

Assembly Cookbook
for the AppleTM II/IIe

(part two)

by

Don Lancaster

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

ISBN: 978-1-882193-17-2

http://www.tinaja.com

Copyright c 1984, 2011 by Don Lancaster and Synergetics Press

Thatcher, Arizona 95552

THIRD EDITION

FIRST PRINTING 2011

All rights reserved. Reproduction or use, without

express permission of editorial or pictorial content,

in any manner, is prohibited. No patent liability is

assumed with respect to the use of the information

contained herein. While every precaution has been

taken in the preperation of this book, the publisher

assumes no responsibility for errors or omissions.

Neither is any liability assumed for damages resulting

from the use of the information contained herein.

International Standard Book Number: 978-1-882193-17-2

part II
The Ripoff Modules

How TO UsE THE RIPOFF MoDULES • 205

0

THE EMPTY SHELL • 211

A framework you can use to create most any machine language program
of your choosing.

1

FILE BASED PRINTER • 229

The standard way to output short and fixed text messages using a
common message file.

2

IMBEDDED STRING PRINTER • 251

A much better way to "mix and match" fixed test messages that are
imbedded directly into your source code.

3

MONITOR TIME DELAY • 267

How to use the Apple's WAIT subroutine for animation and other system
timing needs.

4

OBNOXIOUS SOUNDS • 287

A multiple sound-effects generator that "calculates" lots of different
sounds with minimum code.

5

MusiCAL SoNGS • 301

The standard "red book tones" method of making music, along with a
few improvements an'd upgrades.

6

OPTION PICKER • 321

How to do menu options or pick modules using the forced subroutine
return method.

7

RANDOM NUMBER • 345

A fast and usable way to generate "random" numbers, without the fatal
flaws of the Applesloth "RND" code.

8

SHUFFLE • 363

An extremely fast "random exchange" method of rearranging an array of
numbers or file values.

Appendixes

A

DIFFERENCES BETWEEN "OLD" AND "NEw" EDASM • • • • • • • • • • • • • • • • • • 381

8

SOME NAMES AND NUMBERS • 387

c

LABEL LisTs TO CoPY • 393

INDEX • 399

CoMPANION DlsKmE AND VoiCE HoTLINE • 407

part two
The Ripoff Modules

by

Don Lancaster

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

ISBN: 978-1-882193-17-2

http://www.tinaja.com

HOW TO USE THE RIPOFF

MODULES

The Ripoff Modules are a series of nine interactive demos designed
to show you how to handle many common Apple machine language
programming problems. Each module is listable, completely docu·
mented, and out in the open where you can easily access it.

I've tried to emphasize what really gets used, since just. about all
programming books and most program libraries center on largely out
dated, cumbersome, and irrelevant dino stuff, rather than answering
the real gut questions, such as "What's the best way to handle lots of
text messages that might be mixed and matched together?" "Can I do
a fast and well-behaved random number generator?" "Show me how
to handle sound effects and musical·songs;" or "How can I quicklv
shuffle cards or rearrange array values?"

Originally, I wanted to have lots of short demo modules. But, there
are so many different important things to learn in Apple assembly lan
guage that there is simply no way to cram everything into a single
book. So, instead, I decided to take the nine things that beginning
assembly students seem to have the most trouble with, and expand on
these in some depth.

All nine modules and bunches of other goodies are also available on
a sanely priced and crammed-full companion diskette, which you can
order using the card in the back of this book.

Naturally, full source code is included for each and every module.
Of course, the diskette is totally unlocked, unprotected, and fully
copyable. You have your choice of EDASM or S-C Assembler formats.

205

206 How to Use the Ripoff Modules

Most other assemblers will accept either of these formats, or else will
provide a way to convert them.

A companion voice hotline service goes with this support diskette,
similar to the hotline that is provided to Enhancing users. This support
service is free, except for the usual phone charges.

You are, of course, totally free to adapt and use these ripoff modules
in any way you want for any purpose. just play fair. Give credit for any
commercial use and donit try to compete head on.

Most ordinary Apple modules and subroutines are result oriented.
This means that they are trying to get some job done as quickly and as
compactly as possible. Our ripoff modules are method oriented
instead. I have picked the modules to show you certain ways of han
dling different programming tasks. I've tried to make each method as

mainstream and innovative as possible.
Which means that most of these modules will not have you gripping

the edge of your chair in suspense, or rolling in the aisles with laugh
ter over what they are actually doing. The modules are not intended
to be arcade-quality entertainment, nor are they supposed to give you
spectacular results, when used one at a time by themselves. The mod
ules are intended instead to be a learning tool that shows you how to
tackle the real gut issues involved in creating your own Apple
machine language programs.

There are lots of ways you can use the ripoff modules .

USING THE RIPOFF MODULES

Read about them
Run them
List them
Tear them apart

Study them
Change them
Adapt thern
Close the loop

Here's how to claim these modules as your own; and to add them
to your own programs: First read the background text that goes with
each module, so you can see what the module is intended to do. It
turns out that any particular programming technique works well for
some range of complexity, and may be overkill for simpler things and
cumbersome or inefficient for very elaborate jobs. So, be sure you
understand the intended use of each module, along with any simpler
or more complex alternatives.

Next, run the program and watch or listen to it doing its thing. Since
many of the modules will stand on their own, what they do will be
pretty much limited to pointing out how they work and how they han
dle a certain task. In some cases, I've "trumped up" a simple example
of something complex that the module is supposed to handle. Now,
there may be a better way to get the result shown by the simple exam
ple, but, once again, that's not our point or purpose. We're after
method here.

Assembly Cookbook for the Apple 1111/e 207

Then, reset to the monitor and list the program. Use the "tearing
method" from Enhancement 3 of Enhancing Your Apple II, Volume I
(Sams 21822). Color code each and every disassembled line with a
page highlighter, following the tearing guidelines. Do this before you
study the actual source code in depth. The reason is to gain practice
reading and understanding machine language listings, particularly for
those modules or programs for which you do not have source code.

The next step is to compare your "torn" listing against the actual
source code shown here in these modules, to be sure you understand
exactly what is happening when.

So much for the analysis. When you understand the point and pur
pose of each module, try some synthesis.

Capture a copy of the source code for the module, using an assem
bler of your choice. Then, make some fairly simple changes in the
source code, so it will do something "alike but different somehow."
Save this to a new diskette, and then assemble and run your new
object code. After that, add some bells and whistles to the module's
demo so it becomes longer, more interesting, or more exciting.

Now the fun begins. Rewrite the module source code one more
time. Only now, make it do something you _want it to do in the way
you want it done, rather than the way that is shown here. Test your
object code, and then actually use it in a larger program of your
choosing.

Needless to say, the more time and effort you spend in understand
ing and capturing these modules, the more value they will be to you.

Finally, close the loop. Use the response card in back or call the
hotline to let me know how you have used the existing modules and
which new ones you need or would like to see.

Some of the later modules will "borrow" portions of earlier ones to
keep the code simple and not reinvent the wheel. We have tried to
note what is needed where. The companion diskette also includes an
object code program called THE WHOLE BALL OF WAX, which com
bines all of the ripoff modules together all at once, along with a unify
ing demo.

Here's a summary of the ripoff modules and what they are intended
to do ...

208 How to Use the Ripoff Modules

RIPOFF MODULE SUMMARY

0. THE EMPTY SHELL-

A framework you can use to create most any machine lan
guage program of your choosing.

1. FILE BASED PRINTER-

The standard way to output short and fixed text messages
using a common message file.

2. IMBEDDED STRING PRINTER-

A much better way to "mix and match" f�xed text messages
that are imbedded directly into your source code.

3. MONITOR TIME DELAY-

How to use the Apple's WAIT subroutine for animation and
other system timing needs.

4. OBNOXIOUS SOUNDS-

A multiple sound effects generator that "calculates" lots of
different sounds with minimum code.

Assembly Cookbook for the Apple lillie 209

5. MUSICAL SONGS-

The standard "red book tones" method of making music,
along with a few improvements and upgrades.

6. OPTION PICKER-

How to do menu options or pick modules using the forced
subroutine return method.

7. RANDOM NUMBERS-

A fast and usable way to generate "random" numbers with
out the fatal flaws of the Applesloth "RN D" code.

8. SHUFFLE-

An extremely fast "random exchange" method of rearrang
ing an array of numbers or file values.

The ripoff modules each take up one to three pages of memory.
Together they sit from hex $6000 through $7300. The location of each
module is shown in its source code.

If you want to interact between Applesloth and these modules, just
do a HIMEM: 24575 as your first program line. This will protect the
module space from being plowed. You can access the code on a PEEK
and POKE basis, using your copy of The Hexadecimal Chronicles
(Sams 21802) to show you the linking points.

One thing we have not, and will not do, is show you BASIC equiva
lents for the ripoff modules. The whole point of learning assembly lan
guage programming is to do so in ways that optimize the use of
machine language. Thus, you never do something the way BASIC
does. That's not even wrong. Only dumb.

On to the modules ...

I THE EMPTY SHELL

a framework you can use to
create most any machine lan
guage program

I

Here are 500 lines of source code that do-absolutely nothing! It's
called the empty shell and you use it as a framework for building your
own source codes.

Actually, you'll find the empty shell doing lots of good things for
you. Since it is usually much easier to edit existing code than to enter
new code on most assemblers, the empty shell makes writing your
custom source codes much faster. Secondly, the empty shell forces
you to put decent documentation into the program ahead of time,
rather than waiting until the last minute and then not doing it. This
also keeps your style consistent from program to program.

The empty shell should also give you code that is far cleaner and
more understandable. Finally, and most conveniently, the empty shell
contains a long machine readable list of practically all of the useful
Apple II and lie subroutines and entry points. Rather than looking
these up in a dozen different places, you simply eliminate the ones
you do not want.

The empty shell is, of course, structure, and as we've seen, structure
of any sort in a computer program is inherently despicable and evil.
Nonetheless, we will use the sixteen part structure we looked at back
in chapter four.

211

212 Ripoff Module 0

All the rest of the ripoff modules will show us examples of how the
empty shell works and how to use it.

But, where do you start? . . .

To use the EMPTY SHELL.SOURCE, first
eliminate what you do not want or need.
This is best done backward from end to
beginning.

Then, edit or change what is left to create
your new source code. This is usually
done frontward from start to finish.

First, of course, you will want to customize and personalize your
own EM PTY SHELL.SOURCE by putting your own name, company,
and copyright notice where mine now are. Do not rewrite to the com
panion diskette. Instead, save everything new on your own new disk
ettes. That way, you can always return to the originals if disaster
strikes.

The Empty Shell 213

Here's some more detail on how to go about .

USING THE EMPTY SHELL

1. Assemble EMPTY SHELL.SOURCE and make an assembly listing
hard copy. Then reload EMPTY SHELL.SOURCE into your
assembler or "new way" word processor.

2. Start at the end of the source code and eliminate what you do not

want. First, check the last line and decide whether you want to use
LST OFF or LST ON. LST ON is a good choice for early program
versions.

3. Decide how long your program files are to be. If you are using no
DFB style files, or if you need less than 256 bytes of single-byte file
values, then shorten the DFB section by deleting lines. If you need
more file bytes, extend by copying.

4. Go to your hard copy and check off the hooks and constants you
are going to use. If you are "old way" editing, put these in
alphabetical order and then copy them to the end of their source
code listings. Then delete all the unused hooks and constants.

5. Begin editing from the first line. Change the origin, then the title
box. Continue editing by rewriting the "What it does," "How to
use it," "Gotchas," "Enhancements," and "Random Comments."
Don't worry too much about getting these perfect, since you will
almost certainly change them as you edit and debug your source
code.

6. Add any new hooks and constants that you want to predefine.

7. Enter your high level code and the documentation for the big
lumps. Overwrite the NOPs with actual code and comments.
Should you need more room, go to the assembler's insert mode
and continue.

8. Do the same thing for the little lumps and the crumbs. Then enter
your file values.

9. Assemble your new source code and do an assembler listing. Then
repair all errors and repeat the process until you get an "error
free" result.

10. Eliminate any spurious lines and comments that may be left over
from the original and reassemble.

11. Test your code, and proceed debugging from here just as you
would with any other source code.

I've tried to include a fairly complete list of hooks. But note that not
every hook will work on every version Apple. For instance, STEP and
TRACE will only run with an old autostart ROM, while VBL and
AL TCSON will only perform on an Apple lie.

By the way, I've shortened some of the lie labels so they are only
seven or fewer characters long. You may prefer to use the "official"
labels instead.

214 Ripoff Module 0

If you use any '1version-specific" Apple features, be sure to include
tests in your program to make sure you have the right machine in use.
In general, most "mainstream" autostart programs will run on a lie,
but programs that make use of new lie features will not work on older
versions, and may even hang. If you must use some of the "oldies but
goodies," it may be best to drag along the needed code inside your
own program. Stock 10 routines are included with "new" EDASM.

Should you be "new way" editing your empty shell, just delete any
thing unwanted or unneeded as it comes up. Once again, it is best to
work from bottom to top in reverse order.

The easiest "old way" means of getting rid of extra and unwanted
hooks is to copy those you need to the end of the hook listing and
then delete all of the original hooks in one swell foop. With "new
way" editing, just chop out what you don't need on the way by.

Since EMPTY SHELL.SOURCE is so complete, it ends up a tad long
and rather slow in loading. After you have worked with it for a while,
you might like to do a "short form" version of EMPTY SHELL.SOURCE
that more meets your specific programming needs. If you do this,
keep a printed copy of the original on hand for reference.

A tip . . .

ALWAYS do some minor fixup and pretty
printing at the same time you make any
important source code corrections.

Whenever you are fixing up fatal errors and making heavy changes
in your source code, spend some time to clean up your documenta
tion, improve page breaks, insert spacing, do pretty printing, eliminate
unwanted lines, and cosmetic stuff like this. Each reassembly should
include both heavy and light repairs.

A good goal is one line of cosmetic fix for each line of heavy fix.
This way, by the time you finally get your program debugged and

working, it also will be pretty much properly documented and attrac
tive to look at. Whatever you do, don't save the documentation for
last. Start with your documentation. Sharpen, improve, clarify as you
go along.

All the rest of the ripoff modules were written using the EMPTY
SHELL.SOURCE. Use these as study examples, and then work up your
own custom shell that meets your personal programming needs.

The Empty Shell 215

MIND BENDERS

Write a WPL program that
automates your empty shell setup,
through use of prompts and
directed questions.

If your "new way" word processor
has glossary or user-defined keys,
show how to use these for single
key macros and other speedup
tricks.

Solve the new way tabbing
problem so that active source code
lines position themselves correctly,
yet comment lines remain intact.

What tests should your source
code include to make sure of .

-uppercase vs lowercase?
-II vs lie?
-40 vs 80 column?
-paddles vs joystick?
-joystick orientation?

2 7 6 Ripoff Module 0

PROGRAM RM·O
THE EMPTY SHELL

NEXT OBJECT FILE NAME IS EMPTY SHELL
6000: 3 ORG $6000 ORIGIN GOES HERE

6000: 5 '

6000: 6
6000: 7

6000: 8
6000: 9
6000: 10
6000: 11
6000: 12
6000: 13
6000: 14
6000: 15
6000: 16
6000: 17
6000: 18
6000: 19
6000: 20
6000: 21
6000: 22
6000: 23

'6000: 25

6000: 27
6000: 28
6000: 29
6000: 30
6000: 31
6000: 32

6000: 34

6000: 36
6000: 37
6000: 38
6000: 39
6000: 40
600·0: 41

* *
* -< THE EMPTY SHELL >- *
* *
* (DUMMY PROGRAM) *
* *
* VERSION 1.0 ($6000-$6160) *
* *
* 5-24-83 *
* *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS PROGRAM IS A DUMMY SHELL USED AS A STARTING
POINT FOR YOUR OWN ASSEMBLY LANGUAGE PROGRAMS.

***' HOW TO USE IT ***

TO USE, EDIT THE PROGRAM BY MOVING THE ORIGIN,
CHANGING THE TITLE, REMOVING EXTRA EQU'S, ADDING
YOUR OWN WORKING CODE, ALTERING THE DATA FILES
AND DOING WHATEVER ELSE MAY BE NEEDED TO BUILD
YOUR OWN CUSTOM ASSEMBLED PROGRAM OR MODULE.

PROGRAM RM-0, CONT'D .

6000:

6000:

6000:

6000:

6000:

6000:
6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

6000:

44

46

47

48

49

so
51

53

55

56

57

58

59

60

62

64

65

66

67

68

69

The Empty Shell 217

*** GOTCBAS ***

ANYTHING ESSENTIAL FOR USE. OR UNDERSTANDING OF THE
PROGRAM GETS PUT HERE. THIS INCLUDES SPECIAL NEEDS
S UCH AS EXTRA MEMORY, ANY COMPANION CODE MODULES, OR
ANY SPECIAL HARDWARE.

*** ENHANCEMENTS ***

PUT ANY ADD-ONS, "EXTRA TRICKS", OR SPECIAL
USES HERE. INCLUDE USE TIPS AND APPLICATIONS.

*** RANDOM COMMENTS ***

IF THERE IS SOMETHING ELSE YOU WANT TO SAY THAT'S
NOT ALL THAT IMPORTANT, YOU CAN ADD IT IN THIS SPACE.

218 Ripoff Module 0

PROGRAM RM·O, CONT'D.

6000: 72 1 *** BOOKS ***

0020: 74 WNDLFT EQU $20 SCROLL WINDOW LEFT
0021: 7 5 WNDWDTH EQU $21 SCROLL WINDOW WIDTH
0022: 76 WNDTOP EQU $22 SCROLL WINDOW TOP
0023: 77 WNDBOT EQU $23 SCROLL WINDOW BOTTOM
0024: 78 CB EQU $24 CURSOR HORIZONTAL
0025: 79 cv EQU $25 CURSOR VERTICAL
0026: 80 GBASL EQU $26 LORES BASE LOW
0027: 81 GBASH EQU $27 LORES BASE HIGH
0028: 82 BASL EQU $28 TEXT BASE LOW
0029: 83 BASH EQU $29 TEXT BASE HIGH
002C: 84 BEND EQU $2C J LORES RIGHT END H LINE
002D: 85 VBOT EQU $2D LORES BOTTOM OF V LINE
0030: 86 COLOR EQU $30 J LORES COLOR
0031: 87 INVFLG EQU $31 NORMAL/INVERSE /FLASH (FF,7F,3F)
0033: 88 PROMPT EQU $33 HOLDS PROMPT SYMBOL
0036: 89 CSWL EQU $36 OUTPUT CHARACTER HOOK LOW
0037: 90 CSWH EQU $37 OUTPUT CHARACTER HOOK HIGH
0038: 91 KSWL EQU $38 INPUT CHARACTER HOOOK LOW
0039: 92 KSWH EQU $39 INPUT CHARACTER HOOK HIGH
004E: 93 RNDL EQU $4E RANDOM NUMBER LOW
004F: 94 RNDH EQU $4F RANDOM NUMBER HIGH

0100: 96 STACK EQU $0100 STACK PAGE A CCESS

0200: 98 KEYBUF EQU $0200 KEYBUFFER START

03DO: 100 DOSWRM EQU $03DO DOS WARM START JMP
03D3: 101 DOSCLD EQU $03D3 DOS COLO START JMP
03D6: 102 DOSFLM EQU $03D6 DOS FILE MANAGER JUMP
03D9: 103 DOSRWTS EQU $03D9 DOS RWTS JUMP
03DC: 104 DOSIPRM EQU $03DC DOS FILE PARAMETER FIND JUMP
03E3: 105 DOSRWLS EQU $03E3 DOS RWTS PARAMETER FIND JUMP
03EA: 106 DOSHOOK EQU $03EA DOS HOOK RECONNECT JUMP
03FO: 107 BRK EQU $03FO BREAK ADDRESS (AUTOSTART& 2E ONLY!)
03F2: 108 SOFTEV EQU $03F2 SOFT RESE T (AUTOSTART & 2E ONLY!)
03F4: 109 PWRDUP EQU $03F4 WARM START E OR CHECKSUM
03F5: 110 AMPERV EQU $03F5 J APPLESOFT "&" JUMP
03F8: 111 USRADR EQU $03F8 CTRL-Y JUMP
03FB: 112 NMI EQU $03FB NON-MASKABLE INTERRUPT JUMP
03FE: 113 IRQLOC EQU $03FE INTERRUPT ADDRESS LOW

0400: 115 TEXTP1 EQU $0400 J START OF TEXT PAGE ONE
0800: 116 TEXTP2 EQU $0800 START OF TEXT PAGE TWO
2000: 117 HIRESP1 EQU $2000 J START OF HIRES PAGE ONE
4000: 118 HIRESP2 EQU $4000 START OF HIRES PAGE TWO

The Empty Shell 219

PROGRAM RM-0, CONT'D . . .

COOO: 121 IOADR EQU $COOO KEYBOARD INPUT
COlO: 122 KBDSTR EQU $COlO KEYSTROBE RESET
C020: 123 TAPEOUT EQU $C020 J CASSETTE OR AUDIO OUT
C030: 124 SPKR EQU $C030 SPEAKER CLICK OUTPUT
C040: 12S STROBE EQU $C040 GAME CONNECTOR STROBE
COSO: 126 TXTCLR EQU $COSO GRAPHICS ON SOFT SWITCH

COSl: 127 TXTSET EQU $COS1 TEXT ON SOFT SWITCH
COS2: 128 MIXCLR EQU $COS2 FULL SCREEN SOFT SWITCH
COS3: 129 MIXSET EQU $COS3 MIXED SCREEN SOFT SWITCH
COS4: 130 LOWSCR EQU $COS4 PAGE ONE SOFT SWITCH
COSS: 131 HISCR EQU $COSS PAGE TWO SOFT SWITCH
COS6: 132 LORES EQU $COS6 LORES SOFT SWITCH

COS7: 133 HIRES EQU $COS7 HIRES SOFT SWITCH
C060: 134 PB4 EQU $C060 CASS IN + "FOURTH" PB INPUT "SW3"
C061: 13S PBl EQU $C061 OPEN A.PPI1E + "FIRST" PB INPUT "SWO"

C062: 136 PB2 EQU $C062 CLOSED APPLE + "SECOND" PB INPUT "S
C063: 137 PB3 EQU $C063 "THIRD" PUSHBUTTON INPUT "SW2"
C064: 138 POLO EQU $C064 GAME PADDLE 0 ANALOG IN
C06S: 139 POLl EQU $C06S GAME PADDLE 1 ANALOG IN
C066: 140 PDL2 EQU $C066 GAME PADDLE 2 ANALOG IN
C067: 141 PDL3 EQU $C067 GAME PADDLE 3 ANALOG IN
C070: 142 PTRIG EQU $C070 ANALOG PADDLE RESET

COSO: 144 STEPOO EQU $COSO DISK STEPPER PHASE 0 OFF
C081: 14S STEPOl EQU $C081 DISK STEPPER PHASE 0 ON
C082: 146 STEPlO EQU $C082 DISK STEPPER PHASE 1 OFF
C083: 147 STEPll EQU $C083 DISK STEPPER PHASE 1 ON
C084: 148 STEP20 EQU $C084 DISK STEPPER PHASE 2 OFF
OOOC: 149 STEP21 EQU $COBS DISK STEPPER PHASE 2 ON

C086: 150 STEP30 EQU $C086 DISK STEPPER PHASE 3 OFF
C087: lSl STEP31 EQU $C087 DISK STEPPER PHASE 3 ON
COBB: 1S2 MOTON EQU $C088 DISK MAIN MOTOR OFF
C089: 1S3 MOTOFF EQU $C089 DISK MAIN MOTOR ON
C08A: 154 DRVOEN EQU $C08A DISK ENABLE DRIVE 1
COBB: lSS DRVlEN EQU $COBB DISK ENABLE DRIVE 2

C08C: 1S6 Q6CLR EQU $C08C .• DISK Q6 CLEAR ,

COSO: 1S7 Q6SET EQU $C08D DISK 06 SET
C08E: 1S8 07CLR EO{J $C08E DISK 07 CLEAR
COBF: 1S9 Q7SET EQU $C08F DISK 07 SET

EOOO: 161 BASICLD EQU $EOOO ENTER BASIC COLD
E003: 162 BASICWM EQU $E003 RE-ENTER BASIC WARM

'

F3D8: 164 HGR2 EQU $F3D8 APPLESOFT CLEAR TO HIRES 2
F3E2: 16S HGR EQU $F3E2 APPLESOFT CLEAR TO HIRES 1
F3F4: 166 BKGND EQU $F3F4 APPLESOFT HIRES BACKGROUND CLEAR
F6FO: 167 HCOLOR EQU $F6FO APPLESOFT HIRES COLOR SELECT
F411: 168 HPOSN EQU $F411 APPLESOFT HIRES POSITION
F4S7: 169 HPLOT EQU $F4S7 J APPLESOFT HIRES PLOT

220 Ripoff Module 0

PROGRAM RM-0, CONT'D . . .

F800: 172 PLOT EQU $F800 PLOT LORES BLOCK
F819: 173 HLINE EQU $F819 BORIZ LORES LINE
F828: 174 VLINE EQU $F828 J VERTICAL LORES LINE
F832: 175 CLRSCR EQU $F832 CLEAR FULL LORES SCREEN
F836: 176 CLRTOP EQU $FB36 CLEAR TOP. LORES SCREEN
F847: 177 GBSCALC EQU $F847 LORES BASE CALCULATION
F85F: 178 NEXTCOL EQU $F85F INCREASE LORES COLOR BY 3
F864: 179 SETCOL EQU $F864 SET LORES COLOR
F871: 180 SCRN EQU $F871 READ LORES SCREEN COLOR
F941: 181 PRNTAX EQU $F941 OUTPUT A THEN X. AS HEX
F949: 182 PRBLNK EQU $F948 OUTPUT 3 SPACES VIA BOOKS
�.94A: 183 PRBL2 EQU $F94A OUTPUT X BLANKS VIA HOOKS

FAD7: 185 REGDSP EQU $FAD7 DISPLAY WORKING REGISTERS
FB1E: 186 PREAD EQU $FB1E READ GAME PADDLE X
FB2F: 187 INIT EQU $FB2F INITIALIZE TEXT SCREEN
FB93: 188 SETTXT EQU $FB93 SET UP TEXT SCREEN (NOT 2E!)
FB40: 189 SETGR EQU $FB40 SET UP GRAPHICS SCREEN
FB4B: 190 SETWND EQU $FB4B SET NORMAL TEXT WINDOW
FBCl: 191 BASCALC EQU $FBC1 CALCULATE TEXT BASE ADDRESS (NOT 2E!}
FBD9: 192 BELL1 EQU $FBD9 BEEP SPEAKER IF CTRL-G
FBE4: 193 BELL2 EQU $FBE4 BEEP SPEAKER ONCE
FBF4: 194 ADVANCE EQU $FBF4 TEXT CURSOR ONE TO RIGHT
FBFD: 195 VIDOUT EQU $FBFD OUTPUT ASCII TO SCREEN ONLY

FC10: 197 BS EQU $FC10 BACKSPACE SCREEN
FC1A: 198 UP EQU $FC1A MOVE SCREEN CURSOR UP ONE LINE
FC22: 199 VTAB EQU $FC22 VERTICAL SCREEN TAB USING CV

FC24: 200 VTABA EQU $FC24 VERTICAL SCREEN TAB USING A
FC66: 201 ESC1 EQU $FC66 PROCESS ESCAPE CURSOR MOVES
FC42: 202 CLREOP EQU $FC42 CLEAR TO END OF PAGE
FC58: 203 HOME EQU $FCS8 CLEAR TEXT SCREEN AND HOME CURSOR
FC62: 204 CR EQU $FC62 CARRIAGE RETURN TO SCREEN
FC66: 205 LF EQU $FC66 LINEFEED TO SCREEN ONLY
FC70: 206 SCROLL EQU $FC70 SCROLL TEXT SCREEN UP ONE
FC9C: 207 CLEOL EQU $FC9C CLEAR TEXT TO END OF LINE
FCA8: 208 WAIT EQU $FCA8 TIME DELAY SET BY ACCUMULATOR
FDOC: 209 RDKEY EQU $FDOC J GET INPUT CHARACTER VIA HOOKS
FD1B: 210 KEYIN EQU $FD1B READ THE APPLE KEYBOARD
FD35: 211 RDCHAR EQU $FD35 GET KEY AND PROCESS ESC A-F
FD62: 212 CANCEL EQU $FD62 J CANCEL KEYBOARD LINE ENTRY
FD67: 213 GETLNZ EQU $FD67 CR THEN GET KEYBOARD INPUT LINE
FD6A: 214 GETLN EQU $FD6A GET KEYBOARD INPUT LINE
FD6F: 215 GETLN1 EQU $FD6F GET KBD INPUT, NO PROMPT
FD8B: 216 CROUT! EQU $FD8B CLEAR EOL THEN CR VIA BOOKS
FD8E: 217 CROUT EQU $FD8E OUTPUT CR VIA HOOKS
FDDA: 218 PRBYTE EQU $FDDA OUTPUT FULL A IN HEX TO HOOKS
FDE3: 219 PRHEX EQU $FDE3 OUTPUT LOW A IN HEX TO HOOKS
FDED: 220 COOT EQU $FDED OUTPUT CHARACTER VIA HOOKS
FDFO: 221 COUTl EQU $FDFO J OUTPUT CHARACTER TO SCREEN

PROGRAM RM-0, CONT'D . . .

FE2C:
FE36:
FESE:
FE63:
FE80:
FE84:
FE93:
FEBO:
FEB3:
FEC2:
FEC4:
FECD:
FEFD:
FF2D:
FF3A:
FF3F:
FF4A:
FF58:
FF'S9:
FF65:
FF69:
FFA7:

224 MOVE EQU $FE2C
225 VERIFY EQU $FE36
226 LIST EQU $FESE
227 LIST2 EQU $FE63
228 SETINV EQU $FE80
229 SETNORM EQU $FE84
230 SETVID EQU $FE93
231 XBASIC EQU $FEBO
232 BASCON EQU $FEB3
233 TRACE EQU $FEC2
234 STEP EQU $FEC4
235 WRITE EQU $FECD
236 READ EQU $FEFO
237 PRERR EQU $FF2D
23S BELL EQU $FF3A
239 IORESR EQU $FF3F
240 IOSAVE EQU $FF4A
241 RETURN EQU $FFSS
242 OLDRST EQU $FF59
243 MON EQU $FF65
244 MONZ EQU $FF69
245 GETNUM EQU $FFA7

The Empty Shell 221

MOVE BLOCK OF MEMORY
VERIFY BLOCK OF MEMORY
DISASSEMBLE 20 INSTRUCTIONS
DISASSEMBLE •A• INSTRUCTIONS
PRINT INVERSE TEXT TO SCREEN
PRINT NORMAL TEXT TO SCREEN
GRAB OUTPUT HOOKS FOR SCREEN
GO BASIC, DESTROYING OLD
GO BASIC, CONTINUING OLD
START TRACING (OLD ROM ONLY!)
SINGLE STEP (OLD ROM ONLY!)

J WRITE TO CASSETTE TAPE
READ FROM CASSETTE TAPE
PRINT "ERR" TO OUTPUT HOOK
OUTPUT BELL TO HOOKS
RESTORE ALL WORKING REGISTERS
SAVE ALL WORKING REGISTERS
"GUARANTEED" RETURN
OLD RESET, NO AUTOSTART
ENTER MONITOR AND BEEP SPEAKER
ENTER MONITOR QUIETLY
ASCII TO HEX IN 3E & 3F

6000: 247 *** HOOKS FOR 2E ONLY! ***

COOO:
COOl:
C002:
C003:
C004:
COOS:
C006:
C007:

COOS:
C009:
COOA:
COOB:
COOC:
COOD:
COOE:
COOF:

249 CLRSOCO EQU
250 SETSOCO EQU
251 .RAMRDMN EQU
252 RAMRDAX EQU
2 53 RAMWRMN EQU
254 RAMWRAX EQU
255 SLOTXRM EQU
256 SLOTXEX EQU

$COOO
$COOl
$C002
$C003
$C:004
$COOS
$C006
$C007

25S MAINZP EQU $COOS
259 ALTZP EQU $C009
260 SLOT3RM EQU $COOA
261 SLOT3EX EQU $COOB
262 OFFSOCL EQU $COOC
263 ONSOCOL EQU $COOD \

264 ALTCSOF EQU $COOE
265 ALTCSON EQU $COOF

SO STORE OFF (WRITE ONLY)
SO STORE ON (WRITE ONLY)
READ MAIN MEMORY (WRITE ONLY)
READ AUXILIARY MEMORY (WRITE ONLY)
WRITE MAIN MEMORY (WRITE ONLY)
WRITE AUXILIARY MEMORY (WRITE ONLY)
INTERNAL ROM AT CXOO (WRITE ONLY)
SLOT ROM AT CXOO (WRITE ONLY)

USE MAIN ZERO PAGE (WRITE ONLY)
USE ALTERNATE ZERO PAGE (WRITE ONLY)
SLOT 13 INTERNAL ROM (WRITE ONLY)
SLOT 13 EXTERNAL ROM (WRITE ONLY)
TURN SO COLUMN OFF (WRITE ONLY)
TURN 80 COLUMN ON (WRITE ONLY)
USE MAIN CHARACTER SET (WRITE ONLY)

J USE ALT CHARACTER SET (WRITE ONLY)

222 Ripoff Module 0

PROGRAM RM-0, CONT'D • . .

C013: 268 RAMRDS EQU $C013 1 READ RAMREAD SWITCH (READ ONLY)
C014: 269 RAMW'l'S EQU $C014 , READ RAMWRITE SWITCH (READ ONLY)
COlS: 270 SLTCXS EQU $C015 , READ SLOT CX SWITCH (READ ONLY)
C016: 271 ALTZPS EQU $C016 , READ ZERO PAGE SWITCH (READ ONLY)
C017: 272 SLTC3S EQU $C017 READ SLOT C3 SWITCH (READ ONLY)

C018: 274 S80STR EQU $C018 READ 80STORE SWITCH (READ ONLY)
C019: 275 VBL EQU $C019 VERT. BLANKING >80=BLANK (READ ONLY)
COlA: 276 TEXTS EQU $COlA READ TEXT SWITCH (READ ONLY)
COlB: 277 MIXEDS EQU $C01B READ MIXED GR SWITCH (READ ONLY)
COlC: 278 PAGE2S EQU $C01C READ PAGE 2 SWITCH (READ ONLY)
COlD: 279 HIRESS EQU $COlD READ HIRES SWITCH (READ ONLY)
COlE: 280 ALTCSS EQU $COlE READ ALTCHAR SET SWITCH (READ ONLY)
COlF: 281 SSOCOL EQU $C01F READ SO COLUMN SWITCH (READ ONLY)

COSO: 283 RB2RAM EQU $COSO READ BANK 2 RAM
COSl: 2S4 WB2RAM EQU $C081 WRITE BANK 2 RAM, READ ROM
COS2: 2B5 RROM EQU $COB2 READ ROM ONLY, NO WRITE
COB3: 2B6 RWRAM2 EQU $COS3 READ & WRITE RAM2 (HIT TWICE!)
COSB: 2B7 RRAMl EQU $COBS READ BANKl RAM
COB9: 2BB WRAMl EQU $COB9 WRITE BANKl RAM, READ ROM
COSA: 2B9 RBlROM EQU $COSA READ BANKl ROM
COBB: 290 RWRAMl EQU $COBB READ & WRITE RAMl (HIT TWICE!)

6000: 292 *** CONSTANTS ***

6000: 293 *** TEXTFILE COMMANDS ***

OOSS: 295 B EQU $S8 BACKSPACE
OOBD: 296 c EQU $BD CARRIAGE RETURN
0084: 297 D EQU $S4 DOS ATTENTION
008C: 29B F EQU $BC FORM FEED
OOB7: 299 G EQU $87 RING GONG
OOBA: 300 L EQU $SA LINEFEED
0060: 301 p EQU $60 FLASHING PROMPT
0000: 302 X EQU $00 END OF MESSAGE

PROGRAM RM-0, CONT' D .

6000:

6000:

6000:

6000:

6000:
6000:
6000:

6000:
6000:

6000:EA
600l:EA

6002:EA
6003:EA

6004:EA

6005:EA
6006:EA

6007:EA

6008:EA

6009:EA

600A:EA
600B:EA
600C:EA

600D:EA
600E:EA

600F:EA

6010:EA

6011:EA

6012:EA
6013:EA

6014:EA

6015:EA
6016:EA

6017:EA

6018:EA

6019:EA

601A:EA
601B:EA

601C:EA

601D:EA
601E:EA

601F:EA

305 ;

306

307 ;

309

310
311 ;
312

313
314

316 START1

317

318

319

320

321
322

323

325

326

327
328
329

330
331

332

334

335

336

337

338

339
340

341

343

344

345
346
347
348
349

350

*** BIG LUMPS ***

*** MAIN PROGRAM ***

*** HIGH LEVEL CODE ***

A DD ANY COMMENTS HERE THAT ARE

SPECIFIC TO THE BIG LUMPS.

NOP YOUR HIGH LEVEL
NOP AND GOES ON AS
NOP

NOP

NOP

NOP
NOP

NOP

NOP

NOP

NOP
NOP
NOP

NOP
NOP

NOP

NOP

NOP

NOP
NOP

NOP

NOP
NOP

NOP

NOP

NOP

NOP
NOP

NOP

NOP 1·
NOP

NOP

The Empty Shell 223

CODE STARTS HERE

FAR AS NEEDED.

224 Ripoff Module 0

PROGRAM RM-0, CONT'D .

6020: 353 , *** LITTLE LUMPS ***

6020: 354 *** HEAVY SUBROUTINE ***

6020: 355 *** SUPPORTING MODULE ***

6020:· 357 ADD ANY COMMENTS HERE THAT ARE

6020: 358 SPECIFIC TO THE LITTLE LUMPS.
6020: 359

6020: 360

6020: 361
6020: 362

6020:EA 364 START2 NOP YOUR MEDIUM LEVEL CODE STARTS
6021:EA 365 NOP HERE AND GOES ON AS FAR AS

6022:EA 366 NOP NEEDED.
6023:EA 367 NOP

6024:EA 368 NOP

6025:EA 369 NOP
6026:EA 370 NOP

6027:EA 371 NOP

6028:EA 373 NOP

6029:EA 374 NOP

602A:EA 375 NOP
602B:EA 376 NOP

602C:EA 377 NOP

602D:EA 378 NOP

602E:EA 379 NOP

602F:EA 380 NOP

6030:EA 382 NOP

6031:EA 383 NOP

6032:EA 384 NOP

6033:EA 385 NOP

6034:EA 386 NOP

6035:EA 387 NOP
6036:EA 388 NOP

6037:EA 389 NOP

6038:EA 391 NOP

6039:EA 392 NOP

603A:EA 393 NOP
603B:EA 394 NOP

603C:EA 395 NOP

603D:EA 396 NOP

603E:EA 397 NOP

603F:EA 398 NOP

The Empty Shell 225

PROGRAM RM-0, CONT'D.

6040: 401 *** STASH ***

6040: 402 **� THE CRUMBS ***

6040: 403 *** DETAIL SUBS ***

6040: 405 ADD ANY COMMENTS HERE THAT

6040: 406 ARE SPECIFIC TO THE CRUMBS.

6040: 407

6040: 408

6040: 409

6040: 410

6040:EA 412 START3 NOP YOUR LOW LEVEL CODE STARTS HERE AND

6041:EA 413 NOP INCLUDES ANY SHORT FILES THAT ARE

6042:EA 414 NOP RARELY CHANGE D.

6043:EA 415 NOP

6044:EA 416 NOP

6045:EA 417 NOP

6046:EA 418 NOP

6047:EA 419 NOP

6048:EA 421 NOP

6049:EA 422 NOP

604A:EA 423 NOP

604B:EA 424 NOP

604C:EA 425 NOP

604D:EA 426 NOP

604E:EA 427 NOP

604F:EA 428 NOP

6050:EA 430 NOP

6051:EA 431 NOP

6052:EA 432 NOP

6053:EA 433 NOP

6054:EA 434 NOP

6055:EA 435 NOP

6056:EA 436 NOP

6057:EA 437 NOP

6058:EA 439 NOP

6059:EA 440 NOP

605A:EA 441 NOP

605B:EA 442 NOP

605C:EA 443 NOP

605D:EA 444 NOP

605E:EA 445 NOP

605F:EA 446 NOP

226 Ripoff Module 0

PROGRAM RM-0, CONT' D •

6060: 449 *** MAIN FILES ***

6060: 451 7 ADD ANY COMMENTS HERE THAT ARE

6060: 452 SPECIFIC TO THE MAIN FILES.

6060: 453 7

6060: 454

6060: 455
6060: 456

6060:00 00 00 458 FILE1 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6063:00 00 00
6066:00 00
6068:00 00 00 459 FILE2 DFB $00,$00,$00,$00,$00,$00,$00,$00
6068:00 00 00
606E:OO 00
6070:00 00 00 460 FILE3 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6073:00 00 00
6076:00 00
6078:00 00 00 461 FILE4 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6078:00 00 00
607E:OO 00
6080:00 00 00 462 FILES DF8 $00,$00,$00,$00,$00,$00,$00,$00
6083:0() 00 00
6086:00 00
6088:00 00 00 463 FILE6 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6088:00 00 00
608E:OO 00
6090:00 00 00 464 FILE7 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6093:00 00 00
6096:00 00
6098:00 00 00 465 FILES DF8 $00,$00,$00,$00,$00,$00,$00,$00
6098:00 00 00
609E:OO 00
60AO:OO 00 00 466 FILE9 DF8 $00,$00,$00,$00,$00,$00,$00,$00
60A3:00 00 00
60A6:00 00
60A8:00 00 00 467 FILElO DF8 $00,$00,$00,$00,$00,$00,$00,$00
60A8:00 00 00
60AE:OO 00
6080:00 00 00 468 FILE11 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6083:00 00 00
6086:00 00
6088:00 00 00 469 FILE12 DF8 $00,$00,$00,$00,$00,$00,$00�$00
6088:00 00 00
608E:OO 00
60CO:OO 00 00 470 FILE13 DFB $00,$00,$00,$00,$00,$00,$00,$00
60C3:00 00 00
60C6:00 00
60C8:00 00 00 471 FILE14 DFB $00,$00,$00,$00,$00,$00,$00,$00
60C8:00 00 00
60CE:OO 00

The Empty Shell 227

PROGRAM RM·O, CONT' D • . .

6000:00 00 00 474 FILE15 DFB $00,$00,$00,$00,$00,$00,$00,$00
6003:00 00 00
6006:00 00
6008:00 00 00 4.75 FILE16 DFB $00,$00,$00,$00,$00,$00,$00,$00
6008:00 00 00
600E:OO 00
60EO:OO 00 00 476 FILE17 OFB $00,$00,$00,$00,$00,$00,$00,$00
60E3:00 00 00
60E6:00 00
60E8:00 00 00 477 FILE18 OFB $00,$00,$00,$00,$00,$00,$00,$00
60E8:00 00 00
60EE:OO 00
60FO:OO 00 00 478 FILE19 OF8 $00,$00,$00,$00,$00,$00,$00,$00
60F3:00 00 00
60F6:00 00
60F8:00 00 00 479 FILE20 OF8' $00,$00,$00,$00,$00,$00,$00,$00
60F8:00 00 00
60FE:OO 00
6100:00 00 00 480 FILE21 OF8 $00,$00,$00,$00,$00,$00,$00,$00
6103:00 00 00
6106:00 00
6108:00 00 00 481 FILE22 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6108:00 00 00
610E:OO 00
6110:00 00 00 482 FILE23 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6113:00 00 00
6116:00 00
6118:00 00 00 483 FILE24 DF8 $00,$00,$00,$00,$00,$00,$00,$00
611B:OO 00 00
611E:OO 00
6120:00 00 00 484 FILE25 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6123:00 00 00
6126:00 00
6128:00 00 00 485 FILE26 DFB $00,$00,$00,$00,$00,$00,$00,$00
6128:00 00 00
612E:OO 00
6130:00 00 00 486 FILE27 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6133:00 00 00
6i36:00 00
6138:00 00 00 487 FILE28 OF8 $00,$00,$00,$00,$00,$00,$00,$00
6138:00 00 00
613E:OO 00
6140:00 00 00 488 FILE29 DFB $00,$00,$00,$00,$00,$00,$00,$00
6143:00 00 00
6146:00 00
6148:00 00 00 489 FILE30 OFB $00,$00,$00,$00,$00,$00,$00,$00
614B:OO 00 00
614E:OO 00
6150:00 00 00 490 FILE31 DFB $00,$00,$00,$00,$00,$00,$00,$00
6153:00 00 00
6156:00 00
6158:00 00 00 491 FILE.12 DF8 $00,$00,$00,$00,$00,$00,$00,$00
6158:00 00 00
615E:OO 00

228 Ripoff Module 0

PROGRAM RM·O,' CONT' D •

6160:

6160:
6160:

494 ,

496
497

*** BOTTOM LINE COMMENTS ***

ADD ANY PINAL COMMENTS YOU PEEL
ARE NEEDED IN THIS SPACE.

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I FILE BASED PRINTER

the "standard" way to output
short and fixed text messages
by using a common message
file.

I

Outputting text is probably the most fundamental and most impor
tant task we would ever ask of a machine language Apple program.
You might want to use the text to create a printed record, to inform
the user via the video screen, or to pass a command to the disk
system.

It turns out that there is no ''best'' way to go about outputting text
from machine language. Instead, there are many different methods
you can pick. These methods are based on how many messages you
must output, on how long each message is, and on how changeable
the messages have to be.

Further, you have to decide just where your message is going to go
as well. Usually, to output a character, you get it from somewhere and
put it in the accumulator. Then you go to a text outputting subroutine
that puts the character where you want it to appear. You continue this
until some change occurs, such as a marker or length count. Then you
go on to the next task at hand.

229

230 Ripoff Module 1

Here are some possible . . .

PLACES TO OUTPUT TEXT

Direct store to the text screen
To COUT hook subroutine $FDFO
To COUT1 screen subroutine $FDED
To a HI RES character generator
To your own custom code

If you direct store to a screen location, you end up putting charac
ters on the screen in the shortest possible time, and you are always
sure exactly where on the screen the character is to go. As an exam
ple, a $C1 stored in $0400 puts an uppercase "A" in the upper left
hand screen position. But, the screen locations aren't mapped in an
obvious order, and you get into real hassles over carriage returns and
scrolls. There is also no simple way to get a hard copy of a direct
screen store. So, direct storing to the screen is usually limited to game
scores, status lines, and special effects, rather than being a mainstream
way of doing things.

Since outputting text is so important, there are two subroutines built
into the Apple's monitor, designed to do most text outputting tasks in
the way that most people want them done. One subroutine is called
COUT and is located at $FDED. This subroutine will output characters
to anything that is connected to the Apple by way of two character
hooks called CSWL and CSWH and located at $0036 and $0037.

Normally, DOS grabs these character hooks so that it can intercept
all output commands, just in case there is something intended for the
disk. In turn, DOS will take whatever was plugged into the output
hooks, and then plug these into itself.

For instance, a normal hard copy character will get routed from
your code to COUT, where it gets passed on to DOS, which checks it
for disk commands. The character is then passed on to a printer card,
whose code often begins at location $C1 00. The code will then send
the proper commands to the printer itself to print the character.
Finally, if you want it to, the printer card code will echo the character
on to the screen subroutine.

Which is very slow and roundabout. But this is the standard way of
outputting characters that can be routed to DOS, a printer, the screen,
or anywhere else you like. This process is extremely slow on the lie
when 80-column firmware is in use. So slow in fact, that you cannot
keep up with a 1200-baud modem and scroll the screen at the same
time.

The actual screen subroutine that puts the characters on the screen
is called COUT1 and sits at $FDFO. Good old "Fideyfoo." Fideyfoo
automatically keeps track of the horizontal and vertical character posi
tions, does scrolls, handles carriage returns, inverses, your choice of
flashing or lowercase, and takes care of most screen actions in the
way that most people want most of the time.

Fideyfoo has some locations on page zero reserved that let you pick
up special effects quickly and simply. For instance, the size of the
scrolling window is set by locations $20 through $24. The cursor hori-

File Based Printer 231

zontal and vertical position bytes CH and CV are located at $24 and
$25. Your choice of normal/inverse/flash is decided by INVFLG at
$31. And the screen prompt is stashed in $33. See the EMPTY

SHELL.SOURCE hooks for other locations of interest.
Here's how to remember when to use COUT or COUT1 ...

Use COUT at $FDED to slowly output a
character to DOS, a printer, the screen,
or anywhere else you want to send that
character. Hooks CSWL and CSWH at
$36 and $37 decide where the character
is to go.

Use COUT1 at $FDFO to rapidly output a
character only to the screen.

By the way, all these fancy subroutines do take time. It can take half
a millisecond just to get through COUT and the DOS code, and any
screen scrolls can hold up the works for four or more milliseconds.
These times are on older Apples; the lie is much worse in its 80-col
umn mode. So, it pays to go directly to the screen or output device if
speed is important.

It also pays to defeat any "screen echo" should you need top out
put speed. For instance, a HIRES graphics hard copy dump will be
dramatically slowed down if it has to wait for screen scrolling on echo.
For fastest possible speed, DOS could also be disconnected during
character output times. And fast modems are best used on a lie in its
40-column or "no-display" modes.

A third place to put your characters involves using a HIRES charac
ter generator to put your characters onto the HIRES screen. This type
of subroutine lets you mix and match graphics and lets you use lots of
different text fonts of varying sizes. You can also use special characters
to do animation with a HIRES character generator, since your letter
"G" is free to look like a frog's face, rather than a stock character. But
HIRE S character generators are usually rather slow and take bunches
of extra code inside your machine.

Normally, a HIRES character generator will grab the COUT hooks
"behind" DOS. Its use, once installed, will be pretty much the same
as using COUT. Naturally, a HIRES character generator only will dis
play on a HIRES screen and COUT1 will only display on a text screen.

A final place to put characters is to route them to your own custom
code subroutine. This lets you rearrange things to suit yourself. A
word processor is one example, where the messages all change from
use to use. A second example could be a special effects screen filter.
This one could "print" in oddball directions, and include delay,
sound effects, replacements, screen locking, whole-word breaks, col
umn justify, and most anything else you'd care to dream up.

Normally, you should avoid writing your own code if it more or less
duplicates what is already available as ready-to-go subroutines in the
Apple monitor. But special code can do special things special ways,
and sometimes can give you a tremendous programming advantage
over competitive programs.

An edge, even.
So, your first problem is to decide where your text is going to go.

232 Ripoff Module 1

Then, you have to pick some method of getting text to that destina
tion.

Here are the names of several more popular text outputting meth
ods, going from simple to complex ...

TEXT OUTPUTTING SCHEMES

Brute Force
Short File
Long File
Imbedded Text
Compacted

The brute force method is simple and obvious. "Give me a D!"
"Give me an 0!" "Give me a G!" And whaddaya got? A doggedly
cumbersome and very painful way to output text. Load the accumula
tor with the ASCII character for a D and then JSR your output code.
Then load the accumulator with an ASCII "0," and so on.

This method is so painful, that you would only want to use it for a
four-letter or shorter message, and then if that message was the only
one in the program. Among other problems, note that five bytes of
code are needed per character output.

The short file method is almost as obvious as the brute force
method. Put your characters in a file. End each message with some
marker, say an ASCII $00 or NUL. If you have to, create a second
pointer file to tell you where each message starts. The short file is usu
ally limited to 256 or fewer total characters.

The short file method uses indexed addressing to pick sequential
characters out of a file. For a detailed example, see the text
outenblatter in Volume II of Don Lancaster's Micro Cookbook (Sams
21829). Just for kicks, we will also use the short file method in the card
shuffler of Ripoff Module 8.

The short file method is limited to a few very short and fixed text
messages. But it is quick and simple to program, and may be all you
need.

The long file method removes the 256 character restriction, by
replacing 8-bit indexed loads with 16-bit indirect indexed loads. Your
messages can now be any length and you can have any number of
them, although there is a slight complication for more than 128 differ
ent messages at any time.

The long file method is more or less the "standard" way of handling
medium length text messages, and is what this ripoff module is all
about. We'll find out how your assembler can automate keeping track
of messages and message pointers, a� well as automatically entering
ASCII characters for you.

But, there are limits to the long file method. All your messages must
be known and all must be placed at one point in your code. The
imbedded text method of the next ripoff module very elegantly gets
around these restrictions, by letting you put any message you want,
any place you want, directly in your source code. You can mix and
match messages from any modules in your program, so long as one
"un-imbedding" subroutine is provided somewhere in your code.

File Based Printer 233

Both the long file and the imbedded text methods take around a
byte per character for longer messages. You can remove the end
marker on each string message if you switch from high ASCII to low
ASCII on the last character. EDASM can do this for you as a special
feature. But this complication doesn't save you very much, particu
larly on longer messages. You can also use a character count byte if
you like. Again, this doesn't help much.

Should you have to really cram long messages into your Apple, you
can either use repeated disk access or else use some text compaction
scheme. Repeated disk access is very poor form these days and should
be avoided, even with the newer DOS speedup tricks. Text compac
tion works by using some non-ASCII code that is more efficient than
ASCII for character storage.

For instance, in the Zork adventures, three characters are crammed
into two bytes, giving you code that needs only 67 percent of the
space needed by ASCII. In the Adam's version of Collossial Cave, let
ters are arranged into pairs and then each pair is given an unique
code. This results in nearly a 50 percent compaction. In spelling
checkers, special codes are used to tell how many characters have not
changed from the previous character. Special codes are also used for
stock endings.

In general, you should not use text compaction until after you are
sure you absolutely must have it. It's usually best to have your code
completely debugged and your messages completely fixed before
using compaction. Note that text compaction will actually lengthen
and complicate the code needed for short messages, so there is some
minimum "breakeven" code length before compaction gains you
anything at all.

To recap, there are many places you can put characters and many
different ways to generate text messages. One standard way is the text
file method, which we will look at here. After that, in Ripoff Module 2,
we will check into a more elegant imbedded text method that often is
a better choice. Either of these methods is a good choice for your typi
cal "medium" text message jobs, those not so trivial and short that
you can handle with obvious code, nor those messages so long that
you have to com pact them.

So, without further ado, here is ...

THE LONG FltE METHOD

There are two files involved in the long file method. One of these is
called the pointer file and the other is called the message file . . .

234 Ripoff Module 1

USING A PAIR OF FILES TO OUTPUT TEXT STRINGS:

THE POINTER FILE HOLDS THE
16-BIT STARTING ADDRESS OF EACH
TEXT MESSAGE IN THE MESSAGE FILE . . .

POINTER 112
SHOWS STARTING
ADDRESS OF
MESSAGE 112, ETC .

THE MESSAGE FILE HOLDS ALL OF
THE ASCII TEXT MESSAGES IN SOME
KNOWN ORDER . . .

. . . MESSAGES CAN BE ACCESSED IN AN'/ ORDER. MORE THAN ONE
POINTER CAN POINT TO THE SAME MESSAGE. EACH MESSAGE
CAN BE AN'/ LENGTH.

The long file method seems complicated at first, but this text output
ting scheme lets you have messages of any length, and the messages
can easily cross 256-byte page boundaries. You can also use different
sets of pointer files and text files with the same FLPRINT subroutine.

The message file holds all the messages. The messages do not have
to be in any particular order, but the order must be known. Each mes
sage ends with a marker of some sort. We will use an ASCII double
zero NUL command, since it is easier to test for zero than for any
other value. Normally, each message will follow the previous one,
although this is not essential. Should you want to put a DOS message
into your message file, you start the DOS message with a carriage
return and a [D], or "< CTRL > D," otherwise known as an ASCII CR
and EOT.

The pointer file holds a list of addresses that show the start of each
message. Note that each pointer has to be a 16-bit, or two-byte,
address, since the message file can be many pages long. Each pointer
file is thus limited to 128 different message pointers, but you can have
as many pointer files in your program as you like.

As you might guess, it can be a real drag building and connecting
your files by hand. We will show you a fully automatic way to let your
assembler build and link files for you. It's all done with creative use of
labels.

To use the long file method, you first pick a pointer file. Then you
decide which message you want. Say it is message 2. Then you read
the pointer file to find the start of the message, say $441 F. Then you
reach into the message file, starting at $441 F, get a character, and then
output that character. You continue the process one character at a
Hme till the marker comes up. Then you quit.

The messages do not have to be in any special order, and you can
let several different pointers lead you to the same message. This gets
handy for prompts like "Please make another selection;" or "That's
not a letter, turkey!" defaults or error traps. You also can start at the
middle of another message, and read to the end. This trick can some
times save you space by using words over again.

File Based Printer 235

The tricky part is being able to read long messages that cross page
boundaries. To do this, you use the powerful 6502 indirect indexed
command. In this ripoff module, we will set aside a pair of page zero
address lo(:ations at $EB and $EC. When we decide to output a mes
sage, you reach into the pointer file and put the low half of the mes
sage starting address into $EB, and the high half of the message start
into $EC.

Then, you set your Y register to #00, and use the LDA($EB),Y
indexed indirect addressing instruction. What this command does is
go to the sum of the 16-bit address in $EB and $EC (the start of your
message) plus the Y register value (zero) to get the character to be
output.

After the first character, you have a choice. You could increment Y
to get to the next character, or else you could add one to the $EB,EC
pair. While adding one to Y seems faster and more attractive at first,
this will only let you have 256 characters in any one message. So, we
will keep Y at zero, and increment the base address. To increment a
base address, you first increment the low byte at $EB. If you get a zero
result, you then also increment the high byte at $EC. This way, you
can continually work your way through most of the 64K address
space, without any worries about page boundaries or running out of
s .. bit range.

Holding the Y register at zero during an indexed indirect load sim
ply "downgrades" the load command into a straight indirect load.
Incidentally, the new 65C02s have "pure" or "unindexed" indirect
commands that free up theY register for other uses.

Confused? Here's a flowchart ...

236 Ripoff Module 1

FLPRINT FLOWCHART:

SAVE
REGISTERS

FIND MSG.
START

POINTER

GET
CHARACTER

OUTPUT
CHARACTER

INCREMENT
MSG. POINTER

(624E)

NO

(6254)

(6259)

(6266)

YES

(6268)

(626A)

(6260)

RESTORE
REGISTERS

(6276)

(627C)

Let's check into the actual code of the FLPRINT module, sitting at
$6248. This is the module that outputs the text messages for you, and
is what you will want to adapt to your own needs.

One good starting place to analyze any code is to find out where
variables are stashed. On FLPRINT, we set aside two page zero loca
tions at $EB and $EC to point to the start of our pointer file. These we
call PFP1 and PFP1 + 1. We set aside two more locations at $ED and
$EE to use as a running character pointer that works through the mes
sage file. These two are labeled MSP1 and MSP1 + 1.

We also provide a short stash at the end of the subroutine. Three
locations here are used for a temporary Y register save YSAV1, an X

File Based Printer 237

register save XSAV1 and a total number-of-messages value at
MNUM1.

You enter this FLPRINT module with the message number in the
accumulator. You also must have pre-placed the pointer file starting
address in PFP1.

We first save the X and Y registers into temporary stashes at XSAV1
and YSAV1. Next, you run a range check of the message number
against the stash at MNUM1. A range check makes sure the message
is a legal one. This keeps you from outputting garbage or plowing up a
disk. We have used a MN UM 1 value of $10, good for 16 separate
messages.

If the message number is illegal, you restore the X and Y registers
and exit without doing anything else. In a "real" program, you would
error trap this and do something about it instead.

If the message number is valid, you double it with an ASL, since you
are after pairs of addresses in the pointer file, each of which takes up 2
bytes.

Then, you reach into the pointer file and get the low half of the
address and stash it at MSP1 and then grab the high half and dump it
into MSP1 + 1. We knew which pointer file to go to, since whatever
code that JSRed here put the pointer file starting address into PFP1
ahead of time.

At this point in the subroutine, we have placed an address into
MSP1 and MSP1 + 1 that points to the first character in the desired
message. Now, it's up to the service loop called NXTCHR1 to handle
characters for us. NXTCHR1 first grabs a character. If that character
was a double zero, the loop quits and exits via END1. This is how you
end a message.

Usually, though, the character that NXTCHR1 grabs is not a double
zero, so NXTCHR1 passes the character out to the Apple monitor sub
routine at COUT that sends the character to whatever is connected to
the output hooks.

Typically, the "hooked " character may go through DOS, which
checks it for a [return] [D] header. If it doesn't look like something
DOS is interested in, DOS then passes the character somewhere else,
possibly to a printer card whose code may start at $C1 00. The printer
card will send the character to a printer, and, optionally, will pass it
on to the screen subroutine $FDFO at COUT1.

None of which matters to NXTCHR1, for once this loop outputs a
character to COUT, it couldn't care less what happens to the charac
ter. After the cbaracter is sent to wherever it is supposed to go, COUT
returns control back to NXTCHR1 via a RTS subroutine return.

NXTCHR1's next job is to move the message file character pointer
MSP1 over to the next character. Since this pointer is 16 bits wide, the
low byte at MSP1 is first incremented. Should we get a zero result,
indicating that a carry is needed to the high byte, we then increment
the high byte. This is a pretty much standard way of incrementing a
16-bit address pointer pair.

Following that, we jump back to the start of the NXTCHR1 loop and
keep outputting characters till we hit the double zero.

Note the forced branch at NOC1. It pays to keep absolute jumps out
of any of your code modules, for absolute references make code
harder to relocate. The CLC and BCC commands together do an
unconditional relative branch for you that is easily relocatable.

238 Ripoff Module 1

After the double zero, we get out of the FLPRINT subroutine by
restoring the X and Y registers and doing the usual RTS back to who
ever it was that JSRed this module.

The DEM01 that starts at $6200 is a rather unexciting "exerciser"
that shows us how FLPRINT works. DEM01 first sets the total number
of messages to $03 and then finds out where the message pointer file
sits. It then stores the pointer file start in MSP1, for use by FLPRINT.

Then we clear the screen, do some tabbing, and go to the inverse
mode. Message #00 is called for, and gotten through FLPRINT. We
return to normal text for message #01. Note that message #02 is quite
long. It could, in fact, be any length you want, within the limits of
available memory.

After message #01, we ask for user input. Should we get an "E," we
exit the program. A "C" gives you a DOS catalog. This is done by
printing first a CR and then an EOT, or [D], followed by the CATALOG
string. If the CATALOG is long enough, extra prompts ate needed for
each catalog page.

Should you enter anything but an "E" or a "C," the entire FLPRINT
module is rerun. This error trapping causes a brief flash on the screen,
which should be enough of an operator "hey turkey!" prompt for
most users.

In this example, we require a capital C or capital E. It is better prac
tice to allow for either uppercase or lowercase entries. You can do this
with a double test, or else by forcing lowercase characters into their
uppercase equivalents. This important detail should not be omitted on
the lie or for older uses where you expect mixed cases. You'll find a
case changer example in Ripoff Module 7.

Note that both the pointer file and the message file can be repeat
edly reloaded off the disk. Thus, there is no limit to using external or
calculated text strings as might be needed in a longer adventure.

Creating the Files

A good assembler will very much simplify setting up and creating
your own pointer and text files. The process of putting the file into
memory and properly linking it with everything else can be made fully
automatic, without any worries about absolute addresses.

It's labels to the rescue.
Let's look at the message file first. First and foremost, you put a label

at the beginning of each separate message. We have used M1.0
through M1.15 in the source code. If you have a label on your mes
sage, your assembler can find the message, regardless of where it ends
up in memory.

We stopped at sixteen messages only to save on source code length.
You can make things as long as you like, with up to 128 messages for
each message pointer file and as many message pointer files as you
want.

The ASC and DFB commands greatly simplify entering your mes
sages. We've done almost everything here in uppercase for compati
bility with older Apples, but most newer assemblers will let you use
full case for your messages. "New way" editing also lets you do low
ercase on most any assembler.

The ASC command tells the assembler to "convert what follows to
ASCII." High ASCII is normally used in the Apple, although you can

File Based Printer 239

change this if you want to. While each ASCII string can be any length,
it pays to keep each string under 32 characters or so. This makes for
neater assembly listings. You can tie as many strings together as you
need to get the total message.

A delimiter should start the ASCII text string. Use a quote for the
delimiter unless you really want to print a quote. Then use a slash
instead. An ending delimiter is not needed if there are no comments
on the string line. Usually there won't be room for comments anyway,
so this is no big deal. This is roughly similar to not needing the final
quote in an Applesloth PRINT statement. Trailing spaces are hard to
see without a final delimiter.

So much for alphanumerics. How do you handle control characters?
Obviously, you need a way to, say, imbed carriage returns. Yet if

you type a carriage return, the string command completes itself. How
do you get out of this bind?

Once again, it's labels to the rescue. just as you can use a CHR$(13)
to fool a higher level language into outputting a carriage return, you
can trick an assembler into entering a carriage return into a file by
using a label.

I've chosen to use single letter labels for control commands. B for
backspace, C for carriage return, D for DOS, and X for the NULL or
double zero. Each letter must be pre-defined as a constant, such as a B
EQU $88 for a backspace. To enter control commands into your ASCII
text, simply use DFBs with as many control commands as you like.

For instance, a DFB C,X puts a carriage return and an end-of-text
marker into your message file. That wild DFB B,B,B,P,B,X sequence
uses backspaces to center a flashing user prompt inside a fancy screen
symbol. Incidentally, this may look different on a II and lie. You might
like to change it per the Apple in use.

Unfortunately, this was written before "new" EDASM became avail
able. Since "A," "X," and "Y" are disallowed labels in "new"
EDASM, you'll have to substitute something else for "X." Note that
the STR pseudo-op in "new" EDASM can eliminate any need for a
trailing NULL.

Summing up our message file, be sure to put a label on the start of
each message. Then enter your ASCII characters using the assembler's
ASC command. Don't forget the delimiter at the front and don't let the
individual ASC strings get too long. Enter any control characters you
want to imbed with DFB commands. On a typical message, you will
alternate ASC and DFB commands. Use ASC for the letters and DFB
for the carriage, returns and end markers.

The pointer file will usually be much shorter than the message file.
The pointer file holds the starting address of each message, so that
FLPRINT knows where to go to start outputting characters.

To automate the construction of a pointer file, just use labels for
each pointer entry. For instance, we call the pointer to the sixth mes
sage PFS (don't forget that zero!). Our pointer source code under label
PFS tells us to OW M1.5, or to "go to wherever the message labeled
M 1.5 happens to be, find its present absolute address, and put that
address pair back here."

Which is an awful lot of work for the assembly program. But that's
its job and is one of the many reasons why we use an assem bier in the
first place-to automate most of the dogwork involved in writing
machine language programs.

240 Ripoff Module 7

MIND BENDERS

-Show how FLPRI NT can be
simplified if you only have one
pointer file in your program.

-FLPRINT works fine when called
from within another program, but
there's a slight bug when used
directly from the monitor or
Applesoft. What is the bug? What
causes it? How can you prevent it?

-How can you design a program that
outputs lowercase only to those
machines that can use it?

-Can FLPRI NT be used with
changing messages? How?

-Show ways to use FLPRINT with
several different pointer files.

-Rewrite this module to use "new"
EDASM' s string command STR,
which includes a message count

byte. What are the advantages of
this new method?

File Based Printer 24

PROGRAM RM-1

FILE BASED PRINTER

NEXT OBJECT FILE NAME IS FLPRINT
6200: 3 ORG $6200 PUT MODULE 11 AT $6200

6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:

6200:

6200:
6200:
6200:
6200:
6200:
6200:

6200:

6200:
6200:
6200:
6200:
6200:
6200:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41

* *
* -< FLPRINT MODULE >- *
* *
* (FILE BASED STRING PRINTER) *
* *
* VERSION 1.0 ($ 6200-$ 642A) *
* *
* 6-15-83 *
* *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE OUTPUTS TEXT STRINGS OR DOS COMMANDS
TO THE APPLE II'S OUTPUT HOOKS, USING STRINGS
THAT ARE COLLECTED TOGETHER IN A COMMON FILE.

*** HOW TO USE IT ***

YOUR CALLING CODE SHOULD HAVE PREVIOUSLY STORED
A MESSAGE POINTER FILE ADDRESS IN PFP1 (LOW} AND
PFP1+1 (HIGH}. ONE OF 128 POSSIBLE RESPONSES
ARE SELECTED BY LOADING THE ACCUMULATOR WITH A
MESSAGE NUMBER AND THEN DOING A JSR TO FLPRINT.

242 Ripoff Module 1

PROGRAM RM·1, CONT'D.

6200: 44

6200: 46
6200: 47

6200: 48

6200: 49

6200: so

6200: 51

6200: 53

6200: 55

6200: 56
6200: 57
6200: 58

6200: 59
6200: 60

6200: 62

6200: 64

6200: 65
6200: 66
6200: 67
6200: 68

6200: 69

*** GOTCBAS ***

THIS METHOD IS BEST USED FOR LONG MESSAGES THAT MIGHT
NEED CALCULATED VALUES OR DISK-BASED CHANGES.

MESSAGES CAN BE ANY LENGTH, BUT MORE THAN 128 DIFFERENT
MESSAGES WILL NEED SEPARATE MSPl ADDRESS BASES. EACH
MESSAGE MUST END IN A $00 MARKER.

*** ENHANCEMENTS ***

DOS COMMANDS ARE OUTPUT BY STARTING THE STRING

WITH A CARRIAGE RETURN AND <CTRL> D.

TO GO DIRECTLY TO THE SCREEN, USE COUTl RATHER THAN COOT•
THIS IS FASTER, BUT CANNOT CONTROL DOS OR BE PRINTED.

*** RANDOM COMMENTS ***

TO RUN THE DEMO, USE $6200G OR CALL 25088.

THE X AND Y REGISTERS ARE PRESERVED: A IS DESTROYED.

File Based Printer 243

PROGRAM RM-1, CONT'D.

6200� 72 *** BOOKS ***

FDED: 74 COUT EQU $FDED OUTPUT CHARACTER VIA BOOKS
FC58: 75 HOME EQU $FC58 CLEAR SCREEN
FB2F: 76 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COlO: 77 KBDSTR EQU $COlO KEYBOARD RESET
F94A: 78 PRBL2 EQll $F94A PRINT X BLANKS
FDOC: 79 RDKEY EQU $FDOC GET INPUT CHARACTER
FE80: 80 SET INV EQU $FE80 SET INVERSE SCREEN
FE84: 81 SETNORM EQU $FE84 SET NORMAL SCREEN

OOED: 83 MSPl EQU $ED MESSAGE FILE CHARACTER POINTER
OOEB: 84 PFPl EQU $EB POINTER FILE STARTING ADDRESS

6200: 86 *** TEXTFILE COMMANDS ***

0088: 88 B EQU $88 BACKSPACE
008D: 89 c EQU $8D CARRIAGE RETURN
0084: 90 D EQU $84 DOS ATTENTION
0060: 91 p EQU $60 FLASHING PROMPT
0000: 92 X EQU $00 END OF MESSAGE

�':'

},:
>

ff ':

�v, �;
;,.: .

t/
�-f

I'
f·.
; . .;

i:·:.
, :,.

�/ I/
t<. :•:.

244 Ripoff Module 1

PROGRAM RM-1, CONT'D .

6200: 95 *** DEMO ***

6200: 96

6200: 98 THE DEMO USES THE FLPRINT MODULE TO OUTPUT
6200: 99 SCREEN MESSAGES AND A DOS CATALOG COMMAND.
6200: 100

6200:A9 03 102 DEM01 LDA 1$03 THREE MESSAGES TOTAL
6202:80 7D 62 103 STA MNUM1 SAVE FOR CHECK
6205:A9 80 104 LOA I>PFO SAVE MESSAGE POINTER LOW
6207:85 EB 105 STA PFP1
6209:A9 62 106 LOA I<PFO SAVE MESSAGE POINTER HIGH
620B:85 EC 107 STA PFP1+1

6200:20 2F FB 109 JSR !NIT GO TO TEXT MODE
6210:20 58 FC 110 JSR HOME CLEAR SCREEN
6213:A2 08 111 LOX l$08 PRINT BLANKS VIA MONITOR
6215:20 4A F9 112 JSR PRBL2

6218:20 80 FE 114 JSR SET INV INVERSE TEXT FOR TITLE
621B:A9 00 115 LOA 100 MESSAGE 10
6210:20 4E 62 116 JSR FLPRINT PRINT MESSAGE

6220:20 84 FE 118 JSR SETNORM NORMAL TEXT
6223:A9 01 119 LOA 1$01 MESSAGE 11
6225:20 4E 62 120 JSR FLPRINT PRINT MESSAGE

6228:2C 10 co 122 BIT KBDSTR RESET KEYBOARD
622B:20 OC FD· 123 JSR RDKEY GET KEY
622E:C9 cs 124 CMP I$CS AN "E" FOR EXIT?
6230:FO 15 125 BEQ EXIT1 YES, EXIT
6232:C9 C3 126 CMP I$C3 A "C" FOR CATALOG?
6234:00 CA 127 BNE DEM01 TRY AGAIN FOR VALID KEY

6236:20 58 FC 129 JSR HOME CLEAR SCREE� , THEN
6239:A9 02 130 LOA l$02 DO CATALOG
623B:20 4E 62 131 JSR FLPRINT
623E:2C 10 co 132 BIT KBDSTR HOLD CATALOG
6241:20 oc FD 133 JSR RDKEY TILL KEYPRESS

6244:18 135 CLC BRANCH ALWAYS
6245:90 B9 136 BCC DEMP1 AND TRY AGAIN

6247:20 58 FC 138 EXIT! JSR HOME EXIT DEMO
624A:2C 10 co 139 BIT KBDSTR RESET KEYBOARD
6240:60 140 RTS

PROGRAM RM-1, CONT'D .

624E:
624E:
624E:

624E:
624E:
624E:
624E:
624E:
62 4E:

624E:8C 7F 62
6251:8E 7E 62

625 4:CD 7D 62
6257:BO lD
6259:0A
625A:A8
625B:Bl EB
6250:85 ED
625F:C8
6260:Bl EB
6262�85 EE
6264:AO 00
6266:Bl ED
6268:FO OC
626A:20 ED FD

626D:E6 ED
626F:DO 02
627l:E6 EE
6273:18
6274:90 FO

6276:AE 7E
6279:AC 7F
627C:60

6270:

6270:10
627E:OO
627F:OO

62
62

143
144
145

147
148
149
150
151
152

154 FLPRINT
155

157
158
159
160
161
162
163
164
165
166
167 NXTCURl
168
169

171
172
173
174 NOC1
175

177 ENOl
178
179

181

184 MNUM1
185 XSAV1
186 YSAVl

File Based Printer 245

*** PLPRINT MODULE ***

THIS MODULE USES THE ACCUMULATOR VALUE TO
FIND A POINTER TO THE TEXT STRING. IT THEN
OUTPUTS ONE CHARACTER AT A TIME TILL THE $00
END-OF-MESSAGE MARKER IS FOUND.

STY YSAV1 SAVE REGISTERS
STX XSAV1

CMP MNUMl A LEGAL MESSAGE NUMBER?
BCS ENOl DON'T PRINT IF ILLEGAL
ASL A DOUBLE.POINTER FOR ADDRESS PAIR
TAY
LOA (PFP1) ,Y GET LOW POINTER
STA MSPl AND SAVE
INY
LOA (PFPl) , Y GET HIGH POINTER
STA MSPl+l AND SAVE
LOY 1$00 NO INDEXING
LDA (MSPl) , Y GET CHARACTER
BEQ ENOl EXIT ON $00 MARKER
JSR COUT PRINT CHARACTER

INC MSPl CALCULATE NEXT CHARACTER LOCATION
BNE NOCl IF A CARRY, THEN
INC MSP1+1 INCREMENT HIGH ADDRESS LOCATION
CLC BRANCH ALWAYS TO
BCC NXTCHRl GET NEXT CHARACTER

LOX XSAVl RESTORE REGISTERS
LDY YSAVl
RTS AND EXIT

*** STASH ***

DFB $10
DFD $00
DFB $00

NUMBER OF MESSAGES IN FILE
X-REGISTER -sAVE
Y-REGISTER SAVE

246 Ripoff Module 1

PROGRAM RM-1, CONT'D.

6280:

6280:AO 62
6282:86 62
6284�FA 6J
6286:05 64
6288:08 64
628A:OB 64
628C:OE 64
628E:11 64
6290 � 14 6·1
6292:17 64
6294:1A 64
6296:10 64
6298�20 64
629A:23 64
629C:26 64
629E:29 64

62AO:

62AO:CD C5 03
62A3:DJ Cl C7
62A6:C5 AO C6
62A9:C9 CC C5
62AC:AO CD C5
62AF:D4 C8 CF
62B2:C4
62BJ:8D 80 00

62B6:D7 C9 04
62B9:C8 AO 04
62BC:C8 C9 OJ
62BF:AO CD C5
62C2:D4 C8 CF
62C5:C4 AC AO
62C8:AO C1 CC
62CB:CC AO CF
62CE:C6 AO 04
62D1:C8 C5 AO
62D4:CD C5 OJ
62D7:DJ C1 C7
62DA:C5 OJ AO
6200:80

189

191 PFO
192 PF1
19J PF2
194 PFJ
195 PF4
196 PF5
197 PF6
198 PF7
199 PF8
200 PF9
201 PF10
202 PF11
203 PF12
204 PF1J
205 PF14
206 PF15

208

210 M1.0

211

213 Ml.1

214

*** POINTER FILE ***

OW M1.0
OW M1.1
OW M1.2
OW M1.J
OW M1.4
OW M1.5

OW M1.6
OW M1.7
OW M1.8

OW M1.9
OW M1.10
OW M1.11
OW M1.12
OW M1.13
OW M1.14
OW M1.15

POINTER FILE

*** MESSAGE FILE ***

ASC "MESSAGE FILE METHOD"

DFB c;c,x

ASC "WITH THIS METHOD, ALL OF THE MESSAGES

DFB c

File Based Printer 247

PROGRAM RM-1, CONT' D .

62DE:C1 D2 C5 217 ASC •ARE COMBINED INTO A COMMON TEXT FILE
62E1:AO C3 CF

62E4:CD C2 C9

62E7:CE C5 C4

62EA:AO C9 CE

62ED:D4 CF AO

62FO:C1 AO C3
62F3:CF CD CD

62F6:CF CE AO

62F9:D4 C5 DB

62FC:D4 AO C6

62FF:C9 CC C5

6302:AE
6303:8D BD 218 DFB c,c

6305:C1 AO DO 220 ASC •A POINTER FILE IS USED TO DECIDE WHICH

6308:CF C9 CE

630B:D4 C5 D2

630E:AO C6 C9
6311:CC C5 AO

6314:C9 D3 AO

6317:D5 D3 C5

631A:C4 AO D4

631D:CF AO C4

6320:C5 C3 C9
6323:C4 C5 AO

6326:D7 CB C9

6329:C3 CB AO

632C:8D 221 DFB c

632D:CD C5 D3 223 ASC "MESSAGE IS TO BE OUTPUT.
6330:D3 C1 C7

6333:C5 AO C9

6336:D3 AO D4

6339:CF AO C2

633C:C5 AO CF

633F:D5 D4 DO
6342:D5 D4 AE

6345:8D BD 224 DFB c,c

6347:D5 D3 C5 226 ASC •usEs INCLUDE TEXT DATA BASES AND OTHER
634A:D3 AO C9

634D:CE C3 CC

6350:D5 C4 C5

6353:AO D4 C5

6356:D8 D4 AO

6359:C4 C1 D4

635C:C1 AO C2

635F:C1 D3 C5
6362:D3 AO C1

6365:CE C4 AO

6368:CF D4 CB

636B:C5 D2

636D:8D 227 DFB c

248 Ripoff Module 1

PROGRAM RM-1, CONT'D.

636E:DO CC Cl 230
637l:C3 CS D3
6374:AO 07 C8
6377:CS D2 CS
637A:AO CC CF
6370:04 D3 AO
6380:CF C6 AO
6383:C3 C8 Cl
6386:CE C7 C9
6389:CE C7 AO
638C:CD CS 03
638F:D3 Cl C7
6392:CS 03
6394:80 231

6395:Cl 02 CS 233
6398:AO 04 CF
639B:AO C2 CS
639E:AO DO 02
63Al:C9 CE 04
63A4:CS C4 AO
63A7:CF 02 AO
63AA:C4 C9 03
63AD:DO CC Cl
63BO:D9 CS C4
63B3:AE
63B4:8D 8D 8D 234
63B7:8D
63B8:D4 D9 DO 235
63BB:CS AO A2
63BE:C3 A2 AO
63Cl:C6 CF D2
63C4:AO C3 Cl
63C7:D4 Cl CC
63CA:CF C7 AC
63CD:AO CF D2
63DO:AO A2 CS
63D3:A2 AO C6
63D6:CF D2 AO
63D9:CS D8 C9
63DC:D4 AE
63DE:8D 8D 8D 236
63El:8D
63E2:AO AO .AO 237
63ES:AO AO AO
63E8:AO AO AO
63EB:AO AO AO
63EE:AO AD BC
63Fl AO BE AD
63F4 88 88 88 238
63F7 60 88 00

ASC

DFB

ASC

DFB

ASC

DFB

ASC

DFB

•PLACES WHERE LOTS OF CHANGING MESSAG�

c

"ARE TO BE PRINTED OR DISPLAYED.

c,c,c,c

/TYPE "C" FOR CATALOG, OR "E" FOR EXIT

c,c,c,c

" -< >-"

B,B,B,P,B,X

PROGRAM RM-1, CONT'D . . .

63FA:80 84 241 Ml.2 OFB
63FC:C3 Cl 04 242 ASC
63FF:Cl CC CF
6402:C7
6403:80 00 243 OFB

6405:AO 245 Ml.3 ASC
6406:80 00 246 OFB

6408:AO 248 Ml.4 ASC
6409:80 00 249 OFB

640B:AO 251 Ml.5 ASC
640C:80 00 252 OFB

640E:AO 254 Ml.6 ASC
640F:80 00 255 OFB

6411:AO 257 M1.7 ASC
6412:80 00 258 DFB

6414:AO 260 Ml.8 ASC

6415:80 00 261 OFB

6417:AO 263 Ml.9 ASC
6418:80 00 264 OFB

641A:AO 266 M1.10 ASC
641B:80 00 267 OFB

6410:AO 269 M1.11 ASC
641E:80 00 270 OFB

6420:AO 272 M1.12 ASC
6421:80 00 273 OFB

6423:AO 275 M1.13 ASC
6424:80 00 276 OFB

6426:AO 278 Ml.l4 ASC
6427:80 00 279 OFB

6429:AO 281 Ml.l5 ASC
642A : 80 00 282 OFB

*** SUCCESSFUL ASSEMBLY: NO ERRORS

c,o
"CATALOG"

c,x

• •

c,x

n n

C,X

n n

C,X

• n

c,x

n n

c,x

n •

c,x

n n

c,x

n n

C,X

n n

c,x

n n

c,x

n n

c,x

n n

c,x

n n

c,x

File Based Printer 249

I IMBEDDED STRING PRINTER

a powerful and very sneaky
way of mixing and matching
text messages

I

I guess I've always been attracted to elegant simpli#y, particularly
when it is combined with sneakiness. The file bas� text printer of
Ripoff Module 1 is a classic and standard old warhoile that's cumber
some, restrictiv�, and hard to use. It obviously dofr't qualify. What
can we do that 1s better? �'""&�,

Why do we need a text message file at all? Why Motj}, instead, simply
imbed the te'xt messages directly into the ·-- cpde when and
where they are needed? This way, you can have any Jumber of short
and fixed messages anywhere in your program, and i,fbu can mix and
match modules from all over the lot without any wqfties at all about
creating a big master text file and bunches of pointers�b work with it.

The usual excuse for not imbedding text into s�code is that the
6502 tends to get violently ill when you feed it��SCII text instead of
machine language commands. The trick is tq,�o some elegantly sim
ple way to keep the imbedded messag�· of the CPU. The way is
called the imbedded text method. ,,,tt!fi'!r·t '"

With the imbedded text m�.t1;1·6d', you simply insert ASCII text or
DOS strings into your s�"''code when and as you need them.
Immediately before the strings, you do a jump to a very special sub
routine that will grab all the ASCII stuff for its own use, and then let

251

252 Ripoff Module 2

the 6502 pick up the machine language commands that follow the
message.

Like so ..

HOW TO IMBED TEXT INTO·� CODE:

LDA.#$01 STA.$1701 JSR$6B66 M E S S A. G E NUL LDA.#7C JMP

"REGULA.R11 OPCODES GO A. JSR TO A.
BEFORE MESSA.GE SPECIA.L "IMPRINT"

SUBROUTINE

... THE IMPRINT SUBROUTINE A.UTOMA.TICA.LL 'I
OUTPUTS THE TEXT MESSA.GE A.ND THEN
"SKIPS OVER" TO THE NEXT LEGA.L
INSTRUCTION WHEN FINISHED ...

THE IMBEDDED
TEXT

"REGULA.R" OPCODES
FOLLOW MESSA.GE

... ONL 'I ONE IMPRINT SUBROUTINE
IS NEEDED TO HA.NDLE A.N'I A.ND
A.LL FIXED MESSA.GES A.N'IWHERE
IN THE ENTIRE SOURCE CODE.

You will need only one imbedded printing subroutine. This can go
anywhere in your program. That sub is called IMPRINT. Any and all
program modules can use this lone IMPRINT subroutine any time they
want to output a fixed text message. While most of these messages
will usually be short, there is essentially no limit, except for memory
space, as to how long your messages are, how many messages you
use, or how you mix and match them

And all this without any pointers or master text files.
IMPRINT works by first finding out who called it It does this by

looking into the stack to find the intended subroutine return address.
Not only does IMPRINT find the return address, but it steals it off the
stack and uses that address as a string pointer. It then increments the
return address ASCII character by ASCII character, until the message is
finished. Finally, IMPRINT forces a subroutine return that goes beyond
the imbedded text and picks up on the next mainstream machine lan
guage command.

What is elegant and sneaky about the whole thing is that IMPRINT is
not really a subroutine at all! IMPRINT is a "mainline" code module
that "plugs itself" into high level code when and where it is called. It
does this by messing with the stack. First, it pulls the return address off
the stack, converting itself into mainline code. When finished output
ting text, IMPRINT pushes the return-to-the-next-machine-language
address onto the stack and then does a quick RTS, which is nothing
but a forced jump.

Sounds hairy.
And it is. But the code is very short and simple. It's also very easy to

use once you understand it. And, as further elegance, IMPRINT does
not hurt any working registers at all.

Here's a flowchart of IMPRINT .

IMPRINT FLOWCHA�T:

SAVE
REGISTERS

GET & SAVE
TEXT

POINTER

INCREMENT
POINTER

GET
CHARACTER

OUTPUT
CHARACTER

(6668)

(6674)

(667C)

(6682)

YES

(6684)

(6689)

Imbedded String Printer 253

RESTORE
POINTER

RESTORE
REGISTERS

(668F)

(6695)

IMPRINT sits at $6668 right now, but it is easily put any place you
want.

As before, to understand a machine language module, find out what
variables are stashed where. Two slots on page zero are set aside as a
pointer to the character being output. These are called STRP2 and
STRP2+ 1 and are located at $EB and $EC. Three absolute slots are
used to save the registers, and are called ASAV2, XSAV2, and YSAV2,
and appear as a short stash that follows IMPRINT.

An aside or two. A pair of mnemonics involved in a 16-bit word can
be spelled out either as STRP2L and STRP2H, or as STRP2 and
STRP2 + 1. The H and L stand for high and low. The standard way is to

254 Ripoff Module 2

use high and low, but you save on code and EQUs by using the arith
metic addition feature of your assembler. Do an EQU on STRP2, and
your STRP2 + 1 rides along free.

By the way, the 2 tag just stands for module 2. This way, you can
combine the ripoff modules anyway you like without worrying about
duplicate label errors for common names.

Secondly, there are many different ways to temporarily save your
accumulator and X- andY-registers. It is usually a good idea to save all
working registers during a subroutine or service module, so you keep
any surprises out of the calling code. We have used absolute stores,
since they are the safest and surest way of stashing things without
memory conflicts. Absolute stores can take more bytes, can be slower,
and are a somewhat harder to relocate than other storage methods.
Page zero stores are faster, but you tie up precious and possibly con
flicting real estate when you try this. The stack is another obvious
stash, but its use gets messy fast, particularly on code like IMPRINT
that purposely messes with the stack.

The absolute worst place to save working registers is in the monitor
register saving subroutines IOSAVE and IOREST . .

Don't EVER use the monitor routines
IOSAVE and IOREST!

Sooner or later, they are bound to create
problems.

What happens is that some module will use IOSAVE for its register
saves and then may JSR to some other module that also tries to use
IOSAVE for its own use. The first save gets overwritten by the second,
and the final IOREST does a self-destruct, rather than a restore.

Let's see. Where were we? Back to IMPRINT. We first save our regis
ters to the three absolute locations ASAV2, XSAV2, and YSAV2, and
stash these at the end of the module.

The subroutine return address in the 6502' s stack pointer takes two
bytes. The low address is the first one you get back. The high address is
the second byte you get back. That address points to one Jess than
where you end up . . .

6502 SUBROUTINE STACK RULES

Two bytes on a stack are used to save
a subroutine return address.

The Fl RST byte you get back holds the
return address POSITION byte.

The SECOND byte you get back holds
the return address PAGE byte.

The RTS command returns you to the
return address PLUS ONE.

So, we grab the top of the stack and store it as the low address half

Imbedded String Printer 255

at STRP2. Then we grab the top of the stack again, and this time store
it as the high address half at STRP2+ 1.

But, note at this time that this "return" address is pointing to one
less than our first ASCII character, rather than to a "safe" 6502 return
point. Note also that we are no longer in a subroutine. Why? Because
the calling code pushed two things onto the stack, and the using code
pulled two things back off of the stack. We are thus once again back
in high level code!

To get our string pointer STRP2 pointing to our first ASCII character,
we simply increment the pair in the usual way. Do this by increment
ing STRP2, and then, if you get a zero result, take care of the overflow
by incrementing STRP2 + 1. Since we know we will have to increment
to get between characters, we'll arrange things so we only need one
increment command, at the head of the loop called NXTCHH2.

Your ASCII or DOS text string gets entered into your calling source
code, and should end with some marker. We will use the ASCII dou
ble zero NULL command here, since it is simplest.

At this time, we grab the character from the string using the indirect
indexed loading that lets us reach any point in the 16-bit address
space without any page boundary worries. As before, we have forced
the Y-register to $00, to downgrade the indirect indexed command
into a "pure" indirect load.

Having gotten the character, we can test it for a double zero. If we
get the double zero, we go on to the exit routine at END2. If not, we
output the character to COUT or to Fideyfoo, or wherever.

Next, we have included a JSR to an immediate return that we call
HOOK2. This has no present use, but it lets you grab IMPRINT for
special effects such as character delay, sound, printing in a weird
screen direction, or whatever. To use it, just let the subroutine lead
you to your special effects module.

After this unused hook, a relative forced branch that fakes an
unconditional jump gets us back to NXTCHR2 and completes the
loop.

Processing continues one character at a time until we get to the
double zero. Then we branch down to the END2 routine.

At this time, the STRP2 pointer is pointing to the double zero of the
last character, which is one less than the address of the continuing
machine language code in the mainstream. On a subroutine return,
the RTS command always goes to one more than the return address.
So, STRP2 equals the correct subroutine return address when it is
pointing to the �nd-of-text marker.

All the remains is to get back to the mainstream code. We might be
tempted to try using the jump indirect instruction, but this one has a
deadly bug that will nail you one time out of 128 . . .

The JMP indirect command has a deadly
bug in it that misses page boundary
crossings.

DON'T USE IT!

The newer 65C02's have fixed this bug, but they are not yet in wide
use at this writing.

256 Ripoff Module 2

We will return to the main code by the exact opposite way we got
into IMPRINT. First we shove the high half of the return _address minus
one, or STRP2 + 1 onto the stack, and then we shove the low half of
the return address minus one, or STRP2, onto the stack. Miraculously,
we are now back into a subroutine. To exit, you simply do a RTS.

On the subroutine return, you return to your mainstream code,
exactly on the first valid instruction following your text message. Very
nicely, all the text went out by way of IMPRINT, and the 6502 is ready
to continue on the first valid instruction that follows the message.

Note carefully what happened. We go merrily along doing the usual
op codes in the usual way. Then we JSR to some very special code
that reads and then outputs everything that follows as text. This con
tinues until an end marker. Then, the special code automatically
"skips over" the text part, letting you pick back up on the conven
tional op codes that follow.

At no time does the 6502 see anything but legal op codes. While
there is a big "hole" in your source code that holds text, this part of
your source code never gets to the CPU. Nifty.

A Demo

To use IMPRINT, just load it into a known location in your Apple. In
any module where you want to output a text message, insert a JSR
IMPRINT, followed by the message, followed by a double zero
marker. Then pick up your continuing code, just like you normally
would.

DEM02 shows us how it's done. We first initialize to the text mode,
clear the screen, do a tab to center a title, and then switch to inverse.
Next, our first message is put down by JSRing to IMPRINT, followed
by the "Imbedded String Method" title. We then go back to normal
text for a few lines, followed by an inverse "JSR," and more normal
text. The messages can be combined end on end as shown. This lets
you have long messages that will still print neatly on your source code
listing. Once again, the assembler enters the character strings with an
ASC command, and enters control commands and end markers using
DFBs.

Lines 155 and 156 show how to put a prompt into a fancy cue box.
You might want to modify this slightly for best lie results.

As with the file printer, a DOS command is done by starting with a
CR and EOT, or [D] followed by a legal DOS instruction. The user can
pick an "E" for exit or a "C" for catalog to demonstrate DOS access.
Any other key reprints the message, giving a subtle, obvious, and
non-obnoxious cue to the user that he is not paying attention.

The imbedded string method is far better than the file based text
printer and the previous ripoff module, particularly when lots of fixed
and fairly short messages are spread out in a mix-and-match fashion
from program module to module.

Elegant simplicity.

Imbedded String Printer 257

MIND BENDERS

-Show how the IMPRINT method
can be used with changing,
calculated, or disk-based text.

-What else can you do with the
concept of a JSR, followed by
parameters or values needed by that
sub, imbedded in mainstream code?

-Are there any advantages to using
BRK to call IMPRINT? How would
you do this? What are the

I imitations?

-Show how "new" EDASM's byte
counting LST pseudo-op can

improve this module.

-How can you link an assembler
with a word processor so that long
text messages can be easily edited
and entered into source code?

-Under what circumstances would
you NOT want to use IMPRINT?

258 Ripoff Module 2

PROGRAM RM-2
IMBEDDED STRING PRINTER

NEXT OBJECT FILE NAME IS IMPRINT

6500: 3 ORG $6500 J PUT MODULE 12 AT $6500

6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:
6500:

6500:

6500:
6500:
6500:
6500:
6500:
6500:

6500:

6500:
6500:
6500:
6500:
6500:
6500:

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41

* *

* -< IMPRINT MODULE >- *
* *
* (IMBEDDED STRING PRINTER) *
* *
* VERSION 1.0 ($6500-$66A1) *
* *
* 6-15-83 *
* • • • . • • . • • • • • • • • • • • • • • • • • . . • . . • • • . . • . • • • *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE OUTPUTS TEXT STRINGS OR DOS COMMANDS
TO THE APPLE II'S OUTPUT HOOKS, USING STRINGS
THAT ARE DIRECTLY IMBEDDED IN THE SOURCE CODE.

� BOW TO USE IT *

YOUR CALLING CODE SHOULD HAVE A JSR TO IMPRINT.
THIS JSR SHOULD BE IMMEDIATELY FOLLOWED BY AN ASCII
ST RING ENDING WITH AN $00 MARKER.

PROGRAM RM·2, CONT'D.

6500:

6500:
6500:
6500:
6500:
6500:
6500:

6500:

6500:
6500:
6500:
6500:
6500:
6500:

6500:

6SOO:
'6500:
6500:
6500i'
6500:
6500:

44 ,

46
47
48
49
so

51

53

55
56
57
58
59
60

62

64
65
66
67
68
69

Imbedded String Printer 259

*** GO'l'CHAS ***

THIS METHOD IS BEST USED FOR SHORT, UNRELATED MESSAGES
INTERNAL TO YOUR PROGRAM.

MESSAGES CAN BE ANY LENGTH, BUT MORE THAN 40 CHARACTERS
WILL NOT PRINT CLEANLY ON THE ASSEMBLY LISTING.

*** ENHANCEMENTS ***

DOS COMMANDS ARE OUTPUT BY STARTING THE STRING

WITH A CARRIAGE RETURN AND <CTRL > D.

TO GO DIRECTLY TO THE SCREEN, USE COUTl RATHER THAN COUT.

THIS IS FASTER, BUT CANNOT CONTROL DOS OR BE PRINTED.

*** RANDOM COMMENTS ***

TO RUN THE DEMO, USE $6500G OR CALL 25856.

260 Ripoff Module 2

PROGRAM RM-2, CONT' D .

6500: 72 *** HOOKS ***

FDED: 74 COOT EQU $FDED OUTPUT CHARACTER VIA BOOKS

FC58: 75 HOME EQU $FC58 7 CLEAR SCREEN

COlO: 76 KBDSTR EQU $COlO KEYBOARD RESET

FB2F: 77 INIT EQU $FB2F INITIALIZE TEXT SCREEN

FDlB: 78 KEY IN EQU $FD1B READ KEYBOARD

F94A: 79 PRBL2 EQU $F94A 7 PRINT X BLANKS

FE80: 80 SET INV EQU $FE80 SET INVERSE SCREEN

FE84: 81 SETNORM EQU $FE84 SET NORMAL SCREEN

FCA8: 82 WAIT EQU $FCA8 TIME DELAY SET BY ACCUMULATOR

OOEB: 84 STRP2 EQU $EB POINTER TO ASCII STRING

6500: 86 *** TEXTFILE COMMANDS ***

0088: 88 B EQU $88 BACKSPACE

008D: 89 c EQU $8D CARRIAGE RETURN

0084: 90 D EQU $84 DOS ATTENTION

008A: 91 L EQU $8A LINE FEED

0060: 92 p EQU $60 FLASHING PROMPT

0000: 93 X EQU $00 END OF MESSAGE

Imbedded String Printer 261

PROGRAM RM-2, CONT'D.

6500: 96 *** DEMO ***

6500: 97
6500: 98

6500: 100 THE DEMO USES THE IMPRINT MODULE TO OUTPUT
6500: 101 SCREEN MESSAGES AND A DOS CATALOG COMMAND.
6500: 102
6500: 103
6500: 104
6500: 105

6500:20 2F FB 107 DEM02 JSR INIT GO TO TEXT MODE
6503:20 58 FC 108 JSR HOME CLEAR SCREEN
6506:A2 07 109 LOX 107 ADD BLANKS TO START
6508:20 4A F9 110 JSR PRBL2
650B:20 80 FE 111 JSR SET INV INVERSE HEADER
650E:20 6B 66 112 JSR IMPRINT PUT DOWN HEADER

6511:8A SA'SA 114 DFB L,L,L
6514:C9 CD C2 115 ASC "IMBEDDED STRING METHOD"
6517:CS C4 C4
6S1A:CS C4 AO
651D:D3 D4 02
6520:C9 CE C7
6523:AO CD CS
6526:04 CS CF
6529:C4
652A:8D 80 00 116 DFB c,c,x

6520:20 84 FE 118 JSR SETNORM : NORMAL TEXT
6530:20 6B 66 119 JSR IMPRINT : TOP TEXT LINE

6533:07 C9 D4 121 ASC "WITH THIS METHOD, EACH MESSAGE STRING
6536:C8 AO D4
6539:C8 C9 D3
653C:AO CD CS
653F:D4 CS CF
6542:C4 AC AO
6545:CS C1 C3
6548:C8 AO CD
654B:CS D3 D3
654E:C1 C7 CS
6551:AO D3 D4
6554:D2 C9 CE
6557:C7 AO
6559:8D 122 DFB c

262 Ripoff Module 2

PROGRAM RM-2, CONT'D.

655A:C6 CF CC 125 ASC •FOLLOWS ITS OWN
655D:CC CF 07
6560:03 AO C9
6563:04 03 AO
6566:CF D7 CE
6569:AO
656A:OO 126 DF8 X

6568:20 80 FE 128 JSR SETINV J INVERSE TEXT
656E:20 68 66 129 JSR IMPRINT

6571:CA D3 D2 131 ASC •JSR"
6574:00 132 DF8 X

6575:20 84 FE 134 JSR SETNORM RETURN TO NORMAL TEXT
6578:20 68 66 135 JSR IMPRINT AFTER JSR

657B:AO C3 C1 137 ASC • CALL, IMBEDDED IN
657E:CC CC AC
6581:AO C9 CD
6584:C2 C5 C4
6587:C4 C5 C4
658A:AO C9 CE
658D:8D 138 DF8 c

658E:C9 D4 D3 140 ASC "ITS OWN SOURCE CODE. "
6591:AO CF D7
6594:CE AO D3
6597:CF D5 D2
659A:C3 C5 AO
659D:C3 CF C4
65AO:C5 AE AO
65A3:AO

65A4:CE CF AO 142 ASC "NO POINTERS AND
65A7:DO CF C9
65AA:CE 04 C5
65AD:D2 03 AO
6580:C1 CE C4
6583:8D 143 DF8 c

6584:CE CF AO 145 ASC "NO MASTER FILE ARE NEEDED.
6587:CD C1 D3
658A:D4 C5 D2
658D:AO C6 C9
65CO:CC CS AO
65C3:C1 D2 C5
65C6:AO CE C5
65C9:C5 C4 C5
65CC:C4 AE
65CE:8D 8D 146 DF8 c,c

Imbedded String Printer 263

PROGRAM RM-2, CONT'D.

65DO:C2 C5 D3 149 ASC •sEST USE IS FOR FIXED, SHORT MESSAGES.
65D3:D4 AO D5

65D6:D3 C5 AO
65D9:C9 D3 AO
65DC:C6 CF D2

65DF:AO C6 C9
65E2:D8 C5 C4
65E5:AC AO D3
65E8 :C8 CF' D2
65EB:D4 AO CD
65EE:C5 03 D3
65F1:C1 C7 C5
65F4:D3 AE

65F6:8D 80 150 DFB c,c

65F8:D4 D9 DO 152 ASC / TYPE •c• FOR CATALOG, OR •E" FOR EXIT.
65FB:CS AO A2
65FE:C3 A2 AO
660l:C6 CF D2
6604:AO C3 C1
6607:D4 Cl CC
660A:CF C7 AC
660D:AO CF D2
6610:AO A2 C5
6613:A2 AO C6
6616:CF D2 AO
6619:C5 08 C9
661C:D4 AE

661E:8D 8D 153 DFB c,c

6620:AO AO AO 155 ASC ft
-< >-"

6623:AO AO AO
6626:AO AO AO
6629:AO AO AO
662C:AO AO AD
662F:BC AO B E
6632 AD
6633 88 88 88 156 DFB B,B,B,P,B,X
6636 60 88 00

264 Ripoff Module 2

PROGRAM RM-2, CONT'D • . .

6639:2C 10 CO 159 AGAIN2 BIT KBDSTR J RESET KEY STROBE
663C:20 1B FD 160 KBD2 JSR KEY IN J READ KEYBOARD
663F:C9 CS 161 CMP I$CS AN •E• FOR EXIT?
6641:FO 21 162 BEQ EXIT2 YES, EXIT
6643:C9 C3 163 CMP I$C3 A •c• FOR CATALOG?
664S:DO 1A 164 BNE RETRY2 1 NO, REPRINT SCREEN

6647:20 58 FC 166 JSR HOME J CLEAR SCREEN FOR CATALOG
664A:20 68 66 167 JSR IMPRINT

664D:8D 84 169 DFB C,D J DOS HEADER
664F:C3 C1 D4 170 ASC "CATALOG"
6652:C1 CC CF
665S:C7
6656:8D 00 171 DFB c,x DOS TRAILER

6,658:20 68 66 173 JSR IMPRINT . PROMPT AFTER CATALOG ,

665B:8D 60 00 174 DFB C,P,X

66SE:18 176 CLC BRANCH ALWAYS
66SF:90 D8 177 BCC AGAIN2
6661:4C 00 65 178 RETRY2 JMP DEM02 TOO FAR FOR BRANCH
6664:20 58 FC 179 EXIT2 JSR HOME CLEAR SCREEN
6667:2C 10 co 180 BIT KBDSTR RESET KEYSTROBE
666A:60 181 RTS AND RETURN

PROGRAM RM-2, CONT'D .

666B:
666B:
666B:

666B:
666B:
666B:
666B:
666B:
666B:

666B:8E AO
666E:8C A1
6671:8D 9F

6674:68
6675:85 EB
6677:68
6678:85 EC

667A:AO 00
667C:E6 EB
667E:DO 02
6680:E6 EC
6682:B1 EB
6684:FO 09
6686:20 9E
6689:20 ED
668C:18
668D:90 ED

668F:A5 EC
6691:48
6692:A5 EB
6694:48
6695:AE AO
6698:AC A1
669B:AD 9F
669E:60

669F:

669F:OO
66AO:OO
66A1:00

66
66
66

66
FD

66
66
66

184
185
186

188
189
190
191 7

192
193

195 IMPRINT
196
197

199
200
201
202

204
205 NXTCHR2
206
207
208 NOC2
209
210
211
212
213

215 END2
216
217
218
219
220
221
222 HOOK2

224

226 ASAV2
227 XSAV2
228 YSAV2

Imbedded String Printer 265

*** IMPRINT MODULE ***

THIS MODULE UNPOPS THE STACK TO FIND THE
IMBEDDED STRING. IT OUTPUTS ONE CHARACTER
AT A TIME TILL A $00 MARKER IS FOUND. THEN
IT JUMPS BACK TO THE CALLING PROGRAM JUST
BEYOND THE STRING.

STX XSAV2 SAVE REGISTERS
STY YSAV2
STA ASAV2

PLA GET POINTER LOW AND SAVE
STA STRP2
PLA GET POINTER HIGH AND SAVE
STA STRP2+1

LDY f$00 NO INDEXING
INC STRP2 GET NEXT HIGH ADDRESS
BNE NOC2 SKIP IF NO CARRY
INC STRP2+1 INCREMENT HIGH ADDRESS
LDA (STRP2), Y GET CHARACTER
BEQ END2 IF ZERO MARKER
JSR HOOK2 FOR SPECIAL EFFECTS
JSR COUT PRINT CHARACTER
CLC BRANCH ALWAYS
BCC NXTCHR2

LDA STRP2+1 RESTORE PC LOW
PHA
LDA STRP2 RESTORE PC HIGH
PHA
LDX XSAV2
LDY YSAV2 RESTORE REGISTERS
LDA ASAV2
RTS AND EXIT

*** STASH ***

DFB $00
DFB $00
DFB $00

ACCUMULATOR SAVE
X-REGISTER SAVE
Y-REGISTER SAVE

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I MONITOR TIME DELAY

how to use a monitor subrou ..
tine for sounds, animation, and
other timing

I

If everyone is always worried about getting their programs to run
fast enough, why on earth would you ever purposely want to stall for
time?

Because, of course, some of the most useful and most interesting
Apple uses center on carefully controlled sequences of time delays.
The most obvious applications are in sound and music, where you
wait for a while, and then change the position of a speaker cone. How
long you wait sets the pitch of the tone, while the number of times
you change the cone sets the duration of the note. Much more on this
in the next two ripoff modules.

Another place where you purposely want to delay precise amounts
of time involves baud-rate generation. Most often, though, these
repeated time delays are done outside your CPU with a special serial
transmitter chip. But other times, your CPU can be asked to generate
a special frequency or a timing waveform that involves carefully con
trolled delays.

Producing the 40-kHz ultrasonic control signal for a BSR remote
power controller is one use. Here a few bytes of software can replace
bunches of specialized and unneeded hardware. Many industrial uses
of Apples involve function and signal generators of one sort or
another.

267

268 Ripoff Module 3

The real biggie of the time delay world centers on animation. To
animate something, you put a pattern on the screen, wait a while, and
then replace or modify that pattern into something different. Done just
right, the changing patterns will give you the illusion of continuous
motion. One very new use of Apple timing lets you carefully lock your
animation to your video displays. This offers you everything from flaw
less and glitchless animation to mixing and matching of text, HIRES,
and LORES together all at once.

Finally, there are the long term uses of time delay. Things that con
trol appliances, turn on sprinklers, or that keep hourly, daily, weekly,
or even monthly tabs on whatever it is that needs its tabs kept.

As withany programming technique, there are several different pop
ular ways· you can go about stalling for time. Which one you use
depends on what you are trying to accomplish and how much else
has to happen while the time delay is taking place.

The fundamental unit of Apple time delay is called a clock cycle.
One clock cycle is roughly one microsecond, so you will need around
one million of these for a one second delay. The Apple clock cycles
are crystal controlled, so they are themselves accurate to at least one
part in a million.

But there is one possible source of inaccuracy that will get to you if
you aren't careful. Apple clock cycles are not precisely one microsec-
ond long . . .

·

An Apple dock cycle is ROUGHLY 1

microsecond long.

An Apple dock cycle takes EXACTLY
0.978 microseconds or 978 nanoseconds.

A microsecond takes up EXACTLY 1.023

Apple dock cycles.

Just to confuse you further, these times are average values. Each
65th clock cycle is one-seventh longer than all the rest. This is done to
uniquely solve a sticky timing glitch. The result is a tiny, and usually
negligible, jitter in outside-world timing applications.

For most everyday needs, you simply say a cycle is a microsecond,
and live with the two percent error you get. But, if you need an exact
number of Apple clock cycles, or an exactly specified time delay, you
have to "fine tune" your thinking to get preciselY what you need.

As examples, locking to an Apple field takes a precise delay of
17030 Apple clock cycles, no more and no less. The time does not
matter here; the cycles are everything. If you must have precisely one
second of delay, you should use 1,022,727 clock cycles and not an
even million. But never make things bunches more precise than you
really need, since extra accuracy is often a pointless waste of time and
effort.

I guess I really get into time delay techniques whole hog, since some
of the most mind-blowing and most challenging Apple uses involve
carefully controlled time delays where an exact result has to be gotten
in an exact number of cycles. This, of course, is what most of the
cheap video stuff was all about, (Sams 21524 and 21723) and is an
ongoing challenge in the Enhance series (Sams 21822, etc.).

Monitor Time Delay 269

Sometimes you will only want to delay for a few clock cycles. Other
times you might need great heaping bunches of cycles. So, you have a
choice of time delay methods. Here, going from short to long, are
some possible . . .

WAYS TO STALL FOR TIME

cycle burner uppers

simple loop
monitor delay

triple monitor delay
combined use
offloading

Burning up clock cycles is one good way for short time delays of a
few microseconds. What you do is throw in some Apple CPU com
mands that don't really do anything but burn up clock cycles. These
might be used to equa,lize two paths through time critical code, to
provide video positioning, or be used anywhere else you need only a
few cycles of correction.

Here are some standard . . .

CYCLE BURNER UPPERS

2 cycles . . . NOP
3 cycles ... BCC taken or JMP
4 cycles ... NOP and NOP

5 cycles . . . NOP and BCC taken
6 cycles .. . NOP and NOP and NOP
7 cycles . . . PHA and PLA

The object of the game is to use as few code bytes as possible for
your delay and to not hurt anything else in the way of flags or working
registers. You can find the "efficiency" of a 6502 instruction by divid
ing the number of cycles delayed by the number of bytes needed.
NOPs are often your safest bet since they do the least damage.

Doing one single cycle of delay gets tricky. While many of the "ille
gal" commands in the 65C02 default to single cycle NOPs, there is no
obvious way to do a single cycle delay with the older and stock 6502's.
The way I usually handle a single delay cycle is to set up the difference
between two paths that have even and odd total clock cycles. For
instance, if your carry flag is set, a BCC takes up two cycles and a BCS
takes up three.

If you do use branches for exact time delays, watch your page
boundary crossings! A mysterious "extra" clock cycle or two will
sometimes result if your code crosses a page when you didn't expect
it to.

Once you get good at it, you should try to build your time delays
into code commands, so that your code does other good stuff at the
same time it is providing your time delay.

270 Ripoff Module 3

Needless to say, cycle burner uppers get old for more than a few
clock cycles worth of delay. lhere are obviously better ways to stall
for a second than by using 511,350 NOPs in a row.

What usually happens for longer delays is that you try to take up
most of the delay with some efficient code, and then, if you have to,
"equalize" with cycle burner uppers to hit any magic values you
need.

The next larger arrow in our delay quiver is the simple loop. like
so ...

LOX t$06
LOOP DEX

BNE LOOP

What you have done is filled a loop ,with a value and then counted
it down. Go through the math, and you will find you get a total of
5N + 1 clock cycles. N here is the hex value you initially load the loop
with. So this dude is good for 6, 11, 16, 21, 26, ... clock cycles.

Note that a loop value of zero will go all the way around, rather
than falling through, for a total of 1281 clock cycles. In terms of audio
frequencies, this equals a square wave's half-period of just under 400
Hz. The reason the zero is missed is that it immediately is
decremented to $FF and thus gets "caught" by the taken BNE branch.
Zero is thus the maximum possible loop time.

For longer delays, you can put extra cycle burner uppers inside the
loop, or else go to a loop within a loop. As examples, a NOP inside
your loop changes the formula to 7N + 1 cycles, while two simple
loops inside each other will get you over a tenth of a second of delay.

But there is a much better. way for medium�length delays. There is a
super elegant and super versatile time delay built into the Apple moni�
tor that is most useful for longer time delays. To use this routine, all
you do is put a magic value into the accumulator and call the routine.
Like this ...

USING THE MONITOR TIME DELAY

1. Put a magic value in A.
2. Do a JSR to $FCA8.

And that's all there is to it. Go through the code on this, and you'll
find it to be disgustingly elegant. All that gets used is the accumulator
and two "borrowed" stack locations. Nothing else is tied up or used
at all.

Part of the elegance involves the timing range you get. You can go
anywhere from 13 clock cycles, on up to a sixth of a second, starting
with only a single 8-bit magic value. Very conveniently, the available
256 time-delay values are spread out in a somewhat "log" fashion, so
you get "tight" spacing on small delays and "wide" spacing on long
delays.

The only reason this routine is not used as much as it should be is
that the formula for the "magic" delay value is scary. Spooky even.
And so misunderstood that even Apple has misprinted its formula in
several different places.

Monitor Time Delay 271

The magic formula, expressed in clock cycles is.

MONITOR DELAY CYC LES a 13 + 13.S*A + 2.5*A*A

If you want the time delay in microseconds, just multiply the above
resu It by 0. 978.

Apple failed to do this on page 63 of the Apple II Reference Manual
and on page 223 of the Apple lie Reference Manual. To correct your
manual, cross out "microseconds" and write in "clock cycles!"

For milliseconds, divide the scaled result by 1000, and for seconds
of delay, divide by a million. As usual, don't forget to convert your
decimal values into hex before assembling them, or your delay will
end up wrong just about every time.

Since that formula is so ugly and nasty that it might even scare an
eighth grader, we'll just spell it all out for you in longhand ...

TIME DELAY VALUES FOR THE MONITOR WAIT SUBROUTINE

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$00 0 13 12 .012
$01 1 29 28 .028
$02 2 so 48 .048
$03 3 76 74 .074
$04 4 107 104 .104
$05 5 143 139 .139
$06 6 184 179 .179
$07 7 230 224 .224

$08 8 281 274 .274
$09 9 337 329 .329
$0A 10 398 389 .389
$0B 11 464 453 .453
$0C 12 535 522 .522
$0D 13 611 597 .597
$0E 14 692 676 .676
$OF 15 778 760 .76

$10 16 869 849 .849
$11 17 965 943 .943
$12 18 1066 1042 1.042
$13 19 1172 1145 1.145
$14 20 1283 1254 1.254
$15 ,, 21 1399 1367 1.367
$16 22 1520 1485 1.485
$17 23 1646 1608 1.608

$18 24 1777 1737 1.737
$19 25 1913 1869 1.869
$1A 26 2054 2007 2.007
$1B 27 2200 2150 2.15
$1C 28 2351 2298 2.298
$10 29 2507 2450 2.45
$1E 30 2668 2608 2.608
$1F 31 2834 2770 2.77

_j

272 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$20 32 3005 2937 2.937
$21 33 3181 3109 3.109
$22 34 3362 3286 3.286
$23 35 3548 3468 3.468
$24 36 3739 3654 3.654
$25 37 3935 3846 3.846
$26 38 4136 4043 4.043
$27 39 4342 4244 4.244

$28 40 4553 4450 4.45
$29 41 4769 4661 4.661
$2A 42 4990 4877 4.877
$2B 43 5216 5098 5.098
$2C 44 5447 5324 5.324
$2D 45 5683 5555 5.555
$2E 46 5924 5790 5.79
$2F 47 6170 6031 6.031

$30 48 6421 6276 6.276
$31 49 6677 6526 6.526
$32 so 6938 6782 6.782
$33 51 7204 7042 7.042
$34 52 7475 7306 7.306
$35 53 7751 7576 7.576
$36 54 8032 7851 7.851
$37 55 8318 8130 8.13

$38 56 8609 8415 8.415
$39 57 8905 8704 8.704
$3A 58 9206 8999 8.999
$3B 59 9512 9298 9.298
$3C 60 9823 9602 9.602
$3D 61 10139 9911 9.911
$3E 62 10460 10224 10.224
$3F 63 10786 10543 10.543

$40 64 11117 10867 10.867
$41 65 11453 11195 11.195
$42 66 11794 11528 11.528
$43 67 12140 11867 11.867
$44 68 12491 12210 12.21
$45 69 12847 12558, 12.558
$46 70 13208 12911 12.911
$47 71 13574 13268 13.268

$48 72 13945 13631 13.631
$49 73 14321 13999 13.999
$4A 74 14702 14371 14.371
$4B 75 15088 14748 14.748
$4C 76 15479 15130 15.13
$40 77 15875 15518 15.518
$4E 78 16276 15910 15.91
$4F 79 16682 16306 16.306

Monitor Time Delay 273

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$50 80 17093 16708 16.708
$51 81 17509 17115 17.115
$52 82 17930 17526 17.526
$53 83 18356 17943 17.943
$54 84 18787 18364 18.364
$55 85 19223 18790 18.79
$56 86 19664 19221 19.221
$57 87 20110 19657 19.657

$58 88 20561 20098 20.098
$59 89 21017 20544 20.544
$SA 90 21478 20995 20.995
$5B 91 21944 21450 21.45
$5C 92 22415 21911 21.911
$50 93 22891 22376 22.376
$5E 94 23372 22846 22.846
$SF 95 23858 23321 23.321

$60 96 24349 23801 23.801
$61 97 24845 24286 24.286
$62 98 25346 24776 24.776
$63 99 25852 25270 25.27
$64 100 26363 25770 25.77
$65 101 26879 26274 26.274
$66 102 27400 26783 26.783
$67 103 27926 27298 27.298

$68 104 28457 27817 27.817
$69 105 28993 28341 28.341
$6A 106 29534 28869 28.869
$6B 107 30080 29403 29.403
$6C 108 30631 29942 29.942
$60 109 31187 30485 30.485
$6E 110 31748 31034 31.034
$6F 111 32314 31587 31.587

$70 112 32885 32145 32.145
$71 113 33461 32708 32.708
$72 114 34042 33276 33.276
$73 115 34628 33849 33.849
$74 116 35219 34427 34.427
$75 117 35815 35009 35.009
$76 \118 36416 35597 35.597
$77 119 37022 36189 36.189

$78 120 37633 36786 36.786
$79 121 38249 37389 37.389
$7A 122 38870 37996 37.996
$7B 123 39496 38608 38.608
$7C 124 40127 39224 39.224
$70 125 40763 39846 39.846
$7E 126 41404 40473 40.473
$7F 127 42050 41104 41.104

274 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$80 128 42701 41740 41.74
$81 129 43357 42382 42.382
$82 130 44018 43028 43.028

$83 131 44684 43679 43.679
$84 132 45355 44335 44.335
$85 133 46031 44996 44.996
$86 134 46712 45661 45.661
$87 135 47398 46332 46.332

$88 136 48089, 47007 47.007
$89 137 48785 47688 47.688
$8A 138 49486 48373 48.373
$8B 139 50192 49063 49.063
$8C 140 50903 49758 49.758

$8D 141 51619 50458 50.458

$8E 142 52340 51163 51.163
$8F 143 53066 51872 51.872

$90 144 53797 52587 52.587
$91 145 54533 53306 53.306
$92 146 55274 54031 54.031
$93 147 56020 54760 54.76
$94 148 56771 55494 55.494
$95 149 57527 56233 56.233
$96 150 58288 56977 56.977
$97 151 59054 57726 57.726

$98 152 59825 58479 58.479
$99 153 60601 59238 59.238
$9A 154 61382 60001 60.001
$9B 155 62168 60770 60.77
$9C 156 62959 61543 61.543
$9D 157 63755 62321 62.321
$9E 158 64556 63104 63.104
$9F 159 65362 63892 63.892

$AO 160 66173 64685 64.685
$A1 161 66989 65482 65.482
$A2 162 67810 66285 66.285
$A3 163 68636 67092 67.092
$A4 164 69467 67905 67.905
$AS 165 70303 68722 68.722
$A6 166 71144 69544 69.544
$A7 167 71990 70371 70.371

$AS 168 72841 71203 71.203
$A9 169 73697 72040 72.04
$AA 170 74558 72881 72.881
$AB 171 75424 73728 73.728
$AC 172 76295 74579 74.579
$AD 173 77171 75435 75.435
$AE 174 78052 76297 76.297
$AF 175 78938 77163 77.163

Monitor Time Delay 275

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$BO 176 79829 78034 78.034
$B1 177 80725 78910 78.91
$B2 178 81626 79790 79.79
$B3 179 82532 80676 80.676
$B4 180 83443 81566 81.566
$B5 181 84359 82462 82.462
$B6 182 85280 83362 83.362
$B7 183 86206 84267 84.267

$B8 184 87137 85177 85.177
$B9 185 88073 86092 86.092
$BA 186 89014 87012 87.012
$BB 187 89960 87937 87.937
$BC 188 90911 88867 88.867
$BD 189 91867 89801 89.801
$BE 190 92828 90740 90.74
$BF 191 93794 91685 91.685

$CO 192 94765 92634 92.634

$C1 193 95741 93588 93.588

$C2 194 96722 94547 94.547
$C3 195 97708 95511 95.511

$C4 196 98699 96479 96.479
$C5 197 99695 97453 97.453
$C6 198 100696 98432 98.432

$C7 199 101702 99415 99.415

$C8 200 102713 100403 100.403

$C9 201 103729 101396 101.396
$CA 202 104750 102394 102.394
$CB 203 105776 103397 103.397
$CC 204 106807 104405 104.405
$CD 205 107843 105418 105.418
$CE 206 108884 106435 106.435
$CF 207 109930 107458 107.458

$DO 208 110981 108485 108.485

$D1 209 112037 109518 109.518
$D2 210 113098 110555 110.555
$D3 211 114164 111597 111.597
$D4 212 115235 112644 112.644
$D5 ,213 116311 113695 113.695
$D6 214 117392 114752 114.752
$D7 215 118478 115814 115.814

$D8 216 119569 116880 116.88

$D9 217 120665 117952 117.952
$DA 218 121766 119028 119.028
$DB 219 122872 120109 120.109
$DC 220 123983 121195 121.195
$DD 221 125099 122286 122.286

$DE 222 126220 123382 123.382

$DF 223 127346 124482 124.482

276 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$EO 224 128477 125588 125.588
$E1 225 129613 126.698 126.698
$E2 226 130754 127814 127.814
$E3 227 131900 128934 128.934
$E4 228 133051 130059 130.059
$E5 229 134207 131189 131.189
$E6 230 135368 132324 132.324
$E7 231 136534 133464 133.464

$E8 232 137705 134608 134.608
$E9 233 138881 135758 135.758
$EA 234 140062 136913 136.913
$EB 235 141248 138072 138.072
$EC 236 142439 139236 139.236
$ED 237 143635 140405 140.405
$EE 238 144836 141579 141.579
$EF 239 146042 142758 142.758

$FO 240 147253 143942 143.942
$F1 241 148469 145130 145.13
$F2 242 149690 146324 146.324
$F3 243 150916 147522 147.522
$F4 244 152147 148726 148.726
$F5 245 153383 149934 149.934
$F6 246 154624 151147 151.147
$F7 247 155870 152365 152.365

$F8 248 157121 153588 153.588
$F9 249 158377 154816 154.816
$FA 250 159638 156048 156.048
$FB 251 160904 157286 157.286
$FC 252 162175 158528 158.528
$FO 253 163451 159776 159.776
$FE 254 164732 161028 161.028
$FF 255 166018 162285 162.285

Monitor Time Delay 277

A copy of this listing appears on the companion diskette as a bonus
program. Make as many copies as you like in any format you care to.

We'll find out just how to use the monitor delay subroutine shortly.
Note that you do not get every value in the range you need. What you
do is take the nearest value and then either live with it or else "pad" it
with cycle burner uppers.

Let's quickly round out our survey of ways to stall for time. If you
use the monitor delay three times in a row with just the right different
"magic" values, you can hit practically any exact value over a one to
three hundred millisecond range. This was needed and used exten
sively in Enhancing Your Apple II (Sams 21822).

As another bonus program on the support diskette for this book,
we'll throw in an automatic magic number finder that quickly solves
the triple delay problem for you. The task is not trivial. More details on
this support diskette are found inside the back cover.

On longer delays, it is always best to try and do other things while
you are stalling for time. For instance, you can increment a random
number pair while you are waiting for someone to press a key. Or you
can use your animated graphics plotting time as part of the time delay
for a sound. Always suspect long times spent "wheel spinning," and
see if you can't replace stalling code with some useful yet time con
suming task instead ...

Avoid "wheel spinning" for wheel
spinning's sake.

ALWAYS try and make your time delay
code handle other useful tasks.

The "best" way to stall for time is to have something other than the
CPU do the delaying for you. This frees up your Apple to go on to do
other useful things. For instance, you can send a single and fast "trans
mit" command to a serial card whose separate UART takes its good
old time outputting a serial code. Or, send your music commands to a
music chip. Or your timer commands to a timer chip. Or use a real
time clock chip to interrupt your Apple for those things that take really
long time delays, such as control of a sprinkler system.

Unfortunately, all of these "offloaders" take special hardware and
add to your system cost. They also limit who you can sell your prod
uct to. Sometimes it is best to do your initial timing with the CPU and
then later offload cumbersome timing once your product is better
defined.

Using the Monitor Delay

Let's find out how to use the monitor delay for some exciting and
noisy animation. So stunning, in fact, that it might earn a fifth grader a
8- if his teacher was feeling generous. While we are at it, we will
pick up some fundamentals of LORES plotting using the existing moni
tor LORES subs.

Many people look down on LORES, but a thorough understanding
of LORES graphics is almost essential if you are ever going to handle
HIRES. The lie now offers double LORES graphics of 24 X 80 color
blocks, which considerably eases the "chunkiness" of the display.

278 Ripoff Module 3

LORES animation and repeated mapping can be done much faster and
with far fewer bytes than can be done in HIRES. And, thanks to the
exact field sync of the Enhancing series, you can easily mix and match
text, LORES, and HI RES together anyplace you want on the screen all
at the same time.

Our main program is called DEM03. DEM03 consists of three sub
routines, just as any "high level" code should be made up entirely of
subroutine calls. The first subroutine clears the screen and draws an
empty bucket on the screen. The second subroutine fills the bucket at
a one layer per second rate. The third subroutine causes an explosion
when the bucket is completely filled. Calling the fire department or
pressing any key ends the explosion.

We will let you do your own flowchart on this, since nothing sneaky
is involved.

The first subroutine is called DRAWCUP. This one initializes the
LORES screen and clears it using the existing SETGR and CLRSCR
monitor subs. You then set the bucket color to green using the
SETCOL subroutine, and then draw your bucket.

Bucket drawing is done using the HLINE and VLINE monitor sub
routines. You enter HLINE with the vertical position in the accumula
tor, the left end line position in the Y register, and the right end line
position in page zero location $2C.

Alike but different somehow, you enter VLINE with the horizontal
position in the Y register, the top-most line position in the accumula
tor, and the bottom-most line position in page zero location $20.

Note how the use of labels HEND for $2C and VBOT for $20 eases
remembering these values.

The FILLCUP subroutine fills the cup one level at a time, spending
one second per level. Several sub-subs are involved. The TENTHS
subroutine uses the monitor delay to produce one-tenth of a second
delay. In this demo, we won't worry about exact timing values, since
they are not at all critical.

Since we cannot do a one-second delay directly with the monitor
sub, we instead use our own SECONDS subroutine, which calls the
TENTHS subroutine ten times in a row to get a one-second delay.

To round out our time delays, there is also a TENMSEC subroutine
that generates a 1 0-millisecond delay, useful to produce a sound effect
as part of the BRACK subroutine. More details on sound effects appear
in the next two ripoff modules.

The "explosion" is done by rapidly changing the screen modes
while whapping the speaker. It sounds and looks awful.

Monitor Time Delay 279

MIND BENDERS

-Why does the liquid stay inside the
cup, rather than overwriting the
existing cup sides?

-What are the exact time delays in
use, including all sub timing and all
overhead code?

-Improve the animation and the
display so it would earn a seventh
grader an A-.

-Only certain cup and liquid colors
are compatible on an average color
set. Why? Which combinations look
best in both color and black and
white?

-Redo this demo in HIRES. Do an
on-screen splash. Then include a
real squirt gun in your demo.

280 Ripoff Module 3

PROGRAM RM-3
MONITOR TIME DELAY

NEXT OBJECT FILE NAME IS TIME DELAY

6700: 3 ORG $6700 7 PUT MODULE 13 AT $6700

6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41

* *

* -< TIME DELAY >- *
* *
* (USING MONITOR WAIT) *
* *
* VERSION 1.0 ($6700-$67AC) *
* *
* 11-24-82 *
* • • • . • • • • • • • • • • • • • • • • • • . • • • • . • • • • . • . . • • • *
* *
* COPYRIGHT C 1982 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS PROGRAM SHOWS HOW TO USE THE MONITOR WAIT
SUBROUTINE FOR TIME DELAYS OF 0.01, 0.1, 1.0,
AND 10.0 SECONDS.

\ HOW TO USE IT *

TO USE, RUN THE DEMO BY $6700G FROM MACHINE LANGUAGE
OR CALL 26368 FROM APPLESOFT.

THEN ADAPT THE METHOD AND RESULTS TO YOUR OWN
NEEDS.

PROGRAM RM-3, CONT'D .

6700:

6700:

6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:

6700:
6700:
6700:

44

46

47

48

49

5()

51

53

55
56
57
58
59
60

62

64
65
66

67
68
69

Monitor Time Delay 281

*** GOTCHAS ***

THE ACCUMULATOR IS DESTROYED BY THE WAIT SUBROUTINE.

MACHINE TIME AND PEOPLE TIME DIFFER! ONE CLOCK CYCLE
EQUALS 0.976 MICROSECONDS, AND NOT 1.000 MICROSECONDS!

THIS SLIGHT DIFFERENCE CAN SOMETIMES BE SIGNIFICANT.

*** ENHANCEMENTS ***

DEM03 ALSO SHOWS YOU SEVERAL TRICKS INVOLVED WHEN
YOU USE THE LORES SCREEN.

*** RANDOM COMMENTS ***

IF YOU NEED AN EXACT NUMBER OF MACHINE CYCLES THAT
CANNOT BE HIT DIRECTLY W ITH WAIT, TRY USING WAIT TWO

OR THREE TIMES USING DIFFERENT A VALUES.

282 Ripoff Module 3

PROGRAM RM-3, CONT' D .

6700:

F832:
002C:
C057:
F819:

FB2F:
COOO:
COlO:
C056:
C053:
C0 52:
F864:
FB40:
C030:
COSO:
C0 51:
002D:
F828:
FCA8:

72

74 CLRSCR
75 HEND
76 HIRES
77 HLINE
78 INIT
79 IOADR
80 KBDSTR
81 LORES
82 LOWSCR
83 MIXCLR
84 SETCOL
85 SETGR
86 SPKR
87 TXTCLR
88 TXTSET
89 VBOT
90 VLINE
91 WAIT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

*** HOOKS tt**

$FB32
$2C
$C0 57
$F819
$FB2F
$COOO
$COlO
$C0 56
$C0 53
$C0 52
$F864
$FB40
$C030
$COSO
$C0 51
$2D
$F828
$FCA8

CLEAR FULL LORES SCREEN
J RIGHT END OF LORES H LINE

HIRES SOFT SWITCH
HORIZ LORES LINE
INITIALIZE TEXT SCREEN
KEYBOARD INPUT
KEYSTROBE RESET
LORES SOFT SWITCH
PAGE ONE SOFT SWITCH
FULL GRAPHICS SCRE.EN
SET LORES COLOR
SET UP GRAPHICS SCREEN
SPEAKER CLICK OUTPUT
GRAPHICS ON SOFT SWITCH
TEXT ON SOFT SWITCH
BOTTOM OF LORES V LINE
VERTICAL LORES LINE
TIME DELAY SET BY ACCUMULATOR

PROGRAM RM-3, CONT' D •

6700:
6700:
6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:20 OA 67
6703:20 3F 67
6706:20 sc 67
6709:60

670A:
670A:

94
95
96

98
99

100
101
102
103

105 DEM03
106
107
108

110
111

*** DEMO ***

THE DEMO FILLS A LORES BUCKET
EACH SECOND TILL OVERFLOW,
TICKING OFF EACH TENTH OF A SECOND.

JSR DRAWCUP
JSR FILLCUP
JSR EXPLODE
RTS

DRAW LORES CUP
FILL CUP
THEN EXPLODE
AND EXIT

*** DRAWCUP SUBROUTINE ***

Monitor Time Delay 283

670A: 112 THE DRAWCUP SUBROUTINE DRAWS A LORES CUP ON THE SCREEN.
670A: 113
670A: 114
670A: 115

670A:20 40 FB 117 DRAWCUP JSR SETGR INIT LORES SCREEN
670D:2C 52 co 118 BIT MIXCLR FULL SCREEN GRAPHICS
6710:20 32 F8 119 JSR CLRSCR CLEAR FULL LORES SCREEN
6713:A9 04 120 LOA i$04 USE GREEN BUCKET
6715:20 64 F8 121 JSR SETCOL AND SET COLOR
6718:A9 19 122 LOA #$19 DRAW BASE
671A:85 2C 123 STA HEND
671C:AO oc 124 LOY i$0C
671E:A9 1E 125 LOA i$1E
6720:20 19 F8 126 JSR HLINE AND PLOT IT
6723:A9 1E 127 LOA I$1E DRAW SIDES
6725:85 20 128 STA VBOT
6727:AO OD 129 LOY i$00
6729:A9 14 130 LOA 1$14
672B:20 28 F8 131 JSR VLINE\

AND DRAW LEFT SIDE
672E:A9 14 132 LOA 1$14
6730:AO 18 133 LOY 1$18
6732:20 28 F8 134 JSR VLINE AND DRAW RIGHT SIDE
6735:A9 06 135 LOA l$06 SET COLOR FOR FILL
6737:20 64 F8 136 JSR SETCOL
673A:C6 2C 137 DEC BEND FILL INSIDE RIGHT
673C:C6 2C 138 DEC BEND
673E:60 139 RTS AND RETURN

284 Ripoff Module 3

PROGRAM RM-3, CONT'D . • .

673F:

673F:
673F:
673F:

673F:
673F:

673F:A9 OA
6741:80 AC 67

6744:20 53 67
6747:20 AO 67
674A:20 86 67
674D:CE AC 67
6750:00 F2
6752:60

6753:

6753:
6753:
6753:

6753:

6753:AO OA
6755:20 94 67
6758;88
6759:00 FA
6758:60

142

143

144

145

146

147

149
150

*** FILLCUP SUBROUTINE ***

THIS SUBROUTINE FILLS THE CUP AT

A ONE SECOND PER LEVEL RATE.

FILLCUP LOA f$0A FOR TEN TRIPS
STA CUPHI SAVE INDEX

151 AGAIN3 JSR SECONDS DELAY VIA SECONDS
152 JSR POUR ADD TO LEVEL
153 JSR BRACK3 MAKE NOISE
154 DEC CUP HI NEXT CUP LEVEL
155 B NE AGAIN3
156 RTS AND EXIT

15'8 *** SECONDS SUBROUTINE ***

160
161
162
163

165 SECONDS LOY I$0A FOR TEN TENTHS
166 NEXT3 JSR TENTHS DELAY FOR A TENTH
167 DEY

168 BNE NEXT3 REPEAT TILL DONE
169 RTS THEN EXIT

SUB

Monitor Time Delay 285

PROGRAM RM-3, CONT' D .

67SC: 172 ' *** EXPLODE SUBROUTINE ***

67SC:2C 57 CO 174 EXPLODE BIT HIRES

67SF:20 9A 67 175 JSR TENMSEC DELAY FOR TEN MILLISECONDS
6762:2C 56 CO 176 BIT LORES
6765:20 9A 67 177 JSR TENMSEC AND DELAY AGAIN
6768:2C 51 CO 178 BIT TXTSET

6768:20 9A 67 179 JSR TENMSEC
676E:2C 30 CO 180 BIT SPKR

6771:2C SO CO 181 BIT TXTCLR

6774:20 9A 67 182 JSR TENMSEC

6777:2C 30 CO 183 BIT SPKR WRAP SPEAKER

677A:2C 00 CO 184 BIT IOADR CHECK FOR KEYPRESS

6770:10 DD 185 BPL EXPLODE

677F:2C 10 CO 186 BIT KBDSTR RESET KEYBOARD

6782:20 2F FB 187 JSR INIT BACK TO TEXT SCREEN

6785:60 188 RTS POP STACK AND RETURN

6786: 190 *** BRACK SUBROUTINE ***

6786:AO 06 192 BRACK3 LOY 1$06 SECONDS· TONE

6788:A9 oc 193 NOTE3 LOA I $0C

678A:20 AS FC 194 JSR WAIT

678D:2C 30 co 195 BIT SPKR

6790:88 196 DEY

6791:00 F5 197 BNE NOTE3

186 Ripoff Module 3

PROGRAM RM-3; CONT'D.

6'793:60

6794:
6794:
6794:
6794:

6794:A9 C7
6796:20 AS FC
6799:60

679A:
679A:
679A:
679A:

679A:A9 30
679C:20 AS FC
679F:60

67AO:
67AO:

67A0:1S
67A1:A9 1)
67A3:6D AC 67
67A6:AO OE
67AS:20 19 FS
67AB:60

67AC:

67AC:OA

199 RTS

201 ,
202
203
204

*** TENTHS SUBROUTINE ***

THIS SUB USES WAIT TO DELAY ONE TENTH
OF A SECOND.

206 TENTHS LOA I$C7
207 JSR WAIT
20S RTS

FOR 99.415 MILLISECONDS
DELAY VIA WAIT SUB
AND THEN RETURN

210 *** TEN MILLISECONDS SUB ***

211
212 THIS SUB USES WAIT TO DELAY TEN MILLISECONDS.
213

215 TENMSEC LOA i$30 FOR 99.415 MILLISECONDS
216 JSR WAIT DELAY VIA WAIT SUB
217 RTS AND THEN RETURN

219 *** POUR SUBROUTINE ***

220

222 POUR CLC FILL CUP WITH LIQUID
223 LOA 1$13 TOP OF CUP LEVEL
224 ADC CUP HI MINUS HEIGHT ALREADY
225 LOY I$0E . LEFT SIDE SET I

226 JSR HLINE DRAW LEVEL
227 RTS AND EXIT

229 *** STASH ***

231 CUPHI DFB $0A
\

LEVEL IN CUP

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I OBNOXIOUS SOUNDS

an extremely versatile and com
pact wide-range sound-effects
generator

First the bad news.

I

For a given amount of programming effort and add-on hardware,
the Apple will always give you sound that is "thin" and animation that
is "weak," when compared against an arcade video game. This hap
pens inevitably because the Apple CPU has to take time out to gener
ate its own sound and graphics, and because the color system is stuck
with being more or less compatible with the NTSC ("Never The Same
Color") broadcast television standard.

The good news, of course, is that for an extraordinary amount of
creative programming effort, and for super creative use of extra hard
ware, you can use your Apple to knock the bytes out of any arcade
video game or any other brand of personal computer. All it takes is
lots of special effort that optimizes what you can do within the bounds
of the actual limits of your Apple.

The next two ripoff modules show us two of the many different ways
you can get sound into your programs. We will assume, for now, that
you are going to use the built-in speaker of an unmodified Apple.

The "noisemaking" hardware of your Apple seems rather limiting at
first glance. You have one small and tinny-sounding speaker. All the
support hardware lets you do is shove the speaker cone all the way in,

287

288 Ripoff Module 4

or else pull it all the way out. You do this by "whapping" address
location $C030 once each time you want to change the cone's posi
tion.

Technically, address $C030 is decoded and used to change the state
of a binary divider, or flip-flop. The flip-flop is coupled to a special
Darlington driver transistor. One whap pushes the cone in. The next
pu lis it out . . .

A BIT $C030 is the standard way of
moving the Apple speaker's cone from
the extreme position it is in to the other
extreme position.

To get some useful sounds out of the Apple speaker, you decide
how often you want to shove the cone back and forth, and carefully
pick the time delay needed between shovings. For instance, if you
keep a constant time between shovings, you will set the pitch of an
audio square wave. The duration of the tone is decided by how long
you continue the shoving process.

Believe it or not, you can easily get more than one note at once,
have variable volume, do bell-like tones, handle speech, and do
much, much more if you are a sneaky enough programmer. And your
sound can be further "thickened" considerably just by adding a larger
speaker to your Apple.

Before getting fancy, though, let's get two gotchas out of the
road ...

$C030 GOTCHAS

two whaps immediately following
each other give you no sound . . .

USE BIT $C030, NOT STA $C030.

one isolated whap may not
sound . . .

USE AT LEAST 3 WHAPS PER CLICK.

Due to a quirk in the Apple's timing, any time you write to a mem
ory location, you address that location twice. The two addressings are
separated by one microsecond. If you try to do a STA $C030, you end
up shoving the speaker in and then pulling it back out again an impos
sibly brief time later. The cone barely moves in so short a time, and,
surprise, surprise, you get no sound.

So, always BIT test your speaker location. Do not write to it, unless
you want no sound.

The second quirk comes about because of an attempt to save Apple
system power. There is a coupling capacitor in the path between the
flip-flop and the speaker. This capacitor discharges on inactivity.
Which means that the speaker cone is never held "in" for long peri
ods of time. The dropout time is long compared to most tones, so you
normally won't notice it.

Obnoxious Sounds 289

There are two places where you might pick up the side effects of
this power-down capacitor, and where it may cause you trouble. If
you try to "click" the speaker just once, there's only a 50-50 chance
you will get any sound at all. So, it takes two repeated commands,
delayed by some audio value, to guarantee an isolated click. In real
life, three or four repeated speaker motions are the minimum you will
want to use, since some of the clicks will sound "leaner" than others.

The other place this gotcha appears happens when you send very
low-pitched notes, or a very low-pitch "sweep" to your speaker. At
some point, the frequency will jump up by an octave. This frequency
doubling happens when the capacitor picks up enough charge to
allow cone clicking in both directions.

Watch these two details if you ever get no sound or uneven sound
out of your code.

As in all other Apple programming techniques, there are lots of dif
ferent ways to get sound, and each of these ways will have a certain
range of effects over which they are useful. Let's survey some ...

WAYS TO GENERATE APPLE
SOUND

clickety clack
calculated routine
red book tones

table method
duty cycling
offloading

With the clickety clack method, you simply move the speaker cone
back and forth a few times, using a loop or some other obvious code.
See the BRACK subroutine of the previous ripoff module for an exam
ple. The time between whappings sets the pitch while the total num
ber of whappings sets the duration of your sound. If the pitch is
constant, you get a "pure" tone. If the pitch changes, you get a
"sweep." If both halves of each cycle are the same time duration, you
get a "woodwind" style tone. If one half of each cycle is much longer
than the other, you get a "string" style voicing.

One important exception to the clickety clackers. Do not ever use
the stand�rd "[G]" or "JSR $FF3A" beep. This tone is too grating to
ever use in any reasonable program . . .

NEVER use the "standard" Apple beep
anywhere in any of your programs!

ALWAYS kick sand in the face of anyone
who does.

In the calculated routine method, you generate some code that
decides when and where all the zero crossings are needed for a cer
tain sound effect. This method is often used for sirens and sweeps,

290 Ripoff Module 4

tonal scales, frog croaks, phasors, and other short or weird "one-shot"
sounds.

The good thing about the calculated routine method is that you can
get some real serendipity going, and end up with some totally wild
sounds that you wouldn't ever have thought possible otherwise. The
bad scene about many calculated routines is that this is "old" code
done the "old" way that may end up long and cumbersome, rather
than short and general.

The OBNOXIOUS SOUNDS subroutine of this ripoff module will
shortly explore this technique.

The red book tones method is a way to make monophonic music
that is useful for playing songs in tempered musical scales. This
involves a pitch and duration generator, and some file access tricks.
More on this in the next module.

The table method looks up each speaker motion as needed, out of a
long table. You can produce any possible sound this way. Most
Apple-based speech uses the table method, and virtually any sound of
most any complexity can be handled with a general and versatile
enough program.

There are some tricks to using the table method. Getting the table to
sound like you really want it to can be very involved and may take a
long time. Finding some suitable coding that lets you put lots of sound
in a short table is also a real hassle. Long or multiple effects really burn
up the bytes. The obvious brute force method of storing a one each
time you want the speaker to move can be substantially improved by
going to some sort of "run length" encoding.

The best way to study table method sound is to steal the German
vocabulary file out of Castle Wolfenstein. To grab this table, just follow
the "tearing" method of Enhancement 3 in the Enhancing Your Apple
II, Volume I (Sams 21822).

Ah yes. Duty Cycling.
Pushing the limits. Doing the impossible. How on earth can you get

more than one tone at a time out of a speaker driver that you can only
push or pull? How can you do variable volume? Sinewaves and flute
like or bell-like tones?

Its really very simple. Suppose you extremely rapidly move the
speaker cone in and out, at an ultrasonic rate. The average cone posi
tion depends on the average duty cycle. For a sinewave, just let the
average cone position describe a sinewave at the frequency you want.
For bell tones, let the average position slowly "decay" to its "middle"
value. For more than one note at once, just lel the average position
equal the sum of all the notes taken together at once.

If you get into some hairy math involving Fourier coefficients, you
can easily handle chords and other multitone effects, with or without
duty cycling. The whole trick is to, on the average, put the speaker
cone where it ought to be when it ought to be there.

Duty cycling techniques are described in various issues of Apple
Assembly Line.

Offloading consists of using something other than the Apple's
speaker to make the noise. Simply going to a larger speaker or into a
hi-fi will help "thicken" the sound bunches, and you can get stereo
effects by using the speaker hardware for one channel and the cas
sette output port for the other. You can separately get four more chan
nels out of the annunciator outputs of your game paddle connector.

Obnoxious Sounds 291

But the real benefits of offloading take place when you send simple
commands to a custom noise generator or music generator chip.
Besides producing much richer and more flexible sounds, you now
offload the Apple's CPU so it is free to go on to other things. All the
Apple has to do is quickly pass a few parameters on to the music chip,
rather than stalling around for the entire time it takes to produce the
entire tone or tone sequence.

Both General Instruments and Texas Instruments are heavily into
music and sound-effect g�neration chips. These are often the key cir
cuits used in the fancier plug-in synthesizer cards and systems as well.

Time now for more details on .

The Calculated Routine Method

The calculated routine method is best done for single and isolated
sound effects.

A phasor blast, of course, is the architypical example of this sort of
thing. We'll show you a few dozen bytes of code that do the standard
and classical phasor blast for you. But, by changing only two values,
those same bytes can do a surprising variety of effects that sound
wildly different.

These include some very pleasant and highly "brassy" prompt
tones, musical glissades, some "cartoon" style sound, a geiger
counter simulation, and a few assorted and highly useful pips, ticks,
and whopidoops. There's even a special effect called the time bomb,
that lasts for minutes, and has all sorts of impractical joke possibilities.

The object of any sound program is to produce some speaker whap
pings separated by some time delays. The time delays set the time
between zero crossings of the sound that the speaker is to produce.
Usually these delays will range from 10 microseconds to 10 millisec
onds or so. Faster than this and you are into ultrasonics that you can
not hear and that the speaker cone cannot follow. Slower than this
breaks the sound down into individual and possibly annoying clicks.

If all the time delays are the same value, you get a constant square
wave tone. The total number of time delays sets the duration of the
tone, while each individual delay sets the pitch of each half-cycle of
sound.

Things get interesting when you vary the time delays in a strange
manner. For instance, if you make each successive time delay shorter,
you get a siren qr sweep effect that goes up in time.

The whole intent of the calculated routine method is to produce
some interesting changes in the time delays that give you fat, thick,
and interesting sound effects. The calculations of your routine should
create a group of delay values that result in a useful sound.

Here's the flowchart for this module's calculated routine sound
effects generator . . .

292 Ripoff Module 4

OBNOXIOUS SOUNDS FLOWCHART:

(6824)

(6822)

(6829)

(6854)

(6857)

(6859)

(685D)

SAVE
REGISTERS

GET SWEEP
AND RANGE

VALUES

DECREMENT
SWEEP

RESTORE
REGISTERS

NO

YES

SETUP
SWEEP

SETUP
STEP

SETUP
PITCH

DELAY FOR
HALF CYCLE

WHAP
SPEAKER

DECREMENT
DURATION

DECREMENT
STEP

(683F)

(6841)

(6843)

(6844)

(6847)

(684A)

(684E)

NO

(684F)

(6851)

NO

(6852)

Actually, this is nothing but a very simple sweep generator with one
or two added tricks. The only two parameters under your control are
how far you sweep and the total number of sweeps you use. Now,

Obnoxious Sounds 293

don't go away, for you will be utterly amazed at how many totally dif
ferent effects you can get this way. In theory, there are 65536 different
effects possible. In practice, there's only two dozen or so that you will
find genuinely useful and uniquely different.

Our first trick is to use the monitor delay subroutine. Remember that
these delay values are "cramped together" at the short end, giving
you a more or less log response. And this is just what you want for an
audio sweep. A linear sweep sounds awful, since your ear is a log
device that expects a few cycles change for low notes and lots of
cycles change for high notes. So, the monitor delay sub automatically
puts the low notes close together and the high notes far apart, just like
you need.

Our second trick is to use the same value to set both the pitch and
the length of each step in the sweep. This keeps things simple, yet still
gives you many different sounds.

Our third trick is very sneaky. Five testing bytes are added to give
you geiger counter or multiple click effects. If the sweep duration is
less than $80, you get the complete sweep, all the way up in pitch. If
the sweep duration is greater than $80, the sweep only goes to the $80
value and then quits.

The $80 value is extremely low in pitch. So low that you hear each
cone movement as a distinct click. With the five byte code patch, val
ues greater than $80 give you a burst of clicks. Values less than $80
give you the full sweep. So, you get two wildly and totally different
classes of sound effects out of the same simple calculated routine.

We have used a sixteen-entry file to support the sound effects gener
ator. If you only want one or two sounds, you can eliminate this file
and direct poke the effects you are after. Each sound effect is specified
with two values. The first decides the number of the sweeps pro
duced, while the second decides how long each sweep is to be.

At any rate, you enter the subroutine with a number in the X register
that equals the sound effect you are after. You then save all the other
registers. Next you check to make sure the number is legal. If it is not,
you replace it with sound effect zero. You might prefer some fancier
error trapping here, but this is probab1y all you will really need.

Next, the sound effect number is converted into two sweep values
by looking them up in the SEF effects file. The number of sweeps is
grabbed first and put in an absolute location called TRPCNT 4. This
location will get counted down, once per each complete sweep. After
this, the sweep duration is grabbed and "force fed" into the code at
SWEEP4+1. \

Uh, whoops. Play that one by again.
Tricks like this go by the name of self-modifying code. Which is legal

and powerful if you know what you are doing. What you have done
here is changed a LDY #00 command into a LDY #SWEEPS com
mand. Note that the data value gets poked into the second byte of the
op code! Put it anywhere else and you plow the program. Note also
that any self-modifying code must be in RAM. EPROM need not apply.

Why?
Generally, it is safe to pre-modify your code like we have done here.

In fact, this is a standard and powerful programming technique. Just
be sure that you are changing ONLY the EXACT location you think
you are. On the other hand, code that continuously changes itself on

294 Ripoff Module 4

the fly is very dangerous. Deadly even. Yet still a specialized and most
useful programming technique.

Some comment . . .

If you self-modify code, be sure to place
what you are putting EXACTLY where
you intend to put it!

One or two data values preplaced once
before use is safe and standard.

Code that continuously changes itself is
often dumb and deadly.

So much for a side trip on self-modifying code. At this point, we
have a "number-of-sweeps" value in TRPCNT 4, and the "length-of
the-sweep" value has been force fed into a command that loads the Y
register.

Now to get sneaky. We need a third parameter. Namely, the dura
tion value that sets the frequency for this part of our sweep. For sim
plicity, we just transfer Y to X, and let X set our duration and Y our
pitch. For any given step of our sweep, we want all constant frequen
cies. Thus, we will keep Y constant while we count X down. This
results in a sound that sweeps up in distinct note-like steps.

So far, so good. You transfer your pitch value to the accumulator
and then use the monitor delay to. stall for a half-cycle. Then, you
whap the speaker. Next, you check X for the $80 value that separates
the geiger effects from the long sweeps. If you have a geiger burst, you
exit. For a sweep, you continue.

You continue this for X half-cycles to generate one "step" of your
sweep. Then you decrement Y to go on to the next sweep step. Do
this till you have completed the last step. Note that the last step is the
shortest and the highest in pitch.

That should complete one sweep for you. Decrement TRPCNT4. If
more sweeps are needed, then repeat the process for as many sweeps
as you want. Finally, restore all the registers and exit.

There is an "oldfangled" classic cell animation demo on the com
panion diskette named ENGINE that you simply will not believe the
first time you see and hear it. ENGINE uses the obnoxious sounds sub
routine. It also has two secret ingredients called David W. Meyer, Sr.,
and David W. Meyer, Jr. Who, together, form one of the most fantas
tic father and son Apple animation teams I've ever run across any
where, ever. And, yes, they do custom work. See the Appendix for an
address.

We'll show you a simpler demo of the obnoxious sounds here and
now. DEM04 just goes through all sixteen of the sounds in order and
gives you a time delay between effects.

DEM04 produces an earth-shattering explosion a second or so after
the time bomb countdown is complete. Be sure to remove all china,
Ming vases, etc. from a thousand-foot radius of your Apple before run
ning this demo.

Obnoxious Sounds 295

MIND BENDERS

-Change the code so you sweep
down rather than up. Do you like
this?

-Extend the code so you can control
pitch separately from step duration.

-What can you do with a pair of
sweeps that interact with each
other?

-Add suitable graphics to the time
bomb.

-Which obnoxious sounds are used
how in ENGINE? How is flawless
animation and thick sound achieved
at the same time?

',

-How is the frog's voice produced in
RIB BIT?

296 Ripoff Module 4

PROGRAM RM-4

OBNOXIOUS SOUNDS

NEXT OBJECT FILE NAME IS OBNOXIOUS SOUNDS

6800: 3 ORG $6800 J PUT MODULE 14 AT $6800

6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:

6800:

6800:
6800:
6800:
6800:
6800:
6800:

6800:

6800:

6800:
6800:
6800:
6800:
6800:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27

28
29
30
31
32

34

36
37
38
39
40
41

* *

* -< OBNOXIOUS SOUNDS >- *
*

*
*
*
*
*

(CUSTOM CODING METHOD)

VERSION 1.0 ($6800-$687F)

11-24-82

*
*
*
*
*
*

* *

*
*
*
*
*
*

COPYRIGHT C 1982 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

*
*
*
*
*
*

* ALL COMMERCIAL RIGHTS RESERVED *
* *
*******�*********************************

*** WHAT IT DOES ***

THIS MODULE GENERATES SIXTEEN DIFFERENT SOUND EFFECTS

FOR USE INSIDE ANOTHER PROGRAM.

***,HOW TO USE IT ***

TO USE FROM MACHINE LANGUAGE, LOAD THE X REGISTER WITH
A SOUND SELECTION FROM $00 TO $1F AND THEN JSR TO $6824.

TO USE FROM APPLESOFT, POKE 26659 WITH THE SOUND
EFFECT FROM 0-15 AND CALL 26658.

PROGRAM RM-4, CONT' D •

6800: 44

6800: 46

6800: 47 1

6800: 48

6800: 49

6800: so

6800: 51

6800: 53

6800: 55

6800: 56
6800: 57

6800: c;q

6800: 59

6800: 60

6800: 6?.

6800: 64
6800: 65

6800: 65
6800: 67
6800: 68
6800: 69

Obnoxious Sounds 297

*** GOTCHAS ***

THE X REGISTER IS DESTROYED BY THIS SUBROUTINE.
REGISTERS P, Y, AND A ARE SAVED FOR YOU.

THE PROGRAM MUST BE PLACED IN A PROTECTED AREA
IF IT IS TO BE USED BY EITHER BASIC.

• ENHANCEMENTS *

YOU CAN CHANGE THE EFFECTS BY CHANGING THE TRIP AND
SWEEP VALUES FOR EACH FILE SELECTION. SEE THE
EFFECT FILE LISTING FOR PRESENTLY AVAILABLE EFFECTS.

EXTRA TONES ARE EASILY ADDED BY LENGTHENING THE SOUND
EFFECT FILES SEFO-SEFlS AND CHANGING FLNGTH4

*** RANDOM COMMENTS ***

TO ACTIVATE THE DEMO PROGRAM THAT PLAYS ALL SIXTEEN
NOTES IN ORDER, USE JSR $6800 OR CALL 26624.

298 Ripoff Module 4

PROGRAM RM-4, CONT' D •

6800:

FC58:
FB2F:
C030:
FCA8:

6800:
6800:
6800:

6800:
6800:
6800:
6800:
6800:
6800:

6800:20 2F FB
6803:20 58 FC
6806:A9 00
6808:48

6809:AA
680A:20 24 68
680D:AO OA

680F:20 AS FC
6812:88
6813:DO FA

6815:68
6816:CD SF 68
6819:FO 06

681B:18
681C:69 01
681E:48
681F:DO E8

6821:60

72 '

74 HOME
75 INIT
76 SPKR
77 WAIT

79
80
81

83
84
85
86
87
88

90 DEM04
91
92
93

95 NXTNOT4
96
97

99 STALL4
100
101

103
104
105

107
108
109
110

112 DONE4

*** HOOKS ***

EQU $FC58
EQU $FB2F
EQU $C030
EQU $FCA8

*** DEMO

CLEAR SCREEN
HOME CURSOR
SPEAKER CLICK OUTPUT
TIME DELAY SET BY ACCUMULATOR

THE DEMO PROGRAM PLAYS EACH OF THE SIXTEEN
SOUND EFFECTS IN ORDER, SEPARATED BY A
TIME DELAY.

JSR INIT MAKE SCREEN BLANK
JSR HOME
LOA f$00 START WITH FIRST NOTE
PHA AND SAVE ON STACK

TAX
JSR OBNOX4 AND PLAY IT
LOY 110 STALL FOR TIME

JSR WAIT
DEY
BNE STALL4 TILL DELAY DONE

PLA GET NOTE NUMBER
CMP FLNGTH4 DONE WITH LAST NOTE?
BEQ DONE4 YES, EXIT

CLC
ADC f$01 J NO, PICK NEXT NOTE
PHA J
BNE NXTNOT4 ALWAYS

RTS AND EXIT

Obnoxious Sounds 299

PROGRAM RM-4, CONT'D.

6822: 115 *** OBNOX MODULE ***

6822: 116
6822: 117

6822: 119 THIS MODULE GENERATES THE SOUND EFFECTS IN
6822: 120 EXCHANGE FOR AN X VALUE FROM $00 TO $OF.
6822: 121
6822: 122
6822: 123
6822: 124

6822:A2 00 126 BASENT4 LOX 1$00 BASIC POKE HERE+1
6824:08 127 OBNOX4 PHP ML ENTRY POINT
6825:48 128 PHA
6826:98 129 TYA SAVE P,A, AND Y REGS
6827:48 130 PHA

6828:8A 132 TXA RANGE CHECK ON SELECTION
6829:CD SF 68 133 CMP FLNGTH4 TO MAKE SURE ITS IN FILE
682C:90 02 134 BCC LOK4
682E:A9 00 135 LOA 1$00 DEFAULT TO ZERO SELECTION
6830:0A 136 LOK4 ASLA AND DOUBLE FILE POINTER
6831:AA 137 TAX
6832:BD 60 68 138 LOA SEFO,X GET NUMBER OF TRIPS
6835:80 SE 68 139 STA TRPCNT4 AND SAVE
6838:E8 140 INX
6839:BD 60 68 141 LOA SEFO,X GET SWEEP RANGE
683C:8D 40 68 142 STA SWEEP4+1 AND SAVE

683F:AO 00 144 SWEEP4 LDY 1$00 SWEEP VALUE POKED HERE
6841:98 145 NXTSWP4 TYA
6842:AA 146 TAX DURATION
6843:98 147 NXTCYC4 TYA PITCH
6844:20 AS FC 148 JSR WAIT
6847:2C 30 co 149 BIT SPKR WHAP SPEAKER
684A:EO 80 150 CPX 1$80 BYPASS IF GEIGER
684C:FO OB 151 BEQ EXIT4 SPECIAL EFFECT
684E:CA 152 DEX
684F:DO F2 153 BNE NXTCYC4 ANOTHER CYCLE
6851:88 154 DEY
6852:DO ED 155 BNE NXTSWP4 GO UP IN PITCH
6854:CE 5E 68 156 DEC TRPCNT4 MADE ALL TRIPS?

6857:DO E6 158 BNE SWEEP4 NO, REPEAT

6859:68 160 EXIT4 PLA RESTORE REGISTERS
685A:A8 161 TAY
685B:68 162 PLA
685C:28 163 PLP
6850:60 164 RTS AND EXIT

300 Ripoff Module 4

PROGRAM RM·4, CONT'D .

685E:

685E:01
685F:10

6860:

6860:
6860:
6860:
6860:
6860:
6860:

6860:01 08
6862:01 18
6864:FF 01
6866:06 10
6868:01 30
686A:20 06
686C:70 06
686E:FF 06
6870:01 AO
6872:FF 02
6874:04 1C
6876:01 10
6878:30 OB
687A:30 07
687C:50 09
687E:01 64

167 ' *** S'l'ASH ***

169 TRPCNT4 DFB $01
170 FLNGTH4 DFB $10

1 TRIP COUNT DECREMENTED HERE
SIXTEEN AVAILABLE SOUNDS

172

174
175
176
177
178
179

181

182
183
184
185
186
187
188
189

SEFO

SEF1
SEF2
SEF3
SEF4
SEFS
SEF6
SEF7
SEF8

190 SEF9
191 SEF10
192 SEF11
193 SEF12
194 SEF13
195 SEF14
196 SEF15

*** SOUND EFFECT FILES ***

EACH NOTE TAKES A TRIP AND A SWEEP VALUE IN SEQUENCE.

ADD $80 TO NUMBER OF GEIGER CLICKS WANTED.

DFB $01,$08 TICK
DFB $01,$18 WHOPIDOOP
DFB $FF,$01 PIP
DFB $06,$10 PHASOR
DFB $01,$30 MUSIC SCALE
DFB $20,$06 SHORT BRASS
DFB $70,$06 MEDIUM BRASS
DFB $FF,$06 LONG BRASS
DFB $01,$AO GEIGER
DFB $FF,$02 GLEEP
DFB $04,$1C GLISSADE
DFB $01,$10 QWIP
DFB $30,$0B OBOE
DFB $30,$07 FRENCH HORN
DFB $50,$09 ENGLISH HORN
DFB $01,$64 TIME BOMB

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I MUSICAL SONGS

an upgrade of the original "red
book tones" song and music
maker

I

Come on, kiddies. If you are going to reinvent the wheel, please
make the thing roughly circular and put an axle somewhere near the
middle, preferably pointing in some more or less reasonable direction.

The wheel in this case is a music machine that easily and simply
gives you an audio tone in exchange for pitch and duration values.
There are so many utterly atrocious attempts at this that it is no longer
even funny.

In particular . . .

A music making subroutine MUST have
totally separate and totally isolated ways of
entering pitch and duration.

A.N'iTHING ELSE ISN'T EVEN WRONG!

If the duration of your note changes when you change the pitch,
your music maker is less than worthless. Flush it.

It turns out that a really great music making subroutine has existed
since year one that uniquely solves the pitch and duration interaction

301

302 Ripoff Module 5

problem. The sub is called the red book tones, Woz wrote it, and it
appears, of all places, in the original red book.

The red book tones are a "middleweight" technique that lets you
create reasonable sounding monophonic music, as well as providing
an easy way to pick up lots of different cue and prompt tones for other
program uses. The original code, as it first appeared, was all of
twenty-one bytes long!

Today, of course, you cannot write commercial software and get
away with monophonic, fixed timbre, or constant volume sound
effects. Use of multiple voices, variable volume, and duty-cycling is
absolutely mandatory. But, just as LORES is an essential stepping stone
to commercially useful graphics, the red book tones are a necessary
learning experience along the way to top-notch musical effects.

While we will not be reinventing the wheel, we are going to add a
hubcap, some chrome, and better bearings.

First, we all call the newer version REDTONE. As with the original, it
gives you a constant frequency square-wave tone in exchange for
pitch and duration values. We've put REDTONE into source code so
you can relocate it anywhere you want. The original code sat on page
zero and had some Applesloth compatibility problems. The obvious
choice of page three is so overloaded these days, that it is best to have
something you can put anywhere you want.

REDTONE saves all the working registers to avoid conflicts with
your high level code. The pitch and duration values are also saved for
you, so you needn't reload the same duration value over and over
again for cues or prompts.

There is now a silent pitch value of $FF. This is most handy for rests
and pauses. The silence is timed out to the same duration value any
other note would be. As a convenience, the notes are echoed to the
cassette output port. You can greatly improve the sound by going
through a small hi-fi amplifier and larger speaker. Use standard audio
cables.

The maximum duration on the original code was a little short, par
ticularly when it came to playing whole notes at low tempos, so
REDTONE has a feature called a duration multiplier that lets you
extend the duration in binary mulitples. You now have all the duration
range you could possibly ever use, plus a ridiculous bunch more.

And that just about covers the code improvements. We've also
made two use improvements. The first involves better pitch accuracy,
and the second lets your Assembler enter music in a sane and more or
less musical way. For instance, a half note of middle C is entered as
"C1,H,". There are no worries about funny numbers.

Tempo is presently set by changing a single value before assembly.
You can easily upgrade to a "real time" tempo control. I've purposely
left this as an "exercise for the student."

Pitch Accuracy

Most people try to set up a tone generator to make some certain
pitch exactly hit some musical note. Then they go up and down the
scale from there, trying to "fit" the notes to the 8-bit pitch values
needed.

The problem is that this technique works well for some notes and
poorly for others. Some notes just won't fit and will sound out of tune.

Musical Songs 303

Some review. An octave is a 2:1 frequency change, and is just about
as far as you can easily reach on a piano, say from middle C to the
next higher C. People have messed with how many notes go where
for a long time, but today, most everyone uses a compromise system
called the equally tempered scale.

The equally tempered scale has twelve notes per octave. The notes
in the "key" of C are called, C, C#, D, E, F, F#, G, G#, A, A#, B, and
back again to the next C that's one octave higher. Note that there is
no "E#" or "B#" as such. Other keys may name these notes differ
ently and may start at a different point, but regardless of which key is
in use, there are only twelve notes per octave.

The pitch of a note is related to that note's frequency, which is
called out in hertz, or cycles per second. For instance, the pitch of the
A above middle C is standardized to a frequency of 440 Hz.

Since the ear is a logarithmic type device, it expects low frequency
differences between notes for the low notes, and high frequency dif
ferences between notes for the high notes. If you tried to create a lin
ear "scale" that went, say 300, 350, 400, 450, 500, . . . etc. Hz, it
would sound very weird indeed.

Unmusical, even.
To get a log spacing of 12 notes over one octave, each successive

equally tempered note has to be the twelfth root of two higher in fre
quency. This is roughly a factor of 1.06. Each note ends up roughly 6
percent higher in frequency than its neighbor.

The interval from note to note is called a semitone. A semitone is the
difference from one key to the immediate next one on a piano,
regardless of key color. A semitone is also a 6 percent increase in fre
quency. A pitch change of one semitone is thus only a few hertz for
low notes, but is very much more than this for high notes.

How accurate do the tones have to be? It turns out that very few
people have what is called "absolute pitch," so if the whole song is
uniformly mistuned too high or too low, nobody will be able to tell.

What counts is the relation between the notes, or "relative pitch,"
and here, things get sticky fast . . .

Few people can tell ABSOLUTE PITCH,
so it really doesn't matter whether all the
notes are exactly set to their intended
absolute frequencies.

just about anybody can tell RELATIVE
PITCH, so it is super important that the
notes all sound good together.

Thus, if an "A" is really 480 Hz rather than 440, the odds are high
that nobody will notice on a stand-alone song. So long, of course, that
all the other notes are equally offset from where they belong by the
same proportion. What is critical is the relative frequency difference
between "A" and "A#," or between any other notes.

How critical is critical? Musicians call one one-hundredth of a semi
tone a cent. A one cent frequency error is an error of just under 0.06
percent in the ratio of two notes. It turns out that the best musicians
can just barely spot a one cent frequency error, while an average care
ful listener can spot a three cent error.

304 Ripoff Module 5

The trick is to get accurate relative notes consistent with a pitch
word that is only 8 bits wide. If you just force any old note to be exact
and then try to find magic values for the other notes, one or more of
them will sound sour.

If you play with funny numbers long enough, you'll find that there is
a little known but super important series of 8-bit pitch values that give
far and away the most accurate notes you can possibly get using 8-bit
values. Any other attempt at pitch values will fall short of this optimum
series, and you'll get several s·our notes.

Here's the magic series and the notes involved ..

"MAGIC" 8-BIT PITCH VALUES

232 (A)
219 (A#)
207 (B)
195 (C)
184 (C#)
174 (D)

164 (D#)
155 (E)
146 (F)
138 (F#)
130 (G)
123 (G#)

116 (A)

These notes are all accurate to better than three cents in relative
pitch. Once again, this is a "magic" series. Any other choice of pitch
values will give you at least one sour note. Note that the pitch values
will set the time between speaker motions of REDTONE, so the higher
the pitch value, the lower the pitch or frequency of the note you get. It
takes two shoves, one forward and one backward, of the speaker
cone, to generate one full cycle of a REDTONE square wave. The tim
bre you get is a "woody" one roughly akin to a clarinet or a stopped
organ pipe.

The approximate notes you actually get with REDTONE are shown
in parentheses. You can continue up in pitchv but you'll eventually
pick up some sour notes on the way. just divide each of the "magic"
values by two for the next octave, and so on.

Note that you will only have seven or fewer bits of accuracy for
these higher notes. Which means a few of them may be off in pitch.
By the way, you also have an additional magic 8-bit pitch value of
246. This translates to a REDTONE "G#" or "Ab," and it seemed to
make more sense to start at "A" instead.

Separating Pitch and Duration

The "obvious" way to generate a tone is to count one register down
to get the pitch. Each completed countdown whaps the speaker once.
To get duration, you then count the total number of whappings.

Which is simple but wrong.

Musical Songs 305

The trouble is that the high notes will sound much shorter than the
low notes. Which gets to be a real mess. Any decent music maker sub
routine must separate pitch and duration.

Here's how to do it . . .

USING A "SERVICE" LOOP TO
SEPARATE PITCH & DURATION:

USUALL'I AN

8-BIT COUNTER

�

YES

WHAP

SPEAKER &

RELOAD PC

A 16-, 17-, OR

18-BIT COUNTER

'-

DECREMENT

PITCH

COUNTER

DECREMENT

DURATION

COUNTER

NO

NO

DON'T

WHAP

SPEAKER

THE �
LOOP

What you do is set up a tight service loop that continuously tests
both the pitch and duration values. Two counters are involved, an 8-
bit pitch counter, and a 16-bit or longer duration counter. The service
loop continuously decrements both of these counters. When the
magic pitch value is hit, the speaker gets whapped. When the magic
duration value is hit, the tone ends. Since the duration values are usu
ally much larger than the pitch values, you will normally get many
pitch cycles in your note.

The way the original red book tones got its 16-bit duration values
was to take an 8-bit duration value and multiply it by 256 using the Y
register. Thus, the Y register had to go all the way around for each
count of the duration counter.

306 Ripoff Module 5

All of which elegantly solved keeping pitch and duration separate.

A Duration Multiplier

The only little problem with this scheme was that 16 bits worth of
duration weren't quite enough for some uses. Things were OK for sim
ple songs, but for dotted half notes or for whole notes played at slow
tempos, there simply wasn't enough duration to fully sound the note.
The maximum duration was just under one second.

REDTONE gets around this by going to as many as 24 bits for the
duration counter. It turns out that REDTONE never needs the accumu
lator, so this register is free to be used as a multiplying counter.

Here's how it works. You always initialize the accumulator to $00.
Now, say you add some magic value to the accumulator and test for
zero. The results you get depend on what you add. Four useful results
include ...

Adding $00 gives you

00 00 00 00 00 00 00 00 00

and multiplies by ONE.

Adding $80 gives you

00 80 00 80 00 80 00 80 00

and multiplies by TWO.

Adding $40 gives you

00 40 80 co 00 40 80 co 00

and multiplies by FOUR.

Adding $20 gives you

00 20 40 60 80 AO CO EO 00

and multiplies by EIGHT.

What you do is count down the duration counter every time you get
a zero result. Thus, the $40 adder only decrements the duration
counter on every fourth trip through the service loop. This makes the
note last four times longer.

Usually, a "X2" multiplier is just what you need for most music.
You can go up to "X256" multiplication, using an $01 magic value, if
you want to get ridiculous.

With these details out of the way, let's look at the REDTONE sub
routine. Here's the flowchart ...

�ED TONE FLOWCHA�T:

LOCK PITCH
TO FF

f
[FF + 01 - 01 = FF]

YES

(6813)

FAST
DURATION

BITS

NO

SAVE
REGISTERS

GET PITCH
VALUE

WHAP
SPEAKER &

TAPEOUT

Y=Y-1

IF Y=O
A =A+DURMULT

DECREMENT
PITCH

(6800)

(680E)

(6811)

(6815)

(6818)

(681E)

YES

(6822)

(6829)

YES

(682A)

Musical Songs 307

(6824)

NO

(6827)

(6831)

(6836)

DECREMENT
DURATION

RESTORE
REGISTERS.

You enter REDTONE with a pitch value of PITCHS and a duration
value of DURATS. These values are not destroyed should you want to
reuse them for simple prompts. You must also have a multiplier value

308 Ripoff Module 5

in DURMULT5, but leaving this value at $80 will give good results for
most uses.

The registers are first saved. Then DURAT5 is copied into DURCNT5
where it can be counted down. The copying saves you having to reen
ter the same duration each time for simple prompts. This is followed
by clearing the Y register and the accumulator. The accumulator will
be used for the duration 1-2-4 multiplier, while the Y register will be
used to scale the duration by 256. You can alternately use theY regis
ter to adjust tempo in real time.

The pitch value is placed in the X register and tested. If the pitch is
not $FF, the note is accepted and processed as usual. The speaker is
then whapped, and then is echoed to the cassette output.

Next, the service loop takes over. First, the Y register is
decremented. If Y hits zero, then the duration multiplier gets acti
vated, by adding the multiplier value and testing for a zero result. If
the Y register has gone all the way around and if the duration multi
plier gives you a zero result, then, and only then, is DURCNT5
decremented. Note that this has the effect of multiplying the
DURCNT5 value first by 256 and then by the accumulator multiplier
of 1, 2, 4, or whatever.

If we have not gotten a zero duration value, we then knock one off
the pitch counter and repeat the service loop process. The speaker
gets whapped only on zero values of the pitch counter. Thus a single
service loop separately keeps track of pitch and duration with only
negligible interaction.

Note that the duration is the product of three 8-bit values. Duration
is set by multiplying the Y register times DURAT5 times DURMULT5.

Every pitch zero, the speaker gets hit, and the X register gets
reloaded with a new pitch value. The only exit from all this happens
when DURCNT5 finally hits zero. At that point, the registers are
restored and the subroutine exits to your calling code.

One final detail. If your chosen pitch value is $FF, the speaker is not
sounded. This gives you a silent note, a pause, or a rest.

The side loop at LOCKX handles this detail for you. IF the pitch is
$FF, the pitch is incremented to $00 by LOCKX, and then later
decremented back to $FF in the main service loop. Thus a $FF pitch
value stays at $FF all the way through the duration timing. This hap
pens because $FF + $01 - $01 = $FF. A sounding pitch value gets
counted down to zero and whaps the speaker every trip. A silent pitch
value stays at $FF and bypasses the speaker, producing no sound.

A Demo or Two

The SONGPLY demo exercises REDTONE for you, playing that ever
favorite song that Tarzan used to sing during his zebra maintenance
days. SONGPL Y works by picking pitch and duration value out of a
songfile called TARZAN.

We have used a 16-bit full wide pointer to access the song file, so
you can have more than 128 notes total in your song. This pointer is
called NOTEP and is page zero stashed at $EF and $FO. To link
SONGPL Y to different songs, you change these pointers as needed.

The pause generator inside SONGPL Y gives you a brief pause
between notes that is set by PAUSE. Experiment to get the best results.
The minimum PAUSE value is $01. Do not use $00!

Musical Songs 309

Should your particular song demand some notes that slur or tie
together, just use a minimum value of PAUSE, say $01. Then use six
teenths rests or whatever between those notes that do not slur.

Be sure to study the source code on SONGPL Y very carefully, for it
shows you a fairly friendly way to use labels to simplify writing your
own songs. We'll leave details on this for you to puzzle out.

One tip. Use two $00 for END values at the end of your note file.
That way, should you have an error in your list, you will still stop,
catching the second END value.

Where to from here? We have thrown in a quick tester called the
TIMBRE TESTER that will get you started in experimenting with differ
ent "voices" for your Apple. To use the TIMBRE TESTER, just put a
number series ihto TIMBFLE and the number of numbers into TFLEN.
You can get the magic numbers by trial and error, from a venture into
Fourier Series (gulp!), or from full-fledged duty cycling experiments.

TIMBRE TESTER works by generating a waveform with many possi
ble zero crossings. As you change the number of zero crossings and
the spacing between them, the harmonic content of the note changes,
giving you different "voicing" for your Apple.

As examples, a waveform that has very strong fourth, fifth, and sixth
harmonics, with a very weak fundamental, second, and third, will
sound as a three note major triad chord. Other pleasant two note
effects include a strong second and third, third and fourth, fourth and
fifth, second and fifth, and third and fifth harmonics. A note with no
low harmonics except for the fundamental will voice as a pure and
flute-like sinewave.

You can get these harmonics the way you want them, either by trial
and error, or else by fancy math.

With duty cycling, you use lots of very high frequency cycles, set up
so that the average speaker cone position matches the waveform you
are trying to generate. You can easily get pure sinewaves, variable vol
ume, and even exceptionally good human voice synthesis with fancy
enough duty cycling.

Each value in TIMBFLE specs the delay time in microseconds, multi
plied by five, between cone whappings. For a "fat" sound, you whap
the cone many times per frequency cycle. As a fine point, knock two
off each VOICES value, except for the last one. Knock four off it. Why?

The TIMBRE TESTER can easily give you string and woodwind-style
tones, flutelike sinewaves, bells, two notes at once, three notes at
once, "noisy" sounds, and even voice. All it takes is the right numbers
in the right order.

Finding them is half the fun.

310 Ripoff Module 5

MIND BENDERS

-Extend TARZAN by entering the
"hard parts" that I left out.

-Write your own songs for
SONGPLY.

-Modify SONGPLY so you can
control the tempo from a game
paddle. Hint: Put the tempo into the
Y register.

-Examine the exact timing involved
in REDTONE. What effects do slight
variations from "perfect" loop
timing have?

-Show why LOCKX is not needed
and how to replace it.

-Play "Applesoft" by using $0000 as
NOTEFL. Why are the results no
longer equally tempered?

-Modify REDTONE for a string voice
with an 8:1 duty cycle.

-Show a two byte change to
SONGPL Y that lets you edit by
playing one note at a time.

-Use the TIMBRE TESTER to produce
a pure sinewave, and then two
notes at once. Then, ring a bell.

-Some poor attempts at duty cycling
may buzz or whine. Why? How can
you eliminate this?

Musical Songs 311

PROGRAM RM-5
MUSICAL SONGS

----- NEXT OBJECT FILE NAME IS MUSICAL SONGS

6900: 3 ORG $6900 J PUT MODULE IS AT $6900

6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:

6900:
6900:
6900:
6900:
6900:

6900:
6900:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31

33

35
36
37
38

40
41
42
43
44 ,

46 ,
47

* *

* -< MUSICAL SONGS >- *

* *

* MODIFIED RED BOOK TONES •

* *

* VERSION 1.0 ($6900-$6B3A) *

* *
* 5-24-83 *
* • • • • • • • • • • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • *

* *
* COPYRIGHT C 1983 BY *

* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *

* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE SHOWS YOU HOW TO USE THE MODIFIED
RED BOOK TONE SUBROUTINE TO PLAY MUSICAL SONGS.

THERE IS ALSO A TIMBER TESTER FOR EVALUATION
OF SPECIAL APPLE VOICES AND SOUND EFFECTS.

*** HOW TO USE IT ***

TO PLAY A SINGLE NOTE:

PUT YOUR PITCH IN PITCHS AT $6B3A (27450).
PUT THE DURATION IN DURATS AT $6B37 (27447).
THEN JSR REDTONE AT $6BOO (27392).

TO PLAY YOUR OWN SONG:
PUT THE STARTING ADDRESS OF YOUR SONG INTO
SONGLOC AND SONGLOC+1 AT $6944 AND $6945.
THEN JSR SONGPLY AT $6910. APPLESLOTH
EQUIVALENTS ARE 26948, .26949, AND 26896.

TO PLAY TARZAN:
DO A JSR $6900 OR CALL 26880.

312 Ripoff Module 5

PROGRAM RM-5, CONT' D .

6900:

6900:
6900:

6900:

6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:
6900:

6900:

FCSS:
FB2F:
COlO:
COOO:
C030:
C020:
FCAS:

OOEF:

so

52

53

55

57
58
59
60

62

64
65
66
67
68

70

72
73
74
75
76
77
78

*** OOTCHAS ***

A CHANGE OF TEMPO PRESENTLY NEEDS REASSEMBLY.

REDTONE IS LIMITED TO "WOODWIND" SQUARE WAVES.

*** ENHANCEMENTS ***

THIS SOURCE CODE ALSO SHOWS YOU HOW TO COMPOSE
YOUR OWN SONGS IN THE EQUALLY TEMPERED MUSICAL
SCALE BY USING LABELS THAT SIMPLIFY NOTE ENTRY.

*** RANDOM COMMENTS ***

THIS IS "MIDDLEWEIGHT" CODE INTENDED TO SHOW
PROGRAMMING SKILLS AND TECHNIQUES. FANCIER
METHODS SHOULD BE USED FOR COMMERCIAL PROGRAMS
OR FOR SERIOUS MUSICAL COMPOSITION.

*** HOOKS ***

HOME EQU $FC58 CLEAR TEXT SCREEN AND HOME
INIT EQU $FB2F INITIALIZE TEXT SCREEN
KBDSTR EQU $COlO KEYBOARD STROBE
IOADR EQU $COOO KEYBOARD INPUT LOCATION

SPKR EQU $C030 SPEAKER CLICK OUTPUT

CURSOR

TAPEOUT EQU $C020 CASSETTE TAPE OUT (TONE ECHO)
WAIT EQU $FCA8 MONITOR TIME DELAY

80 NOTEP EQU $EF NOTE POINTER PAIR FOR SONGLPLY

Musical Songs 313

PROGRAM RM-5, CONT'D .

69t0: 83 i *** CONSTANTS ***

6900: 85 PITCH LABELS USED FOR SONG COMPOSITION
6900: 86
6900: 87 I FOR BEST SOUND, ALWAYS USE THE NOTE
6900: 88 VALUES NEAREST THE TOP OF THIS LIST.

OOEB: 90 A1 EQU 232 NOTE A BELOW MIDDLE C

OODB: 92 A1S EQU 219 At
OODB: 93 B1F EQU 219 Bb
OOCF: 94 Bl EQU 207 B
OOC3: 95 Cl EQU 195 c

OOB8: 96 ClS EQU 184 Ct
OOB8: 97 DlF EQU 184 Db
OOAE: 98 Dl EQU 174 D
OOA4: 99 DlS EQU 164 Di
OOA4: 100 ElF EQU 164 Eb
009B: 101 El EQU 155 E
0092: 102 Fl EQU 146 F
OOBA: 103 FlS EQU 138 Ft
OOBA: 104 GlF EQU 138 Gb
0082: 105 Gl EQU 130 G
007 B: 106 GlS EQU 123 Gi
007B: 107 AlF EQU 123 Ab

0074: 109 A2 EQU 116 NOTE A ABOVE MIDDLE C

006E: 111 A2S EQU 110 At
006E: 112 B2F EQU 110 Bb
0067: 113 B2 EQU 103 B
0062: 114 C2 EQU 98 c

005C: 115 C2S EQU 92 Ci
005C: 116 D2F EQU 92 Db
0057: 117 D2 EQU 87 D
0052: 118 D2S EQU 82 Di
0052: 119 E2F EQU 82 Eb
004E: 120 E2 EQU 78 E
0049: 121 F2 EQU 73 F
0045: 122 F2S EQU 69 Fi
0{)45: 123 G2F EQU 69 Gb
0041: 124 G2 EQU 65 G

003D: 125 G2S EQU 61 Gt
003D: 126 A2F EQU 61 Ab

003A: 128 A3 EQU 58 SECOND A ABOVE MIDDLE C

OOFF: 130 R EQU $FF SILENT OR REST
0000: 131 END EQU $00 END OF SONG (USE TWICE 1)

314 Ripoff Module 5

PROGRAM RM·S, CONT'D .

6900:

6900;
6900:

ooos�
0080:
0048:

0009:
0000:
0012:
OOlB:

0024:
0036:
0048:
006C:
0090:

134

136
137

139 TEMPO
140 MOLT
141 PAUSE

143 s

144 DS
145 E
146 DE
147 Q
148 DQ
149 H
150 DH
151 w

DURATION LABELS USED FOR SONG COMPOSITION

A REPEAT ASSEMBLY PASS IS NEEDED AT
PRESENT FOR EACH CHANGE IN TEMPO.

EQU $09 MASTER TEMPO CONTROL ($OF MAXIMUM!)
EQU $80 TEMPO MULTIPLIER (00=X1 $80=X2 $40=X4
EQU $48 J INTERNOTE PAUSE TIME

EQU TEMP0*1 SIXTEENTH NOTE
EQU S/2+S DOTTED SIXTEENTH
EQU TEMJ!0*2 EIGHTH NOTE
EQU TEMP0*3 DOTTED EIGHTH
EQU TEMP0*4 QUARTER NOTE
EQU TEMP0*6 DOTTED QUARTER
EQU TEMP0*8 HALF NOTE
EQU TEMP0*12 DOTTED HALF NOTE
EQU TEMP0*16 WHOLE NOTE

PROGRAM RM-5, CONT'D.

6900:
6900:
6900:
6900:

155 '
156
157
158

6900:20 2F FB 160 TAR
6903:20 58 FC 161

6906:A9 46 163
6908:80 44 69 164
690B:A9 69 165
6900:80 45 69 166

*** MUSICAL SONGS ***

THIS SUBROUTINE USES REDTONE TO PLAY THE
SONG tiHOSE STARTING ADDRESS IS IN SONGLOC.

JSR INIT
JSR HOME

INITIALIZE TEXT SCREEN
AND CLEAR IT

LOA f>TARZAN TO PLAY TARZAN ONLY
STA SONGLOC
LOA f<TARZAN
STA SONGLOC+ 1

Musical Songs 315

6910:AD 44 69
6913:85 EF
6915:AD 45 69
6918:85 FO

168 SONGPLY LOA SONGLOC MOVE SONG ADDRESS TO POINTER
169 STA NOTEP

170 LOA SONGLOC+1
171 STA NOTEP+1

691A:AO 00 173 LOY 1$00
691C:A9 80 174
691E:8D 39 6B 175

6921:B1 EF
6923:FO 1E
6925:80 3A 6B
6928:E6 EF
692A:DO 02
692C:E6 FO
692E:B1 EF
6930:80 37 6B
6933:20 00 6B
6936:A9 48
6938:20 AS FC
693B:E6 EF
6930:00 E2
693F:E6 FO
69,.:i.:DO DE

177 MORES
178
179
180
181
182
183 NOCYS
184
185
186
187
188
189
190
191

LOA IMULT
STA DURMULS

LOA (NOTEP) , Y
BEQ .DONES
STA PITCHS
INC NOTEP
BNE NOCYS
INC NOTEP+1
LOA (NOTEP),Y
STA DURATS
JSR REDTONE
LOA IPAUSE
JSR WAIT
INC NOTEP
BNE MORES
INC NOTEP+1
BNE MORES

6943:60 193 DONES RTS

POSITION THEN PAGE AS USUAL

FOR PURE INDIRECT
SET DURATION MULTIPLIER
AND POKE TO REDTONE

GET PITCH VALUE
EXIT IF END
POKE PITCH
GO TO NEXT FILE VALUE

PAGE OVERFLOW?
YES

GET DURATION VALUE
STASH DURATION VALUE
PLAY THE NOTE
GET INTERNOTE DELAY
AND DELAY
GO TO NEXT FILE VALUE

PAGE OVERFLOW?
YES

ALWAYS (WELL, ALMOST!)

END OF SONG

316 Ripoff Module 5

PROGRAM RM-5, CONT' D •

6944:

6944:46 69

6946:

694'6:
6946:
6946:

6946:74
6949:4S
694C:SA
694F:4S

4S
S2
24

74
24
SA

6950:92 24 SA
6953:24 SA 90
6956:FF 4S
695S:92 24 SA
6958:24 SA 4S
695E:92 24 SA
6961:24
6962:74 48 SA
6965:36 74 12
6968:S2 90 9B
696B:6C FF 24
696E:9B 4S A4
6971:24 9B 24
6974:98 4S
6976:A4 24 9B
6979:24 74 90
697C:FF 4S
697E:SA 24 98
69S1:24 SA 24
69S4:74 6C
6986:67 6C 67
69S9:24 9B 90
69SC:FF 4S
698E:74 4S 74
6991:48 82 24
6994:8A 24 SA
6997:4S
699S:92 24 SA
6998:24 SA 90
699E:FF 4S

196 , *** SONG POINTER STASH ***

19S SONGLOC DFB >TARZAN,<TARZAN

200 *** SONG FILE ***

202
203
204

EACH NOTE IS ENTERED, PITCH FIRST AND
DURATION SECOND.USING LABELS AS SHOWN.

206 TARZAN DFB A2,H,A2,H,G1,Q,F1S,Q,F1S,H

207 DFB F1,Q,F1S,Q,F1S,W,R,H

20S DFB F1,Q,F1S,Q,F1S,H,F1,Q,F1S,Q

209 DFB A2,H,F1S,DQ,A2,E,G1,W,E1,DH,R,Q

210 DFB E1,H,D1S,Q,E1,Q,E1,H

211 DFB D1S,Q,E1,Q,A2,W,R,H

212 DFB F1S,Q,E1,Q,F1S,Q,A2,DH

213 DFB B2,DH,B2,Q,E1,W,R,H

214 DFB A2,H,A2,H,G1,Q,F1S,Q,F1S,H

215 DFB F1,Q,F1S,Q,F1S,W,R,H

M usica/ Songs 317

PROGRAM RM-5, CONT'D .

69A0:92 24 SA 21S DFB F1,Q,F1S,Q,F1S,H,F1,Q,G1,Q
69A3:24 SA 4S
69A6:92 24 S2
69A9:24
69AA:S2 24 SA 219 DFB G1,Q,F1S,Q,E1,DQ,C2S,E,El,DH,D1,H
69AD:24 9B 36
69BO:SC 12 9B
69B3:6C AE 4S
69B6:FF �4 AE 220 DFB R,Q,D1,Q,D1,H,C1S,Q,D1,Q
69B9:24 AE 4S
69BC:BS 24 AE
69BF:24
69C0:92 4S 9B 221 DFB F1,H,E1,Q,D1,Q,D2,W,�,Q
69C3:24 AE 24
69C6:57 90 FF
69C9:24
69CA:92 24 9B 222 DFB F1,Q,E1,Q,F1S,Q,A2,E,R,E,01,Q
69CD:24 SA 24
6900:74 12 FF
6903:12 AE 24
6906:9B 24 SA 223 DFB E1,Q,F1S,Q,A2,E,R,E
6909:24 74 12
690C:FF 12
690E:ES 24 CF 224 OFB A1,Q,Bl,Q,FlS�Q,E1,W,Ol,Q
69El:24 SA 24
69E4:9B 90 AE

69E7:24
69ES:OO 00 225 OFB END,ENO

318 Ripoff Module 5

PROGRAM RM-5, CONT'D.

69EA:
69EA:
69EA:

69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:

6ACO:

6AC0:2C 10 co

6AC3:AE DE 6A
6AC6:CA
6AC7:30 FA
6AC9:BC DP 6A
6ACC:88
6ACD:DO PD
6ACP:2C 30 CO
6AD2:2C 20 CO
6ADS:2C 00 CO
6AD8:10 EC
6ADA:2C 10 CO
6ADD:60

6ADE:

6ADE:08

6ADF:60 6A 6A
6AE2:27
6AE3:27 6A 6A
6AE6:SE

228
229
230

231
232 7
233
234
23S
236
237
238
239
240
241
242
243

24S

*** TIMBRE TESTER ***

THIS ROUTINE LETS YOU EVALUATE SPECIAL VOICES,
DUTY CYCLING, MULTI-TONES AND OTHER EPPECTS.

TO USE, LOAD TIMBPLE WITH THE DELAY VALUES
BETWEEN ZERO CROSSINGS. LOAD TPLENGTH WITH
THE NUMBER OF ZERO CROSSINGS PER FUNDAMENTAL
NOTE CYCLE.

TO RUN:

JSR $6ACO PROM MACHINE LANGUAGE
CALL 27328 PROM APPLESLOTH.

EXIT ON ANY KEY PRESSED.

ORG TAR+$01CO LEAVE ROOM FOR SONG PILES

247 TIMBRE BIT KBDSTR RESET KEYBOARD
248 RES CANS LOX TPLENGTH START NEW SCAN
249 NEXTS DEX NEXT VALUE
2SO BMI RESCANS RESET IF COMPLETE
2S1 LOY TIMBPLE,X GET DELAY VALUE
2S2 LOOPS DEY DELAY SN+1 CYCLES
2S3 BNE LOOPS STALL FOR TIME
2S4 BIT SPKR WHAP SPEAKER
2SS BIT TAPEOUT WHAP CASSETTE OUTPUT
2S6 BIT IOADR KEYPRESS ED?
2S7 BPL NEXTS REPEAT IF NO KP
2S8 BIT KBDSTR RESET KEYSTROBE
2S9 RTS AND EXIT

261 *** TIMBRE DELAY VALUES ***

263 TFLENGTH DFB $08 7 NUMBER OF CROSSINGS IN TIMBFLE

26S TIMBFLE DFB $60,$6A,$6A,$27

266 DFB $27 ,$6A,$6A,$SE

Musica/Songs 319

PROGRAM RM·5, CONT'D.

6AE7: 269 *** MODIFIED RED BOOK TONE SUBROUTINE ***

6AE7: 271 , A JSR TO REDTONE PLAYS A SINGLE NOTE.
6AE7: 272
6AE7: 273 THE PITCH MOST BE PREPLACED IN PITCHS
6AE7: 274 DURATION MOST BE PREPLACED IN DORATS.
6AE7: 27S
6AE7: 276 A PITCHS VALUE OF $FF IS SILENT.

6BOO: 278 ORG TAR+$0200 LEAVE ROOM FOR TIMBRE FILES

6B00:48 280 REDTONE PHA SAVE REGISTERS
6B01:98 281 TYA
6B02:48 282 PHA
6B03:8A 283 TXA
6B04:48 284 PHA
6BOS:AD 37 6B 28S LOA DORATS MOVE DURATION VALUE TO
6B08:8D 38 6B 286 STA DORCNTS COUNTABLE LOCATION

6BOB:AO 00 288 LOY 1$00 INIT FAST DURATION COUNTER
6BOD:98 289 TYA INIT DURATION MULTIPLIER

6BOE:AE 3A 6B 291 WRAP LOX PITCHS GET PITCH VALUE
6B11:EO FF 292 CPX I$FF IS IT SILENT?
6B13:FO 19 293 BEQ LOCK X YES, KEEP IT SILENT
6B1S:2C 30 CO 294 BIT SPKR WRAP SPEAKER
6B18:2C 20 CO 29S BIT TAPE OUT AND ECHO TO CASSETTE OUTPUT
6818:88 296 NOWHAP DEY DECREMENT FAST DURATION COUNT
6B1C:DO OB 297 BNE NOCS IF NO BORROW
6B1E:18 298 CLC
6B1F:6D 39 6B 299 ADC DORMULS DURATION MULTIPLIER
6B22:DO OS 300 BNE NOC S IGNORE ALL BOT ZERO RESULTS
6B24:CE 38 6B 301 DEC DURCNTS DECREMENT SLOW DURATION
6B27:FO 08 302 BEQ EXITS IF FINISHED
6B29:CA 303 NOCS DEX DECREMENT PITCH VALUE
6B2A:DO EF 304 BNE NOWHAP PITCH NOT DONE
6B2C:FO EO 305 BEQ WRAP PITCH DONE, ALWAYS TAKEN

6B2E:E8 307 LOCKX INX TRAP X TO $FF
6B2F:FO EA 308 BEQ NOWRAP ALWAYS TAKEN

6B31:68 310 EXITS PLA RESTORE REGISTERS
6B32:AA 311 TAX
6833:68 312 PLA
6B34:A8 313 TAY
6B3S:68 314 PLA
6836:60 315 RTS AND EXIT

320 Ripoff Module 5

PROGRAM RM-5, CONT'D.

6837:

6837:72
6838:72
6839:80
683A:72

318 J *** REDTONE STASH ***

320 DURATS DF8 $72
321 DURCNTS DF8 $72
322 DtJRMULS DF8 $80
323 PITCHS DF8 $72

*** SUCCESSFUL ASSEMBLY: NO ERRORS

DURATION GOES HERE
GETS COUNTED HERE

DURATION MULTIPLIER
PITCH GOES HERE

I OPTION PICKER

a general and flexible way to
handle menu selections and in
program jumps

I

Just about any larger program eventually gets to a point where it has
to jump six ways from Sunday. These may involve internal jumps,
such as when an adventure decides it has to check to be sure the giant
armadillo is awake. Or, they might involve user input, such as a menu
selection, the "T" for trace command of a monitor, or the "[S]" save
command of a word processor.

A code module that lets a program go to one of many possible tasks
is called an option picker. . .

OPTION PICKER-

A code module that lets a program
continue by jumping to a selected
one of many possible tasks.

Now, option picking doesn't sound like a very big deal. The trick is
to come up with one single option picker that you can adapt to any
program you want to, while keeping things as short and as flexible as
possible.

321

Option Picker 323

the code for each and every application. This way, you know your
code works ahead of time. Any problems are likely to be file problems
that are easily spotted and more easily fixed.

Let's check into the most general and often the "best" way to pick
one of many options. To do this, get a character from a program or a
keyboard. Then, if needed, change lowercase to uppercase. Next, fil
ter your character by looking into a file to find a character match. If
there's no match, process the error and try again. If you do find a
match, go to a second file and grab an address to go to. Then, jump to
that address.

Something like this . ..

HOW TO PICK AN OPTION:

8 GET USER KE'/:

(;;\ PROCESS ERROR
V AND TR'/ AGAIN

f':::\ GET ADDRESS
V PAIR FROM

ADDRESS LIST:

0- 47AC
I- 293B
2- IAA4
3- 7EA6

(MUST BE ONE L.ESS THAN
WHERE 'IOU WANT TO GO!)

0 FORCE UPPER CASE:

� b � B

0 FILTER AGAINST A
MATCH LIST:

FOUND f?\ PUSH ADDRESS PAIR f6\ FORCE OPTION JUMP
\.J ONTO STACK: \::_) WITH A FAKE:

t EB t R,:s
THE
STACK (IN THIS CASE, SELECTION

"B" JUMPS TO THE OPTION
STARTING AT $293C.)

There are several distinct parts to a good and flexible option picker.
First, you normally will want the same response for a capital letter as
for a small one, say for "A" and "a." If you do, you will need case
changer code. If you are allowing for meaningful, rather than ordered,
inputs, then you will also need an option filter that converts the selec
tions into a binary file access number.

Then there are possible errors. Sometimes a few legal and expected
responses may all want to go to the same option. We can call that
jump an inclusive trap. The simplest way to handle inclusive traps is

324 Ripoff Module 6

just to repeat the same address in the address file as often as needed.
There are ways, of course, to save a byte or two on this, but you end
up with custom code if you try this. We will use an error message of
"PLEASE TRY ANOTHER LETTER" to show this when it happens in the
upcoming GILA demo.

Other times, the input will not match any legal selection. What you
have to do here is go get another input since the one you have is no
good. You can call this an exclusive trap. Exclusive traps should go
and try and get another response.

You must always inform the user that you don't like his invalid
selection. The trick here is to do it as subtly and gently as possible.
More often than not, a brief screen flash or a single speaker click is all
you will need. We will use a message of "THAT'S NO LETTER, YOU
TURKEY!" in the demo. Naturally, such harshness must be used with
discretion in commercial programs.

Should the program, rather than the user, be making the option
selection, you will end up in deep trouble if the computer decides to
do something it is not set up to do. In Zork, machine errors are
trapped with a "ZORK INTERNAL ERROR" message. Chances are
overwhelming that you have not and will not get one of these Zork
messages.

Unless you play Zork the way I do.
Needless to say, machine errors are never supposed to happen.

When and if one does, though, be sure to inform the user that he has
just been done in through no fault of his own. It may be a good idea
to encourage the user to "close the loop" and contact you personally
when this happens.

Not if, but when.
A final part of the option picker has to actually do a jump or a gosub

to the selected option. You have many choices here. Building the
jumps into the code as we did above is obviously bad, since the code
is no longer general. You can also self-modify your code by having a
JMP command whose address you pre-change to the address you
want to jump to. This is risky and does not work in ROM, but is cute
and compact. You can also force a JSR the same way.

The JMP indirect command is another possibility. Here, you put
your address somewhere on page zero, say $06 low and $07 high.
Then a JMP ($06) does an indirect jump to your intended address. For
a forced subroutine, just do a JSR to an indirect JMP.

But, remember that the original 6502 JMP indirect has a bug in it
that prevents you from using it properly on either of the top two bytes
of any page. If you relocate your code, or do not watch very carefully
where your JMP indirects are, this bug may bomb your code. Page
zero real estate is valuable enough that you should go out of your way
to avoid using it whenever there are reasonable alternatives.

By the way, certain copy protection fanatics intentionally put their
JMP indirects in the "wrong" locations, hoping you miss the turn. The
jumped-to locations end up on the bottom of the same page, rather
than the expected bottom of the next page this way. Of course, such
childish and inane stunts just add to the fun and challenge of cracking
the "uncrackable." Besides, they will bomb on an Apple upgraded to
a 65C02. Or on a lie.

Har har.
Anyway, the way I like to do a jump to an option is with a scheme

Option Picker 325

called the forced subroutine return method. This method is used in the
Apple system monitor, so it is not new. But it is super powerful and
elegant.

Remember that a subroutine return or RTS checks into the stack and
gets the top stack location. It uses this location for the position on the
page it is to return to. Then, it goes one deeper into the stack to get
the page location. Given the position and the page, the RTS then
jumps to this location plus one.

Normally, of course, the RTS returns to the code that called it. Now
to get sneaky. Take the page address of your option and shove it on
the stack with a PHA. Then, take the option position address minus
one and shove it on the stack with a second PHA. Now, RTS. What
happens?

You "return" to the address of your selected option!
Note that two pushes (by you) and two pulls (by the RTS) leave the

stack the way it was before you started. So you are still in the same
"level" of your code both before and after you force the fake subrou
tine return. Note also that no page zero locations are committed.

For an earlier and different example of using forced subroutine
returns, check back into IMPRINT of Ripoff Module 2.

Let's sum up the parts of our option picker ...

CASE CHANGER-

Code that forces lowercase letters into
their uppercase equivalents.

OPTION FILTER-

Code that finds a match between user
inputs and a binary value.

INCLUSIVE TRAP-

Several user selections that all divert to
the same option.

EXCLUSIVE TRAP-

Code that finds "illegal" user inputs and
suitably handles this type of error.

FORCED SUBROUTINE RETURN-

A JMP indirect that is faked by pushing
\ an address pair onto the stack and then

doing an RTS.

Summing up, while there are lots of ways to pick options, we will
use a general and powerful file based method that is easy to use and
easy to change. It is best suited for six or more unordered choices.
The code is very efficient when many different selections are made.

To pick an option, you first change the case of lowercase letters, so
that either a capital "A" or a lowercase "a" gets the same response.
Then you look for a match in a character file. Finding the match gen
erates a binary number useful as an address pointer.

Should a match be found, the binary number is doubled and used
to access an address pair in an address file. This address pair is forced

326 Ripoff Module 6

onto the stack and is then followed by an RTS, doing a jump to the
selected option.

Two crucial reminders ...

When "force feeding" a stack

ALWAYS push the page address on first,
followed by the position address.

ALWAYS use an address ONE LESS than
your intended return point.

The sneaky way to automatically remove one from any address is to
let your assembler's operand arithmetic handle the chore for you.
Thus, instead of a label of TASKA, use TASKA-1 when defining
addresses in your address file. The OW command is one good way to
handle 2-byte pairs. OW automatically rearranges these pairs into
their "position-page" format for you.

Don't forget these two crucial details: The page goes on the stack
first, and RTS ends up one beyond the stack address.

Several matches can point to the same address pair by repeating the
address pair when and where needed in the address file. We have
seen how this is called an inclusive trap.

Should no match be found, an exclusive trap tries for a new input or
generates an error message, informing the user as this happens.

Option Picker 327

The option picking subroutine is called OPICK. Its flowchart looks
like this . . .

OPICK FLOWCHA�T:

SET
MATCH =0

GET KEY

FORCE
UPPER
CASE

BEEP
(OPTIONAL)

FILTER
FOR

MATCH

GET PAGE
AND PUSH
ON STACK

GET POSITION
AND PUSH
ON STACK

JUMP VIA
A FAKE RTS

DO
OPTION

NOTE: IF 'IOU JS� TO OPICK,
'IOU JS� TO '/OUR
OPTION.

IF 'IOU JMP TO OPICK,
'IOU JMP TO '/OUR
OPTION.

SET
MATCH= N

328 Ripoff Module 6

Some parts of OPICK might not be needed for all uses. For instance,
you can delete getting a key if the machine itself is to provide the
option selection.

Delete the case changer if you want something different to happen
for a capital letter than for a lowercase one. Sometimes, your options
will not even be in ASCII. They might be a binary selection. If so, low
ercase is meaningless.

The option filter can be deleted if you are certain your option selec
tions are always ordered binary numbers. This is OK for internal use,
but, as we've seen, is a poor and unfriendly choice where users are
involved.

And, don't use such heavy code for trivial choices. A simple (Y/N)
checker can be done much faster with many fewer bytes. For over six
choices, the option filter is the better way to go. The more the choices
and the more wildly they are arranged, the better the method gets.

The FIXCASE case changer works by testing for a lowercase ASCII
letter. If it gets one of these, then $20 is subtracted as needed to get
uppercase. For instance, a lowercase "a" is an ASCII $E1. Subtract
$20 to get $C1, the ASCII uppercase "A." It pays to test for "

z
" as

well as "a" so that any punctuation above ASCII $FA does not get
changed. We've shown high ASCII here, as you get off the Apple key
board before resetting the keystroke.

Any match character can go in any order, except that the position of
the address in the address table must be exactly twice the position of
the match character in the match file. All this says is that the match
must line up with where you want the match to go to. The doubling is
needed for the 2-byte absolute address pairs and is handled with an
ASL multiplier.

The matches in the match file can go in any order. The obvious and
cleanest arrangement is to put the selections in logical user input
order. Another way is to put the addresses in the order they appear in
the program. Still another way is to put the often used matches first, in
an attempt to gain a slight speedup. Just be sure that the match and
the match address are aligned to each other.

We have put the match values in alphabetical order. Once again,
though, you can put any mix of numbers, letters, and control charac
ters in any order, skipping around anywhere you like.

As we have seen, the cleanest way to handle inclusive traps is to
repeat the address pair as often as needed in your address file.

We used an inverse title for this demo, like we did with IMPRINT
and FLPRINT. These titles are quick and dirty to do, but they are usu
ally far too garish to use in a commercial program. A single inverse
line cuts the tops of uppercase letters and random tops and bottoms of
lowercase. The obvious cure for this of using three inverse lines to
form a box usually is too "loud" for the rest of the screen.

So, do as I say, not as I do . . .

AVOID using inverse text headers and
titles on commercial programs.

These are too garish and imperfect to
give you acceptable results.

Option Picker 329

You have a choice of using your options as subroutines or else as
same-level jumps. If, as we did in GILA, you JSR to OPICK and then
force-return to your option, an RTS at the end of the option returns
you to the code that is calling OPICK.

On the other hand, you could JMP to OPICK and then force-return
to your option. Here, a JMP at the end of the option is needed to
return you to a calling code.

In one method, the options are subroutines. In the other, they are at
the same level as the code that calls OPICK.

To adapt OPICK to your own needs, just change the MAXMATCH
number to equal the total number of options, change the MATCHFL
file to hold the characters you are matching against, and change the
JMPFLE to hold the addresses you want to jump to. A reassembly, of
course, will be needed. As usual, labels that name each option you
are to jump to greatly simplify and automate the process of building
this file. Makes it fun even.

Time for .

A Demo

Normally, your option picker will jump to lots of wildly different
types of code in your main program. To keep DEM06 simple, we will
still jump to lots of different points in the main program, but the action
at each option point will be rather simple and sort of redundant. Now,
there probably are better ways to write a program that does what this
demo does, but, remember that we are trying to show the method of
using an option picker to go many places in a larger program.

DEM06 is our demo, and what it does is generate the name of a
town in exchange for a user input that matches the first letter of that
town. Once you have recovered from the initial excitement of such a
stupendous program, look carefully to see how the options each go to
a selected code module, and how the inclusive and exclusive traps
are working. Note how both control commands and letter inputs are
handled. See how the ESC key exits the program for you.

Incidentally, we've used our own key getter, rather than GETKEY.
It's tricky to handle escape commands with GETKEY, and GETKEY
gives slightly different results on a II versus a lie. The prompt gets
entered by using IMPRINT to print a prompt, followed by a back
space, followed by the double zero exit.

DEM06 has borrowed the IMPRINT code from Ripoff Module 2, so
be sure that either this code, a copy of it, or else a copy of THE
WHOLE BALL OF WAX is present in the machine.

330 Ripoff Module 6

MIND BENDERS

-Rework the demo to use your own
towns in your own local area.

-Change the demo to other topics,
such as autos, aircraft, animals,

vegetables, or nurflongs.

-What other uses are there for the
forced subroutine method?

-How long does the option picker
take to process an option?

-Show how to use your options as
same level code, rather than as
subroutines.

-What other user prompting can be
used in place of the time delay?

-Explain away those two PLAs in the
exit code. Why are they used?

-Try to BRUN OPTION PICKER
directly from your disk, and [ESC]
will not exit you from your program.
Why?

-Display a different LORES or HIRES
picture for each selection, along
with suitable sound.

PROGRAM RM-6
OPTION PICKER

NEXT OBJECT FILE NAME IS OPTION PICKER

6COO: 3 ORG $6COO 1 PUT MODULE 16 AT $6COO

6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

6COO:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
�n

25

* *
* -< OPTION PICKER >- *
*
*
*
*
*
*

JUMPING SIX WAYS FROM SUNDAY

VERSION 1. 0 ($6C00-$6EDD)

5-24-83

*
*
*
*
*
*

* *
*
*
*
*
*
*

COPYRIGHT C 1983 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

*
*
*
*
*
*

* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

Option Picker 331

6COO:

6COO:
6COO:

27

28
29

THIS MODULE SHOWS YOU HOW TO JUMP TO ONE OF MANY
POSSIBLE POINTS TO CONTINUE RUNNING A PROGRAM.

6COO: 31 *** HOW TO USE IT ***

6COO: 33 TO USE THE OPTION PICKER:
6COO: 34
6COO: 35 REASSEMBLE WITH YOUR NUMBER OF MATCHES IN MATCHN,
6COO: 36 YOUR MATCHES IN MATCHFL AND YOUR JUMP
6COO: 37 VECTORS MINUS ONE IN JMPFL. THEN JSR
6COO: 38 OPICK AT $6E45 (28229).

6COO: 40 TO RUN THE GILA TOWNS DEMO:
6COO: 41
6COO: 42 JSR GILA AT $6COO OR CALL 27648.

332 Ripoff Module 6

PROGRAM RM-6, CONT'D.

6COO:

6COO:
6COO:
6C00:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

6COO:

6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

6COO:

6COO:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

45

47
48
49
so
51
52
53
54
55

57

59
60
61
62
63
64

66

68
69
70
71
72
73
74

*** GOTCHAS ***

THE IMPRINT SUBROUTINE MUST BE PRESE�T IN THE
MACHINE. PRELOAD "IMPRINT" OR "THE WHOLE BALL
OF WAX" TO DO THIS.

.

JUMP VECTORS MUST BE IN THE USUAL "POSX'fiON
PAGE" ORDER. THE ORDER IN MATCHFL MUST EQUAL
THE ORDER IN TASKFL.
JUMP VECTORS MUST BE ONE LESS THAN
THEIR ACTUAL RETURN POINTS!

*** ENHANCEMENTS ***

MATCHED CHARACTERS CAN BE IN ANY ORDER AND MAY
INCLUDE CONTROL CHARACTERS.

INCLUSIVE TRAPS ARE DONE BY REPEATING THE TASKFL
JUMP VECTORS AS OFTEN AS NEEDED.

*** RANDOM COMMENTS ***

THERE ARE CERTAINLY BETTER WAYS TO HANDLE THE
GILA TOWNS DEMO THAN THIS. IN REAL LIFE, EACH
"TOWN" REPRESENTS A DIFFERENT AND UNIQUE HIGH
LEVEL PROGRAMMING TASK.

THE DEMO ALSO SHOWS HOW TO CHANGE THE SCROLLING
TEXT WINDOW UNDER PROGRAM CONTROL.

Option Picker 333

PROGRAM RM-6, CONT'D.

6COO: 77 *** HOOKS ***

FCS8: 79 HOME EQU $FC58 J CLEAR TEXT SCREEN AND HOME CURSOR
FB2F: 80 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COOO: 81 IOADR EQU $COOO KEYBOARD INPUT LOCATION
COlO: 82 KBDSTRB EQU $COlO KEYBOARD STROBE RESET
FE80: 83 SE'l'INV EQU $FEBO SET INVERSE SCREEN
FE84: 84 SETNORM EQU $FE84 SET NORMAL SCREEN
C030: 85 SPKR EQU $C030 SPEAKE R CLICK OUTPUT
FCA8: 86 WAIT EQU $FCA8 MONITOR TIME DELAY

666B: 88 IMPRINT EQU $666B LINK TO IMPRINT SUBROUTINE

0020: 90 WNDLFT EQU $20 LEFT SIDE OF SCROLL WINDOW
0021: 91 WNDWTH EQU $21 WIDTH OF SCROLL WINDOW
0022: 92 WNDTOP EQU $22 TOP OF SCROLL WINDOW
0023: 93 WNDBTM EQU $23 BOTTOM OF SCROLL WINDOW
0024: 94 CH EQU $24 CURSOR HORIZONTAL POSITION
0025: 95 cv EQU $25 CURSOR VERTICAL POSITION
0033: 96 PROMPT EQU $33 PROMPT SYMBOL

6COO: 98 *** TEXTFILE COMMANDS ***

0088: 100 B EQU $88 BACKSPACE
008D: 101 c EQU $8D C�RRIAGE RETURN
00�4: 102 D EQU $84 DOS ATTENTION
009B� 103 E EQU $9B ESCAPE
008A: 104 L EQU $8A LINEFEED
0060: 105 p EQU $60 FLASHING PROMPT
0000: 106 X EQU $00 END OF MESSAGE

334 Ripoff Module 6

PROGRAM RM-6, CONT'D .

6COO: 109 *** GI�A TOWNS DEMO ***

6COO: 110
6COO: 111 THIS PROGRAM EXERCISES THE OPTION

6COO: 112 J PICKER SUBROUTINE OPICK.

6COO: 113
6COO: 114 EACH "TOWNP REPRESENTS A DIFFERENT

6COO: 115 HIGH LEVEL PROGRAM TASK.

6C00:20 2F FB 117 GILA JSR INIT SET UP TEXT SCREEN
6C03:20 58 FC 118 JSR HOME CLEAR SCREEN AND HOME CURSOR
6C06:A9 07 :1.19 LDA 107 TAB 7 TO RIGHT

6C08:85 24 120 STA CH

6COA:20 80 FE 121 JSR SET INV INVERSE TITLE
6COD:20 6B 66 122 JSR IMPRINT : PUT DOWN TITLE
6C10:8A SA SA 123 DFB L,L,L
6C13:CF DO D4 124 ASC "OPTION PICKER DEMO"
6C16:C9 CF CE
6C19:AO DO C9
6C1C:C3 CB CS
6C1F:D2 AO C4
6C22:CS CD CF
6C25:8D SD SD 125 DFB c,c,c,c,x
6C28:8D 00

6C2A:20 84 FE 127 JSR SETNORM : BACK TO NORMAL TEXT

6C2D:20 6B 66 128 JSR IMllRINT : PUT DOWN INSTRUCTIONS
6C30:D4 D9 DO 129 ASC "TYPE THE FIRST LETTER TO GET THE"
6C33:CS AO D4
6C36:C8 cs AO
6C39:C6 C9 D2
6C3C:D3 D4 AO
6C3F:CC cs D4
6C42:D4 cs D2
6C45:AO D4 CF
6C48:AO C7 cs
6C4B:D4 AO D4
6C4E:C8 cs
6C50:8D 130 DFB c
6C5l:C6 DS cc 131 ASC "FULL NAME OF A GILA VALLEY TOWN:"
6C54:CC AO CE
6C57:C1 CD CS
6CSA:AO CF C6
6CSD:AO C1 AO
6C60:C7 C9 CC
6C63:C1 AO D6

6C66:C1 CC CC

6C69:CS D9 AO
6C6C:D4 CF D7

6C6F:CE BA

Option Picker 335

PROGRAM RM-6, CONT'D.

6C71;8D 80 8D 134 DFB c,c,c,c
6C74:8D
6C75:AO AO AO 135 ASC •

--- > .

6C78:AO AO AO
6C7B:AO AO AD
6C7E:AD AD BE
6C81:AO
6C82:8D 80 SO 136 D�":S c,c,c,c,c,c
6C85:8D 80 80
6C88:AO AO AO 137 ASC I (USE "ESC" TO EXIT)/
6C8B:AO AO AO
6C8E:A8 OS D3
6C91:CS AO A2
6C94:CS 03 C3

. 6C97:A2 AO 04
6C9A:CF AO CS
6C90:08 C9 04
6CAO:A9

· 6CA1: 00 138 DFB X

6CA2:A9 OD 140 LOA 1$00 SET TIGHT WINDOW
6CA4:85 20 141 STA WNOLFT
6CA6:A9 15 142 LOA i$15
6CA8:85 21 143 STA WNOWTH
6CAA:A9 oc 144 LOA I$0C
6CAC:85 22 145 STA WNOTOP
6CAE:A9 OF 146 LOA I$0F
6CB0:85 23 147 STA WNDBTM
6CB2:20 58 FC 148 JSR HOME GET IN WINDOW
6CBS:A9 60 149 LOA IP CHANGE PROMPT
6CB7:85 33 150 STA PROMPT

6CB9:20 6B 66 152 DOOPT JSR IMPRINT ADD WINKING CURSOR
6CBC:60 88 00 153 DFB P,B,X
6CBF:20 44 6E 154 JSR OPICK GET AND DO OPTIONS AS SUBS

6CC2:A2 OD 156 CONT6 LOX 113 MOST OPTIONS RETURN TO HERE
6CC4:20 AS FC 157 STALL6 JSR WAIT STALL FOR DISPLAY TIME
6CC7:CA 158 DEX
6CC8:DO FA 159 BNE STALL6

6CCA:20 58 FC 161 JSR HOME ERASE OLD SCREEN
6CCD:A2 28 162 LOX 1$28
6CCF:20 7B 6E 163 JSR QUIP BLORK
6CD2:4C B9 6C 164 JMP DOOPT AND REPEAT

336 Ripoff Module 6

PROGRAM RM-6, CONT'D .

6CDS: 167 *** THE ACTUAL TASKS ***

6CDS:20 68 66 169 TASKA JSR IMPRINT: TASK A
6CD8:C1 02 04 170 ASC "ARTESIA"
6CDB:C5 03 C9
6CDE�C1
6CDF:OO 171 DFB X

6CEC:60 172 RTS

6CE1:20 6B 66 174 r.rASKB JSR IMPRINTJ TASK B
6CE4:C2 CF CE 175 A.SC "BONITA"
6CE7zC9 04 C1
6CEA:OO 176 DFB X

6CEB:60 177 RTS

6CEC:20 6B 66 179 'l'ASKC JSR IMPRINTJ TASK C
6CEF:C3 CC C9 180 ASC "CLIFTON"
6CF2:C6 04 CF
6CI<15: CE
6CF6:00 181 DFB X

6CF7:60 182 RTS

6CF8:20 6B 66 184 TASKD JSR IMPRINTJ TASK D
6CFB:C4 OS CE 185 ASC "DUNCAN"
6CFE:C3 C1 CE
6001:00 186 DFB X

6002:60 187 RTS

6003:20 6B 66 189 TASKE JSR IMPRINTJ TASK E
6D06:CS C4 cs 190 ASC "EDEN"
6009:CE
600A:OO 191 OFB X

6008:60 192 RTS

600C:20 6B 66 194 TASKF JSR IMPRINTJ TASK F

600F:C6 02 C1 195 ASC "FRANKLIN"
6012:CE CB CC
6015:C9 CE
6017:00 196 DFB X

6018:60 197 RTS

Option Picker 337

PROGRAM RM-6, CONT'D . . .

6019:20 68 66 200 TASKG JSR IMPRINTJ TASK G
5DlC:C7 D5 04 201 ASC "GUTHRIE•
6D1F:C8 02 C9
6D22:C5
6023:00 202 DFB X

6024:60 203 RTS

6025:20 6B 66 205 TASKH JSR IMPRINT7 TASK H
6028:C8 CS CC 206 ASC •HELIOGRAPH•
6D2B �� 179 CF C7
602E:D2 C1 DO
6031:C8
6032:00 207 DFB X

6033:60 208 RTS

6034:20 6B 66 210 TASKI JSR IMPRINT7 TASK I
6D37:C9 CE C4 211 ASC • INDIAN SPRINGS•
603A:C9 C1 CE
6030:AO D:i DO

.6040:02 C9 CE
6043:C7 03
6045:00 212 DFB X

6046:60 213 RTS

6047:20 6B 66 215 TASKJ JSR IMPRINT7 TASK J
604A:CA C1 C3 216 ASC "JACKSON ESTATES•
6040:CB 03 CF
60SO:CE AO cs

6053:03 04 C1
6056:04 cs 03
6059:00 217 DFB X

60SA:60 218 RTS

6058:20 6B 66 220 TASKK JSR IMPRINT7 TASK K
60SE:CB CC CF 221 ASC "KLONOYKE"
6061:CE C4 09
6064:CB CS
6066:00 222 OFB X

6067:60 223 RTS

6068:20 6B 66 225 TASKL JSR IMPRINT7 TASK L
6D6B:CC C9 04 226 ASC •LITTLE TULSA"
606E:D4 CC CS
607l:AO 04 OS
6074:CC 03 C1
6077:00 227 OFB X

6078:60 228 RTS

338 Ripoff Module 6

PROGRAM RM·6, CONT' D . • •

6D7!1:20 68 66 231 TASKM JSR IMPRINTJ TASK M

6D7C:CD CF D2 232 ASC "MORENCI•
6D7F�C5 CE C3
6D82:C9
6D83:00 233 DFB X
6D84:60 234 RTS

60135:20 6B 66 236 TASKN JSR IMPRINT, TASK N
6D88:CE C1 C3 237 ASC 8NACHES"
6D8B:C8 CS D3
6D8E:OO 238 OFB X
6D8F:60 239 RTS

6D90: 241 TASK 0 DEFAULTS TO INCTRAP

6D90 �. 20 6B 66 243 TASKP JSR IMPRINT; TASK P
6093::00 C9 CD 244 ASC "PIMA•
6096:C1
6097l00 245 OFB X
6D98:60 246 RTS

-

6D99: 248 TASK Q DEFAULTS TO INC TRAP

6099:20 6B 66 250 TASKR JSR IMPRINT; TASK R
6D9C:D2 CF DO 251 ASC "ROPER LAKE"
6D9F:C5 02 AO
6DA2:CC C1 CB
60A5:C5
60A6:00 252 OFB X

60A7:60 253 RTS

60A8:20 6B 66 255 TASKS JSR IMPRINT J TASK S
6DAB:03 C1 C6 256 ASC "SAFFORD"
6DAE:C6 CF D2
60Bl:C4
6DB2:00 257 DFB X
6083:60 258 RTS

6084:�20 6B 66 260 TASKT JSR IMPRINT; TASK T
60B7:04 c8 c1 261 ASC "THATCHER"
60BA:D4 c3 c8
60BO:C5 02
60BF:OO 262 DFB X
60C0:60 263 RTS

60C1: 265 TASK U DEFAULTS TO INC TRAP

PROGRAM RM-6, CONT'D . . .

6DC1:20 6B 66 268 TASKV
6DC4:D6 C9 D2 269
6DC7:C4 C5 CE
6DCA:OO 270
6DCB:60 271

6DCC:20 6B 66 273 TASKW
6DCF:D7 C8 C9 274
6DD2:D4 CC CF
6DD5:C3 CB AO
6DD8:C3 C9 C5
6DDB:CE C5 C7
6DDE:C1
6DDF:OO 275
6DE0:60 276

6DE1: 278

6DE1:20 6B 66 280 TASKY
6DE4:09 CF 02 281
6DE7:CB AO D6
6DEA:C1 cc cc

6DED:C5 09
60EF:OO 282
60F0:60 283

6DF1: 285

JSk IMPRINTJ TASK V
ASC •viRDEN•

DFB X
RTS

JSR IMPRINTJ TASK W
ASC 8WHITLOCK CIENEGA"

DFB X
RTS

TASK X DEFAULTS TO INC TRAP

JSR IMPRINT: TASK Y
ASC 8YORK VALLEY"

DFB X
RTS

TASK Z DEFAULTS TO INCTRAP

Option Picker 339

N
,.,

:·!�.
,'i.

j'

r· :
� '
>
:

I
[:
� .. '

.

·� .
.

340 Ripoff Module 6

PROGRAM RM-6, CONT'D . . .

6DF1:20 6B 66 288 INCTRAP JSR IMPRINTJ INCLUSIVE DEFAULT TRAP

6DF4:D3 CF·D2 289 ASC •soRRY, PLEASE TRY•
6DF7:D2 D9 AC

6DFA:AO DO CC

6DFD:CS Cl D3
6EOO:CS AO D4

6E03:D2 D9

6E05:8D 290 DFB c

6E06:D3 CF CD 291 ASC "SOME OTHER LETTER"
6E09:CS AO CF

6EOC:D4 CS CS
6EOJ:o�:D2 AO CC
6El2:CS 04 D4

6El5:CS D2
. 6El7:00 292 DFB X

6El8:60 293 RTS

6El9:20 63 66 295 ERRTRAP JSR IMPRINT7 ILLEGAL KEY DEFAULT

6ElC:D4 CS Cl 296 ASC "THATS NO LETTER
6ElF:D4 D3 AO

6E22:CE CF AO
6E25:CC CS D4
6E28:D4 CS D2
6E2B:8D 297 DFB c

6E2C:AO AO D9 298 ASC n YOU TURKEY!
6E2F:CF DS AO
6E32:D4 DS D2

6E35:CB CS D9
6E38:Al
6E39:00 299 DFB X

6E3A:60 300 RTS

6E3B:20 2F FB 302 QUIT6 JSR INIT RESTORE NORMAL TEXT WINDOW
6E3E:20 58 FC 303 JSR HOME HOME CURSOR AND CLEAR SCREEN
6E41:68 304 PLA BYPASS GILA: GO STRAIGHT

6E42:68 305 PLA TO MONITOR OR CALLING CODE
6E43:60 306 RTS FOR COMPLETE EXIT

Option Picker 341

PROGRAM RM-6, CONT'D .

6E44: 309 *** OPTION PICKER SUBROUTINE ***

6E44: 310
6E44: 311 FOR OTHER USES, THIS SUB HAS TO BE LINKED TO
6E44: 312 YOUR OWN MATCHN MATCH NUMBER, YOUR MATCHF
6E44: 313 CHARACTER MATCHER FILE AND YOUR JMPFLE VECTORS.
6E44: 314 ,

6E44:2C 10 CO 316 OPICK BIT KBDSTRB LOCK OUT EARLY HITS
6E47:AD 00 CO 317 LOOK6 LOA IOADR GET KEY. CAN'T USE KEYIN
6E4A:10 FB 318 BPL LOOK6 BECAUSE WE NEED ESC COMMAND.
6E4C:2C 10 CO 319 BIT KBDSTRB RESET STROBE

6E4F:2C 6F 6E 321 JSR FIXCASE 1 FORCE UPPERCASE

6E52:A2 OA 323 LOX 110
6E54:20 7B 6E 324 JSR QUIP BLORK

6E57:AE SA 6E 326 LOX MATCHN GET LEGAL NUMBER OF MATCHES
6ESA:DD 8B 6E 327 SCAN6 CMP MATCHFL,X SEARCH FOR A MATCH
6ESD:FO 03 328 BEQ GOTMTCH FOUND
6ESF:CA 329 DEX TRY NEXT
6E60:10 FS 330 BPL SCAN67

6E62:E8 332 GOTMTCH INX MAKES ZERO A MISS
6E63:8A 333 TXA GET JUMP VECTOR
6E64:0A 334 ASL A DOUBLE POINTER
6E65:AA 335 TAX
6E66:BD A7 6E 336 LOA JMPFL+1,X GET PAGE ADDRESS FIRST!
6E69:48 337 PHA AND FORCE ON STACK
6E6A:BD A6 6E 338 LOA JMPFL,X GET POSITION ADDRESS
6E6D:48 339 PHA AND FORCE ON STACK
6E6E:60 340 RTS JUMP VIA FORCED SUBROUTINE RETURN

342 Ripoff Module 6

PROGRAM RM-6, CONT' D .

6E6F: 343 **� CASE FIX�R SUBROUTINE ***

6E6F: 345 J TESTS THE ACCUMULATOR FOR A LOWERCASE
6E6F: 346 J CHARACTER;> IF PRESENT, FORCES UPPERCASE
6E6F: 347 BY ADDING $20. USES HIGH ASCII.

6E6F:C9 El 349 FIXCASE CMP I$El IF •a• OR MORE
6E71:90 07 350 BCC NOFIX6
6E73:C9 FB 351 CMP I$FB AND IF •z• OR LESS
6E75:BO 03 352 BCS NOFIX6

6E77:38 353 SEC T!lEN SUBTRACT $20 TO
6E78:E9 20 354 SBC 1$20 FORCE UPPER CASE
6E7A:60 355 NOFIX6 RTS AND RETURN

6E7B: 357 *** QUIP SUBROUTINE ***

6E7B: 358
6E7B: 359 MAKES NOISE. X SETS THE PITCH. THE
6E7B: 360 PITCH IS PROPORTIONAL TO THE DURATION.
6E7B: 361 WHICH IS OK FOR THIS SIMPLE USE BU T
6E7B: 362 SHOULD BE AVOIDED MOST EVERYWHERE ELSE.

6E7B:48 364 QUIP PHA SAVE ACCUMULATOR
6E7C:AO 3C 365 LOY 160 NUMBER OF CYCLES
6E7E:8A 366 NXT6 TXA PITCH
6E7F:2C 30 co 367 BIT SPKR WHAP SPEAKER
6E82:20 AS FC 368 JSR WAIT
6E85:88 369 DEY NEXT CYCLE
6E86:DO F6 370 BNE NXT6
6E88:68 371 PLA RESTORE ACCUMULATOR
6E89:60 372 RTS AND EXIT

Option Picker 343

PROGRAM RM-6, CONT' 0 .

6E8A: 375 *** OPTION PICKER FILES ***

6E8A: 377 MATCHN HOLDS THE NUMBER OF MATCHES.
6E8A: 378 MATCHFL HOLDS THE LEGAL CHARACTERS.
6E8A: 379 JUMPFL BOLDS THE JUY� VECTORS.

6E8A: 380
6E8A: 381 NOTE THAT ANY NUMBER OF CHARACTERS
6E8A: 382 AND CONTROL COMMANDS MAY BE USED
6E8A: 383 IN ANY ORDER, BUT THAT EACH MUST
6E8A: 384 POSITION MATCH ITS JUMPFL VECTOR.

6E8A:1B 386 MATCBN DFB 27 NUMBER OF LEGAL MATCHES GOES HERE

6E8B:9B 388 MATCHFL DFB E FOR ESCAPE

6E8C:C1 C2 C3 390 ASC "ABCDEFGHIJKLM"
6E8F:C4 C5 C6
6E92�C7 CB C9
6E95:CA CB CC
6E9a:co

6E99:CE CF DO 392 ASC "NOPQRSTUVWXYZ"
6E9C:D1 02 03
6E9F:D4 OS 06
6EA2:D7 DB 09
6EAS:DA

6EA6:18 6E 394 JMPFL ow ERRTRAP-1 NOT A LEGAL KEY
6EA8:3A 6E 395 ow QUIT6-1 EXIT ON ESCAPE
6EAA:D4 6C 396 ow TASKA-1 DO LETTERED TASK
6EAC:EO 6C 397 ow TASKB-1

6EAE:EB 6C 398 ow TASKC-1
6EBO:F7 6C 399 ow TASKD-1
6EB2:02 60 400 ow TASKE-1

6EB4:0B 60 401 DW TASKF-1
6EB6:18 60 402 ow TASKG-1
6EB8:24 60 403 DW TASKH-1
6EBA:33 60 404 ow TASKI-1
6EBC:46 60 405 DW TASKJ-1
6EBE:SA 60 406 ow TASKK-t
6EC0:67 6D 407 DW TASKL-1
6EC2:78 60 408 ow TASKM-1
6EC4:84 6D 409 ow TASKN-1

344 Ripoff Module 6

PROGRAM RM-6, CONT'D.

6EC6:PO 6D 412 DW INCTRAP•1 LEGAL BUT NO TOWN
6EC8:8P 6D 413 DW TASKP-1

6ECA:PO 6D 414 DW INCTRAP-1 LEGAL BUT NO TOWN
6ECC:98 6D 415 DW TASKR-1
6ECE:A7 6D 416 DW TASKS-1

6EDO:B3 60 417 DW TASKT-1
6ED2:PO 6D 418 DW INCTRAP-1 LEGAL BUT NO TOWN
6�D4:CO 6D 419 DW TASKV-1

6ED6:CB 6D 420 DW TASKW-1
6ED8:FO 6D 421 DW INCTRAP-1 LEGAL BUT NO TOWN
6EDA:EO 6D 422 DW TAS'KY-1

6EDC:FO 6D 423 DW INCTRAP-1 LEGAL BUT NO TOWN

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I RANDOM NUMBERS

pseudo-random number gener
ator is fast, flexible, and free of
defects

I

Random numbers are essential for many computer uses, from the
throw of a die, through animated game motions, to industrial simula
tions. How can you introduce randomness into your programs?

It turns out that there are two types of "random" numbers. A real
random number is a number that can be one of many equally likely
values. A pseudo-random number is the next number available in a
contrived series\ that appears on the surface to be any one of many
equally likely values . . .

RANDOM NUMBER-

A number that can assume any one of
many equally likely values.

PSEUDO-RANDOM NUMBER-

The next number available in a contrived
series that appears on the surface to be
any one of many equally likely values.

The advantages of "real" random numbers is that they are truly

345

346 Ripoff Module 7

unpredictable. Disadvantages of real random numbers include that
they are hard or inconvenient to generate and that there is no way to
get the same random sequence back over again at a later time.

There is a very simple and very useful real random number genera
tor built into your Apple. Any time you use the monitor subroutine
KEVIN, there is a 16-bit counter involving locations RNDL and RNDH
that gets incremented a random number of times. The randomness
comes about si nee there is no control over how long a user waits
between keystrokes. RN DL is located at $4E and RN DH is located at
$4F on page zero. The monitor routines GETLN, GETLNZ, GETLN1,
RDCHAR, and RDKEY all use KEVIN, so any of these can be used to
fetch a new random number . . .

To generate a real random number with
your Apple, use the monitor routine
KEY IN and then read the 16-bit true
random result at $4E and $4F.

The result is a truly random 16-bit number every time. For a new
random number, have the user make repeated use of KEVIN, such as
with a "HIT ANY KEY TO CONTINUE," or even start out with the
flea-bitten "HI, WHAT'S YOUR NAME?" prompt.

If you don't need the full 16 bits, just mask off those you do want.
One bit gives you a yes-no decision. A pair of bits generates the ran
dom digits from 0-3 and so on. For a RND(6), do a RND(8) instead,
and, if you get a 6 or 7 result, go fish again. Or, better yet, you could
also write your own version of GETKEY that counts your own base six
counter round and round.

Same goes for any other modulo.
By modulo, we mean ...

MODULO-

The "N" in RND (N).

Note that RND(N) returns with one of N
possible values, ranging from ZERO to
ONE LESS THAN N.

Uh, better repeat that. The modulo is the tot'al number of different
random numbers you can get back. Since zero is always one of them,
the range of numbers will go from zero to N -1.

You never get a value of N for RND(N).
At any rate, using RNDL and RNDH, or else your own software

counter for true randomness is very simple. But, there are at least two
big disadvantages.

First and worst, the user must hit a key for every new random num
ber you need. This gets old fast if more than a dozen selections are
involved. Sometimes you can disguise what's happening in a game
where lots of keystrokes are involved, but not often.

Secondly, this is a slow process that takes many milliseconds. You
can generate pseudo-random numbers hundreds or even thousands of
times faster.

Random Numbers 347

And, finally, there is no way to get the same random numbers back
again in the same sequence, for replays, or for "noise that repeats."

So, while you have a true random number generator in your Apple
and while it is very simple to access, you may not be able to do very
much with it.

What About Applesoft' s RN D?

The advantages of pseudo·random number sequences are that they
are easy to generate, and you can easily get the same short and appar
ently "random" sequence back as often as you like. This is handy for
replaying a hand of cards, or to provide "noise that repeats" for indus
trial testing. You can also do this much faster than you can waiting for
someone to press a key.

Applesloth has a subroutine in it that is a failed attempt at pseudo
random number generation.

By now, just about everyone knows that there is a fatal flaw in the
Applesloth random number generator, that causes things to repeat in
an annoying and frustratingly short way. And, no, the published fixes
don't help enough to be useful. So, besides it taking forever to gener
ate a random number, this subroutine simply does not work .

1\PPLESOFT RND AIN'T.

DON'T USE IT!

The fundamental problem is twofold. First, and more or less fixable,
the Applesloth RND function does not "reseed" itself every time. The
published repairs help this bunches, by using RNDL and RNDH as
seeds.

Secondly, and fatally, any pseudo-random sequence generator is
supposed to work by making the sequence so long that the numbers
will apparently "never" repeat. For many argument values, the
Applesloth RND generator does in fact generate an acceptably long
sequence. But there are some exactly wrong magic values that repeat
in as short as 200 or fewer values! And, as anyone who has used RND
knows, these short sequences happen often enough to be a serious
problem.

Actually, it is super difficult to fake generation of "random" num
bers. There is level upon level of subtlety in the math involved in prov
ing that any system for generating pseudo-random numbers is in fact
able to provide truly random results.

What we should be worried about is something useful enough to
appear random, even if it might eventually fail some exotic random
ness test. It turns out that there is a very simple and devastatingly pow
erful way to test for randomness. just put random dots on the HIRES
screen. If the screen turns white, you are well on your way to having a
good random number generator. If it gets lines, large patterns, or
shading in it during this test, you have preferential numbers. If the
screen "sticks" and never gets to all white, your sequence is too short
to be useful and is repeating itself.

This simple scheme uses your eye as an optical correlator to really
pull any non randomness-right out of the woodwork.

348 Ripoff Module 7

Applesloth's RND always fails the screen test. Sometimes it fails it
quickly, "sticking" after as few as 200 dots. Other times, you will get
thousands of dots on the screen before the sequence repeats. The
worst results are gotten by rerunning the same sequence over and
over again.

Want to try it? . . .

3 REM

DEMO TO SHOW WHY RND AINT

4 REM

* RUN IT TILL IT STICKS *

5 HGR : HCOLOR = 3: REM

10 X = 280 * RND (1): Y = 192 * RND

(1): HPLOT X,Y: GOTO 10

There are a few [J]'s in and amongst the code in this listing for pretty
printing. Leave them off if you care to. Unless you immediately hap
pen into the short sequences, the program may have to run a few min
utes before it sticks.

Actually, to be fair, Applesloth is stuck with doing floating point ran
dom number generation, which is a far stickier problem than simply
generating one number from a small integer field.

An Integer Pseudo-Random Generator

Let's instead worry about generating integer pseudo-random num
bers. The method we will show you easily handles any value from
RND (2) to RND (255), and is extremely fast. It passes the screen-fill
test with flying colors.

First, some theory. We will use a method called the shift register
pseudo-random sequence generator method. This one is detailed both
in the TTL Cookbook and the CMOS Cookbook (Sams 21 035 and
21398).

There is a hardware beastie called a shift register that can be made
to behave like a counter. By taking certain high taps off the shift regis
ter and EXCLUSIVE-ORing them together and feeding these back to
the input, you can generate a very long sequence.

Very handily, any tests you make on a short burst in the sequence
will lead you to believe you have a true random number generator.
The optimum feedback connections lead to a maximal length
sequence, which turns out to be one less than two raised to the num
ber of stages in use.

To get "random" numbers, you keep picking up new numbers in
the sequence, or else jump to some other wildly different place in the
series. To get replays or noise that repeats, you start over again at the
same point in the series you did before.

We will use a 31-stage pseudo-random register since the feedback
n.eeded is simpler than that needed by a 32-stage one. The hardware
we are going to synthesize with software looks like so ...

Random Numbers 349

A HARDWARE WA't TO GENERATE "RANDOM" NUMBERS:

FEEDBA.CK
FROM STA.GES
28 & 31. ..

�
GETS EOR'D

EXCLUSIVE �
OR GA.TE

. . . A.ND BECOMES
THE NEXT
INPUT BIT

PSEUDORA.NDOM
ONES A.ND ZEROS
A.PPEA.R HERE.
ONCE EA.CH
REGISTER CLOCKING

(SEQUENCE LENGTH= 2,147,483,647)

There are 31 stages to our register. We take the output from stage 31
and EXCLUSIVE-OR it with the output from stage 28. The EOR of these
taps then becomes the new value fed back to the input. These stage
taps are "magic" values; anything else won't give you a super long
series. We've shown this as a "shift-left" register, so we can be com
parable to the replacement software we are about to use.

The sequence you get is one less than 2A31, which translates to
2,147,483,647 counts before repeating. The variable sequence length
of the Applesloth code is avoided, since you have one and only one
long sequence, rather than bunches, a few of which can end up short.

This shift register can be thought of as a bit pipe or stream with two
billion marbles in it, half red and half white. Grab any four marbles in
sequence and you have a 4-bit random number. Grab the next four
and you have a new 4-bit "random" number, and so on. In this case,
you can get half a billion different 4-bit random numbers in sequence
before the same marbles start coming back out. And, in fact, you will
get four different half billion number sequences that are predictably
related but not the same, since you are one marble short at the end of
the first run, and so on.

Bunches, at any rate.
There is only one little gotcha to using a generator like this. What

about the missing count? It turns out that .

AGOTCHA-

A pseudo-random sequence generator
will hang if it ever gets into the 11all
zeros" state.

DON'T LET THIS HAPPEN!

Now, the odds are only one in two billion of this ever happening,
but you should know about it, and should prevent this hangup from
ever happening. All you do is make sure there is a one somewhere in
your shift register before you begin.

350 Ripoff Module 7

We will use software rather than hardware here. Set aside four bytes
for the needed 31 bits. Use the EOR command for the EXCLUSIVE-OR
logic, and use shift commands to move the bits from stage to stage.

Some Code

It takes more than just a pseudo-random generator to make a good
random number generation system.

First, we should have some way of initializing or reseeding the PSR
4-byte shift register. We do this by grabbing two bytes from RNDL and
RNDH that are truly random, and by grabbing two more bytes off the
last PSR state.

Secondly, we need some way to get an old sequence back for
replays and noise that repeats. To do this, we keep a copy of the old
reseeding in a separate 4-byte seed register. For a new sequence, you
load the PSR from the reseeder. For a "used" or repeat sequence, you
reload the PSR from the seed register.

Thirdly, we need some way to deal with nonbinary numbers. A
RND (32) is fairly trivial, since 32 is a binary number, and we expect a
result anywhere between 0 and 31. To do this, just whump the PSR
register five times, once for each bit, and read the bits with a $1 F mask
(that's 0001 1111 in binary) to get your result. For different binary
lengths, use different mask lengths. The magic mask values are $01,
$03, $07, $OF, $1 F, $3F, $7F, and $FF.

But what about a RND (26)?
Here we expect a result between decimal 0 and 25, or between hex

$00 and $19. What you do is use a mask to grab more than enough
bits off the PSR, and then compare the result. If the result is in range,
use it. If not, go fish. Repeat the process as often as you have to.

Which I'm not very proud of, but it works. For nonbinary values,
there will be some chance of having to repeat the process. This
chance is always less than 50 percent worst case, and typically, is
much better. So, you will still get a fast result on any RND choice
although binary values will be the fastest.

Since there are lots of pieces to this randomizer, let's first look at our
working stashes to see what they tell us . . .

Random Numbers 351

STASHES USED B'l �ANDOM:

� }
TRUE RI\NDOM NUMBER
GENERI\TED B'1' MONITOR

H DURING KE'1'BOI\RD INPUT.

SEED I

I
SEED2

SI\VE OF INITII\L PSR
REGISTER VI\LUES FOR

SEED3 REPLI\'1'S OR REUSE.

SEED4

PSRI

PSR2

I
THE 31 ST>.GE PSEUO(}
RI\NDOM SEQUENCE

PSR3 GENERI\TOR

PSR4

1\N "1\LL ONES" MI\SK
B SIZE I } JUST BIG ENOUGH FOR

MODULO.

R SIZE I } THE NUMBER OF BITS
NEEDED B'1' MODULO.

I MODULO I } HOLDS N FOR RND(N).

KEEPS RND(N) FOR I HOLD I } 1\PPLESLOTH OR Ll\ TER
1\CCESS.

There are fourteen stash values involved.
The actual PSR generator is labeled PSR1 through PSR4. We input to

the low bit of PSR1 and feedback from bits 28 and 31 that are stashed
in PSR4.

There are four seed bytes used to hold the previous starting point for
the PSR sequence. These are called SEED1 through SEED4. These
locations are seeded from the monitor's RNDL and RNDH.

The location called MODULO holds your RND argument. For
instance, on a single die, use a MODULO value of six. In return, you
will get one of the six possible equiprobable states from zero to five
back. MODULO must be set on first use, but if you want the same
random range over and over again, you do not have to change it.

The locations called RSIZE and BSIZE take some explanation, since
they are the key to generating nonbinary random values. BSIZE is a
mask of enough ones to equal one less than the next higher binary
power of the number you are after. That's one of those magic $01,
$03, $07 . . . through $FF values. BSIZE is automatically calculated
for you when and as needed. RSIZE is a save of the number of PSR
advances needed to get enough bits to handle your MODULO.

For instance, on a die, BSIZE will be a $07, or binary %0000 0111,
while RSIZE will be three. Why? Because it will take three bits to gen
erate one of the numbers from zero to five. Should we overdo our
selves and get a six or seven resu It, we go fish and try again. The odds
of hitting a legal value in this case are 3/4 of the time on the first try,
and 15/16 of the time by the second try.

The reason you want to keep BSIZE as small as possible is so your
odds of a hit are high. If, instead, you tried for six values out of a possi
ble 256, your odds on a first-try hit will be a miniscule 6/256. The rea-

352 Ripoff Module 7

son for a separate save of RSIZE is so you do not have to recalculate
BSIZE for each entry.

Which speeds things up bunches.
There are several places where our code falls through to another

routine ...

FALLING THROUGH-

Code that automatically goes on and
does a second task.

You also have the option of doing only
the second task by itself.

There are three parts to the pseudo-random generator code. These
are the reseeder, the N initializer, and the actual PSR generator.

Each part is simple enough that you should be able to work up your
own flowcharts.

The reseeder is used to move your position in the PSR sequence
either to where you last started counting, or else to some wildly new
point.

You should always JSR to this code anytime you want to start ran
domizing something new. If you do a jSR RESEED, you will shuffle the
deck and begin at some unknown point in the PSR sequence. If you
do a JSR RESET, you will reload the last seed value you used. Use
RESEED for something entirely new. Use RESET to repeat the last
sequence of random numbers for a replay or for noise that repeats.

Note how RESEED falls through to RESET. Note also that we make
sure that PSR2 is not a zero value. If it is, we force it to one. This is one
heavy way to be sure that you never hit the all ones gotcha in your
PSR generator.

Every time you start up, or every time you change your modulo, you
will have to activate the N initializer. Do this by a JSR to RANDOM,
after putting the number of possible values you are after into MOD
ULO. MODULO must be at least one. If it is zero, an error trap incre
ments it.

Now, the code in the N initializer is admittedly obtuse, but this is
what it does: Your modulo is scanned to generate a BSIZE mask with
just enough sequential ones in it to equal or exceed your modulo
value. At the same time, the number of bits involved is saved as RSIZE.

For instance, say you want RND (10). Modulo'will be ten, and you
expect the ten digits from zero to nine back. BSIZE will be %0000

1111, since this is the smallest mask you can have that can isolate all
the digits from zero to nine. RSIZE will be four, since four random bits
are needed from the PSR generator.

The N initializer falls through to the "real" PSR generator. You have
to use this initializer any time you first begin or any time you change
your modulo.

There are two parts to the "real" PSR generator. The first half,
labeled REUSEN, gets enough bits to be equal to or more than your
modulo.

To do this, REUSEN first "aligns" bit 28 to bit 31 of PSR4 using the
accumulator to shift bit 28 over three places. An EOR then computes
the feedback term. This particular EOR term gets shifted into the carry.

Random Numbers 353

Note that there are seven worthless EOR bit results calculated at the
same time. These are simply ignored. The good result ends up in the
carry flag; everything else gets flushed.

Our carry flag now holds our feedback product. To shift our shift
register, you move carry into the least significant bit of PSR1 and shift
the rest of PSR1 's bits one to the left. The high bit now goes into the
carry. Now shift, in turn PSR2, PSR3, and PSR4. The net result is that
you faked a pseudo-random shift register with software.

The PSR is shifted as often as you have to, once for each count of
RSIZE. Three whaps for a die, four for modulo ten, and so on.

At this point, enough bits have been randomized in PSR1 to give
you a totally new number equal to or larger than your modulo.

The second half of the PSR process is called RANGE. Its purpose is
to see if you are within your modulo with the present random value in
PSR1. If you are in range, you are finished. If not, you have to repeat
the process as often as you need to for a useful result. As we've seen,
the odds on a hit are always greater than 50 percent and are usually
much greater.

RANGE grabs the value in PSR1 and masks it with BSIZE. This cuts
the number down to size, such as to four bits for a modulo of ten. The
same four bits could be used for any modulo from nine through six
teen.

The result in the accumulator is then compared to MODULO. If you
are less thar} MODULO, then your value is acceptable. If you are
equal to or greater than MODULO, then your present value is no
good, and you need another trip back through the PSR.

Two minor points. Note that you do not have to go back through
the N initializer for a repeat trip, since you already know and have
saved BSIZE and RSIZE. This speeds things up considerably. Secondly,
note that you always want less than MODULO as a result, because of
a possible zero answer. To repeat, if your MODULO is six, you get
any of the six different values of zero, one, two, three, four, or five.
You do not want an answer of "six" for a MODULO of six, since this
is the seventh, and not the sixth possible value.

Summing up, to generate a "random" number, put the range of that
number into MODULO. If this is your first time through, do a JSR
RESEED. If you want to repeat a previous series, do a JSR RESET. Then
do a JSR RANDOM. Your result ends up in the accumulator for
machine language use, and in HOLD either for high level language
access or for future reference.

If you want to\use the same modulo over again, do a JSR REUSEN.
This is much faster.

The companion demo is called FILL. It fills the HIRES screen the
same way that WHY RND AIN'T didn't. Note particularly the speed
difference, how clean the process is, and how you eventually get to a
totally white screen.

Even this speed test is hardly fair, since we are still using the ludi
crously slow Applesloth HPLOT subroutines in the demo. You can go
much faster if you add your own custom HPLOT code.

You can extend your modulo to 511 by making two trips to RAN
DOM. To do this, divide the even part of your modulo by two. Gener
ate this value and double it. Then do a separate RND (2) to pick even
or odd results.

354 Ripoff Module 7

MIND BENDERS

Show how to eliminate the repeat
trips for nonbinary N.

- What is the actual speed involved
in generating a random number?

- How can you use a PSR generator
to generate speaker noise?

- Why and how does a 23-bit PSR
fail the screen-fill test?

Can you think of any uses for
shorter or longer PSR generators?

Random Numbers 355

PROGRAM RM-7

RANDOM NUMBERS

----- NEXT OBJECT FILE NAME IS RANDOM
6FOO: 3 ORG $6FOO PUT MODULE 17 AT $6FOO

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO
6FOO
6FOO

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29

31

33
34
35
36
37
38
39
40
41
42
43
44
45
46

* *
* -< RANDOM >- *
* *
* (PSEUDORANDOM INTEGER GENERATOR) *
* *

* VERSION 1.0 ($6F00-$6FB2) *
* *
* 1-12-83 *
* *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE GIVES YOU A PSEUDORANDOM INTEGER FROM A
FIELD OF N. N CAN RANGE FROM 2 TO 255.

*** HOW TO USE IT ***

TO RESEED (INITIALIZE) FROM A TRUE RANDOM NUMBER,
DO A JSR SEED W�TH A JSR $6F2E OR A CALL 28462.

TO REPEAT AN OLD PSEUDORANDOM SERIES, DO A JSR RESET
BY DOING A JSR $6F44 OR A CALL 28484.

TO GET A PSEUDORANDOM VALUE:

FROM MACHINE LANGUAGE, PUT N IN THE ACCUMULATOR
AND THEN JSR RANDOM AT $6F5B. RND(N) RETURNS IN A.

FROM APPI..ESOFT, STORE N IN MODULO AT 28593
AND THEN CALL RANDHL AT 28504. RND(N) ENDS
UP IN HOLD AT 28594.

356 Ripoff Module 7

PROGRAM RM-7, CONT'D.

6FOO: 49 J

6FOO: 51 J
6FOO: 52 J
6FOO: 53
6FOO: 54
6FOO: 55 J
6FOO: 56

6FOO: 58

6FOO: 60

6FOO: 61

6FOO: 62

6FOO: 64

6FOO: 66

6FOO: 67
6FOO: 68
6FOO: 69

6FOO: 70
6FOO: 71

*** GOTCHAS ***

HALF THE ORIGINAL RANDOM SEED COMES FROM RNDL AND

RNDH IN THE MONITOR. THE OTHER HALF COMES FROM

THE PREVIOUS PSR SEQUENCE.
N VALUES ONE LESS THAN A BINARY POWER EXECUTE FASTEST.
APPLESOFT IS NEEDED FOR THE SCREENFILL DEMO.

THE A AND Y REGISTERS ARE USED BY THESE SUBS.

*** ENHANCEMENTS ***

THE DEMO "FILL" LETS YOU FILL THE HIRES SCREEN RANDOMLY.
RUN IT WITH A JSR $7EOO OR A CALL 332256.

*** RANDOM COMMENTS ***

VALUES OF N THAT ARE NOT EQUAL TO ONE LESS THAN A

POWER OF TWO MAY NEED REPEAT TRIPS THROUGH THE PSR
SEQUENCER. THIS IS DONE AUTOMATICALLY. THE PROBABILITY
OF A HIT ALWAYS EXCEEDS 50% WORST CASE PER PASS AND
IS USUALLY MUCH HIGHER.

Random Numbers 357

PROGRAM RM-7, CONT'D.

6FOO: 74 *** HOOKS ***

F3E2: 76 HGR EQU $F3E2 APPLESOFT CLEAR TO HIRES ONE

F'4S7: 77 HPLOT EQU $F4S7 J APPLESOFT HIRES PLOT

COOO: 78 IOADR EQU $COOO KEYBOARD
COlO: 79 KBSTR EQU $COlO KEYBOARD RESET

004E: 80 RNDL EQU $4E RANDOM NUMBER LOW
004F: 81 RNDH EQU $4F RANDOM NUMBER HIGH
F6EC: 82 SETHCOL EQU $F6EC APPLESOFT HIRES COLOR SET
COSO: 83 TEXT EQU $COSO TEXT SCREEN

6FOO: 8S *** CONSTANTS ***

0003: 87 COLOR EQU $03 FOR A WHITE PLOT

358 Ripoff Module 7

PROGRAM RM-7, CONT'D.

6FOO: 90 *** SCREENFLL DEMO ***

6FOO: 92 THIS DEMO FILLS THE HIRES SCREEN ONE RANDOM
6FOO: 93 DOT AT A TIME.
6FOO: 94
6FOO: 95
6F-QO: 96
6FOO.: 97

6F00:20 E2 F3 99 FILL JSR BGR CLEAR HIRES SCREEN
6F03:A2 03 100 LOX I COLOR PICK COLOR (03=WHITE)
6F05:20 EC F6 101 JSR SETH COL

6F08:20 2E 6F 103 JSR RESEED SEED PSR FROM RNDL,RNDH

6FOB:A9 BF 105 PLOTDOT LDA I$BF 191 DOTS HIGH
6FOD:8D B1 6F 106 STA MODULO
6F10:20 SB 6F 107 JSR RANDOM GET RANDOM H
6F13:48 108 PHA AND SAVE ON STACK
6F14:A9 FF 109 LOA f$FF 256 DOTS WIDE
6F16:8D B1 6F 110 STA MODULO
6F19:20 SB 6F 111 JSR RANDOM GET VERT
6F1C:AO 00 112 LOY 1$00 NO HISCREEN
6F1E:AA 113 TAX TRANSFER H
6F1F:68 114 PLA GET V

6F20:20 57 F4 115 JSR HPLOT PLOT DOT ON SCREEN
6F23:2C 00 co 116 BIT IOADR READ KEYBOARD
6F26:30 02 117 BMI EXIT7
6F28:10 E1 118 BPL PLOTDOT CONTINUE IF NO KP
6F2A:2C 10 CO 119 EXIT7 BIT KBSTR RESET KEYBOARD
6F2D:60 120 RTS AND QUIT

Random Numbers 359

PROGRAM RM-7, CONT'D.

6F2E: 123 J *** PSEUDORANDOM GENERATOR ***

6F2E: 125 THE PSEUDORANDOM GENERATOR IS A REGISTER THAT IS 31
6F2E: 126 BI'l'S. I.�ONG. BITS 28 AND 31 ARE EXCLUSIVE ORED TO SET
6F2E: 127 THE NEXT MSB. SEQUENCE LENGTH IS 2,147,483,647.
6F2E: 128
6F2E: 129
6F2E: 130
6F2E: 131

6F2E: 133 . *** THE RESEEDER *** , '

6F2E:A5 4E 135 RESEED LOA RNDL GET RANDOM NUMBER
6F30:8D A7 6F 136 STA SEED1 FROM MONI'l'OR KEYBOARD RND
6F33:A5 4F 137 LOA RNDH AND STORE FOR PSR SEED.
6F35:8D AA 6F 138 STA SEED4
6F38:AD AD 6F 139 LOA PSR3 RESEED MIDDLE FROM OLD
6F3B:8D AS 6F 140 STA SEED2
6F3E:AD AC 6F 141 LOA PSR2
6F41:8D A9 6F 142 STA SEED3 AND FALL THRU TO RESET

6F44:AO 04 144 RESET LOY 1$04 MOVE SEED TO PSR REGISTER
6F46:B9 A7 6F 145 NXT7 LOA SEED1,Y
6F49:99 AB 6F 146 STA PSR1,Y
6F4C:88 147 DEY
6F4D:DO F7 148 BNE NXT7

6F4F:AD AC 6F 150 LOA PSR2 FORCE PSR SEED TO NONZERO
6F52:DO 03 151 BNE DONE7 BY FORCING NONZERO PSR2
6F54:EE AC 6F 152 INC PSR2
6F57:60 153 DONE7 RTS AND RETURN

360 Ripoff Module 7

PROGRAM RM-7, CONT'D.

6F58: 156 *** THE N INITIALIZER ***

6F58:AD B1 6F 158 RNDHL LOA MODULO ENTER HERE FROM APPLESOFT
6F5B: 130 B1 6F 159 RANDOM STA MODULO ENTER HERE FROM MACHINE LANGUAGE
6F5E:UO 05 160 BNE BSCALC N MUST NOT BE ZERO!
6F60:A9 02 161 I .. DA t$02 USE N=2 MINIMuM
6F62:8D B1 6F 162 s·rA MODULO

6F65:A9 FF 164 BSCALC LDA f$FF INIT SIZE TO 255
6F67:8D AF 6F 165 STA BSIZE ENOUGH ONES HERE > MODULO
6F6A:AO 08 166 LOY f$08 FOR 8 BITS
6F6C:AD B1 6F 167 LOA MODULO GET MODULO AND CALCULATE
6F6F:2A 168 SMALLER ROL A NEXT LARGER
6F70:BO OC 169 BCS ADVANCE
6F72:4E AF 6F 170 LSR BSIZE DIVIDE BY TWO
6F75:88 171 DEY NEXT SMALLER
6F76:DO F7 172 BNE SMALLER
6F78:8C BO 6F 173 STY RSIZE SAVE FOR RETRY

6F7B: 176 *** THE ACTUAL PSR GENERATOR ***

6F7B:AC BO 6F 178 REUS EN LOY RSIZE RESTORE IF RETRY
6F7E:AD AE 6F 179 ADVANCE LOA PSR4 GET HIGH PSR
6F81:0A 180 ASL A ALIGN BIT 28 TO 31
6F82:0A 181 ASL A
6F83:0A 182 ASL A
6F84:4D AE 6F 183 EOR PSR4 AND EXCLUSIVE OR
6F87:0A 184 ASL A MOVE TO CARRY
6F88:0A 185 ASL A
6F89:2E AB 6F 186 ROL PSR1 SHIFT LOW PSR
6F8C:2E AC 6F 187 ROL PSR2 SHIFT NEXT PSR
6F8F:2E AD 6F 188 ROL PSR3 AND ONCE MORE
6F92:2E AE 6F 189 ROL PSR4 FINALLY THE HIGH BYTE
6F95:88 190 DEY REPEAT FOR EVERY BIT IN BSIZE
6F96:DO E6 191 BNE ADVANCE

6F98:AD AB 6F 193 RANGE LOA PSR1 GET VALUE
6F9B:2D AF 6F 194 AND BSIZE MASK NEXT B INARY VALUE
6F9E:CD B1 6F 195 CMP MODULO IS VALUE TOO B IG?
6FA1:BO 08 196 BCS REUS EN YES , TRY AGAIN
6FA3:8D B2 6F 197 STA BOLD SAVE VALID PSR
6FA6:60 198 RTS AND EXIT

Random Numbers 361

PROGRAM RM-7, CONT'D.

6FA7: 201 *** ·PSR REGISTERS �**

6FA7: 203 SEEDL AND SEEDH BOLD THE STARTING SEED SHOULD YOU
6FA7: 204 WANT TO RERUN THE SERIES. PSRl, PSR2, PSR3, AND
6FA7: 205 PSR4 FORM THE 23 BIT PSEUDORANDOM SEQUENCER.
6FA7: 206
6FA7: 207 BSIZE IS A SIZING MASK.
6FA7: 208
6FA7: 209 MODULO BOLDS THE VALUE N, WHILE HOLD KEEPS THE RANDOM (N)
6FA7: 210

6FA7:AA 212 SEED1 DFB $AA SEED LOW VALUE
6FA8:AA 213 SEED2 DFB $AA SEED SECOND LOWEST
6FA9:AA 214 SEED3 DFB $AA SEED THIRD LOWEST
6FAA:AA 215 SEED4 DFB $AA HIGH SEED
6FAB:AA 216 PSR1 DFB $AA PSR LOW BYTE
6FAC:AA 217 PSR2 DFB $AA PSR SECOND LOWEST
6FAD: 3B 218 PSR3 DFB $3B PSR THIRD LOWEST
6FAE:AA 219 PSR4 DFB $AA PSR HIGHEST
6FAF:FF 220 BSIZF; DFB $FF SAVE OF BINARY SIZE
6FB0:04 221 RSIZE DFB $04 YSAVE FOR RETRY

6FB1:07 223 MODULO DFB $07 MAXIMUM SIZE OF N
6FB2:00 224 HOLD DFB $00 SAVE OF PSR VALUE

I SHUFFLE

a fast "rand om exchange"
method of rearranging cards or
number arrays

I

There are lots of computer situations where you might like to take a
pile of objects and rearrange them into some different order.

Shuffling a deck of cards is the most obvious example of this sort of
thing. You might use playing cards for poker or blackjack simulations.
Other times, the cards may have different symbols or messages on
them. Tarot cards are an example, as are the Chance and Community
Chest decks in\a Monopoly simulation.

The things being shuffled need not be paper cards, of course. They
could be tiles in a magic number game, letters in a word, the se
quence in which new things appear, a maze in an adventure, or a
journey into cryptography.

The fancy name for shuffling is randomizing without replacement. In
randomizing without replacement, you simply rearrange a fixed array
of values that you already have on hand. Once drawn from the deck,
the four of clubs will not reappear.

The random number generator of the last ripoff module kept all the
marbles in the pipe. You just cloned off the marbles you wanted. This
was randomizing with replacement. In randomizing with replacement,
the same value can come up over and over again.

363

364 Ripoff Module 8

Hence .. .

Randomizing WITH Replacement

Grabbing a random number without
removing that number from being
available for future grabs.

Rolling a die is an example.

Randomizing WITHOUT Rep,acement

Grabbing a random number while also
eliminating the availability of that
number for future grabs.

Shuffling cards is typical.

Note that these are totally different things. You'll get absurd results if
you try to use the wrong one. Like only six different throws of a die
before the die is "empty." Or the nine of spades dealt to you three
cards in a row.

To throw some other terms at you, grabbing without replacement
involves an infinite pool of numbers. Or at least an irrigation ditch full.

Grabbing with replacement involves a finite pool of numbers. These
numbers are usually arranged into a fixed and rather small array. The
array size on a playing card deck is usually 52.

The typical way that beginners try to shuffle things on their Apple
has two very serious flaws. First, of course, they will be trying to use
the Applesoft RND subroutine, which, as we have seen, is not.

Besides being rather slow.
We can easily fix this particular hassle by switching to the random

number generator of the last ripoff module.
The second problem is more subtle. If you grab 52 random numbers

in a row, you have to check each new number to make sure it was not
duplicated before. This is no problem on the first card, and is trivial on
the first few cards. But on, say card 50, the odds are 50/52 that you
already have this card and have to go back again and again.

In fact, for your last card, you might need 52 additional tries to pick
up only a 0.63 odds of finding the remaining card.

1/e and all that statistical stuff.
You, in fact, have to deal hundreds or even thousands of cards to be

reasonably sure of getting 52 different ones. So, testing for duplicates
is a bad scene because it takes ridiculously long and involves many
wasted trips to the random number generator.

let's work smarter and not harder. Do not try to take your numbers
out of an infinite pool. Instead, take them out of a small and fixed
array. Center your activities on rearranging the array.

Shuffle 365

Here is a good and fast way to shuffle a pile of something .

TO REARRANGE N OBJECTS:-

Take the object in the first location and
interchange it with an object in another
location in the array, chosen at random.

Then take the object in the second
location and do the same thing.

Repeat this for all the locations.

In other words, lay your 52 cards on the table. Grab the first card
and interchange it with any card, picked at random. Next, grab the
second card and interchange it with any card, again picked at ran
dom. Continue the process till you run out of cards.

Note two things. First, there are only 52 random numbers needed
this way, since each random number gets used only once. Secondly, a
card in some position will sometimes replace itself. This happens if the
card in location number seven is interchanged with the random loca
tion number seven that just came up.

The odds on a card replacing itself are exactly the same as shuffling
a real card deck and having the same card end up in the same posi
tion.

Which is rare but it certainly can happen. You can even get the
deck back exactly the way you started. Odds on this are a tad low,
though. The key point is that this random interchange method exactly
duplicates a fair and thorough shuffle of real cards.

The same thing works for other shuffles. For a 15-tile magic square,
you only interchange 15 values. You only swap six letters to jumble a
six letter word, and so on.

Let's try it.

A Shuffler

The subroutine called SHUFFLR will take an array named CARDECK
of length ARNUM and reorder everything.

SHUFFLR does this by using the random number generator of the
previous ripoff module. CARDECK is presently set up to hold 52 cards,
and ARNUM equals decimal 52 or hex $34.

The shuffling process is done by taking the first array value and
interchanging it with an array value in a slot chosen at random. lo
find the exchange slot, you get a random number from 0 to 51 and do
the exchange. The process gets repeated 52 times, thus swapping
each card with some other card or itself at least once.

One of the array values being swapped is temporarily stashed on the
stack. This handles the juggling process of moving two things between
two locations without dropping either one of them.

To use SHUFFLR for other tasks, you just change the array values
and the size of your array.

Note that SHUFFLR does not care what is inside each array slot. This
lets you use meaningful codes for each array value. These codes are
totally independent of the shuffling process.

How do you code a deck of cards?
One way to code the cards is to use one hex digit for the values

366 Ripoff Module 8

from ace through king. An obvious choice is to use $X1 for an ace,
$X2 for a two, $X9 for a nine, $XA for a ten, $XB for a jack, and so on.
Let's use the least significant hex digit for this.

We will use the other hex digit to pick a suit. Say $OX for hearts,
$1 X for diamonds, $2X for clubs, and $3X for spades. Thus, the ace of
spades will be coded $31, while the king of diamonds will be a $1 D.

Clear?
A companion demo called DEALER will exercise your shuffler. The

"S" key will shuffle the deck. The "R" key will repeat the previous
shuffle for a replay. The "D" key, or optionally, the spacebar deals a
card. The "Q" key quits the program for you.

We have used the short file printing method to handle text. It is the
better choice here because we have lots of short and ordered words
that we need in a more or less random access way. We are also under
the nasty 256 character limit here. Use of a short file also saves drag
ging IMPRINT into the demo. It also gives you a chance to play with
absolute indexed addressing.

The four options needed are simple enough that we will handle
them by brute force, rather than using fancier option picker code.

We have also included a card counter. This one can be used for a
position or a score, and does not need any hex-to-decimal or
decimal-to-hex conversion. I'll leave it to you to puzzle out how this
one works.

Naturally, a machine language randomizing-without-replacement
module is far too fast to use as a real time playing card shuffle. So,
we'll have to slow it down bunches. To do this, we will build the shuf
fler into a sound effect that mimics a deck being shuffled, and adjust
the timing to "real" time.

Should you need something rearranged very quickly, be sure to
defeat the sound effects. Or else adjust the effects to mimic what you
are emulating.

Once again, the pseudo-random generator of the previous ripoff
module is needed to get this module to work. So, be sure to have
either RANDOM or THE WHOLE BALL OF WAX in your machine
when using either the shuffler or the card demo.

MIND BENDERS

-What is the total time needed to
shuffle a deck of 52 cards, with and
without the sound effects?

�Add a HIRES or LORES graphics
display of the playing cards.

--Show how to do an "instant solver"
for those word jumble puzzles on a
newspaper's comics page.

-In a word guessing game that has a
file of hundreds of words, show
how to get each word just once yet
in a different order each session.

-Why does the card number display
work in decimal without needing
any hex conversion?

�What changes are needed to make
the demo professionally useful?

Shuffle 367

368 Ripoff Module 8

PROGRAM RM·8
SHUFFLE

NEXT OBJECT FILE NAME IS SHUFFLER
7000: 3 ORG $7000 PUT MODULE 18 AT $7000

7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:

7000:

7000:
7000:
7000:

7000:

7000:
7000:
7000:
7000:
7000:
7000:

7000:
7000:
7000:

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29

31

33
34
35
36
37
38

40
41
42

I

* *
* -< SHUFFLER >- *
* *
* RANDOMIZING WITHOUT REPLACEMENT *
* *
* VERSION 1.0 ($7000-$7246) *
* *
* 5-24-83 *
* *
* *
* 'COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE SHOWS YOU HOW TO SHUFFLE OR REARRANGE
AN ARRAY OF CARDS, NUMBERS, LETTERS, OR OBJECTS.

*** HOW TO USE IT ***

TO USE THE SHUFFLER:

START YOUR ARRAY F ILE WITH CARDECK AT $7213.
PUT THE NUMBER OF ARRAY ELEMENTS IN ARNUM AT $710E.
THEN JSR SHUFFLR AT $70F1. EQUIVALENT APPLESLOTH
LOCATIONS ARE 29203, 28942, AND 28913.

TO RUN THE CARD DEALER DEMO:

JSR DEALER AT $7000 OR CALL 28672.

Shuffle 369

PROGRAM RM-8, CONT'D.

7000: 45 *** GOTCBAS ***

7000: 47 , THE RANDOM SUBROUTINE MUST BE PRESENT IN THE

7000: 48 , MACHINE. PRELOAD "RANDOM" OR "THE WHOLE BALL
7000: 49 OF WAX" TO DO THIS.
7000: so

7000: 51 , YOUR ARRAY FILE MOST BE PRELOADED WITH TBh
7000: 52 PROPER VALUES.

7000: 54 *** ENHANCEMENTS ***

7000: 56 WORDS, OBJECTS, OR OTHER TYPES OF CARDS ARE DONE
7000: 57 BY CHANGING THE MEANING AND SIZE OF YOUR ARRAY.
7000: 58

7000� 60 *** RANDOM COMMENTS ***

7000: 62 THIS SHUFFLE DEMO IS INTENDED TO SHOW THE PROCESS
7000: 63 INVOLVED. AN ACTUAL CARD PROGRAM HAS TO BE FAR
7000: 64 FRIENDLIER THAN THIS, AND SHOULD DISPLAY REAL CARDS.
7000: 65
7000: 6-6 THE DEMO ALSO SHOWS HOW TO HANDLE SIMPLE SCORING
7000: 67 WITHOUT NEEDING HEX TO DECIMAL CONVERSION.

L

370 Ripoff Module 8

PROGRAM RM-8, CONT' D •

7000: 70 *** HOOKS ***

FDFO: 72 COUTl EQU $FDFO OUTPUT TEXT TO SCREEN
FC58: 73 HOME EQU $FC58 CLEAR TEXT SCREEN AND HOME CURSOR
FB2F: 74 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COOO: 75 IOADR EQU $COOO KEYBOARD INPUT LOCATION
COlO: 76 KBDSTRB EQU $COlO KEYBOARD STROBE RESET
FDlB: 77 KEY IN EQU $FD1B MONITOR READKEY SUBROUTINE
FE80: 78 SET INV EQU $FE80 SET INVERSE SCREEN
FE84: 79 SETNORM EQU $FE84 SET NORMAL SCREEN
C030: 80 SPKR EQU $C030 SPEAKER CLICK OUTPUT
FCA8: 81 WAIT EQU $FCA8 MONITOR TIME DELAY

6FSB: 83 RANDOM EQU $6FSB RANDOM NUMBER INITIALIZER
6F2E: 84 RESEED EQU $6F2E RANDOM NUMBER SEEDER
6F7B: 85 REUS EN EQU $6F7B RANDOM NUMBER GENERATOR

0020: 87 WNDLFT EQU $20 LEFT SIDE OF SCROLL WINDOW
0021: 88 WNDWTH EQU $21 WIDTH OF SCROLL WINDOW
0022: 89 WNDTOP EQU $22 TOP OF SCROLL WINDOW
0023: 90 WNDBTM EQU $23 BOTTOM OF SCROLL WINDOW
0024: 91 CH EQU $24 CURSOR HORIZONTAL POSITION
0033: 92 PROMPT EQU $33 PROMPT SYMBOL

7000: 94 *** TEXTFILE COMMANDS ***

0088: 96 B EQU $88 BACKSPACE
008D: 97 c EQU $8D CARRIAGE RETURN
0084: 98 D EQU $84 DOS ATTENTION

.0098: 99 E EQU $9B ESCAPE
008A: 100 L EQU $8A LINEFEED
0060: 101 p EQU $60 FLASHING PROMPT
0000: 102 X EQU . $00 END OF MESSAGE

PROGRAM RM-8, CONT'D.

7000: 105 *** DEALIN DEMO ***

7000:

7000:

107

108 '

THIS DEMO EXCERCISES THE SHUFFLER

ON A STAt�DARD DECK OF 52 CARDS.

7000:20 2F FB
7003:20 58 FC
7006:20 2E 6F

7009:AD OE 71
700C:20 58 6F

110 DEALER JSR INIT

111 JSR HOME

112 JSR RESEED

113 LOA ARNUM
114 JSR RANDOM

700F:A9 07 116

7011:85 24 117

7013:20 80 FE 118
7016:AO SE 119
7018:20 E3 70 120
7018:20 84 FE 121
701E:AO 74 122
7020:20 E3 70 123

7023:A9 07 125
7025:85 22 126

7027:A9 OS 127
7029:85 20 128

702B:A9 22 129
702D:85 21 130
702F:20 58 FC 131

7032:2C 10 CO

7035:AD 00 CO
7038:10 FB

703A:2C 10 CO
703D:C9 E1
703F:90 02
7041:E9 20

7043:C9 03

7045:FO 10
7047:C9 C4
7049:FO 2E

704B:C9 AO
704D:FO 2A
704F:C9 02

7051:FO 17
7053:C9 01
7055:FO 06

7057:20 18 71
705A:4C 32 70

133 CMNDS

134 LOOKS

135

136
137
138
139

141 CSORT

142
143
144

145
146
147

148
149
150

151
152

LOA 1$07

STA CH

JSR SETINV
LOY I>MSO-CV1
JSR TEXTS

JSR SETNORM
LOY I>MS1-CV1
JSR TEXTS

LOA 1$07
STA WNDTOP

LOA f$05
STA WNDLFT
LOA f$22
STA WNDWTH
JSR HOME

BIT KBDSTRB

LOA IOADR

BPL LOOKS
BIT KBDSTRB
CMP f$E1
BCC CSORT
SBC 1$20

CMP I$D3

BEQ SHUFF
CMP I$C4
BEQ DEAL

CMP I$AO \

BEQ DEAL
CMP l$02

BEQ REPLAY
CMP I$D1
BEQ QUITS

JSR EFFECT2
JMP CMNDS

SET UP TEXT SCREEN
AND CLEAR IT
RESEED RANDOM
GET ARRAY NUMBER
INIT RANDOM

TAB 7 TO RIGHT

INVERSE TITLE
GET HEADER
AND DISPLAY

NORMAL TEXT
GET SCREEN PROMPTS
AND DISPLAY

SET LOWSCREEN WINDOW

TAB OVER TO CENTER

GET INSIDE WINDOW

RESET KEYBOARD

READ KEYBOARD

FORCE CASE

SUBTRACT TO CHANGE CASE

S FOR SHUFFLE?

YES
D FOR DEAL ?

ALSO SPACE FOR DEAL

R FOR REPLAY?

Q FOR QUIT?

BLORK
TRY AGAIN FOR LEGAL KEY

Shuffle 371

372 Ripoff Module 8

PROGRAM RM-8, CONT'D.

705D: 155

7CSD:20 2F FB 157 QUITS

7060:20 58 FC 158
7063;60 159

7064:

7064:

7064:

161

163
164

·*** QUIT EXIT ***

JSR INIT

JSR HOME
RTS

J OPEN WINDOW

CLEAR SCREEN
AND EXIT ON "Q"

*** SHUFF PROCESSING ***

THIS CODE SHUFFLES THE DECK AND
RESETS THE CARD COUNTERS TO ONE.

7064:20 F1 70 166 SHUFF JSR SHUFFLR SHUFFLE THE DECK
RESET COUNTERS 7067:4C 6A 70 167 JMP REPLAY

706A: 169 *** REPLAY MODULE ***

706A: 171 RESETS THE CARD COUNTER TO ZERO.

706A:AO 00 173 REPLAY LOY 1$00 RESET COUNTERS

706C:8C EF 70 174 STY HEXCNT

706F:C8 175 INY ONE MORE FOR PEOPLE

7070 8C FO 70 176 STY DECCNT

7073 20 58 FC 177 JSR HOME CLEAR OLD CARDS
7076 4C 32 70 178 JMP CMND8 GO GET NEXT COMMAND

PROGRAM RM-8, CONT'D.

7079: 181 ; **� DEAL PROCESSING ***

7079:
7079:

1S3 ;
1S4 ;

THIS CODE TRYS TO DEAL A CARD IF
THERE ARE ANY LEFT IN THE DECK.

7079:AD EF 70
707C:CD OE 71
707F:BO SA

70S1:AO AS
70S3:20 E3 70
70S6:AD FO 70
70S9:4A
70SA:4A
70S8:4A
70SC:4A
70SD:FO 05
70SF:09 80
7091:20 FO FD
7094:AD FO 70
7097:29 OF
7099:09 BO
7098:20 FO FD

1S6 DEAL
1S7
1SS

190
191
192
193
194
19S
196
197
19S
199
200 LOWDEC
201
202
203

.709E:AO AB 20S
70A0:20 E3 70 206

70A3:AE EF 70 20S
70A6:8D 13 72 209
70A9:4S 210
70AA:29 OF 211
70AC:AA 212
70AD:CA 213
70AE:8C 2A 71 214
7081:20 E3 70 215

70B4:AO 84 217
7086:20 E3 70 21S

7089:6S 220
708A:4A 221
7088:4A 222
708C:4A 223
708D:4A 224
708E:AA 22S
70BF:BC 37 71 226
70C2:20 E3 70 227

LOA HEXCNT
CMP ARNUM
BCS EMPTYS

LOY
JSR
LOA
LSR
LSR
LSR
LSR
8EQ
ORA
JSR
LOA
AND
ORA
JSR

I>MS2-CV1
TEXTS
DECCNT
A
A
A
A
LOl't'DEC
l$80
COUT1
DECCNT
I$0F
I$BO
COUT1

GET NUMBER !N DECK (S 2)
ANY CARDS LEFT?
NO, SAY SO

SAY •cARD•

GET TENS FOR CARD NUMBER
AND SHIFT FOUR TO RIGHT

IS IT NONZERO?
CHANGE TO ASCII
AND PRINT IT
GET UNITS FOR CARD NUMBER

; MASK TENS
CHANGE TO ASCII
AND PRINT IT

LOY I>MS3-CV1 SAY •ts THE•
JSR TEXTS TO SCREEN

LOX HEXCNT
LOA CARDECK,X
PHA
AND I$0F
TAX
DEX
LOY CARVAL,X
JSR TEXTS

GET CARD
FROM DECK
AND SAVE FOR SUIT
MASK SUIT
USE AS INDEX
MAKE ACE= 1, NOT ZERO 1
GET SUIT NAME

AND PRINT TO SCREEN

LOY I>MS4-CV1 SAY "OF"
JSR TEXTS AND PRINT IT

GET CARD BACK
AND SHIFT TO RIGHT

;

PLA
LSR A
LSR A
LSR A
LSR A
TAX
LOY
JSR

· ; USE AS INDEX
CARSUIT,X ; GET SUIT NAME
TEXTS AND PRI-NT IT

Shuffle 373

PROGRAM RM-8, CONT'D.

70Fl:

70Fl:
70Fl:
70Fl:
70Fl:
70Fl:
70Fl:

70Fl:AE OE
70F4:CA
70F5:20 7B
70FS:AS
70F9:BD 13
70FC:4S
70FD:B9 13
7100:90 13
7103:68
7104:99 13
7107:20 OF
710A:CA
7108:10 ES
7100:60

710E:

710E:34

710F:

71

6F

72

72
72

72
71

710F:SA
7110:00 02
7112:A9 01
7114:0A
7115:20 AS FC
711S:A9 OS
711A:4S
711B:2C 30 CO
711E:A9 07

.7120:20 AS FC
7123:6S
7124:3S
7125:E9 01
7127:00 F1
7129:60

264 *** SHtiFFLER SUBROUTINE ***

266·
267

THIS MODULE REARRANGES THE ARRAY CALLED CAP�ECK
AND WHOSE LENGTH IS STORED IN ARNUM.

26S
269
270
271

THE RANDOM SUBROUTINE MUST BE PRESENT IN THE
MACHINE AND MUST BE PREVIOUSLY SEEDED AND
INITIALIZED.

273 SHUFFLR LOX ARNUM GET NUMBER OF SWAPS
274 DEX FOR ARRAY 0-51, NOT 1-52
275 NEXT8 JSR REUS EN -GET RANDOM POSITION
276 TAY AND HOLD IN Y REGISTER
277 LOA CARDECK,X GET FIRST FIXED VALUE
278 PHA STASH TO JUGGLE
279 LOA CARDECK,Y GET RANDOM NEXT VALUE
280 STA CARDECK,X REPLACE NEXT WITH FIRST
281 PLA JUGGLE BACK
282 STA CARDECK,Y REPLACE FIRST WITH NEXT
283 JSR EFFECT! MAKE NOISE (OPTIONAL)
284 DEX ONE LESS POSITION
2SS BPL NEXT8 REPEAT FOR EACH POSITION
2S6 RTS QUIT WHEN FINISHED

2SS *** SHUFFLER STASH ***

290 ARNUM DFB 52 1 NUMBER OF ELEMENTS IN ARAY

292 *** SHUFFLER SOUND EFFECTS ***

294 EFFECT1
295
296
297 NOZEROS
29S
299 EFFECT2
300 NEXTWP
301
302
303
304
305
306
307
30S

TXA
BNE
LOA
ASL
JSR
LOA
PHA
BIT
LOA
JSR
PLA
SEC
SBC
BNE
RTS

DECK SHUFFLING SOUND
NOZEROS DISALLOW ZERO VALUE
1$01
A SLOW IT DOWN 1
WAIT DELAY, THEN FALL THROUGH
i$05 NUMBER OF CLICKS PER WHAP

SAVE ON STACK
SPKR MOVE SPEAKER CONE
1$07 \ SET PITCH OF WHAP
WAIT

GET CLICK COUNTER

1$01 AND COUNT DOWN
NEXTWP

AND RETURN

Shuffle 375

376 Ripoff Module 8

PROGRAM RM-8, CONT'D.

712A:

712A:
712A:
712A:
712A:

712A:

712A:OO
.7128:04

-:'12C:08
712D:OE
712E:13
712F:18
7130:1C
7131:22
7132:28
7133:2D
7134:31
7135:36
7136:3C

7137:41
7138:48
7139:51
713A:57

311 J *"* MESSAGE FILE ***

313 WE'LL USE THE SHORT FILE METHOD HERE SINCE
314 RANDOM ACCESS OF A.FEW SHORT AND FIXED
315 MESSAGES ARE NEEDED.
316

318 ••• MESSAGE POINTERS ***

320 CARVAL DFB >CV1-CV1 THESE POINT TO CARD VALUES
321 DFB >CV2-CV1
322 DFB >CV3-CV1
323 DFB >CV4-CV1
324 DFB >CV5-CV1
325 DFB >CV6-CV1
326 DFB >CV7-CV1
327 DFB >CV8-CV1
328 DFB >CV9-CV1
329 DFB >CV10-CV1 J
330 DFB >CV11-CV1
331 DFB >CV12-CV1
332 DFB >CV13-CV1

334 CARSUIT DFB >.CSO-CV1 THESE POINT TO THE CARD SUITS
335 DFB >CS1-CV1
336 DFB >CS2-CV1
337 DFB >CS3-CV1

Shuffle 377

PROGRAM RM-8; CONT'D . . .

7133: 340 1 *** THE CARD VALUES ***

713B:C1 C3 CS 342 CVl ASC 11ACE"
713E:OO 343 DFB X

713F:D4 07 CF 345 CV2 ASC •TWo•

7142:00 346 DFB X

7143:04 ca 02 348 CV3 ASC 11THREE"
7146:CS CS
7148:00 349 DFB X

7149:C6 CF OS 351 CV4 ASC "FOUR"
714C:02
7140:00 352 DFB X

714E:C6 C9 06 354 cvs ASC "FIVE"
7151:C5
7152:00 355 DFB X

7153:03 C9 DB 357 CV6 ASC "SIX"
7156:09 358 DFB X

7157:03 C5 06 360 CV7 ASC "SEVEN"
715A:C5 CE
715C:OO 361 DFB X

715D:CS C9 C7 363 eva ASC "EIGHT"
7160:C8 04
7162:00 364 DFB X

7163:CE C9 CE 366 CV9 ASC "NINE"
7166:CS
7167:00 367 DFB X

7168:04 CS CE 369 CV10 ASC "TEN"
716B:OO 370 DFB X

716C:CA C1 C3 372 CVll ASC "JACK"
716F:CB
7170:00 373 DFB X

7171:01 OS cs 375 CV12 ASC "QUEEN"
7174:CS CE
7176:00 376 DFB X

7177:CB C9 CE 378 CV13 ASC "KING"
717A:C7
717B:OO 379 DFB X

378 Ripoff Module 8

PROGRAM RM-8, CONT'D . . .

717C: 3S2 *** THE CARD SUITS ***

717C:CS CS C1 3S4 cso ASC "HEARTS"
717F:D2 D4 D3
71S2:00 3SS DFB X

71S3:C4 C9 C1 387 CSl ASC "DIAMONDS"
71S6:CD CF CE
71S9:C4 D3
71SB:OO 3SS DFB X

71SC:C3 cc DS 390 CS2 ASC "CLUBS"
71SF:C2 D3
7191:00 391 DFB X

7192:D3 DO C1 393 CS3 ASC "SPADES"
7195:C4 cs D3
719S:OO 394 DFB X

7199: 396 *** TEXT SCREEN MESSAGES ***

7199:C3 C1 D2 39S MSO ASC "CARD SHUFFLING DEMO"
719C:C4 AO D3
719F:CS DS C6
71A2:C6 CC C9
71AS:CE C7 AO
71A8:C4 CS CD
71AB:CF
71AC:SD SD 00 399 DFB c,c,x

71AF:AS D3 A9 401 MSl ASC "(S)HUFFLE, (D)EAL, (R)EPLAY, (Q)UIT ?
71B2:CS DS C6
71BS:C6 CC CS
71BS:AC AO AS
71BB:C4 A9 CS
71BE:Cl CC AC
71C1:AO AS D2
71C4:A9 CS DO
71C7:"CC Cl D9
71CA:AC AO AS
71CD:Dl A9 DS
71DO:C9 D4 AO
71D3:BF
71D4:8D 8D 402 DFB c,c
71D6 :AD AD AD 403 ASC "---> •

. 71D9:BE AO
71DB:60 88 8D 404 DFB P,B,C,C,X
71DE:SD 00

PROGRAM RM-8, CONT'D.

71EO:C3 C1 D2 407 MS2
71E3:C4 AO
71ES:OO 408

7lE6:AO C9 D3 410 MS3
71E9:AO D4 C8
71EC:CS AO
71EE:OO 411

71EF:AO CF C6 413 MS4
71F2:AO
71F3:00 414

71F4:AE 416 MSS
71FS:8D 8D 00 417

71F8:AO AO AO 419 MS6
71FB:D3 CF D2
71FE:D2 D9 AC
720l:AO C4 CS
7204:C3 CB AO
7207:C9 D3 AO

720A CS CD DO
720D D4 D9 Al
7210 8D 8D 00 420

ASC

DFB

ASC

DFB

ASC

DFB

ASC
DFB

ASC

DFB

•cARD •

X

• IS THE •

X

" OF •

X

• •
c,c,x

• .SORRY,

c,c,x

Shuffle 379

DECK IS EMPTY!"

380 Ripoff Module 8

PROGRAM RM·8, CONT'D.

7213: 423 **� DBCK OF CARDS ***

7213: 425 , THE LOW BYTE OF EACH ENTRY IS THE CARD
7213: 426 , VALUE WITH . X1•ACE, X2•TWO, XA•TEN, ETC.
7213: 427 ,

7213: 428 , THE HIGH BYTE OF EACH ENTRY IS THE CARD
7213: 429 SUIT.WITR OX=HEARTS, lX•DIAMONDS, 2X•
7213: 430 CLUBS, AND 3X•SPADES �

7213:01 02 03 432 CARDECK DFB $01,$02,$03,$04,$05,$06,$07
7216:04 OS 06
7219:07
721A:08 09 OA 433 DFB $08,$09,$0A,$0B,$0C,$0D
721D:OB oc OD

7220:11 12 13 435 DFB $11,$12,$13,$14,$15,$16,$17
7223:14 15 16
7226:17
7227:18 19 1A 436 DFB $18,$19,$1A,$1B,$1C,$1D
722A:1B 1C 10

722C:21 22 23 438 DFB $21,$22,$23,$24,$25,$26,$27
7230=24 25 26
7233:27
7234:28 29 2A 439 DFB $28,$29,$2A,$2B,$2C.$2D
7237:28 2C 20

723A:31 32 33 441 DFB $31,$32,$33,$34,$35,$36,$37
7230;:34 35 36
7240:37
7241:38 39 3A 442 DFB $38,$39,$3A,$3Bt$3C,$3D
7244:38 3C 3D

*** SUCCESSFUL ASSEMBLY: NO ERRORS

382 Appendix A

EDASM, spaces must be added between op code and operand of all
these commands. Tab settings are also different in the "new" version.

Here's a list of the important changes and improvements to the edi
tor portion of DOS 3.3e version of "new" EDASM. Note that anything
you don't like about these features is easily gotten around by doing
"new way" editing under Applewriter lie instead.

Here goes:

1. The author of "old" EDASM was Randy Wigginton; the new author is
john Arkley, who upgraded and improved Randy's original work.

2. The BUGBYTER is included, a tremendous improvement over the old
miniassembler, single step, and trace routines.

3. System 10 routines are now supplied and standardized, letting you
configure your code for a II, II+, or lie.

4. The work buffer is now 26,000 characters long, which is somewhat
shorter than "old" EDASM. However, with "new way" editing under
Applewriter lie, your edit file can be 48,000 characters long.

5. The ASMIDSTAMP is restricted in its form so that real time clocks can
be supported.

6. The FILE command now displays the slot and drive.
7. The manuals are greatly improved and now include tutorials.
8. The command level now automatically accepts either upper or lower

case.
9. Combined upper and lower case is now standard on the Apple lie. On

older Apples, new commands of SETL and SETU are available for those
Apples with a shift key mod and a lower case display. Commands of [E]
(shift to lower case) and [W] (shift to upper case) are available for very
old Apples without lower case. The screen will not be legible in lower
case on these older machines.·

10. Direct DOS commands using the"." prefix are not filtered for possible
damage. In particular, ".SAVE" will plow the works.

11. You still cannot insert into·the middle of your source code using "old
way" editing. You have to use APPEND and then COPY. With "new
way" editing, you can, of course, insert anything you want any place
you want any time you want.

12. There is a new VOL command that goes along with SLOT and DRIVE
that will return the.current disk volume in use.

13. There is a new ADD command that lets you add text beyond a certain
line number. Thus ADD 16 will add new lines beyond old line 16, com
pared to INS 16 which would· insert new linesbefore old line 16.

14 .. The INSert or ADD modescan now be stopped with either a [D] or [Q].
15. A new REPLACE mode erases and then overwrites in one step. Before

you had to DELete and then INSert.
16. There now is a recovery procedure to undo the NEW command. It is

hairy to use, but it does exist.
17. A command of L43-6 lists six lines starting at line 43. Any time the sec

ond number is less thari the first one, it is interpreted as "how many?".
18. The [R] command will relist whatever you last asked of [L].
19. A new commarld of SETD lets you change the delimiter from a ":". This

lets you search and replace on a colon. Space or carriage returns are
not allowed as delimiters.

20. You can now editoo both a range of numbers and a search string.
21. You can edit two files at once. The command of SWAP moves the two

files between the "acttve" and "passive" editing buffers, sort of like a
[Y] split screen in Applewriter lie; ·The command of KILL2 deletes the

"passive" buffer, similar to a "[Y]�N" in Applewriter lie.
22. You can pick eith�r 40 or 80 column operation with a "COL 40" or

"COL 80" command.

Differences Between "Old" and "New" EDASM 383

23. There is now a simple way to undo the END command. Just set
MAXFILES 5 and Call 3075.

Here are the major improvements in the assembly portion of "new"
EDASM:

1. The DOS 3.3 version of "new" EDASM will not do an assembler listing
to disk. You have to use the ProDOS version if you want to capture

your normally printed assembler listing as a disk text file.
2. The trailer on an assembler listing now includes the date, line count,

and remaining free space.

3. An "@"following an ASM command will suppress object code genera
tion. This is handy for "quick looks" and finding potential errors.

4. The ASMIDSTAMP is no longer essential. On "old" EDASM, a FILE

NOT FOUND error message was generated.
5. You can single step the assembly process by pressing the spacebar.

Repeated spacebar hits do one line at a time. Pressing [ESC] on a 40-col
umn screen lets you see the right half of the screen, or else switches

back to the left half. Any other letter key resumes assembly at full
speed.

6. Two direct keyboard commands override any imbedded LST ON or LST

OFF commands. Use [N] to stop the listing, [0] to continue it.

7. The assembler will accept the tab key, [I], or the spacebar to enter a tab.
This greatly eases the "tab problem" with "new way" editing.

8. The label in the label field is now called an IDENTIFIER.

9. The "a," "X," "x," "Y," and "y" labels are now reserved, in addition
to "A." You can go to a lot of trouble to defeat this reservation if you

have to. Good practice would also tell you to reserve up," "p," "S,"
and "s" as well.

10. Macros are now available. These are disk based and are inserted when
and as needed. Parameters can be passed back and forth between
source code and macro.

11. A new operand of "
*

" is available that uses the present assembler pro
gram counter location. Intended use is to set aside specific positions in

a page of memory. This can also be used to "pad" your way up to the
next even page boundary.

12. You can now generate an absolute reference to a page zero location.
To do this, put the EQU after the place in the source code where it first

is needed. This is handy when you want to force an absolute long load,

store, or whatever from an address on page zero, because of timing or

code length considerations.
13. An upgraded OBJ command lets you assemble directly into the

machine, without assembling to disk first. Tests are made to make sure
there is no conflict with the assembly code itself. The combination of an

"OBJ" co�mand with an "ASM @" will directly assemble code into
memory without generating any listing.

14. A new SW16 command will accept "Sweet 16" mnemonics. Three new
commands have also been added to the original Sweet 16, which is a

16-bit pseudo interpreter. A compare, long branch, and subroutine long

branch are now available. Use of Sweet 16 is usually shorter and sim

pler, but slower than doing your own custom 16-bit routines. One
source of the new Sweet 16 code is EDASM itself. Just tear it apart using

the "tearing method" of Enhancing Your Apple II and 1/e, Volume /,
(Sams 21822).

15. An undocumented X6502 command will apparently accept 65C02 mne
monics and, presumably, 65XC16 mnemonics as well. This command

appeared in the preliminary documentation with a "we don't support
this" disclaimer, but was dropped completely in the final manual.

16. New commands of ZDEF, ZREF, and ZXTRN are available that are

384 Appendix A

extensions of DEF. These forward-looking features require a linking
loader that is not yet supported.

17. A new STR command works like ASC, only it includes a byte counter as
its first character. Thus ASC gives you a text message, while STR gives
you a text message preceded by the number of actual characters in the
message.

18. A new DATE command reads the nine ASCII values stored at $03B8-
$03CO and enters them into the object code being generated. These
locations usually hold the date portion of the ASMIDSTAMP.

19. A new IDNUM command reads the six ASCII values stored at $03C3
through $03C8 and enters them into the object code being generated.
These locations usually hold the identity portion of the ASMIDSTAMP.

20. Conditional assembly has undergone a major overhaul. New com
mands of IFNE (not equal), IFEQ (equal), IFLT (less than), IFLE (less than
or equal), IFGT (greater than), and IFGE (greater than or equal) are now
available. A command of FAIL is also available for printing error
messages.

21. A space must separate the op code and the operand on the SKP and LST
commands.

22. Logical operators are now available, using the "t" symbol for AND, "I"
for OR, and "!" for EXOR. These operators work only on 16-bit
arguments.

23. A new INCLUDE command stops the main assembly, assembles a
source code module off disk, and then picks back up on the main
assembly. This is most handy for inserting "mix and match" stock
library routines.

24. Two commands of SBUFSIZ and IBUFSIZ let you adjust the size of your
work areas for the original source code and the INCLUDE library mod
ule. See the manual for details. Changing buffer sizes is not normally
needed.

25. A new MACLIB command tells the assembler that any "illegal" mne
monics are really the names of macro routines. Each macro routine is
automatically done as if it was an INCLUDE command.

26. The "formfeed bug" has presumably been fixed, but it is still a good
idea to force your own page breaks using the PAGE command.

27. A special column is available on the assembly listing to show branch
destination addresses. Execution cycle times can also be optionally
shown.

28. There are all sortS: of new LST options. You can now separately turn off
or on display of execution cycle times (C), generated object code (G),
warnings (W), unassembled source code from bypassed conditional
assembly (U), macro statements (E), alphabetic symbol tables (A),
numeric symbol tables (V), or "six-across" symb<?l listings (S).

29. Standard tabbing values are different from "old" EDASM. Default tabs
are now 16, 22, and 36, instead of 14, 19, 29. More than 80 columns
may be needed for all the listing features and long comments. The sim
plest way to handle this is with 12 pitch on a daisywheel printer, or else
use your own custom and "tighter" tab values. HINT: Keep your com
ments shorter than you did with "old" EDASM. This will help a lot.

30. New macro commands of "&0" and "&X" are available that control
passing of parameters from the main source code to the macros. "&0"
tells the number of parameters present in the operand field of the call
ing statement. "&X" keeps track of the number of times a macro is
used. This allows the creation of local labels.

31. You can do co-resident assembly in a 64K Apple lie, where the editor
and assembler modules stay in the machine at the same time. An "

*
"

following the ASM command will get the source file out of your
machine, rather than off disk. This greatly speeds up the edit-assemble-

Differences Between "Old" and "New" EDASM 385

test round trip process. On short programs in certain areas of your

machine, you can do both co-resident and in-place assembly at the

same time. There are restrictions: You cannot use chaining, insertion, or
macros when doing this, and your source code in the machine will get
overwritten.

Finally, here are the differences between the ProDOS and DOS 3.3e
versions of EDASM:

1. The ProOOS buffer is 37,000 characters long.

2. The ASMIDSTAMP is severely restrictive. It must be in 00-MM-YY for
mat for clock compatibility.

3. A blank SBTL line still gets you the date.
4. The PFX command reads the current prefix. As is typical in ProDOS, a

CAT command gets you a 40 column catalog, while the CATALOG

command gives you all 80 columns. The CREATE command will gener
ate a sub-directory.

5. The TYPE command lets you edit certain other file types, rather than

just text files. You can also BLOAO, BSAVE, XLOAD, and XSAVE non

text files. The SYS command changes the type of source code file.
6. The EXIT command returns you to ProOOS BASIC. Commands of PTON

and PTOFF turn the printer off and on, while EXEC will do a supervisory

routine.
7. Time and date are automatically inset if a clock card is present. A TIME

command is supported.
8. You can no longer do co-resident assembly. Preliminary ProDOS docu

mentation did not support macros. Editing of two files at once also may
not be supported.

9. You can route an assembler listing to diskette, instead of to printer, by

using a "PR#6,ZORCHFILE" command.
10. There is a PAUSE command available to temporarily hold up assembly.

11. The error message on an aborted assembly is completely useless.

I personally despise ProDOS. Why? Because it is so unconscionably
bloated, so user vicious, so buggy, and so incredibly poorly written.
Nonetheless, if you must make an EDASM disk-based assembler listing
(for "camera ready" print quality, typesetting, insertions, etc.), you
will have to use ProDOS. The procedure is to take your DOS 3.3e text
file, convert it with CONVERT, assemble to disk under ProDOS, and
then CONVERT it back to the sane world.

Sigh.
Both ProDOS Itself and the "new" versions of EDASM have numer

ous bugs in them. We will pass them on to you as we find out more
about them.

Several specific bugs for now: The ProDOS routine of CONVERT
can sometimes destroy a DOS 3.3e diskette. Seems a sector counter
doesn't get incremented properly. Long filenames will often cause
assembly problems. If it does not feel too much like assembling some
thing, the ProDOS version of EDASM will simply kick sand in your
face, instead of telling you what went wrong. That "ASSEMBLY
ABORTED: LINE 0" message sure is friendly and helpful.

On either "new" version of EDASM, you will get error messages on
a SKPS or a LSTOFF, or an ASLA, and other places where "old"
EDASM let you skip the space between op code and operand. Unfor
tunately, I did this just about everywhere in this book. Correcting the
printed listings would most likely cause more grief than it would solve.

386 Appendix A

So, we have instead corrected all of the source code on the compan
ion diskette.

Just remember to be sure and separate all op codes and operands
with a space on "new" EDASM, and you should not have too much
trouble.

Let us know about any other bugs as soon as you can.

SOME NAMES AND NUMBERS

ANTHRO DIGITAL SYSTEMS
Box 1385

Pittsfield, MA 01202

(413) 448-8278

APPLE ASSEMBLY LINE
Box 280300

Dallas, TX 75288

(214) 324-2050

APPLE AVOCATION ALLIANCE
721 Pike Street '
Cheyenne, WY 82001

(307) 632-8581

'""),, r
wA, 18DJ t-
f'2 -2-a.Ytf'

387

388 Appendix 8

AVOCET SYSTEMS
804 South State Street
Dover, DE 19901
(302) 734-0151

BYTE
70 Main Street
Peterborough, N H 03458
(603) 924-9281

CENTRAL POINT SOFTWARE
Box 19730
Portland, OR 97219
(503) 244-5782

COMPUTER SHOPPER
Box F
Titusville, FL 32780
(305) 269-3211

CREATIVE COMPUTING
Box 789-M
Morristown, NJ 07960
(201) 540-0445

DENVER APPLE PI
Box 14767
Denver, CO 80217
(303) 429-4436

DECISION SYSTEMS
Box 13006
Denton, TX 76203
(817) 382-6353

DIABLO SYSTEMS
24500 Industrial Blvd.
Hayward, CA 94545
(800) 227-2776

GENERAL INSTRUMENTS
600 West John Street
Hicksville, NY 11802
(516) 733-3107

GTE ELECTRONICS
2000 West 14th SV�!
Tempe, AZ 85281
(602) 968-4431

HARDCORE COMPUTING
Box 44549
Tacoma, WA 98444
(206) 531-1684

HAYDEN SOFTWARE
50 Essex Street
Rochelle Park, NJ 07662
(800) 343-1218

HOWARD W. SAMS & CO., INC.
4300 West 62nd Street
Indianapolis, IN 46206
(800) 428-3696

IN CIDER
80 Pine Street
Peterborough, N H 03458
(603) 924-9471

INFOWORLD
530 Lytton Avenue
Palo Alto, CA 94301
(415) 665-1330

INTERNATIONAL APPLE CORE
908 George Street
Santa Clara, CA 95050
(408) 727-7652

DON LANCASTER
Box 809
Thatcher, AZ 85552
(602) 428-4073

LAZER SYSTEMS
925 Lorna Street
Corona, CA 91720
(714) 735-1041

LJK ENTERPRISES
Box 10827

·St. Louis, MO 63129
(314) 846-6124

DAVID W. MEYER
600 Columbus Street
Salt Lake City, UT 84103
(801) 359-2790

MICROCOMPUTI NG
80 Pine Street
Peterborough, N H 03458
(603) 924-9471

MICRO INK
34 Chelmsford Street
Chelmsford, MA 01824
(617) 256-3649

Some Names and Numbers 389

390 Appendix B

MICRO LOGIC CORP.
Box 174
Hackensack, NJ 07602
(201) 342-6518

MICRO SCI
17742 Irvine Blvd.
Tustin, CA 92680
(714) 731-9461

MICROSOFT
10700 Northrup Way
Bellevue, WA 98004
(206) 828-8080

MICRO SPARC
1 0 Lewis Street
Lincoln, MA 01773
(617) 259-9039

MITEL
360G Leggett Drive
Kanata, Ontario K2K 1 X5
(613) 592-5630

MOS TECHNOLOGY
950 Rittenhouse Road
Norristown, PA 19401
(215) 666-7950

MOTOROLA SEMICONDUCTOR
Box 20912
Phoenix, AZ 85018
(602) 244-6900

NEC ELECTRONICS
532G Broadhollow Road
Mellville, NY 11747
(213) 973-2071

NCR MICROELECTRONICS
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(303) 596-5795

NIBBLE
Box 325
Lincoln, MA 01773
(617) 259-9710

PEELINGS
Box 188
Las Cruces, NM 88004
(505) 526-8364

QUALITY SOFTWARE
6660 Reseda Blvd.
Reseda, CA 91355

(213) 344-6599

RAK-WARE
41 Ralph Road
West Orange, NJ 07052

(201) 325-1885

ROCKWELL INTERNATIONAL
3310 Miraloma Avenue
Anaheim, CA 92803

(800) 854-8099

SAN FRANCISCO APPLE CORE
1515 Sloat Blvd.
San Francisco, CA 94132

(415) 556-2324

5-C SOFTWARE
Box 280300

Dallas, TX 75228

(214) 324-2050

SIERRA ON-LINE
36575 Mudge Road
Coarsegold, CA 93614

(209) 683-6858

SOFTALK
11160 McCormick Street
North Hollywood, CA 91603

(213) 980-5074

SOUTHWESTERN DATA SYSTEMS
10761 Woodside Avenue
Santee, CA 92071

(619) 562-3221

STELLA TION TWO
Box 2342

Santa Barbara, CA 93120

(805) 966-1140

SYNERGETICS
Box 1300

Thatcher, AZ 85552

(602) 428-4073

SYNERTEK
Box 552

Santa Clara, CA 95052

(408) 988-5600

Some Names and Numbers 391

392 Appendix B

TEXAS INSTRUMENTS
Box 401560

Dallas, TX 75240

(214) 995-6611

THUNDER SOFTWARE
Box 31501

Houston, TX 77231

(713) 728-5501

WASHINGTON APPLE PI
Box 34511

Bethesda, MD 2081 7

(202) 332-9012

WESTERN DESIGN CENTER
2166 East Brown Road
Mesa, AZ 85203

(602) 962-4545

LABEL LISTS TO COPY

393

Label Lists to Copy 395

LABEL -LIST FOR, I....._ _____ ____,

DONE BY '--1 ___ _.

DATE '--1 _-__ ___.

VERSION '--1 ___ _.

LABEL EQU LINE DFB

ASSEMBLER �----------�

SYSTEM �-----�

VALUE USE

NOTES _____________ __
PAGE 0 0F 0

Label Lists to Copy 397

LABEL LIST FOR,I_ _____ ___,

DONE BY ._I ___ __.

DATE ._I _-__ ____.

VERSION_(___ ___.

LABEL EQU LINE DFB

ASSEMBLER�----------�

SYSTEM�-----------�

VALUE USE

NOTES __________ _ PAGE00F0

Index

Absolute

addressing, 75

pitch, 303

A

Accumulator addressing, 73

Accuracy, pitch, 302-304

Active line, 167

ADD editing command, old way, 146

Address mode, 72-81

Addressing

absolute, 75

accumulator, 73

immediate, 73-74

implied, 72-73

indexed, 76-80

indexed indirect, 79-81

indirect, 77-81

indirect indexed, 77-81

page zero, 74-75

relative, 75

Anthologies, assembler, 52

APPEND, DOS editing command,

old way, 142-143

Apple clock cycle, 268-269

Arithmetic, operand, 81-82

ASC pseudo-op, 89-90

ASM assembler commands, 179-180

Assemblers, 25-56

399

anthologies, 52

BUGBYTER, 30

club newsletters, 51-52

commands, 178-181

ASM, 1 79-180

comments, 29

cross, 34-35

defined, 39

disk-based, 33-34

EDASM, 42-44

full, 30, 35-36

how work, 35-41

in-place, 33-34

label, 28

global, 31-32

local, 31-32

language, 27

listing, 96-97

machine programming books, 49-50

macro-, 30, 31, 35

mini-, 28-30, 35

mnemonic, 27-28

modular, 34

400 Index

Assem blers-cont
object code, 36-38
relocatable code, 32-33
reprints, 52
resources, 44-46
software, 50
source code, 36-41
tools, 44-49
virtual memory, 32

Assembling source code, 177-200
Assembly

books, 49-50
language, 9-22, 27
listings, 181-185
magazines, 51-52
rules, EDASM, 178

8

Bad
equate, 189-190
expression, 188-189
op code, 188

BASIC, 11-15, 16
Big lumps, source code, 110-113
Books

assembly, 49-50
machine prog�amming, 49-50

Bottom line comments, 118
BUGBYTER, 30

c

Calculated routine method, 291-295
CATALOG, DOS editing command,

old way, 143-144
[C] assembler command, 180-181
CHANGE editing command, old way,

155
CH N pseudo-ops, 85-86
Clock cycle, Apple, 268-271
Club newsletters, assembler, 51-52
Code

object, 36-38
op, field, 63-64, 67
relocatable, 32-33
source, 36-41

details, 57-92
fields, 62-72
file line numbers, 59-61

Commands
assembler, 178-181
editing, old way, 139-161

Comments, 29
bottom line, 118
line, 167-168
field, 68-70

Conditional pseudo-ops, 90
Constants, 109-11 0

EQU, 109-110
COPY editing command, old way, 149
Creating files, 238-240
Cross assembler, 34-35
Crumbs, source code, 110-114, 116
Cycle burner uppers, 269-270

D

Debugging, 192-198
stage-one, 195
stage-two, 197-198
weirdness checks, 197

DELETE editing command, old way,
148-149

DFB
hook, 107-108
pseudo-ops, 87-89

Disassemblers, 52-54
Disk-based assembler, 33-34
DOS editing commands, old way,

140-144
APPEND, 142-143
CATALOG, 143-144
LOAD, 140-141
SAVE, 141-142
SLOT DRIVE, 143

Dot-matrix printers, 45-46
Duplicate symbol, 189
Duration multiplier, 306-308

E

EDASM, 42-44
assembly rules, 178
macroassembler, 20-21
Old, new, 381-386

Edit editing commands, old way,
152-158

EDIT, 152-154
Editing

"new way,"
advantages, 164
limitations, 165
source code, 163-175

old way, commands, 139-161
ADD, 146
CHANGE, 155
COPY, 149
DELETE, 148-149
DOS, 140-144
edit, 152-158
END, 147
FIND, 154-155
(HELP), 146

Editing-cont
old way, commands

INSERT, 146

LENGTH, 150

LIST, 148

NEW, 146

QUIT, 146-147

hint, old way, 156

source code, old way, 123-161

Editor, 39-41

Empty shell, 211-228

END editing command, old way, 147

Enhancements, 105

Entry editing commands, old way,
146-152

EQU

constants, 1 09-11 0

hooks, 107-109

pseudo-ops, 85-86

Error

handling, 191-192

messages, 119-121,185-191

fatal, 185, 186-188

handling, 191-192

nonfatal, 185-186, 188-191

Fields

comment, 68-70

label, 63, 64-67

op code, 67

F

operand, 67-68, 70-72

source code, 62-72

File

based printer, 229-250

creating, 238-240

long method, 233-240

message, 233-234, 238-239

pointer, 233-234, 239-240

pseudo-ops, 87-90

source code, 37-41

formats, 58-64

line numbers, 59-61

structure, 166-169

working, 114-118

FIND editing command, old way,
154-155

Formats, file, source code, 58-64

Full assembler, 30, 35-36

G

Global label, 31-32

Gotchas, 104-105

H

Handling errors, 191-192

(HELP), editing command, old way, 146

Hint, editing, old way, 156

Hooks, 1 06-109

DFB, 107-108

EQU, 107-109

10 stamp, 137-138

Illegal label, 189

Imbedded string printer, 251-266

Immediate addressing, 73-74

Implied addressing, 72-73

Indexed addressing, 76-80

indirect, 79-81

Indirect addressing, 77-81

indexed, 77-81

In-place assembler, 33-34

INSERT editing command, old way, 146

Integer pseudo-random generator,

348-350

Label, 28, 64-67

field, 63, 64-67

global, 31-32

lists, 393-398

L

old way, 156-159

local, 31-32

references, 118-119

Language

assembly, 9-22, 27

BASIC, 11-15, 16

machine, 9-22, 25-26

LENGTH
editing command, old way, 150

program style, 127-129

\ Line

active, 167

comment, 167-168

numbers, 169-173

file, source code, 59-61

LIST editing command, old way, 148

Listing, assembler, 96-97

Little lumps, source code, 110-114

LOAD, DOS editing command, old way,

140-141

Local label, 31-32

Long file method, 233-240

Lookup, table, 125

LST OFF pseudo-op, 84

ST ON pseudo-op, 84

Index 401

402 Index

M

Machine
language, 9-22, 25-26
programming books, 49-50

Macro-, 31
assembler, 30, 35

EDASM, 20-21
Magazines, assembly, 51-52
Memory, virtual, 32
Messages

error, 119-121, 185-191
file, 233-234, 238-239

Miniassemblers, 28-30, 35
Mnemonic, 27-28
Mode, address, 72-81
Modular assembler, 34
Modules, ripoff, 205-380
Modulo, 346
Monitor time delay, 267-286
Musical songs, 301-320

N

New
EDASM, 381-386
editing command, old way, 146
-Way editing

advantages, 164
limitations, 165

Newsletters, club, assembler, 51-52
N initializer, 352-353
No such label, 189
Numbers,

file line, source code, 59-61
line, 169-173

0

Object code, 36-38
assembling source code, 177-200 ,
files, 37-41

Obnoxious sounds, 287-300
Off loading, 125-126
Old

EDASM, 381-386
-way source code writing, 135-140

Op code field, 63-64, 67
Operand

arithmetic, 81-82
field, 67-68, 70-72
summary, 80

Option picker, 321-344
ORG pseudo-op, 84-85
Overflow, 190

PAGE
pseudo-ops, 83

p

zero addressing, 74-75
Pitch

absolute, 303
accuracy, 302-304
duration, separating, 304-306
relative, 303

Pointer file, 233-234, 239-240
Pretty printer pseudo-ops, 83
Print editing commands, old way,

144-146
PR#O, 1, 145-146

Printers, dot matrix, 45-46
Processors, word, 163-167, 168-173
Program style, 124, 133

length, 127-129
speed, 124-127

PR#O, 1, print editing commands, old
way, 144-146

Pseudo-ops, 82-87
conditional, 90
file, 87-90

ASC, 89-90.
DFB, 87-89

LST OFF, 84
LST ON, 84
PAGE 83
pretty printers, 83
SBTL,84
SKP,83
structure, 84-87

CHN, 85-86
EQU, 85-86
ORG, 84-85

Pseudo-random number, 345, 347-350
PSR generator, 352-353

Q

QUIT editing command, old way,
146-147

R

Random
comments, 105-106
numbers, 345-362

Randomizing, 364
replacement, 364

References, label, 118-119
Relative

addressing, 75
pitch, 303

Relocatable code, 32-33

Relocatability, code, 130-131

Reprints, assemblers, 52

Reseeder, 352-353

Resources, assembler, 44-46

Ripoff modules, 205-380

summary, 208-209

RND; see random numbers.
Routine method, calculated, 291-295

s

SAVE, DOS editing command, old way,
141-142

SBTL pseudo-ops, 84

Self-modifying code, 132

Separating pitch, duration, 304-306

Shuffle, 363-380

SKP pseudo-ops, 83

SLOTDRIVE, DOS editing command, old
way, 143

Software, assembly programming, 50

Source code, 36-41

address mode, 72-81

addressing
absolute, 75

accumulator, 73

immediate, 73-74

implied, 72-73

indexed, 76-80

indexed indirect, 79-81

indirect, 77-81

indirect indexed, 77-81

page zero, 74-75

relative, 75

ssembling, 177-200

_etails, 57-92

fields, 62-72

comment, 68-70

op code, 67

operand, 67-68, 70-72

files, 37-41

formats, 58-64

line numbers, 59-61

structure, 166-169

labels, field, 63, 64-67

new way, editing, 163-175

line numbers, 169-173

new way, writing, 163-175

old way editing, 123-161

commands, 139-161

DOS commands, 140-144

edit, 152-158

entry commands, 146-152

print commands, 144-146

old way writing, 123-161

ID stamp, 137-138

style, 124-133

unstyle, 133-135

Source code-cont
op code fields, 63-64

operand
arithmetic, 81-82

summary, 80

pseudo-ops, 82-87

relocatability, 130-131

structure, 93-122

big lumps, 110-113

body, 97-98

bottom line comments, 118

constants, 1 09-11 0

crumbs, 110-114,116

enhancements, 1 OS

error messages, 119-121

gotchas, 1 04-1 OS

hooks, 1 06-109

little lumps, 110-114

prolog, 97-98

random comments, 105-106

self-modifying, 132

startstuff, 98-101

stashes, 115-116

title block, 101-103

working files, 114-118

Space assembler command, 181

Speed, program style, 124-127

Stack rules, subroutine, 6502, 254-255

Stage-one debugging, 195

Stage-two debugging, 197-198

Startstuff, 98-101

Stashes, 115-116

Structure
file, source code, 166-169

pseudo-ops, 84-87

source code, 93-122

Style, program, 124-133

Subroutine stack rules, 6502, 254-255

Sweet 16, 198-200

T

Tab, 173-175

Table lookup, 125

Threshold, viability, 195

Title block, 101-103

Tools, assembler, 44-49

u

Unstyle, 133-135

v

Viability threshold, 195

Virtual memory, 32

Index 403

404 Index

w

Weirdness checks, debugging, 197

Word processors, 163-167, 168-173

Working files, 114-118

Writing source code, new way, 163-175

old way, 123-161

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

ISBN: 978-1-882193-17-2

Book begins as Part One at

http://www.tinaja.com/ebooks/aacb1.pdf

http://www.tinaja.com
http://www.tinaja.com/ebooks/aacb1.pdf

Assembly Cookbook
for the AppleTM II/IIe
(part two)

Your complete guide to using assembly language for writing your own top

notch personal or commercial programs for the Apple II and lie.

• Tells you what an assembler is, discusses the popular assemblers available

 today, and details the essential tools for assembly language programming.

• Covers source code details such as lines, fields, labels, op codes, operands,

 structure, and comments-just what these are and how they are used.

• Shows you the "new way" to do your source code entry and editing and

 to instantly upgrade your editor/assembler into a super-powerful one.

• Shows you how to actually assemble source code into working object code.

 Checks into error messages and debugging techniques.

• Includes nine ready to go, open ripoff modules that show you examples of

 some of the really essential stuff involved in Apple programming. These

 modules will run on most any brand or version of Apple or Apple clone,

 and they can be easily adapted to your own uses.

This cookbook is for those who want to build up their assembly programming

skills to a more challenging level and to learn to write profitable and truly

great Apple II or lie machine language programs.

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

ISBN: 978-1-882193-17-2

http://www.tinaja.com

