1200 FLAG LEQ $8
0038~ 1210 KSWL .EQ $38
03D0- 1220 WARMDOS .EQ $3D0
O3EA- 1230 CONNECT .EQ $3EA
FDOC- 1240 RDKEY .EQ $FDOC
FD1B- 1250 KEYIN .EQ $FDI1B
1260 *
1270 *
1280 * This section steals control of the
1290 * input and passes all characters to
1300 * be input to the routine beginning
1310 * with START. It also sets the keypad
1320 * flag so the pad will become active.
1330 *
0300- A9 8B 1340 LDA #$8B Set keypad active
0302- 85 08 1350 STA FLAG flag.
0304~ A9 17 1360 LDA #START Get the address of the
0306- A0 03 1370 LDY /START start of the program.
0308- 85 38 1380 STA KSWL Store it in the
030A- 84 39 1390 STY KSWL+1 input hooks.
030C- AD DO 03 1400 LDA WARMDOS Is DOS present?
030F- €9 4C 1410 CMP #$4C
0311- DO 03 1420 BNE NODOS No.
0313- 20 EA 03 14730 JSR CONNECT Yes, connect to DO,
0316 60 1440 NODOS RTS Return,

Stealing Control Of The Input / 91

1450 *
1460 *
1470 * This routine replaces the normal
1480 * input routine with this program so
1490 * certain keys on the Apple can be
1500 * interpreted as a numeric key pad.
1510 *
0317- 20 1B FD 1520 START JSR KEYIN Read the keyboard.
031A- C9 8B 1530 CMP #$8B Is it a Cntrl-K?
031C- DO 05 1540 BNE NEXT No, is it Ctrl-Q?
031E- 85 08 1550 STA FLAG Yes, set FLAG.
0320~ 4C OC FD 1560 JMP RDKEY Get next key.
0323- C9 91 1570 NEXT CMP #$91 Is it Ctrl-Q?
0325- FO 15 1580 BEQ TURNOFF Yes, turn off keypad.
0327- A4 08 1590 LDY FLAG See is keypad is active.
0329- FO OC 1600 BEQ RETURN No, it isn't.
032B- A0 00 1610 LDY #$0 Initialize index.
032D- D9 43 03 1620 LOOP1 CMP TABLE1l,Y Find character in table.
0330- FO 06 1630 BEQ SWITCH Replace with new character.
0332- C8 1640 INY Increment index.
0333- CO 09 1650 CPY #$09 End of table?
0335- DO F6 1660 BNE LOOP1 No, chek more.
0337~ 60 1670 RETURN RTS Return to caller.
1680 *
1690 *

1700 * The character has been found in

1710 * TABLE1l and therefore a substitute

1720 * character from TABLE2 will replace it.
*

1730
0338- B9 4C 03 1740 SWITCH LDA TABLE2,Y Substitute new character.
033B- 60 1750 RTS
1760 *
1770 *
1780 * This routine restores the FLAG
1790 * byte to zero and turns off the
1800 * keypad interpreter.
1810 *
033C- A9 00 1820 TURNOFF LDA #$0 Reset key pad flag.
033E- 85 08 1830 STA FLAG
0340~ 4C 0C FD 1840 JMP RDKEY Get next key.
1850 *
1860 *
1870 * These are the two character tables.
1880 * TABLE1l contains the keyboard equivalents
1890 * and TABLE2 what the new key has been
1900 * defined as.
1910 *

0343- CF C9 D5
0346~ CC CB CA
0349- CD DO BB 1920 TABLE1 .AS -"OIULKJMP;"
034C- B6 B5 B4
034F- B3 B2 Bl
0352- BO AA AB 1930 TABLE2 .AS -"6543210%+"

As you can see, the NUMERIC KEY PAD program is a short one and can easily
reside in the unused portion of page three. This program can be combined with
BASIC programs to simplify the entering of numerical data for such programs.
While the same thing could probably be done in BASIC, the routine would be
longer and much slower. In fact, with this program, it should be pretty easy to write
a BASIC program that simulates a desktop calculator.

Supplying characters from a different source

Until now, the programs we have looked at that steal control away from the input
have only done it so that specific characters could be checked for. There is another



92 / Chapter 5

reason to steal control of the input however, and that’s to input data from another
source altogether. DOS does this when it inputs data from an EXEC (text) file. It
reads a text file and then fools the computer into thinking that the data coming from
the text file came from the keyboard.

Fooling the computer into thinking that text is coming from the keyboard, when
it is really coming from somewhere else, is not difficult. First you have to point the
input hooks ($38 and $39) to your substitute program. The first thing that the new
input handler should do is to save the X-register so that it can be restored before the
new routine is exited. Also, if the new input program is going to allow the user to
enter ESCape characters and the right arrow (Control-U) the Y-register must also
be saved on entry and restored on exit.

After you save the appropriate registers, the accumulator must be loaded with
the character you want input. The source can be anything, disk, cassette, even
memory. Once the accumulator contains the desired data, the X-register should be
restored if it was modified and an RTS instruction executed. It is the execution of
the RTS that actually enters the character as if it came from the keyboard.

In order to eliminate extraneous characters and spaces at the end of the entry of
data, a program should be able to determine if the current character that is being
loaded into the accumulator is the last character of the text to be entered. To do this,
a program should be able to look ahead to see if the next character is the text
terminating character, or it should be able to determine if the high bit of the last
character is set (assuming of course that the high bit of all the other characters is
not set).

It is very important to note here that after all of the text has been entered from the
external source, the program must return control of the input to the keyboard. If
this is not done, the program may hang up and the keyboard will be inactive.

EXECing without a disk drive

Now that we have the basic knowledge that we need to write our own programs
for entering data automatically, let’s write a program that simulates DOS’ EXEC
command. Instead of using a disk to store our text file, however, we’re going to use
a vacant area of memory. This means that even those people that don’t have disk
drives, and that number of people is constantly shrinking, can have the advantages
of an EXEC capability.

The IN-MEMORY EXEC SIMULATOR program starts out by printing out the
title page and waiting for the user to press any key to continue (lines 1340 to 1410).
After doing that, the program gets the address of the beginning of the text buffer
and stores it in a two-byte, zero page pointer called TXTPTR (lines 1490 to 1520).
Then it gets the starting address of the new input routine and stores it in the input
hooks (lines 1530 to 1610).

The new input routine starts on line 1720, where the Y-index register is set to
zero. In the next line, a character is loaded into the accumulator from the buffer
arca pointed to by TXTPTR, and inline 1740, this character is saved temporarity in

Stealing Control Of The Input / 93

a location labelled ASAVE. Next, the program does a subroutine jump to INCR
(line 1970) where the two-byte text pointer is incremented so that it points to the
next character. In line 1760, this next character is loaded into the accumulator and
then a test is performed to see if the character is a hexadecimal zero, the end of text
marker. If it’s not, the previous character, which was temporarily saved in ASAVE,
is retrieved (line 1780) and an RTS instruction is executed (line 1790), causing the
character to be entered. Since this routine does not modify the X-register, there was
no need to save and restore it.

If the end of text marker has been reached, the program branches to line 1870,
where the contents of the X-register are temporarily stored in XSAVE. Next, a
jump is made to a monitor ROM subroutine called SETKBD. What this routine
does is essentially simulate the BASIC command IN#0. By doing this, control of
the input is restored to the keyboard. The X-register was stored because SETKBD
modifies the X-register when it is called. After returning input control to the
keyboard, the program restores the X-register, retrieves the last character to be
entered and executes an RTS instruction.

1000 *kkkkkkkdhk L R S L L e L

1010 *** ok
1020 ***  IN MEMORY EXEC SIMULATOR Fkk
1030 *** *hk
1040 *** COPYRIGHT (C) 1982 BY kK
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *ex
1070 *x* *kk
1080 *kkkkkkkk * * ke kok kkk ok kdok
1090 *
1100 *
1110 .OR $2C6
1120 *
1130 *
1140 * EQUATES
1150 *

0006 1160 TXTPTR .EQ $6

0008- 1170 XSAVE .EQ $8

0009- 1180 ASAVE -EQ $9

0038- 1190 KSWL -EQ $38

03D0- 1200 WARMDOS .EQ $3DO

03EA- 1210 CONNECT .EQ $3EA

FC58- 1220 HOME .EQ $FC58

FDOC~ 1230 RDKEY .EQ $FDOC

FDED- 1240 COUT -EQ $FDED

FE89- 1250 SETKBD .EQ $FE89
1260 *
1270 *
1280 * This section of the program prints
1290 * out the program title and copyright
1300 * notice and calls the RDKEY routine
1310 * where the program ceases to continue
1320 * until a key is pressed by the user.
1330 *

02C6- 20 58 FC 1340 JSR HOME Clear the screen.

02C9-~ A0 00 1350 LDY #3$0 Print out

02CB- B9 15 03 1360 LOOP LDA TEXT,Y opening screen

02CE- FO 06 1370 BEQ NEXT1

02D0- 20 ED FD 1380 JSR COUT

02D3- C8 1390 INY

0zZn4 - DO FYH 1400 BNE LOOP

072D6 - 20 0C FD 1410 NEXT1 JSR RDKEY Wait for a keypress.
1420 *

14130 4



94 / Chapter 5
1440 * Here the address of the buffer area
1450 * is placed in a pointer and the normal
1460 * keyboard input routine is replaced
1470 * by this program.
1480 *
02D9- A9 85 1490 LDA #BUFFER Get buffer
02DB- A0 03 1500 LDY /BUFFER address and
02pD- 85 06 1510 STA TXTPTR store in a
02DF- 84 07 1520 STY TXTPTR+1 pointer.
02E1- A9 F4 1530 LDA #START Get address
02E3- A0 02 1540 LDY /START for input
02E5- 85 38 1550 STA KSWL routine and
02E7- 84 39 1560 STY KSWL+1 store in hooks.
02E9- AD DO 03 1570 LDA WARMDOS Check for DOS.
02EC- C9 4C 1580 CMP #$4C
02EE~ DO 03 1590 BNE NODOS No DOS present.
02F0- 20 EA 03 1600 JSR CONNECT Connect through it.
02F3- 60 1610 NODOS  RTS
1620 *
1630 *
1640 * This is the replacement input routine
1650 * to which the computer comes every time
1660 * it would normally look for input from
1670 * the keyboard. Here data are taken
1680 * from the buffer area (pointed to by
1690 * TXTPTR) and used as if they came from
1700 * the keyboard.
1710 *
02F4- A0 00 1720 START LDY #$0 Set offset to zero.
02F6- B1 06 1730 LDA (TXTPTR),Y Get character.
02F8- 85 09 1740 STA ASAVE Save it.
02FA- 20 OE 03 1750 JSR INCR Increment pointer.
02FD- B1 06 1760 LDA (TXTPTR),Y Get next the character.
02FF- FO 03 1770 BEQ DONE Last character, finish up.
0301- A5 09 1780 LDA ASAVE Retrieve character.
0303- 60 1790 RTS Enter it.
1800 *
1810 *
1820 * When there is no more data in the
1830 * EXEC file buffer, an IN#0 is
1840 * simulated (JSR SETKBD), and the X-reg
1850 * is restored.
1860 *
0304- 86 08 1870 DONE STX XSAVE Save X-register.
0306~ 20 89 FE 1880 JSR SETKBD Do IN#0.
0309- A6 08 1890 LDX XSAVE Restore X-registore.
030B- A5 09 1900 LDA ASAVE Restore accumulator.
030D- 60 1910 RTS
1920 *
1930 *
1940 * This routine increments the two-byte
1950 * pointer TXTPTR.
1960 *
030E- E6 06 1970 INCR INC TXTPTR Increment low byte.
0310~ DO 02 1980 BNE NEXT2
0312- E6 07 1990 INC TXTPTR+1 Increment high byte.
0314- 60 2000 NEXT2 RTS Return.
2010 *
2020 *
2030 * This is the program title and
2040 * copyright notice.
2050 *
0315- C9 CE AD
0318- CD C5 CD
031B- CF D2 D9
031E- A0 C5 D8
0321- C5 C3 A0
0324- D3 C9 CD
0327- D5 CC C1
032A- D4 CF D2 2060 TEXT .AS -"TN-MEMORY EXEC STMULATOR"
032D- 8D 2070 .HS 8D
032E- C2 D9 AO

0331- CA DS

cC

Stealing Control Of The Input / 95

0334~
0337~
033A-
033D-
0340-
0341~
0344
0347-
034A-
034D-
0350~
0353~
0354~
0357-
035A-
035D~
0360~
0363-
0366
0367-
036A-
036B—
036E—
0371-
0374
0377~
037A-
037D~
0380-
0383-
0384

0385~
0388
0389~
038C-
038F-
0390-
0393-
0396
0399-
039C-
039D~
039E-
03A1-
03A4—
03A7-
03A9-
03AA-
03AD-
03B0-
03B1-
03B2-
03B5-
03B6-
03B9-
03BA-
03BD-
03BE-
03BF-

C5

BO
CD

BO
D2
B1
B2

BO
c8
A8
BB
BO
D8
BO
D5

c9

D7

Cc8
Cc5

Cc6
D8

D4
B5

BF
D2
D8

CE
D4
BF
CE

D3

2080
2090

2100
2110

2120
2130

2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

2240
2250

2260
2270

2280
2290

2300
2310
2320
2330
2340
2350

2360
2370
2380

*
*
*
*
*
*

.AS -"BY JULES H. GILDER"
.HS 8D

.AS -"'COPYRIGHT (C) 1982"
.HS 8D

.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D8D

.AS -"PRESS ANY KEY TO CONTINUE"
.HS 00

This is a sample 'EXEC' file that is
automatically executed when this
this program is run by doing a CALL 710.

BUFFER .AS -"NEW"

.HS 8D

.AS -"10HOME"
.HS 8D

.AS -"20FORX=1T0255"
.HS 8D

.AS ~"30?CHR$ (X} ;"
.HS 8D

-AS -"40NEXTX"
.HS 8D

.AS -"507"

.HS 8D

.AS —"RUN"

.HS 8D

.AS -"LIST"
.HS 8D
.H5 00

As you can see from the listing, the actual replacement input routine is only 32
bytes long ($2F4 to $314). The 46 bytes that precede these are used to print out the
title screen and set up the new input program. The bulk of the space is taken up by



96 / Chapter 5

text for the screen, which begins on line 2060 and the buffer which begins on line
2220.

This program resides in memory starting at $2C6 and can be activated by typing
CALL 710 from the immediate mode in Applesoft. When run in this manner, the
program will execute a sample ‘EXEC’ file that has been included. The file shows
how both immediate mode commands and deferred mode program lines can be
entered. When ‘EXEC’ed, the file will perform the NEW command, enter a short
program that prints out the entire ASCII character set, run the program and then
list it. By changing the address of the buffer and its contents, you can EXEC
anything you want.

Save keystrokes by using Applesoft shorthand

By combining both of the major characteristics associated with new input han-
dling routines: the ability to check for the pressing of specific keys and the the
ability to input text from memory or some other source, we can write a program
that will significantly reduce the number keys pressed when writing Applesoft
programs. Known as APPLESOFT SHORTHAND, this program makes it possi-
ble to enter the most frequently used Applesoft commands with a single keystroke.
This entry of several letters or words with a single keystroke, is often referred to as
a keyboard macro.

The theory of operation of the program is that the normal input routine is
replaced with a new one that allows entry of data either from the keyboard or
memory, depending on the status of a flag byte. When keyboard entry is allowed,
the character entered is tested to see if it is one of twenty-one preselected control
characters. If it’s not, the control character is entered as it normally would be. But,
if itis part of the designated set, then instead of being entered, the control character
is used to specify a string of characters that is to be entered instead.

In this program, most of the characters that will be entered in place of the control
codes are Applesoft keywords, a table of which resides in the Applesoft interpreter
ROMs starting at address $DODO and ending at address $D25E. This table of
keywords is also known as a token table. The text stored in this table is unusual in
that the high bit of the last letter of the word is set. This is used as an end of text
delimiter instead of the zero that has been used throughout the programs in this
book so far. It’s chief advantage is that it saves one byte per text message.

You’ll notice that I said MOST of the characters that will be entered in place of
the control codes are Applesoft keywords, not all of them. In fact, two of the
control characters — Control-@ and Control-E — are used to enter frequently
used phrases. Control-@ enters the call to the monitor ‘CALL-151", including the
carriage return that follows it. Thus, by pressing Control-@, the user is automati-
cally dropped into the monitor mode. The Control-E is used when you want to edit
Applesoft program lines because it automatically executes (that means it includes
the carriage return) the phrase '‘POKE 33,33°. A listing of the addresses, the
control code and the keyword or phrase that is printed when the particular control

Stealing Control Of The Input / 97

key is pressed is shown in the table that starts at line 2560 of the accompanying
program listing.

The program starts on line 1310 with a jump past the title page text (which sits in
page two) to the beginning of the program on line 1520. Lines 1520 to 1580 clear the
screen and print out the title page, while lines 1590 to 1660 set the input hooks to
the start of the replacement input routine. Lines 1670 to 1690 set the input mode
flag to zero so that the program will recognize input from the keyboard, and then
passes control to the new input routine by executing an RTS instruction.

The input replacement routine starts on iine 1850, where the contents of the X-
register and the accumulator are saved for later. The first thing that this program
does after storing the registers, is to determine what mode it is in. It does this by
loading the input mode flag into the accumulator (line 1870) and checking its value.
If the flag is set to zero, the program is in the keyboard mode and data can be
accepted from the keyboard. If, on the other hand, the value of flag is anything but
zero, the program is in the macro mode and data will be entered from the appropri-
ate table. During this time, the keyboard will be dead.

The routine that handles the keyboard entry of data starts on line 1890, where the
former contents of the accumulator are restored. After doing that, the program
jumps to the monitor ROM’s input routine to read the keyboard (line 1900). Once a
character has been entered, it is compared with all of the preassigned control codes
(lines 1910 to 1960). If no match is found, the X-register is restored (line 1970) and
the character is allowed to pass through this routine unmodified and is entered by
executing the RTS in line 1980.

If, however, a match is found, the program branches to line 2060 and the input
mode flag is incremented — switching it from the keyboard mode to the macro
mode. The contents of the X-register, which was used as an index into the control
code table is transferred to the accumulator (line 2070) where it is doubled (line
2080) and then placed back in the X-register. The reason for the doubling is that
while the control code table consisted of individual bytes, each entry in the macro
address table consists of two bytes. The X-register is now used as an index into the
MACRO table of addresses and the low and high bytes of the addresses are re-
trieved in turn and stored in the page zero pointer TXTPTR (lines 2100 to 2140).
Since the X-register was modified by this routine, it is now restored to its former
value (line 2150) and control is passed to the routine that handles the input of text
from memory. This routine is called MACROIN and starts on line 2210.

In line 2220, a character is retrieved from the address pointed to by TXTPTR.
Next, a check is made to see if the high bit is set, a signal that this is the last
character of the current macro (line 2230). If the high bit is not set (line 2240), a
branch is made to line 2270, where the high bit is set. Line 2250 is reached only if
the character currently in the accumulator is the last one to be printed and hence its
high bit is sct. Here the mode flag is reset to zero so that the program will know that
the next character that is to be input will come from the keyboard. Next, the
program falls into the routine that sets the high bit (linc 2270). Since the high bit of



98 / Chapter 5

this character is already set, nothing happens here and the program goes on to
increment the two-byte pointer TXTPTR, restore the X-register and enter the
character currently in the accumulator (lines 2280 to 2300).

A table called CODES, that contains all of the control codes that have been
assigned as shorthand keys, is located on lines 2460 to 2490, whilg the taple
containing the addresses of the text to be printed out for each key, begins on line
2560. Lines 2770 to 2800 contain the macros for Control-@ and Control-E. On
line 2770, notice that there is no hyphen preceding the first quotation mark as there
is in most of the other programs in this book. The absence of the hyphen, as was
described earlier in the book, indicates that the text is to be assembled without the
high bit set. The presence of the hyphen causes the high bit to be set. The last
character in each of the two macros listed here is $8D, which is a carriage return
with the high bit set. These bytes serve as terminators for the macros.

1000 **Fxdkkkkkkkkkhhkhkkhhkhkkhkkhkrhkhhhkkhhhhkx

1010 *%* kK
1020 *** APPLESOFT SHORTHAND *kk
1030 *** *kE
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *kk
1060 ***% ALL RIGHTS RESERVED *kk
1070 **% Fhk
1080 Fhkkdkdkihkhkkkkkhhkrhhhkhhhkhhrkihkkrhkkk
1090 *
1100 *
1110 *
1120 .OR $28A
1130 *
1140 *
1150 * EQUATES
1160 *

0006- 1170 TXTPTR .EQ $6

0008- 1180 XSAVE .EQ $8

0009- 1190 FLAG .EQ $9

0018- 1200 ASAVE LEQ $18

0038- 1210 KSWL .EQ $38

03D0- 1220 WARMDOS .EQ $3DO

O3EA- 1230 CONNECT .EQ $3EA

FC58- 1240 HOME -EQ $FC58

FDOC- 1250 RDKEY -EQ $FDOC

FD1B- 1260 KEYIN .EQ $FD1B

FDED- 1270 CoUT .EQ $FDED
1280 *
1290 *
1300 *

028A- 4C EB 02 1310 JMP BEGIN
1320 *
1330 *
1340 * This is the text for the title page.
1350 *

028D- C1 DO DO
0290- CC C5 D3
0293— CF C6 D4
0296— A0 D3 C8
0299 CF D2 D4
029C- C8 C1 CE
029F- C4 AO C9
02A2- CE D4 C5
02A5- D2 DO D2
02A8- C5 D4 C5
02AB- D2

02AC 8D 8D

1360 TEXT LAS -TAPPLESOFT SHORTHAND  [NTERPRETER"
1370 HS 8DBD

Stealing Control Of The Input / 99

02AE-
02B1-
02B4—
02B7-
02BA-
02BD-
02C0-
02C1-
02C4-
02C7-
02CA-
02CD-
02D0-
02D3-
02D4-
02D7-
02DA-
02DD-
02EO-
02E3-
02E6-
02E7-
02EA-

02EB-
02EE-
02F0-
02F3-
02F5-
02F8-
02F9-
02FB-
02FD-
O2FF-
0301-
0303~
0306~
0308
030A-
030D~
030F-
0311-

0312-
0314-
0316~
0318~
031A-
031C-
031F-
0321-
0324

00

20
AQ
B9
FO
20
c8
DO
A9
A0
85
84
AD
c9
DO
20
A9
85
60

86
85
A5
DO
AS
20
A2
DD
FO

FC

02

FD

013

1380
1390

1400
1410

1420

1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930

% ok %k k¥ %

BEGIN JSR HOME

LOOP LDA TEXT,Y

BEGIN2 LDA #START

NODOS LDA #$0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

START STX XSAVE

.AS -"BY JULES H. GILDER"
.HS 8D

.AS -"COPYRIGHT (C) 1982"
.HS 8D

.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D00

This part of the program steals control
away from the input and sets the
address of START in the input hooks.

It also sets the mode flag for input

of data from the keyboard.

Clear the screen.
Print out the
opening screen.

LDY #$0

BEQ BEGIN2

JSR COUT

INY

BNE LOOP

Get the address of the

LDY /START start of the program
STA KSWL and store it in

STY KSWL+1 the input hooks.

LDA WARMDOS I's DOS present?

CMP #$4C

BNE NODOS No.

JSR CONNECT Yes, connect through DOS.
Set input flag to
STA FLAG value for keyboard.

RTS Return to caller.

Here, the X-register is saved for
restoring later and a check is made

to see whether the keyboard or macro
mode is active. If the macro mode is
active a branch to the appropriate
routine is made. Otherwise, a character
is input from the keyboard and a check
is made to see if it is one of the macro
codes. If not the character passes
through as is, otherwise the program
branches to a routine to setup the

macro input.

Save X-register.

STA ASAVE Save accumulator.
LDA FLAG Check mode flag.
BNE MACROIN Not in keyboard mode.
LDA ASAVE Restore accumulator.
JSR KEYIN Read the keyboard.
1L.DX }$0 Zero offset counter.
1.OOP1 CMP CODES | X See if valid control code.
BEQ VALILD Valtid code entered.



100 / Chapter 5
0326~ E8 1940 INX Increment offset.
0327- EO 15 1950 CPX #$15 All codes checked?
0329- DO F6 1960 BNE LOOP1 No, do more.
032B- A6 08 1970 LDX XSAVE Restore X-register.
032D~ 60 1980 RTS Yes, return.
1990 *
2000 *
2010 * Here the index of the control code is
2020 * converted to an index into the macro
2030 * address table and the mode flag is set
2040 * to the macro mode.
2050 *
032E- E6 09 2060 VALID INC FLAG Set macro mode.
0330- 8A 2070 TXA Transfer X to accumulator.
0331- 0A 2080 ASL Double it.
0332- AA 2090 TAX Put it back in X.
0333- BD 70 03 2100 LDA MACRO,X Get low-byte of macro.
0336- 85 06 2110 STA TXTPTR Store it in TXTPTR.
0338- E8 2120 INX Increment pointer.
0339- BD 70 03 2130 LDA MACRO,X Get hi-byte of macro.
033C- 85 07 2140 STA TXTPTR+1 Store it in TXTPTR+1.
033E- A6 08 2150 LDX XSAVE Restore X-register.
2160 *
2170 *
2180 * This is the routine that actually prints
2190 * out the macro.
2200 *
0340- A0 00 2210 MACROIN LDY #$0 Set offset to zero.
0342- B1 06 2220 LDA (TXTPTR),Y Get character
0344- C9 80 2230 CMP #$80 Is high bit set?
0346- 90 04 2240 BCC SETHI No, set it.
0348- A0 00 2250 LDY #$0 Reset mode flag to
034A- 84 09 2260 STY FLAG keyboard mode.
034C- 09 80 2270 SETHI ORA #$80 Set high bit.
034E- 20 54 03 2280 JSR INCR Increment TXTPTR.
0351- A6 08 2290 LDX XSAVE Restore X-register.
0353~ 60 2300 RTS
2310 *
2320 *
2330 * This routine increments the two-byte
2340 * pointer used to retrieve the text of
2350 * the macro.
2360 *
0354- E6 06 2370 INCR INC TXTPTR Increment TXTPTR low byte.
0356~ DO 02 2380 BNE RETURN
0358- E6 07 2390 INC TXTPTR+1 Increment TXTPTR high byte.
035A- 60 2400 RETURN RTS
2410 *
2420 *
2430 * This is a table of control codes that
2440 * have been set aside for the shorthand codes.
2450 *
035B- 80 81 82
035E- 83 85 86
0361- 87 89 8A
0364- 8B 8C 2460 CODES .HS 80818283858687898A8B8C
2470 * @ABCEFGI JKL
0366- 8E 8F 90
0369- 91 92 94
036C- 96 97 99
036F- 9A 2480 .HS 8E8F909192949697999A
2490 * NOPQRTVWYZ
2500 *
2510 *
2520 * This is a table of two-byte addresses
2530 * for each shorthand entry. Entries are
2540 * made low-order byte first.
2550 *
0370- 9A 03 2560 MACRO .DA MONITOR @  CALL-151
0372- 4C D2 2570 LHS 4CD2 A CHR$
0374 50 D2 2580 LHS 50D2 B LEFTS$
0376 - F9 DO 2590 JHS FODO ¢ CALL
0378 A3 O 7600 DA CEDIT oo POKE VY,
O3/ DY DO 2610 SHS DADo K FOR

Stealing Control Of The Input/ 101

037C- A4 D1 2620 .HS A4D1 G GOSUB
037E~ DE DO 2630 .HS DEDO I INPUT
0380~ 93 D1 2640 .HS 93D1 J GOTO
0382- 3B D2 2650 .HS 3BD2 K PEEK
0384— D4 D1 2660 .HS D4D1 L LIST
0386~ D6 DO 2670 .HS D6DO N NEXT
0388- C7 D1 2680 .HS C7D1 0 POKE
038A- CB D1 2690 .HS CBD1 P PRINT
038C- 4F D1 2700 .HS 4FD1 Q INVERSE
038E- 97 D1 2710 .HS 97D1 R RUN
0390- EF D1 2720 .HS EFD1 T THEN
0392- 64 D1 2730 .HS 64D1 Vv VTAB
0394- 49 D1 2740 .HS 49D1 W NORMAL
0396- A9 D1 2750 .HS A9D1 Y RETURN
0398- E3 D1 2760 .HS E3D1 Z  TAB(

039A- 43 41 4C

039D- 4C 2D 31

03A0- 35 31 2770 MONITOR .AS ''CALL-151"
03A2- 8D 2780 .HS 8D

03A3- 50 4F 4B

03A6- 45 33 33

03A9- 2C 33 33 2790 EDIT .AS "POKE33,33"
03AC- 8D 2800 .HS 8D

Teach your Apple to recognize lowercase letters

As you probably already know, the original Apple computer that comes fresh
out of the box had no lowercase letter capability. For some strange reason, the
ability to enter and display lowercase characters was not included in the Apple Il
Plus computer. Demand for lowercase grew however, and soon, quite a few com-
panies started selling inexpensive adapters that could be easily installed in an
Apple and allow it to display lowercase letters. And, when the Apple //e and //c
were introduced lowercase capability was finally available.

But displaying lowercase letters is only half the problem, the other half is
entering them from the keyboard. Although the Apple II Plus keyboard does have a
SHIFT key and it can be used to generate some shifted characters — symbols and
punctuation only — it does not allow you to generate the proper ASCII codes for
upper and lowercase characters. In addition, even if it did, there is a routine in the
Apple monitor ROM called CAPTST, the won’t permit the entry of a lowercase
character even if some how it were generated.

The routine, which is located at $FD7E, checks to see if the character being
input is in the range of $EO to $FF. If it is, the character is ANDed with the value
$DF. This converts the characters to the $CO to $DF range, which represents the
upper case letters. By simply changing a single byte at $FD83 from $DF to $FF
which was done in the //e and //c, it would be possible to permit the entry of
lowercase characters, assuming of course that they could be generated by the
keyboard. Since most Apple II Plus owners use a ROM version of Applesoft, it is
not too convenient to change the one byte required, and it doesn’t solve the rest of
the problem anyway.

Another approach to the problem is to write a special input routine that will
allow you to generate the lowercase codes directly from the keyboard and enter
them. To do this, it will be necessary to, once more, stcal control away from the
normal Apple input routines and direct it to a new input program. While this



102 / Chapter 5

program, LOWER CASE INPUT DRIVER, will let you enter lowercase charac-
ters, they will not be displayed unless you have a lowercase adapter. This will vary
from a single chip to a circuit board that plugs into the Apple and prices range from
$20 to $80. Some of the adapters come with software that will let you enter
lowercase letters. And some of the software is not very good. Some of it will
simply consist of a few lines of BASIC program code that do a crude job in
handling lowercase letters.

You will find this program, however, to be very handy, very reliable, and very
user friendly (that’s a term you’ll be hearing more and more often). The LOWER
CASE INPUT DRIVER is very versatile and will work either with or without a
hardware modification that makes the SHIFT key on an Apple II Plus active. Most
other lowercase programs work only with the modification or only without it.
What this modification does, is connect the SHIFT key to pin 4 on the game I/O
connector, where it can be checked by software to see if the key is pressed or not.
Instructions on how to implement this modification are in Appendix C.

If you have not made the modification to the SHIFT key when you installed your
lowercase adapter, you can use the ESCape key for a single character shift or use
Control-A to toggle back and forth between upper and lowercase lock modes. In
the upper case lock mode, the Apple keyboard behaves as it normally does. In the
lowercase lock mode you get both lowercase letters and additional symbols not
normally available.

The program has one additional feature that makes it very user friendly. When-
ever the ESCape key is pressed to produce a capital letter, or the Control-A is
pressed to enter either the upper or lowercase modes, the cursor that marks the
place where the next character will appear turns into a flashing ‘U’ or ‘L’ depend-
ing on whether the next character that will be entered is upper or lowercase. With
-this feature, you will always be aware of when the case of the character being input
changes.

The program starts out as most programs of this type, by replacing the address in
the input hooks with the address of the new input routine (lines 1400 to 1440).
Then, the upper case flag is reset so that the program comes up running in the caps
lock mode, just as the Apple normally does (lines 1450 to 1480). The new input
routine starts on line 1580, where a subroutine jump to the monitor’s KEYIN
routine is performed. This reads the keyboard and waits for a key to be pressed.
Once a key has been pressed, the program saves the character that was entered
(which is now in the accumulator) and the X-register (lines 1590 and 1600) and
then checks the return address that is on the stack to see if it is $SFD77. It does this
by first retrieving the stack pointer from the location where DOS temporarily
stored it, and loading that value into the X-register (line 1610).

Once that is done, we can access the return address that is on the stack and see if
it is $FD77 (lines 1620 to 1650). This is actually one less than the real address
(which is $FD78) because as the address is pulled off the stack later on, the 6502
increments it by onc. If the address is not $FD77, the program branches to line 1840
where the accumulator and the X-register are restored and processing continues,

Stealing Control Of The Input / 103

But, if the address on the stack is $FD77, it is changed to ADDCHR-1, which is
$390 (lines 1670 to 1700). ADDCHR is the routine that we use to replace the ROM
code which converts all incoming characters to uppercase. It is similar to the code
in the F8 ROM between $FD78 and $FD83, except that it eliminates the CAPTST
routine, which does the uppercase conversion.

After the address on the stack has been changed, the accumulator and the X-
register are restored (lines 1840 and 1850) and the program checks to see if the key
that was pressed earlier, was a Control-A (line 1860). If it was, the program looks at
the input mode flag (line 1880) to find out what mode (upper or lowercase) is
currently active. If the flag is zero, the program is currently in the upper case
mode. And, since a Control-A was pressed, the user has told the computer that the
mode should be changed. The branch at line 1890 causes the program to go to line
1940 where the flag is incremented by one putting the program in the lowercase
mode. In line 1950, the ASCII code for a flashing ‘L’ is placed in the accumulator,
and in line 1960, the flashing ‘L’ is placed in the screen in the position where the
next entered character will appear. Thus, the user is alerted to the fact that the next
character that will be entered will be a lowercase character. The program then
branches back to line 1580 to get the next character.

If the mode flag indicates the lowercase mode is currently active, the flag is
decremented by one (line 1900) causing the flag to be reset to zero. This tells the
program that the upper case mode should be active. After resetting the mode flag, a
flashing ‘U’ is loaded into the accumulator (line 1910) and then stored on the screen
in the position where the next entered character would appear (line 1920). The
program then branches back to line 1580 to get the next character.

If the character that was entered in line 1580 is not a Control-A, control is passed
to line 2090 where the character is temporarily saved on the stack and the mode flag
is examined (line 2100) to determine what mode the program is in. If the flag
indicates that the caps lock mode is active (line 2110), the program ceases doing any
processing on the character that was input, retrieves it from the stack (line 2620)
and inputs it as it was entered from the keyboard by executing an RTS instruction
(line 2630).

On the other hand, if the program is in the lowercase lock mode, the character
that was entered is retrieved from the stack (line 2120) and several tests and appro-
priate modifications are performed. In line 2130, the character is tested to see if it is
the ESCape key. If it is, the case flag is set by incrementing it by one (line 2150), a
flashing ‘U’ is placed on the screen (lines 2160 and 2170} and the next character is
input (line 2180).

Taking advantage of the SHIFT key modification

Until now, the program has been dealing with ways of letting the user enter
upper and lowercase Ictters without making the hardware modification. However,
most pecople who know how to type, are uscd to pressing the SHIFT key to get an
upper case letter, so the next routine (CHKSHFT), which starts on line 2300, will




104 / Chapter 5

check for the modified SHIFT key and make letters entered while it is pressed
upper case.

The first thing that the CHKSHFT routine does is to temporarily store the last
character entered on the stack. It then checks the pushbutton port that has been
assigned to game paddle 2 (this does not affect the normal usage of paddles O and 1)
to which the SHIFT key has now been connected (line 2310). If the value retrieved
from this pushbutton port ($C063) is between $0 and $7F, the SHIFT key is being
pressed and the program branches to the capitalization routine (line 2480). If it is
$80 or greater, the SHIFT key is not being pressed.

Now that we know the program is not in the caps lock mode and the SHIFT key is
not being pressed, there’s only one more thing we have to do, and that is to check if
the ESCape key was pressed just prior to entering this character. If it was, we know
this character is supposed to be upper case, just as if the SHIFT key were being
pressed (lines 2340 and 2350).

Upon determining that this character is not supposed to be shifted, it is retrieved
from the stack (line 2360) and checked to see if it is a number or letter (line 2370).
If it is a number (line 2380) it is printed out as is. And if it is a letter, it is made

1000 **kkkkkkdkkhkdhkkhkhkkkkkkkkkkkkkkkkikkx

1010 *** Fkk

1020 *** LOWER CASE INPUT DRIVER ok
1030 ***% Fkk
1040 *** COPYRIGHT (C) 1982 BY Fkk
1050 *** JULES H. GILDER *okk
1060 *** ALL RIGHTS RESERVED *kk
1070 **% kK
1080 *hkxkkkkkkhhhhhrkkhrhkkrkrhhdkrhrhhrkrrds
1090 *
1100 *
1110 *
1120 *
1130 .OR $300
1140 *
1150 *
1160 *
1170 * EQUATES
1180 *

0006- 1190 FLAG .EQ $6

0007- 1200 MODE LEQ $7

0008- 1210 ASAVE .EQ $8

0009- 1220 XSAVE .EQ $9

0024~ 1230 CH .EQ $24

0028~ 1240 BASL -EQ $28

0038- 1250 KSWL .EQ $38

0100- 1260 STACK .EQ $100

O3EA- 1270 CONNECT .EQ $3EA

AAS59- 1280 SSAVDOS .EQ $AA59

C063- 1290 SHIFT .EQ $C063

FD1B- 1300 KEYIN .EQ $FD1B

FD75- 1310 NXTCHR .EQ $FD75

FD84— 1320 ADDINP .EQ $FD84
1330 *
1340 *
1350 * This section steals control of the
1360 * input and passes all characters to
1370 * be input to the routine beginning
1380 * with START.
1390 *

0300- A9 12 1400 LDA HSTART Get the addresn of the

0302- A0 013 1410 LDY /START wtart of the program.

Stealing Control Of The Input / 105

lowercase by ORing the value in the accumulator with $20 (line 2390). The pro-
gram then branches to the end of the program where the letter is input. The branch
on line 2400 is always taken because the value in the accumulator never equals zero
at this stage of the program.

In the normal Apple, the shifted M, N and P letters produce the |, A and @
characters. The next routine, called CAP, corrects this so that they produce the
normal capitalized letters instead. To get those three symbols, it is necessary to
first be in the upper case lock mode and then press the SHIFT key and the M, N or
P keys. In line 2480, the character is retrieved from the stack and in line 2490, it is
tested to see if it is a letter. If it’s not a letter, the program branches to line 2590 and
prints itout. Ifitis a letter, it is checked to see if it is a P, M or N (lines 2510 to 2580)
and if it is, the accumulator is loaded with the ASCII code for the appropriate
capital letter.

The final part of this routine, labelled DONE and on line 2590, temporarily
stores the character on the stack, resets the caps mode flag to lowercase (lines 2600
and 2610), retrieves the character from the stack (line 2620) and finally enters the
character by executing an RTS instruction (2630).

0304~ 85 38 1420 STA KSWL Store it in the
0306- 84 39 1430 STY KSWL+1 input hooks.
0308- 20 EA 03 1440 JSR CONNECT Connect to DOS.
030B- A9 00 1450 LDA #$0 Reset upper case flag.
030D- 85 06 1460 STA FLAG
030F- 85 07 1470 STA MODE
0311~ 60 1480 RTS Return.
1490 *
1500 *
1510 * This routine replaces the normal
1520 * input routine. A keypress is gotten
1530 * and the accumulator and X-register are
1540 * saved while the return address on the
1550 * stack is changed so the CAPTST routine
1560 * in the monitor ($FD7E) is bypassed.
1570 *
0312- 20 1B FD 1580 START  JSR KEYIN Read the keyboard.
0315~ 85 08 1590 STA ASAVE Save the accumulator.
0317- 86 09 1600 STX XSAVE Save the X-register.
0319~ AE 59 AA 1610 LDX SSAVDOS Get stack pointer.
031C- BD 03 01 1620 LDA STACK+3,X See if the
031F- C9 77 1630 CMP #NXTCHR+2 return address on the
0321~ BD 04 01 1640 LDA STACK+4,X stack is $FD78-1.
0324~ E9 FD 1650 SBC /NXTCHR+2
0326- 90 OA 1660 BCC NOTINP It's not restore registers.
0328- A9 90 1670 LDA #ADDCHR-1 It is, replace it with
032A- 9D 03 01 1680 STA STACK+3,X the address of the
032D- A9 03 1690 LDA /ADDCHR-1 ADDCHR routine to
032F- 9D 04 01 1700 STA STACK+4,X bypass CAPTST.
1710 *
1720 *
1730 * Here the accumulator and the X-register
1740 * are restored and the program checks to see
1750 * if a Control-A, which is used as a shift
1760 * lock key, is pressed. If not, the
1770 * processing of the character continues.
1780 * 1f a Control-A was entered, the program
1790 * determines what mode it is currently
1800 * in, switches to the other and sets the
1810 * prompt to a flashing 'LL' or 'U’,
1820 * depending on what the new mode s,
1830 4




106 / Chapter 5

0332-
0334~
0336-
0338-
033A-
033C-
033E-
0340-
0342-
0344-
0346-
0348-
034A-~
034C-

034E-
034F-
0351-
0353-
0354~
0356-
0358~
035A-
035C-
035E-

0360~
0361-
0364~
0366
0368-
036A-
036C-
036D~
036F-
0371~
0373~

0375-
0376-
0378-
037A-
037C-
037E-
0380~
0382~
01384

A5
A6
c9
DO
A5
FO
cé
A9
91
DO
E6
A9
91
DO

68
Cc9
90
FO
c9
FO
Cc9
DO
29

Cco
10
0oc
DD
04
DE

EF

Cco

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
72560

NOTINP LDA
LDX
CMP
BNE
LDA
BEQ
DEC
LDA
STA
BNE
SETMOD INC
LDA
STA
BNE

pressed.

% % ok 3 % ok A A F ¥ 3%

CONTIN PHA
LDA
BEQ
PLA
CMP
BNE
INC
LDA
STA
BNE

% b % ok ok ok X OF Ok *

CHKSHFT PHA
LDA
CMP
BCC
LDA
BNE
PLA
CMP
BCC
ORA
BNE

%k % o ¥ ok %

Q
>
a~]

PLA
CMP
BCC
BEQ
CMP
BEQ
CMP
BN
CPTIMN  AND

ASAVE
XSAVE
#$81
CONTIN
MODE
SETMOD
MODE
#$55
(BASL),Y
START
MODE.
#3$4C
(BASL) ,Y
START

Restore accumulator.
Restore X-register.

Is it a Ctrl-A?

No, continue processing.
Yes, check current mode.
Now upper case, make lower.
Now lower case, make upper.
Show upper case prompt.

Branch always, get new key.
Set lower case mode.
Show lower case prompt.

Branch always, get new key.

Here a check is made for caps lock mode.
If in this mode, the keyboard acts as

a normal Apple keyboard. If not in
caps lock, a check is made to see if
the ESC key (used as a shift key) was

If so, cap flag is set and

MODE
END

#$9B
CHKSHFT
FLAG
#$55
(BASL) ,Y
START

has been pressed.

SHIFT
#$80
CAP
FLAG
CAP

#$CO
DONE
#$20
DONE

#$CO
DONE
CPTLP
#$0DD
CPTLMN
H#$DE
DONE
H$EF

upper case prompt is set. Otherwise
the SHIFT key is checked.

Save character.
Check input mode.
Caps lock, input as is.

Lower case, restore character.

Is it the ESC key?

No, check shift key.
Yes, set caps flag.
Set upper case prompt.

Branch always, get new character.

This section checks to see if a shift
key, that has been modified by connecting
it to pin 4 of the Game I1/0 connector,

If so, capitalize
letter entered, otherwise see if ESC

was used to shift case. If so input

cap, otherwise see if character is a
letter and make lower case if it is.

Save character.

Check shift key.

Is it down?

Yes, handle it.

No, was ESC used for shift?
Yes, handle it.

No, restore character.
Is it a letter?

No, input as is.

Yes, make it lower case.
Input character.

This is where Shift M,N and P are
corrected to their real values. Also
the caps flag is reset so lower case
will be entered.

Is it a letter?
No, input as is.
Make it a capital-P.
Is it a shift-M?

Yes, make it a capltal -M.
Is 1t o shift N?

No, Input an (n,
Capltallve M and N,

Stealing Control Of The Input / 107

0386-
0388-
038A-
038B-~
038D-
038F-
0390-

0391-
0393-
0395-
0397-
0399~

DO
A9
48
A9
85
68
60

c9
Do
Al
B1
4C

02 2570 BNE DONE Input it.
DO 2580 CPTLP  LDA #$DO Get a capital-P.
2590 DONE PHA Save character.
00 2600 LDA #$0 Reset the caps
06 2610 STA FLAG mode flag.
2620 END PLA Retrieve character.
2630 RTS Input it.
2640 *
2650 *
2660 * This routine substitutes for the code
2670 * between $FD78 and $FD83 in the F8 ROM
2680 * and permits the entry of lowercase characters.
2690 *
95 2700 ADDCHR CMP #$95 Is character a Ctrl-U?
04 2710 BNE GOADD No, put it in input buffer.
24 2720 LDY CH Yes, get the previous
28 2730 LDA (BASL),Y character and add it
84 FD 2740 GOADD  JMP ADDINP to the input buffer.



Chapter 6
USING SOUND IN YOUR PROGRAMS

One of the really nice things about the Apple computer is that it has a built-in
speaker that can be controlled by software. While the speaker is small, and the
quality of sound it produces can be less than high fidelity, nevertheless, it can be
used for a wide variety of applications from generating warning signals by an
application program to generating music. It can even be used to generate some
fairly realistic sound effects for action games.

While the use of the internal speaker is limited only by your own imagination, a
small sampling of useful routines and applications will be presented here. Some of
these programs can be used by themselves, such as the KEYBOARD CLICKER,
MORSE CODE GENERATOR and CASSETTE DUPLICATOR, while others
can be used with BASIC or machine language programs to produce desired sound
effects. On the sound effects programs, feel free to vary the parameters and see
what cffect the change has on the sound. You might just come up with that elusive
sound you’ve been looking for.

A major portion of the sound programs in this chapter are made available
through the kind permission of Bob Sander-Cederlof, who puts out a monthly

108

Using Sound in Your Programs / 109

publication called Apple Assembly Line. Those programs, and some of the ex-
planatory text, come from the February 1981 issue of Apple Assembly Line.

The speaker hardware in the Apple is very simple. A flip-flop, which is a device
that repeatedly alternates between two states (e.g. ON and OFF), controls the
current that is supplied to the coil of the speaker. The flip-flop is connected in such
a way, that it reverses the flow of current through the speaker’s coil. This is
important, because the direction of the current flow determines whether the cone
of the speaker is pulled in or out. If we “toggle” the flip-flop and cause it to
continuously reverse the flow of current through the speaker, we can cause the
speaker to produce audible sound. The rate at which we toggle, determines the
frequency of the sound. And, by changing the toggling of the speaker dynamically,
it is possible to produce some very complex sounds. The toggling of the speaker is
accomplished by accessing location $C030 with any of the load, store or BIT
instructions.

How to generate a simple tone

To generate a simple tone, it is only necessary to toggle the speaker at a rate that
is low cnough so that it falls within the range of 20 to 20,000 Hertz (cycles per
second), which is the range of signals that the human ear can detect. The program
SIMPLE TONE ROUTINE generates a tone burst of 128 cycles (this is equal to
256 half-cycles). Each half cycle here consists of 1288 Apple clock pulses. Since
the internal Apple clock frequency is about 1 MHz, the frequency of sound that is
produced is about 338 Hz.

The program starts out by setting the Y-register, which is used as a half-cycle
counter, to zero (line 1210). In line 1220, the X-register, which is used as a delay
counter, is also set to zero. The sound producing section of code starts with LOOP1
on line 1230, where the speaker is toggled. After toggling the speaker, the program
waits, while LOOP2 is executed (lines 1240 and 1250). LOOP? is only used to
produce a time delay, which will be equal to the amount of time it takes to decre-
ment the X-register to zero. After the delay, the Y-register is decremented (line
1260) and the speaker is toggled once more (line 1270). This continues until 256
half-cycles (128 cycles) are completed.

Figuring out the frequency

At this point, you might be curious how the frequency is figured out. This is
done by determining the time taken up by each half cycle, doubling it and then
taking its inverse. Let's go through a sample calculation.

To start with, we have to add up all of the 6502 cycles for each instruction in the
sound producing loop (lines 1230 to 1270). To avoid confusion between the 6502
cycles and the cycles of the sound producing loop, each half cycle will be referred
to as a pulse. Thus, there are two pulses per sound producing cycle (Hz). The LDA
instruction in line 1230 takes 4 cycles. The DEX instruction on the next line, takes



110 / Chapter 6
1000 *rkkkhkkkkkkkkrkdrrdhhhihhhrrrrktrrrs
1010 *** ok
1020 *** SIMPLE TONE ROUTINE *kk
1030 *** kK
1040 *** REPRINTED FROM THE *kk
1050 *** FEBRUARY 1981 ISSUE OF *kk
1060 *** APPLE ASSEMBLY LINE Fhk
1070 *** COPYRIGHT (C) 1981 BY *kk
1080 *** S5-C SOFTWARE Fkk
1090 *** ALL RIGHTS RESERVED F*kk
1100 *** *kk
1110 Fhrkkkkdrhkkkkrkhkdhkrhhkkhkrddhkkrdhrrr
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
C030- 1180 SPEAKER .EQ $CO030
1190 *
1200 *
0800- A0 00 1210 LDY #3$0 Cycle counter
0802- A2 00 1220 LDX #$0 Delay counter
0804- AD 30 CO 1230 LOOP1 LDA SPEAKER Toggle speaker
0807~ CA 1240 LOOP2 DEX Decrement delay counter.
0808- DO FD 1250 BNE LOOP2
080A- 88 1260 DEY Do 128 cycles.
080B- DO F7 1270 BNE LOOP1
080D- 60 1280 RTS

2 cycles and the BNE instruction in line 1250 takes 3 cycles when it branches and
only 2 cycles when it does not branch. The DEX-BNE pair in lines 1240 and 1250
are executed 256 times for each pulse. The last time through this loop the BNE
instruction does not branch, and thus only 2 cycles are used. The DEY-BNE pair
will branch once for each pulse, so 5 cycles are used here. Now let’s total up the
number of cycles used:

Operation Cycles
Togglespeaker ..................... 4
Delayloop (5 x 255) = ............. 1275
Endofdelayloop ................... 4
DEY-BNEPair ..................... 5
Total Numberof Cycles .............. 1288

Since the Apple’s internal clock works at roughly 1 MHz, eachcycleisequal to 1
microsecond. So for each pulse, or each half of a sound generating cycle, 1288
microseconds are required. Doubling this, to get 2576 microseconds, gives us the
time required for each sound cycle and using the formula:

Frequency = 1/Time
This formula assumes time is measured in seconds. If it is measured in micro-
seconds, as it is here, the formula becomes:

1,000,000

Frequency = Time

Using Sound in Your Programs / 111

Thus, we can calculate the frequency as being equal to:

1,000,000

3576 = 388 Hz

Frequency =

As you can see, by increasing or decreasing the amount of delay within the

sound-producing loop, it is possible to change the frequency of the sound that is
generated.

Examining the Apple BELL routine

The preceding program is good for producing a sound of 388 Hz. But if you
wanted to change the frequency, you’d have to change the program to increase or
decrease the delay. It would be much more convenient to have a program that can
be entered with a variable related to the frequency so that the same routine could be
used to generate a whole range of frequencies. This is what Apple Computer did
with the BELL routine inside the F8 ROM, at location $FBE2.

Unlike the the previous program, the APPLE BELL ROUTINE uses another
monitor routine WAIT ($FCAS8) to produce the delay that determines the width of
the generated pulse. Thus, if the Y-register and the accumulator are loaded with
data and this program is entered at line 1210, the user has full control over the
frequency and duration of the pulse.

The APPLE BELL ROUTINE starts on line 1190 where the Y-register is preset
for 192 ($CO0) sound cycles. This is simply used to determine how long the sound
will be played. On line 1200, the accumulator is loaded with a value that is used by
the WAIT routine to generate a time delay. The delay can be determined by the
following formula:

1000 **rxhkkkhhhhkhkikkkkhkhkkkkkhhkkkkkkkhkk

1010 *** >k

1020 #** APPLE BELL ROUTINE *kk

1030 *** *kdk

1040 ***% REPRINTED FROM THE *EE

1050 *** FEBRUARY 1981 ISSUE OF kk

1060 *** APPLE ASSEMBLY LINE *hK

1070 *** *hk

1080 *kkkkkkkkhkhkhhkkkhkhkhhhhrthkhrrrhrrid

1090 *

1100 *

1110 *

1120 *

1130 * EQUATES

1140 *
C030- 1150 SPEAKER .EQ $C030
FCA8- 1160 WAIT .EQ $FCA8

1170 *

1180 *
0800- A0 CO 1190 LDY #$CO Number of half-cycles
0802- A9 0OC 1200 BELL2 LDA #$0C Set delay to 500 microseconds,
0804- 20 A8 FC 1210 JSR WAIT the half cycle of 1000 Hz.
0807- AD 30 CO 1220 LDA SPEAKER Toggle the speaker.
080A- 88 1230 DEY Count the half cycle.
0808 DO F5 1240 BNE BELL2 Not finished.
080D 60 1750 RTS Finished return to caller.



112 / Chapter 6

Delay = (13+ 13.5A + 2.5A%) x 1.023 microseconds

where A is the number that is in the accumulator. In the BELL routine, the accu-
mulator is loaded with 12 ($0C) to produce a time delay of about 500 microseconds
per half cycle. This means the frequency of the sound generated would be about
1000 Hz. After the delay in the WAIT subroutine (line 1210), the program comes
back to toggle the speaker (line 1220). Next, the number of half cycles that are left
to be played is decreased by one (line 1230) and a check is made to see if all of the
half cycles have been played (line 1240). If not, the program goes back to line 1200
to play another half cycle.

Let your keyboard tell you what’s happening

For those of you who are light-of-touch, and aren’t always sure that the key you
pressed on the keyboard went down far enough to register, the next program is for
you. Called the KEYBOARD CLICKER, this program provides you with audio
feedback that tells you when a key has been pressed. The program uses the tech-
niques we learned in the last chapter to steal control away from the normal input
routines and channel it to a new input routine (lines 1270 to 1350). The new
program checks to see if a key has been pressed, and if so, generates a short click
through the Apple’s internal speaker.

The new input routine, which starts at line 1430, temporarily stores the accumu-
lator and the Y-register on the stack (lines 1430 to 1450), so that they can be
restored to their original values after the speaker has clicked. With the contents of
the Y-register safely stored, a new value of 10 ($A) is placed in the register (line
1460) and a subroutine jump is made to the BELL2 entry point of the Apple’s
BELL routine (line 1470). What this does, is to generate a frequency of 1000 Hz
{we haven’t changed the amount of time spent in the WAIT loop) that consists only
of 5 cycles (10 half cycles). The result is a nicely audible click. If the sound is too
pronounced, you can reduce it by loading the Y-register in line 1460 witha 2. If you
want it more pronounced, you can load in larger numbers up to 255 ($FF).

After the click has been generated, the Y-register and accumulator are restored
(lines 1480 to 1500) and the next key press is gotten.

RAT-A-TAT-TAT here’s the Apple machine gun

The next four programs are going to show you how it’s possible to produce sound
effects on the Apple's internal speaker. The first effect will be that of a machine
gun. The sound of a machine gun is not composed of tones, but instead is made up
of noise, or random sounds. If we were to generate pulses with random widths,
we'd generate noise that could sound just like machine-gun fire. That’s what is
donc in the program MACHINE GUN NOISE.

The program starts out by setting up the X-register to determine how many
pulses will be in the noise burst, or how long the burst of will last (line 1230). In
lines 1240 and 1250, an additional one -byte counter iy set up to determine the

Using Sound in Your Programs / 113

1000 Fxrkxdchrrrrhrihkhrbrss Fkk Kok kA k

1010 *** *kk
1020 *** KEYBOARD CLICKER *kk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY Fkk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *hk
1070 **% *kk
1080 ***kkrkkdrrhhhhhhhkkirhhrhik *hkkE
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
0038- 1150 KSWL .EQ $38
03D0- 1160 WARMDOS .EQ $3DO
03EA- 1170 CONNECT .EQ $3EA
FBE4— 1180 BELL2 .EQ $FBE4
FD1B- 1190 KEYIN .EQ $FD1B
1200 *
1210 *
1220 * This section steals control of the
1230 * input and passes all characters to
1240 * be output to the routine beginning
. 1250 * with START.
1260 *
0800~ A9 13 1270 LDA #START Get the address of
0802- A0 08 1280 LDY /START the start of the program.
0804~ 85 38 1290 STA KSWL Store it in the
0806- 84 39 1300 STY KSWL+1 input hooks.
0808- AD DO 03 1310 LDA WARMDOS Is DOS present?
080B- C9 4C 1320 CMP #$4C
080D- DO 03 1330 BNE NODOS No.
080F- 20 EA 03 1340 JSR CONNECT Yes, connect to DOS.
0812~ 60 1350 NODOS RTS Return.
1360 *
1370 *
1380 * This routine replaces the normal
1390 * input routine and causes a click to
1400 * be generated each time a key on the
1410 * keyboard is pressed.
1420 *
0813~ 48 1430 START PHA Save entered character.
0814~ 98 1440 TYA Save the Y-register.
0815~ 48 1450 PHA
0816~ A0 OA 1460 LDY #$A Setup short a
0818- 20 E4 FB 1470 JSR BELL2 bell (click).
081B- 68 1480 PLA Restore the Y-register.
081C- A8 1490 TAY
081D~ 68 1500 PLA Restore the character.
081E- 4C 1B FD 1510 JMP KEYIN Get the next key press.

number of bursts that will be heard. Next, the speaker is toggled at line 1260. The
width of each pulse produced by the speaker (each half cycle) is determined by line
1270. Here, the Y-register is loaded with a pseudo-random number that is used to
determine the pulse width, which is caused by the delay generated in LOOP2 (lines
1280 and 1290). The particular area chosen was the first page of the F8 ROM.
Since this is ROM, the data will stay the same from computer to computer and the
noise is repcatable. But experiment alittle. Usc different addresses in line 1270 and
listen to how the sound changes.

After the delay caused by LOOP2, the X-register, or pulse counter, is deere-
mented and the next pulse is generated (lines 1300 and 1310). When all of the pulses
of the burst hive been generated, the program reduces the burst counter by one



114 / Chapter 6

Use your Apple as a machine gun.

(line 1320) and starts generating the next burst of pulses (line 1330). This goes on
until 10 bursts have been generated.

Use swooping lasers for space games

Moving up from conventional handheld weaponry to the weapons of the future,
the next sound we are going to learn how to create is the swoop of a laser gun. Laser
swoops, or blasts, are a common feature in space games, and the addition of this
sound effect makes those games appear that much more realistic.

To produce a laser blast sound, it is necessary for us to change the width of the
pulse being generated from a wide one to a narrow one. This will produce a low
tone that gradually slides higher and higher until it is beyond the range of the
human ear (or the Apple’s speaker).

The program starts out by setting up some parameters. In lines 1240 and 1250 the
program sets up the routine for producing only one pulse at each width. Next, in
line 1260, a maximum width is assigned to the pulse. The sound generation routine
starts at line 1280 where the Y-register is loaded with the pulse count, in this case
one. The speaker is toggled in line 1290 and the delay required to produce the
desired pulse width is set up and executed in lines 1300 to 1320. In line 1330, the
pulse counter (Y-register) is decremented until the count becomes zero. Once this
occurs, the width of the pulse is reduced (lines 1350 and 1360) until the width
becomes zero, at which point the program returns to its calling routine or mode
(1370).

If you run the program at $800 you will hear one swoop which is not too
impressive. However, if you use the additional Multi-Swooper routine, you will
hear some very nice laser blasts. This simple routine, which starts at line 1420,
merely calls the SWOOP program 10 times.

Using Sound in Your Programs / 115

1000 *hxdkhkkkkhkhhhhkhkhkihkhrhrhhhkhkkkhkhhkkhkhkkk

1010 *** *kk

1020 **%*% MACHINE GUN NOISE *hk

1030 *** *kk

1040 *%%x REPRINTED FROM THE *kk

1050 *** FEBRUARY 1981 ISSUE OF *kk

1060 *** APPLE ASSEMBLY LINE *kk

1070 *** COPYRIGHT (C) 1981 BY kK

1080 *** S-C SOFTWARE xRk

1090 *** ALL RIGHTS RESERVED *kk

1100 *#** *kk

1110 *xkhhkkhrhkkhhhhhrhhhdrrhddrrhddrhrk

1120 *

1130 *

1140 *

1150 *

1160 * EQUATES

1170 *
0000- 1180 COUNTER .EQ $0
BAOO- 1190 RANDOM .EQ $F800
C030- 1200 SPEAKER .EQ $C030

1210 *

1220 *
0800- A2 40 1230 LDX #$40 Length of noise burst.
0802- A9 0OA 1240 LDA #$0A Number of noise bursts.
0804- 85 00 1250 STA COUNTER
0806— AD 30 CO 1260 LOOP1  LDA SPEAKER Toggle speaker.
0809- BC 00 F8 1270 LDY RANDOM,X Get pulse width pseudo-randomly.
080C- 88 1280 LOOP2 DEY Delay loop for pulse width.
080D~ DO FD 1290 BNE LOOP2
080F- CA 1300 DEX Get next pulse in burst.
0810- DO F4 1310 BNE LOOP1
0812- C6 00 1320 DEC COUNTER Get next noise burst.
0814- DO FO 1330 BNE 1.00OP1
0816~ 60 1340 RTS

If you're going to use a routine such as this one in a program, you’re probably
concerned about making the visual effects of the laser blast appear simultaneously
with the sound. There is no possibility of doing two things at once on the Apple,
but if you do things fast enough, they can be done one right after the other, and still
appear to be simultaneous. That’s the case here. Because this is a machine lan-
guage routine and fairly fast, it is possible to generate the sound first and then the
graphics and have it appear to occur simultaneously.

This program is a fairly versatile one and I encourage you to experiment a little.
You can start out by changing the values in line 1260 from 160 to 128, 80 and 40 to
see what effect these have on the sound produced. Next, try changing the number
of pulses generated at each width (line 1240). Here you might want to try numbers
suchas 2, 5, 20 and 40. But don’t limit yourself to these, experiment. Another thing
you might want to try is running the pulse width in the opposite direction, from a
narrow pulse to a wide one. You can do this by changing line 1350 to INC
PULSWDH. Finally, try changing the number of swoops generated (line 1420).

Do your blasting with less memory
Another program to produce laser blasts, LASER SWOOP 2, can do a similar

Jjob with about half of the memory. This is done by integrating both the Multi-

Swooper and the Swoop generator into one program.



116 / Chapter 6

0000-
0001~
0002-
c030-

0800-
0802-
0804
0806-
0808~
080A-
080D-
080F-
0810-
0812-
0813-
0815-
0817-
0819-

081A-
081C-
081E-
0821-
0823
08729

A9
85
A9
85
A4
AD
Ab
CA
DO
88
Do
cé
DO
60

A9
85
20
Ccé
DO
60

Cco

08

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

*hkkkkhkkkkkrhkkkhhkhhkhhkhkhkhhkhkhrhkrkrhhidik

*k%k
*%k%k
*k%k
*kk
*k*k
*k%k
*kk
*kk
*kk
*k%

*kk

LASER SWOOP 1 Fk

*kk

REPRINTED FROM THE ok
FEBRUARY 1981 ISSUE OF ook
APPLE ASSEMBLY LINE *k
COPYRIGHT (C) 1981 BY Kk
S-C SOFTWARE Kok

ALL RIGHTS RESERVED *okk

*k*k

*hkkkkkkkkhhhkhkhhkhhkhkhkhkkhkrhhrikhhhhrk

EQUAT

ook ok Ok 3

PULSCNT .
PULSWDH .
SWOOPCT .
SPEAKER .

*
*

SWOOP

LoOP1
LOOP2

LOOP3

S ok

ES

LDA #

STA
LDA
STA
LDY
LDA
LDX
DEX
BNE
DEY
BNE
DEC
BNE
RTS

#$A0

PULSWDH
PULSCNT
SPEAKER
PULSWDH

LOOP3
LOOP2

PULSWDH
LOOP1

* Multi-Swooper

SWOOP2

1.OOP4

LDA
STA
JSR
DIC
BN
RTS

#$A
SWOOPCT
SWOOP
SWOOPCT
1.OOP4

One pulse at each width.

Start with maximum width of 160.

Toggle the speaker.
Delay loop for one pulse.

Loop for number of pulses
at each pulse width.
Shrink pulse width

to limit of zero.

Number swoops
Save it.
Do swoop.

Decrement the swoop count .

Not done, do morve,

Using Sound in Your Programs / 117

The number of swoops, or shots generated is set up in line 1210 of the program.
In the next line, 1220, the width of the first pulse is set. Next, this width is stored
temporarily in the accumulator, while the delay is being implemented (lines 1230
to 1250). After the delay, the original value that was in the X-register is restored
(line 1260) and the speaker is toggled (line 1270).

Once the speaker has been toggled, the width of the pulse is incremented by one
(line 1280) and a comparison is made to see if the maximum pulse width has been
reached (line 1290). If not, the program jumps back to line 1230 to generate the
delay for the next pulse. If the maximum pulse width has been reached, the number
of shots is reduced by one (line 1310) until all have been generated.

1000 **xkkkkhhAxrAdhkdrthrhkrhrhdhhkhrhrhriik

1010 *** Kk
1020 ***% LASER SWOOP 2 *kk
1030 **%* *kk
1040 *** REPRINTED FROM THE *hk
1050 *%* FEBRUARY 1981 ISSUE OF *kk
1060 *** APPLE ASSEMBLY LINE *kk
1070 *** COPYRIGHT (C) 1981 BY *hk
1080 **% S-C SOFTWARE kel
1090 *** ALL RIGHTS RESERVED Fokk
1100 *+** *kk
1110 * kkkdkokh ok kdkhkkkk Kk Kk
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
C030- 1180 SPEAKER .EQ $C030
1190 *
1200 *
0800- AC 0A 1210 LDY #$A Number of shots.
0802- A2 40 1220 LOOP1 LDX #$40 Pulse width of first pulse.
0804- 8A 1230 LOOP2 TXA Start a pulse within a shot.
0805- CA 1240 1.00P3 DEX Delay for one pulse.
0806- DO FD 1250 BNE LOOP3
0808- AA 1260 TAX
0809- AD 30 CO 1270 LDA SPEAKER Toggle the speaker.
080C- E8 1280 INX
080D~ EO CO 1290 CPX #$CO Width of last pulse.
080F- DO F3 1300 BNE LOOP2
0811- 88 1310 DEY Done shooting?
0812- DO EE 1320 BNE [.OOP1 No.
0814~ 60 1330 RTS

As with the last program, you should do some experimenting with this one too.
The first thing you ought to do is try changing the values used as the minimum and
maximum pulse widths (lines 1220 and 1290). You might also want to try changing
the number of swoops generated (line 1210). Finally, you could try changing the
direction of the changing pulse from an increasing width to a decreasing with. This
can be done by changing the INX in line 1280 to a DEX.

Fifteen bytes to an alarm signal

Another sound effect that can come in quite handy is a siren generating routine.
It may be used as part of an alarm routine, or a simulation game where emergency
vehicle sirens are required.



118 / Chapter 6 )

The SIREN program presented here is very short, only fifteen bytes long, but
will produce a wailing siren sound that repeatedly starts at a low frequency and
goes higher until an upper limit is reached. Then it starts all over again.

The program starts on line 1180, where the X-register is loaded with a random
value from location TEMP ($2FF). Next the speaker is toggled (line 1190). You'll
notice, that while we have generally used an LDA instruction to toggle the speaker,
here the BIT instruction is used. The program executes a delay based on the the
value stored in the X-register (lines 1200 and 1210). Because the time delay gener-
ated is constantly shrinking, the frequency is constantly increasing. After that, the
value in TEMP is reduced by one (line 1220) and the program jumps back to the
beginning using a relative branch (lines 1230 and 1240). This makes the program
independent of memory position.

1000 **xkkdhhkhkkhhkhkhkkhkrkrdhhhhxhdhhrrhkhkhhik

1010 *** *kk
1020 *** SIREN PROGRAM Fkk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER Fkk
1060 *** ALL RIGHTS RESERVED Fkk
1070 *** *kk
1080 *kkkdkkkhhkkdhkkhhhrhrhhkhhhrirrrhkhhrrs
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
02FF- 1140 TEMP .EQ $2FF
C030- 1150 SPEAKER .EQ $C030
1160 *
1170 *
0800- AE FF 02 1180 START LDX TEMP Initialize the X-register.
0803- 2C 30 CO 1190 BIT SPEAKER Toggle the speaker.
0806- CA 1200 LOOP DEX Decrement the X-register
0807- DO FD 1210 BNE LOOP until it equals zero.
0809- CE FF 02 1220 DEC TEMP Decrement TEMP.
080C- B8 1230 CLV Go back to
080b- 50 F1 1240 BVC START the beginning.

The Apple sound hardware, unlike the hardware in other computers, is only
capable of generating one tone at a time. So, if you want to generate more than one
tone at the same time, you can’t. Nevertheless, I’'m sure most of you have heard
programs that produce what appears to be multi-tone sounds. This is done by
playing the sounds one after the other in quick succession and repeating the se-
quence several times. This fools the ear into thinking that the sounds occurred
simultaneously. By using this technique, and generating the proper frequencies, it
is possible for us to write a program that will simulate the tones generated by a
Touch-Tone keypad, such as those found on telephones.

Simulate a Touch-Tone generator with your Apple

The TOUCH-TONE SIMULATOR program begins on line 1350 with a routine
called TWOTONE. While the quality of the tones produced is not good enough to

Using Sound in Your Programs / 119

.

use with the telephone system, it’s good enough for demonstration purposes. This
routine contains a loop that first plays the low tone and then the high tone and is
repeated ten times. The number of repetitions is determined by the value stored in
CHRDTIM in lines 1350 and 1360.

The particular two tones that are generated are determined by what the value in
BUTTON is. In line 1370, the X-register is loaded with the value of the button
pressed (from O to 9) and used as an index into two tables that contain the data for
generating the low and high tones (lines 1380 and 1400). After the appropriate data
are retrieved, the program jumps to a subroutine (lines 1390 and 1410) that actually
generates and plays the tones through the speaker. After one pair of tones have been
played through the speaker, the program loops back to line 1370 and plays them
again until the process has been repeated ten times (lines 1420 to 1440).

A 12-key Touch-Tone keypad uses 7 basic frequencies that are combined in a
variety of ways to produce twelve tone pairs. When the program retrieved tone data
from the LOTONE and HITONE tables in lines 1380 and 1400, the information it
retrieved was merely a number from O to 6 that determined which of the seven
tones was to be generated. When the program jumps to the ONETONE routine
from lines 1390 and 1410, this number from O to 6 is still in the accumulator. The
first thing that ONETONE does is to store this value in the Y-register, where it will
be used as an index into a second set of data tables that determine the time required
for each half cycle (up time and down time) and the number of half cycles to be
generated. Lines 1520 to 1570 pick up the variables from the three tables and stores
them in three page zero locations for use later.

The next subroutine, PLAY, is the one that actually produces sound in the
speaker. It contains two identical routines (lines 1580 to 1640 and lines 1650 to
1710). One handles the up time and one the down time. The purpose of having two
routines, is to be able to more closely approximate the desired frequency. For
example, if the loop count we ought to use to get the desired frequency is 104.5, we
could use an up time of 104 and a down time of 105; this makes the total time for the
full cycle correct. Line 1640 has a redundant BEQ instruction, because if it is
eliminated, the program will still go to LOOP3. The reason for this redundant
instruction is to make the loop times for UPTIME and DWNTIME exactly the
same. In most cases, the up time and the down time half cycles will be the same. In
fact you can see this is so by looking at the data tables for both in lines 1940 and
1950. You'll see that except for the fourth entry in the table (an entry consists of two
digits) all the data are exactly the same.

The TOUCH-TONE SIMULATOR program should be called with the number
of the button pressed in location BUTTON. When this program was originally
developed, it was part of an Applesoft program that was used as a telephone
demonstration. The screen showed a Touch-Tone pad and as the user pressed one
of the digits on the keyboard, the corresponding button on the screen would light
up (display in the inverse mode). Then the Applesoft program called this machine
language program to produce the twin-tone sound that the telephone makes. Since
the Applesoft program is not included here, a short routine 1o drive the TOUCH-




120 / Chapter 6

TONE SIMULATOR is included. This routine starts on line 1790 and is called
PUSHALL, because it simulates the pushing of all of the telephone buttons, one
after the other.

The routine starts out by storing a zero in location BUTTON and then doing a
subroutine jump to TWOTONE, the main simulator routine (lines 1790 to 1810).
Next, a short waiting period is set up to produce a slight delay between simulated
button presses (lines 1820 and 1830) and then the value in BUTTON is incremented
by one and checked to make sure it ia less than 10 (lines 1840 to 1860). This
continues until all buttons have been pressed.

1000 **kkhdhhhhhkkhkhrkkhhrrhhkhhhhhhkhhhhkhhitk

1010 *** Kk

1020 *** TOUCH-TONE SIMULATOR L

1030 *** dkk

1040 **%* REPRINTED FROM THE Fhk

1050 *** FEBRUARY 1981 ISSUE OF *hk

1060 *** APPLE ASSEMBLY LINE *kk

1070 *** COPYRIGHT (C) 1981 BY kK

1080 ***x S-C SOFTWARE FhK

1090 *** ALL RIGHTS RESERVED Kk

1100 ***x *kk

1110 *hdkkkdkhkhhkkdrk KKk *kkkek

1120 *

1130 *

1140 *

1150 *

1160 * EQUATES

1170 *
009D- 1180 DWNTIME .EQ $9D
009E- 1190 UPTIME .EQ $9E
009F- 1200 LENGTH .EQ $9F
00A0- 1210 CHRDTIM .EQ $AO
00E7- 1220 BUTTON .EQ $E7
C030- 1230 SPEAKER .EQ $C030
FCA8- 1240 WAILIT .EQ $FCAS8

1250 *

1260 *

1270 * This is the main program loop where

1280 * the low and the high tones are played

1290 * alternately 10 times to make it sound

1300 * like both tones are being played

1310 * simultaneously. The particular set

1320 * of tones played are determined by the

1330 * value of BUTTON.

1340 *
0800- A9 0A 1350 TWOTONE LDA #$A Set up loop for 10 times.
0802- 85 A0 1360 STA CHRDTIM
0804~ A6 E7 1370 LOOP1 LDX BUTTON Get the digit pressed.
0806- BD 6E 08 1380 LDA LOTONES,X  Get the data for the low tone.
0809~ 20 17 08 1390 JSR ONETONE Play it.
080C- BD 78 08 1400 LDA HITONES,X  Get data for high tone.
080F- 20 17 08 1410 JSR ONETONE Play it.
0812- C6 A0 1420 DEC CHRDTIM Reduce count until the
0814- DO EE 1430 BNE LOOP1 tone pair is played 10 times.
0816- 60 1440 RTS

1450 *

1460 *

1470 * This routine toggles the speaker for

1480 * LENGTH number of half-cycles which are
1490 * controlled by UPTIME or DWNTIME.

1500 *
0817- A8 1510 ONETONE TAY Use LOJHITONE data as index.
0818- B9 59 08 1520 LLDA DNTMTABR,Y Get down-time data
081B- 85 9D 1530 STA DWNTIML and store it
081D- B9 60 08 1540 IL.DA UPTMTAB,Y Got ap thme data
0820 85 9K 1550 STA UPTIME and ntore It

Using Sound in Your Programs / 121

0822- B9 67 08 1560 LDA LENTABL,Y Get number of half cycles
0825~ 85 9F 1570 STA LENGTH and store it.
0827- A4 9E 1580 PLAY LDY UPTIME Use UPTIME as counter.
0829- AD 30 CO 1590 LDA SPEAKER Toggle the speaker.
082C- C6 9F 1600 DEC LENGTH Reduce LENGTH until done.
082E- FO 13 1610 BEQ RETURN Done, return to caller.
0830- 88 1620 LOOP2 DEY Delay by UPTIME.
0831- DO FD 1630 BNE LOOP2
0833- FO 00 1640 BEQ LOOP3 This is for timing symmetry.
0835- A4 9D 1650 LOOP3 LDY DWNTIME Use DWNTIME as counter.
0837- AD 30 CO 1660 LDA SPEAKER Toggle the speaker.
083A- C6 9F 1670 DEC LENGTH Reduce LENGTH until done.
083C- FO 05 1680 BEQ RETURN Done, return to caller.
083E- 88 1690 LOOP4 DEY Delay by DWNTIME.
083F- DO FD 1700 BNE LOOP4
0841- FO E4 1710 BEQ PLAY Play next half cycle.
0843- 60 1720 RETURN RTS

1730 *

1740 *

1750 * This routine automatically simulates

1760 * the pushing of each of the buttons

1770 * from 0 to 9.

1780 *
0844 A9 00 1790 PUSHALL LDA #$0 Simulate button O
0846- 85 E7 1800 STA BUTTON being pressed.
0848~ 20 00 08 1810 LOOPS JSR TWOTONE Generate the tone.
084B- A9 00 1820 LDA #$0 Delay between pressing
084D~ 20 A8 FC 1830 JSR WAIT of buttons.
0850- E6 E7 1840 INC BUTTON Get ready for next button.
0852~ A5 E7 1850 LDA BUTTON Get next button pressed.
0854~ C9 0A 1860 CMP #$A Did we reach 107
0856- 90 FO 1870 BCC LOOPS No, generate tome.
0858- 60 1880 RTS Yes, that's all!

1890 *

1900 *

1910 * These are the various data tables that
1920 * are required by this program.
1930 *

0859- 8E 80 74

085C- 68 51 49

085F- 42 1940 DNTMTAB .HS 8E807468514942

0860- 8E 80 74

0863- 69 51 49

0866~ 42 1950 UPTMTAB .HS 8E807469514942

0867- 14 12 10

086A- OF 20 1D

086D- 1A 1960 LENTABL .HS 1412100F201D1A

086E- 03 00 00

0871- 00 01 01

0874- 01 02 02

0877- 02 1970 LOTONES .HS 03000000010101020202

0878~ 05 04 05

087B- 06 04 05

087E- 06 04 05

0881- 06 1980 HITONES .HS 05040506040506040506

Let your computer send Morse code like a pro

For those of you who have an interest in Ham radio, this next program should be
of considerable interest. Like so many of the programs in this chapter, it was
written by Bob Sander-Cederlof. I've made one or two slight modifications and
rearranged the source code a bit, but the bulk of the work was Bob’s. This program
works by stcaling control away from the output and so, not surprisingly, the pro-
gram starts out by setting up the output hooks to point to the appropriate part of this
program (lines 1320 to 1400).

The replacement output program sturts on line 1500, where the character that is



122 / Chapter 6

Send Morse Code like a pro with your Apple computer.

being output is tested to see if it is a letter or a number. The reason for this test is
that not all of the ASCII set has been encoded for this program, just the letters and
numbers. But if you wish to extend this to include the punctuation as well, after
seeing how it’s done here, you’ll find it very easy to do. If you're going to do this, it
will be necessary to change the $B0 in line 1500 to $A0 and add the extra codes to
the code table (lines 2390 to 2530). If it is determined that the character to be
printed is not a letter or a number, and thus not in the code table, the program
branches to line 1550, where the character is output to the screen.

If the character is a letter or number, it is temporarily stored on the stack, while
the program jumps to the SENDCHR routine in line 1620. After it comes back
from that subroutine jump, the character is restored from the stack and then printed
out to the screen (lines 1540 and 1550).

The heart of this program is the subroutine called SENDCHR which starts on
line 1620. Since the X and Y registers are going to be used by this routine, their
contents are saved at entry (lines 1620 and 1630) and will be restored before
exiting. Next, the character that was entered is normalized by subtracting $B0 from
it (line 1650). This allows the resulting number to be used as an index (line 1660)
into the CODES table (line 1670) to retrieve the information needed to generate the
appropriate sequences of dits and dahs (dots and dashes).

The number retrieved from the CODES table contains two picces of informa-

Using Sound in Your Programs / 123

tion: the number of code elements (the total number of dots and dashes), which is
stored in the three low-order bits, and the actual code elements (dots and dashes)
themselves, which are stored in the five high order bits. The number of code
elements is retrieved from the table data by ANDing the data with $7. If the result
of this ANDing is zero, there is no code for the character in the table and the
program branches to a routine (line 1700) that generates three character spaces and
restores the previously saved registers. By the way, when we talk about character
spaces and element spaces here, we're referring to spaces in time, or time delays
between characters and elements.

If the element count is not zero, it is stored in a location called COUNT (linc
1710). Once this is done, the contents of CODE, which contains the original data
retrieved from the CODES table, is shifted left one bit, causing the high-order bit
to be placed into the CARRY location of the 6502 microprocessor (line 1720). The
dits and dahs (or dots and dashes) or Morse code, are represented here as bits of
zero and one, respectively. So if the value in the CARRY bit is a zero (line 1730) a
dit is generated. If it’s a one however, a dah is generated by calling the dit routine
three times in succession, thus producing a longer beep (lines 1740 to 1760).
Whether a dit or a dah was generated, the next thing that happens is a space (time
delay), equal to the time it takes to send a dit, is generated (line 1770). Since this is
a space between elements, it is referred to as an ‘element space’.

Now that the program has sent one element, the element count is reduced by one
(line 1780) and the program loops back to handle the remaining elements (linc
1790). When all of the elements of a character have been sent, a space, equal to
three element spaces — or the amount of time required to send a dash — is
generated (line 1800). Finally, the X and Y registers are restored and control is
returned to the calling program (lines 1810 to 1830).

The next subroutine SPACE! on line 1980, generates the required spacing be-
tween elements of a character (the dits and dahs) and between characters 0o,
Element spacing is handled by SPACE2, while the space between characters,
which is three times longer than the space between elements, is done by SPACEI,
which simply does a subroutine jump to SPACE2 twice (lines 1980 and 1990), and
falls into it for the third time.

SPACE2 starts on line 2000 where it loads the Y-register with the value for the
speed of transmission. Next, the X-register is loaded with the value of the pitch
(line 2010). Since this routine is not supposed to produce any sound, a dummy
location (the keyboard) is toggled instead of the speaker (line 2020). Next, the
pitch delay loop is executed (lines 2030 and 2040). After that, the speed constant is
decremented until it reaches zero, when an RTS instruction is executed (lines 2050
to 2070).

The DIT routine (lines 2150 to 2220) is identical to the SPACE2 routine except
the speaker is toggled (line 2170) instead of the dummy location in the previous
routine.

If the code being transmitted is too fast, you can slow it down by increasing the
value of either SPEED or PITCH or both.,



124 / Chapter 6 Using Sound in Your Programs / 125

1000 **xhkkkhkkkkdkkhhkkdhhkkhhkhihkrikrkkrkkk 0828- AA 1660 TAX Use the result as an

1010 *** Kk 0829- BD 85 08 1670 LDA CODES,X index into CODES.

1020 ***% MORSE CODE GENERATOR *kk 082C- 8D 84 08 1680 STA CODE Get the

1030 *x* *kk 082F- 29 07 1690 AND #$7 element count.

1040 *** REPRINTED FROM THE kK 0831- FO 23 1700 BEQ THRESPC No code.

1050 *** FEBRUARY 1981 ISSUE OF *kk 0833- 8D 83 08 1710 STA COUNT Save the count.

1060 *** APPLE ASSEMBLY LINE *kk ’ 0836- OE 84 08 1720 LOOP1 AS1. CODE Put next element into carry bit

1070 **%*x COPYRIGHT (C) 1981 BY *k* 0839- 90 06 1730 BCC MAKEDIT Make a dit. )

1080 *%% S—C SOFTWARE Fkk 083B- 20 73 08 1740 JSR DIT Make a dah (from

1090 *** ALL RIGHTS RESERVED Kk 083E- 20 73 08 1750 JSR DIT 3 dits).

1100 *** *kk 0841- 20 73 08 1760 MAKEDIT JSR DIT Make a dit.

1110 *** MODIFIED BY JULES H. GILDER **% 0844- 20 65 08 1770 JSR SPACE2 Element space.

1120 *%* *kk 0847- CE 83 08 1780 DEC COUNT Decrement element count

1130 *kkgkkkkkkkihhrihthhhhkxhhrokrkhxhrik 084A- DO EA 1790 BNE LOOP1 Next element .

1140 * 084C- 20 SF 08 1800 LOOP2 JSR SPACE1 Character space.

1141 * 084F- AE 81 08 1810 LDX SAVEX Restore X and

1142 * 0852~ AC 82 08 1820 LDY SAVEY Y registers.

1143 * CONSTANTS 0855- 60 1830 RTS Return.

1144 * 0856- 20 5F 08 1840 THRESPC JSR SPACE1 Send character space.
004C- 1125 JUMP .EQ $4C 82297 20 ZF 08 1850 JSR SPACE1 Send character space.
0050— 1146 PITCH .EQ $50 C- 4C 4C 08 1860 JMP LOOP2 Send ¢ £ F i
o038- 1123 ShErm "EG 478 1870 * haracter space and exit.

1150 * 1880 *

1180 * 1890 * This subroutine generates the

1170 * EQUATES 1900 * required spacing between the elements

1180 * 1910 * of a character (dits and dahs) and
0036 1190 CSWL .EQ $36 1920 * also between characters. Element
03D0- 1200 WARMDOS .EQ $3DO 1930 * spacing is handled by SPACE2 while
03EA- 1210 CONNECT .EQ $3EA 1940 * the space between characters (which
gggg— }%%8 gggXEER .Eg pgggg 1350 * is 3 times longer than the space

- . 60 * between elemen i
FDFO- 1240 COUT1  .EQ $FDFO 0 1970 * ©8) is done by SPACEL.

1250 * 85F- 20 65 08 1980 SPACE1 JSR SPACE2 Do an element space.

1760 * 0862- 20 65 08 1990 JSR SPACE2 Do an element sgace.

1270 * This subroutine steals control away 0865 A0 78 2000 SPACE2 LDY #SPEED Make believe it's

1280 * from the normal output routine and 0867~ A2 50 2010 GTPITCH LDX #PITCH sending Morse

1290 * directs all outputted characters to 0869- AD 00 CO 2020 LDA DUMMY But toggle the keyboard

1300 * this program. 086C~ CA 2030 LOOP3 DEX instead of the speaker

1300 086D- DO FD 2040 BNE LOOP3 )
0800- A9 13 1320 SETUP LDA #MORSE Get the address of the 086F- 88 2050 DEY
0802- A0 08 1330 LDY /MORSE  start of the program 0870- DO F5 2060 BNE GTPITCH
0804~ 85 36 1340 STA CSWL and store it in 0872- 60 2070 RTS
0806- 84 37 1350 STY CSWL+1 the output hooks. 2080 *
0808~ AD DO 03 1360 LDA WARMDOS Check if DOS 2090 *
080B- C9 4C 1370 CMP #JUMP present. 2100 * This subroutine is identical
080D- DO 03 1380 BNE NODOS No, return. 2110 * previous one, but instead of Eggg?fng
080F- 20 EA 03 1390 JSR CONNECT Yes, conmect to DOS. 2120 * the keyboard, it toggles the speaker and
0812- 60 1400 NODOS RTS Return. 2130 * generates a sound.

1410 * 2140 *

1420 * 0873~ A0 78 2150 DIT LDY #SPEED Get the speed.

1430 * This routine checks to see if the 0875- A2 50 2160 1LOOP4 LDX #PITCH Get the pitch.

1440 * character being sent is a letter or a 0877- AD 30 CO 2170 LDA SPEAKER Toggle the speaker.

1450 * number. If it isn't the character is 087A~ CA 2180 LOOP5  DEX Decrement the pitch

1460 * just printed to the screen. If it is 087B- DO FD 2190 BNE LOOP5 delay.

1470 * the character is sent in Morse Code 087D- 88 2200 DEY Decrement the speed

1480 * and then printed to the screen. 087E- DO F5 2210 BNE LOOP4 delay.

1490 * 0880- 60 2220 RTS
0813- C9 BO 1500 MORSE  CMP #$BO Is it alphanumeric? 2230 *

0815- 90 05 1510 BCC PRNTCHR No, print it. 2240 *

0817~ 48 1520 PHA Yes, save it. 2250 * These are temporary storage locations
0818- 20 1F 08 1530 JSR SENDCHR Send it in Morse. 2260 * used by the program.

081B- 68 1540 PLA Retrieve the character. 2270 *

081C- 4C FO FD 1550 PRNTCHR JMP COUT1 Print it. 0881~ 00 2280 SAVEX  BRK

1560 * 0882- 00 2290 SAVEY BRK

1570 * 0883- 00 2300 COUNT BRK

1580 * This is the routine that converts the 0884~ 00 2310 CODE BRK

1590 * character to Morse Code and drives 2320 *

1600 * the speaker. 2330 *

1610 * 2340 * These are the code tables used to
081F- 8E 81 08 1620 SENDCHR STX SAVEX Save the X and Y 2350 * convert the letters into Morse Code.
0822- 8C 82 08 1630 STY SAVEY reglatern, 2360 *

0825 18 1640 SEC Normallze hy j:;g * 0, 1 through 9
bR A

0826 K9 BO 1650 SBC H$BO nubt ract bng $80,



Using Sound in Your Programs / 127

one recorder, the two can be used as long as the input lead is connected to one
recorder and the output lead to the other. Cassettes produced in this manner are as
good as the original and do not suffer any multiple generation degradation (e. g. the
copy is worse than the original and a copy of a copy is even worse). The reason for
this is the data are being read into the computer and a new version of the same data

126 / Chapter 6
0885- FD 7D 3D
0888- 1D 0D 05
088B- 85 C5 E5
088E- F5 2390 CODES .HS FD7D3D1DODO585CSESF5
088F- 00 00 00
0892- 00 00 00 2400 .HS 000000000000
2410 *
2420 *
2430 * @, A through M
2440 *
0895~ 00 42 84
0898- A4 83 01
089B- 24 C3 04
089E- 02 2450 .HS 004284A4830124C30402
089F- 74 A3 44
08a2- C2 2460 .HS 74A344C2
2470 *
2480 *
2490 * N through Z
2500 *
08A3- 82 E3 64
08A6- D4 43 03
08A9- 81 23 14
08AC- 63 2510 .HS 82E364D4430381231463
08AD- 94 B4 C4 2520 .HS 94B4C4
08B0~ 00 00 00
08B3- 00 00 00 2530 .HS 000000000000
How to copy any cassette program

Even though most Apple owners have at least one disk drive, occasionally the
need arises to duplicate an Apple cassette program. If the program is unprotected
(yes there are cassette protection schemes too) and only one program is on the
cassette, it’s a relatively simple matter to load the program into memory and then
save it out again on a fresh cassette. However, if even one of these conditiqns is not
true (e.g. there is more than one program one the cassette — possibly a mixture qf
BASIC and machine language programs — and/or the program is protected) then it
is much easier to use the CASSETTE DUPLICATOR program to copy the cas-
sette.

The program starts out by printing out the title of the program (lines 1270 to
1330) and then branches to line 1450 where it scans the keyboard to see i.f a key has
been pressed. Whether or not a key has been pressed, it takes the value it got from
the keyboard location and tests it to see if it is equal to the value generated by the
ESCape key (line 1460). If it is, the program toggles the keyboard strobe and
returns to the caller (line 1470).

If the ESCape key has not been pressed, the program does a subroutine jump to a
monitor routine called RDBIT ($FCFD) which reads one bit of data off the tape
(line 1480). Next, the speaker is toggled (line 1490) so the user gets some audible
feedback on what’s happening and then the cassette output port is toggled so the
data is written out to the new cassette. Finally, the program jumps back to the
beginning to check the keyboard again and then read the next bit off the tape (line

1510).

This program requires the use of two tape recorders, onc to read the data ('r(?m
and one to write the data to. Even though the Apple was only designed for use with

is being written out, just as though it was an original.

The monitoring capability through the Apple’s internal speaker is very impor-
tant because it lets you hear what’s on the tape you're duplicating so that you will
know when you have reached the end of the record data. When that happens, all

you have to do is press the ESCape key to exit the program.

1000 *kokskddekdhkdedkkdkokdhkhddesk ok dokk ko k %k
1010 *** *kk
1020 *** CASSETTE DUPLICATOR kK
1030 ***x *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER Fkk
1060 ***x ALL RIGHTS RESERVED Fkk
1070 **% *kk
1080 *kkkkdkhhkkkkkhhhikkhkdkhkhdhdrkhhkkikk
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
C000- 1140 KEYBD .EQ $C000
€010~ 1150 KBDSTRB .EQ $C010
C020- 1160 CASSOUT .EQ $C020
C030- 1170 SPEAKER .EQ $C030
FC58- 1180 HOME .EQ $FC58
FCFD- 1190 RDBIT .EQ $FCFD
FDOC- 1200 RDKEY .EQ $FDOC
FDED- 1210 couT .EQ $FDED
1220 *
1230 *
1240 * This section prints out the title
1250 * and copyright notice.
1260 *
0800~ 20 58 FC 1270 JSR HOME Clear the screen.
0803- A0 00 1280 LDY #$0 Initialze character pointer.
0805- B9 27 08 1290 LOOP LDA TEXT,Y Get a character.
0808~ FO 06 1300 BEQ START Done, run program.
080A- 20 ED FD 1310 JSR cout Print character.
080D- C8 1320 INY Increment pointer.
080E- DO F5 1330 BNE LOOP Get next character.
1340 *
1350 * This section constantly monitors the
1360 * keyboard to see if the ESCape key is
1370 * being pressed. If not it reads in
1380 * data from a cassette on one tape
1390 * recorder and writes it out to another
1400 * tape recorder. At the same time, it
1410 * also toggles the speaker so that you
1420 * can listen to the tape as it is being copied
1430 * and will know when it is done.
1440 *
0810~ AD 00 CO 1450 START LDA KEYBD Read the keyboard.
0813- C9 9B 1460 CMP #$9B Is it ESCape?
0815- FO 0C 1470 BEQ QUIT Yes, quit.
0817- 20 FD FC 1480 JSR RDBIT No, read tape.
081A- AD 30 CO 1490 LDA SPEAKFR Toggle speaker.
081D- AD 20 CO 1500 LDA CASSOUT  Toggle cassette.
0820 - 4C 10 08 1510 AMP START Read next bit from tape.
0823 2C 10 CO 1520 QuI'T RIT KBDSTRB Clear keyboard st robe.
0826 60 1930 RTH Return to caller.



128 / Chapter 6

0827-
082A-
082D-
0830-
0833-
0836-
0839-
083A-
083C-
083F-
0842-
0845-
0848-
084B-
084E-
084F -
0852-
0855-
0858-
085B-
085E—
0861-
0862
0865~
0868
086B—
086F—
0871-
0874~
0875~
0878-

c3
D3
D4
Ch4
cC
C1
D2
8D
c2
CA
C5
c8
ci
Cch4
8D
c3
D9
c7
AD
A9
B9
8D
c1
AO
c7
D3
Cc5
D2
C4
8D
8D

C1
C5
Cc5
D5
Cc9
D4

8D
D9
D5
D3
AE

C5

CF
D2
c8
A8
AO
B8

cC
D2
c8
AD
D3
D6

8D
00

1540
1550
1560
1570
1580

1590
1600

1610
1620

1630
1640

1650

1660

*
*

* This is the text printed out by
* the program.

*

TEXT

-1

.AS
.HS

.AS
.HS

.AS
.HS

.AS

=

S

~"CASSETTE DUPLICATOR"
8D8D

-"BY JULES H. GILDER"
8D

~"'"COPYRIGHT (C) 1982"
8D

~"ALL RIGHTS RESERVED"

8D8D8DBDO0

Chapter 7
LEARNING TO USE THE AMPERSAND

While it’s possible to do anything in machine language that you can do in
Applesoft, it may not always be advisable. Sometimes it may be faster and easicer to
develop most of your program in Applesoft, and only use a machine language
routine to speed up time-critical sections of the program. This is frequently done
with business software so that the user can customize it to his own needs by just
modifying the Applesoft program, but still have the speed he needs in, for cxam-
ple, sorting routines.

Because the designers of the Applesoft language foresaw the probable need to
couple Applesoft with machine language routines, they provided several ways of
doing it, including CALL, USR (X) and &. It is this last method, using the
ampersand (&), that we are going to discuss in this chapter.

One of the tokens, or reserved words, in Applesoft is not a word but a single
character, the ampersand (&), also known as the ‘and’ sign. This Applesoft com-
mand works just like the PRINT command or any other Applesoft command.
When the Applesoft interpreter sees an ‘&, it jumps to the routine that handles it.
The big difference between this command and most of the other Applesoft com-
mands is that the address the computer jumps to for this command is not in any of
the Applesoft ROMs, as the others are, but is in page three, specifically at address
$3F5. There is no machine language code to process the command, only three
reserved locations which can be used to store a command to jump to some other
location in memory to the desired subroutine. Thus, what happens when an ‘& iy

encountered is the program jumps to $3F5, where it expects to find another jump
command.

Data can be passed with the ampersand too

While the primary purpose of the ampersand is to transfer control to a machine
language program, it should be noted that it is also possible to transfer data, with
the ampersand command. There is a short routine, called CHRGET, in page zcro
that starts at location $B1 that is used to interpret the lines of an Applesoft pro-
gram. We'll go into a deeper discussion of this later on in the book, but suffice it to
say, that as each command is encountered, a text pointer is advanced to interpret
each token or character. One other feature of this routine is that it ignores spaces.

After the routine has interpreted a character or token — such as the ampersand
— it lcaven the text pointer pointing to the character that follows it if there is one and

129



130 / Chapter 7

loads that character into the accumulator. By taking advaqtage of Ehxs fact, and
using some of the routines built into the Applesoft ROMs, it is poss?bleh to ;r):sfs::
wide variety of data to machine languages programs that are called V1aHtE<;( aC g "
sand. The first program we are going to look.at — HEX/DECIMAL/

VERTER — passes both a symbol (a dollar sign) and a number.

*ekk K
1000 *kkrxikdkkidkskdrkkkkkiokkkkkkdkkkkk

*kk
101Q ***
1020 ***  HEX/DECIMAL/HEX CONVERTER  ***
030 ***
1040 Fkok COPYRIGHT (C) 1982 BY :::
1050 *** JULES H. GILDER ol
1060 *** ALL RIGHTS RESERVED il
1070 ax dkkkkkdhkkkkkk
1080 *kkkdkdhsrdkdhkkkikkkkkik
1090 *
1100 :
1110
1120 .OR $300
1130 *
1140 *
1150 * EQUATES
1160 * £Q $3E
003E- 1170 A2L .
0050- 1180 LINNUM .EQ $50
00B1- 1190 CHRGET .EQ $B1
0200- 1200 IN .EQ $200
03F5- 1210 AMPERSD .EQ $3F5
DD67- 1220 FRMNUM .EQ $DD67
E199- 1230 IQERR .EQ $E199
E752- 1240 GETADR .EQ $E752
ED24— 1250 LINPRT .EQ $ED24
FDDA- 1260 PRBYTE .EQ $FDDA
FDED- 1270 COUT .EQ $FDED
FFAT7- 1280 GETNUM .EQ $FFA7
1290 *
1300 :
ig%g * This is where the ampersand (&) vector
1330 * jump is set up.
FEre de and
0 LDX #$4C Get JMP op cod
8%82_ :g ?g 1320 LDA #START the low ?nd high bytis
304_ A0 03 1370 LDY /START of START's gdd{esst?ons
8306_ 8E F5 03 1380 STX AMPERSD store them lnd 0337
0309: 8D F6 03 1390 STA AMPERSD+1 $3F5, $3F6 and $
030C- 8C F7 03 1400 STY AMPERSD+2
030F- 60 1410 RTS
1420 *
1430 *

* i art of the program checks to .
}Zgg * zz;sig the characger immediately.folloWLng
1460 * the ampersand (&) was a dollar s1ﬁn.
1470 * If it was, control is passed to t e L
1480 * routine that converts from hexadeC}ma
1490 * to decimal. Otherwise the numbey 1i
1500 * decimal and converted to hexadecimal.

1510 * ) . ($)7
24 is it a dollar sign
o Fo 17 ig%g STARE ggg ﬁEXIN Yes, convert hex to dec1ma1.l
ity Fg é; DD 1540 JSR FRMNUM No, evaluatg number or formula.
0314- %0 52 E7 1550 JSR GETADR Convert to integer foz:i
8311_ A9 AL 1560 LDA #$AL Output a dollar sign
- 2 570 JSR COUT i .
Og{g ig 2? P 1580 LDA LINNUM1 Get high I)yui -
0 1— FO 03 1590 BEQ PRINTLO If zero, get low ‘)y' l.) o
833! 20 DA FD 1600 JSROPRBYTE Otherwlne print hiph byte.

Learning To Use The Ampersand / 131

0326- A5 50 1610 PRINTLO LDA LINNUM Get low byte.
0328- 4C DA FD 1620 JMP PRBYTE Print it.
1630 *
1640 *

1650 * This routine handles the hexadecimal
1660 * to decimal conversion.
1670 *

032B- A0 00 1680 HEXIN LDY #$0

Zero offset index.
032D- 20 B1 00 1690 HEXIN2 JSR CHRGET

Get the next character.

0330- FO 08 1700 BEQ PUTBUF Store in buffer and convert.
0332- 49 80 1710 EOR #$80 Set high bit.

0334- 99 00 02 1720 STA IN,Y Store in input buffer.

0337- C8 1730 INY Increment offset index.
0338- DO F3 1740 BNE HEXIN2 Get next character.

033A- 99 00 02 1750 PUTBUF STA IN,Y Store zero in buffer.

033D- A8 1760 TAY Zero offset index.

033E- 20 A7 FF 1770 JSR GETNUM Convert ASCII to hex.

0341- A6 3E 1780 LDX A2L Store low byte in X-register.
0343- A5 3F 1790 LDA A2L+1 Store high byte in Y-register.
0345- CO 06 1800 CPY #$6 Check if number too large.
0347- 90 03 1810 BCC INRANGE No, it's okay.

0349~ 4C 99 E1 1820 JMP IQERR Yes, print error message.
034C- CO 03 1830 INRANGE CPY #$3 Converting only 1 byte?

034E- BO 02 1840 BCS PRINTIT No, do both.

0350~ A9 00 1850 LDA #$0 Yes, do just one.

0352- 4C 24 ED 1860 PRINTIT JMP LINPRT Convert and print number.

Converting between decimal and hexadecimal

As you work more and more with machine-language programs and write rou-
tines that can be used with Applesoft, you will frequently find the need to convert
numbers from decimal to hexadecimal and vice versa. Perhaps you’ve written a
program that starts at memory location $9400 and you want to know what the
decimal equivalent is so that you can call it from a BASIC program. Or perhaps one

of the functions your BASIC program does is display a section of memory with its
contents in hexadecimal notation.

You can do all of this in BASIC if you choose to, but it will significantly slow
down your program. The alternative is to use a machine-language program to do
the conversions for you. That’s where the HEX/DECIMAL/HEX CONVERTER
program comes in. This program will allow you to convert numbers in either
direction. An added advantage of the program is that it does not have to be used in
an Applesoft program only, but can also be used in the immediate mode.

The program starts with a short routine (line 1350), whose only purpose is to
activate the ‘&’ jump locations. These jump locations are also referred to as jump
‘vectors’. When the program is BRUN or a CALL 768 is issued, the program loads
locations $3F5, $3F6 and $3F7 with a jump op code and the address of the con-
verter part of the program, which starts on line 1520.

Since we know that the accumulator contains the character following the amper-
sand, if there is one, the first thing that our program does is to test the contents of
the accumulator and see if the character there is a dollar sign. If it is, that’s a signto
the program that the number that follows is a hexadecimal number and it is to be

converted to decimal. Thus, the program branches (line 1530) to the routine that
handles the hexadecimal-to-decimal conversion.



132/ Chapter 7

Using the Applesoft ROM routines

If there is no dollar sign in the accumulator, the assumption is made that what-
ever follows the ampersand has a decimal value and it is to be converted to a
hexadecimal number. To do this, we use some of the routines in the Applespft
ROMs. The first one is called FRMNUM and is located at $DD67. This routine
assumes that the text pointer from the CHRGET routine at $B1 is pointing to the
first character of the number, variable or formula. FRMNUM takes this number,
variable or formula and converts its value into a special format called floating point
and stores this information in six special locations on page zero called the ‘floating
point accumulator’, which is often abbreviated to the three letters FAC. The FAC is
in locations $9D to $A2.

Getting the number into the FAC is only the first step, and the number is not
useful to us in this form. The reason is these six locations contain an exponent, four
mantissa bytes and a sign byte. In addition, the data are stored in a form }(nown as
‘excess $80°. This means that it has $80 added to it. The actual mathematics can be
a little confusing, but you shouldn’t worry about it, because the folks that.wrote the
Applesoft language did all the hard work for us. All we have to do is use the
routines that they wrote.

Converting floating point to integer

Once the number is in the floating point accumulator, we can use another ROM
routine to convert it into an integer number that is represented by two hexadecimal
bytes. This routine is called GETADR and is located at $E752 in the ROMS. It is
designed to take any number in the -65535 to + 65535 range, that is currfemly
stored in the FAC, and convert it into a two-byte integer. These two bytes will be
stored in a memory location called LINNUM and LINNUM + 1, which are also
located on page zero at $50 and $51.

GETADR is one of several routines in the ROMs that converts numbers in FAC
to integers. Another routine called QINT at $EBF2 could also be used, but it is
limited to positive numbers only.

After the program does a JSR to GETADR (line 1550), a dollay sign is pripted
out (lines 1560 and 1570) to indicate that the number being printed is a hexafiemmal
number. Then the most significant byte of the number, which is stored in LIN-
NUM + 1, is loaded into the accumulator and tested to see if it’s zero (lines. 1580
and 1590). If it is, it’s discarded and the least significant, or low-order byte is put
into the accumulator and printed (lines 1610 and 1620). If the high-order byte was
not zero, it is printed (line 1600) and then the low-order byte is printed.' This
subroutine returns to the caller via the RTS instruction in the PRBYTE routine.

Doing the hex to decimal conversion

Earlier, we said that if the first character following the ampersand is a dollar
sign, we knew that the number following it would be hexadecimal, and thus the

Learning To Use The Ampersand / 133

desired conversion was hexadecimal-to-decimal. The routine that does this con-
version starts on line 1680, where the Y-register, which is going to be used as an
offset into the input buffer, is set to zero. Then the next character after the dollar
sign is retrieved by using the CHRGET routine at $B1 (line 1690). This routine
increments the text pointer and loads the next character into the accumulator. Once
there, the character is checked to see if it is a zero (line 1700). If it is, CHRGET
knows that it has reached the end of the program (or input) line from which text is
being read, and the zero is stored as-is in the input buffer (line 1750). If the
character was not a zero, it is exclusive-ORed with $80 to set the high bit (bit
number 7) and then stored in the input buffer with the high bit set (lines 1710 and
1720). By doing this, we’re making it appear as if the text were entered from the
keyboard. Next the Y-register is incremented and the next character is retrieved
(lines 1730 and 1740). This process continues until all the text following the amper-
sand has been placed in the input buffer or until 256 characters have been proc-
essed.

Once the zero, which indicates the end of text, has been entered into the input
buffer, the Y-register is reset to zero and a routine, GETNUM, in the Apples’s F8
monitor ROM is called (lines 1760 and 1770). This is a routine that gets called when
hex data are entered from the keyboard while in the monitor mode. This routine
scans the input buffer and converts the ASCII data it finds there into a hexadecimal
number. Its stores the two bytes of this number in two frequently used utility
locations A2L and A2L + 1 (often referred to as A2H). The converted hex data,
that are stored in A2L and A2L + 1, are loaded into the X-register and the accumu-
lator (lines 1780 and 1790) in preparation for its conversion and printing as a
decimal number.

The GETNUM routine does not check to see that only four hex digits are
entered. Instead, it just converts the last four digits entered. In order for us to make
sure that the number entered is not to large, we check the Y-register (line 1800),
which is incremented, by GETNUM, for each character that is retrieved from the
input buffer. We check to make sure that no more than 6 places have been used in
the input buffer. Six was chosen because we need a maximum of four for the hex
data, one for the zero and one more because the Y-register is incremented in
GETNUM, before it returns.

If more than four hex digits were entered the program jumps to the routine in the
Applesoft ROMs that prints the ILLEGAL QUANTITY error message. Other-
wise, a test is made to see if only two digits, and hence one byte of data is being
converted (line 1840). If it is only one byte, the accumulator is set to zero (line
1850), otherwise things are left as is. In any case, the program then Jjumps to still
another Applesoft routine, LINPRT ($ED24). This is the routine that is called
when a program is being listed and the line number has to be printed out. LINPRT
does the actual hex to decimal conversion and also prints out the number.

As you can see from the preceding explanation and from the listing, we’ve made
liberal usc of the routines that exist in the Apple’s ROMs to cut down on the amount
of programming we would otherwise have had to do. Whenever possible, it is



PR Clinpten /

advisable o use the routines in the ROMs. This will speed up development time
considerably. Just remember, when you do that, you tie yourself to those ROMs, so
if Applesoft routines are being used, you have to ensure that they are in the machine
and active.

Locate Applesoft program lines in memory

Did you ever see an Applesoft program with illegal line numbers (numbers
greater than 63999) and wonder how they were entered? Or perhaps you’ve seen
lines that have imbedded back spaces, so they look invisible when listed to the
video display, and couldn’t figure out how they were entered. Or maybe you want to
use a character in your program that is not accessible from the Apple keyboard,
such as the left square bracket ([).

If you've ever wondered just how these things are done, they’re done by a
process known as ‘patching’, which means the line is first entered with dummy
legal characters to hold the place required for the illegal ones, and then the pro-
grammer goes into the monitor mode, finds the particular line he’s trying to
change, or patch, and then makes the required changes. Making the changes is
easy. The difficult part is finding just where in memory the line you’re interested in
resides. Usually you have to start at the beginning of the Applesoft program and
follow the next line pointers down until you find the line you desire. This can be a
time consuming and cumbersome process, which is probably why more people
don’t patch programs. But, with the next program we are going to discuss, the task
becomes trivial.

In Chapter 2 when we spoke about the Applesoft Program Line Counter, we had

Learning To Use The Ampersand / 135

a short discussion on the way a line of an Applesoft program is stored in memory.
Without repeating that discussion in detail, let’s just review a few pertinent facts.
With ROM or language card Applesoft, program storage normally starts at loca-
tion $801. The first two bytes of an Applesoft line contain a pointer to the location
in memory of the next Applesoft line. The next two bytes are reserved for the hex
representation of the line number. Then, the actual text of the line is stored with
Applesoft keywords replaced by one-byte tokens. Finally, the line is terminated
with a zero.

The program APPLESOFT LINE FINDER, takes a line number that is passed
to it by the ampersand command and uses some of the routines in the Apple ROMs
to first locate the position of the line in memory and then display the line in hex up
to and including the terminating zero byte. The program then leaves you in the
monitor mode so that you can make any changes desired in the line just displayed.

The program starts at location $2DA, which is the upper part of the input buffer.
To use it, the program is loaded and then activated by a CALL 730, Since the
program is located in pages 2 and 3 of memory, it can be loaded and run at ariy time
during an Applesoft program’s development, without affecting the Applesoft pro-
gram.

The first part of the program, which starts on line 1360, clears the screen, prints
out the program title and sets up the ampersand jump locations on page three to
point to a routine that locates the Applesoft line. Immediately following this short
routine, is the text that it prints out. As in some earlier programs, the reason the text
is placed here up front, is that it is going to be used once, the first time the program
is run, and thus is expendable. So we won’t have to worry about part of our
program, which is stored in the input buffer, being wiped out if a long line of text is
entered.

The actual program that finds and displays Applesoft lines starts on line 1660,
where an Applesoft routine called LINGET ($DAOC) is called. LINGET is the
routine that is used to check get the line number of an Applesoft line that is being
entered from the keyboard. It uses TXTPTR, which is the text pointer in the
CHRGET routine, and reads the number that TXTPTR is pointing to. It takes this
number, converts it to hexadecimal and stores it in LINNUM and LINNUM + 1
(350 and $51). Because this routine is the same one that Applesoft uses to check
line numbers, it has the same limitations, namely it is only good for line numbers
up to and including 63999.

If you want to display lines greater than that, the JSR LINGET should be
replaced by a JSR FRMNUM ($DD67), immediately followed by a JSR GETADR
($E752). You may recall, that we used these two routines in the previous program
to input decimal numbers that were going to be converted to hexadecimal numbers.

Once the line number has been converted to hex and stored in LINNUM, an-
other Applesoft ROM routine, FNDLIN ($D61A), is called (line 1670). FNDLIN
will start at the beginning of the Applesoft program and search for the line number
that is currently stored in LINNUM (and of course LINNUM + 1). If the line is
found, its beginning address is stored in two page zero locations called LOWTR




136 / Chapter 7

and LOWTR + 1 ($9B and $9C). Also, if the number is found the carry bit is set. If
the number is not found, the next highest line number, if there is one, is stored in
LOWTR and the carry bit is cleared.

Upon returning from FNDLIN, the first thing the program does is to test the
carry-bit to see if the line number was found (line 1680). If it was not found, the
program branches to line 1940 where a message to the user is printed that rings the
bell and tells him that no such line exists in the program. If the line does exist, the
Y-register and memory location TEMP are both set to zero (lines 1690 and 1700)
and the program jumps to a subroutine that prints out the two-byte address of the
data that are going to be displayed on the next line of the video display (line 1710).
This subroutine, which is called PRTADDR, starts on line 2050 and begins by
printing a carriage return and than a space (lines 2050 to 2070). Next, the X-
register is set up as a displayed byte counter (line 2080) and is used to permit the
display of only eight bytes of data per line. Then the subroutine prints out the
address that is stored in LOWTR and LOWTR + 1, high-order byte first (lines 2090
to 2120). Finally, a colon is printed out and the program returns to the caller via the
RTS in the COUT routine (lines 2130 and 2140).

After printing out the starting memory address of the line of data to be displayed
on the screen, a space is printed (lines 1720 and 1730) and eight bytes of data are
printed. The byte to be printed is retrieved in line 1740 and checked to see if itis a
zero in line 1750. If it is a zero, TEMP is tested to see if five or more bytes have
already been printed (lines 1760 and 1770). The reason for this is that for line
numbers below 255, the fourth byte, which is the high-order byte of the line
number is set to zero. This is not the zero we wish to detect, but rather the zero that
terminates the Applesoft program line.

If five or more bytes have been printed already, we know that this zero represents
the end of the Applesoft line, so the program jumps to a routine (on line 1850), that
prints out the zero, then prints out a carriage return (line 1870) and finally jumps to
a routine in the F8 ROM called MONZ ($FF69) which leaves the user in the
monitor mode (line 1880). If for some reason you wish to return to the program that
called the APPLESOFT LINE FINDER instead of being left in the monitor, it is
only necessary to replace the JMP MONZ in line 1880 with an RTS.

If less than five bytes have been printed, we know that this is not the end of the
line and we print the zero out just as we would print any other byte (lines 1790 and

1800). Then the program jumps to a routine on line 2210 that increments the two-
byte LOWTR pointer and also increments TEMP. After that, the X-register is
decremented and tested to see if eight bytes have been printed already (lines 1820
and 1830). If not the program branches to line 1720 where the next byte is retrieved
and printed. Otherwise, it branches to line 1710 where the address of the next byte
to be displayed is printed. This process continues until the terminating zero of the
Applesoft program line is encountered.

The subroutine located in lines 2300 to 2400 is our, by now familiar, message
printing routinc. Following this routine, on line 2480, is the text for the crror
message that says the line doesn’t exist.

Learning To Use The Ampersand / 137

0008~
0018~
003C-
009B-
03F5-~
D61A-
DAQC-
F941-
FC58-
FD8E-
FDDA-
FDED-
FF69-

02DA-
02DD-
02DF-
02E1-
02E4—
02E6-
02E8-
02EA-
02ED-
02F0-
02F3-

02F4 -
02F7-
02FA-
02FD-
0300-
0303-
0306-
0309-
030B-
030E-
0311~
0314
0317-
031A-
031D~
031E-
0321 -
0324 -
01327

032A

01321

20
A9
AO
20
A2
A9
AO
8E
8D
8C
60

Cc1
cC
CF
AO
CE
Ccé
C4
8b
Cc2
CA
Cc5
c8
Cc7
Ca4
8D
Cc3
D9
7
AO
A9
"9

FC

03

03
03

1000 *kkkkkrrk *kkkkkhkkkkhk *kdkkkhhk
1010 *%% *xk
1020 **% APPLESOFT LINE FINDER *kk
1030 *** *kk
1040 *x* COPYRIGHT (C) 1982 BY ok
1050 *** JULES H. GILDER ik
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *kk
1080 **kkkkkkhkkrdkhbhhbhhhhkihhkhhrkrhrrs
1090 *

1100 *

1110 *

1120 .OR $2DA

1130 *

1140 *

1150 * EQUATES

1160 *

1170 TEMP LEQ $8

1180 TXTPTR .EQ $18

1190 AlL .EQ $3C

1200 LOWTR .EQ $9B

1210 AMPERSD .EQ $3F5

1220 FNDLIN .EQ $D61A

1230 LINGET .EQ $DAOC

1240 PRNTAX .EQ $F941

1250 HOME .EQ $FC58

1260 CROUT .EQ $FD8E

1270 PRBYTE .EQ $FDDA

1280 couT -EQ $FDED

1290 MONZ -EQ $FF69

1300 *

1310 *

1320 * This is where the program title is

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

1520
1530

1540
1550

1560

* printed out and the ampersand (&) vector
: jump is set up.

ok ok % %

TEXT1

JSR
LDA
LDY
JSR
LDX
LDA
LDY
STX
STA
STY
RTS

HOME
#TEXT1
/TEXT1
MSGPRT
#$4C
#START
/START
AMPERSD
AMPERSD+1
AMPERSD+2

Clear the screen.

Get the address of the
text to be printed.
Print it.

Get a JMP op code and
the low and high bytes
of START's address and
store them in locations
$3F5, $3F6 and $3F7.

This is the text for the title and
copyright notice.

.AS —"APPLESOFT LINE FINDER"

.HS

-AS

AN

8D8D

-"BY JULES H. GILDER"
.HS 8D

"COPYRIGHT

() 198?"




138 / Chapter 7

0330- 8D
0331- C1
0334- A0
0337- C7
033A- D3
033D- C5
0340- D2
0343- C4
0344~ 8D
0347~ 8D

0349- 20
034C- 20
034F- 90
0351- AO
0353- 84
0355~ 20
0358- A9
035A- 20
035D- B1
035F~ DO
0361~ A5
0363- C9
0365- BO
0367- A9
0369~ 20
036C- 20
036F- CA
0370~ FO
0372- DO
0374- A9
0376- 20
0379- 20
037C- 4C

037F- A9
0381- A0
0383~ 4C

0386~ 20
0389- A9
038B- 20
038E- A2
0390- A5
0392- 20
0395- A5
0397- 20
039A- A9
039C- 4C

039F- E6
03A1~ DO

cc
D2
c8
AO
D3
D6

8D
00

BE
A8

98
02

cC
Cc9
D4
D2
Cc5
C5

8D

DA
D6

03

FD

FD
03

FD
FD
FF

03

FD
FD

FD
FD
FD

1570

1580

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220

.HS 8D
.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D8D00
*
*
* This part of the program is the main
* loop. It gets the line number, finds
* it in memory and displays it in hex.
*
START JSR LINGET Convert number after & to hex.

JSR FNDLIN Put address of line in LOWTR.
BCC NOLINE Line doesn't exist.

LDY #$0 Zero the Y-register.

STY TEMP and TEMP.

Print address of line.
Print a space.

NXTLIN JSR PRTADDR
PRTSPC LDA #$A0
JSR COUT

LDA (LOWTR),Y Get the next byte in the line.
If it's not zero, print it.

BNE PRINTIT

LDA TEMP It is zero, did we pass

CMP #$5 the fifth byte?

BCS DONE Yes, print it and end up.

LDA #$0 No, print it and continue.
PRINTIT JSR PRBYTE Print byte in accumulator.

JSR INCR Increment LOWTR and TEMP.

DEX Decrease X by one.

BEQ NXTLIN X=0 start a new line.

BNE PRTSPC Get and print nmext byte.
DONE LDA #$0 The last byte is a zero

JSR PRBYTE so print it.

JSR CROUT Print a carriage return.

JMP MONZ Jump to the monitor.

*

*

* Tell the user the line he requested
* does not exist.

Point to text to be
printed.
Print it.

*

NOLINE LDA #TEXT2
LDY /TEXT2
JMP MSGPRT

This section of the program prints

out a carriage return, a space and then
the address in memory of the first byte
displayed on the line, followed by a
colon.

% R % ok ¥ b %

PRTADDR JSR CROUT Print a carriage return.

LDA #$A0 Print out a space.

JSR COUT .

LDX #$8 Count 8 bytes per line.
LDA LOWTR+1 Print out the address of
JSR PRBYTE the first byte on the
LDA LOWTR line, high byte first.
JSR PRBYTE

LDA #$BA Then print a colon.

JMP COUT

*
*
* Here, the pointer to the contents of
* the line is incremented. Location
* TEMP is incremented too.
*
INCR INC LOWTR
BNE [NCTEMP

Learning To Use The Ampersand / 139

03A3- E6 9C 2230 INC LOWTR+1
03A5- E6 08 2240 INCTEMP INC TEMP

03A7- 60 2250 RTS
2260 *
2270 *
2280 * This is the message printing routine.
2290 *

03A8- 85 18 2300 MSGPRT STA TXTPTR

03AA- 84 19 2310 STY TXTPTR+1

03AC- A0 00 2320 LDY #$0

03AE- B1 18 2330 LooP LDA (TXTPTR),Y

03B0- FO OB 2340 BEQ ENDPRT

03B2- 20 ED FD 2350 JSR COUT

03B5- E6 18 2360 INC TXTPTR

03B7- DO F5 2370 BNE LOOP

03B9- E6 19 2380 INC TXTPTR+1

03BB- DO F1 2390 BNE LOOP

03BD- 60 2400 ENDPRT RTS
2410 *
2420 *
2430 * This is the text that tells the user
2440 * that the requested line doesn't exist
2450 * in the program. A bell is also rung
2460 * to alert the user to the error.
2470 *

03BE~ 8D 2480 TEXT2 .HS 8D

03BF~ CE CF A0
03C2- D3 D5 C3
03C5- €8 A0 CC
03C8- C9 CE C5 2490

.AS ~""NO SUCH LINE"
03CB- 87 8D 00 2500

.HS 878D00

Unlike most programs that use the ampersand, this one is meant to be used
primarily from the immediate mode rather than being called from a running pro-
gram. However, as I indicated earlier, if you want it to return to a program that
called it, the change that has to be made is trivial.

To use APPLESOFT LINE FINDER, just type in an ampersand, followed by
the line number like this, &10. This will cause line 10 of the current Applesoft
program to be displayed on the screen in hexadecimal form and leave you in the
monitor mode so that changes can be made to it. Since a colon is used to separate
the address from the displayed data, it is only necessary to move your cursor up to
the line that is going to be changed and copy everything with the right arrow key
except those items that are going to be modified. It couldn’t be simpler.

Appending two Applesoft programs together

Anyone who has done a considerable amount of BASIC programming has at one
time or another had the need to combine two programs, or program segments
together into one. There are several ways that this can be done. You can write one
segment out as a text file and then EXEC it in after the second program has been

loaded into memory, or you can use Apple’s Renumber and Append program that
comes of the DOS System Master diskette.

There are some disadvantages to these approaches. First, they both require that
the user have a disk drive. Since most Apple owners have at least one drive that’s
not too bad, but it still leaves a small group of people without any way of combin-
ing two programs together. Another disndvantage of the EXEC approach, is that



140 / Chapter 7

you have to write a separate program to convert your Applesoft program into a text
file. In addition, if it’s a long program, the append operation becomes very time
consuming. A disadvantage of using Apple’s program, is that it must be loaded into
memory first, because if you try to run it after your program is in memory, it will
erase your program.

The answer to these problems is APPLESOFT APPEND, a short machine
language program that sits in pages two and three and can be loaded and run at any
time and does not require the presence of a disk drive.

The program starts off with a routine on lines 1390 to 1490 that prints out the title
page and a ‘READY.” message. It also sets up the ampersand jump locations to
cause the program to jump to line 1700 when the ampersand key is pressed.

At line 1700, the program checks the character following the ampersand to see if
itis an ‘H’. If it is, the program branches to the routine that puts the first program
on hold (line 1710), otherwise it checks to see if the character is an ‘M’. It checks
for the ‘M’ (lines 1730 and 1740) a little differently than it checked for the ‘H’,
although we could have used the same technique. However, I wanted to introduce
you to another useful routine in the Applesoft ROMs, called SYNCHR which is
located at $SDECO.

SYNCHR is Applesoft’s syntax character checking routine. What it does is
check to see that TXTPTR, the pointer used by the CHRGET routine is pointing to
the same character that is in the accumulator. If the characters match the routine
returns without modifying the accumulator or TXTPTR and the program jumps to
the routine that merges the two programs together (line 1740). However, if the two
do not match, then it jumps to the routine in the ROMs that prints out the message
SYNTAX ERROR and halts program execution.

The purpose of the BEGIN routine is to hide, or put on hold, the first Applesoft
program. The first thing the routine does is to print out a message to the user telling
him that the first program is on hold (lines 1790 to 1810). Now, after telling the user
that it has already been done, the program goes about doing the things it must in
order to put the program on hold and hide it from the Applesoft interpreter. The
first thing it does is store the address of the beginning of the Applesoft program for
retrieval later (lines 1820 to 1850).

To hide the program, it is necessary to adjust the two-byte start of program
pointer, which is called TXTTAB, so that it points to the end of the program. This
is exactly what is done in lines 1860 to 1930. As the first step in this process, the
program jumps to a subroutine that checks to see how far past the program the end
of program pointer is pointing.

There seems to be a bug in Applesoft that increases the end of program pointer
by one if the program was written after a NEW was executed rather than after an FP
was executed. To check this, try an experiment. While in the Applesoft mode type
FP and press the carriage return. Now type CALL-I51 and carriage return and
finally type AE.BO. Your screen should look like this:

|FP

Learning To Use The Ampersand / 141

CALL-151
*AF.BO

00AF- 03
00BO- 08

Now get back into Applesoft by typing a Control-C, or 3D0G if DOS is active,
and type NEW. Now type CALL-151 and AF.BO. This time, instead of getting 03
for AF, you get 04. This minor bug can cause havoc with an append program, as
many people who have tried to write one have found out. The worst part is, if you
don’t know that it is caused by the differences between an FP and a NEW, it seems
like a random bug and it is almost impossible to track down.

Now that we are aware of the bug, we can negate its affects. In line 1860, the
program jumps to a subroutine called CHKEND (line 2050), that determines
whether the program that is currently in memory (the first program) was entered
after a NEW or an FP. The first thing this routine does is to set ENDBYTE equal to
two, which is the value it should have if the program was entered after an FP (lines
2050 and 2060). Next the carry is set (line 2070) and a two-byte subtraction is
performed, subtracting four from the end of program pointer (lines 2080 to 2130).

The value obtained from this subtraction is used as a pointer to pick up the next
to the last byte of the last program line (line 2150). This byte should not be a zero. If
the value retrieved is not zero, then the program was entered after an FP was
executed and the value of ENDBYTE is okay. If it is zero, the end of program
pointer was advanced by one, which means that the program was entered after a
NEW. In this case, ENDBYTE must be incremented by one (line 2170), before
returning to the calling routine.

Upon returning to the calling routine (back to line 1870) we now know how many
bytes past the end of the program PRGEND is pointing, and thus know how much
to subtract from it in order to get the correct starting location for the second
program. In lines 1870 to 1930, the subtraction is performed, and the results are
stored in the beginning of program pointer (TXTTAB). Finally, the program re-
turns to the immediate mode either directly if DOS is not present, or via DOS if it is
(lines 1940 to 1980).

There are still two routines we haven’t gone over yet. One is the message printing
routine (lines 2370 to 2450) which should be quite familiar by now and will not be
discussed. The other is the RESET routine (lines 2250 to 2320). The RESET
routine is reached only if an &M is entered (lines 1720 to 1740). This command
should only be entered after the first program has been put on hold and the second
program has been loaded. It can also be use to retrieve the first program if you
change your mind and decide you don’t want to append anything to it.

The first thing this routine doces is to tell the user that the appending operation
has been completed (lines 2250 10 2270). Then the start of program pointers for the
first program, which were stored in TEMP and TEMP + 1, are restored to TXT-
TAB. The only thing left to do I to reset the line links (the next line pointers). This



142 / Chapter 7

is done by calling a routine in the Applesoft ROMs known as LINKSET ($D4F2).
This routine does not return, but instead returns control to the immediate mode.

This program works very much like Apple’s program. Once it is activated by
loading it and doing a CALL 696, it is only necessary to load in your first program
and then press &H to put it on hold. If you try to list the program at this point, it will
have seemed to disappear. Don’t get nervous it’s still there and can be recalled by
typing in &M. Try it and then type LIST. See? I told you there was nothing to
worry about. If you did bring the program back by typing &M, let’s type &H again
to make it disappear once more. Next, load in your second program and type &M
to merge the two programs together. That’s all there is to it.

One thing you should pay attention to when using a program like APPLESOFT
APPEND is that the line numbers of the second program are always greater than
the line numbers of the first program. The only time you do not have to worry about
this constraint is if there are no GOTOs, GOSUBs or IF. .. THEN < line number >
statements in the second program. In that case the line numbers can overlap, but if
they do, remember, you are not going to be able to edit or individually list the lines
of the second program.

1000 Kkkkkkkkkhkkhkkkhkkhhdkhihkhkkkkhhhddkkkk

Learning To Use The Ampersand / 143

1010 *** kk
1020 *** APPLESOFT APPEND ok
1030 *** *kk
1040 *x* COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *hk
1080 *Hkkdkikkkkrhhkkkxxkkkhhhhkkrrhhkarhk
1090 *
1100 *
1110 *
1120 .OR $2B8
1130 *
1140 *
1150 * EQUATES
1160 *
1170 *
0006 1180 TEMP .EQ $6
0008- 1190 TXTPTR .EQ $8
0067- 1200 TXTTAB .EQ $67
00AF- 1210 PRGEND .EQ $AF
03D0- 1220 WARMDOS .EQ $3DO
03F5- 1230 AMPERSD .EQ $3F5
D4F2- 1240 LINKSET .EQ $D4F2
DECO- 1250 SYNCHR .EQ $DECO
E000- 1260 BASIC .EQ $E000
FC58- 1270 HOME .EQ $FC58
FDED- 1280 COUT .EQ $FDED
1290 *
1300 *
1310 * This section clears the screen and
1320 * prints out the title and copyright
1330 * notice. It also notifies the user
1340 * that the first program has been put
1350 * on hold. It then sets up the
1360 * ampersand jump vector to point to
1370 * this program.
1380 *
02B8- 20 58 FC 1390 JSR HOME Clear the screen.
02BB- A9 D2 1400 1LDA HTEXT1 Print out the title and
02BD- A0 02 1410 LDY /TEXT! copyright notfce.
028F 20 97 03 1420 JSRMSGPRT

02C2-
02C4~
02C7~
02C9-
02CC-
02CE-
02D1-

02D2~
02D5-
02D8-
02DB-
02DE-
02E1-
02E4-
02E7-
02EA-
02EC-
02EF-
02F2-
02F5-
02F8-
02FB-
02FE-
02FF-
0302-
0305-
0308~
030B-
030E~
0311-
0312-
0315-
0318-
031B-
031E-
0321-
0324-
0325-
0328-
0329-
032C-
032F-

0331~
0333-
0335-
0337-
033A-

033D-
033F-
0341-
0344~
0346-
0348-
034A-
034C-
034F-
0351
0152
015%

A9
8D
A9
8D
A9
8D
60

c9
FO
A9
20
4C

A9
A
20
A5
A4
85
84
20
AS
18
KD
8

4c
F5
31
F6
03
F7

48
08
4D
Cco
85

03
03
03

DE
03

1430 LDA #$4C Set up the ampersand
1440 STA AMPERSD jump vector to point
1450 LDA #START to START.
1460 STA AMPERSD+1
1470 LDA /START
1480 STA AMPERSD+2
1490 RTS
1500 *
1510 *
1520 * This is the title and copyright informati
1530 * printed out the first tigg tﬁe on
1540 * program is run.
1550 *
1560 TEXT1 .AS ~"APPLESOFT APPEND PROGRAM"
1570 .HS 8D8D
1580 .AS -"BY JULES H. GILDER"
1590 .HS 8D
1600 .AS -"COPYRIGHT (C) 1982"
1610 .HS 8D
1620 .AS -"ALL RIGHTS RESERVED"
1630 .HS 8D8D8D8D
1640 .AS -"READY."
1650 .HS 8D00
1660 *
1670 *
1680 *
1690 *
1700 START CMP #3$48 Is there an 'H' after &?
1710 BEQ BEGIN Yes, put program on hold.
1720 LDA #$4D No, is it an 'M'?
i;Zg JSR SYNCHR
JMP RESET Yes, mer
1 s ge the programs.
1760 *
1770 * This section hides the first program.
1780 *
1790 BEGIN  LDA #TEXT2 Tell the user a program
1800 LDY /TEXT2 is on hold.
1810 JSR MSGPRT
1820 LDA TXTTAB+1 Get the start of
1830 LDY TXTTAB program pointers
1840 STA TEMP+1 and save them for
1850 STY TEMP later.
1860 JSR CHKEND Programmed after FP or NEW?
1870 [.LDA PRGEND Set the end of program
1880 SEC poeinter to the
1890 SRCENDBY'TE beginning.
1900 STA CTXTTAR



144 / Chapter 7
0357- A5 BO 1910 LDA PRGEND+1
0359~ E9 00 1920 SBC #$0 Borrow if necessary.
035B- 85 68 1930 STA TXTTAB+1
035D- A9 DO 1940 LDA #WARMDOS Return to a BASIC
035F- C9 4C 1950 CMP #$4C warm start, through DOS
0361~ DO 03 1960 BNE NODOS if it is present.
0363~ 4C DO 03 1970 JMP WARMDOS DOS is present.
0366 4C 03 EO 1980 NODOS JMP BASIC+3 DOS is not present.
1990 *
2000 *
2010 * This routine checks to see if the
2020 * program was written after an FP
2030 * (ENDBYTE=2) or after a NEW (ENDBYTE=3).
2040 *
0369- A9 02 2050 CHKEND LDA #$2 Set ENDBYTE to 2
036B- 8D CF 03 2060 STA ENDBYTE for now. )
036E- 38 2070 SEC Prepare for subtraction
036F- A5 AF 2080 LDA PRGEND Subtract 4 from the
0371- E9 04 2090 SBC #$4 end of program
0373- 85 67 2100 STA TXTTAB pointer and save
0375~ A5 BO 2110 LDA PRGEND+1 in TXTTAB.
0377- E9 00 2120 SBC #$0 Borrow if necessary.
0379- 85 68 2130 STA TXTTAB+1
037B- AQ 00 2140 LDY #$0
037D~ B1 67 2150 LDA (TXTTAB),Y Get last byte of program.
037F- DO 03 2160 BNE CHKDONE If not zero, ENDBYTE okay.
0381- EE CF 03 2170 INC ENDBYTE Increase ENDBYTE by 1.
0384~ 60 2180 CHKDONE RTS Return.
2190 *
2200 * This section resets the start of
2210 * program pointers and then calls the
2220 * line link fixing routine which then
2230 * returns to Applesoft.
2240 *
0385- A9 BB 2250 RESET LDA H#TEXT3 Point to APPEND
0387~ AQ 03 2260 LDY /TEXT3 COMPLETED message.
0389~ 20 97 03 2270 JSR MSGPRT Print it.
038C- A5 06 2280 LDA TEMP Restore the low-order
038E- 85 67 2290 STA TXTTAB byte of the pointer.
0390- A5 07 2300 LDA TEMP+1 Restore the high-order
0392- 85 68 2310 STA TXTTAB+1 byte.
0394- 4C F2 D4 2320 JMP LINKSET Fix the line links.
2330 *
2340 * ]
2350 * This is the message printing routine.
2360 *
0397- 85 08 2370 MSGPRT STA TXTPTR
0399- 84 09 2380 STY TXTPTR+1
039B- A0 00 2390 LDY #3$0
039D~ B1 08 2400 LOOP LDA (TXTPTR),Y
039F- FO 06 2410 BEQ ENDPRT
03A1- 20 ED FD 2420 JSR COUT
03A4- C8 2430 INY
03Aa5- DO Fé 2440 BNE L.OOP
03A7- 60 2450 ENDPRT RTS
2460 *
2470 *
2480 * These are the text messages printed out
2490 * by the program.
2500 *
03A8- 8D 2510 TEXT2 .HS 8D
03A9- DO D2 CF
03AC- C7 D2 C1
03AF- CD AO CF
03B2- CE A0 C8
03B5- CF CC C4
03B8- AE 2520 .AS -"PROGRAM ON HOLD."
03B9- 8D 00 2530 LHS 8D00
03BB- 8D 2540 TEXTTI JHS 8D
03BC- C1

03BF-
013c?
03CH

ChH
AQO
cn

Learning To Use The Ampersand / 145

03C8~ C5 D4 C5

03CB- C4 AE 2550 .AS -"APPEND COMPLETED."
03CD- 8D 00 2560 .HS 8D0O
03CF- 00 2570 ENDBYTE .HS 00

How to restore lost Applesoft programs

Has this ever happened to you? You spend three days working on that super-
duper whiz-bang program then you accidentally hit reset and get thrown into the
monitor mode. You type Control-B instead of the Control-C you intended and
PUFF! Three days of work have vanished before your eyes. Or maybe you acciden-
tally typed NEW before you saved the final version of your program. Again, long
hours of work have disappeared. This can be frustrating for any programmer, but it
doesn’t have to be for you any more, because &RESTORE will bring back your
vanished program as quickly as you can type in the command &RESTORE. And
you don’t have to worry about loading this program first. It sits in page three and
can be loaded at any time, before or after you’ve lost your program. To use it just
type CALL 768 or after it has been run once just type &RESTORE.

What makes a program like this possible is the fact that the designers of the
Applesoft language wanted to have an efficient language and decided that it was not
necessary to actually erase the contents of memory every time a NEW command
was issued. Instead, they just changed the information stored in the end of program
pointer and erased only two bytes of data. So the program is still in memory, it’s
Just that Applesoft doesn’t know where to look for it. By restoring the two bytes that
were erased (the pointer to the second line of the Applesoft program), and search-
ing through memory until the end of the program is found and restoring the
PRGEND pointer, the program can be brought back to life, as if it were always
there.

In this program, we will see how we can use the existing set of key words and
give them new functions to perform. In this case, as you’ve already guessed, we're
going to use the RESTORE command. This command will still perform its usual
function without any problems. But, when it is preceded by another command, the
ampersand (&), it takes on an entirely new task.

The &RESTORE program begins, on line 1410, by setting up the ampersand
jump vector to point to START and after that jumps to START2 (line 1470),
skipping the code that checks for the presence of the word RESTORE. At line
1620, which is the ampersand entry point, the program loads the token for the word
RESTORE (which is $AE) into the accumulator and then jumps to the syntax
character checking routine (SYNCHR) to see if that token matches the information
following the ampersand. If it doesn’t, the subroutine prints out SYNTAX ERROR
and stops execution of the main program. If it matches, the main program falls into
the START? routine.

It is not at all necessary to use the RESTORE command, but I thought you’d like
to see how todo it. If you prefer to use just the & as the command, simply eliminate
lines 1470, 1620 and 1630 and rename the label on line 1640, START. Once at line



146 / Chapter 7

1640, the program clears the screen and prints out the program’s title, copyright
notice and the word READY, indicating to the user that the program has already
been restored. While the program has not yet been restored, the task is accom-
plished so quickly, that the user never realizes it.

The actual program restoration begins on line 1780 where the start of program
pointer, TXTTAB, is used to produce another pointer (lines 1780 to 1830), called
POINTER, which will skip the first four bytes of the line (these consist of the next
line pointer and the line number). The reason we want to skip these bytes is that
ultimately we want to find the end of the first line which is terminated with a zero.
However, any of the first four bytes can legitimately contain a zero, which could
result in premature termination of this program.

After POINTER has been calculated and stored, the high-byte of the start of
program pointer is still in the accumulator and it is stored as the high byte of the
pointer to the second line in the program (line 1850).

Now that the high-byte of the next line link to the second line has been restored,
we have to find out where the first line ends in memory so that we can restore the
low-byte. The routine that does this, FINDEOL, begins in line 1870. In lines 1870
and 1880, the Y-register is incremented and the contents of the location pointed to
by both POINTER and the offset of the Y-register, are checked to see if they are
zero. If not, the process is repeated until they are. If they are, the Y-register is
transferred to the accumulator (line 1900), the carry bit is cleared in preparation for
adding two numbers (line 1910) and 5 is added to the accumulator (line 1920). The
five includes the four bytes that were skipped at the beginning, plus an additional
byte so that the pointer will point not to the last character of the Applesoft line, but
one past it, where the next line actually begins. This number is stored in the low
byte of the next line pointer (line 1940).

If the program were to stop at this point, you would be able to list the program
and it would appear as if it had all been restored. It hasn’t, because if you saved it
out to tape or disk and then loaded it back in, you'd find you had nothing, even
though you were able to list it, and also run it. The program can be saved at this
point only by listing it to an EXEC file. The reason the program will not save out
properly is that we have not adjusted the end of program pointer, PRGEND, to
point to the end of the program. This is what is done, starting at line 2000, where
TXTTAB, the start of program pointer, is loaded into POINTER (lines 2000 to
2030).

In lines 2040 and 2050, a flag called TESTBYT is set to zero. This is going to be
used to help us determine when the end of the program has been reached. A loop to
scan the program is set up starting at line 2060, where POINTER and the Y-register
are used to determine the next location from which a byte will be loaded and tested
to see if it is equal to zero. After the byte is loaded, and before the test is performed,
the Y-register is incremented (line 2070) and a check is made to see if a memory
page boundary has been crossed (e.g. did we go from an address in the $800 range
to an addresses in the $900 range). If no page boundary was crossed (line 2080) the
program branches to ZEROCHK, otherwise, the high-byte of POINTER is incre-

Learning To Use The Ampersand / 147

mented by one.

ZEROCHK is where the byte in the accumulator is tested to see if it is a zero (line
2100). If it’s not, the program branches back to line 2040 where TESTBYT is reset
to zero, and then checks the next byte. If it is a zero, we have to determine if this is
the end of an Applesoft line or the end of the program. To do this we check
TESTBYT and see if it is equal to two (lines 2120 and 2130). If it is (line 2140), this
is the end of the program and the program branches to a routine that stores all of the
pointers. If it’s not equal to two, we increment TESTBY T by 1 and go back to check
the next byte. As you see, TESTBYT is used to determine how many consecutive
zeros we have encountered. The end of the program is indicated by three consecu-
tive zeros; one for the end of line marker and two instead of the next line pointer.

The EXIT routine is where all of the Applesoft pointers are adjusted. These
include the end of program pointer (PRGEND), the start of variable storage (VAR-
TAB), the start of array storage (ARYTAB) and the end of string storage
(STREND). In line 2170, the Y-register is incremented by one because we want to
point to one past the three consecutive zero bytes. The Y-register is then transferred
to the accumulator (line 2180) and the high-byte of POINTER is incremented if a
page boundary is crossed (lines 2190 and 2200). All of the appropriate zero page
pointers are updated in lines 2210 to 2290.

1000 Fkkkkkkkkkkkhkhkhkkhkhkikkkkkhhkikkkk

1010 ***x Kkk
1020 *** &RESTORE *kk
1030 *** Kk
1040 *** COPYRIGHT (C) 1982 BY *hKk
1050 **%* JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kik
1070 **x *kk
1080 FhdkokokFddkdeded ke deok ok ek ook e dek ok ok ek ok ok ek
1090 *
1100 *
1110 *
1120 .OR $300
1130 *
1140 *
1150 * CONSTANTS
1160 *

004C- 1170 JUMP .EQ $4C JMP op code

00AE— 1180 RESTORE .EQ $AE RESTORE token
1190 *
1200 *
1210 * EQUATES
1220 *

0006- 1230 POINTER .EQ $6

0008- 1240 TESTBYT .EQ $8

0067 1250 TXTTAB .EQ $67

0069- 1260 VARTAB .EQ $69

006B- 1270 ARYTAB .EQ $6B

006D~ 1280 STREND .EQ $6D

00AF- 1290 PRGEND .EQ $AF

03F5- 1300 AMPERSD .EQ $3F5

DECO- 1310 SYNCHR .EQ $DECO

FC58- 1320 HOME . .EQ $FC58

FDED- 1330 cout .EQ $FDED
1340 *
1350

*
1360 * This is where the ampersand jump
1370 * vector is set up. After set-up,
1780 * a relative jump Is made to the

1390 * necond entry point of the program.



148 / Chapter 7

0300~
0302-
0305-
0307~
030A-
030C-
030F-

0312-
0314-
0317-
0319~
031C-~
031F-
0321-
0324-
0325-

0327-
0329-
032A-
032C-
032E-
0330-
0332
0334
0336
0337-
0338-
033A-
033C-
033D-
033E-
0340-
0342-

0344-
0346-
0348-
034A-
034C-
034E-
0350-
0352-
0353~
0355-
0357-
0359-
035B-

A9
8D
A9
8D
A9
8D
4C

A9
20
AD
20
B9
FO
20
Cc8
DO

AS
18
69
85
AS
85
AOD
91
88
c8
B1
DO
98
18
69
AOD
91

A5
85
A5
85
A9
85
B1
Cc8
DO
E6
c9
DO
AS

03
03

03
03

DE

FC
03

FD

1400 *

1410 LDA #JUMP Get the JMP

1420 STA AMPERSD op~code & store
1430 LDA #START it and the

1440 STA AMPERSD+1 address of the

1450 LDA /START start of this

1460 STA AMPERSD+2  program.

1470 JMP START2 Go to START2.

1480 *

1490 *

1500 * There are two entry points to this

1510 * program. One is via the &RESTORE

1520 * command (START) and one by a CALL 768
1530 * (START2). At START, the program

1540 * looks at the information that follows
1550 * the & to see if it is the RESTORE

1560 * token. This is done by SYNCHR. If

1570 * not RESTORE a syntax error is

1580 * generated. Once syntax has been

1590 * checked, the program title is

1600 * printed out.

1610 *

1620 START LDA #RESTORE Does the RESTORE
1630 JSR SYNCHR token follow the &?
1640 START2 LDY #$0 Yes, zero character pointer.
1650 JSR HOME Clear the screen.
1660 LOOP1 LDA TEXT,Y Get a character.
1670 BEQ NEXT If done go to NEXT.
1680 JSR CoUT Print a character.
1690 INY Increment the pointer.
1700 BNE LOOP1 Get more characters.
1710 *

1720 *

1730 * This section of program resets the

1740 * start of program pointers that are

1750 * wiped out when a NEW or Control-B

1760 * are entered.

1770 *

1780 NEXT LDA TXTTAB Get program start
1790 CLC low byte. Calculate
1800 ADC #$3 and save the starting
1810 STA POINTER line's low byte.
1820 LDA TXTTAB+1 Get program start
1830 STA POINTER+1 high byte and save it.
1840 LDY #$1 Save 2nd line's

1850 STA (TXTTAB),Y high byte.

1860 DEY Zero the Y-register.
1870 FINDEOL INY Look for the end
1880 LDA (POINTER),Y of line marker

1890 BNE FINDEOL Keep looking.

1900 TYA Found end of line,
1910 CLC find value of

1920 ADC #$5 program start

1930 LDY #$0 low byte and

1940 STA (TXTTAB),Y restore it.

1950 *

1960 *

1970 * This part of the program resets the

1980 * end of program pointers.

1990 *

2000 LDA TXTTAB Store start of

2010 STA POINTER program pointers
2020 LDA TXTTAB+1 in POINTER for

2030 STA POINTER+1 future use.

2040 LOOP2 LDA #3%$0 Initialize end of
2050 STA TESTBYT program test byte.
2060 LOOP3 LDA (POINTER),Y Start scanning

2070 INY the program.

2080 BNE ZEROCHK Page boundary?

2090 INC POINTER+1 Yes, increment the byte.
2100 ZEROCHK CMP #$0 Does the accumulator 07

2110
2120

BNE. 1.0OOP2 No, keep neanning.
LDA TESTRYT Yeuw, fn it the

Learning To Use The Ampersand / 149

035D~
035F-
0361-
0363-
0365-
0366—
0367-
0369-
036B-
036D-
036F-
0371-
0373-
0375-
0377-
0379-
037B-
037D-

037E-
0381-
0384
0386-
0388-
038B-
038E-
0391-
0394~
0397-
039A-
039B-
039E-
03A1-
03A4-
03A7-
03AA-
03AD-
03AE-
03B1-
03B4—
03B7-
03BA-
03BD-
03C0-
03C1-
03C4-
03C7-
03CA-

A6
D3
D2
8D
c2
CA
C5
Cc8
c7
c4
8D
c3
D9
c7
AO
A9
B9
8D
C1
AQ
c7
D3
Cc5
D2
C4
8D
D2
Ch4
8D

02

69
6B
6D
AF
07
6A
6C
6E
BO

D2
D4
C5
8D
D9
D5
D3
AE
Cc9
Cc5

CF
D2
c8
A8
AO
B8

cC
D2
c8
AO
D3
D6

8D
C5
D9
00

Cc5
CF

AO
cc
AOQ
AOQ
cC
D2

DO
Cc9
D4
c3
B1
B2

cC
Cc9
D4
D2
C5
Cc5

8D
C1
AE

2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350

2360
2370

2380
2390

2400
2410

2420
2430

2440
2450

EXIT

STORPTR

SOk ok Ok %

TEXT

CMP
BEQ
INC
BNE
INY
TYA
BNE
INC
STA
STA
STA
STA
LDA
STA
STA
STA
STA
RTS

.AS
.HS

.AS
.HS

.AS

.AS
.HS

.AS
.HS

#2

EXIT
TESTBYT
LOOP3

STORPTR
POINTER+1
VARTAB
ARYTAB
STREND
PRGEND
POINTER+1
VARTAB+1
ARYTAB+1
STREND+1
PRGEND+1

—"&RESTORE"

8D8D

end of the program?
Yes, finish up.

No, increment the test byte.

Get the next byte.

Ad just the byte

count & see if

we have to increment

the high byte too.

Store the low byte

of the end of the program
in the appropriate

zero page locatioms.
Store the high byte

of the end of the program
in the appropriate

zero page

locations.

Return.

This is where text for program title
and copyright notice are stored.

-"BY JULES H. GILDER"

8D

—-""COPYRIGHT (C) 1982"
.HS 8D

-'""ALL RIGHTS RESERVED"

8D8D8D

—""READY."
8D00



Chapter 8
EXPANDING APPLESOFT BASIC

In the last chapter we saw how it was possible to use the ampersand (&), an
Applesoft key word, to jump to a machine language program whenever we wanted
to, even in the middle of an Applesoft program. Sometimes, however, it is desir-
able to not only jump to a machine language routine, but to take some variables
along for the ride. This is particularly important if you want to expand the capabili-
ties of the Applesoft language.

Just as there are several ways to jump from Applesoft to a machine language
program, there are also several ways to pass variables. Single byte variables can be
POKECd into place before the jump. So can double byte variables, but that starts to
become a little cambersome. The two major ways of passing variables, however,
are by letting them follow the ampersand, or by using the USR command in
Applesoft. In this chapter, we are going to look at both of these methods and go
over two programs for each approach. In addition, we’ll learn how to add special
function keys to Applesoft.

The programs in this chapter are unusual in that they are designed to expand the
capabilities of the Applesoft language. One of the nice features of Integer BASIC
which never made it into Applesoft, was the ability to have computed commands.

150

Expanding Applesoft Basic / 151

For instance, wouldn’t it be nice to be able to write GOTO ENTERINFO when you
transfer control to a portion of the program that handles the input of data, instead of
writing GOTO 200. Or perhaps you want to determine where to branch to depend-
ing on the data entered. Wouldn't it be nice to be able to write GOTO N*100, where
N is the data entered. The convenience of computed commands can be had for the
GOSUB and LIST keywords as well. Just how to implement these commands is
demonstrated in the first program entitled, COMPUTED GOTO, GOSUB AND
LIST.

Adding new commands to Applesoft

In this program, we're going to use the ampersand to define three new com-
mands: &GOTO, &GOSUB and &LIST. To start off, the program sets up the
ampersand jump locations on page three, so that they point to the part of the
program that handles the computed functions (lines 1520 to 1570). After that, the
program title is printed out along with the word READY to indicate to the user that
the program is properly installed, and ready to use (lines 1580 to 1610).

When the Applesoft interpreter encounters an ampersand, it transfers control to
the subroutine labelled START on line 1710. Here the program tests the character
that follows the ampersand to see if it represents the GOTO, GOSUB or LIST
tokens (lines 1710 to 1760). If it’s none of these, the last test, which is performed by
using the SYNCHR routine in the Applesoft ROMs, will return control to the
immediate mode after printing a SYNTAX ERROR message. If it is either GOTO
or GOSUB a branch is made to the appropriate routine. If it’s LIST, the program
returns from the SYNCHR routine and falls into the routine that handles the
computed LIST statement.

The first thing that the routine for the computed LIST does, is a jump to a short
routine that is the heart of this entire program (line 1820). This routine is generally
used as a replacement for the LINGET ($DAOC) routine that is normally found in
the listings for these commands. The LINGET routine, expects to find a digit
following these commands and also expects that the number these digits form is no
greater than 63999. If the number is larger, a syntax error is generated.

The two routines that are jumped to from EVLNM?2 (line 2370), however,
expect only to find a number, variable or expression and will accept any value
between + 65535 and -65535. The FRMEVL routine evaluates whatever is found
after the token and puts the value that it calculates into the floating point accumula-
tor (FAC), which is located on page zero from $9D to $A2. In this form, the
number is not very useful, so we use another Applesoft ROM routine to convert the
number in the FAC to a two-byte integer number that is stored in LINNUM ($50).

Once we have the number as a two-byte integer, we call another Applesoft
routine (line 1830), known as FNDLIN ($D6] A), to find out where the Applesoft
program line is located in memory. When FNDLIN locates the line, it puts the
address of the line in a two-byte pointer on page zero called LOWTR (which is at
$9B). The addrens is then tuken from the LOWTR pointer and stored in another set



152 / Chapter 8

of page zero locations until it is needed later (lines 1840 to 1870).

With the address of the first line to be listed safely stored, the program then
checks to see if the next character following the number, variable or formula, is a
zero (lines 1880 and 1890). If it is, the return address that was pushed on the stack
when this routine was entered, is popped off and a jump is made to an entry point in
the middle of Applesoft’s LIST routine. As a result, only the one line is listed. The
reason for this is the zero that followed the expression was an end of text marker
and told the program that a single line was to be listed, and not a range of lines.

Understanding one of Applesoft’s quirks

At this point, it is easy to explain one of the quirks of the Applesoft LIST
command. Those of you who start their programs with line number zero may have
encountered some problems when you tried to list line zero by typing LIST 0.
Instead of listing that one line, it lists the entire program. The reason for this is that
LINGET, which is used in Applesoft’s LIST routine, returns a zero in LINNUM if
no line number follows the LIST command. This is the same result that is returned
for a zero following the command. Since the program is set up to list the entire
program when LINNUM is zero, it is not possible to list just line zero with the
Applesoft LIST command.

The culprit in Applesoft, is a short routine located between $D6CE and and
$D6D8. Here, both the high and low bytes of LINNUM are ORed together. If the
result is zero, and that will only happen if LINNUM is zero, $FF is loaded into
both the high and the low bytes of LINNUM, effectively telling the program that
the last line to be listed is line 65535. Our program overcomes this shortcoming by
branching past this code to an entry point called NXTLST ($D6DA). Thus an
&LISTO, will list only line zero, if it exists, or nothing if it doesn’t.

Getting back to our program, if the character following the expression was not a
zero, a check is made to see if the only legitimate character that is permitted there, a
comma, is present (line 1930). If the character was not a comma, an error condi-
tion exists and the subroutine returns immediately, generating a syntax error mes-
sage in the process.

If the character was a comma, that is a sign to the program, that a range of lines is
to be listed and not merely a single line. Knowing that, the program looks for the
second expression that will yield a number that represents the last line to be listed
(line 1950). That number is stored in both bytes of LINNUM and then a check is
made to see if the end of the command has been reached (line 1960). If the next
character that is retrieved is not a zero, a syntax error message is generated. If it is,
the location of the first line to be listed is restored to LOWTR and the program
jumps to LIST2 ($D6CC) where the rest of Applesoft’s LIST routine is used.

GOTOs and GOSUBs can be computed too

It the character that follows the ampersand is not a LIST token, but a GOTO
token, then the program branches to line 2070, where a very short subroutine is

Expanding Applesoft Basic / 153

executed. First the program jumps to the EVLNUM routine to get the line number,
and then it jumps to a secondary entry point in the GOTO routine, past the section
of code that uses LINGET to determine which line is to be jumped to, and executes
the command.

The computed GOSUB routine, on line 2130, is not much more complex. The
GOSUB routine normally pushes information on the stack so the first thing the
routine does, is to check and see if there’s room on the stack for the required data.
Here another Applesoft ROM routine is used, CHKMEM ($D3D6). CHKMEM is
entered with a number in the accumulator that represents the number of items to be
stored on the stack. CHKMEM assumes that all of the items to be stored will be
two-bytes in length and thus doubles the value in the accumulator and uses that
number to ascertain if there is enough room on the stack. Once we find out that
there is room, the current value of TXTPTR and CURLIN (each two-byte varia-
bles) is pushed on the stack (lines 2150 to 2220). In addition, it is necessary to push
the GOSUB token ($B0) on the stack as well. This is done in lines 2230 and 2240.
As you can see, only five bytes of stack storage were really needed and not the six
that were checked for.

With the stack properly conditioned, the program now does a subroutine jump to
the computed GOTO routine (line 2250) to find which line is required and where it
is located in memory. Then the program jumps to another Applesoft routine,
NEWSTT ($D7D2) where the GOSUB is actually executed.

The remainder of the listing consists of the message printing routine
(MSGPRT) and the text that it prints out.

1000 *xkkkkkkkkhkdhhhkdhhhhhrkhkhkhkrhhhsx

1010 *** *kk
1020 *** COMPUTED GOTO, GOSUB AND LIST **x*
1030 *** k¥
1040 **% COPYRIGHT (C) 1982 BY Fx%
1050 **% JULES H. GILDER *EK
1060 *** ALL RIGHTS RESERVED *kk
1070 *%* *kk
1080 *kkhkkhkkkkkkhkkhkkkhkkhkkhkkhkhkkkhrhkkhkkkkkkhkkkiikk
1090 *
1100 *
1110 .OR $2D8
1120 *
1130 *
1140 * CONSTANTS
1150 *

002C- 1160 COMMA .EQ $2C

004C— 1170 JUMP  .EQ $4C

O0AB- 1180 GOTO  .EQ $AB

00BO- 1190 GOSUB .EQ $BO

00BC- 1200 LIST .EQ $BC
1210 *
1220 *
1230 * EQUATES
1240 *

0006- 1250 TEMP  .EQ $6

0008- 1260 PNTR  .EQ $8

0075~ 1270 CURLIN .EQ $75

0098- 1780 LOWTR . FQ $9B

00B1 - 1290 CHRCET .FQ $B1

00B7- 1500 CHRGOT . ¥Q $B7

00RB 1310 TXTIMMR LK) $BR

[(X10) 1320 AMPER . FQ $31%



i ic/ 155
154 / Chapter 8 Expanding Applesoft Basic / 1

2060 *

D3D6- 1330 CHKMEM .EQ $D3D6 032D- 20 4D 03 2070 CGOTO JSR EVLNUM Get the line number.

D61A- 1340 FNDLIN .EQ $D61A 0330- 4C 41 D9 2080 JMP GOTO2 Jump to it.

D6CC- 1350 LIST2 .EQ $D6CC 2090 *

D6DA- 1360 NXTLST .EQ $D6DA 2100 *

D7D2- 1370 NEWSTT .EQ $D7D2 2110 * This routine handles the computed GOSUB.

D941- 1380 GOTO2 .EQ $D941 2120 *

DD7B- 1390 FRMEVL .EQ $DD7B 0333- A9 03 2130 CGOSUB LDA #$3 Number of variables to stack.
DECO-~ 1400 SYNCHR .EQ $DECO 0335- 20 D6 D3 2140 JSR CHKMEM See if enough room on stack.
E752- 1410 GETADR .EQ $E752 0338~ A5 B9 2150 LDA TXTPTR+1 Save TXTPTR on the stack.
FC58- 1420 HOME .EQ $FC58 033A— 48 2160 PHA

FDED- 1430 COUT  .EQ $FDED 033B- AS B8 2170 LDA TXTPTR

1440 * 033D- 48 2180 PHA .

1450 ~ 033E- A5 76 2190 LDA CURLIN+1 Save the current line

1460 * This section of code sets up the ampersand 0340~ 48 2200 PHA number on the stack.

1470 * jump vector and prints out the program 0341- A5 75 2210 LDA CURLIN

1480 * title. When the READY. prompt is 0343- 48 2220 PHA

1490 * displayed, the user knows the program 0344- A9 BO 2230 LDA #GOSUB Save the GOSUB token

1500 * is active and ready to use. 0346~ 48 2240 PHA on the stack.

1310 > 0347- 20 2D 03 2250 JSR CGOTO Use CGOTO to find the line.
02D8- A9 4C 1520 LDA #JUMP Get a JMP op code and 034A- 4C D2 D7 2260 JMP NEWSTT Execute the line.
02DA- 8D F5 03 1530 STA AMPER store it at $3F5. 2270 *
02DD- A9 F1 1540 LDA #START Store the address of 2280 *
02DF~ 8D F6 03 1550 STA AMPER+1 the start of the 2290 * This routine is the heart of the program.
02E2- A9 02 1560 LDA /START program at $3F6 and 2300 * It evaluates the number, variable or
02E4- 8D F7 03 1570 STA AMPER+2 $3F7. 2310 * formula that follows the appropriate
02E7~ 20 58 FC 1580 JSR HOME Clear the screen. 2320 * token and converts the number into a
02EA- A9 6C 1590 LDA #TEXT Point to the text to 2330 * two-byte integer that is stored in
02EC- A0 03 1600 LDY /TEXT be printed. 2340 * LINNUM and LINNUM+1 ($50 and $51}.
02EE- 4C 56 03 1610 JMP MSGPRT Print it. 2350 *

1620 * 034D- 20 B1 00 2360 EVLNUM JSR CHRGET Set TXTPTR to next character.

1630 * 0350- 20 7B DD 2370 EVLNM2 JSR FRMEVL Evaluate formula.

1640 * Here the character immediately following 0353- 4C 52 E7 2380 JMP GETADR Convert to integer and store.

1650 * the ampersand is checked to see if it 2390 *

1660 * is the GOTO, GOSUB or LIST tokens. If 2400 *

1670 * it's none of these, a syntax error is 2410 * This is the message printing subroutine.

1680 * generated, otherwise control is turned 2420 *

1690 * over to the appropriate subroutine. 0356- 85 08 2430 MSGPRT STA PNTR

1700 0358- 84 09 2440 STY PNTR+1
02F1- C9 AB 1710 START CMP #GOTO Is it GOTO? 035A- A0 00 2450 LDY #$0
02F3- FO 38 1720 BEQ CGOTO Yes, do it. 035C- B1 08 2460 LOOP  LDA (PNTR),Y
02F5- C9 BO 1730 CMP #GOSUB No, is it GOSUB? 035E- FO OB 2470 BEQ ENDPRT
02F7- FO 3A 1740 BEQ CGOSUB Yes, do it. 0360- 20 ED FD 2480 JSR COUT
02F9- A9 BC 1750 LDA #LIST Is it LIST? 0363- E6 08 2490 INC PNTR
02FB- 20 CO DE 1760 JSR SYNCHR Syntax error if not. 0365- DO F5 2500 BNE LOOP

1770 % 0367- E6 09 2510 INC PNTR+1

1780 = 0369- DO F1 2520 BNE LOOP

1790 * This is the subroutine that handles the 036B- 60 2530 ENDPRT RTS

1800 * computed LIST statement. 2540 *

1810 * 2550 *
02FE- 20 50 03 1820 JSR EVLNM2 Get the number after LIST. 2560 * This is the text printed out by this program.
0301- 20 1A D6 1830 JSR FNDLIN Find first line in memory. 2570 *

0304- A5 9B 1840 LDA LOWTR Save location for 036C-~ C3 CF CD
0306- 85 06 1850 STA TEMP use later. Get 036F- DO D5 D4
0308- A5 9C 1860 LDA LOWTR+1 both high and low 0372~ C5 C4 AO
030A- 85 07 1870 STA TEMP+1 bytes. 0375- C7 CF D4
030C- 20 B7 00 1880 JSR CHRGOT Get character after variable. 0378- CF AC A0
030F- DO 05 1890 BNE CHKCOM Not zero, maybe comma. 0378~ C7 CF D3
0311- 68 1900 PLA Pop return address 037E- D5 C2 AOQ
0312- 68 1910 PLA off the stack. 0381- C1 CE C4
0313~ 4C DA D6 1920 JMP NXTLST List just one line. 0384~ A0 CC C9 "
0316~ C9 2C 1930 CHKCOM CMP #COMMA Was it a comma? 0387~ D3 D4 2580 TEXT .AS -"COMPUTED GOTO, GOSUB AND LIST
0318~ DO 51 1940 BNE ENDPRT No, return with error. 0389- 8D 8D 2590 .HS 8D8D
031A~ 20 4D 03 1950 JSR EVLNUM Yes, get next value. 038B- C2 D9 AOQ
031D~ 20 B7 00 1960 JSR CHRGOT Get character after it. 038E- CA D5 CC
0320- DO 49 1970 BNE ENDPRT Not zero, return with error. 0391~ C5 D3 AO
0322- A5 06 1980 LDA TEMP Restore location of 0394- C8 AE AO
0324- 85 9B 1990 STA LOWTR first line in listing 0397~ C7 C9 CC "
0326- A5 07 2000 LDA TEMP+1 range. 039A- C4 C5 D2 2600 .AS -"BY JULES H. GILDER
0328~ 85 9C 2010 STA LOWTR+1 039D- 8D 2610 .HS 8D
032A- 4C CC D6 2020 JMP 1LIST2 List range of lines. 039E- C3 CF DO
2030 * 03A1- D9 D2 (9
2040 * 03A4- C7 CB D4

2050 * “Thin rout ine handlen the compated COTO,



156 / Chapter 8

03A7- A0 A8 C3

03AA- A9 A0 B1

03AD- B9 B8 B2 2620 .AS -"COPYRIGHT (C) 1982"
03B0O- 8D 2630 .HS 8D

03B1- C1 CC CC

03B4- A0 D2 C9

03B7- C7 C8 D4

03BA- D3 A0 D2

03BD- C5 D3 C5

03C0- D2 D6 C5

03C3- Ca4 2640 .AS -"ALL RIGHTS RESERVED"
03C4~ 8D 8D 8D 2650 .HS 8D38D8D

03C7- D2 C5 C1

03CA- C4 D9 AE 2660 .AS -"READY."

03CD- 8D 8D 00 2670 .HS 8D8DO0

To use the program, it should be loaded and then activated with a CALL 728.
The format to be used for the commands is: &LIST X, &LIST X,Y, &GOTO X
and &GOSUB X. The presence or absence of spaces is irrelevant and X and Y can
be numbers, variables or mathematical formulas.

POKEing two bytes at a time

If you’ve done some Applesoft programming, I’m sure you've had occasion to
store information in memory that had a value larger than 255. Since Applesoft only
allows you to POKE quantities up to 255 into any memory location, you generally
have to convert the value to two bytes and POKE each in separately. The code to do
the job would look something like this:

I0B = 32767

20Y = INT (B/256)

30X =B-Y *256

40 POKEA,X: POKEA + 1,Y

where B is the number to be stored and X is the low byte and Y is the high byte.
That’s an awful lot of program code for one simple operation. Besides, how many
of you would remember exactly what the formulas are for X and Y? And how
much time would be lost while you tried to figure them out? Wouldn't it be a lot
more convenient to write something like this:

10 B = 32767
20 &POKE A B

to accomplish the same task? Sure it would, and that’s what prompted me to write
the DOUBLE BYTE POKE program.

This program starts out the same way most programs that use the ampersand do,
it sets up the ampersand jump locations (lines 1410 to 1460) so the computer will
jump directly to the appropriate place in the program when the ampersand is
encountered. Then the screen is cleared and the program title is printed out (lines
1470 to 1500).

The start of the routine that actually does the processing is on line 1530, where

Expanding Applesoft Basic / 157

the POKE token is loaded into the accumulator in preparation for a subroutine
jump to SYNCHR (line 1540). As was mentioned in earlier programs, SYNCHR
compares the accumulator with what is at the TXTPTR. If they match, the program
returns to the caller and proceeds. If not, a syntax error is generated and program
execution is halted.

In line 1550, the expression immediately following the POKE token is evaluated,
and the results are placed in the floating point accumulator. From there, GETADR
(line 1560) converts the number to a two-byte integer and stores the result in
LINNUM as well as another set of page zero locations, called PNTR (lines 1570 to
1600). The syntax for the POKE statement requires that a comma follow the first
expression so a check for a comma is made in line 1610 by jumping to an Applesoft
routine, CHKCOM, at $DEBE.

If the comma is not present, a syntax error is generated and program execution
stops. Otherwise, we get to the heart of the program. Line 1610 once again uses the
FRMEVL routine to get the value of the expression that follows the comma. And
once again GETADR is used to put it into a form that we can use (line 1630). Now
that we have two bytes that represent the first storage location, and two bytes that
represent the data to be stored, it is a simple matter to store both bytes of data in
their appropriate locations. This is done in lines 1640 to 1690.

1000 *kkkkkkkkkhkkhhhkkkhkkikkkkhkkkhkkhhhkk

1010 *** *kk
1020 *** DOUBLE BYTE POKE *okk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY Lt
1050 *#** JULES H. GILDER *okk
1060 *** ALL RIGHTS RESERVED Lk
1070 **% *kk
1080 *hkxkkkkkkhrkkkhhhkkhrhhhhhhihrhhhkihk
1090 *
1100 *
1110 .OR $300
1120 *
1130 *
1140 * CONSTANTS
1150 *

004C- 1160 JUMP .EQ $4C

00B9- 1170 POKE .EQ $B9
1180 *
1190 *
1200 * EQUATES
1210 *

0006 1220 PNTR .EQ $6

0050~ 1230 LINNUM .EQ $50

00B1- 1240 CHRGET .EQ $B1

00B7- 1250 CHRGOT .EQ $B7

03F5- 1260 AMPER .EQ $3F5

DD7B- 1270 FRMEVL .EQ $DD7B

DEBE- 1280 CHKCOM .EQ $DEBE

DECO- 1290 SYNCHR .EQ $DECO

E752- 1300 GETADR .EQ $E752

FC58- 1310 HOME .EQ $FC58

FDED- 1320 COUT .EQ $FDED
1330 *
1340 *
1350 * This scction of code sets up the ampersand
1360 * jump vector and prints out the program
1370 * title. When the READY. prompt is
1380 * displayed, the user knows the program



158 / Chapter 8
1390 * is active and ready to use.
0300- A9 4C 1200 *

- 1410 LDA #JUMP Get a JMP op code an
0302- 8D F5 03 1420 STA AMPER store it atp$3F5. ¢
0305~ A9 19 1430 LDA #START Store the address of
0307- 8D F6 03 1440 STA AMPER+1 the start of the
030A- A9 03 1450 LDA /START program at $3F6 and
030C- 8D F7 03 1460 STA AMPER+2 $3F7.
030F- 20 58 FC 1470 JSR HOME Clear the screen.
0312- A9 58 1480 LDA #TEXT Point to the text to
0314~ A0 03 1490 LDY /TEXT be printed.

0316- 4C 42 03 1500 JMP MSGPRT Print it.
1510 *
1520 *
0319- A9 B9 1530 START LDA #POKE See if POKE follows
031B- 20 CO DE 1540 JSR SYNCHR the ampersand.
031E- 20 7B DD 1550 JSR FRMEVL Evaluate formula.
0321~ 20 52 E7 1560 JSR GETADR Convert to integer
0324~ A5 50 1570 LDA LINNUM Store address of
0326~ 85 06 1580 STA PNTR POKE in PNTR.
0328- A5 51 1590 LDA LINNUM+1
032A- 85 07 1600 STA PNTR+1
032C-~ 20 BE DE 1610 JSR CHKCOM Check for a comma.
032F- 20 7B DD 1620 JSR FRMEVL Evaluate formula.
0332- 20 52 E7 1630 JSR GETADR Convert to integer.
0335- A0 00 1640 LDY #$0 Zero offset.
0337- B9 50 00 1650 LOOP1 LDA LINNUM,Y Get value to be POKEd.
033A-~ 91 06 1660 STA (PNTR),Y POKE it.
033C- C8 1670 INY Increment offset.
033D~ CO 02 1680 CPY #$2 Done yet?
033F- DO F6 1690 BNE LOOP1 No, get next value.
0341- 60 1700 RTS Yes, return.
1710 *
1720 *
1730 * This is the message printing subroutine.
1740 *
0342- 85 06 1750 MSGPRT STA PNTR
0344- 84 07 1760 STY PNTR+1
0346- A0 00 1770 LDY #$0
0348- B1 06 1780 LOOP2 LDA (PNTR),Y
034A- FO 0B 1790 BEQ ENDPRT
034C- 20 ED FD 1800 JSR COUT
034F- E6 06 1810 INC PNTR
0351- DO F5 1820 BNE LOOP2
0353- E6 07 1830 INC PNTR+1
0355~ DO F1 1840 BNE LOOP2
0357- 60 1850 ENDPRT RTS
1860 *
1870 *
iggg : This is the text printed out by this program.
0358- C4 CF D5
035B- C2 CC C5
035E- A0 C2 D9
0361~ D4 CS5 AO
0364~ DO CF CB
0367~ C5 1900 TEXT .AS -"DOUBLE BYTE POKE"
0368~ 8D 8D 1910 .HS 8D8D
036A- C2 D9 A0
036D- CA D5 CC
0370- C5 D3 A0
0373~ C8 AE AO
0376~ C7 C9 CC
0379- C4 C5 D2 1920 .AS -"BY JULES H. GILDER"
037C- 8D 1930 .HS 8D
037D- C3 CF DO
0380- D9 D2 C9
0383~ C7 C8 D4
0386- A0 A8 C3
0389- A9 A0 B1
038C— B9 B8 B2 1940 «AS -"COPYRIGHT (C) 1982"
038F- 8D 1950 .HS 8D
0390- €1 cC CC

]

Expanding Applesoft Basic / 159

0393- A0 D2 C9
0396- C7 C8 D4
0399- D3 A0 D2
039C- C5 D3 C5
039F- D2 D6 C5

03A2- C4 1960 .AS -"ALL RIGHTS RESERVED"

03A3- 8D 8D 8D 1970 .HS 8D8D8D

03A6- D2 C5 C1

03A9- C4 D9 AE 1980 .AS -"READY."

03AC- 8D 8D 00 1990 .HS 8D8DO0
Taking a double PEEK at memory

Now that we’ve learned how to store information in memory two bytes at a time,
it sure would be handy to be able to retrieve it the same way. With this program, we
are going to look at another way of passing data between machine language pro-
grams and Applesoft programs. We're going to use the USR (X) function of Apple-
soft.

Once again, the task we wish to perform — a double byte peek — can be done in
Applesoft. The following line of Applesoft code shows you how:

10X = PEEK (A) + 256 * PEEK (A + 1)

Now I'll admit that this is not as difficult or complicated as what was required for
the POKE statement, but it sure would be a whole lot easier to simply write:

10X = USR (A)

to get the same result. The USR function in Applesoft has three characteristics
about it. First, when it is encountered, the value of the expression that is within the
parentheses is placed in the floating point accumulator. Second, the computer
automatically jumps to location $A on page zero. There, in locations $A through
$C, Applesoft expects to find a jump op code and the address of the machine
language program that will do the processing. Thus, the first thing that our pro-
gram should do, is to set up the USR jump locations (lines 1330 to 1380). When this
is done, the program title and READY prompt are printed out (lines 1390 to 1420).
The third, and final, thing that the USR function does is it passes a numerical value
back to Applesoft through the floating point accumulator.

The routine that does the processing, whose address is stored in locations $B
and $C, begins on line 1490. Here the GETADR routine is used to retrieve the value
that has already been stored in the floating point accumulator. GETADR puts the
address of the location of interest into LINNUM as two consecutive bytes, low-byte
first, so LINNUM can be used as a pointer to the data we need.

Lines 1500 to 1550 retrieve the data we're interested in and store it in the floating
point accumulator. Line 1560 sets the Carry bit so the routines that process the data
that is in the FAC will know that we are interested only in positive numbers. If this
were not done, numbers greater than 32767 would come back as negative numbers.



160 / Chapter 8

Next, the exponent of the floating point number is set to 216 by loading a $90 into
the X-register and a jump is made to FLOAT2 (lines 1570 and 1580), where the

number is processed so that it can be handed back to Applesoft.

0006
0008-
000A-
0050-
009D-
E752-
EBAO-
FC58-
FDED-

0300-
0302-
0304-
0306-
0308~
030A-
030C-
030F-
0311-
0313-

0316-
0319-
031B-
031D-
031F-
0320-
0322-
0324
0325-
0327-

032A-
032C-
032k~

A9
85
A9
85
A9

20
A9

4C

20
AO
B1
85
c8
B1
85
38
A2
4c

85
84
AO

06
07
00

FC

03

E7

EB

1000 Fxkkrkkikkhkxkkrkrhrhhrhdrrrhakrxrrdrrk

1010 **% *kk

1020 *** DOUBLE BYTE PEEK *kk

1030 *** *kk

1040 *** COPYRIGHT (C) 1982 BY *kX

1050 *** JULES H. GILDER *kk

1060 *** ALL RIGHTS RESERVED *kk

1070 *** kk

1080 F*xkkkkkkkkkkhhhkihkhhhihikihhkrkkkkhxs

1090 *

1100 *

1110 .OR $300

1120 *

1130 *

1140 * EQUATES

1150 *

1160 PNTR .EQ $6

1170 TEMP .EQ $8

1180 USR LEQ $A

1190 LINNUM .EQ $50

1200 FAC .EQ $9D

1210 GETADR .EQ $E752

1220 FLOAT2 .EQ $EBAO

1230 HOME .EQ $FC58

1240 COUT .EQ $FDED

1250 *

1260 *

1270 * This section of code sets up the USR

1280 * jump vector and prints out the program
1290 * title. When the READY. prompt is

1300 * displayed, the user knows the program
1310 * is active and ready to use.

1320 *

1330 LDA #$4C Get a JMP op code and
1340 STA USR store it at $A.

1350 LDA #START Store the address of
1360 STA USR+1 the start of the
1370 LDA /START program at $B and $C.
1380 STA USR+2

1390 JSR HOME Clear the screen.
1400 LDA #TEXT Point to the text to
1410 LDY /TEXT be printed.

1420 JMP MSGPRT Print it.

1430 *

1440 *

1450 * This is the routine that gets the

1460 * address pair to be looked at and

1470 * retrieves the information stored their.
1480 *

1490 START JSR GETADR Convert to integer
1500 LDY #$0 Zero offset.

1510 LDA (LINNUM),Y Get low byte and
1520 STA FAC+2 store it in FAC.
1530 INY

1540 LDA (LINNUM),Y Get high byte and
1550 STA FAC+1 store it in FAC.
1560 SEC Set for positive numbers only.
1570 LDX #$90 Set up X for FLOAT2Z.
1580 JMP FLOAT2 Convert to floating point.
1590 *

1600 *

1610 * This is the message printing subroutine.
1620 *

1630 MSGPRT STA PNTR

1640 STY PNTR1

1650 1LDY #$0

Expanding Applesoft Basic / 161

0330- B1 06 1660 LOOP2 LDA (PNTR),Y
0332- FO OB 1670 BEQ ENDPRT
0334- 20 ED FD 1680 JSR COUT
0337- E6 06 1690 INC PNTR
0339- DO F5 1700 BNE LOOP2
033B- E6 07 1710 INC PNTR+1
033D- DO F1 1720 BNE LOOP2
033F- 60 1730 ENDPRT RTS

1740 *

1750 *

1760 * This is the text printed out by this program.

1770 *

0340- C4 CF D5

0343~ C2 CC C5

0346~ A0 C2 D9

0349~ D4 C5 AO

034C-~ DO C5 C5

034F- CB 1780 TEXT .AS -"DOUBLE BYTE PEEK"
0350- 8D 8D 1790 .HS 8D8D

0352- C2 D9 AO

0355- CA D5 CC

0358- C5 D3 A0

035B- C8 AE AO

035E- C7 C9 CC

0361- C4 CS5 D2 1800 .AS -"BY JULES H. GILDER"
0364- 8D 1810 .HS 8D

0365- C3 CF DO

0368- D9 D2 C9

036B- C7 C8 D4

036E- A0 A8 C3

0371- A9 A0 B1

0374- B9 B8 B2 1820 .AS -"COPYRIGHT (C) 1982"
0377- 8D 1830 .HS 8D

0378- C1 CC CC

037B— A0 D2 C9

037E- C7 C8 D&

0381~ D3 A0 D2

0384- C5 D3 C5

0387- D2 D6 C5

038A- C4 1840 .AS -"ALL RIGHTS RESERVED"
0388B- 8D 8D 8D 1850 .HS 8Db8D8D

038E- D2 C5 C1

0391- C4 D9 AE 1860 .AS -"READY."

0394- 8D 8D 00 1870 -HS 8D8D00

The DOUBLE BYTE PEEK program is activated by BLOADing it and then
doing a CALL 768. This just sets up the appropriate pointers and returns control to
the calling program or mode. The syntax for using this program, as was illustrated
earlier, is: X = USR (A) or PRINT USR (A), where A can be a number, variable
or mathematical formula.

Running two Applesoft programs in memory together

By combining the use of the ampersand and the USR function with a little
knowledge about how Applesoft stores programs in memory, it is possible to write
an assembly language program that will enable two Applesoft programs to be
stored in memory at the same time, with direct access to either one. The programs
can be treated as completely separate entities, or they can share variables between
them. You can even have one program call and execute the other, leaving all
variables intact.

When the APPLESOFT PROGRAM SHARER program is run, by BLOADing
itand doing 0 CALL Y7888, the first thing the program docs is to protect itself from



162 / Chapter 8

being wiped out by the strings of a running Applesoft program. Because of the
length of the program, it cannot sit on page three and must therefore be located in
high memory. I have placed it just below DOS at $9400. Thus, the first thing that
the program does is to lower HIMEM from its current value, which is assumed to
be $9600, to $9400 (lines 1390 and 1400). The next thing that is done is to set up the
jump locations for both the ampersand and the USR commands (lines 1410 to 1510).
Finally, the program title and instructions telling the user to load the first program,
are displayed (lines 1520 to 1570.

This program makes good use of the fact that where the computer jumps to when
the ampersand is encountered, depends on what is in locations $3F6 and $3F7.
After each phase of the program, it updates the values stored there and shows you a
way of using the ampersand for multiple routines without the need of passing
variables via the ampersand. When the user was told to load the first program, he
was also told to press the ‘&’ key when he finished. When that is done, the
computer jumps to line 1650, where a little manipulation of Applesoft pointers
takes place.

In lines 1650 to 1680, TXTTAB ($67 and $68) the pointer that indicates where an
Applesoft program starts, is stored in a pair of page zero locations called BEGIN1,
for use later on. Next we find the end of the program so that we can hide the
program from the Applesoft interpreter. We do this by getting the end of program
pointer (PRGEND), and storing it in the beginning of program pointer (TXT-
TAB). At the same time, this information is also stored in another pair of page zero
locations called BEGIN2 (lines 1690 to 1740).

Once the pointers have been changed, the program sets the ampersand jump
locations to point to the next section of code to be executed (lines 1750 to 1780).
Then the user is told to load the second program and press the ampersand key when
it has been done (lines 1790 to 1830). Before returning control to the user, so he can
load in the second program, the program marks the beginning of the second
Applesoft program by storing a zero in the location that immediately precedes the
start of the second program. This location is found by subtracting one from
PRGEND (lines 1840 to 1860), which points to the end of the first program and the
beginning of the second program. Next, since the accumulator still contains a zero
that was placed there in the message printing routine, we transfer the accumulator
to the Y-register (line 1870) to set the offset to zero and then store the zero in the
accumulator in the location that precedes the start of the program (line 1880).

Normally it is not necessary to do this, because this location will contain the last
of the three zero bytes that mark the end of the first program. However, if this
program is called after a NEW has been executed, as you will recall from our
earlier discussions, the normal end of program pointer is incremented by one byte,
and thus the byte we’re interested is no longer a zero. So, instead of testing for a
NEW or an FP, as we did with the Applesoft Append program, we just store the
zero there all the time. After the zero has been stored, the program jumps to the
Applesoft NEW routine ($D649) and sets up all of the Applesoft pointers and
registers so that the new program can be loaded without problems (line 1890).

Expanding Applesoft Basic / 163

After the second program has been loaded and the ampersand key has been
pressed, the program jumps to line 1970 where the user is told (lines 1970 to 2010)
that everything has been done and that now all that he has to do to switch between
the two Applesoft programs is to press the ampersand key. Next, the ampersand
Jjump locations are updated once again so that they point to another routine, this
time to SWITCH which begins on line 2120.

As the name implies, SWITCH is the routine that switches between the two
Applesoft programs. Basically, it sets up the ampersand key as a toggle between the
two programs, so that no matter what program is currently available, when the
ampersand key is pressed, the other one becomes usable. Upon entering this
routine, BEGINI always contains the starting address in memory, of the next
program to be made available. In lines 2120 to 2170, the address in BEGINI is
placed in Applesoft’s start of program pointer (TXTTAB) and also stored on the
stack temporarily. Next, in lines 2180 to 2210, the address that was in BEGIN? is
moved to BEGIN1 so that the program it represents will be the next one to be
loaded. Then, the address of the first program is retrieved from the stack and stored
in BEGIN2 (lines 2220 to 2250).

How the two programs interact

If you’ve been paying close attention, you may have noticed that while we’ve
been doing a lot of work with the beginning of program pointers, we've done
virtually nothing with the end of program pointers. A logical question that may
arise in your mind is, *’Since the end of program pointer is pointing to the end of
the second program (you did realize that didn’t you), when the beginning of pro-
gram pointer points to the first program, won’t we be able to list both programs
together, as if they had been append to each other?”

That’s a good question, and while the programs do follow each other in memory,
they have not been appended to one another. However, if you save the program out
to tape or disk while the first program is being pointed to, both programs will be
saved, but still only one will list. The reason for this is simple. The save routines
work only with the start and end of program pointers, which at this point in time
point to the start of the first program and the end of the second program. The LIST
and RUN commands, however, only use the start of program pointer. To find the
end of the program for these commands, Applesoft does not rely on the end of
program pointer, but rather uses an end of program marker. This marker consists
of three consecutive memory locations that each contain a zero. This marker is
made up of the zero that terminates the last line of the program, and two zeros that
are stored where the next line pointer would normally be stored.

In the Applesoft Append program, we set the pointer to the beginning of the
second program to the location where the two zeros are normally stored. In this
program, the sccond program pointer, points past these zeros, leaving them intact,
resulting in the separation of the two programs,




164 / Chapter 8

Letting one program call the other

If you want one program to call the other automatically, with the variables still
intact, this can be done with the USR function. Simply use a statement like the
following one:

10 X = USR (A)

where A is a number, variable or mathematical expression that represents the line
number you want the second program to start executing with.

The routine that handles the USR interface starts on line 2330 of the program
listing, and is called USRGOTO. This short routine first does a JSR to SWITCH,
where the pointers are adjusted so that the second program becomes active. Then
the line number at which execution is to begin is retrieved from the floating point
accumulator and placed, as a two-byte integer, into LINNUM (line 2340). Finally,
a jump is made to Applesoft’s GOTO routine (line 2350), which goes to the l.ine
number stored in LINNUM. This causes the second program to start executing
without resetting the values of the variables.

The subroutine ENDMSG, which begins on line 2420, is used several times to
print out the phrase, “AND PRESS THE ‘&’ KEY.” A second entry point,
ENDMSG?2, is use to print out only a part of the phrase. This is done by setting the
accumulator to the value of the starting address before jumping to it. It is used here
to cut off the word “AND"’. By doing this, some memory space was saved, because
extra text was not required.

1000 **)kkkkkkhkkihkkkddkkhkhdkhkihkhkhdkhkhkhikhkx

1010 *%k%k *kk
1020 *** APPLESOFT PROGRAM SHARER  ***
1030 *kk kk*k
1040 ***x COPYRIGHT (C) 1982 BY Kk
1050 **x JULES H. GTLDER Kk
1060 **x ALL RIGHTS RESERVED *kk
1070 *kk *k%k
1080 *kkkhkkkkkkkhhkhhkkhkkkhkhkkkhikhhhhkkhkikhkk
1090 *
1100 *
1110 .OR $9400
1120 .TA $800
1130 *
1140 * EQUATES
1150 *

0006- 1160 BEGIN1 .EQ $6

0008- 1170 BEGIN2 .EQ $8

000A— 1180 USR LEQ $A

0018- 1190 TXTPTR .EQ $18

0050- 1200 LINNUM .EQ $50

0067- 1210 TXTTAB .EQ $67

0073~ 1220 HIMEM .EQ $73

OOAF- 1230 PRGEND -EQ $AF

03F5— 1240 AMPERSD .EQ $3F5

D649— 1250 NEW .EQ $D649

D944~ 1260 GOTO .EQ $D944

E752- 1270 GETADR .EQ $E752

FC58- 1280 HOME .EQ $FC58

FDED- 1290 COUT .EQ $FDED
1300 *

1310 *

Expanding Applesoft Basic / 165

9400~
9402~
9404~
9406-
9408-
840A-
940C-
940F-
9412-
9415~
9417~
9419~
941B-
941D~
9420~
9422-
9424
9427~
9429-

942C-
942E-
9430-
9432
9434
9436
9438
943A~
943C-
943E-
9440~
9442~
9444
9447
944A~
944C-
944E-
9451
9453-
9456
9458
945A-
945C-
945D
945F-

9462
9464
9466~
9469~
946B—
946E-~
9470-
9472

A9
85
A9
A0
A2
85
8D
8C
8E
A9
AO
85
84
20
A9
AO
20
A9
4C

94
74
4C
2C
94
0A
F5
F6
F7

94
OB
ocC
58
BB
94
AS
B1
9B

1F
95
A5
4D
AO

94
o

03
03

FC

94
94

03
03

94

D6

94
94

01

1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040

%k 3k F O X b

LDA
STA
LDA
LDY
LDX
STA
STA
STY
STX
LDA
LDY
STA
STY
JSR
LDA
LDY
JSR
LDA
JMP

ampersand

% % % F % p %

NXTPROG LDA
LDY
STA
STY
LDA
LDY
STA
STA
STY
STY
LDA
LDY
STA
STY
LDA
LDY
JSR
LDA
JSR
DEC
BNE
DEC

MARKIT TAY
STA
JMP

ok % Ok oF % ¥

LOADED LDA
LDY
JSR
LDA
JSR
LDA
L.DY
STA

USR jump vectors.

#$94
HIMEM+1
#$4C
#NXTPROG
/NXTPROG
USR
AMPERSD
AMPERSD+1
AMPERSD+2
#USRGOTO
/USRGOTO
USR+1
USR+2
HOME
#TEXT1
/TEXT1
MSGPRT
#$B1
ENDMSG

This section initializes the program

by -lowering HIMEM to protect the program
and setting up the ampersand (&) and

It then prints out
the title and the user is told to load
in the first program.

Lower HIMEM to $9400

to protect this program.
Set up the & and USR
jump vectors to

point to the appropriate
places in memory.

Clear the screen.

Point to the message

to be printed.

Print it.

Tell user which program.
Finish message

Here the first program that was loaded
in is hidden and the user is told to
load in the second program. Then the

vector is set to jump to LOADED.

TXTTAB
TXTTAB+1
BEGIN1
BEGIN1+1
PRGEND
PRGEND+1
TXTTAB
BEGIN2
TXTTAB+1
BEGIN2+1
#LOADED
/LOADED
AMPERSD+1
AMPERSD+2
#TEXT2
/TEXT2
MSGPRT
#$B2
ENDMSG
PRGEND
MARKIT
PRGEND+1

(PRGEND) ,Y
NEW

#TEXT3
/TEXT3
MSGPRT
#TEXTAL+4
ENDMSG2
#SWITCH
/SWITCH
AMPERSD 1

The starting address of
program 1 is stored
for later use.

The ending address of
program 1 is made the
beginning address for
program 2 and is also
saved for later use.

Ampersand vector
is reset to point
to LOADED.

User is told to

load the second
program and then

to press the '&' key.

Mark the start

of the second

program by storing

a zero in the

first location.

NEW before loading program 2.

Both programs have now been loaded so
tell the user how to switch between them
and reset the ampersand vector to the
program switching routine.

Point to text to

be printed.

Print it.

Point to last part
and print that too.
Set up the ampersand
vector to jump to
the SWITCH routine.



166 / Chapter 8

9475~
9478-

9479-
9478~
947D~
947E-~
9480~
9482-
9483~
9485-
9487-
9489-
948B-~
948C-
948E-~
948F-
9491-

9492~
9495~
9498-

949B-
949E-
94A0-
94A2-

94A5-
94A7-
94A9-
94AB-
94AD-
94LAF-
94B2-
94B4—
94B6-
94B8-~
94BA-

94BB-
94BE-
94C1-
94C4-
94C7-
94CA-
94CD-
94D0-
94D3-
94D5-
94D8 -
94DR-

8C
60

20
20
4C

85
84
AO
Bl
FO
20
E6
DO
E6
DO
60

Cc1
cC
CF
A0
CF
C1
D3
D2
8D
c2
CA
C5

F7 03 2050 STY AMPERSD+2
2060 RTS
2070 *
2080 *
2090 * This is the routine that switches the
2100 * availability of the programs in memory.
2110 *
06 2120 SWITCH LDA BEGIN1 Get the address of
67 2130 STA TXTTAB the inactive program
2140 PHA and save it and also
07 2150 LDA BEGIN1+1 make it the active
68 2160 STA TXTTAB+1 program.
2170 PHA
08 2180 LDA BEGIN2 Transfer address of
09 2190 LDY BEGIN2+1 former active program
06 2200 STA BEGIN1 to inactive location.
07 2210 STY BEGIN1+1
2220 PLA Retrieve address of
09 2230 STA BEGIN2+1 current active program
2240 PLA and put it in inactive
08 2250 STA BEGIN2 location.
2260 RTS
2270 *
2280 *
2290 * This is where the USR function is
2300 * implemented. The programs are first
2310 * switched and then run by executing a GOTO.
2320 *
79 94 2330 USRGOTO JSR SWITCH Switch programs.
52 E7 2340 JSR GETADR Get the GOTO line number
44 D9 2350 JMP GOTO and go to it.
2360 *
2370 *
2380 * This routine prints out the program
2390 * number being loaded and tell the user
2400 * to press the '&' key.
2410 *
ED FD 2420 ENDMSG JSR COUT Print number in accumulator.
49 2430 LDA #TEXT4 Point to rest of
95 2440 ENDMSG2 LDY /TEXT4 text and primt it.
A5 94 2450 JMP MSGPRT
2460 *
2470 *
2480 * This is the message printing routine.
2490 *
18 2500 MSGPRT STA TXTPTR
19 2510 STY TXTPTR+1
00 2520 LDY #$0
18 2530 LOOP LDA (TXTPTR),Y
OB 2540 BEQ ENDPRT
ED FD 2550 JSR CcoUT
18 2560 INC TXTPTR
F5 2570 BNE LOOP
19 2580 INC TXTPTR+1
F1 2590 BNE LOOP
2600 ENDPRT RTS
2610 *
2620 *
2630 * These are the various text messages
2640 * printed out by this program.
2650 *
DO DO
C5 D3
C6 D4
DO D2
C7 D2
CD A0
c8 C1
C5 D2 2660 TEXT1 .AS -"APPLESOFT PROGRAM SHARER"
8D 2670 .HS 8D8D
D9 A0
D5 CC
D3 A0

Expanding Applesoft Basic / 167

94DE- C8 AE A0

94E1-
94E4 -
94E7 -
94E8-
94EB-
S4EE-
94F1-
94F4—
94F7-
94FA-
94FB-
94FE-
9501-
9504
9507~
950A~
950D-
950E-
9510-
9511~
9514
9517-
951A~
951D
951E~
951F-
9521~
9524
9527-
952A-
952D~
9530-
9533-
9536-
9539-
953C-
953F-
9542
9545-
9548
9549
954C-
954F -
9552~
9555~
9558~
9558
955E-
9560-

C1
DO
Cc7
CcD

2680
2690

2700
2710

2720
2730
2740

2750
2760
2770

2780

2790
2800

2810
2820

TEXT?2

TEXT3

TEXT4

-AS
.HS

.AS
.HS

.AS
-HS
-HS

-AS
.HS O
.HS

.AS

.AS
.HS

.AS
.HS

~"BY JULES H. GILDER"
8D

-"COPYRIGHT (C) 1982"
8D

-"ALL RIGHTS RESERVED"
8D8D
8D

~""LOAD PROGRAM "

8D8D

-"DONE - TO SWITCH BETWEEN"

-'"" PROGRAMS, JUST"
00

-'"" AND PRESS THE '&' KEY."
8D8DO0

When using the APPLESOFT PROGRAM SHARER, it is very important that
once the second program has been loaded, no changes are made to the first pro-
gram. If you make changes, you’ll move the second program away from the loca-
tion that has already been specified as the start of the program. If changes must be
made, do it on the original version of the program and then reload it and the second
program as was previously described.

For those of you who are looking for a challenge and something interesting to
do, try modifying the program so that it can be switched, sequentially, between any
number of programs (assuming there’s room in memory for all of them). If you
want an even tougher assignment, permit the switching between programs on a
random basis.



168 / Chapter 8

Add Applesoft function keys to your computer

Applesoft is quite a versatile version of BASIC with commands for changing the
display mode from normal to inverse and flashing. Applesoft also has two com-
mands that provide the ability to place the cursor at a specific position. Instead of
having these as separate commands, some people prefer the approach that Com-
modore has taken in their computers, where a single character can be printed out to
determine the display mode and relative cursor movements (move up three and left
two).

With the program, APPLESOFT FUNCTION KEYS, you can now add this
capability to your Apple. The program steals control away from both the input and
the output. It monitors the input and looks for control characters that permit the
user to switch between three display modes. One is the fully OPERATIONAL
mode, which is entered with a Control-O, where all of the codes that have been
entered are implemented. The second is a VIEW mode, which is entered with a
Control-V. In the viewing mode, all of the control characters that are entered are
visible on the screen in inverse, so that when the program is listed, you can see
exactly what is going to happen. The third mode is a QUIT, or normal mode where
the control characters are invisible. In this mode, the Apple is restored to its
normal output configuration. This mode is entered by typing a Control-Q.

Since this program is too long to reside in page three of memory, it is designed to
operate in high memory starting at location $9400. As with the previous program,
the first thing this one does when it is run, is to protect itself from Applesoft
programs by lowering HIMEM to $9400 (lines 1620 and 1630). Next the title of the
program is printed out along with the word READY, so the user knows the program
has been activated (lines 1640 to 1670). The final phase of this initialization process
begins on line 1680, where control is taken away from the normal input routines
and given to a routine that starts on line 2890. This is the routine that permits the
switching between display modes by checking for the Control-O, Control-V and
Control-Q characters, and jumping to the appropriate display mode routine.

Upon returning from the initialization routine (line 1780), everything appears
normal, and will remain that way until one of the three previously mentioned
control keys is pressed. If a Control-O is pressed, to place the program in the
OPERATIONAL mode, a jump is made to a subroutine called ACTIVE, that
begins on line 1840. This is the function key interpreter, and is the routine that
should be called whenever the functions that the control keys stand for are to be
executed. Generally, this is only active while the program is running. If you try to
list out a program that uses function keys while in this mode, you’ll get some real
wild results.

This program uses a page zero location called FLAG to determine what mode
the character to be printed should be displayed in. The first thing that this routine
does, is to set FLAG for the normal mode by storing an $FF in it (lines 1840 and
1850). Next, a flashing cursor is stored on the screen to mark the position of the
next character to be displayed (lines 1860 and 1870). After that, the output hooks

Expanding Applesoft Basic / 169

are set so they point to a subroutine labelled START, which is the beginning of the
OPERATIONAL display mode (lines 1880 to 1950). Finally, the accumulator is
loaded with a blank (line 1960), which will be used as the cursor character, when
the program returns to fetch the next character from the keyboard (line 1970). It
might seem like we’re using two different techniques to display the same cursor.
The reason is, this last one becomes important when the SAVOUT and INPRTN
entry points are used.

Now that START has been activated, all characters that are to be printed out
must first be tested to see if they are one of the control characters that determine the
display mode or cursor movement. A whole series of comparisons take place
between lines 2100 and 2370 in an effort to identify one of the eleven assigned
control keys. A table of the keys and their functions can be seen below.

KEY HEX CODE FUNCTION
Control-A $81 Move Left
Control-F $86 FLASH
Control-H $88 Back Space
Control-I $89 INVERSE
Control-M $0D Carriage Return
Control-M $8D Carriage Return
Control-N $8E NORMAL
Control-P $90 HOME
Control-S $93 Move Right
Control-W $97 Move Up
Control-Z $9A Move Down

If you look carefully at the chart, you’ll notice two things. First of all, you’ll see
Control-H defined as performing a back space and Control-M defined as perform-
ing a carriage return. These are their normal functions, so you might ask why
bother to include it to begin with. Secondly, you might notice that there are two



170 / Chapter 8

entries for Control-M. To answer the first question, when the OPERATIONAL
mode is active, and inverse or flashing characters are being entered, the control
characters are printed as inverse letters and are not implemented, so if you typed a
carriage return (Control-M) all you'd get is an inverse M on the screen and no
carriage return would be generated. The same is true for the Control-H and its back
space function. The reason for the two Control-M entries is that while the charac-
ters that are entered from the keyboard have the high bit set, those that are gener-
ated by the computer (such as when a program is listed), do not.

After all of the tests have been performed and it is determined that the character
is not one of the eleven assigned ones, the character is temporarily saved on the
stack (line 2380) and FLAG is tested to see if the character to be printed is supposed
to be converted to flashing (lines 2390 to 2400). If it is, control is passed to the
CONVERT routine (line 2410), otherwise the character is puilled off the stack and
it is ANDed with FLAG to convert it to either the normal mode or the inverse mode
(lines 2420 and 2430). Once this adjustment has taken place, the character is
printed out to the video screen (line 2440) and control is returned to the caller via
the RTS in the COUT] routine.

Next, we have a series of three, 3-line routines, whose only purpose is to set the
value of FLAG for the appropriate mode. In the INVERSE and NORMAL rou-
tines (lines 2560 and 2630 respectively), the value that is stored in FLAG is the
value that is ANDed with the character to produce a letter in the desired mode. In
the case of the FLLASH routine (line 2490), the value in FLAG is used as an
indicator that another routine has to be used to do the conversion (lines 2400 and

2410).

The routine that does the flashing conversion starts on line 2710, where the
character is retrieved from the stack where it was stored earlier. Next, a test is
performed to see if the character is in the $A0 to $BF range and is therefore a
number or a symbol (lines 2720 to 2750). If it is within this range, the character in
the accumulator is Exclusive-ORed with the value $CO and the printed out to the
video screen (lines 2760 and 2770).

If the character being tested in lines 2720 to 2750 is a letter, control is passed to
line 2790, where the letter is Exclusive-ORed with $80, which is the value in FLAG
and then output to the screen (lines 2780 and 2790).

As was mentioned earlier, NWKEYIN, the routine that starts on line 2890, is the
new input routine that checks for Control-O, Control-V and Control-Q being input
from the keyboard. The monitor KEYIN routine is used to get a key press from the
keyboard (line 2900) and the character is then checked to see if it is a Control-O. If
it is, the program jumps to the ACTIVE subroutine in line 1840, otherwise, a check
is made for a Control-V. If it is a Control-V, the program branches to VIEW on line
3030, which is simply a subroutine that changes the output hooks so that they point
to the VIEWCTL routine.

The last test made on a character passing through NWKEYIN is for a Control-
Q. If it is a Control-Q, the output hooks are set to the video screen output subrou-
tinc COUT L. If a character has managed to pass through this routine, it is entered

Expanding Applesoft Basic / 171

unchanged.

YIEWCTL is the subroutine that is used to display the control characters that are
being used as function keys. It is very similar to the program SHOW CONTROL
that we discussed in Chapter 4 and has only been slightly modified for use here
The modification consists of two parts. The first, does not display the Control—M
character and the second does not permit the display of the Control-@ character.

In line 3250 we check for the presence of a carriage return and if it is found
bypass the program and print it out. This is a little different than the SHOV\;
CONTROL program where the inverse M was printed out first and then the car-
riage return function was implemented. Next, characters are tested to see if they
are in the control character range of $81 to $9F. This is where the other difference
with the SHOW CONTROL program crops up. In the original, the test was made
from $80 to $9F, to include the Control-@ code as well. If the character is not a
control character, it is printed unchanged, but if it is, the high bit is turned off (line
3330) (which is the equivalent of subtracting $80) and the character is output to the
video display (line 3340).

1000 **hkkhkkkkhhkdkdkdkk *hkkkkkkk khkhkAkkhkkAhk
1010 *Kk%k *kk
1020 ***  APPLESOFT F *kok
1020w UNCTION KEYS Tk
1040 *%+ COPYRIGHT (C) 1982 BY Ko
1050 *** JULES H. GILDER ok
1060 *** ALL RIGHTS RESERVED Kk
1070 *%%k *xk
1080 **kkkhkkkhhkhhrhhhhhkhkhhrkhkhhkhhs kkxk
1090 *
1100 *
1110 *
1120 *
1130 .OR $9400
1140 .TA $800
1150 *
1160 *
1170 *
1180 * CONSTANTS
1190 *

000D- 1200 CNTRLM .EQ $D

004C- 1210 JuMP .EQ $4C

0081- 1220 CTRLA  .EQ $81

0086- 1230 CTRLF  .EQ $86

0088- 1240 CTRLH  .EQ $88

0089- 1250 CTRLI  .EQ $89

008A- 1260 CTRLJ  .EQ $8A

008D- 1270 CTRLM  .EQ $8D

008E- 1280 CTRLN  .EQ $8E

008F- 1290 CTRLO  .EQ $8F

0090- 1300 CTRLP  .EQ $90

0091- 1310 CTRLQ  .EQ $91

0093- 1320 CTRLS  .EQ $93

0096- 1330 CTRLV  .EQ $96

0097- 1340 CTRLW  .EQ $97

009A— 1350 CTRLZ  .EQ $9A
1360 *
1370 *
1380 * EQUATES
1390 *

0006- 1400 FLAG .EQ $6

0008- 1410 CURSOR .EQ $8

0009 1420 PRTFLG .EQ $9

0018 1430 TXTPTR .EQ $18

0078 1440 BASI, LEQ $28



172 / Chapter 8

0036-
0038-
0073-
03D0-
03EA-
FBF4—
FC10-
FC1A-
FC58-
FD1B-
FDED-
FDFO-

9400-
9402-
9404—
9407-
9409-
940B-
940E-
9410-
9412~
9414
9416
9418-
941B-
941D~
941F -
9422-
9424

9425~
9427~
9429-
942B-
942D~
942F-
9431-
9433-
9435-
9438
943A-
943C-
943F-
9441~

9444
9446
9448
944A-
944C-
9441~
9450 -
952

A9
85
A9
91
A9
AO
85
84
AD
Cc9
DO
20
A9
4c

c9
FO
Cc9
FO
Cc9
FO
C9
0

86
46
8D
3F
on
3B
88
37

FC

94

03

03
FD

1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

CSWL .EQ $36
KSWL .EQ $38
HIMEM LEQ $73

WARMDOS .EQ $3D0O
CONNECT .EQ $3EA
ADVANCE .EQ $FBF4

BS .EQ $FC10
up .EQ $FC1A
HOME .EQ $FC58
KEYIN .EQ $FD1B
COUT .EQ $FDED

COUT1 .EQ $FDFO
*

*
* This section steals control of the
* input routine.

*

LDA #$94 Lower HIMEM to $9400
STA HIMEM+1 to protect this program.
JSR HOME Clear the screen.

LDA #TEXT Point to the text

LDY /TEXT to be printed.

JSR MSGPRT Print it.

LDA #NWKEYIN  Get the address of the
LDY /NWKEYIN new input routine

STA KSWL and store it in the
STY KSWL+1 input hooks.

STY PRTFLG Make flag nonzero.
LDA WARMDOS Is DOS present?

CMP #JUMP

BNE NODOS No.

JSR CONNECT Yes, connect to DOS.
NODOS LDA #$80
RTS
*
*
* This routine steals control away
* from the normal output routine.
*

ACTIVE LDA #$FF Set mode flag

STA FLAG for normal text.
LDA #$60 Store flashing
STA (BASL),Y cursor on the screen.
LDA #START Get the address of the
LDY /START start of the program.
SAVOUT STA CSWL Store it in the
STY CSWL+1 output
INPRTN LDA WARMDOS Check for presence
CMP #JUMP of DOS.
BNE NODOS2
JSR CONNECT Connect through DOS.
NODOS2 LDA #$A0 Set blank as input prompt.
JMP KEYIN Get the next character.
*
*
* This routine replaces the normal
* ouput routine and checks to see
* if any of the Control characters that
* are used as function descriptors are
* being output. If not, the character
* passes through this program
* unchanged and is printed. If so,
* the program jumps to the appropriate
* routine to implement the function.
*
START CMP #CTRLF Is it Ctrl-F?
BEQ FLASH Yes, flash it.
CMP #CTRIM Is it a carriage return?
BEQ PRTRTN Yes, print ft.
CMP #CNTRILM Is 1t a carriage return?
BEQ PRTRTN Yes, print It.
CMP HCTRILA Ia 1 Ctrl WY
BEQ PRTRTN Yoen, print it

Expanding Applesoft Basic / 173

Return with null character.

9454
9456~
9458~
945A-
945C-
945E-
9460-
9463-
9465-
9467-
946A-
946C-
946E-
9470-
9473-
9475-
9477-
947A-
947C~
947E~
9481~
9482~
9484~
9486-
9488-
9489-
948B-

948E-
9490-
9492~

9493-
9495~
9497-

9498-
949A-
949C~

949D~
949E-
94A0-
94A2~
94A4—
94A6-
94A8-
94AB-
94AD~

94B0-
9481 -

c9
FO
Cc9
FO
Cc9
DO
4C
c9
DO
4c
c9
DO
A9
4C
c9
DO
4C
Cc9
DO
4C
48
A5
Cc9
FO
68
25
4C

A9
85
60

A9
85
60

A9
60

68

90
Cc9
BO
49
4C
45
4C

20
CY

1A FC

FO FD

10 FC

F4 FB

FO FD

80
06

3F
06

FF
06

AQ
09
co
05
co
FO FD

FO FD

1B FD
L1

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
72900

CMP
BEQ
CMP
BEQ
CMP
BNE
JMP
CHKCTLW CMP
BNE
JMP
CHKCTLZ CMP
BNE
LDA
JMP
CHKCTLA CMP
BNE
JMP
CHKCTLS CMP
BNE
JMP
CONTIN PHA
LDA
CMP
BEQ
PLA
AND
PRTRTN JMP
*

*

#CTRLI
INVERSE
#CTRLN
NORMAL
#CTRLP
CHKCTLW
HOME
#CTRLW
CHKCTLZ
up
#CTRLZ
CHKCTLA
#CTRLJ
COUT1
#CTRLA
CHKCTLS
BS
#CTRLS
CONTIN
ADVANCE

FLAG
#$80
CONVERT

FLAG
COUT1

Is it Ctrl-I?

Yes, inverse it.

Is it Ctrl-N?

Yes, make it normal.
Is it Ctrl-P?

No, check if Ctrl-W.
Clear screen.

Is it Ctrl-W?

No, check if Ctrl-Z.
Move cursor up.

Is it Ctrl-27?

No, check if Ctrl-A.
Make it Ctrl-J.

Is it Ctrl-A?

No, check if Ctrl-S.
Back space.

Is it Ctrl-S?

No, continue processing.
Yes, move cursor right.
Save character.

Get flag and check

for flashing.

Yes, check for numbers.
No flashing.

Ad just for mode.

Print character and return,

* Set FLAG for flashing mode.
*

FLASH LDA
STA
RTS

*
*
* Set FLAG for inverse mode.
*
I

NVERSE LDA
STA
RTS

* % ok

NORMAL LDA
STA

RTS
*

*

#$80
FLAG

#$3F
FLAG

#$FF
FLAG

Set FLAG for
flash mode. 2

Set FLAG for
inverse mode.

Set FLAG for normal mode.

Set FLAG for
normal mode.

* This routine converts the character
* being output to the flashing mode.
*

CONVERT PLA
CMP
BCC
CMP
BCS
EOR
JMP
FIXLTR EOR
JMP

% ok % % % ¥ F o 3%

NWKEYIN .JSR
CMP

#$A0
FIXLTR
#$CO
FIXLTR
#$CO
COUT1
FLAG
COUT1

KFYIN
HETRLO

Retrieve character.
Is it a number

or symbol (in the
range of $A0 to $BF).
No, it's alpha.

Fix number.

Print it out.

Fix alpha.

Print it out.

This is the replacement input routine
which checks to see if any of the mode
switching keys (Control-Q, Control-0

or Control-V) are being pressed. If

so, control is passed to the appropriate
subroutine.

Read the keyboard.,

Wan (1 Ctrl O



174 / Chapter 8

94B5-
94B7-
94BA-
94BC-
94BE-
94C0-
94C2-

94C3-
94C5-
94C7-
94C9-
94CB-

94CE-
94D0-
94D2-
94D4 -
94D6-

94D9-
94DB-
94DD-
94DF-
94E1-
94E3-
94E5-
94E7-
94E9-
94EB-

94EE-
94F0~
94F2
94F4—
94F6—
94F 8-
94FB-
94FD-
94FF-
9501-
9503~

9504
9507~
950A-~
950D-
9510-
9513-
9516-
9519-
951 8-
951D~

DO
4C
c9
FO
c9
FO
60

A9
91
A9
AO
4c

A9
91
A9
AO
4C

c9
FO
co
FO
c9
90
c9
BO
29
4C

85
84
AO
B1
FO
20
E6
DO
E6
DO
60

C1
cC
CF
AQ
CE
c9
AQ
D9
8D
¢?

03
25

05
91
0oc

60
28
D9
94
31

60

FO
FD
31

18
19
00
18
OB
ED
18
F5
19
F1

DO

C6
Cc6
c3
CF
CB
D3
8D
DY

94

94

94

FD

FD

DO

D4
D5
D4
CE
C5

A

2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530

3540
1950

BNE CHKCTLV

JMP
CHKCTLV CMP
BEQ
CMP
BEQ
RTS
*

*

ACTIVE
#CTRLV
VIEW
#CTRLQ
QUIT

No, see if Ctrl-V.

Activate function interpreter.

Was it Ctrl-v?

Yes, show control characters.
Was it Ctrl-Q?

Yes, inactivate program.

* Here the output routine is set up to
* display control characters.
*

VIEW LDA

STA (BASL),Y
LDA #VIEWCTL
LDY /VIEWCTL

JMP
*

*

#$60

SAVOUT

Store flashing

cursor on the screen.
Get new address for
output routine.

Store address in hooks.

* Here the output hooks are set to
* restore the output hooks to normal.

*
QUIT LDA

STA (BASL),Y

LDA
LDY
JMP

< Ok ¥k kb ¥ %

IEWCTL CMP
BEQ
CMP
BEQ
CMP
BCC
CMP
BCS
AND

PRINTIT JMP

*

*

#$60

#COUT1
/COUT1
SAVOUT

#CTRLM
PRINTIT
#CTRLH
PRINTIT
#$81
PRINTIT

Store flashing
cursor on the screen.
Put screen address
in the output hooks.

This routine permits the viewing of
control characters (except null,
carriage return and backspace) as
inverse on the screen.

Is it carriage return?

Yes, print it.

Is it a backspace?

Yes, print it.

Is it a Control character
in the range of $81 to $9F?
If not print it.

Otherwise, inverse it.
Print character.

* This is the message printing routine.

*

MSGPRT STA
STY
LDY

LOOP LDA
BEQ
JSR
INC
BNE
INC
BNE

ENDPRT RTS
*

TXTPTR

TXTPTR+1

#3$0

(TXTPTR) ,Y

ENDPRT
couT
TXTPTR
LOOP

TXTPTR+1

LOOP

*
* This is the text printed out by
* this program.

TEXT -AS
.HS

-"APPLESOFT

808D

FUNCTION KEYS"

Expanding Applesoft Basic / 175

9520-
9523-
9526-
9529-
952C-
952F-
9530~
9533-
9536-
9539-
953C-
953F-
9542—
9543~
9546
9549-
954C-
954F -
9552
9555-
9556—
9559-
955C-~
955F-

CA
Cc5
Cc8
c7
c4
8D
C3

c7
A0
A9
B9
8D
C1
AOQ
Cc7
D3
C5
D2
Cc4
8D
D2

8D

3560
3570

3580
3590

3600
3610

3620
3630

.AS -"BY JULES H. GILDER"
.HS 8D

-AS -"COPYRIGHT (C) 1982"
.HS 8D

+AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D

.AS -"READY."
.HS 8D0OO



Appendix A

ASCII CODE
CONVERSION TABLE

m m pquIUVWXVJZ{l}~a
M B Qo
O [ abcdefgh.l.Jklmno
(@) \O
o o
1 F~FOELNED>z X >N—7 T < |
L
3 = QAU ULV AHEKOIT ™" Jd35 20
o
Mﬂ m O — NN <t v D~ 00 N <=>\‘I.
&
@
c
n MM DAA' #$%& — o~ % 4 e ~
0]
b — nNen <t X Zm Z m U
= -0V UL <« = < = AL w
© |2 DRARARARRZLOULRALBEES
=T e < O X O
= CEZ 08 v e —
c |8 ZRLERGRBEEESESEES
>~
mu._ Q ~t et Oo~oco <ML O W I
K F A H O P BB B S D B A SO O
S —~— NN N O~ DN

DECIMAL

177



Applesoft Token List / 179

DECIMAL HEX APPLESOFT DECIMAL HEX APPLESOIT
. TOKEN TOKEN  KEYWORD TOKEN TOKEN  KEYWORD
Appendix B
192 $CO TAB( 214 $D6 FRE
193 $C1 TO 215 $D7 SCRN(
194 $C2 EN 216 $D8 PDL
195 $C3 SPC( 217 $D9 POS
APPLESOFT TOKEN LIST 196 $C4 THEN 218 $DA SOR
197 $C5 AT 219 $DB RND
DECIMAL HEX APPLESOFT DECIMAL HEX APPLESOFT }gg 252 IS\I’I%TP gg? ggg E‘)ﬁ;
TOKEN  TOKEN  KEYWORD TOKEN TOKEN  KEYWORD ot ol > o oD Xy
128 $80  END 160 $A0  COLOR= 201 s - 223 SDF  SIN
202 $CA * 224 $EO TAN
129 381 FOR 161 $A1 POP
203 $CB / 225 $EI ATN
130 $82 NEXT 162 $A2 VTAB \
. 204 $CC A 226 $E2 PEEK
131 $83 DATA 163 $A3 HIMEM:
, 205 $CD  AND 227 $E3 LEN
132 $84 INPUT 164 $A4 LOMEM:
206 $CE OR 28 $E4 STRS
133 $85 DEL 165 $AS ONERR
207 $CF > 229 $E5 VAL
134 $86 DIM 166 $A6 RESUME
208 $D0 = 230 $E6 ASC
135 $87 READ 167 $A7 RECALL
36 $88  GR 168 $A8  STORE 209 sDL < 231 SE7  CHRS
_ 210 $D2 SGN 232 $E8 LEFTS
137 $89 TEXT 169 $A9 SPEED =
b coa e o oAn LEr 211 $D3 INT 233 $E9 RIGHTS
139 $3B IN# 171 $AB GOTO %g ﬁg‘s‘ Ggﬁ 234 $EA MIDS$
140 $8C CALL m $AC RUN
141 $8D PLOT 173 $AD  IF
142 $SE HLIN 174 $AE RESTORE
143 $8F VLIN 75 $AF &
144 $90 HGR?2 176 $BO GOSUB
145 $91 HGR 177 $BI RETURN
146 $92 HCOLOR = 178 $B2 REM
147 $93 HPLOT 179 $B3 STOP
148 $94 DRAW 180 $B4 ON
149 $95 XDRAW 181 $B5 WAIT
150 $96 HTAB 182 $B6 LOAD
151 $97 HOME 183 $B7 SAVE
52 $98 ROT = 184 $B8 DEF
153 $99 SCALE = 185 $B9 POKE
154 $9A SHLOAD 186 $BA PRINT
155 $9B TRACE 187 $BB CONT
156 $9C NOTRACE 188 $BC LIST
157 $9D NORMAL 189 $BD CLEAR
158 $OE INVERSE 190 $BE GET
159 $OF FLASH 191 $BF NEW

178



Appendix C

SHIFT KEY MODIFICATION FOR
APPLE II AND II PLUS COMPUTERS

The Apple II and II Plus computers do not have any way of aliowing the user to
enter upper and lower case letters from the keyboard. While the computer key-
board does have a SHIFT key on it, it is only usable to get the alternate characters
on the number, punctuation and M, N and P keys.

It is possible however, to make a very simple, one-wire, modification to your
Apple computer that will allow you, with the aid of an appropriate program, to
determine if the SHIFT key has been pressed and then retrieve the character from
the keyboard and adjust it appropriately. We have already spoken about the soft-
ware required to do the job in Chapter 5, here are the instructions to modify the
hardware.

Over the years, Apple Computer has made some minor changes to its com-
puters, and as a result, newer models of the Apple II Plus have a different keyboard
than the older ones. As a result of this, there are two sets of instructions for the
modification. One for older Apples that have marked on the circuit board REV 6 or
earlier, and one for the later versions which are marked REV 7 or higher. In both
cases, a wire is connected to the SHIFT key on one end and the Game /O socket on
the other. The software that supports this modification, then looks at the particular
pin on the Game I/O socket that the wire is connected to and checks to see if the
switch is closed.

NOTE: The following procedures may void your computer’s warranty. Do not
attempt the next modification (for REV 6 or earlier computers) unless you know
how to solder. The REV 7 modification does not require soldering. If you are
unsure or encounter any difficulty, ask your dealer to make the modification for
you, otherwise proceed at your own risk. Also, be aware that Apple Ile and Ilc
keyboards do not have to be modified.

Modifying Revision 6 and earlier computers
This modification requires some physical changes to the Apple computer and
should be done with care. Follow the steps below.

1. Shut off all power to the computer and remove all peripheral cards and
anything plugged into the Game /0 socket.

2. Turn your Apple over so that the metal baseplate is facing up and remove the

1RO

Shift Key Modification Instructions / 181

four screws below the keyboard, the two screws along the sides and the two screws
in the rear corners. DO NOT REMOVE THE BASEPLATE YET!

3. Carefully lift the baseplate an inch or two. You will see a cable going from the
keyboard to the computer’s main circuit board. Note the orientation of the plug on
the ribbon cable and then carefully unplug it from the main computer board.

4. Now you can fully remove the baseplate, which holds the main circuit board,
and place it aside.

5. Take an 18-inch piece of thin wire and strip off about 1/4-inch of insulation
from both ends of it. With the computer case still upside down, and the front
(keyboard) closest to you, look in the lower right-hand corner of the keyboard
circuit board and locate the number 42. Next to it should be three solder pads, all in
a straight row.

6. Solder one end of the 18-inch wire to the left-most pad, the one that has the
empty hole. Near the solder connection, tape the wire to the keyboard circuit board
and then point the wire towards the back of the computer.

7. Carefully reassemble the baseplate, not forgetting to plug the keyboard con-
nector back into the main computer board.

8. Turn the Apple over (right side up) and insert the free end of the wire into pin 4
of the Game I/O socket. To orient you properly, when viewing the Game 1/0 socket
from the front, pin 1 is in the lower right-hand corner of the socket, pin 2 is behind
it, etc.

That’s it. The modification has been completed and when used with the lower-
case software in Chapter 5, will allow your Apple keyboard to behave more like a
typewriter keyboard.

Modifying Revision 7 and later computers

This modification is a little simpler to perform than the one for the earlier model
Apples because it does not require any soldering.

1. Turn off all power to the computer and remove anything that is plugged into
the Game I/O socket.

2. Take a 12-inch piece of thin, solid wire and strip off 1/4-inch of insulation
from one end and 3/4-inch of insulation from the other. On the end with the 3/4-
inch of insulation missing, bend the wire into a hook shape.

3. Remove the top cover and locate the keyboard encoder circuit board, which is
underneath the keyboard and connected to it by means of 25 long connector pins.

4. The SHIFT key is connected to the second pin from the right as you face the
computer with the keyboard closest to you. Place the hooked wire you prepared in
step 2, around this pin and squeeze it closed tight with a pair of thin pliers. Place
insulating tape over this connection so that none of the other pins come in contact
with this wire or connection.

5. Push the other end of the wire into pin 4 of the Game 1/0O socket. The
maodification is complete.



182 / Appendix C

Don’t take chances

While both of these modifications are very simple to perform, and are being
used by thousands of people, some people are simply not mechanically inclined. If
you’re one of these people with two left hands, go to your dealer or some other
technically knowledgeable person to have the modification done.

Appendix D

ADAPTING PROGRAMS TO WORK WITH
PRODOS

Many of the programs in this book are designed to steal control away from the
normal input or output routines during the course of their operation. Under DOS
3.3, to do this, all you had to do was place the address of the new input or output
routine in either the input ($38 and $39) or output (336 and $37) hook and then tell
DOS that you did it by doing a subroutine jump to location $3EA. This technique
will not work under ProDOS.

Installing a new input or output routine is a little more complicated under
ProDOS, because you must place the address of the new routine in one of two
places, depending on how the program is going to be run. If the program is either
going to be activated from the immediate mode or activated by BRUNing it, then
the address of the new routine goes in the same input and output hooks that were
used for DOS 3.3, you just don’t do the subroutine jump to $3EA. However, if the
program is going to be activated by BLOADing it and then doing a CALL to the
machine language routine when it is needed, the address of the new routine must
be placed in ProDOS’s global page (page $BE). The output routine address in the
global page is stored at $BE30 and $BE31 and is normally set to $SFDFO. The input
address on the global page is stored at $BE32 and $BE33 and is normally set to
$FDIB.

The reason for the two different places for storing the address of the 1/0O (input/
output) routines is related to the way ProDOS initializes the values stored in the I/O
hooks ($36 to $39). If you’re BRUNing a program or executing it from the immedi-
ate mode, the first thing that ProDOS does is to initialize the values in the I/O hooks
by copying the contents of $BE30 to $BE33 into $36 to $39. At that point it
executes your command and runs your machine language program. If your pro-
gram stores the new address for the I/0 hooks in the global page ($BE30 to
$BE33), it will remain there only as long as your program is running. As soon as
your program returns control to whatever program or mode called it, ProDOS
immediately copies the addresses in $36 through $39 back into the global page,
immediately disconnecting the new I/O hooks your program just set up. However,
if your machine language program had set up the new I/O addresses at $36 through
$39, when ProDOS copied these values back to the global page, it would have
made sure that the new I/O addresses remained connected.

The situation is a little different if you're going to operate your program by first
BLOADing it and then doing a CALL to its starting address to activate it. In this
case, things proceed as they did in the previous example cxcept that the CALL

1R



184 / Appendix D

command which runs your program is not executed until after the I/O routine
addresses are copied back to the global page. Thus, since the global page is where
you want the adresses ultimately stored, your program must put them there itself. If
it stored them in $36 through $39, they'd stay there and never get copied back to the
global page.

If you want to avoid the problem of determining in advance how your program is
going to be activated, you can store the addresses of the new I/0 routines in both
the zero page locations ($36 through $39) and the global page locations ($BE30
through $BE33). This will allow your program to work both ways, just as it did
under DOS 3.3. To demonstrate how to do this, the SHOW CONTROL program
which makes it possible to see the normally invisible control characters has been
converted for use with ProDOS and is listed here. Compare this with the original
program listed in Chapter 4. Notice that in lines 1330 to 1380 in the ProDOS
version, that the address of the new output routine has been stored in both the zero
page and the global page. You will also notice that the test for DOS has been
eliminated as has the jump to $3EA which is required under DOS 3.3 to connect the
1/0 hooks. The rest of the program remains unchanged. As you can see, the change
to accomodate ProDOS is really minimal.

1000 *kkkkkkkkkkkkhhhkhrhhhkhhkkhkkhkhrkdhhk

1010 *** ok k
1020 *** SHOW CONTROL CHARACTERS Fkk
1030 *#** PRODOS VERSION *xk
1040 *** Hkk
1050 **=* COPYRIGHT (C) 1984 BY *kk
1060 ***x JULES H. GILDER *kk
1070 *** ALL RIGHTS RESERVED *hk
1080 *** hkk
1090 *hddrxERRARkhkhkhkhhhhhhhkkhhhhkhhkkkhkkk
1100 *
1110 *
1120 *
1130 .OR $300
1140 *
1150 *
1160 *
1170 * EQUATES
1180 *

0036- 1190 CSWL .EQ $36

BE30- 1200 GPCSWL .EQ $BE30

FDFO- 1210 COUT1 .EQ $FDFO
1220 *
1230 *
1240 * This section of code sets up the
1250 * output hooks at $36 and $37
1260 * and on the global page so that
1270 * any characters that are being output
1280 * by the computer will first pass
1290 * through this subroutine. With this
1300 * setup, it doesn't matter if the program
1310 * is BRUN or BLOADed and then CALlLed.

0300~ A9 OF }%%0 '

- 330 LDA #START Get START low
0302- 85 36 1340 STA CSWL byte & save it on
0304- 8D 30 BE 1350 STA GPCSMWI. zero and global pages.
0307- A9 03 1360 DA /START Get START high )
0309- 85 137 1370 STA CSWI.+1 byte & save 't on
030B- 8D 31 BE 1380 STA GPCSWL L zero and global pages.

030F 60 1190 RTS
1400

>

Adapting Programs To Work With PRODOS / 185

1410 *
1420 * This is the actual start of the
1430 * control character display program.
1440 * Here a check is made to see if the
1450 * character is a Control-M (carriage
1460 * return). If it is, an inverse M is
1470 * printed followed by a carriage
1480 * return. Otherwise control is passed
1490 * to a routine that checks to see if
1500 * the character is a control character.
1510 *
030F- C9 8D 1520 START CMP #$8D Is it Cntri-M?
0311- DO 08 1530 BNE CHKCTRL No, inverse it.
0313~ 48 1540 PHA Yes, save it.
0314- 20 1B 03 1550 JSR CHKCTRI. To inverse.
0317- 68 1560 PLA Restore it.
0318- 4C 25 03 1570 JMP PRINTIT Print a carriage return.
1580 *
1590 *
1600 * Here a check is made to see if the
1610 * character in the accumulator is a
1620 * control character. If it's not, it
1630 * is printed as is. If it is, the
1640 * character is converted to inverse and
1650 * then printed.
1660 *
0318~ C9 80 1670 CHKCTRL CMP #$80 See if the accumulator
031D~ 90 06 1680 BCC PRINTIT contains a
031F- €9 9F 1690 CMP #$9F control character.
0321- BO 02 1700 BCS PRINTIT No, print it.
0323~ 49 80 1710 EOR #$80 Yes, inverse it.
0325- 4C FO FD 1720 PRINTIT JMP COUT1 Print character.

Finding space for long machine language programs

As with DOS 3.3, short machine language programs under ProDOS can be
stored on page 3 of memory. Long machine language programs, however, are
treated a little differently under ProDOS than they were under DOS 3.3. With DOS
3.3, these long programs were usually loaded under HIMEM, which was usually
set at $9600, and then the value of HIMEM was lowered to the starting address of
the machine language program. This protected the machine language program
from being wiped out by strings used in Applesoft programs.

Something similar can be done with ProDOS, but there are some differences. To
begin with, ProDOS doesn’t like HIMEM to have just any old value, but insists that
the value of HIMEM be a multiple of 256. This is not serious, because at the most
you're only wasting a fraction of a page (256 bytes) of memory. Another problem is
that as more files are opened, ProDOS takes away memory from the upper bound-
ary and moves HIMEM down. Thus, while resetting HIMEM will result in an
initially safe location for your machine language code, as more files are opened,
the location where your program is stored is in danger of being over-written.

To overcome this problem, we can make use of a ProDOS subroutine known as
GETBUFR, which is located at $SBEFS5. This is the subroutine that ProDOS uses to
move HIMEM down and create a safe area to use as a file buffer, and there’s no
reason why we can’t use it too. To use this routine, all you have to do is determine
how many pages of memory you nced and load this number into the accumulator.
With the number of pages in the accumulator, all you have to do then is do a JSR to



186 / Appendix D

GETBUFR. HIMEM is then moved down by that number of pages and a safe hole
in high memory is now created. This safe area is located 4 pages above the new
value of HIMEM. That’s because ProDOS needs a 1K buffer immediately above
HIMEM. Thus, if the value of HIMEM is at it’s normal $9600 and you call the
GETBUFR routine with a 3 in the accumulator (you want to reserve 768 bytes —
three pages — of memory) the new value of HIMEM will be $9300 and your usable
buffer area will begin at $9700.

If everything is okay when you return from the GETBUFR subroutine jump, the
accumulator will contain the high byte of the address of the buffer (the low byte is
always zero). If too many buffers have already been allocated, then on returning
from GETBUFR the Carry bit should be set and the error code number is in the
accumulator. Some programmers have reported a problem with this and found that
in some instances even when an error occurs, the Carry bit is clear. I have not
experienced this problem, but if reports in some magazines are accurate, you
might. To overcome this, you can test the value of the byte in the accumulator to see
if it is equal to $0C, which is the error code for “NO BUFFERS AVAILABLE”.

One more ProDOS subroutine that you will find of interest is the one called
FREBUFR, which is located at $BEFS8. If you do a JSR to this routine, it will free
all the buffers and reset the computer to it normal condition.

INDEX

A
addressing
indirect indexed 7,86
post indexing 7
alarm signal 117, 118
ampersand 129, 139, 162
append
Applesoft programs 139

bug 140
Appendix A - ASCII Code Conversion Table 177
Appendix B - Applesoft Token List 178
Appendix C - Shift Key Modification 180
Appendix D - ProDOS Adaptation 183
Applesoft

expanding 150

function keys 168

keywords 96, 178

line, how it’s stored in memory 21
line counter 21,22

using it 26

line finder 134, 136

program restorer 145

program sharer 16!

using it 167

shorthand 96
token list 178

ASCII code 6, 17, 177
conversion table 177
digits 17

lowercase letter 70
assembler 1.5
audio feedback 112

B

BASCALC 86

BASL 82, 86

BCD numbers 13, 4
BELL 11, 112

bell routine i1

binary coded decimal 13

borders 26
boxes 26
branching 15, 40
BRK S

C

CAPTST 101
cassette duplicator
CHKCOM 157
CHKMEM 153
CHRGET
CHRGOT 40

126

clicker, keyboard 112

129, 132, 133, 135, 140

commands, new Applesoft 151
computed GOSUB 151-153
computed GOTO 151, 152
computed LIST 151
control characters 72
seeing them /3
converting
decimal to hexadecimal 12,13
hex/decimai/hex 130, 131
floating point to integer 132

to lowercase 105
to ProDOS 183

copy, cassettes 126
COuUT S, 18, 56
COUT1 56, 170
CSWL 56, 83

CURLIN 153
custom cursor 83

D

decimal numbers
entering them

35

decimal to hexadecimal conversion

disk spooling 78
double byte PEEK
double byte POKE
duplicator, cassette

E

editor 1

Epson printer 58

EVLNM2 151

EVLNUM 153

EXEC 96
without a disk

expanding Applesoft

1977

159
156
126

92

150

12, 35



188 / Index

F J

F8 ROM 133 jump table 44

FAC 132, 151 jumping 15, 45

FACLO 40

FACMO 40

filter routine 7

FIN 40 K

flags - V 15

ﬂ:f;in ’ keyboard 29, 30

g read routine 29-31

characters 87 lick 12
mode 6 clicker

floating point accumulator
FNDLIN 135, 151
formatted text 76
FREBUFR 186

frequency of tone 109-111

FRMEVL 151, 156
FRMNUM 132, 135
function keys 168

G

game I/O connector 102

GDBUFFS 38
GETADR
GETBUFR 185
GETLN 31,32
GETLNI1 32,35
GETNUM 133

global page, ProDOS 183

GOTO 152

H

hex/decimal/hex converter

hexadecimal numbers 35

entering them 40

40, 132

132, 135, 156, 159

131

hexadecimal to decimal conversion

high bits 6,92,97
HIMEM 168, 185

|

illegal line numbers 134

improved message printer
in-memory EXEC 92

indexing with an address table

indirect indexed addressing
input
buffer 26, 31-33
from other sources
hooks 83, 183
routine 96
replacing it 96
inverse video 87

91

8,9

44
7, 86

13, 20

macro 96
KEYIN 85, 89, 102
KSWL 83

L

laser blasts 114, 115
laser swoops 114, 115
LIFO 45
line finder, Applesoft 134, 136
line numbers, illegal 134
LINGET 135, 151-153
LINKSET 142
LINNUM 13, 14, 20, 132, 135, 151, 157, 159
LINPRT 20,23, 133
LIST 151
LIST2 152
locate program lines 134
long message printer 9, 10
lowercase
adapters 70, 101, 102
conversion 105
filter 7
input driver 102
letters 101
displaying them 101
entering them 101
recognizing them 10t
text 70

M

machine gun noise 112

macro 97

menu program 42-44
alphabetic 49

message printer 4,6,7,10

monitor ROM 133

MON?. 136

Morse conde 121

multiplication by ten 36

Index / 189

N

NEW 162

new Applesoft commands 151
next line pointer 22,23
nibbles 17

number conversion 12,13
numbers
decimal 12
hexadecimal 3
numeric key pad 88, 91
NXTLST 152

(0]

OUTPORT 62, 85

output
hooks 57, 58, 62, 70, 84
routines 56
to disk 78

|

page formatter 76
parallel printers 57
PEEKing two bytes 159
POKEing two bytes 156
post indexing 7
PRBYTE 14, 132

PRERR 35
printer
Epson 58
interface card 58, 85
modes 58, 61
patch 57,58
Epson 58, 61
screen 84
setup 61, 62
tabbing driver 65, 66
ProDOS 183

finding storage space 185
global page 183
program adaptation 183
programs
Alphabetic Menu Program 50
Apple Bell Routine 111
Applesoft Append 142
Applesoft Function Keys 171
Applesoft Line Counter 24
Applesoft Line Finder 137
Applesoft Program Sharer 164
Applesoft Shorthand 98
Cassette Duplicator 127

Computed GOTO, GOSUB and LIST 153
Custom Cursor 83
Double Byte PEEK 160
Double Byte POKE 157
Epson Printer Patch 59
Hex/Decimal/Hex Converter 130
Improved Message Printer 8
Improved Read Keyboard Routine 31
Improved Text Input Routine 39
In-Memory EXEC Simulator 93
Input A Hex Number Routine 42
Input Integer Routine No. 1 37
Input Integer Routine No. 2 39
Keyboard Clicker 113
Laser Swoop | 116
Laser Swoop 2 117
Long Message Printer No. | 10
Long Message printer No. 2 1
Lower Case Letter Filter 71
Lowercase Input Driver 127
Machine Gun Noise 115
Morse Code Generator 124
Numeric Key Pad 90
Output A Decimal Number #1 15
Output A Decimal Number #2 19
Output A Decimal Number #3 21
Page Formatter 77
Parallel Printer Patch 57
Print to Disk Spooler 9
Printer Setup Program 63
Printer Tabbing Driver 66
&RESTORE 147
Sample Menu Program 46
Screen Printer 86
Screen Reverser 75
Show Control Characters 73
Show Control Characters ProDOS Version
Simple Message Printer 6,7
Simple Read Keyboard Routine 30
Simple Tone Routine 10
Siren Program 18
Text Input Routine 32
Title Box 27
Touch Tone Simulator 120
pseudo op codes 2,5
AS N
.DA
.EQ
.HS
.OR
.TA

]
5

B o W W



190 / Index

Q
QINT 40, 132

R

RDKEY 31, 87

relative branches 40

relocatable program 40
&RESTORE 145

restoring Appesoft programs 145

S

screen printer 84
screen reverser 74
SETKBD 93
shared programs 161
interaction 163
one calling the other 164
SHIFT key 101
modification 102, 103, 180

for revision 6 and earlier Apples

for revision 7 and later Apples
shorthand 96
siren program 117, 118

simultaneous sound and graphics 15

sound effects 108, 112
speaker 108
toggling 108, 112-114, 117
spooling todisk 78
stack 12, 102
jumping to subroutines 45
pointer 102
swooping laser 114, 115
SYNCHR 140, 145, 151, 157

T

tab past 40 columns 65
text 76
input routine 32,33

token 129
GOSUB 153
GOTO 152
list 178
POKE 157
PRINT 22
RESTORE 145
table 96

tone generator 109

Touch-Tone
keypad 119

simulator 118-120

U

USR 129, 159, 161, 164
jump locations 159
number passing 159

v

V flag 15

visual effects 15
W

WAIT 1



$19.95

Now That You Know
APPLE ASSEMBLY LANGUAGE:

What Can You Do With It?

Here is an easy-to-understand collection of programs to help you unlock the power
and speed of assembly language programming on your Apple // computer. You've
spent a great deal of time learning the various assembly language commands,
what they do and how. Now you can put these commands together to produce fast,
powerful programs that let you greatly expand the capabilities of your computer.

You’ll find out how you can let your Apple do things it
couldn’t do before! With this book you’ll discover how to:

* Hold two Applesoft BASIC programs in memory simultaneously and switch be-
tween them at will, even under program control.

» Reverse the way text is displayed on a video monitor to show black characters on
a white background.

» Add new commands to Applesoft BASIC so that it will be more powerful and
easier to use.

» Convert a section of the normal keyboard into a numeric keypad for super-fast
entry of numerical data.

* Use a custom-developed form of shorthand that automatically types out one or
more BASIC commands when you press just one or two keys.

* Permit older versions of the Apple computer to recognize lowercase letters, even
in BASIC programs.

* Restore Applesoft programs that have been accidentally erased.

All this and much more is possible with the machine language programs described
and listed here. And it’s all done exclusively with software, no additional hardware
or peripheral devices are required.

If you're worried about getting confused and not understanding the operation of
these powerful programs, don’t. All 55 programs in this book are fully documented
with detailed descriptions in the text of how and why the programs work, and line-
by-line descriptions of each step in every assembly language program listed.

You will find this to be an invaluable source-book of ideas, techniques and
routines that can be incorporated into your own programs.

ABOUT THE AUTHOR

Jules H. Gilder is a pioneer in the use of personal computers. He was
one of a handful of people to purchase and use the original Apple |
computer, on which he taught himself 6502 assembly language pro-
gramming. Since then he has taught hundreds of people both BASIC
and assembly language programming in courses at New York Univer-
sity and private seminars. He has been editor-in-chief of Personal
Computing magazine, vice president of software for Children’s Televi-
sion Workshop and editorial director of Hayden Software. He is the
author of seven other books covering integrated software, and sci-
ence and engineering programs in Pascal and BASIC for the Apple
and IBM PC computers.

g DataCraft, Inc.
2068 - 79th Street
3 Brooklyn, NY 11214 ISBN 0-933913-00-1




