
•
PRESENTS:

_·_Big Mac.LC

LANGUAGE CARD
SUPPLEMENT

>

Apple PugetSound Program Library Exchange

DISCLAIMER

This manual and the accompanying diskette are available only to members
of Apple Pugetsound Program Library Exchange.

A.P.P.L.E. PRODUCTS ARE SOLD "AS IS." A.P.P.L.E. DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTY OF MERCHANT ABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR USE.

Big Mac.LC

LANGUAGE CARD
SUPPLEMENT
Copyright © I 982

by Glen Bredon

This manual is copyrighted. This document may not in whole or part be
copied, photocopied, reproduced, translated or reduced to any electronic
medium or machine readable form without prior written consent from
Apple Pugetsound Program Library Exchange.

Entire contents Copyright © I 982 by Apple Pugetsound Program Library
Exchange, a Washington State non-profit corporation. All rights reseNed.

2

Table of Contents

EXEC MODE
[RJead
[WJrite
Ctrl C

EDITOR
Hex-dee conversion
Total key input
Commands

ASSEMBLER

STRIP
UPPER
TEXT
FIX
SYM
VIDeo

PSEUDO-OPS
TR
CHK
PUT
VAR
KBD
SAV

A minor incompatibility
Nestable macros
Non-zero page addressing
Multiple ORGs

GENERAL
USE WITH SHIFT KEY MODIFICATIONS
USE WITH 80 COLUMN BOARDS
THE CONFIGURE ASM PROGRAM
SPECIAL CONSIDERATIONS
MEMORY MAP
SYMBOL CROSS REFERENCE

3

4
4
4
4

5
5
5
6
6
6
6
6
6
7

7
7
7
7
7
8
8
8
9

JO
JO
JO

J J
J2
J2
J2
J 3
J4
JS

Language Card Version of Big Mac

(Special features and differences from the standard version)

EXEC MODE

[R]ead

[W)rite

Ctrl C

This reads text files into Big Mac. It works as described
under "READER," except that it is always an "append. "
Thus type "NEW" in the editor if you don't want an append.
If no file is in memory, then the name given will become
the default file name. Appended reads will not do this. If
the file contains lines longer than 255 characters, these
will be divided into two or more lines by the READ routine.
The file will be read only until it reaches HIMEM and will
produce a memory error if it goes beyond.

This writes a Big Mac file into a text file instead of a binary
file. It works as described under "WRITER." The speed of
the READ and WRITE routines is approximately that of a
BLOAD or BSAVE. The WRITE routine does a VERIFY after
the write. If you type a space, or any character less than
"@"[less than ASCII $CO], before the file name, then that
character and the "T." prefix will not be sent to DOS by the
READ and WRITE commands.

Typed after "COMMAND:" following a C (for CATALOG),
this will output the Exec mode prompt "%"and then will
accept any EXEC command such as L for load. This permits
you to issue an Exec mode command while the catalog is
still displayed on the screen. This feature is also present
on the standard version of BIG MAC, but was added too
late to be documented. In addition, if control C is typed at
the "CATALOG pause" point, printing of the remainder of
the catalog is aborted.

4

EDITOR

The edit mode control functions may now be used in both Insert
and Add mode, except that control R will have no effect, and the
exit from Add mode acts as described. For example, hitting return
will accept the entire line as it appears on the screen, and control
Q will truncate the line at the cursor position.

During an edit, if a line becomes greater than 255 characters, it will
be truncated and a new blank line created following it.

Control L acts in all modes as described under Add mode, that is,
as a case toggle. To change the case of a word during edit, you can
type control Land then copy over the word using the right arrow.

Hex-dee conversion
In command mode, if you type a positive or negative decimal
number, the hex equivalent is returned. If you type a hex number,
prefixed by "$," then the decimal equivalent is returned. All com
mands accept hex numbers, which is mainly convenient for the
HIMEM and SYM commands

Total key input
Control 0, besides enabling the insertion of control characters,
also allows you to type those characters not normally available on
the Apple keyboard. Using the following conversion table, type a
Ctrl 0, followed by a character from the first column to produce
the character shown opposite in the second column:

Type to produce

< Ctrl_
> Ctrl \
K [
L \
M]
N A
0
k {
I . .

m }
n f'V

0 • (rubout)

(Note that if you are using a shift key modification, then depending
on which one you have, shift M may give upper case M and you will
have to use [Ctrl O]M to get the right bracket.)

5

Commands

STRIP

UPPER

TEXT

FIX

SYM

This deletes all comments (initial "*" lines or following ";")
from source. This was designed as a last resort for dealing
with extremely large files, but with the great versatility of
the language card version of Big Mac, you should never
have to use it.

This converts (permanently) all lower case text in com
ments to upper case. (See "UPCON.") As with the STRIP
command, the other features of the language card version
leave little utility for this command, except perhaps in con
verting a file for someone else who does not have the
language card version, and does not have a lower case
display chip.

This converts all spaces in a source file to inverse spaces.
The purpose of this is for use on "text" files, so that you do
not have to remember to zero the tabs before printing such
a file. This conversion has no effect on anything except
tablulation.

This undoes the effect of TEXT. It is also a substitute for
the " FIX" program (which cannot be used with the
language card version). Thus it is recommended that the
command FIX be used on all files from external sources,
after which the file should be saved. This command is not
quite the same as the standard version's FIX program, in
that it does more, but its effect is essentially the same.
(Note that the TEXT and FIX routines are written in SWEET
16 and thus are somewhat slow. Several minutes may be
needed for their execution on large files.) FIX or an edit will
truncate any lines longer than 255 characters.

The language card version places the symbol table on the
language card itself (in bank 1 of $DOOO-$DFFF). This space
is quite adequate for all but gigantic programs. In case this
space is used up however, the SYM command gives you a
means to direct the assembler to continue the symbol
table in another area. If you type SYM $9000, for example,
and assemble the program, then if and when the symbol
table uses up its normal space, it will be continued from
$9000 to BASIC HIMEM. It must be noted that the SYM
command will be canceled by a HIMEM command or by
exit to EXEC mode and re-entry, thus set HIMEM prior to
establishing a SYM address. The SYM address must be
above HIMEM and below BASIC HIMEM. If the symbol
table grows beyond the alloted space, then you will get a
memory error during the first pass of assembly.

6

VIDeo
This is designed to select or deselect an 80 column board.
The default condition can be selected using the configura
tion program. This is similar to the use of PR#in BASIC. Do
not use PR# to select an 80 column board in slot 3 (for
example) can be selected by typing, from the editor, VIDEO
3. It is deselected by VIDEO O or VIDEO $10 possibly
followed by hitting the RESET key. The latter two forms
both select the standard Apple screen, but VIDEO 0 will
cause all lower case output to the screen to be converted
to upper case, except for lower case in the source file,
which will be converted to flashing upper case. (Output to
a printer is never converted.) Thus, if you have a lower case
adaptor, you will want to use VIDEO $10 (or VIDEO 16) in
stead of VIDEO O when selecting the Apple screen. If your
80 column card supports a software screen switch via an
escape sequence, then you can switch to 40 columns by
using this in the editor (or PR#O [RESET]). This may have to
be followed by a control X. This software switch will do a
"VIDEO $10" and thus must be followed by a VIDEO O if
you do not have a lower case adaptor.

ASSEMBLER

Pseudo-Ops

TR

CHK

PUT

This has the same effect in the assembler as does the
editor's TR command. Thus, TR or TR ON limits object
code printout to 3 bytes per line and TR OFF resets it to
print all object bytes.

This places a checksum byte into object code at the loca
tion of the CHK opcode (usually at the end of the program).

PUT FILENAME, (drive and slot parameters accepted in
standard DOS syntax) will read the named file (with the
"T." prefix appended)-and "insert" it at the location of the
opcode. (Note: "insert" refers to the effect on assembly of
the source. The file itself is actually placed just following
the main source.) Text files are required by this facility in
order to insure memory protection. You will get a memory
error if a PUT file goes beyond HIMEM. These files are in
memory only one at a time, so a very large program can be
assembled using the PUT facility.

7

VAR

KBD

SAV

There are two restrictions on a PUT file. There cannot be
marcro DEFINITIONS inside a put file (they must be in the
main source). Also, a PUT file may not call another one by a
PUT (that is, this is not linking). Of course, linking can be
simulated by having the "main program" just contain the
macro definitions and call in turn all the others by the PUT
opcode. Any variables (e.g.,]LABEL) may be used as
"local" variables. The usual local variables]1 through]8
may be set up for this purpose using the VAR opcode.

The PUT facility provides a simple way to incorporate
much used subroutines, such as MSGOUT or PRDEC, in a
program.

This is just a convenient way to equate the variables]1-]8.
"VAR 3;$42;LABEL" will set]1 = 3,]2 = $42, and]3 =
LABEL. This is designed for use just prior to a PUT. If a PUT
file uses]1-]8 (except in>>> lines for calling macros), then
there must be a previous declaration of these.

This allows a label to be equated from the keyboard during
assembly. Its syntax is: LABEL KBD.

SAY FILENAME,(drive and slot parameters accepted) will
save the current object code under the specified name.
This acts exactly as does the EXEC mode object saving
command, but it can be done several times during
assembly.

This pseudo-opcode gives you a means of saving portions
of a program having more than one ORG. It also enables
the assembly of extremely large files. After a save, the ob
ject address is reset to the last specification of OBJ, or to
HIMEM by default.

The save command sets the address of the saved file to its
correct value. For example, if your program contains three
SAY commands, then it will be saved in three pieces. When
BLOADed later, they will go to the correct locations, the
third following the second and that following the first.

Together, the PUT and SAY opcodes make it possible to
assemble extremely large files.

8

A minor incompatibility
In the language card version, the multiple operands of the PMC (or
>>>) opcode must be separated by semicolons instead of commas
as in the standard version. The program CONVERT will convert old
source files to the new form. (With your source in memory, just
type BRUN CONVERT from the EXEC mode's command after cata
log.) This was changed because the macro facility now accepts
literal data. Thus the assembler now accepts the following type of
macro call:

DO 0
MUV MAC

LOA)1
STA]2
<<<
FIN
>>> MUV.(PNTR),YDEST
>>> MUV.#3FLAG,X

It will also accept:

DO 0
PRINT MAC

JSR SENDMSG
ASC)1
BRK
<<<
FIN
>>> PRINT.!"quote"!
>>> PRINT.'This is an example'
>>> PRINT.''So's this, understand?"

LIMITATION: If such strings contain spaces or semicolons then
they must be delimited by quotes single or double). Also literals
such as>>> WHAT."A" must have the final delimiter (this is only
true in macro calls or VAR statements, but it is good practice in all
cases).

9

Nestable Macros
In the language card version, macros may be nested to a depth of
15. For nesting, macros must be defined with DO condition off.

Here is an example of a nested macro in which the definition itself
is nested. (This can only be done when both definitions end at the
same place.)

TRDB MAC
>>> TR.]1 +1]2+1

TR MAC
LOA]1
STA]2
<<<

In this example>>> TR.LOC;DEST will assemble as:

LOA LOC
STA DEST

and>>> TRDB.LOC;DEST wi ll assemble as:

LOA LOC +
STA DEST + 1
LOA LOC
STA DEST

A more common form of nesting is illustrated by these two macro
definitions (where CH = $24):

POKE MAC
LOA #]2
STA]1
<<<

HTAB MAC
>>> POKE.CH]1
<<<

Non-zero page addressing:
Opcodes that can accept either zero page or non-zero operands,
such as LOA ADRS, can now be forced to use the non-zero page
form by simply appending any character (the colon for example)
other than "D" to the opcode. Thus LOA: ADRS will assemble as
non-zero page. This is occasionally useful.

Multiple ORGs:
Multiple ORGs no longer defeat the object code if saved, will load
to the address of the FIRST ORG used. Thus, for example, if you
want to have a program that will BLOAD to $1000 but is written to
be BRUN at $9000, you can begin it with:

ORG $1000
ORG $9000 10

and it will do just that. This is useful for programs that must do
some housekeeping before being moved to their final locafi.on, and
there are a number of other uses for this ability.

GENERAL:
Reentry after exit to BASIC is made by the " ASSEM" command. A
BRUN BIG MAC or a disk boot will also provide a warm reentry and
will not reload BIG MAC if it is already there. This may be forced by
BRUN BOOT ASM which would then be a cold entry, "destroying"
any file in memory.

After exit to the monitor via the editor's MON command, reentry
can be made by any of control Y, control C or control B (the latter
two because the Apple thinks BIG MAC is BASIC). A direct reentry
to the editor is possible by typing OG [rtn]. This reentry, unlike the
others, will use the zero page pointers instead of the ones saved
upon exit, so you must be sure that they have not been altered.

Memory organization is somewhat different in the language card
version. While for ordinary sized files this is not of concern to the
user, it is important to understand certain constraints for the
handling of large files. HIMEM (which defaults to $8000) is an
upper limit to the source file. It is also an upper limit for PUT files.
If a memory error occurs during assembly, indicating a PUT line,
this means the PUT file exceeded HIMEM and thus that HIMEM
will have to be increased. The default ORG and OBJ addresses
equal the present value of HIMEM (instead of $8000 as in the non
language card version). It is illegal, in the language card version, to
specify an OBJ address that is less than HIMEM except that a
page 3 address is allowed. (If you use a page 3 OBJ address, you
must be careful that the file will not write over the DOS jumps at
$3D0-$3FF as the assembler will NOT check this for you.) If, dur
ing assembly, the object code exceeds BASIC HIMEM (or the SYM
address if one has been specified), then the code will not be writ
ten to memory, but assembly will appear to proceed and its output
sent to the screen or printer. Your only clue that this has happened,
if it is not intentional on your part, is that the object save command
is disabled in this event. Thus, if you want a listing for a very long
file without actually creating code, you can assemble over DOS
and up.

Source is placed at $901 (partially because a disk boot writes over
page 8). Both the editor and assembler use page 8 for various
purposes.

On exit to BASIC or to the MONITOR, the pointers at $A-$F are
saved at $EOOA-$EOOF.

11

USE WITH SHIFT KEY MODIFICATIONS
The language card version supports all hardware shift key modifi
cations. The configuration program will establish the modification
that you want supported. BIG MAC is smart enough to know if the
modification actually exists in the Apple you are using and defeats
the modification if it is not there. Thus it can be used on another
machine without reconfiguration.

USE WITH 80 COLUMN BOARDS
Most, but not all, 80 column boards can be supported by the
language card version. You may use the VIDEO command to select
the 80 column board. To have the board selected upon boot, use
the configuration program. (Then you may switch to the 40 column
screen as described under the VIDEO command.)

If your board does not support inverse, then control characters in
source will show as ordinary capital letters instead of inverse
letters as with boards that support inverse. You can use the
editor's Find command to search for particular control characters
if you wish to verify their presence or absence, or simply switch
over to the normal Apple screen.

If, for example, your copy of BIG MAC has been configured to
support an 80 column card in slot 3 and there is no card in that slot,
then BIG MAC will recognize this and will defeat the 80 column
provision. Thus there is no need to reconfigure for use on another
computer.

BIG MAC will not support any board that does not recognize the
"POKE 36" method of tabbing. (As far as we are aware, this means
simply that it will not support older versions of the FULL VIEW
card.)

When in the editor, BIG MAC takes almost total control of input
and output. Thus the effect of typing a control character will be as
described in this manual and not as described in the manual for
your 80 column card. For example, control L will not blank the
screen, but is the case toggle. Control A, which acts as a case
toggle on many 80 column cards, will not do this in BIG MAC's edit
mode and simply produces a control A in the file line. (It may work
in command mode but is not recommended.)

THECONFlGUREASMPROGRAM
This program allows you to make several minor modifications to
BIG MAC's default conditions. It first allows you to change the
"UPDATE SOURCE" character searched for at the entry to the
assembler, the editor's wild card character, and the number of
symbol fields printed per line in the symbol table printout. It also
permits you to specify whether you want to have an 80 column
board supported and, if so, which slot it is in.

12

It allows you to specify a hardware shift key modification. Any
such modification can be supported. However, if your modification
is the type that enables direct input of lower case (as with the
VIDEX keyboard enhancer) instead of providing a memory location
to be tested (as with the "game button 2" modification), then the
default at the start of each line will be lower case rather than upper
case and control L will function as a case lock toggle.

You may specify whether you have a lower case adapter. This will
affect the condition on boot if you have not elected to have an 80
column board selected then. (It may always be defeated from the
editor using the VIDEO command, however, so this is only to
select the initial condition.)

Finally, you can save the configured version to another, or the
same disk. There is no reason to keep the original version since
you can always return to it by reconfiguration.

At the end of the configuration program you are given the oppor
tunity to transfer the boot program "BIG MAC" to another disk.
This is just a convenient way of transferring that program. You can
also use FID to copy BIG MAC or ASM.OBJ (the main program). DO
NOT attempt to BLOAD or BSAVE BIG MAC from the keyboard;
this will not work! When booted under normal DOS, COPYA or any
standard copy program may be used to copy the entire disk.

The configuration program should be BRUN only when the standard
Apple screen is in use.

SPECIAL CONSIDERATIONS
The small program called BIG MAC on the disk may be BRUN. It is
designed, however, to be a BOOT program. For this purpose, the
DOS on the disk is modified to run a binary program upon boot. To
put a copy of this DOS on another disk you may do the following:
Rename BIG MAC,XXX, reboot the disk, insert a blank disk and
type INIT BIG MAC, then DELETE BIG MAC, and finally rename
XXX,BIG MAC on the original disk. Then use the configuration pro
gram, or FID, to transfer the files BIG MAC and ASM.OBJ to the
new disk.

The boot program BIG MAC does several things. First it checks for
a language card. Next it makes some minor changes to DOS that
will be required by the main program (in particular, the INIT com
mand will be disabled), and then it checks whether ASM.OBJ is
already there. If not, then ASM.OBJ is loaded into the card and
jumped to. A result of this is that a boot is always a warm boot, that
is, it will NOT erase a source file that is in memory at the time. (For
this it is imperative that you DO NOT convert the disk to a master
disk! Leave it a slave!) If, for some reason, you wish to force
reloading of the language card, you must either turn ofJ the com
puter or BRUN BOOT ASM. The latter program is ideR.tital to BIG
MAC except that it always loads ASM.OBJ and hence is a cold
start, "erasing" any extant source file.

13

MEMORY MAP
SFFFF

$0000

$COOO

$9853

$8000
(HIMEM:)

$901*

$8AO

$800

$0400

$0300

$0300

$0200

$0100

$0000

65535

BIG MAC

53248

HARDWARE
49152

DOS

SYMBOL TABLE ______ __ _ l ____
- - - - -

38995

FREE SPACE

----- - - - - - - - - - ·- -

t
OBJECT CODE**

I 32768 -- - ·- - - - - - - - - - - - - - - - - -

I
SOURCE FILE

2305
FREE SPACE -2228

MISC. USE BY BIG MAC
2048

SCREEN MEMORY

1024

USER SPACE

976

DOS and Monitor Vectors
768

Input Buffer and BIG MAC Work Area
512

Microprocessor Stack

256
Misc. Pointers and Flags

used by BIG MAC
0

• 900 also used by editor.
• • OBJ and ORG default to value of HIMEN:

14

Symbol
Cross-Reference

for BIG MAC

by Dale Waddell

One feature that is missing with the BIG MAC Macro-Assembler/
TED is the ability to print a label cr9ss reference listing. BIG MAC
does have the ability to print a symbol table in both alphabetical
and numerical order. The symbol tables are helpful to determine if
a label exists in the program or if a label has been referenced at
least once. If you have any need to determine how or where a label
is used, the only choice is to use the FIND function in the editor.

Normally I place a "LST OFF" statement as the last statement of a
program so the symbol tables will not be printed. I find the cross
reference listing supplies everything in the symbol table except
the numeric location of each label. For those of you that use
macros, BIG MAC's symbol table does show macro names and
labels defined within a macro. My cross reference treats macro
names and variable names as if they are labels.

To run the cross reference program just follow these easy steps:

• have BIG MAC active
• have input source file loaded into memory
• if an object file is in memory, make sure that it is saved

before running the cross reference program. The cross
reference program uses all memory between the source file
and DOS

• turn on the printer
• get to the EXEC MODE menu and press the "C" key
• after the catalog completes, enter BRUN BIG MAC.XREF
• after BIG MAC.XREF has collected all the information to be

printed, it will ask the user to reply to the following
message:

15

ENTER PRINTER SLOT # OR USER

The carriage return defaults to slot 1. A response that commences
with "U" causes a JSR to $3F5, so that the printer driver routine
can do its setup work. The default number of lines per page printed
is 60. This may be modified by changing the contents of location
$9BBA. If a formfeed at the end of each page is not desired,
substitute $80 for the $8C found at locations $96FE and $9BC3,
which will produce a carriage return instead. BSAVE parameters
are:

BSAVE BIG MAC.XREF, A$93AO, L$6F7;

The cross reference program will print the entire cross reference
listing and then return to BIG MAC's EXEC MODE menu. The cross
reference program does not change the source file, therefore the
source file in memory is still usable.

The cross reference program saves $DO-$FF at the beginning of ex
ecution and restores it at the end of execution. This is done so the
cross reference can have some page zero work areas.

The BIG MAC diskette also contains a commented source file for
those users who may be interested in studying and/or expanding
BIG MAC.XREF. The following explanation about how information
is stored in memory should assist the user in understanding more
about how the program works.

LBLCHN - a zero page pointer to the first entry in the
LABEL chain

Each entry in the label chain will contain the following information.
ADRNXT - pointer to the next entry in the LABEL chain
LLABEL - length of the label in this entry
CBYTE - Control byte where $80 means that the label is

defined and $40 means that this is a duplicate
label definition

WDEF - if $80 in CBYTE is ON this field will contain the
line number where the label is defined

ADRREF - pointer to "where referenced" chain for this
label. If this field is zero then no references for
the label were found

LABEL - same length field as the content of CBYTE. If
the first character is $FF this is a "dummy"
entry that will always be the last entry in the
chain. The reason for a "dummy" entry is to
make it easier to merge new entries into the
chain.

The "dummy" entry ensures that a new entry will never need
merged onto the end of the label chain.

A separate "where referenced" chain exists for each LABEL chain
entry that has non-zeros in WDEF. Each entry contains:

- pointer to next entry. If zero, this is the last
entry.
- line number where the label is referenced.

16

f. p. e-;1~..JJ Si.or 'I

A5'8B ! (!I
. ,45'C1:c1

Apple
PugetSound
Program
Library
Exchange

- .

304 Main Ave. S.
Suite 300
Renton, Washington
98055
(206) 271-4514

	Big Mac.LC Language Card Supplement
	Table of Contents
	EXEC MODE
	EDITOR
	ASSEMBLER
	GENERAL
	USE WITH SHIFT KEY MODIFICATIONS
	USE WITH 80 COLUMN BOARDS
	THE CONFIGURE ASM PROGRAM
	SPECIAL CONSIDERATIONS
	MEMORY MAP
	Symbol Cross-Reference for BIG MAC

