
PROGRAMMER'S AID #1

INSTALLATION AND OPERATING MANUAL

TM

Apple Utility Programs

Downloaded from www.Apple2Online.com

Published by
APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

All rights reserved. No part of this publication
may be reproduced without the prior written
permission of APPLE COMPUTER INC. Please
call (408) 996-1010 for more information.

©1978 by APPLE COMPUTER INC. 	 Reorder APPLE Product #A2L0011
(030-0026)

TABLE OF CONTENTS

INTRODUCTION
Xi 	Features of Programmer's Aid #1

XII 	How to install the Programmer's Aid ROM

CHAPTER 1
RENUMBER
2 	Renumbering an entire BASIC program

2 	Renumbering a portion of a BASIC program

4 	Comments

CHAPTER 2
APPEND
6 	Appending one BASIC program to another

6 	Comments

II

CHAPTER 3
TAPE VERIFY (BASIC)
8 	Verifying a BASIC program SAVEd on tape

8 	Comments

III

CHAPTER 4
TAPE VERIFY
(Machine Code or Data)
10 	Verifying a portion of memory saved on tape

10 	Comments

IV

CHAPTER 5
RELOCATE
12 	Part A: Theory of operation

12 	Relocating machine-language code
13 	Program model
14 	Blocks and Segments
15 	Code and Data Segments
16 	How to use the Code-Relocation feature

18 	Part B:

18

Examples of Code relocation

Example 1. 	Straightforward relocation
19 Example 2. Index into Block
20 Example 3. Immediate address reference
20 Example 4. Unusable Block ranges
21 Example 5. Changing the page zero variable allocation

22 Example 6. Split Blocks with cross-referencing
23 Example 7. Code deletion
24 Example 8. Relocating the APPLE II Monitor ($F800-$FFFF)

to run in RAM ($800-$FFF)

25 	Part C: Further details

25 	Technical Information
26 	Algorithm used by the Code-Relocation feature
27 	Comments

V

CHAPTER 6
RAM TEST
30 	Testing APPLE's memory

31 	Address ranges for standard memory configurations

32 	Error messages

Type I - Simple error
Type II - Dynamic error

33 	Testing for intermittent failure

34 	Comments

VI

CHAPTER 7
MUSIC
36 	Generating musical tones

37 	Comments

VII

CHAPTER 8
HIGH-RESOLUTION GRAPHICS
40 	Part A: Setting up parameters, subroutines, and colors

40 	Positioning the High-Resolution parameters
41 	Defining subroutine names
41 	Defining color names
42 	Speeding up your program

43 	Part B: Preparing the screen for graphics

43 	The INITialization subroutine
43 	Changing the graphics screen
44 	CLEARing the screen to BLACK
44 	Coloring the BacKGrouND

45 	Part C: PLOTting points and LINEs

46 	Part D: Creating, saving and loading shapes

46 	Introduction
47 	Creating a Shape Table
53 	Saving a Shape Table
54 	Loading a Shape Table
55 	First use of Shape Table

56 	Part E: Drawing shapes from a prepared Shape Table

55 	Assigning parameter values: SHAPE, SCALE and ROTation
57 	DRAWing shapes
58 	Linking shapes: DRAW1
59 	Collisions

60 	Part F: Technical information

60 	Locations of the High-Resolution parameters
61 	Variables used within the High-Resolution subroutines
62 	Shape Table information
63 	Integer BASIC memory map

64 	Part G: Comments

VIII

INTRODUCTION

FEATURES OF PROGRAMMER'S AID #41

Programmer's Aid #1 combines several APPLE II programs that Integer BASIC
programmers need quite frequently. To avoid having to load them from a
cassette tape or diskette each time they are used, these programs have been
combined in a special read-only memory (ROM) integrated circuit (IC). When
this circuit is plugged into one of the empty sockets left on the APPLE's
printed-circuit board for this purpose, these programs become a built-in
part of the computer the same way Integer BASIC and the Monitor routines
are built in. Programmer's Aid 01 allows you to do the following, on your
APPLE II:

Chapter 1. Renumber an entire Integer BASIC program,
or a portion of the program.

Chapter 2. Load an Integer BASIC program from tape without
erasing the Integer BASIC program that was already
in memory, in order to combine the two programs.

Chapter 3. Verify that an Integer BASIC program has been
saved correctly on tape, before the program
is deleted from APPLE's memory.

Chapter 4. Verify that a machine-language program or data area
has been saved correctly on tape from the Monitor.

Chapter 5. Relocate 6502 machine-language programs.

Chapter 6. Test the memory of the APPLE.

Chapter 7. Generate musical notes of variable duration over
four chromatic octaves, in five (slightly)
different timbres, from Integer BASIC.

Chapter 8. Do convenient High-Resolution graphics from Integer BASIC.

Note: if your APPLE has the firmware APPLESOFT card installed, its switch
must be down (in the Integer BASIC position) for Programmer's Aid 111
to operate.

XI

HOW TO INSTALL THE PROGRAMMER'S AID ROM

The Programmer's Aid ROM is an IC that has to be plugged into a socket on
the inside of the APPLE II computer.

1. Turn off the power switch on the back of the APPLE II. This is
important to prevent damage to the computer.

2. Remove the cover from the APPLE II. This is done by pulling up on the
cover at the rear edge until the two corner fasteners pop apart. Do not
continue to lift the rear edge, but slide cover backward until it comes
free.

3. Inside the APPLE, toward the right center of the main printed-circuit
board, locate the large empty socket in Row F, marked "ROM-DO".

4. Make sure that the Programmer's Aid ROM IC is oriented correctly. The
small semicircular notch should be toward the keyboard. The Programmer's
Aid ROM IC must match the orientation of the other ROM ICs that are already
installed in that row.

5. Align all the pins on the Programmer's Aid ROM IC with the holes in
socket DO, and gently press the IC into place. If a pin bends, remove the
IC from its socket using an "IC puller" (or, less optimally, by prying up
gently with a screwdriver). Do not attempt to pull the socket off the
board. Straighten any bent pins with a needlenose pliers, and press the IC
into its socket again, even more carefully.

6. Replace the cover of the APPLE, remembering to start by sliding the
front edge of the cover into position. Press down on the two rear corners
until they pop into place.

7. Programmer's Aid #1 is installed; the APPLE II may now be turned on.

XI I

RENUMBERING AN ENTIRE BASIC PROGRAM

After loading your program into the APPLE, type the

CLR

command. This clears the BASIC variable table, so that the Renumber
feature's parameters will be the first variables in the table. The
Renumber feature looks for its parameters by location in the variable
table. For the parameters to appear in the table in their correct
locations, they must be specified in the correct order and they must have
names of the correct length.

Now, choose the number you wish assigned to the first line in your
renumbered program. Suppose you want your renumbered program to start at
line number 1000. Type

START = 1000

Any valid variable name will do, but it must have the correct number of
characters. Next choose the amount by which you want succeeding line
numbers to increase. For example, to renumber in increments of 10, type

STEP = 10

Finally, type the this command:

CALL -10531

As each line of the program is renumbered, its old line number is displayed
with an "arrow" pointing to the new line number. A possible example might
appear like this on the APPLE's screen:

7->1000
213->1010
527->1020
698->1030
13000->1040
13233->1050

RENUMBERING PORTIONS OF A PROGRAM

You do not have to renumber your entire program. You can renumber just the
lines numbered from, say, 300 to 500 by assigning values to four variables.
Again, you must first type the command

CLR

to clear the BASIC variable table.

2

The first two variables for partial renumbering are the same as those for
renumbering the whole program. They specify that the program portion,
after renumbering, will begin with line number 200, say, and that each
line's number thereafter will be 20 greater than the previous line's:

START = 200
STEP = 20

The next two variables specify the program portion's range of line numbers
before renumbering:

FROM = 300
TO = 500

The final command is also different. For renumbering a portion of a
program, use the command:

CALL -10521

If the program was previously numbered

100
120
300
310
402
500
2000
2022

then after the renumbering specified above, the APPLE will show this list of
changes:

300->200
310->220
402->240
500->260

and the new program line numbers will be

100
120
200
220
240
260

2000
2022

3

You cannot renumber in such a way that the renumbered lines would replace,
be inserted between or be intermixed with un-renumbered lines. Thus, you
cannot change the order of the program lines. If you try, the message

*** RANGE ERR

is displayed after the list of proposed line changes, and the line numbers
themselves are left unchanged. If you type the commands in the wrong order,
nothing happens, usually.

COMMENTS:
1. If you do not CLR before renumbering, unexpected line numbers may
result. It may or may not be possible to renumber the program again and
save your work.

2. If you omit the START or STEP values, the computer will choose them
unpredictably. This may result in loss of the program.

3. If an arithmetic expression or variable is used in a GOTO or GOSUB, that
GOTO or GOSUB will generally not be renumbered correctly. For example, GOTO

TEST or GOSUB 10+20 will not be renumbered correctly.

4. Nonsense values for STEP, such as 0 or a negative number, can render
your program unusable. A negative START value can renumber your program
with line numbers above 32767, for what it's worth. Such line numbers are
difficult to deal with. For example, an attempt to LIST one of them will
result in a >32767 error. Line numbers greater than 32767 can be corrected
by renumbering the entire program to lower line numbers.

5. The display of line number changes can appear correct even though the
line numbers themselves have not been changed correctly. After the ***
RANGE ERR message, for instance, the line numbers are left with their
original numbering. LIST your program and check it before using it.

6. The Renumber feature applies only to Integer BASIC programs.

7. Occasionally, what seems to be a "reasonable" renumbering does not work.
Try the renumbering again, with a different START and STEP value.

4

APPENDING ONE BASIC PROGRAM TO ANOTHER

If you have one program or program portion stored in your APPLE's memory,
and another saved on tape, it is possible to combine them into one program.
This feature is especially useful when a subroutine has been developed for
one program, and you wish to use it in another program without retyping the
subroutine.

For the Append feature to function correctly, all the line numbers of the
program in memory must be greater than all the line numbers of the
program to be appended from tape. In this discussion, we will call the
program saved on tape "Programl," and the program in APPLE'S memory
"Program2."

If Program2 is not in APPLE's memory already, use the usual command

LOAD

to put Program2 (with high line numbers) into the APPLE. Using the Renumber
feature, if necessary, make sure that all the line numbers in Program2 are
greater than the highest line number in Programl.

Now place the tape for Programl in the tape recorder. Use the usual loading
procedure, except that instead of the LOAD command use this command:

CALL -11076

This will give the normal beeps, and when the second beep has sounded, the
two programs will both be in memory. If this step causes the message

*** MEM FULL ERR

to appear, neither Program2 nor Programl will be accessible. In this case,
use the command

CALL -11059

to recover Program2, the program which was already in APPLE's memory.

COMMENTS:

1. The Append feature operates only with APPLE II Integer BASIC programs.

2. If the line numbers of the two progams are not as described, expect
unpredictable results.

6

VERIFYING A BASIC PROGRAM SAVED ON TAPE

Normally, it is impossible (unless you have two APPLEs) to know whether or
not you have successfully saved your current program on tape, in time to do
something about a defective recording. The reason is this: when you SAVE a
program on tape, the only way to discover whether it has been recorded
correctly is to LOAD it back in to the APPLE. But, when you LOAD a
program, the first thing the APPLE does is erase whatever current program is
stored. So, if the tape is bad, you only find out after your current
program has been lost.

The Tape Verify feature solves this problem. Save your current program in
the usual way:

SAVE

Rewind the tape, and (without modifying your current program in any way)
type the command

CALL -10955

Do not press the RETURN key until after you start the tape playing. If the
tape reads in normally (with the usual two beeps), then it is correct. If
there is any error on the tape, you will get a beep and the ERR message. If
this happens, you will probably want to try re-recording the tape, although
you don't know for sure whether the Tape Verify error means that the tape
wasn't recorded right or if it just didn't play back properly. In any case,
if it does verify, you know that it is good.

COMMENTS:

1. This works only with Integer BASIC programs.

2. Any change in the program, however slight, between the time the program
is SAVEd on tape and the time the tape is verified, will cause the
verification to fail.

8

CHAPTER

TAPE VERIFY
(Machine Code or Data)
10 	Verifying a portion of memory saved on tape

10 	Comments

9

VERIFYING A PORTION OF MEMORY SAVED ON TAPE

Users of machine-language routines will find that this version of the Tape
Verify feature meets their needs. Save the desired portion of memory, from
addressl to address2, in the usual way:

addressl . address2 W return

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

Rewind the tape, and type (after the asterisk prompt)

D52EG return

This initializes the Tape Verify feature by preparing locations $3F8 through
$3FA for the ctrl Y vector. Now type (do not type the spaces)

addressl . address2 ctrl Y return

and re-play the tape. The first error encountered stops the program and is
reported with a beep and the word ERR. If it is not a checksum error, then
the Tape Verify feature will print out the location where the tape and
memory disagreed and the data that it expected on the tape.

Note: type "ctrl Y" by typing Y while holding down the CTRL key; ctrl Y is
not displayed on the TV screen. Type "return" by pressing the RETURN key.

COMMENTS:
Any change in the specified memory area, however slight, between the time
the program is saved on tape and the time the tape is verified, will cause
the verification to fail.

10

PART A: THEORY OF OPERATION

RELOCATING MACHINE-LANGUAGE CODE

Quite frequently, programmers encounter situations that call for relocating
machine-language (not BASIC) programs on the 6502-based APPLE II computer.
Relocation implies creating a new version of the program, a version that
runs properly in an area of memory different from that in which the original
program ran.

If they rely on the relative branch instruction, certain small 6502 programs
can simply be moved without alteration, using the existing Monitor Move
commands. Other programs will require only minor hand-modification after
Monitor Moving. These modifications are simplified on the APPLE II by the
built-in disassembler, which pinpoints absolute memory-reference
instructions such as JMP's and JSR's.

However, sometimes it is necessary to relocate lengthy programs containing
multiple data segments interspersed with code. Using this Machine-Code
Relocation feature can save you hours of work on such a move, with improved
reliability and accuracy.

The following situations call for program relocation:

1. Two different programs, which were originally written to run in
identical memory locations, must now reside and run in memory concurrently.

2. A program currently runs from ROM. In order to modify its operation
experimentally, a version must be generated which runs from a different set
of addresses in RAM.

3. A program currently running in RAM must be converted to run from EPROM
or ROM addresses.

4. A program currently running on a 16K machine must be relocated in order
to run on a 4K machine. Furthermore, the relocation may have to be
performed on the smaller machine.

5. Because of memory-mapping differences, a program that ran on an APPLE I
(or other b502-based computer) falls into unusable address space on an APPLE
II.

6. Because different operating systems assign variables differently, either
page-zero or non-page-zero variable allocation for a specific program may
have to modified when moving the program from one make of computer to
another.

12

7. A program, which exists as several chunks strewn about memory, must be
combined in a single, contiguous block.

8. A program has outgrown the available memory space and must be relocated
to a larger, "free" memory space.

9. A program insertion or deletion requires a portion of the program to
move a few bytes up or down.

10. On a whim, the user wishes to move a program.

PROGRAM MODEL
Here is one simple way to visualize program relocation: starting with a
program which resides and runs in a "Source Block" of memory, relocation
creates a modified version of that program which resides and runs properly
in a "Destination Block" of memory.

However, this model does not sufficiently describe situations where the
"Source Block" and the "Destination Block" are the same locations in memory.
For example, a program written to begin at location $400 on an APPLE I (the
$ indicates a hexadecimal number) falls in the APPLE II screen-memory range.
It must be loaded to some other area of memory in the APPLE II. But the
program will not run properly in its new memory locations, because various
absolute memory references, etc., are now wrong. This program can then be
"relocated" right back into the same new memory locations, a process which
modifies it to run properly in its new location.

A more versatile program model is as follows. A program or section of a
program written to run in a memory range termed the "Source Block"
actually resides currently in a range termed the "Source Segments". Thus
a program written to run from location $400 may currently reside beginning
at location $800. After relocation, the new version of the program must be
written to run correctly in a range termed the "Destination Block"
although it will actually reside currently in a range termed the
"Destination Segments". Thus a program may be relocated such that it will
run correctly from location $D800 (a ROM address) yet reside beginning at
location $C00 prior to being saved on tape or used to burn EPROMs
(obviously, the relocated program cannot immediately reside at locations
reserved for ROM). In some cases, the Source and Destination Segments may
overlap.

13

(Source)

Relocation

(Destination)

BLOCKS AND SEGMENTS EXAMPLE

Segments:
	

Blocks:
Locations in APPLE II
	

Locations where
where Programs Reside
	

Programs Run
During Relocation

Original program
runs from location
$400 on APPLE I

Relocated version
runs from location
$D800 on APPLE II

	

SOURCE BLOCK: $400-$787 	 DESTINATION BLOCK: $D800-$DB87

	

SOURCE SEGMENTS: $800-$887 	 DESTINATION SEGMENTS: $C00-$F87

$800

$887

$c00

$F87

14

DATA SEGMENTS
The problem with relocating a large program all at once is that blocks of
data (tables, text, etc.) may be interspersed throughout the code. During
relocation, this data may be treated as if it were code, causing the data to
be changed or causing code to be altered incorrectly because of boundary
uncertainties introduced when the data takes on the multi-byte attribute of
code. This problem is circumvented by dividing the program into code
segments and data segments, and then treating the two types of segment
differently.

CODE AND DATA SEGMENTS EXAMPLE

$B87
Code Segment
$800-$892

Data Segment
$893-$992

Code Segment
$993-$ABF

Data Segment
$AC0-$ACE

$800 -10

Code Segment
$ACF-$B87

The Source Code Segments are relocated (using the 6502 Code-Relocation
feature), while the Source Data Segments are moved (using the Monitor
Move command).

15

HOW TO USE THE CODE-RELOCATION FEATURE

1. To initialize the 6502 Code-Relocation feature, press the RESET key to
invoke the Monitor, and then type

D4DIG return

The Monitor user function ctrl Y will now call the Code-Relocation feature
as a subroutine at location $3F8.

Note: To type "ctrl Y", type Y while holding down the CTRL key. To type
"return", press the RETURN key. In the remainder of this discussion, all
instructions are typed to the right of the Monitor prompt character (*).
The example instructions in this chapter often include spaces for easier
reading; do not type these spaces.

2. Load the source program into the "Source Segments" area of memory (if it
is not already there). Note that this need not be where the program
normally runs.

3. Specify the Destination and Source Block parameters. Remember that a
Block refers to locations from which the program will run, not the
locations at which the Source and Destination Segments actually reside
during the relocation. If only a portion of a program is to be relocated,
then that portion alone is specified as the Block.

DEST BLOCK BEG < SOURCE BLOCK BEG . SOURCE BLOCK END ctrl Y * return

Notes: the syntax of this command closely resembles that of the Monitor Move
command. Type "ctrl Y" by pressing the Y key while holding down the CTRL
key. Then type an asterisk (*); and finally, type "return" by pressing
the RETURN key. Do not type any spaces within the command.

16

4. Move all Data Segments and relocate all Code Segments in sequential
(increasing address) order. It is wise to prepare a list of segments,
specifying beginning and ending addresses, and whether each segment is code
or data.

If First Segment is Code:

DEST SEGMENT BEG < SOURCE SEGMENT BEG . SOURCE SEGMENT END ctrl Y return

If First Segment is Data:

DEST SEGMENT BEG < SOURCE SEGMENT BEG . SOURCE SEGMENT END M return

After the first segment has been either relocated (if Code) or Moved (if
data), subsequent segments can be relocated or Moved using a shortened form
of the command.

Subsequent Code Segments:

. SOURCE SEGMENT END ctrl Y return
	

(Relocation)

Subsequent Data Segments:

. SOURCE SEGMENT END M return
	

(Move)

Note: the shortened form of the command can only be used if each
"subsequent" segment is contiguous to the segment previously relocated or
Moved. If a "subsequent" segment is in a part of memory that does not begin
exactly where the previous segment ended, it must be Moved or relocated
using the full "First Segment" format.

If the relocation is performed "in place" (SOURCE and DEST SEGMENTs reside
in identical locations) then the SOURCE SEGMENT BEG parameter may be omitted
from the First Segment relocate or Move command.

17

PART B: CODE-RELOCATION EXAMPLES

EXAMPLE 1. Straightforward Relocation
Program A resides and runs in locations $800-$97F. The relocated version
will reside and run in locations $A00-$B7F.

SOURCE SEGMENTS

CODE
$800-$88F

DATA
$890-$8AF

CODE
$880-$90F

DATA
$910-$93F

CODE
$940-$97F

SOURCE BLOCK: $800-$97F
SOURCE SEGMENTS: $800-$97F

DEST SEGMENTS

CODE
$A00-$A8F

DATA
$A90-$AAF

CODE
$AB0-$BOF

DATA
$810-$B3F

CODE
$B40-$B7F

DEST BLOCK: $A00-$87F
DEST SEGMENTS: $A00-$B7F

$800 --O. SA00 —♦

$B7F

(a) Initialize Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Block parameters (locations from which
the program will run):

A00 < 800 . 97F ctrl Y * return

(c) Relocate first segment (code):

A00 < 800. 88F ctrl Y return

18

(d) Move subsequent Data Segments and relocate subsequent Code Segments, in
ascending address sequence:

. 8AF M return 	 (data)

. 90F ctrl Y return 	 (code)

. 93F M return 	 (data)

. 97F ctrl Y return 	 (code)

Note that step (d) illustrates abbreviated versions of the following
commands:

A90 < 890 	. 8AF m 	return (data)
ABO < 8B0 . 90F ctrl Y 	return (code)
B10 < 910 	. 93F M 	return (data)
B40 < 940 . 97F ctrl Y 	return (code)

EXAMPLE 2. Index into Block
Suppose that the program of Example 1 uses an indexed reference into the
Data Segment at $890 as follows:

LDA 7B0,X

where the X-REG is presumed to contain a number in the range $E0 to $FF.
Because address $7B0 is outside the Source Block, it will not be relocated.
This may be handled in one of two ways.

(a) You may fix the exception by hand; or

(b) You may begin the Block specifications one page lower than the
addresses at which the original and relocated programs begin to use all such
"early references." One lower page is enough, since FF (the number of bytes
in one page) is the largest offset number that the X-REG can contain. In
EXAMPLE 1, change step (b) to:

900 < 700 . 97F ctrl Y * return

Note: with this Block specification, all program references to the "prior
page" (in this case the $700 page) will be relocated.

19

EXAMPLE 3. Immediate Address References
Suppose that the program of EXAMPLE 1 has an immediate reference which is an
address. For example,

LDA #$3F
STA LOCO
LDA #$08
STA LOCI
JMP (LOCO)

In this example, the LDA #$08 will not be changed during relocation and the
user will have to hand-modify it to $0A.

EXAMPLE 4. Unusable Block Ranges
Suppose a program was written to run from locations $400-$78F on an APPLE I.
A version which will run in ROM locations $D800-$DB8F must be generated.
The Source (and Destination) Segments will reside in locations $800-$B8F on
the APPLE II during relocation.

Source 	 Source
Addresses 	And 	 And
during 	Destination 	 Destination
relocation 	Segments 	 Blocks

$800

$B8F

	

SOURCE BLOCK: $400 -$78F
	

DEST BLOCK: $D800-$DB8F

	

SOURCE SEGMENTS: $800 -$B8F
	

DEST SEGMENTS: $800-$B8F

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Load original program into locations $800-$B8F (despite the fact that
it doesn't run there):

800 • B8F k return

CODE
$800-$97F

Runs from locations $400-$78F on
an APPLE I, but must be relocated
to run from locations $D800-$DB8F
on the APPLE II.

DATA
$980-$9FF

CODE
$A00-$88F

20

(c) Specify Destination and Source Block parameters (locations from which
the original and relocated versions will run):

0800 < 400 . 78F ctrl Y 	return

(d) Move Data Segments and relocate Code Segments, in ascending address
sequence:

800 < 800 . 97F ctrl Y return
	

(first segment, code)
. 9FF M return
	

(data)
. B8F ctrl Y return
	

(code)

Note that because the relocation is done "in place", the SOURCE SEGMENT BEG
parameter is the same as the DEST SEGMENT BEG parameter ($800) and need not
be specified. The initial segment relocation command may be abbreviated as
follows:

800 < . 97F ctrl Y return

EXAMPLE 5. Changing the Page Zero Variable Allocation
Suppose the program of EXAMPLE 1 need not be relocated, but the page zero
variable allocation is from $20 to $3F. Because these locations are
reserved for the APPLE II system monitor, the allocation must be changed to
locations $80-$9F. The Source and Destination Blocks are thus not the
program but rather the variable area.

SOURCE BLOCK: $20-$3F 	 DEST BLOCK: $80-$9F
SOURCE SEGMENTS: $800-$97F 	 DEST SEGMENTS: $800-$97F

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

80 < 20 . 3F ctrl Y * return

(c) Relocate Code Segments and Move Data Segments, in place:

800 < . 88F ctrl. Y return
. 8AF M return
. 90F ctrl Y return
. 93F M return
. 97F ctrl Y return

(first segment, code)
(data)
(code)
(data)
(code)

21

Program A
$800-$8A6

Unused

Program B
$900-$9F1

$800

$8A6

$900

$9F1

SOURCE BLOCK: $900-$9F1
SOURCE SEGMENTS: $800-$8A6 (A)

$900-$9F1 (B)

EXAMPLE 6. Split Blocks with Cross-Referencing
Program A resides and runs in locations $800-$8A6. Program B resides and
runs in locations $900-$9F1. A single, contiguous program is to be
generated by moving Program B so that it immediately follows Program A.
Each of the programs contains references to memory locations within the
other. It is assumed that the programs contain no Data Segments.

SOURCE SEGMENTS
	

DEST SEGMENTS

$8A6 —►
$8A7

$998 —Ob

Program A
$800-$8A6

Program B
$8A7-$998

DEST BLOCK: $8A7-$998
DEST SEGMENTS: $800-$8A6 (A)

$8A7-S998 (B)

(a) Initialize the Code-Relocation feature:

D4D5G return

(b) Specify Destination and Source Blocks (Program B only):

8A7 < 900 . 9F1 ctrl Y * return

(c) Relocate each of the two programs individually. Program A must be
relocated even though it does not move.

800 < . 8A6 ctrl Y return 	 (program A, "in place")
8A7 < 900 . 9F1 ctrl Y return 	(program B, not "in place")

Note that any Data Segments within the two programs would necessitate
additional relocation and Move commands.

22

EXAMPLE 7. Code Deletion
Four bytes of code are to be removed from within a program, and the program
is to contract accordingly.

SOURCE SEGMENTS
	

DEST SEGMENTS

$800 -÷

Remove 4

CODE
$800-$88F

$800 CODE
$800-$88F

DATA
$890-$8AF

DATA
$890-$8AF

CODE
$880-$90F

CODE
$8B0-$90B bytes here

($8C0-$8C3)

$97F

DATA
$910-$93F

DATA
$90C-$9313

CODE
$940-$97F

CODE
$93C-$97B

$97B —A*

SOURCE BLOCK: 	$8C4-$97F 	 DEST BLOCK: 	$8C0-$97B
SOURCE SEGMENTS: 	$800-$88F (code) 	DEST SEGMENTS: 	$800-$88F (code)

$890-$8AF (data) 	 $890-$8AF (data)
$880-$88F (code) 	 $880-$88F (code)
$8C4-$90F 	(code) 	 $8C0-$90B 	(code)
$910-$93F (data) 	 $90C-$93B 	(data)
$940-$97F (code) 	 $93C-$97B (code)

(a) Initialize Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

8C0 < 8C4 . 97F ctrl Y * return

(c) Relocate Code Segments and Move Data Segments, in ascending address
sequence:

800 <. 88F ctrl Y return 	 (first segment, code, "in place")
. 8AF M return 	 (data)
. 8BF ctrl Y return 	 (code)
8C0 < 8C4 . 90F ctrl Y return 	(first segment, code, not "in place")
. 93F M return 	 (data)
. 97F ctrl Y return 	 (code)

(d) Relative branches crossing the deletion boundary will be incorrect,
since the relocation process does not modify them (only zero-page and
absolute memory references). The user must patch these by hand.

23

EXAMPLE 8. Relocating the APPLE II Monitor
($F800- $FFFF) to Run in RAM ($800- $FFF)

SOURCE BLOCK: $F700-$FFFF 	 DEST BLOCK: $700 -$FFF
(see EXAMPLE 2)

SOURCE SEGMENTS: $F800-$F961 (code) 	DEST SEGMENTS: $800-$961 (code)
$F962-$FA42 (data) 	 $962-$A42 (data)
$FA43-$FB18 (code) 	 $A43-$B18 (code)
$FB19-$FBID (data) 	 $B19-$B1D (data)
$FB1E-$FFCB (code) 	 $B1E-$FCB (code)
$FFCC-$FFFF (data) 	 $FCC-$FFF (data)

IMMEDIATE ADDRESS REFERENCES (see EXAMPLE 3): 	$FFBF
$FEA8

(more if not relocating
to page boundary)

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Block parameters:

700 < F700 . FFFF ctrl Y * return

(c) Relocate Code Segments and move Data Segments, in ascending- address
sequence:

800 < F800 • F961 ctrl Y return 	 (first segment, code)
. FA42 M return 	 (data)
. FB18 ctrl Y return 	 (code)
. FB1D M return 	 (data)
. FFCB ctrl Y return 	 (code)
. FFFF M return 	 (data)

(d) Change immediate address references:

FBF : E return
	

(was $FE)
EA8 : E return
	

(was $FE)

24

PART C: PLOTTING POINTS AND LINES

TECHNICAL INFORMATION

The following details illustrate special technical features of the APPLE II
which are used by the Code-Relocation feature.

1. The APPLE II Monitor command

Addr4 < Addrl . Addr2 ctrl Y return 	 (Addrl, Addr2, and Addr4
are addresses)

vectors to location $3F8 with the value Addrl in locations $3C (low) and $3D
(high), Addr2 in locations $3E (low) and $3F (high), and Addr4 in locations
$42 (low) and $43 (high). Location $34 (YSAV) holds an index to the next
character of the command buffer (after the ctrl Y). The command buffer (IN)
begins at $200.

2. If ctrl Y is followed by * , then the Block parameters are simply
preserved as follows:

Parameter Preserved at 	 SWEETI6 Reg Name

DEST BLOCK BEG 	 $8, $9 	 TOBEG
SOURCE BLOCK BEG 	 $2, $3 	 FRMBEG
SOURCE BLOCK END 	 $4, $5 	 FRMEND

3. If ctrl Y is not followed by * , then a segment relocation is initiated
at RELOC2 ($3BB). Throughout, Addrl ($3C, $3D) is the Source Segment
pointer and Addr4 ($42, $43) is the Destination Segment pointer.

4. INSDS2 is an APPLE II Monitor subroutine which determines the length of
a 6502 instruction, given the opcode in the A-REG, and stores that opcode's
instruction length in the variable LENGTH (location $2F) .

Instruction Type 	LENGTH
in A-REG 	(in $2F)

Invalid 	 0
1 byte 	 0
2 byte 	 1
3 byte 	 2

25

5. The code from XLATE to SW16RT ($3D9-$3E6) uses the APPLE II 16-bit
interpretive machine, SWEET16. The target address of the 6502 instruction
being relocated (locations $C low and $D high) occupies the SWEET16 register
named ADR. If ADR is between FRMBEG and FRMEND (inclusive) then it is
replaced by

ADR - FRMBEG + TOBEG

6. NXTA4 is an APPLE II Monitor subroutine which increments Addrl (Source
Segment index) and Addr4 (Destination Segment index). If Addrl exceeds
Addr2 (Source Segment end), then the carry is set; otherwise, it is cleared.

ALGORITHM USED BY THE CODE-RELOCATION FEATURE

1. Set SOURCE PTR to beginning of Source Segment
and DEST PTR to beginning of Destination Segment.

2. Copy 3 bytes from Source Segment (using SOURCE PTR) to temp INST area.

3. Determine instruction length from opcode (1, 2 or 3 bytes).

4. If two-byte instruction with non-zero-page addressing mode
(immediate or relative) then go to step 7.

5. If two-byte instruction then clear 3rd byte
so address field is 0-255 (zero page).

6. If address field (2nd and 3rd bytes of INST area)
falls within Source Block, then substitute

ADR - SOURCE BLOCK BEG + DEST BLOCK BEG

7. Move "length" bytes from INST area to Destination Segment
(using DEST PTR). Update SOURCE and DEST PTR's by length.

8. If SOURCE PTR is less than or equal to SOURCE SEGMENT END
then goto step 2., else done.

26

COMMENTS:

Each Move or relocation is carried out sequentially, one byte at a time,
beginning with the byte at the smallest source address. As each source byte
is Moved or relocated, it overwrites any information that was in the
destination location. This is usually acceptable in these kinds of Moves
and relocations:

1. Source Segments and Destination Segments do not share any common
locations (no source location is overwritten).

2. Source Segments are in locations identical to the locations of
the Destination Segments (each source byte overwrites itself).

3. Source Segments are in locations whose addresses are larger
than the addresses of the Destination Segments' locations (any
overwritten source bytes have already been Moved or relocated).
This is a move toward smaller addresses.

If, however, the Source Segments and the Destination Segments share some
common locations, and the Source Segments occupy locations whose addresses
are smaller than the addresses of the Destination Segments' locations,
then the source bytes occupying the common locations will be overwritten
before they are Moved or relocated. If you attempt such a relocation, you
will lose your program and data in the memory area common to both Source
Segments and Destination Segments. To accomplish a small Move or relocation
toward larger addresses, you must Move or relocate to an area of memory
well away from the Source Segments (no address in common); then Move the
entire relocated program back to its final resting place.

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

27

28

CHAPTER

RAM TEST
30 	Testing APPLE's memory

31 	Address ranges for standard memory configurations

32 	Error messages

Type T. - Simple error
Type II - Dynamic error

33 	Testing for intermittent failure

34 	Comments

29

TESTING THE APPLE'S MEMORY

With this program, you can easily discover any problems in the RAM (for
Random Access Memory) chips in your APPLE. This is especially useful when
adding new memory. While a failure is a rare occurrence, memory chips are
both quite complex and relatively expensive. This program will point out
the exact memory chip or chips, if any, that have malfunctioned.

Memory chips are made in two types: one type can store 4K (4096) bits of
information, the other can store 16K (16384) bits of information. Odd as it
seems, the two types look alike, except for a code number printed on them.

The APPLE has provisions for inserting as many as 24 memory chips of either
type into its main printed-circuit board, in three rows of eight sockets
each. An eight-bit byte of information consists of one bit taken from each
of the eight memory chips in a given row. For this reason, memory can be
added only in units of eight identical memory chips at a time, filling an
entire row. Eight 4K memory chips together in one row can store 4K bytes
of information. Eight 16K memory chips in one row can store 16K bytes of
information.

Inside the APPLE II, the three rows of sockets for memory chips are row "C",
row "D" and row "E". The rows are lettered along the left edge of the
printed-circuit board, as viewed from the front of the APPLE. The memory
chips are installed in the third through the tenth sockets (counting from
the left) of rows C, D and E. These sockets are labelled "RAM". Row C must
be filled; and row E may be filled only if row D is filled. Depending on
the configuration of your APPLE's memory, the eight RAM sockets in a given
row of memory must be filled entirely with 4K memory chips, entirely with
16K memory chips, or all eight RAM sockets may be empty.

To test the memory chips in your computer, you must first initialize the RAM
Test program. Press the RESET key to invoke the Monitor, and then type

D5BCG return

Next, specify the hexadecimal starting address for the portion of memory
that you wish to test. You must also specify the hexadecimal number of
"pages" of memory that you wish tested, beginning at the given starting
address. A page of memory is 256 bytes ($100 Hex). Representing the
address by "a" and the number of pages by "p" (both in hexadecimal), start
the RAM test by typing

a . p ctrl Y return

Note 1: to type "ctrl Y", type Y while holding down the CTRL key; ctrl Y is
not displayed on the TV screen. Type "return" by pressing the RETURN key.
The example instructions in this chapter often include spaces for easier
reading; do not type these spaces.

Note 2: test length p*100 must not be greater than starting address a.

30

For example,

2000.10 ctrl Y return

tests hexadecimal 1000 bytes of memory (4096, or "4K" bytes, in decimal),
starting at hexadecimal address 2000 (8192, or "8K", in decimal).

If the asterisk returns (after a delay that may be a half minute or so)
without an error message (see ERROR MESSAGES discussion), then the specified
portion of memory has tested successfully.

TABLE OF ADDRESS RANGES FOR STANDARD RAM
CONFIGURATIONS

If the

Look

Configuration
3

Blocks
like

Memory
Then

Row of
this: 	Memory

Contains this
Range of
Hexadecimal
RAM Addresses

And the total
System Memory,

If this is last
Row filled, is

C 0000-OFFF 4K
D 1000-1FFF 8K
E 2000-2FFF 12K

C 0000-3FFF 16K °16K
4K D 4000-4FFF 20K
4K E 5000-5FFF 24K

C 0000-3FFF 16K °16K
16K D 4000-7FFF 32K
16K E 8000-BFFF 48K

A 4K RAM Row contains 10 Hex pages (hex 1000 bytes, or decimal 4096 bytes).
A 16K RAM Row contains 40 Hex pages (hex 4000 bytes, or decimal 16384
bytes).

A complete test for a 48K system would be as follows:

400.4 ctrl Y return 4F-----This tests the screen area of memory
800.8 ctrl Y return 	These first four tests examine
1000.10 ctrl Y return 4F------ 	the first 16K row of memory (Row C)
2000.20 ctrl Y return
4000.40 ctrl Y return 4 	This tests the second 16K row of memory (Row D)
8000.40 ctrl Y return 4--This tests the third 16K row of memory (Row E)

Systems containing more than 16K of memory should also receive the following
special test that looks for problems at the boundary between rows of memory:

3000.20 ctrl Y return

Systems containing more than 32K of memory should receive the previous
special test, plus the following:

7000.20 ctrl Y return 	 31

Tests may be run separately or they may be combined into one instruction.
For instance, for a 48K system you can type:

400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y 3000.20 ctrl Y
4000.40 ctrl Y 7000.20 ctrl Y 8000.40 ctrl Y return

Remember, ctrl Y will not print on the screen, but it must be typed. With
the single exception noted in the section TESTING FOR INTERMITTENT FAILURE,
spaces are shown for easier reading but should not be typed.

During a full test such as the one shown above, the computer will beep at
the completion of each sub-test (each sub-test ends with a ctrl Y). At the
end of the full test, if no errors have been found the APPLE will beep and
the blinking cursor will return with the Monitor prompt character (*). It
takes approximately 50 seconds for the computer to test the RAM memory in a
16K system; larger systems will take proportionately longer.

ERROR MESSAGES

TYPE I - Simple Error

During testing, each memory address in the test range is checked by writing
a particular number to it, then reading the number actually stored at that
address and comparing the two.

A simple error occurs when the number written to a particular memory address
differs from the number which is then read back from that same address.
Simple errors are reported in the following format:

xxxx yy zz ERR r-c

where xxxx is the hexadecimal address at which the error was detected;
yy is the hexadecimal data written to that address;
zz is the hexadecimal data read back from that address; and
r-c is the row and column where the defective memory chip was

found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 10.

Example:

201F 00 10 ERR D-7

32

TYPE II - Dynamic Error

This type of error occurs when the act of writing a number to one memory
address causes the number read from a different address to change. If no
simple error is detected at a tested address, all the addresses that differ
from the tested address by one bit are read for changes indicating dynamic
errors. Dynamic errors are reported in the following format:

xxxx yy zz vvvv qq ERR r-c

where xxxx is the hexadecimal address at which the error was detected;
yy is the hexadecimal data written earlier to address xxxx;
zz is the hexadecimal data now read back from address xxxx;

vvvv is the current hexadecimal address to which data qq was
successfully written;

qq is the hexadecimal data successfully written to, and
read back from, address vvvv; and

r-c is the row and column where the defective memory chip was
found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 10. In this type of error, the
indicated row (but not the column) may be incorrect.

This is similar to Type I, except that the appearance of vvvv and qq
indicates an error was detected at address xxxx after data was successfully
written at address vvvv.

Example:

5051 00 08 5451 00 ERR E-6

After a dynamic error, the indicated row (but not the column) may be
incorrect. Determine exactly which tests check each row of chips (according
to the range of memory addresses corresponding to each row), and run those
tests by themselves. Confirm your diagnosis by replacing the suspected
memory chip with a known good memory chip (you can use either a 4K or a 16K
memory chip, for this replacement). Remember to turn off the APPLE's power
switch and to discharge yourself before handling the memory chips.

TESTING FOR INTERMITTENT FAILURE
(Automatically Repeating Test)

This provides a way to test memory over and over again, indefinitely. You
will type a complete series of tests, just as you did before, except that
you will:

a. precede the complete test with the letter N
b. follow the complete test with 34:0
c. type at least one space before pressing the RETURN key.

33

Here is the format:

N (memory test to be repeated) 34:0 (type one space) return

NOTE: You must type at least one space at the end of the line, prior to
pressing the RETURN key. This is the only space that should be typed (all
other spaces shown within instructions in this chapter are for easier
reading only; they should not be typed).

Example (for a 48K system):

N 400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y 3000.20 ctrl Y
4000.40 ctrl Y 7000.20 ctrl Y 8000.40 ctrl Y 34:0 	return

Run this test for at least one hour (preferably overnight) with the APPLE's
lid in place.' This allows the system and the memory chips to reach maximum
operating temperature.

Only if a failure occurs will the APPLE display an error message and rapidly
beep three times; otherwise, the APPLE will beep once at the successful end
of each sub-test. To stop this repeating test, you must press the RESET
key.

COMMENTS:

1. You cannot test the APPLE's memory below the address of 400 (Hex), since
various pointers and other system necessities are there. In any case, if
that region of memory has problems, the APPLE won't function.

2. For any subtest, the number of pages tested cannot be greater than the
starting address divided by 100 Hex. 2000.30 ctrl Y will not work, but
5000.30 ctrl Y will.

3. Before changing anything inside the APPLE, make sure the APPLE is
plugged into a grounded, 3-wire power outlet, and that the power switch on
the back of the computer is turned off. Always touch the outside metal
bottom plate of the APPLE II, prior to handling any memory chips. This is
done to remove any static charge that you may have acquired.

EVEN A SMALL STATIC CHARGE CAN DESTROY MEMORY CHIPS

4. Besides the eight memory chips, some additions of memory require
changing three other chip-like devices called Memory Configuration Blocks.
The Memory Configuration Blocks tell the APPLE which type of memory chip (4K
or 16K) is to be plugged into each row of memory. A complete package for
adding memory to your computer, containing all necessary parts and detailed
instructions, can be purchased from APPLE Computer Inc. To add 4K of
memory, order the 4K Memory Expansion Module (P/N A2M0014). To add 16K of
memory, order the 16K Memory Expansion Module (P/N A2M0016).

34

GENERATING MUSICAL TONES

The Music feature is most easily used from within an Integer BASIC program.
It greatly simplifies the task of making the APPLE II into a music—playing
device.

There are three things the computer needs to know before playing a note:
pitch (how high or low a note), duration (how long a time it is to sound),
and timbre. Timbre is the quality of a sound that allows you to distinguish
one instrument from another even if they are playing at the same pitch and
loudness. This Music feature does not permit control of loudness.

It is convenient to set up a few constants early in the program:

MUSIC = —10473
PITCH = 767
TIME = 766
TIMBRE = 765

There are 50 notes available, numbered from 1 to 50. The statement

POKE PITCH, 32

will set up the Music feature to produce (approximately) the note middle C.
Increasing the pitch value by one increases the pitch by a semitone. Thus

POKE PITCH, 33

would set up the Music feature to produce the note C sharp. Just over four
chromatic octaves are available. The note number 0 indicates a rest (a
silence) rather than a pitch.

The duration of the note is set by

POKE TIME, t

Where t is a number from 1 to 255. The higher the number, the longer the
note. A choice of t = 170 gives notes that are approximately one second
long. To get notes at a metronome marking of MM, use a duration of
10200/MM. For example, to get 204 notes per minute (approximately) use the
command

POKE TIME, 10200/204

36

There are five timbres, coded by the numbers 2, 8, 16, 32 and 64. They are
not very different from one another. With certain timbres, a few of the
extremely low or high notes do not give the correct pitch. Timbre 32 does
not have this problem.

POKE TIMBRE, 32

When the pitch, time, and timbre have been set, the statement

CALL MUSIC

will cause the specified note to sound.

The following program plays a chromatic scale of four octaves:

10 MUSIC = -10473: PITCH = 767: TIME = 766: TIMBRE = 765
20 POKE TIME, 40: POKE TIMBRE, 32
30 FOR I = 1 TO 49
40 POKE PITCH, I
50 CALL MUSIC
60 NEXT I: END

Where X is a number from 51 through 255,

POKE PITCH, X

will specify various notes, in odd sequences. In the program above, change
line 40 to

40 POKE PITCH, 86

for a demonstration.

COMMENTS:

Some extremely high or low notes will come out at the wrong pitch With
certain timbres.

37

38

CHAPTER 8
HIGH-RESOLUTION

GRAPHICS
Part A: Setting up parameters, subroutines, and colors

	

40 	Positioning the High-Resolution parameters

	

41 	Defining subroutine names

	

41 	Defining color names

	

42 	Speeding up your program

	

43 	Part 	B: Preparing the screen for graphits

	

43 	The INITialization subroutine

	

43 	Changing the graphics screen

	

44 	CLEARing the screen to black

	

44 	Coloring the BacKGrouND

	

45 	Part 	C: PLOTting points and LtNEs

	

46 	Part. 	D: Creating, saving and loading shapes

	

46 	Introduction

	

47 	Creating a Shape Table

	

53 	SaVing a Shape Table

	

54 	Loading a Shape Table

	

55 	First use of Shape Table

	

56 	Part 	E: Drawing shapes from a prepared Shape Table

	

56 	Assigning parameter values: SHAPE, SCALE AND ROTation

	

57 	DRAWing shape's

	

58 	Linking shapes: DRAW!

	

59 	Collisions

• 60 	Part 	F: Technical information

	

60 	Locations of the High-Resolution parameters

	

61 	Variables used within the High-Resolution subroutines

	

62 	Shape Table information

	

63 	Integer BASIC memory map for graphics

64 	Part 	Comments

39

PART A: SETTING UP PARAMETERS, SUBROUTINES,
AND COLORS

Programmer's Aid #1 provides your APPLE with the ability to do
high-resolution color graphics from Integer BASIC. You may plot dots, lines
and shapes in a wide variety of detailed forms, in 6 different colors (4
colors on systems below S/N 6000), displayed from two different "pages" of
memory. The standard low-resolution graphics allowed you to plot 40 squares
across the screen by 47 squares from top to bottom of the screen. This
high-resolution graphics display mode lets you plot in much smaller dots,
280 horizontally by 192 vertically. Because 8K bytes of memory (in
locations from 8K to 16K, for Page 1) are dedicated solely to maintaining
the high-resolution display, your APPLE must contain at least 16K bytes of
memory. To use the Page 2 display (in locations from 16K to 24K), a system
with at least 24K bytes of memory is needed. If your system is using the
Disk Operating System (DOS), that occupies the top 10.5K of memory: you will
need a minimum 32K system for Page 1, or 36K for Page 1 and Page 2. See the
MEMORY MAP on page 63 for more details.

POSITIONING THE HIGH-RESOLUTION PARAMETERS

The first statement of an Integer BASIC program intending to use the
Programmer's Aid High-Resolution subroutines should be:

0 X0 = YO = COLR = SHAPE = ROT = SCALE

The purpose of this statement is simply to place the six BASIC variable
names used by the High-Resolution feature (with space for their values) into
APPLE's "variable table" in specific, known locations. When line 0 is
executed, the six High-Resolution graphics parameters will be assigned
storage space at the very beginning of the variable table, in the exact
order specified in line 0. Your BASIC program then uses those parameter
names to change the six parameter values in the variable table. However,
the High-Resolution subroutines ignore the parameter names, and look for
the parameter values in specific variable-table locations. That is why
the program's first line must place the six High-Resolution graphics
parameters in known variable-table locations. Different parameter names may
be used, provided that they contain the same number of characters. Fixed
parameter-name lengths are also necessary to insure that the
parameter-value storage locations in the variable table do not change. For
example, the name HI could be used in place of X0, but X or XCOORD could
not.

40

The parameters SHAPE, ROT, and SCALE are used only by the subroutines that
draw shapes (DRAW and DRAW1, see PART E). These parameters may be omitted
from programs using only the PLOT and LINE features:

0 XO = YO = COLA

Omitting unnecessary parameter definitions speeds up the program during
execution. However, you can omit only those unused parameters to the right
of the last parameter which is used. Each parameter that is used must
be in its proper place, relative to the first parameter in the definition
list.

DEFINING SUBROUTINE NAMES

After the six parameters have been defined, the twelve High-Resolution
subroutines should be given names, and these names should be assigned
corresponding subroutine entry addresses as values. Once defined in this
way, the various subroutines can be called by name each time they are used,
rather than by numeric address. When subroutines are called by name, the
program is easier to type, more likely to be error-free, and easier to
follow and to debug.

5 	INIT = -12288 : CLEAR = -12274 	: BKGND = -11471
6 	POSN = -11527 : PLOT = -11506 	: LINE = -11500
7 	DRAW = -11465 : DRAW1 = -11462
8 	FIND = -11780 : SHLOAD = -11335

Any variable names of any length may be used to call these subroutines. If
you want maximum speed, do not define names for subroutines that you will
not use in your program.

DEFINING COLOR NAMES

Colors may also be specified by name, if a defining statement is added to
the program. Note that GREEN is preceded by LET to avoid a SYNTAX ERROR,
due to conflict with the GR command.

10 BLACK = 0 : LET GREEN = 42 : VIOLET = 85
11 WHITE = 127 : ORANGE = 170 : BLUE = 213
12 BLACK2 = 128 : WHITE2 = 255

Any integer from 0 through 255 may be used to specify a color, but most of
the numbers not named above give rather unsatisfactory "colors". On systems
below S/N 6000, 170 will appear as green and 213 will appear as violet.

41

Once again, unnecessary variable definitions should be omitted, as they will
slow some programs. Therefore, a program should not define VIOLET = 85
unless it uses the color VIOLET.

The following example illustrates condensed initialization for a program
using only the INIT, PLOT, and DRAW subroutines, and the colors GREEN and
WHITE.

0 X0 = YO = COLR = SHAPE = ROT = SCALE
5 INIT = -12288 : PLOT = -11506 : DRAW = -11465
10 LET GREEN = 42 : WHITE = 127

(Body of program would go here)

SPEEDING UP YOUR PROGRAM

Where maximum speed of execution is necessary, any of the following
techniques will help:

1. Omit the name definitions of colors and subroutines, and refer to colors
and subroutines by numeric value, not by name.

2. Define the most frequently used program variable names before defining
the subroutine and color names (lines 5 through 12 in the previous
examples). The example below illustrates how to speed up a program that
makes very frequent use of program variables I, J, and K:

0 XO = YO - COLR = SHAPE = ROT = SCALE
2 I=J- K
5 INIT = -12288 : CLEAR m. -12274
6 BKGND = -11471 : POSN = -11527
10 BLACK = 0 : VIOLET = 85

3. Use the High-Resolution graphics parameter names as program variables
when possible. Because they are defined first, these parameters are the
BASIC variables which your program can find fastest.

42

PART B: PREPARING THE SCREEN FOR GRAPHICS

THE INITIALIZATION SUBROUTINE

In order to use CLEAR, BKGND, POSN, PLOT, or any of the other
High-Resolution subroutine CALLs, the INITialization subroutine itself must
first be CALLed:

CALL INIT

The INITialization subroutine turns on the high-resolution display and
clears the high-resolution screen to black. INIT also sets up certain
variables necessary for using the other High-Resolution subroutines. The
display consists of a graphics area that is 280 x-positions wide (X0=0
through X0=279) by 160 y-positions high (Y0=O through Y0=159), with an area
for four lines of text at the bottom of the screen. YO values from 0
through 191 may be used, but values greater than 159 will not be displayed
on the screen. The graphics origin (X0=0, Y0=0) is at the top left corner
of the screen.

CHANGING THE GRAPHICS SCREEN

If you wish to devote the entire display to graphics (280 x-positions wide
by 192 y-positions high), use

POKE -16302, 0

The split graphics-plus-text mode may be restored at any time with

POKE -16301, 0

or another

CALL INIT

When the High-Resolution subroutines are first initialized, all graphics are
done in Page 1 of memory ($2000-3FFF), and only that page of memory is
displayed. If you wish to use memory Page 2 ($4000-5FFF), two POKEs allow
you to do so:

POKE 806, 64

causes subsequent graphics instructions to be executed in Page 2, unless
those instructions attempt to continue an instruction from Page 1 (for
instance, a LINE is always drawn on the same memory page where the last
previous point was plotted). After this POKE, the display will still show
memory Page 1.

43

To see what you are plotting on Page 2,

POKE -16299, 0

will cause Page 2 to be displayed on the screen. You can switch the screen
display back to memory Page 1 at any time, with

POKE -16300, 0

while

POKE 806, 32

will return you to Page 1 plotting. This last POKE is executed
automatically by INIT.

CLEARING THE SCREEN

If at any time during your program you wish to clear the current plotting
page to black, use

CALL CLEAR

This immediately erases anything plotted on the current plotting page.
INIT first resets the current plotting page to memory Page 1, and then
clears Page 1 to black.

The entire current plotting page can be set to any solid background color
with the BKGND subroutine. After you have INITialized the High-Resolution
subroutines, set COLR to the background color you desire, and then

CALL BKGND

The following program turns the entire display violet:.

0 X0 = YO = COLR : REM SET PARAMETERS
5 INIT = -12288 : BKGND = -11471 : REM DEFINE SUBROUTINES
10 VIOLET = 85 : REM DEFINE COLOR
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 COLR = VIOLET : REM ASSIGN COLOR VALUE
40 CALL BKGND : REM MAKE ALL OF DISPLAY VIOLET
50 END

44

PART C: PLOTTING POINTS AND LINES

Points can be plotted anywhere on the high-resolution display, in any valid
color, with the use of the PLOT subroutine. The PLOT subroutine can only be
used after a CALL INIT has been executed, and after you have assigned
appropriate values to the parameters X0, YO and COLR. X0 must in the range
from 0 through 279, Y0 must be in the range from 0 through 191, and COLR
must be in the range from 0 through 255, or a

*** RANGE ERR

message will be displayed and the program will halt.

The program below plots a white dot at X-coordinate 35, Y-coordinate 55, and
a violet dot at X-coordinate 85, Y-coordinate 90:

0 X0 = YO = COLR : REM SET PARAMETERS
5 INIT = -12288 : PLOT = -11506 : REM DEFINE SUBROUTINES
10 WHITE = 127 : VIOLET = 85 : REM DEFINE COLORS
20 CALL INIT : REM INITIALIZE SUBROUTINES
30 COLR = WHITE : REM ASSIGN PARAMETER VALUES
40 XV = 35 : YO = 55
50 CALL PLOT : REM PLOT WITH ASSIGNED PARAMETER VALUES
60 COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES
70 X0 = 85 : YO = 90
80 CALL PLOT : REM PLOT WITH NEW PARAMETER VALUES
90 END

The subroutine POSN is exactly like PLOT, except that nothing is placed on
the screen. COLR must be specified, however, and a subsequent DRAW (see
PART E) will take its color from the color used by POSN. This subroutine is
often used when establishing the origin-point for a LINE.

Connecting any two points with a straight line is done with the LINE
subroutine. As with the PLOT subroutine, a CALL INIT must be executed, and
X0, YO, and COLR must be specified. In addition, before the LINE subroutine
can be CALLed, the line's point of origin must have been plotted with a CALL
PLOT or as the end point of a previous line or shape. Do not attempt to use
CALL LINE without first plotting a point for the line's origin, or the line
may be drawn in random memory locations, not necessarily restricted to the
current memory page. Once again, X0 and Y0 (the coordinates of the
termination point for the line), and COLR must be assigned legitimate
values, or an error may occur.

45

The following program draws a grid of green lines vertically and violet
lines horizontally, on a white background:

0 XO = YO = COLR : REM SET PARAMETERS, THEN DEFINE SUBROUTINES
5 INIT = -12288 : BKGND = -11471 : PLOT = -11506 : LINE = -11500
10 LET GREEN = 42 : VIOLET = 85 : WHITE = 127 : REM DEFINE COLORS
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 POKE -16302, 0 : REM SET FULL-SCREEN GRAPHICS
40 COLR = WHITE : CALL BKGND : REM MAKE THE DISPLAY ALL WHITE
50 COLR = GREEN : REM ASSIGN PARAMETER VALUES
60 FOR X0 = 0 TO 270 STEP 10
70 YO = 0 : CALL PLOT : REM PLOT A STARTING-POINT AT TOP OF SCREEN
80 YO = 190 : CALL LINE : REM DRAW A VERTICAL LINE TO BOTTOM OF SCREEN
90 NEXT XO : REM MOVE RIGHT AND DO IT AGAIN
100 COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES
110 FOR Y0 = 0 TO 190 STEP 10
120 XO = 0 : CALL PLOT : REM PLOT A STARTING-POINT AT LEFT EDGE OF SCREEN
130 X0 = 270 : CALL LINE : REM PLOT A HORIZONTAL LINE TO RIGHT EDGE
140 NEXT YO : REM MOVE DOWN AND DO IT AGAIN
150 END

PART D: CREATING, SAVING AND LOADING SHAPES

INTRODUCTION

The High-Resolution feature's subroutines provide the ability to do a wide
range of high-resolution graphics "shape" drawing. A "shape" is considered
to be any figure or drawing (such as an outline of a rocket ship) that the
user wishes to draw on the display many times, perhaps in different sizes,
locations and orientations. Up to 255 different shapes may be created,
used, and saved in a "Shape Table", through the use of the High-Resolution
subroutines DRAW, DRAWL and SHLOAD, in conjunction with parameters SHAPE,
ROT and SCALE.

In this section, PART D, you will be shown how to create, save and load a
Shape Table. The following section, PART E, demonstrates the use of the
shape-drawing subroutines with a predefined Shape Table.

46

HOW TO CREATE A SHAPE TABLE

Before the High-Resolution shape-drawing subroutines can be used, a shape
must be defined by a "shape definition." This shape definition consists of
a sequence of plotting vectors that are stored in a series of bytes in
APPLE's memory. One or more such shape definitions, with their index, make
up a "Shape Table" that can be created from the keyboard and saved on disk
or cassette tape for future use.

Each byte in a shape definition is divided into three sections, and each
section can specify a "plotting vector": whether or not to plot a point, and
also a direction to move (up, down, left, or right). The shape-drawing
subroutines DRAW and DRAW! (see PART E) step through each byte in the shape
definition section by section, from the definition's first byte through its
last byte. When a byte that contains all zeros is reached, the shape
definition is complete.

This is how the three sections A, B and C are arranged within one of the
bytes that make up a shape definition:

Section: C 	B 	A

Bit Number: 7 6 5 4 3 2 1 0
Specifies: D D P D D P D D

Each bit pair DD specifies a direction to move, and each bit P specifies
whether or not to plot a point before moving, as follows:

If DD = 00 move up
= 01 move right
	

If P = 0 don't plot
= 10 move down 	 = 1 do plot
= 11 move left

Notice that the last section, C (the two most significant bits), does not
have a P field (by default, P=0), so section C can only specify a move
without plotting.

Each byte can represent up to three plotting vectors, one in section A, one
in section B, and a third (a move only) in section C.

DRAW and DRAW1 process the sections from right to left (least significant
bit to most significant bit: section A, then B, then C). At any section in
the byte, IF ALL THE REMAINING SECTIONS OF THE BYTE CONTAIN ONLY ZEROS, THEN
THOSE SECTIONS ARE IGNORED. Thus, the byte cannot end with a move in
section C of 00 (a move up, without plotting) because that section,
containing only zeros, will be ignored. Similarly, if section C is 00
(ignored), then section B cannot be a move of 000 as that will also be
ignored. And a move of 000 in section A will end your shape definition
unless there is a 1-bit somewhere in section B or C.

47

•	 • •

• •

• •

• •

•	 •

t 	

000
001 or 01
010 or 10
011 or 11

100
101
110
111

Section C B A
Byte 0

1
2
3
4
5
6
7
8
9

t-This Vector-3
Cannot Plot
or Move Up

B A
	

Vector Code

-0-Denotes End
of Shape
Definition

Figure 1

Move
Only

Plot
& Move

010
111

010
111

01

00

100
100
101
010
110
011

000

000
100
101
101
110
110
111
000

-O.

4

• • •

• 	 •
Suppose you want to draw a shape like this: 	

• 	 •

• 	 •

• • •

First, draw it on graph paper, one
dot per square. Then decide where
to start drawing the shape. Let's
start this one at the center. Next,
draw a path through each point in
the shape, using only 90 degree
angles on the turns:

Next, re-draw the shape as a series
of plotting vectors, each one moving
one place up, down, right, or left,
and distinguish the vectors that
plot a point before moving (a dot
marks vectors that plot points).

Now "unwrap" those vectors and write them in a straight line:

tIl
Next draw a table like the one in Figure 1, below:

For each vector in the line, determine the bit code and place it in the next
available section in the table. If the code will not fit (for example, the
vector in section C can't plot a point), or is a 00 (or 000) at the end of a
byte, then skip that section and go on to the next. When you have finished
codfmz all your vectors, check your work to make sure it is accurate.

48

Now make another table, as shown in Figure 2, below, and re—copy the vector
codes from the first table. Recode the vector information into a series of
hexadecimal bytes, using the hexadecimal codes from Figure 3.

Section: C
—,--

B A
Bytes

Recoded
in Hex

Codes

Binary Hex
0
------,

1 0
--
0 1 0 Byte 0 0 0 = 12 0000 = 0

1 0 0 	1 1 1 1 	1 1 = 3 F 0001 1
2 0 0 	1 0 0 0 0 0 = 2 0 0010 = 2
3 0 1 	1 0 0 1 0 0 = 6 4 0011 = 3
4 0 1 0 1 1 0 1 = 2 D 0100 = 4
5 0 0 1 0 1 0 1 = 1 5 0101 . 5

6 0 1 1 0 1 	1 0 = 3 6 0110 = 6
7 0 0 1 1 1 	1 0 = 1 E 0111 = 7
8 0 0 0 0 1 	1 1 = 0 7 1000 = 8
9 0 0 0 0 0 0 0 = 0 0 *Denotes End 1001 = 9

,--,--, ,--.,.--, Shape of 1010 = A
Hex: Digit 1 Digit 2 Definition 1011 = B

1100 = C
1101 = D
1110 = E

Figure 2 1111 = F

Figure 3

The series of hexadecimal bytes that you arrived at in Figure 2 is the shape
definition. There is still a little more information you need to provide
before you have a complete Shape Table. The form of the Shape Table,
complete with its index, is shown in Figure 4 on the next page.

For this example, your index is easy: there is only one shape definition.
The Shape Table's starting location, whose address we have called S, must
contain the number of shape definitions (between 0 and 255) in hexadecimal.
In this case, that number is just one. We will place our shape definition
immediately below the index, for simplicity. That means, in this case, the
shape definition will start in byte S+4: the address of shape definition #1,
relative to S, is 4 (00 04, in hexadecimal). Therefore, index byte S+2 must
contain the value 04 and index byte S+3 must contain the value 00. The
completed Shape Table for this example is shown in Figure 5 on the next
page.

49

Start=S-. Byte S+0
+1
+2
+3
+4

Index 	+5

•
•
•

+2n
+2n+1

/ S+D1

S+D2

Shape
Definitions

S+Dn

First Byte

Last Byte=00

First Byte

Last Byte=00

n (0 to FF)
Unused

Lower 2 Digits
Upper 2 Digits
Lower 2 Digits
Upper 2 Digits

Lower 2 Digits
Upper 2 Digits

First Byte

Last Byte=00

Figure 4

Start 0 01
(Store this address

Byte
1 00

in $328 and $329) 2 04
3 00
4 12
5 3F
6 20
7 64
8 2D
9 15
A 36
B 1E
C 07
D 00

.-Total Number of
Shape Definitions

) 	Dl: Index to First Byte of Shape
Definition #1, Relative to S

1 	D2: Index to First Byte of Shape
Definition #2, Relative to S

1 	Dn: Index to First Byte of Shape
Definition #n, Relative to S

.-Shape Definition #1

} .- Shape Definition #2

1

.- Shape Definition #n

Number of Shapes

1 	Index to Shape Definition #1,
Relative to Start

.-First Byte

._Shape Definition #1

.-Last Byte

Figure 5

50

You are now ready to type the Shape Table into APPLE's memory. First,
choose a starting address. For this example, we'll use hexadecimal address
0800.

Note: this address must be less than the highest memory address available
in your system (HIMEM), and not in an area that will be cleared when you use
memory Page 1 (hexadecimal locations $2000 to $4000) or Page 2 (hexadecimal
locations $4000 to $6000) for high-resolution graphics. Furthermore, it
must not be in an area of memory used by your BASIC program. Hexadecimal
0800 (2048, in decimal) is the lowest memory address normally available to a
BASIC program. This lowest address is called LOMEM. Later on, we will move
the LOMEM pointer higher, to the end of our Shape Table, in order to protect
our table from BASIC program variables.

Press the RESET key to enter the Monitor program, and type the Starting
address for your Shape Table:

0800

If you press the RETURN key now, APPLE will show you the address and the
contents of that address. That is how you examine an address to see if
you have a put the correct number there. If instead you type a colon (:)
followed by a two-digit hexadecimal number, that number will be stored at
the specified address when you press the RETURN key. Try this:

0800 return

(type "return" by pressing the RETURN key). What does APPLE say the
contents of location 0800 are? Now try this:

0800:01 return
0800 return
0800- 01

The APPLE now says that the value 01 (hexadecimal) is stored in the location
whose address is 0800. To store more two-digit hexadecimal numbers in
successive bytes in memory, just open the first address:

0800:

and then type the numbers, separated by spaces:

0800:01 00 04 00 12 3F 20 64 2D 15 36 1E 07 00 return

51

You have just typed your first complete Shape Table...not so bad, was it?
To check the information in your Shape Table, you can examine each byte
separately or simply press the RETURN key repeatedly until all the bytes of
interest (and a few extra, probably) have been displayed:

0800 return
0800- 01
return
00 04 00 12 3F 20 64
return

0808- 2D 15 36 lE 07 00 FF

If your Shape Table looks correct, all that remains is to store the starting
address of the Shape Table where the shape-drawing subroutines can find it
(this is done automatically when you use the SHLOAD subroutine to get a
table from cassette tape). Your APPLE looks for the four hexadecimal digits
of the table's starting address in hexadecimal locations 328 (lower two
digits) and 329 (upper two digits). For our table's starting address of
08 00, this would do the trick:

328:00 08

To protect this Shape Table from being erased by the variables in your BASIC
program, you must also set LOMEM (the lowest memory address available to
your program) to the address that is one byte beyond the Shape Table's last,
or largest, address.

It is best to set LOMEM from BASIC, as an immediate-execution command issued
before the BASIC program is RUN. LOMEM is automatically set when you invoke
BASIC (reset ctrl B return) to decimal 2048 (0800, in hexadecimal). You
must then change LOMEM to 2048 plus the number of bytes in your Shape Table
plus one. Our Shape Table was decimal 14 bytes long, so our
immediate-execution BASIC command would be:

LOMEM: 2048 + 15

Fortunately, all of this (entering the Shape Table at LOMEM, resetting LOMEM
to protect the table, and putting the table's starting address in $328-$329)
is taken care of automatically when you use the High-Resolution feature's
SHLOAD subroutine to get the table from cassette tape.

52

SAVING A SHAPE TABLE

Saving on Cassette Tape

To save your Shape Table on tape, you must be in the Monitor and you must
know three hexadecimal numbers:

1) Starting Address of the table (0800, in our example)
2) Last Address of the table (080D, in our example)
3) Difference between 2) and 1) (000D, in our example)

Item 3, the difference between the last address and the first address of the
table, must be stored in hexadecimal locations 0 (lower two digits) and 1
(upper two digits):

0:0D 00 return

Now you can "Write" (store on cassette) first the table length that is
stored in locations 0 and 1, and then the Shape Table itself that is stored
in locations Starting Address through Last Address:

0.1W 	0800.080DW

Don't press the RETURN key until you have put a cassette in your tape
recorder, rewound it, and started it recording (press PLAY and RECORD
simultaneously). Now press the computer's RETURN key.

Saving on Disk

To save your Shape Table on disk, use a command of this form:

BSAVE filename, A$ startingaddress, L$ tablelength

For our example, you might type

BSAVE MYSHAPE1, A$ 0800, L$ 000D

Note: the Disk Operating System (DOS) occupies the top 10.5K of memory
(10752 bytes decimal, or $2A00 hex); make sure your Shape Table is not in
that portion of memory when you "boot" the disk system.

53

LOADING A SHAPE TABLE

Loading from Cassette Tape

To load a Shape Table from cassette tape, rewind the tape, start it playing
(press PLAY), and (in BASIC, now) type

CALL -11335 return

or (if you have previously assigned the value -11335 to the variable SHLOAD)

CALL SHLOAD return

You should hear one "beep" when the table's length has been read
successfully, and another "beep" when the table itself has been read. When
loaded this way, your Shape Table will load into memory, beginning at
hexadecimal address 0800. LOMEM is automatically changed to the address of
the location immediately following the last Shape-Table byte. Hexadecimal
locations 328 and 329 are automatically set to contain the starting address
of the Shape Table.

Loading from Disk

To load a Shape Table from disk, use a command of the form

BLOAD filename

From our previously-saved example, you would type

BLOAD MYSHAPE1

This will load your Shape Table into memory, beginning at the address you
specified after "A$" when you BSAVEd the Shape Table earlier. In our
example, MYSHAPE1 would BLOAD beginning at address 0800. You must store the

Shape Table's starting address in hexadecimal locations 328 and 329,
yourself, from the Monitor:

328:00 08 return

If your Shape Table is in an area of memory that may be used by your BASIC
program (as our example is), you must protect the Shape Table from your
program. Our example lies at the low end of memory, so we can protect it by
raising LOMEM to just above the last byte of the Shape Table. This must be
done after invoking BASIC (reset ctrl B return) and before RUNning our
BASIC program. We could do this with the immediate-execution BASIC command

LOMEM: 2048 + 15

54

FIRST USE OF A SHAPE TABLE

You are now ready to write a BASIC program using Shape-Table subroutines
such as DRAW and DRAW1. For a full discussion of these High-Resolution
subroutines, see the following section, PART E.

Remember that Page 1 graphics uses memory locations 8192 through 16383 (8K
to 16K), and Page 2 graphics uses memory locations 16384 through 24575 (16K
to 24K). Integer BASIC puts your program right at the top of available
memory; so if your APPLE contains less than 32K of memory, you should
protect your program by setting HIMEM to 8192. This must be done after you
invoke BASIC (reset ctrl B return) and before RUNning your program, with the
immediate-execution command

HIMEM: 8192

Here's a sample program that assumes our Shape Table has already been loaded
from tape, using CALL SHLOAD. This program will print our defined shape,
rotate it 5.6 degrees if that rotation is recognized (see ROT discussion,
next section) and then repeat, each repetition larger than the one before.

10 X0 = YO = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS
20 INIT = -12288 : DRAW = -11465 : REM DEFINE SUBROUTINES
30 WHITE = 127 : BLACK = 0 : REM DEFINE COLORS
40 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
50 SHAPE = 1
60 X0 = 139 : YO = 79 : REM ASSIGN PARAMETER VALUES
70 FOR R = 1 TO 48
80 ROT = R
90 SCALE = R
100 COLR = WHITE
110 CALL DRAW : REM DRAW SHAPE 1 WITH ABOVE PARAMETERS
120 NEXT R : REM NEW PARAMETERS
130 END

To pause, and then erase each square after it is drawn, add these lines:

114 FOR PAUSE = 1 TO 200 : NEXT PAUSE
116 COLR = BLACK : REM CHANGE COLOR
118 CALL DRAW : REM RE-DRAW SAME SHAPE, IN NEW COLOR

55

PART E: DRAWING SHAPES FROM A PREPARED
SHAPE TABLE

Before either of the two shape-drawing subroutines DRAW or DRAW1 can be
used, a "Shape Table" must be defined and stored in memory (see PART E:
CREATING A SHAPE TABLE), the Shape Table's starting address must be
specified in hexadecimal locations 328 and 329 (808 and 809, in decimal),
and the High-Resolution subroutines themselves must have been initialized by
a CALL INIT.

ASSIGNING PARAMETER VALUES

The DRAW subroutine is used to display any of the shapes defined in the
current Shape Table. The origin or 'beginning point' for DRAWing the shape
is specified by the values assigned to X0 and Y0, and the rest of the shape
continues from that point. The color of the shape to be DRAWn is specified
by the value of COLR.

The shape number (the Shape Table's particular shape definition that you
wish to have DRAWn) is specified by the value of SHAPE. For example,

SHAPE = 3

specifies that the next shape-drawing command will use the third shape
definition in the Shape Table. SHAPE may be assigned any value (from 1
through 255) that corresponds to one of the shape definitions in the current
Shape Table. An attempt to DRAW a shape that does not exist (by executing a
shape-drawing command after setting SHAPE = 4, when there are only two shape
definitions in your Shape Table, for instance) will result in a *** RANGE
ERR message being displayed, and the program will halt.

The relative size of the shape to be DRAWn is specified by the value
assigned to SCALE. For example,

specifies that the next shape DRAWn will be four times the size that is
described by the appropriate shape definition. That is, each "plotting
vector" (either a plot and a move, or just a move) will be repeated four
times. SCALE may be assigned any value from 0 through 255, but SCALE = 0 is
interpreted as SCALE = 256, the largest size for a given shape definition.

56

You can also specify the orientation or angle of the shape to be DRAWn, by
assigning the proper value to ROT. For example,

ROT = 0

will cause the next shape to be DRAWn oriented just as it was defined, while

ROT = 16

will cause the next shape to be DRAWn rotated 90 degrees clockwise. The
value assigned to ROT must be within the range 0 to 255 (although ROT=64,
specifying a rotation of 360 degrees clockwise, is the equivalent of ROT=0).
For SCALE=1, only four of the 63 different rotations are recognized
(0,16,32,48); for SCALE=2, eight different rotations are recognized; etc.
ROT values specifying unrecognized rotations will usually cause the shape tc
be DRAWn with the next smaller recognized rotation.

ORIENTATIONS OF SHAPE DEFINITION

ROT = 0 	(no rotation
from shape definition)

ROT = 48 (270 degrees
clockwise rotation) 4

ROT = 16 (90 degrees
clockwise rotation)

ROT = 32 (180 degrees
clockwise rotation)

DRAWING SHAPES

The following example program DRAWs shape definition number three, in white,
at a 135 degree clockwise rotation. Its starting point, or origin, is at
(140,80).

0 X0 = Y0 = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS
5 INIT = -12288 : DRAW = -11465 : REM DEFINE SUBROUTINES
10 WHITE = 127 : REM DEFINE COLOR
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 X0 = 140 : YO = 80 : COLR = WHITE : REM ASSIGN PARAMETER VALUES
40 SHAPE = 3 : ROT = 24 : SCALE = 2
50 CALL DRAW : REM DRAW SHAPE 3, DOUBLE SIZE, TURNED 135 DEGREES
60 END

57

LINKING SHAPES

DRAW1 is identical to DRAW, except that the last point previously DRAWn,
PLOTted or POSNed determines the color and the starting point for the new
shape. X0, Y0, and COLR, need not be specified, as they will have no effect
on DRAW1. However, some point must have been plotted before CALLing
DRAW1, or this CALL will have no effect.

The following example program draws "squiggles" by DRAWing a small shape
whose orientation is given by game control #0, then linking a new shape to
the old one, each time the game control gives a new orientation. To clear
the screen of "squiggles," press the game-control button.

10 X0 = YO = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS
20 INIT = -12288 : DRAW = -11465 : DRAW1 = -11462
22 CLEAR = -12274 : WHITE = 127 : REM NAME SUBROUTINES AND COLOR
30 FULLSCREEN = -16302 : BUTN = -16287 : REM NAME LOCATIONS
40 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
50 POKE FULLSCREEN, 0 : REM SET FULL-SCREEN GRAPHICS
60 COLR = WHITE : SHAPE = 1 : SCALE = 5
70 X0 = 140 : YO = 80 : REM ASSIGN PARAMETER VALUES
80 CALL CLEAR : ROT = PDL(0) : CALL DRAW : REM DRAW FIRST SHAPE
90 IF PEEK(BUTN) > 127 THEN GOTO 80 : REM PRESS BUTTON TO CLEAR SCREEN
100 R = PDL(0) : IF (R < ROT+2) AND (R > ROT-2) THEN GOTO 90 :

REM WAIT FOR CHANGE IN GAME CONTROL
110 ROT = R : CALL DRAW1 : REM ADD TO "SQUIGGLE"
120 GOTO 90 : REM LOOK FOR ANOTHER CHANGE

After DRAWing a shape, you may wish to draw a LINE from the last plotted
point of the shape to another fixed point on the screen. To do this, once
the shape is DRAWn, you must first use

CALL FIND

prior to CALLing LINE. The FIND subroutine determines the X and Y
coordinates of the final point in the shape that was DRAWn, and uses it as
the beginning point for the subsequent CALL LINE.

58

The following example DRAWs a white shape, and then draws a violet LINE from
the final plot position of the shape to the point 	(10, 	25).

0 	X0 = YO = COLR = SHAPE = ROT = SCALE : REM 	SET PARAMETERS
5 	INIT = -12288 : LINE = -11500 : DRAW = -11402 : FIND = -11780
10 VIOLET = 85 : WHITE = 127 : REM 	DEFINE SUBROUTINES AND COLORS
20 X0 = 140 : YO = 80 : COLR = WHITE : REM 	ASSIGN PARAMETER VALUES
30 SHAPE = 3 : ROT = 0 : SCALE = 2
40 CALL DRAW : REM 	DRAW SHAPE WITH ABOVE PARAMETERS
50 CALL FIND : REM 	FIND COORDINATES OF LAST SHAPE POINT
60 X0 = 10 : Y0 = 25 : COLR = VIOLET : REM 	NEW PARAMETER VALUES, FOR LINE
70 CALL LINE : REM 	DRAW LINE WITH ABOVE PARAMETERS
80 END

COLLISIONS

Any time two or more shapes intersect or overlap, the new shape has points
in common with the previous shapes. These common points are called points
of "collision."

The DRAW and DRAW1 subroutines return a "collision count" in the hexadecimal
memory location $32A (810, in decimal). The collision count will be
constant for a fixed shape, rotation, scale, and background, provided that
no collisions with other shapes are detected. The difference between the
"standard" collision value and the value encountered while DRAWing a shape
is a true collision counter. For example, the collision counter is useful
for determining whether or not two constantly moving shapes ever touch each
other.

110 CALL DRAW : REM DRAW THE SHAPE
120 COUNT = PEEK(810) : REM FIND THE COLLISION COUNT

59

PART F: TECHNICAL INFORMATION

LOCATIONS OF THE HIGH-RESOLUTION PARAMETERS

When the high-resolution parameters are entered (line 0, say), they are
stored -- with space for their values -- in the BASIC variable table, just
above LOMEM (the LOwest MEMory location used for BASIC variable storage).
These parameters appear in the variable table in the exact order of their
first mention in the BASIC program. That order must be as shown below,
because the High-Resolution subroutines look for the parameter values by
location only. Each parameter value is two bytes in length. The low-order
byte is stored in the lesser of the two locations assigned.

VARIABLE-TABLE PARAMETER LOCATIONS

Parameter Locations beyond LOMEM

X0 $05, $06

YO $0C, 	$0D

COLA $15, $16

SHAPE $1F, $20

ROT $27, $28

SCALE $31, $32

60

VARIABLES USED WITHIN THE HIGH-RESOLUTION
SUBROUTINES

Variable 	 Hexadecimal
Name 	 Location 	Description

SHAPEL, SHAPER 	IA, 1B 	On-the-fly shape pointer.

HCOLOR1 	 1C 	On-the-fly color byte.

COUNTH 	 ID 	High-order byte of step count for LINE.

HBASL, HBASH 	26, 27 	On-the-fly BASE ADDRESS

HMASK 	 30 	On-the-fly BIT MASK

QDRNT 	 53 	2 LSB's are rotation quadrant for DRAW.

XOL, XOH 	 320, 321 	Most recent X-coordinate. Used for
initial endpoint of LINE. Updated
by PLOT, POSN, LINE and FIND, not DRAW.

YO 	 322 	Most recent Y-coordinate (see XOL,
XOH).

BXSAV 	 323 	Saves 6502 X-register during high-
resolution CALLs from BASIC.

HCOLOR 	 324 	Color specification for PLOT, POSN.

HNDX 	 325 	On-the-fly byte index from BASE
ADDRESS.

HPAG 	 326 	Memory page for plotting graphics.
Normally $20 for plotting in Page 1
of high-resolution display memory
($2000-$3FFF).

SCALE 	 327 	On-the-fly scale factor for DRAW.

SHAPXL, SHAPXH 	328, 329 	Start of Shape Table pointer.

COLLSN 	 32A 	Collision count from DRAW, DRAW1.

61

SHAPE TABLE INFORMATION

Shape Tape 	Description

Record #1 	A two-byte-long record that contains the length
of record #2, Low-order first.

Record Gap 	Minumum of .7 seconds in length.
Record #2 	The Shape Table (see below).

SHAPE TABLE
	

EXAMPLE

Start of Table
(Address Stored
in $328-$329)

4— Number of Shapes —4

4F__Beginning of Shape #1,_10. I
Relative to Start.

)
	Relative to Start.

41-------- Shape #1

4-- Shape #2 --110.

0-255
Unused
Low
High
Low
High

First Byte

Last Byte=0
First Byte

Last Byte=0

02
00
06
00
05
00
37
8A
A6
EE

00
32
FF
BB
ID
00

LOMEM —~ BASIC Variables 4—(if Table SHLOADed)---+BASIC Variables
($4A-$4B)

The address of the Shape Table's Start should be stored in locations $328
and $329. If the SHLOAD subroutine is used to load the table, Start will be
set to LOMEM (normally this is at $0800) and then LOMEM will be moved to one
byte after the end of the Shape Table, automatically.

If you wish to load a Shape Table named MYSHAPES2 from disk, beginning at
decimal location 2048 (0800 hex), and ending at decimal location 2048 plus
decimal 15 bytes (as in the example above), you may wish to begin your BASIC
program as follows:

0 D$ = "" : REM QUOTES CONTAIN CTRL D (D$ WILL BE ERASED BY SHAPE TABLE)
1 PRINT D$; "BLOAD MYSHAPES2 , A 2048" : REM LOADS SHAPE TABLE
2 POKE 808, 2048 MOD 256 : POKE 809, 2048 / 256 : REM SETS TABLE START
3 POKE 74, (2048 + 15 + 1) MOD 256 : POKE 75, (2048 + 15 + 1) / 256
4 POKE 204, PEEK(74) : POKE 205, PEEK(75) : REM SETS LOMEM TO TABLE END+1
5 XO = YO = COLR = SHAPE = ROT = SCALE : REM SETS PARAMETERS

62

APPLE II MEMORY MAP FOR USING HIGH-RESOLUTION
GRAPHICS WITH INTEGER BASIC

Highest RAM
Memory address:

This is 49151 ($BFFF)
on a 48K system

Booting DOS
Sets HIMEM here

24576
($6000)

16384
($4000)

8192
($2000)

CALL SHLOAD
Sets LOMEM here

2048
($0800)

Lowest RAM
Memory address:
0000 ($0000)

10752 	 Disk
($2A00) 	Operating
Bytes 	 System

III 	
(if booted)

User's BASIC program
Starts at HIMEM
and builds down

High-Resolution Graphics
Page 2

High-Resolution Graphics
Page 1

— — — —

Start at LOMEM

1 	

BASIC Variables

and build up

End+

Start

1
Shape Table 1
	(if SHLOADed)

Integer BASIC System use:
Low-resolution graphics

and Text screen, etc.

Invoking BASIC
Sets HIMEM here

HIMEM's value in
Locations 76-77

($4C-$4D)

Invoking BASIC
Sets LOMEM here

LOMEM's value in
Locations 74-75

($4A-$4B)

Unfortunately, there is no convention for mapping memory. This map shows
the highest (largest) address at the top, lowest (smallest) address at the
bottom. The maps of Shape Tables that appear on other pages show the
Starting address (lowest and smallest) at the top, the Ending address
(highest and largest) at the bottom.

63

PART G: COMMENTS

1. Using memory Page 1 for high-resolution graphics erases everything in
memory from location 8192 ($2000 hex) to location 16383 ($3FFF). If the top
of your system's memory is in this range (as it will be, if you have a 16K
system), Integer BASIC will normally put your BASIC program exactly where it
will be erased by INIT. You must protect your program by setting HIMEM
below memory Page 1, after invoking BASIC (reset ctrl B return) and before
RUNning your program: use this immediate-execution command:

HIMEM: 8192 	return

2. Using memory Page 2 for high-resolution graphics erases memory from
location 16384 ($4000) to location 24575 ($5FFF). If yours is a 24K system,
this will erase your BASIC program unless you do one of the following:

a) never use Page 2 for graphics; or
b) change HIMEM to 8192, as described above.

3. The picture is further confused if you are also using an APPLE disk with
your system. The Disk Operating System (DOS), when booted, occupies the
highest 10.5K ($2A00) bytes of memory. HIMEM is moved to just below the
DOS. Therefore, if your system contains less than 32K of memory, the DOS
will occupy memory Page 1 and Page 2. In that case, you cannot use the
High-Resolution graphics with the DOS intact. An attempt to do so will
erase all or part of the DOS. A 32K system can use only Page 1 for graphics
without destroying the DOS, but HIMEM must be moved to location 8192 as
described above. 48K systems can usually use the DOS and both
high-resolution memory pages without problems.

4. If you loaded your Shape Table starting at LOMEM in location 2048
($0800), from disk or from tape without using SHLOAD, Integer BASIC will
erase the Shape Table when it stores the program variables. To protect your
Shape Table, you must move LOMEM to one byte beyond the last byte of the
Shape Table, after invoking BASIC and before using any variables. SHLOAD
does this automatically, but you can use this immediate-execution command:

LOMEM: 2048 + tablelength + 1

where tablelength must be a number, not a variable name. Some programmers
load their Shape Tables beginning in location 3048 ($0BE8). That leaves a
safe margin of 1000 bytes for variables below the Shape Table, and at least
5000 bytes (if HIMEM:8192) above the table for their BASIC program.

5. CALLing an undefined or accidentally misspelled variable name is usually
a CALL to location zero (the default value of any undefined variable). This
CALL may cause unpredictable and unwelcome results, depending on the
contents of location zero. However, after you execute this BASIC command:

POKE 0, 96

an accidental CALL to location zero will cause a simple jump back to your
BASIC program, with no damage.

64

1 ************* 	**********
2 *
3 * APPLE—II HI—RESOLUTION *
4 * 	GRAPHICS SUBROUTINES 	*
5 *
6 * 	BY NOZ 	9/13/77
7 * 	 at
8 * 	ALL RIGHTS RESERVED 	*
9
10 **************************

12 * 	HI—RES EQUATES
13 SHAPEL EGU 	$1A POINTER TO
14 SHAPEH EQU 	$18 SHAPE LIST
15 HCOLOR1 EQU 	$1C RUNNING COLOR MASK
16 COUNTH EQU 	$1D
17 HBASL 	EGO 	$26 BASE ADR FOR CURRENT
16 HBASH 	EGU 	$27 	HI—RES PLOT LINE. 	A
19 HMASK 	EQU 	$30
20 ALL 	EQU 	$3C MONITOR Al.
21 AlH 	EQU 	$3D
22 A2L 	EQU 	$3E MONITOR A2.
23 A2H 	EQU 	$3F
24 LOMEML EQU 	$4A BASIC 	'START OF VARS'.
25 LOMEMH EQU 	$48
26 DXL 	EGO 	$50 DELTA—X FOR HI. IN, 	SHAPE.
27 DXH 	EQU 	$51
28 SHAPEX EQU 	$51 SHAPE TEMP.
29 DY 	EQU 	$52 DELTA—Y FOR HLIN, 	SHAPE.
30 QDRNT 	EQU 	$53 ROT QUADRANT (SHAPE).
31 EL 	EQU 	$54 ERROR FOR HLIN.
32 EH 	EQU 	$55
33 PPL 	EQU 	$CA BASIC START OF PROG PTR.
34 PPH 	EQU 	$C8
35 PVL 	EQU 	$CC BASIC END OF VARS PTR.
36 PVH 	EQU 	$CD
37 ACL 	EQU 	$CE BASIC ACC.
38 ACH 	EGO 	$CF
39 XOL 	EQU 	$320 PRIOR X—COORD SAVE
40 XOH 	EQU 	$321 AFTER HLIN OR HPLOT.
41 YO 	EGU 	$322 HLIN, HPLOT Y—COORD SAVE.
42 BXSAV 	EQU 	$323 X—REG SAVE FOR BASIC.
43 HCOLOR EQU 	$324 COLOR FOR HPLOT, HPOSN
44 HNDX 	EGO 	$325 HORIZ OFFSET SAVE.
45 HPAG 	EQU 	$326 HI—RES PAGE ($20 NORMAL)
46 SCALE 	EQU 	$327 SCALE FOR SHAPE, 	MOVE.
47 SHAPXL EQU 	$328 START OF
46 SHAPXH EQU 	$329 	SHAPE TABLE.
49 COLLSN EQU 	$32A COLI ISION COUNT.
50 HIRES 	EQU 	$C057 SWITCH TO HI—RES VIDEO
51 MIXSET EQU 	$C053 SELECT TEXT/GRAPHICS MIX
52 TXTCLR EQU 	$C050 SELECT GRAPHICS MODE.
53 MEMFUL EQU 	$E368 BASIC MEM FULL ERROR.
54 RNGERR EQO 	$EL.68 BASIC RANGE ERROR.
55 ACADR 	EQU 	$F11E 2—BYTE TAPE READ SETUP.
56 RD2BIT EGO 	$FCFA TWO—EDGE TAPE SENSE.
57 READ 	EQU 	$FEFD TAPE READ (61.62).
58 READX1 EGU 	$FF02 READ WITHOU1 HEADER.

60 * 	HIGH RESOLUTION GRAPHICS INITS
61 *
62 * ROM VERSION $D000 TO $D3FF
63 *
64 ORG 	$D000
65 OBJ 	$6000

D000 A9 20 66 SETHRL LDA 	4820 INIT FOR $2000-3FFF
0002 8D 26 03 67 STA 	HPAG HI—RES SCREEN MEMORY.

66

D005 AD 57 CO 68 LDA HIRES SET HIRES DISPLAY MODE
D008 AD 53 CO 69 LDA MIXSET WITH TEXT AT BOTTOM.
DOOR AD 50 CO 70 LDA TXTCLR SET GRAPHICS DISPLAY MODE
DOGE A9 00 71 HCLR LDA *$0
D010 85 1C 72 BKGNDO STA HCOLOR1 SET FOR BLACK BKGNU.
D012 AD 26 03 73 BKGND LDA HPAG
D015 85 18 74 STA SHAPEH INIT HI-RES SCREEN MEM
D017 AO 00 75 LDY 41$0 FOR CURRENT PAGE, 	NORMALLY
D019 84 1A 76 STY SHAPE). $2000-3FFF OR $4000-5FFF
DO1B A5 1C 77 8KGND1 LDA HCOLORI
1)010 91 1A 78 STA (SHAPEL),Y
DO1F 20 A2 DO 79 JSR CSHFT2 (SHAPEL,H) WILL SPECIFY
D022 CB 80 INY 32 SEPARATE PAGES.
D023 DO F6 81 BNF BKGNDI THROUGHOUT THE INIT.
D025 E6 18 82 INC SHAPEH
0027 A5 18 83 LDA SHAPEH
D029 29 1F 84 AND 46$1F TEST FOR DONE.
0028 DO EE 85 BWY BKONDI
002D 60 86 RTS

88 * 	HI-RES GRAPHICS POSITION AND PLOT SUERS
002E 03 89 HPOSN STA YO ENTER WITH V IN A-REG,
D031 8E 20 03 90 STX XOL XL IN X-REG,
D034 BC 21 03 91 STY XOH AND XH IN Y-REG.
D037 48 92 PHA
D038 29 CO 93 AND *$CO
D03A 85 26 94 STA HBASL FOR V-COORD = OOABCDEF.
003C 4A 95 LSR ;CALCULATES BASE ADDRESS
D03D 4A 96 LSR ;IN HBASL, 	HBASH FOR
DOSE 05 26 97 ORA HBASL 	ACCESSING SCREEN MEM
D010 85 26 98 STA HBASL 	VIA (HBASL),Y ADDRESSING MODE
D012 68 99 PLA
D013 85 27 100 STA HBASH
0015 OA 101 ASL ;CALCULATES
D016 OA 102 ASL ;HBASH = PPPFGHCD,
1)017 OA 103 ASL ;HBASL = EABAB000
D018 26 27 104 ROL HBASH
DOIA OA 105 ASL ;WHERE PPP=001 FOR $2000-3FFF
D018 26 27 106 ROL HBASH SCREEN MEM RANGE AND
0010 OA 107 ASL PPP=O10 FOR $4000-7FFF
DOlE 66 26 108 ROR HBASL (GIVEN V-COORD=ABCDEFGH)
1)050 A5 27 109 LDA HBASH
D052 29 1F 110 AND $$1F
D054 OD 26 03 111 ORA HPAG
D057 85 27 112 STA HBASH
D059 8A 113 TXA DIVIDE XO BY 7 FOR
D05A CO 00 114 CPY *$0 INDEX FROM BASE ADR
DOSC FO 05 115 BED HPOSN2 (QUOTIENT) AND BIT
DOSE AO 23 116 LDY **23 WITHIN SCREEN MEM BYTE
D060 69 04 117 ADC *$1 (MASK SPEC'D BY REMAINDER)
D062 C8 118 HPOSN1 INY
D063 E9 07 119 HPOSN2 SBC $$7 SUBTRACT OUT SEVENS.
0065 BO FB 120 BCS HPOSN1
D067 8C 25 03 121 STY :iNDX WORKS FOR XO FROM
DO6A AA 122 TAX 0 TO 279, 	LOW-ORDER
0068 BD EA DO 123 LDA MSKTBL-249,X BYTE IN X-REO,
DOSE 85 30 124 STA ::MASK HIGH IN Y-REG ON ENTRY
D070 98 125 TYA
D071 4A 126 LSR ; 	IF ON ODD BYTE 	(CARRY SET)
D072 AD 24 03 127 LDA. HCOLOR THEN ROTATE HCOLOR ONE
D075 85 1C 128 HPOSN3 STA HCOLOR1 BIT FOR 180 DEGREE SHIFT
D077 BO 29 129 BCS CSHFT2 PRIOR TO COPYING TO HCOLOR1.
D079 60 130 RTS
DO7A 20 2E DO 131 HPLOT JSR HPOSN
D07D A5 IC 132 HPLOTI LDA HCOLORI CALC BIT POSN IN HBASL,H
DO7F 51 26 133 FOR (HBASL),Y HNDX, 	AND HMASK FROM
0031 25 30 134 AND HMASK Y-COORD IN A-REG,
D033 51 26 135 FOR (HBASL),Y X-COORD IN X,Y-REGS.
D035 91 26 136 STA (HBASL),Y FOR ANY 'L' BITS OF HMASK
D037 60 137 RTS SUBSTITUTE CORRESPONDING

138 . BIT OF HCOLOR1.

67

140 • HI-RES GRAPHICS L,R,U,D SUBRS
D038 10 24 141 LFTRT BPL 	RIGHT USE SIGN FOR LFT/RT SELECT
DO3A AS 30 142 LEFT LDA 	HMASK
003C 4A 143 LSR 	SHIFT LOW-ORDER
DOSD BO 05 144 BCS 	LEFT1 7 BITS OF HMASK
D03F 49 CO 145 EOR 	*$C0 ONE BIT TO LSB.
D071 85 30 146 LR1 STA 	HMASK
0073 60 147 RTS
0094 88 148 LEFTI DEY 	DECR HORIZ INDEX.
no95 10 02 149 BPL 	LEFT2
0077 AO 27 150 LDY 	#427 WRAP AROUND SCREEN.
0079 A9 CO 151 LEFT2 LDA 	**CO NEW HMASK, RIGHTMOST
DO7B 85 30 152 NEWNDX STA 	HMASK DOT OF BYTE.
0070 8C 25 03 153 STY 	HNHX UPDATE HORIZ INDEX.
DOAO A5 IC 154 CSHIFT LDA 	HCOLOR1
DOA2 OA 155 CSHFT2 ASL 	, 	ROTATE LOW-ORDER
D0A3 C9 CO 156 CMP 	k$C0 7 BITS OF HCOLORI
DOA5 10 06 157 BPL 	RTS1 ONE BIT POSN.
DOA7 A5 1C 158 LDA 	HCOLORI
DOA9 49 7F 159 EOR 	1147F ZxYxYxYX -> ZYXYXYXY
DOAB 85 IC 160 STA 	HCOLORI
DOAD 60 161 RTS1 RTS
DOAE A5 30 162 RIGHT LDA 	HMASK
0090 OA 163 ASL 	SHIFT LOW-ORDER
0081 49 80 164 EOR 	#180 7 BITS OF HMASK
0083 30 DC 165 CMI 	LR1 ONE BIT TO MSB.
DOSS A9 81 166 LDA 	#$81
0087 C8 167 INY 	NEXT BYTE.
COBS CO 28 168 CPY 	41$28
DOBA 90 DF 169 BCC 	NEWNDX
DOBC AO 00 170 LOY 	#40 WRAP AROUND SCREEN IF >279
DOGE BO DB 171 BCS 	NEWNDX ALWAYS TAKEN.

173 * 	L,R,U,D, 	SUBROUTINES.
DOCO 18 174 LRUDXI CLC 	NO 90 DEG ROT /X-OR).
DOC1 A5 51 175 LRUDX2 LDA 	SHAPEX
DOC3 29 04 176 AN)) 	9$ 	IF 82=0 THEN NO PLOT.
D005 FO 27 177 BEG 	LRUD4
DOC7 A9 7F 178 LDA 	*$7F FOR EX-OR INFO SCREEN MEM
DOC9 25 30 179 AN() 	HMASK
DOCK 31 26 180 AND 	(HBASL),Y SCREEN BIT SET?
COLD DO 113 181 SUE 	LRUD3
DOCF EE 2A 03 182 INC 	COLLSN
0002 A9 7F 183 LDA 	#47F
DOD4 25 30 184 AND 	HMASK
D0D6 10 12 185 BPL 	LRUD3 ALWAYS TAKEN.
DODS 18 186 LRUD1 CLC 	NO 90 DEG ROT.
DOD9 A5 51 187 LRUD2 LOA 	SHAPEX
DOM 29 04 188 AND 	#44 IF B2=0 THEN NO PLOT.
DODD FO OF 189 BEn 	LRUD4
CODE 81 26 190 LDA 	(HBASL),Y
DOE1 45 IC 191 EOR 	HCOLORI SET HI-RES SCREEN BIT
DOE3 25 30 192 AND 	HMASK TO CORRESPONDING HCOLOR1
DOES DO 03 193 BRE 	LRUD3 IF BIT OF SCREEN CHANGES
DOX7 EE 2A 03 194 INC 	COLLSN THEN INCR COLLSN DETECT
DOEA 51 26 195 LRUD3 EOR 	(HHASL),Y
COEC 91 26 196 STA 	(HBASL),Y
DOTE A5 51 197 LRUD4 LOA 	SHAPEX ADD GDRNT TO
DOFO 65 53 198 ADC 	GORNT SPECIFIED VECTOR
DOF2 29 03 199 ANU 	#43 AND MOVE LFT, 	RT,

200 003 EOU 	•-1 UP, 	OR DWN BASED
D0F4 C9 02 201 CMP 	#182 ON SIGN AND CARRY.
D0F6 6A 202 RoR
DOF7 BO 8F 203 LRUD BCS 	LFTRT
DOF9 30 30 204 UPDWN BMI 	DOWN4 SIGN FOR UP/OWN SELECT
DOFB 18 205 UP CLC
DOFC A5 27 206 LOA 	HBASH CALC BASE ADDRESS
DOTE 2C EA DI 207 RI) 	E01C (ADR OF LEFTMOST BYTE)
0101 DO 22 208 BRE 	UP4 FOR NEXT LINE UP
D103 06 26 209 ASL 	HBASL IN (HBASL, 	HBASH)

68

0105 BO 1A 210 BCS UP2 WITH 192—LINE WRAPAROUND
D107 2C F3 DO 211 BIT E03
D1OA FO 05 212 BED UPI
D10C 69 IF 213 ADC $$1F 	BIT MAP
010E 38 214 SEC
D1OF BO 12 215 BCS UP3 FOR ROW = ABCDEFGH,
0111 69 23 216 UPI ADC M$23
D113 48 217 PHA
D114 45 26 218 LDes. HDASL HBASL = EABAB000
D116 69 BO 219 ADC M$B0 HBASH = PPPFGHCD
0118 BO 02 220 BCS UPS
D1IA 69 FO 221 ADC M$F0 WHERE PPP=001 FOR PRIMARY
DI1C 85 26 222 UP5 STA HBASL HI—RES PAGE ($2000—$3FFF)
DUE 68 223 PLA
011F BO 02 224 DCS UP3
0121 69 IF 225 UP2 ADC O$1F
D123 66 26 226 UP3 ROR HDASL
0125 69 FC 227 UP4 ADC M$FC
D127 85 27 228 UPDWN1 STA HBASH
D129 60 229 RTS
D12A 18 230 DOWN CLC
0126 A5 27 231 DOWN4 LnA HBASH
6120 69 04 232 ADC M$4 CALC BASE ADR FOR NEXT LINE

233 E04 LOU *-1 DOWN TO 	(HBASL,HBASH)
D12F 2C EA DI 234 BIT EO1C
D132 DO F3 235 EINE UPDWNI

0134 06 26 236 ASL HBASL WITH 192—LINE WRAPAROUND
D136 90 19 237 BCC COWNI
D138 69 E0 238 ADC M$E0
D13A 18 239 CLC
0138 2C 2E DI 240 BIT E04
DI3E FO 13 241 BEO DOWN2
D140 A5 26 242 LDA HBASL
0142 69 50 243 ADC *150
0144 49 FO 244 FOR *$FO
0146 FO 02 245 EEO DOWN3
D148 49 FO 246 FOR M$F0
D14A 85 26 247 DOWN3 STA HBASL
D14C AD 26 03 248 LDA HPAG
1314F 90 02 249 BCC DOWN2
D151 69 E0 250 DOWN1 ADC 09E0
D153 66 26 251 DOWN2 ROR HBASL
0155 90 DO 252 BCC UPDWNI

254 HI—RES GRAPHICS LINE DRAW SUBRS
0157 48 255 HLINRL PHA
D158 A9 00 256 LDA #$0 SET (XOL,X0H) 	AND
015A BD 20 03 257 ETA XOL YO TO ZERO FOR
0150 80 21 03 258 STA XOH REL LINE DRAW
D160 80 22 03 259 STA YO 	(DX, 	DY).
0163 68 260 PLA
D164 48 261 HLIN PHA ON ENTRY
0165 38 262 SEC XL: 	A—REG
D166 ED 20 03 263 SBC XOL XHi 	X—REG
0169 48 264 PHA Y: 	Y—REG
D164 8A 265 TXA
D16B ED 21 03 266 SBC X0H
0116E 85 53 267 STA ODRNT CALC ABS(X—XO)
D170 BO OA 268 BCE HLIN2 IN 	(DXL,DXH)

69

0172 68 269 PLA
D173 49 FF 270 EOR 0$FF X DIR TO SIGN BIT
D175 69 01 271 ADC NC OF ODRNT,
0177 48 272 PHA 0=RIGHT (DX POS)
0178 A9 00 273 LDA 4f$0 1=LEET (DX NEG)
017A E5 53 274 SBC ODRNT
017C 85 51 275 HLIN2 STA DXH
017E 85 55 276 STA EH INIT (EL,EH) 	TO
D180 68 277 PLA Ans(x-xo)
0191 85 50 278 STA DXL
0153 85 54 279 STA EL
D185 68 280 PLA
0106 EID 20 03 281 STA XOL
0189 SE 21 03 282 STX XOH
D18C 98 283 TYA
018D 18 284 CLC
DISE ED 22 03 285 SBC YO CALC -ABS(Y-0)-1
D191 90 04 286 BCC HLIN3 	IN DY.
0193 49 FF 287 EOR *$FF
D195 69 FE 288 ADC *$FE
D197 85 52 289 HLIN3 STA DY ROTATE V DIR INTO
D179 8C 22 03 290 STY YO ODRNT SIGN BIT
1319C 66 53 291 ROR ODRNT (0=UP, 	1=DOWN)
D17E 38 292 SEC
D19F E5 50 293 Sin DXL INIT (COUNTL, 	COUNTH).
D1A1 AA 294 TAX TO -(DEITX+DELTY+1)
D1A2 A9 FF 295 LDA **FF
01A4 E5 51 296 SBC DIN
01A6 85 10 297 STA COUNTH
01A8 AC 25 03 298 LDY HNUX HORIZ INDEX
D1AB BO 05 299 BCS MOVEX2 ALWAYS TAKEN.
01AD OA 300 MOVEX ASL ; 	MOVE IN X-DIR. 	USE
D1AE 20 88 DO 301 JSR LFTRT ODRNT 86 FOR LFT/RT SELECT
D181 38 302 SEC
0182 A5 54 303 MOVEX2 LDA EL ASSUME CARRY SET.
0184 65 52 304 ADC DY (EL,EH)-DELTY TO (EL,EH)
DIB6 85 54 305 STA EL NOTE: 	DY IS (-DELTY)-1
D1B8 A5 55 306 LDA EH CARRY CLR 	IF 	(EL,EH)
D1BA E9 00 307 SBC **0 GOES NEG.
DIBC 85 55 308 HCOUNT STA EH
D1BE BI 26 309 LDA (H8ASL),Y SCREEN BYTE.
PICO 45 1C 310 EOR HCOLORI PLOT DOT OF HCOLORI.
0102 25 30 311 ANO HMASK CURRENT BIT MASK.
D1C4 51 26 312 EOR (HRASL),Y
0106 91 26 313 STA (HBASL),Y
D1C8 ES 314 INX DONE 	(DEiTX+DELTY)
D1C9 DO 04 315 BNI7 HLIN4 DOTS?
D1CB E6 10 316 INC COUNTH
DICD FO 68 317 BEG RTS2 YES. 	RETURN.
D1CF A5 53 318 HLIN4 LDA ODRNT FOR DIRECTION TEST
0101 BO DA 319 BCS MOVEX IF CAR SET, 	(EL, 	EH) POS
D103 20 F9 DO 320 JSR UPDWN IF CLR, 	NEG, 	MOVE YDIR
0106 18 3P1 CLC
0/D7 A5 54 322 LDA EL 	(EI,EH)+DELTX
D1D9 65 50 323 ADC DXL TO 	(EL,EH).
D10B 85 54 324 STA EL
0100 A5 55 325 LDA EH CAR SET IF (EL,EH) GOES POS
D1DF 65 51 326 ADC DXH
0181 50 09 327 OVC HCOUNT ALWAYS TAKEN.
01E3 81 328 MSKTBL HEX 81 LEFTMOST BIT OF BYTE.
D1E4 82 84 88 329 HEX 82,84,88
D1E7 90 AO 330 HEX 90, A0
D1E9 CO 331 HEX CO RIGHTMOST BIT OF BYTE.
DIEA IC 332 E01C HEX IC
D1EB FF FE FA 333 COS HEX FF,FE,FA,F4,EC,E1,D4,C5,I14
D1F4 Al 8D 78 334 HEX A1,8D,78,61,49,31,18,FF

70

DIFC AS 26
D1FE OA
01FF AS 27
D201 29 03
0203 2A
D204 05 26

336 * 	HI-RES GRAPHICS COORDINATE RESTORE SVOR
337 HFIND 	LDA 	HBASL
338 	ASL 	CONVERTS BABE ADR
339 	LDA 	HBASH TO Y-COORD.
340 	AND 	M$3
341 	ROL 	FOR HBASL 	EABAB000
342 	ORA 	HBASL HBASH 	PPPFGHCD

D206 OA 343 ASL
0207 OA 344 ASL ; 	GENERATE
0208 OA 345 ASL ; 	Y-COORD = ABCDEFGH
D209 SD 22 03 346 STA YO
D20C AS 27 347 LOA HBASH (PPP=SCREEN PAGE,
020E 4A 348 LSR ; NORMALLY 001 FOR
020F 4A 349 L8R ; 	$2000-$3FFF
D210 29 07 350 AND M$7 HI-RES SCREEN)
D212 OD 22 03 351 ORA YO
D215 80 22 03 352 STA YO CONVERTS HNDX (INDEX
D218 AD 25 03 353 LDA HNDX FROM BASE ADR)
D21B OA 354 ASL ; 	AND HMASK (BIT
D21C 6D 25 03 355 ADC HNDX MASK) TO X-COORD
D21F OA 356 ASL J 	IN 	(XOL,X0H)
D220 AA 357 TAX (RANGE $0-$133)
D221 CA 358 DEX
0222 A5 30 359 LDA HMASK
D224 29 7F 360 AND 8417F
D2F6 ES 361 HFIND1 INX
D2V7 4A 362 LSR
D228 DO FC 363 EWE HFIND1
D2PA SD 21 03 364 STA ION
D22D 8A 365 TXA
D22E 18 366 CLC CALC HNDX*7
D22F 6D 25 03 367 ADC HNDX LOG (BASE 2) HMASK.
D232 90 03 368 BCC HFIND2
D234 EE 21 03 369 INC ION
D237 BD 20 03 370 HFIND2 STA XOL
D23A 60 371 RTS2 RTS

373 * 	HI-RES GRAPHICS SHAPE DRAW SUBR
374
375 * SHAPE DRAW
376 * R 	0 TO 63
377 * SCALF FACTOR USED (I-NORMAL)
378 •

D2313 86 IA 379 DRAW STX SHAPEL DRAW DEFINITION
D230 84 18 380 STY SHAPEH POINTER.
D23F AA 381 DRAWL TAX
D740 4A 382 LSR ; 	ROT 	($0-$3F)
D241 4A 383 LSR
D242 4A 384 LSR GDRNT 0-UP, 	1-RT,
0243 4A 385 LSR 2=DWN, 	3.LFT.
D244 85 53 386 STA GDRNT
D246 BA 387 TXA
D247 29 OF 388 AND NSF
0249 AA 389 TAX
D24A BC ES DI 390 LDY COS,X SAVE COS AND SIN
D24D 84 50 391 STY DXL VALS IN DXL AND DY.
D24F 49 OF 392 FOR NSF
D251 AA 393 TAX
D252 BC EC D1 394 LDY C08.1,X
0255 CS 395 INY
D256 84 52 396 STY DY
D258 AC 25 03 397 DRAW2 LDY HNDX BYTE INDEX FROM
D258 A2 00 398 LDX 8$0 HI-RES BASE ADR.
025D BE 2A 03 399 SIN COLLSN CLEAR COLLISION COUNT.
D260 Al IA 400 LDA (SHAPEL,X) 	1ST SHAPE DEF BYTE.

71

0262 85 51 401 DRAW3 	STA 	SHAPEX
0264 A2 80 402 LDX 	8$80
0266 86 54 403 SIX 	El 	EL,EH FOR FRACTIONAL
D2A8 86 55 404 STX 	EH L,R,U,D VECTORS.
026A AE 27 03 405 LDX 	SCALF SCALE FACTOR.
D26D A5 54 406 DRAW4 	LDA 	EL
D26F 38 407 SEC 	IF FRAC COS OVFL
0270 65 50 408 ADC 	DXL THEN MOVE IN
D272 85 54 409 STA 	EI 	SPECIFIED VECTOR
02/4 90 04 410 BCC 	DRAWS DIRECTION.
D2/6 20 D8 DO 411 jSR 	LRUD1
02/9 18 412 CLC
D27A A5 55 413 DRAWS 	LDA 	EH IF FkAC SIN OVFL
D27C 65 52 414 ADC 	DY THEN MOVE IN
D27E 65 55 415 STA 	EH SPECIFIED VECTOR
D230 90 03 416 BCC 	DRAW6 DIRECTION +90 DEC
0232 20 D9 DO 417 JSR 	LRUD2
D235 CA 418 DRAW6 	DEL 	LOOP ON SCALE
D236 DO E5 419 BNE 	DRAW4 FACTOR.
0238 A5 51 420 LDA 	SHAPEX
023A 4A 421 LSR 	, 	NEXT 3—BIT VECTOR
0288 4A 422 LSR 	; 	OF SHAPE DEF.
D28C 4A 423 LSR
D23D DO D3 424 BNE 	DRAW3 NOT DONE THIS BYTE.
023F E6 IA 425 INC 	SHAPEL
D271 DO 02 426 BNE 	DRAW7 NEXT BYTE OF
D2,e3 E6 113 427 INC 	SHAPEH SHAPE DEFINITICN.

D295 Al IA 428 DRAW7 	LDA 	(SHAPEL, X)
0277 DO C9 429 BNt 	DRAW3 DONE IF ZERO.
D279 60 430 ars

432 ■ HI—RES GRAPHICS SHAPE EX—OR SUBR
433 *
434 • EX—OR SHAPE INTO SCREEN.
435 *
436 * ROT = 0 TO 3 (QUADRANT ONLY)
437 * SCALE IS USED
438 *

D29A 86 lA 439 XDRAW 	STX 	SHAPEL SHAPE DEFINITION
029C 84 18 440 STY 	SHAPEH POINTER.
029E AA 441 XDRAWI TAX
D29F 4A 442 LSR 	, 	ROT 	($0—$3F)
02A0 4A 443 LSR
D2A1 4A 414 LSR 	ODRNT 0=UP, 	1=RT,
D2A2 4A 445 LSR 	2=DWN, 	3-LFT
D2A3 85 53 446 STA 	°DANT
D2A5 8A 447 TXA
D2A6 29 OF 448 AND 	#$F
D2A8 AA 419 TAX
D2A9 BC EB DI 450 LOY 	COS,X SAVE COS AND SIN
D2AC 84 50 451 STY 	DXL VALS IN DXL AND DY,
D2AE 49 OF 452 FOR 	*SF
D280 AA 453 TAX
02111 BC EC DI 454 LOY 	COS+I,X
D2B4 C8 455 INY
D285 84 52 456 STY 	DY
D287 AC 25 03 457 XDRAW2 LDY 	HNDX INDEX FROM HI—RES
0214A A2 00 458 LDX 	850 BASE ADR.
02BC 8E 2A 03 459 STX 	COLLSN CLEAR COLLISION DETECT
D21F AI IA 460 LDA 	(SHAPEL,X) 	1ST SHAPE DEF BYTE.

72

D2C1 85 51 461 XDRAW3 STA SHAPEX
D2C3 A2 80 462 LDX M$90
D2C5 86 54 463 STX El 	EL,EH FOR FRACTIONAL
D2C7 86 55 464 STX EH L,R,U,D, 	VECTORS.
D209 AE 27 03 465 LDX SCALE SCALE FACTOR.
D2CC A5 54 466 XDRAW4 LDA EL
D2CE 38 467 SEC IF FRAC COS OVFL
D2CF 65 50 468 ADC DXL THEN MOVE IN
02D1 05 54 469 STA EL SPECIFIED VECTOR
02D3 90 04 470 BCC XDRAW5 DIRECTION
D205 20 CO DO 471 JSR LRUDXI
0208 18 472 CLC
D2D9 A5 55 473 XDRAW5 LOA EH IF FRAC SIN OVFL
D208 65 52 474 ADC DY THEN MOVE IN
D2DD 85 55 475 STA EH SPECIFIED VECTOR
D2OF 90 03 476 BCC XDRAW6 DIRECTION +90 DEG.
D221 20 D9 DO 477 JSR LRUD2
D284 CA 472 XDRAW6 DEX LOOP ON SCALE
0285 DO E5 479 BNE XDRAW4 FACTOR.
D227 A5 51 480 LDA SHAPEX
0289 4A 481 LSR ; 	NEXT 3-BIT VECTOR
MCA 4A 482 LSR ; 	OF SHAPE DEF.
D2FB 4A 493 LSR
028C DO D3 494 BNE XDRAW3
D2XE E6 IA 485 INC SHAPEL
0210 DO 02 486 BNE XDRAW7 NEXT BYTE OF
0212 E6 IB 487 INC SHAPEH SHAPE DEF
0224 Al 	IA 488 XDRAW7 LOA (SHAPEL.X)
D226 DO C9 489 BNE XDRAW3 DONE IF ZERO.
D2F8 60 490 RTS

492 • ENTRY POINTS FROM APPLE-II BASIC
D2F9 20 90 D3 493 BPOSN JSR PCOLR POSN CALL, 	COLR FROM BASIC
D2FC 8D 24 03 494 STA HCOLOR
D2IF 20 AF D3 495 JSR GETYO YO FROM BASIC.
0302 48 496 PHA
D303 20 9A 03 497 JSR GETXO XO FROM BASIC.
D306 68 498 PLA
D307 20 2E DO 499 JSR HPOSN
D30A AE 23 03 500 LOX BXSAV
030D 60 501 RTS
D3OE 20 F9 D2 502 BPLOT JSR BPOSN PLOT CALL (BASIC)
D311 4C 7D DO 503 ,JMP HPLOT1
D314 AD 25 03 504 BLINI LDA HNDX
D317 4A 505 LSR , 	SET HCOLORI FROM
D3I8 20 90 D3 506 .JSR PCOLR BASIC VAR COLR.
0318 20 75 DO 507 JSR HPOSN3
D31E 20 9A 03 508 BLINE JSR GEM) LINE CALL, GET XO FROM BASIC
0321 8A 509 TXA
0322 48 510 PHA
0323 98 511 TYA
0324 AA 512 TAX
D325 20 AF D3 513 JSR GETYO YO FROM BASIC
D328 AS 514 TAY
0329 68 515 PLA
D32A 20 64 DI 516 JSR HLIN
D320 AE 23 03 517 LDX BXSAV
D330 60 518 RTS
0331 20 90 D3 519 BOND JSR PCOLR BACKGROUND CALL
D334 4C 10 DO 520 JMP BKONDO

73

522 * 	DRAW ROUTINES
D337 20 F9 D2 523 BDRAWI JSR BPOSN
D33A 20 51 D3 524 3DRAW JSR BDRAWX DRAW CALL FROM BASIC.
D330 20 38 D2 525 JSR DRAW
D310 AE 23 03 526 LDX BXSAV
03X3 60 527 RTS
0344 20 F9 D2 528 BXDRW1 JSR BPOSN
0347 20 51 D3 529 BXDRAW JSR BDRAWX EX-OR DRAW
034A 20 9A D2 530 JSR XDRAW FROM BASIC.
031D AE 23 03 531 LOX BXSAV
D350 60 532 RTS
D351 BE 23 03 533 BDRAWX STX BXSAV SAVE FOR BASIC
D354 AO 32 534 LDY M132
D356 20 92 D3 535 JSR PBYTE SCALE FROM BASIC.
D359 8D 27 03 536 STA SCALE
035C AO 28 537 LDY $M128
035E 20 92 D3 53e JSR PBYTE ROT FROM BASIC.
D361 48 539 PHA SAVE ON STACK.
0362 AD 28 03 540 LDA SHAPXL
0365 85 	IA 541 STA SHAPEt 	START OF
0367 AD 29 03 542 LDA SHAPXH SHAPE TABLE.
D36A 85 ID 543 STA SHAPEH
036C AO 20 544 LDY *120
036E 20 92 D3 545 JSR PBYTE SHAPE FROM BASIC.
0371 FO 39 546 BEG RERR1
D373 A2 00 547 LDX $40
D375 Cl 	lA 548 CMP (SHAPEL,X) 	> NUM OF SHAPES?
0377 FO 02 549 BEG BDRWX1
D3/9 BO 31 550 BCS REHR' YES, 	RANGE ERR
D37B OA 551 BDRWX1 ASL
037C 90 03 552 BCC BDRWX2
0375 56 18 553 INC SHAPEH
0330 18 554 CLC
0331 AB 555 BDRWX2 TAY SHAPE NO 	2.
0332 B1 	IA 556 LDA (SHAFEL),Y
D334 65 IA 557 ADC SHAPEL
D336 AA 558 TAX ADD 2-BYTE INDEX
0337 CS 559 INY TO SHAPE TABLE
D398 01 	IA 560 LDA (SHAPEL),Y START ADR
033A 6D 29 03 561 ADC SHAPXH 	(X LOW, 	Y HI).
033D AS 562 TAY
0335 68 563 PLA ROT FROM STACK.
033F 60 564 RTS

566 * 	BASIC PARAM FE1CH SUBR'S
D390 AO 16 567 PCOLR LDY 41116
0392 81 4A 568 PBYTE LDA (LOMEML),Y
0394 DO 16 569 BNB RERR1 GET BASIC PARAM.
D376 88 570 DEY (ERR 	IF >255)
D397 B1 	4A 571 LOA (LOMEML),Y
D399 60 572 RTSB RTS
039A BE 23 03 573 GETXO STX BXSAV SAVE FOR BASIC.
D39D AO 05 574 LOY 1115
D39F 81 	4A 575 LDA (LOMEML),Y XO LOW-ORDER BYIE
D3A1 AA 576 TAX
D3A2 CS 577 INY
D3A3 81 4A 578 LDA (LOMEML),Y HI-ORDER BYTE.
D3A5 AS 579 TAY
D3A6 ED 18 580 CPX #118
D3A8 E9 01 581 SBC $11 RANGE ERR IF >279
D3AA 90 ED 582 BCC RTSB
D3AC 4C 68 EE 583 RERR1 JM), RNGERR
03AF AO 00 584 GETYO LDY MID OFFSET TO YO FROM LOMEM
D3R1 20 92 D3 585 JSR PBYTE GE) 	BASIC PARAM YO.
D354 C9 CO 586 CMP **CO 	(ERR 	IF >191)
0386 BO F4 587 BCS RERR1
0388 60 588 RTS

74

590 * 	SHAPE TAPE LOAD SUBROUTINE
0369 SE 23 03 591 SHLOAD SIX BXSAV SAVE FOR BASIC.
030C 20 1E F1 592 JSR ACADR READ 2-BYTE LENGTH INTO
D3PF 20 FD FE 593 JSR READ BASIC ACC
03C2 A9 00 594 LDA $100 ;START OF SHAPE TABLE IS $0800
D3C4 85 3C 595 STA AIL
D3C6 SD 28 03 596 STA SHAPXL
03C9 18 597 CLC
D3CA 65 CE 598 ADC ACL
D3CC A8 599 TAY
D3CD A9 08 600 LDA $$08 iHIGH BYTE OF SHAPE TABLE POINTER.
D3CF 85 3D 601 STA A1H
0301 8D 29 03 602 STA SHAPXH
D3D4 65 CF 603 ADC ACH
D3D6 BO 25 604 BCS MFULL1 NOT ENOUGH MEMORY.
0308 C4 CA 605 CPY PPL
D3DA 48 606 PHA
030B E5 CB 607 SBC PPH
0300 68 608 PLA
MOE BO 10 609 BCS MFULL1
0380 84 3E 610 STY A2L
D3E2 85 3F 611 STA A7H
D354 C8 612 INY
0385 DO 02 613 BY& SHI OD1
D3E7 69 01 614 ADC NC
D3E9 84 4A 615 SHLODI STY LOMEML
03E8 85 4B 616 STA LOMEMH
03ED 84 CC 617 STY PVL
DOFF 85 CD 618 STA PVH
D3-1 20 FA FC 619 JSR RD2BIT
D3E4 A9 03 620 LDA $13 .5 SECOND HEADER.
03:,6 20 02 FF 621 JSR READXI
D3F9 AE 23 03 622 LDX BXSAV
03FC 60 623 RTE
D3E0 4C 68 E3 624 MFULL1 JMP MEMFUL

--- END ASSEMBLY ---

TOTAL ERRORS: 00

75

..44.****4.#4****A.****A***** *****###.11.11*******.g.

2 *
3 * APPLE-II BASIC RENUMBER / APPEND SUBROUTINES ■
4 *
5 * 	 VERSION TWO
6 * 	 RENUMBER
7 	 >CLR
8 * 	 'START==
9 . 	 >STEP=
10 . 	 >CALL --10531
11 *
12 * 	 OPTIONAL
13 * 	 >FROM=
14 * 	 >TO=
15 * 	 >CALL -10521
16 *
17 * 	 USE RENX ENTRY
18 * 	 FOR RENUMBER ALL
19 *
20 * 	 WOZ 	APRIL 12, lwa
21 * 	 APPLE COMPUTER INC.
22 **********************************x***************

24 *
25 *
26 * 	6502 EQUATES
27 *
26 ROL 	EGU *0 	 LOW-ORDER SW16 RO BYTE.
29 ROH 	EQU $1 	 NI-ORDER.
30 ONE 	EQU $01
31 PILL 	EQU 	$16 	LOW-ORDER SW16 R11 BYTE.
32 R11H 	EQU 	$17 	 H/-ORDER.
33 HIMEM EGU 	$4C 	 BASIC HIMEM POINTER.
34 PPL 	EQU $CA 	 BASIC PRUG POINTER.
35 PVL 	EQU $CC 	 BASIC VAR POINTER.
36 MEMFULL EQU $E360 	BASIC MEM FULL ERROR.
37 PRDEC EGO $E51B 	BASIC DECIMAL PRINT SUBR.
38 RANGERR EQU $EE6B 	BASIC RANGE ERROR.
39 LOAD EQU $FODF 	BASIC LOAD SUBR.
40 SW16 	EGO 	$F6e9 	SWFET 16 ENTRY.
41 GROUT EQU 	$FDEE 	CAR RET SUER.
42 COOT EOU $FDED 	CHAR OUT SUBR.

44 *
45 * 	SWEET 16 EQUATES
46 *
47 ACC 	EQU $0 	 SWEET 16 ACCUMULATOR.
48 NEWLOW EQU $1 	 NEW INITIAL LNO.
49 NEWINCR EQU 	$2 	 NEW LNO INCR.
50 LNLOW EGU $3 	 LOW LNO OF RENUM RANGE.
51 LNHI 	EQU $4 	 HI LNO OF RENUM RANGE.
52 TBLSTRT EOU 45 	 LNO TABLE START.
53 TBLNDX1 EQU $6 	 PASS 1 LNO TBL INDEX.
54 TBLIM LOU $7 	 LNO TABLE LIMIT.
55 SCRB EQV $8 	 SCRATCH REG.
56 HMEM 	EOU $8 	 HIMEM (END OF PROM).
57 SCR9 	EQU 	$9 	 SCRATCH REG.
58 PRGNDX EQU 	$9 	 PASS 1 PROG INDEX.
59 PRGNDX1 EGU $A 	 ALSO PROG INDEX.
60 NEWLN EGO $8 	 NEXT "NEW LNO".
61 NEWLNI EGO !IC 	 PRIOR "NEW LNO" ASSIGN.
62 TBLND EQU $6 	 PASS 2 LNO TABLE END.
63 PRGNDX2 EGO $7 	 PASS 2 PROD INDEX.
64 CHRO 	EQU 	$9 	 ASCII "0".
65 CHRA 	EGO 	$A 	 ASCII "A".

76

66
67
68
69
70
71
72
73
74
75

MODE 	EQU
TBLNDX2 EQU
OLDLN 	EQU
STRCON EQU
REM 	EQU
R13 	EQU
THEN 	EQU
LIST 	EQU
DEL 	EQU
SCRC 	EQU

$C
SB
SD
SB
$C
$D
$D
SD
SD
$C

CONST/LNO MODE.
LNO TBL IDX FOR UPDATE.
OLD LNO FOR UPDATE.
BASIC STR CON TOKEN.
BASIC REM TOKEN.
SWEET 16 REG 13 	(CPR REG).
BASIC THEN TOKEN.
BASIC LIST TOKEN.

SCRATCH REG FOR APPEND.

77 *
78 * APPLE-11 BASIC RENUMBER SUBROUTINE - PASS 1
79 ORG $0400
80 08J $4400

D400 20 29 F6 81 RENX JSR SW16 OPTIONAL RANGE ENTRY.
0403 BO 82 SUB ACC
D404 33 83 ST LNLOW SET LNLOW=0, 	LNHI=0.
D405 34 84 ST LNHI
0406 F4 85 DCR LNHI
D407 00 86 RTN
0108 20 89 F6 87 RENUM JSR SW16
D408 18 4C 00 88 SET HMEM,HIMEM
DIOE 68 89 LDD QHMEM
D4OF 38 90 ST HMEM
0410 19 CE 00 91 RNUM3 SET SCR9,PVL+2
D413 C9 92 POPD RSCR9 BASIC VAR PNT TO
0414 35 93 ST TBLSTRT TBLSTRT AND TBLNDXI.
D415 36 94 ST TBLNDXI
D416 21 95 LD NEWLOW COPY NEWLOW (INITIAL)
D417 3B 96 ST NEWLN TO NEWLN.
0418 3C 97 ST NEWLN1
0419 C9 98 POPD QSCR9 BASIC PROG PNTR
041A 37 99 ST TBLIM TO TBLIM AND PRGNDX
13418 39 100 ST PRGNDX
041C 29 101 PASS1 LO PRGNDX
D410 08 102 CPR HMEM IF PRGNDX >=, HMEM
D41E 03 46 103 BC PA8S2 THEN DONE PASS 1.
0420 3A 104 ST PRONDX1
0421 26 105 LD TOLNDX1
0422 ED 106 INR ACC IF < TWO BYTES AVAIL IN
D423 D7 107 CPR TBLIM LNO TABLE THEN RETURN
D424 03 38 108 BC MERR WITH "MEM FULL" MESSAGE.
0426 4A 109 LD RPRGNOXI
0427 A9 11.0 ADD PRGNDX ADD LENTH BYTE TO PROG INDEX.
0428 39 111 ST PRGNDX
0429 6A 112 LDD QPRGNDX1 LINE HUMBER.
D42A D3 113 CPR LNLOW IF < LNLOW THEN GOTO P12
042B 02 2A 114 BNC P1B
D42D D4 115 CPR LNHI IF > LNHI THEN GOTO PIC.
042E 02 02 116 BNC PIA
D430 07 30 117 BNZ PIC
D432 76 118 PIA STD 2TBLNDX1 ADD TO LNO TABLE.
D423 00 119 RIM
0434 A5 01 120 LDA ROH **** 6502 CODE ****
D436 A6 00 121 LDX ROL
0438 20 18 E5 122 JSR PRDEC PRINT OLD LNO "->" NEW LNO
0438 A9 AD 123 LDA BEAD (R0,R11) 	IN DECIMAL.
D430 20 ED FD 124 JSR COOT
0440 A9 BE 125 LDA RCM
D442 20 ED FD 126 JSR COOT
D445 A5 17 127 LDA R11H
0447 A6 16 128 LDX R11L
D449 20 ID E5 129 JSR PRDEC
044C 20 8E FD 130 JSR CROUT

131 *
D44F 20 8C F6 132 JSR SW16+3 **** END 6502 CODE ****

77

2.

133 *
D152 2B 134 LD 	NEWLN
D453 3C 135 ST 	NEWLNI 	COPY NEWLN FO NEWLNI AND INCR
0454 A2 136 ADD 	NEWINCR 	NEWLN BY NEWINCR.
0455 32 137 ST 	NEWLN
0456 OD 138 HEX 	OD 	 'NUL' 	(WILL SKIP NEXT INSTRUCTION)
D457 DI 139 P13 CPR 	NEWLOW 	IF LOW LNO < NEW LOW THEN RANGE ERR.
D458 02 C2 140 BNC 	PASS1
D45A 00 141 RERR RTN 	PRINT "RANGE ERR" MESSAGE AND RETURN.
0152 4C 68 EE 142 JrIP 	RANGERR
045E 00 143 MERR RTN 	PRINT "MEM FULL" MESSAGE AND RETURN.
045F 4C 62 83 144 JMP 	MEMFULL
0462 EC 145 PIC INR 	NEWLNI 	IF HI LNO <= MOST RECENT NE/NLN THEN
0463 DC 146 CPR 	NEWLN1 	RANGE ERROR.
0464 02 F4 147 BNC 	RERR

1,4 .
150 . APPLE 3C BASIC RENUMBER / APPEND SUBROUTINE - PASS 2
151 4

0166 19 30 00 152 PASS2 SET 	CHRO,$0020 	ASCII
0469 1A CO 00 152 SET 	CHRA,$0020 	ASCII
016C 27 154 P2A LD 	PRGNDX2
0160 08 155 CPR 	HMEM 	IF PROS INDEX . HIMEM THEN DONE PASS
046E 02 63 136 BC 	DONE
0I70 87 157' INR 	PRGNDX2 	SKIP LENIH BYTE.
(147(67 152 LDD 	4PRGNDX2 	LINE NUMBER.
0172 3D 139 UPDATE ST 	OLDLN 	SAVE OLD LNO.
D473 25 160 LD 	TBLSTRT
0474 32 161 ST 	TBLNDX2 	INIT LNO TABLE 	INDEX.
0475 21 162 LD 	NEWLOW 	INIT NEWLN TO NEWLOW.
0476 	IC 163 HEX 	IC 	 (WILL. SKIP NEXT 	INSTR)
0477 22 164 202 LD 	NEWLN1
0478 A2 165 ADD 	NEWINCR 	ADD 	INCR TO NEWLNI.
D479 3C 166 ST 	NEWLNI
017A 23 167 LD 	TBLNDX2 	IF LNO TILL IDX . TBLND THEN DONE
0178 26 168 SUB 	TBLND 	SCANNING LNO TABLE
047C 03 07 169 BC 	UO3
D4.78 6B 170 LDD 	eTOLNDX2 	NEXT LNO FROM TABLE.
047F OD 171 SUS 	OLDLN 	LOOP TO UO2 IF NOT SAME AS fiLoLN.
0100 07 F5 172 BNZ 	UO2
0132 C7 173 POPD)BFRGNDX2 	REPLACE OLD LNO WITH CORRESPONDING
0483 2C 174 LD 	NEWLN1 	NEW LINE.
01134 77 175 STD 	M.PRGhMX2
0405 	13 28 00 176 003 SET 	STRCON,$0028 	STR CON TOKEN.
01138 	(C 177 HEX 	IC 	 (SKIPS NEXT TWO INSTRUCTIONS)
0149 67 172 GOTCON LDD 	ePRGNDX2
DIRA FC 179 OCR 	MODE 	IF MODE . 0 THEN UPDATE LNO REF.
D482 08 E5 180 BM1 	UPDATE
D491) 47 lei ITEM LD 	2PRGNDX2 	BASIC TOKEN.
048E 09 iS2 CPR 	CHRO
01SF 02 09 133 BNC 	CHETOK 	CHECK TOKEN FOR SPECIAL.
0491 DA 124 CPR 	CHRA 	IF>. "0" AND < "A" THEN SKIP CONST
0492 02 F5 185 BNC 	GOTCON 	OR UPDATE.
0494 F7 186 SKPASC OCR 	PRGNDX2
0495 67 187 LDD 	ePRGNDX2 	SKIP ALL NEG, 	BYTES OF STR CON, 	REM,
0496 05 FC 183 BM 	SKPASC 	OR NAME.
0198 F7 189 OCR 	PRGNDX2
D499 47 190 LO 	XPRGNDX2

78

1)1^:A D3 191 CHKTOK CPR STRCON STR CON TOKEN?
0418 06 F7 192 32 SKPASC YES, 	SKIP SUBSEQUENT BYTES.
047D IC 50 00 193 SET REM,$0050
D1A0 DC 194 CPR REM REM TOKEN?
0141 06 Fl 195 BZ SKPASC YES, 	SKIP SUBSEQUENT LINE.
01A3 08 13 1St, 3111 CONTST GOSUB, 	LOOK FOR LINE NUMBER.
D1A5 FD 197 DCR RI3
01A6 FD 199 DCR R13 (TOKEN $5F IS 00T0)
0447 06 OF 199 BZ CONTST
D1A9 10 24 00 200 SET THEN, $0024
014C OD 201 CPR THEN
D4AD 06 09 202 BZ CONTST 'THEN' 	LNO, 	LOOK FOR LNO.
04AF FO 203 DCR ACC
0430 06 3A 204 BZ P2A EOL 	(TOKEN 0I)?
0412 ID 74 00 20.5 SET L1ST,$0074
0415 BD 206 SU3 LIST SET MODEIF 	LIST OR LIST COMA.
0476 09 01 207 ONM1 CONTS2 (TOKENS $74, 	$75)
0119 30 208 CONTST SUE' ACC CLEAR MODE FOR LNO
0439 3C 209 CONTS2 ST MODE UPDATE CHECK.
041A 01 DI 210 BR ITEM

212 *
213 *
214 * APPLE 	11: 	BASIC APPEND 1UBROUT1NE
215 *

D1QC 20 89 F6 216 APPEND j58 SW16
DANE 10 42 00 217 SET SCRC,HIMEM+2
0422 CC 210 POPD (2230 RC SAVE HIMEM.
0403 38 219 ST HMEM
0104 19 CA CO 220 SET SCRS, PPL
0427 69 221 LOD QSCP9
0402 7C ';21 STD QSDRC SET HIMEM TO PRESERVE PROGRAM
D4C9 00 223 RTN
010A 20 DF FO 224 LOAD LOAO FROM TAPE.
0100 2U 89 F6 Zj.25 JSR SWI6
0400 CC 226 POPD QSCRC RESTORE HTMEM TO ,7-HOW BOTH PROk;RAIIS.
0101 28 227 LD HMEM (OLD AND NEW)
0402 7C 228 STD @.SCRC
0403 00 ;"29 DONE RTN RETURN.
0404 60 2',30 RTS

--- END ASSEMBLY ---

TOTAL ERRORS, 00

79

2 *

	

3 * 	6502 RELOCATION

	

4 * 	SUBROUTINE
5 *

	

6 * 	1. DEFINE BLOCKS

	

7 * 	*A4<A1.A2

	

B * 	(^Y IS CTRL-Y)
9 *

	

10 * 	2. FIRST SEGMENT

	

11 * 	*A4<A1.A2 ^Y

	

12 * 	(IF CODE)
13 *

	

14 * 	*A4<A1.A2M

	

15 * 	(IF MOVE)
16 *
17 * 3. SUBSEQUENT SEGMENTS *

	

16 * 	*.A2 ^V OR *.A2M
19 *

	

20 * 	WOZ 11-10-77

	

21 * 	APPLE COMPUTER INC.
22 *
23 ****************************

25 *

	

26 * 	RELOCATION SUBROUTINE EQUATES
27 *
28 R1L 	EQU 	$02 SWEET 16 REG 1.
29 INST EQU $OB 3-BYTE INST FIELD.
30 LENGTH EQU $2F LENGTH CODE
31 YSAV EQU $34 CMND BUF POINTER
32 AIL 	EQU $3C APPLE-II MON PARAM AREA.
33 A4L 	EQU $42 APPLE-II MON PARAM REG 4
34 IN 	EQU $0200
35 SWIG LOU $F689 ;SWEET 16 ENTRY
36 INSDS2 EQU $F88E iDISASSEMBLER ENTRY
37 NXTA4 LOU $FCB4 POINTER INCR SUBR
38 FRMBEG EQU $01 SOURCE BLOCK BEGIN
39 FRMEND EQU $02 SOURCE BLOCK END
40 TOBEG LOU $04 DEST BLOCK BEGIN
41 ADR 	EQU $06 ADR PART OF INST.

:ASM

80

43
44
45

*
* 	6502 RELOCATION SUBROUTINE
*

46 ORG $D4DC
47 OBJ $A4DC

D4DC A4 34 48 RELOC LDY YSAV CMND BUF POINTER
D4DE B9 00 02 49 LDA IN,Y NEXT CMD CHAR
D4E1 C9 AA 50 CMP #$AA 	'*'?
DIE3 DO OC 51 BNE RELOC2 	NO, 	RELOC CODE SEG.
D4E5 E6 34 52 INC YSAV ADVANCE POINTER.
D4E7 A2 07 53 LDX #407
DIE9 B5 3C 54 INIT LDA AlL,X MOVE BLOCK PARAMS
D4EB 95 02 55 STA R1L,X 	FROM APPLE-II MON
D4ED CA 56 DEX AREA TO 5WI6 AREA
D4EE 10 F9 57 BPL INIT 	R1=SOURCE BEG, 	R2=
D4F0 60 58 RTS SOURCE END, 	R4=DEST BEG.
04E1 AO 02 59 RELOC2 LDY #402
D4F3 81 3C 60 GETINS LDA (All..),Y COPY 3 BYTES TO
D4F5 99 OB 00 61 STA INST,Y 	SW16 AREA
D4FB 88 62 DEY
D4F9 10 F8 63 BPL GETINS
D4FB 20 SE F8 64 JSR INSDS2 CALCULATE LENGTH OF
D4FE A6 2F 65 LDX LENGTH 	INST FROM OPCODE.
0500 CA 66 DEX 0=1 BYTE, 	1=2 BYTES,
D501 DO OC 67 BNE XLATE 2=3 BYTES.
D503 A5 08 68 LDA INST
D505 29 OD 69 AND #$OD WEED OUT NON-ZERO-PAGE
0507 FO 14 70 BEG STINST 	2 BYTE INSTS (IMM).
D509 29 08 71 AND #408 	IF ZERO PAGE ADR
D5OB DO 10 72 BNE STINST 	THEN CLEAR HIGH BYTE
DSOD 85 OD 73 STA INST+2
DSOF 20 89 F6 74 XLATE JSR SW16 IF ADR OF ZERO PAGE
D512 22 75 LD FRMEND 	OR ABS IS IN SOURCE
D513 D6 76 CPR ADR 	(FRM) BLOCK THEN
D514 02 06 77 BNC SW16RT 	SUBSTITUTE
D516 26 78 LD ADR 	ADR-SOURCE BEG+DEST BEG
D517 B1 79 SUB FRMBEG
D518 02 02 80 BNC SW16RT
D51A A4 81 ADD TOBEG
D51B 36 82 ST ADR
D51C 00 83 SW16RT RTN
D51D A2 00 84 STINST LDX #400
D51F B5 OB 85 STINS2 LDA INST,X
D521 91 42 86 STA (A4L),Y COPY LENGTH BYTES
D523 ES 87 INX OF INST FROM SW16 AREA TO
0524 20 B4 FC 88 JSR NXTA4
D527 C6 2F 89 DEC LENGTH 	DEST SEGMENT. UPDATE
D529 10 F4 90 BPL STINS2 	SOURCE, DEST SEGMENT
0528 90 C4 91 BCC RELOC2 	POINTERS. 	LOOP IF NOT
D52D 60 92 RTS BEYOND SOURCE SEG END.

--- END ASSEMBLY ---

TOTAL ERRORS: 00

81

*************m***************
2*
3 *
4 *
5 *
6 *
7 *

*

TAPE VERIFY

JAN 78
BY WOZ

9 *************41.44************41.44

11 *
12 * 	TAPE VERIFY EQUATES
13 *
14 CHKSUM EQU 42E
15 Al EOU $3C
16 HIMEM EOU $4C ;BASIC HIMEM POINTER
17 PP EOU $CA ;BASIC BEGIN OF PROGRAM
18 PRLEN EOU $CE ;BASIC PROGRAM LENGTH
19 XSAVE EQU $D8 ;PRESERVE X-REG FOR BASIC
20 HDRSET EQU $F11E ;SETS TAPE POINTERS TO SCE. CF
21 PRGSET EGU $F12C ,SETS TAPE POINTERS FOR PROGRAM
22 NXTA1 LOU $FCBA ;INCREMENTS (Al) AND COMPARES TO
23 HEADR EOU $FCC9
24 RDBYTE LOU $FCEC
25 RD2BIT EGU $FCFA
26 RDDIT EQU $FCFD
27 PRA1 EGU $FD92 ;PRINT 	(Al)-
28 PRBYTE EQU $FDDA
29 COUT EGU $FDED
30 FINISH EOU $FF26 ;CHECK CHECKSUM; 	RING BELL
31 PRERR EGU $FF2D

33 *
34 * TAPE VERIFY ROUTINE
35 *
36 ORG $D535
37 OBJ 1A535

D535 86 De 38 VFYBSC STX %SAVE ;PRESERVE X-REG FOR BASIC
D537 38 39 SEC
D538 A2 FF 40 LDX $$FF
D53A A5 4D 41 GETLEN LDA HIMEM+1 ;CALCULATE PROGRAM LENGTH
053C F5 CB 42 SBC PP+1;X ;INTO PRLEN
D53E 95 CF 43 STA PRLEN+1,X
D540 E8 44 INX
D541 FO F7 45 BEQ GETLEN
D543 20 1E Fl 46 JSR HORSET ;SET UP POINTERS
D546 20 54 D5 47 JSR TAPEVFY ;DO A VERIFY ON HEADER
D549 A2 01 48 LDX 4$01 ;PREPARE FOR PRGSET
054B 20 2C Fl 49 JSR PRGSET ;SET POINTERS FOR PROGRAM VERIFY
054E 20 54 D5 50 JSR TAPEVFY
D551 A6 De 51 LDX %SAVE ;RESTORE X-REG
0553 60 52 RTS

(A2)

82

53
54
55

*
* TAPE VERIFY RAM IMAGE (Al A2)
*

D554 20 FA FC 56 TAPEVFY JSR RD2BIT
D557 A9 16 57 LDA *$16
D559 20 C9 FC 58 JSR HEADR ;SYNCHRONIZE ON HEADER
D55C 85 2E 59 STA CHKSUM ;INITIALIZE CHKSUM
D55E 20 FA FC 60 JSR RD2BIT
D561 AO 24 61 VRFY2 LDY P$24
D563 20 FD FC 62 JSR RDBIT
D566 BO F9 63 BCS VRFY2 ;CARRY SET IF READ A 	'1' BIT
D568 20 FD FC 64 JSR RDBIT
D56B AO 3B 65 LDY 4003B
D56D 20 EC FC 66 VRFY3 JSR RDBYTE ;READ A BYTE
D570 FO OE 67 BEG EXTDEL ;ALWAYS TAKEN
D572 45 2E 68 VFYLOOP FOR CHKSUM ;UPDATE CHECKSUM
D574 85 2E 69 STA CHKSUM
0576 20 BA FC 70 JSR NXTAI ;INCREMENT Al, 	SET CARRY IF Al>A2
D579 AO 34 71 LDY #034 ;ONE LESS THAN USED IN READ FOR EXTRA 12
D579 90 FO 72 BCC VRFY3 ;LOOP UNTIL Al>A2
D57D 4C 26 FF 73 JMP FINISH ;VERIFY CHECKSUM&RING BELL
D580 EA 74 EXTDEL NOP ;EXTRA DELAY TO EQUALIZE TIMING
D581 EA 75 NOP ; 	(+12 USEC)
D582 EA 76 NOP
D583 Cl 3C 77 CMP (A1,X) 	;BYTE THE SAME?
D585 FO ES 78 BEG VFYLOOP ;IT MATCHES, LOOP BACK
D587 48 79 PHA ;SAVE WRONG BYTE FROM TAPE
D588 20 2D FF 80 JSR PRERR ;PRINT "ERR"
D588 20 92 FD 81 JSR PRA1 ;OUTPUT (Al)"-'
D58E 81 3C 82 LDA (A1),Y
D590 20 DA FD 83 JSR PRBYTE ;OUTPUT CONTENTS OF Al
D593 A9 AO 84 LDA M$A0 ;PRINT A BLANK
D595 20 ED FD 85 JSR COUT
D598 A9 A8 86 LDA ft$A8 	; 	'('
D59A 20 ED FD 87 JSR COUT
D59D 68 88 PLA ;OUTPUT BAD BYTE FROM TAPE
D59E 20 DA FD 89 JSR PRBYTE
D5A1 A9 A9 90 LDA #$A9 	; 	')'
D5A3 20 ED FD 91 JSR COUT
D5A6 A9 80 92 LDA *418D ;CARRIAGE RETURN, 	AND RETURN TO CALLER
D5A8 4C ED FD 93 JMP COOT

--- END ASSEMBLY ---

TOTAL ERRORS: 00

83

:ASM
1 	
2 *
3 • RAMTEST.
4 *
5 * BY WOZ
6 * 6/77
7
8 * 	COPYRIGHT 1978 BY:
9 * 	APPLE COMPUTER INC
10 *
11 	

13 *
14 * EQUATES:
15 *
16 DATA EOU $0 TEST DATA $00 OR $FF
17 NDATA EON $1 INVERSE TEST DATA.
18 TESTD EOU $2 GALLOP DATA.
19 R3L EOU $6 AUX ADR POINTER.
20 R3H EOU $7
21 R4L EOU $8 AUX ADR POINTER.
22 R4H EOU $9
23 R5L EGU $A AUX ADR POINTER.
24 R5H EOU $13
25 R6L LOU $C GALLOP BIT MASK.
26 R6H EOU $D ($0001 TO 2'1.4)
27 YSAV EOU $34 MONITOR SCAN INDEX.
28 AIH EOV $3D BEGIN TEST BLOCK ADR.
29 A2L LOU $3E LEN (PAGES) FROM MON.
30 SETCTLY EOU $D5B0 ;SET UP CNTRL-Y LOCATION
31 PRBYTE EOU $FDDA BYTE PRINT SUBR.
32 COUT EOU $FDED CHAR OUT SUBR.
33 PRERR EOU $FF2D PRINTS 'ERR-BELL'
34 BELL EOU $FF3A

84

36
37
38

*
*
*

RAMTEST.

39 ORO $D5BC
40 OBJ $A5BC

D56C A9 C3 41 SETUP LDA $$C3 ;SET UP CNTRL-Y LOCATION
D5BE AO D5 42 LDY #405
DICO 4C BO 05 43 JMP SETCTLY
D5C3 A9 00 44 RAMTST LDA 14$0 TEST FOR $00,
D5C5 20 DO D5 45 JSR TEST
D5C8 A9 FF 46 LDA $$FF THEN SFF.
DSCA 20 DO D5 47 JSR TEST
D5CD 4C 3A FF 48 JMP BELL
0500 85 00 49 TEST STA DATA
D5D2 49 FF 50 FOR *$FF
D5D4 85 01 51 STA NDATA
D5D6 A5 3D 52 LDA A1H
0508 85 07 53 STA R3H 	INIT 	(R3L,R3H),
D5DA 85 09 54 STA R4H 	(R4L,R4H), 	(R5L,R5H)
DSDC 85 OB 55 STA R5H 	TO TEST BLOCK BEGIN
D5DE AO 00 56 LDY 0$0 	ADDRESS.
D5E0 84 06 57 STY R3L
D5E2 84 08 58 STY R4L
D5E4 84 OA 59 STY R5L
D5E6 A6 3E 60 LDX A2L LENGTH (PAGES)
D5EB A5 00 61 LDA DATA
D5EA 91 08 62 TESTO1 STA (R4L),Y SET ENTIRE TEST
°SEC C8 63 INY BLOCK TO DATA.
DSED DO FS 64 SHE TESTO1
D5EF E6 09 65 INC R4H
D5F1 CA 66 DES
D5F2 DO F6 67 BNE 7E5701
D5F4 A6 3E 68 LDX A2L
D5F6 B1 06 69 TESTO2 LDA (R3L),V VERIFY ENTIRE
115F8 C5 00 70 CMP DATA 	TEST BLOCK.
D5FA FO 13 71 BEG 7E6703
MEC 48 72 PHA PRESERVE BAD DATA.
05F0 A5 07 73 LDA R3H
D5FF 20 DA FD 74 JSR PRBYTE PRINT ADDRESS,
0602 98 75 TYA
D603 20 8A D6 76 JSR PRBVSP
D606 A5 00 77 LDA DATA THEN EXPECTED DATA,
D608 20 8A D6 78 JSR PRDYSP
D60B 68 79 PLA THEN BAD DATA,
D60C 20 7F D6 80 JSR PRBYCR 	THEN 	'ERR-BELL'.
D60F CS 81 TEST03 INY
D610 DO E4 82 BNE TESTO2
D612 E6 07 83 INC R3H
0614 CA 84 DEX
D615 DO DF 85 BNE TESTO2
D617 A6 3E 86 LOX A2L LENGTH.
D619 A5 01 87 TESTO4 LDA NDATA
D610 91 OA 88 STA (R5L),Y SET TEST CELL TO
D61D 84 OD 89 STY RAH 	NDATA AND R6
D61F 84 OC 90 STY R6L 	(GALLOP BIT MASK)
0621 E6 OC 91 INC R6L 	TO $0001.
0623 A5 01 92 TESTO5 LDA NDATA
0625 20 45 D6 93 JSR TEST6 GALLOP WITH NDATA.
D628 A5 00 94 LDA DATA
D62A 20 45 D6 95 JSR TEST6 THEN WITH DATA.
D62D 06 OC 96 ASL R6L
D62F 26 OD 97 ROL R6H SHIFT GALLOP BIT
0631 A5 OD 98 LDA R6H 	MASK FOR NEXT

85

D633 C5 3E 99 CMP A2L 	NEIGHBOR. 	DONE
D635 90 EC 100 BCC TESTO5 	IF > LENGTH.
D637 A5 00 101 LDA DATA
D639 91 OA 102 STA (R5L),Y RESTORE TEST CELL.
D632 E6 OA 103 INC R5L
D63D DO DA 104 BNE TESTO4
D63F E6 OB 105 INC R5H INCR TEST CELL
D641 CA 106 DEX POINTER AND DECR
D642 DO D5 107 BNE TESTO4 	LENGTH COUNT.
0644 60 108 RTS1 RTS
0645 85 02 109 TEST6 STA TESTD SAVE GALLOP DATA.
D617 A5 OA 110 LDA R5L
D649 45 OC 111 EOR R6L SET R4 TO R5
D649 85 08 112 STA R4L 	EX-OR R6
D610 A5 OB 113 LDA R5H 	FOR NEIGHBOR
D64F 45 OD 114 EOR R6H 	ADDRESS (1 BIT
D651 85 09 115 STA R4H 	DIFFERENCE).
D653 A5 02 116 LDA TESTD
D655 91 08 117 STA (R4L),Y GALLOP TEST DATA.
0657 B1 OA 118 LDA (R5L),Y CHECK TEST CELL
D659 C5 01 119 CMP NDATA 	FOR CHANGE.
0652 FO E7 120 BEG RTS1 	(OK).
D65D 48 121 PHA PRESERVE FAIL DATA.
D65E A5 OB 122 LDA R5H
D660 20 DA FD 123 JSR PRBYTE PRINT TEST CELL
D663 A5 OA 124 LDA R5L 	ADDRESS,
0665 20 8A D6 125 JSR PRBYSP
D668 A5 01 126 LDA NDATA
066A 91 OA 127 STA (R5L),Y (REPLACE CORRECT DATA)
D66C 20 BA D6 128 JSR PRBYSP 	THEN TEST DATA BYTE,
D66F 68 129 PLA
D670 20 BA D6 130 JSR PRBYSP 	THEN FAIL DATA,
D673 A5 09 131 LDA R4H
0675 20 DA FD 132 JSR PRBYTE
D678 A5 08 133 LDA R4L 	THEN NEIGHBOR ADR,
067A 20 BA D6 134 JSR PRBYSP
D67D A5 02 135 LDA TESTD 	THEN GALLOP DATA.
D67F 20 BA D6 136 PRBYCR JSR PRBYSP OUTPUT BYTE, SPACE.
0682 20 2D FF 137 JSR PRERR 	THEN 'ERR-BELL'
D685 A9 BD 138 LDA *$BD ASCII CAR. 	RETURN.
0687 4C ED FD 139 JMP COUT
D68A 20 DA FD 140 PRBYSP JSR PRBYTE
069D A9 AO 141 LDA $$A0 OUTPUT BYTE, 	THEN
D68F 4C ED FD 142 JMP COUT 	SPACE.

143 ORG $3F8
03F8 4C C3 D5 144 USRLOC JMP RAMTST ENTRY FROM MON (CTRL-Y)

--- END ASSEMBLY ---

TOTAL ERRORS: 00

86

444**41.1**4.A*14-*Oa**.4.***11.4-**,4*1.

4
5 a MUSIC SUBROUTINE
6 *
7 * GARY •J. 	SHANNON

.0****** 	*********.*****.*#.11.4*

10 	ORG 	$0717
11 	4
12 * ZERO PAGE WORK AREAS
13 * PARAMETER PASSING AREAS
14 *
15 DOWNTIME EGU 	$0
16 UPTIME EGU 	$1
17 LENGTH EOU 	$2
18 VOICE 	EGU 	$2F0
19 LONG 	EOU 	$2FE
20 NOTE 	EGU 	$2FF
21 SPEAKER EOU 	$C030

D717 4C 4E D7 22 ENTRY 	JMP 	LOOKUP
23 *
24 * PLAY ONE NOTE
25 *
26 * DUTY CYCLE DATA IN 	'UPTIME' AND
27 * 	'DOWNTIME', 	DURATION IN MENGTH'
28 *
29 *
30 4 CYCLE IS DIVIDED INTO 'UP' HALF
31 * AND 'DOWN' HALF
32 *

D714 A4 01 33 PLAY 	LDY 	UPTIME ; 	GET POSITIVE PULSE WIDTH
071C AD 30 CO 34 	LDA 	SPEAKER ; 	TOGGLE SPEAKER
071F E6 02 35 PLAY2 	INC 	LENGTH ; 	DURATION
0721 DO 05 36 	BNE 	PATH1 ; 	NOT EXPIRED
D723 E6 03 37 	INC 	LENGTH+1
D725 DO 05 38 	ENE 	PATH2
D727 60 39 	RTS 	DURATION EXPIRED
0728 EA 40 PATH1 	NOP 	; 	DUMMY
0729 4C 2C D7 41 	JMP 	PATH2 ; 	TIME ADJUSTMENTS
D72C SS 42 PATH2 	DEY 	i 	DECREMENT WIDTH
0720 FO 05 43 	BEG 	DOWN 	WIDTH EXPIRED
D72F 4C 32 D7 44 	JMP 	PATHS ; 	IF NOT, USE UP

45 .
46 * DOWN HALF OF CYCLE
47

D732 DO EB 48 PATHS 	BNE 	PLAY2 ; 	SAME 46 CYCLES
D734 44 00 49 DOWN 	LDY 	DOWNTIME ; 	GET NEGATF/E PULSE WIDTH
U736 AD 30 CO 50 	LDA 	SPEAKER 	TOGGLE SFEA'r.t,H
D739 E6 02 51 PLAYS 	INC 	LENGTH ; 	DURATION
D73B DO 05 52 	BNE 	PATH4 ; 	NOT EXPIRED
073D E6 03 53 	INC 	LENGTH.1
073F DO 05 54 	BNE 	PATHS
D741 60 55 	RTS 	DURATION EXPIRED
0742 EA 56 PATH4 	NOP 	; DUMMY
D743 4C 46 D7 57 	JMP 	PATHS 	TIME ADJUSTMENTS
0746 88 50 PATHS 	DEY 	; 	DECREMENT WIDTH
0747 FO DI 59 	BEG 	PLAY ; 	BACK ro UP-STDE
0749 4C 4C D7 60 	JMP 	PATH6 ; USE UP SOME CYCLES
074C DO ED 61 PATH6 	BNE 	PLAYS 	REPEAT

87

62 *
63 * NOTE TABLE LOOKUP SUBROUTINE
64 *
65 * GIVEN NOTE NUMBER 	IN 	'NOTE'
66 * DURATION COUNT IN 	'LONG'
67 * FIND 	'UPTIME' 	AND 	'DOWNTIME'
68 * ACCORDING TO DUTY CYCLE CALLED
69 * FOR BY 	'VOICE'.
70 *

074E AD FF 02 71 LOOKUP LDA 	NOTE ; 	GET NOTE NUMBER
D751 OA 72 ASL 	; 	DOUBLE IT
D752 AS 73 TAY
D753 89 96 D7 74 LDA 	NOTES,Y 	GET UPTIME
D756 85 00 75 STA 	DOWNTIME ; 	SAVE IT
D758 AD FD 02 76 LDA 	VOICE ; 	GET DUTY CYCLE
0758 4A 77 SHIFT 	LSR
D75C FO 04 78 3E0 	DONE ; 	SHIFT WIDTH COUNT
D75E 46 00 79 LSR 	DOWNTIME ; 	ACCORDING TO VOICE
D760 DO F9 80 BNE 	SHIFT
D762 39 96 D7 81 DONE 	LDA 	NOTES,Y ; 	GET ORIGINAL
D765 38 82 SEC
D766 E5 00 83 SEC 	DOWNTIME ; 	COMPUTE DIFFERENCE
D768 85 01 84 STA 	UPTIME ; 	SAVE IT
D76A C8 85 INY 	; 	NEXT ENTRY
D768 09 96 D7 86 LDA 	NOTES,Y ; 	GET DOWNTIME
D76E 65 00 87 ADC 	DOWNTIME ; 	ADD DIFFERENCE
D770 85 00 88 STA 	DOWNTIME
D772 A9 00 89 LDA 	#0
D774 38 90 SEC
D775 ED FE 02 91 SEC 	LONG ; 	GET COMPLIMENT OF DURATION
D778 85 03 92 STA 	LENGTH+1 MOST SIGNIFICANT BYTE
077A A9 00 93 LDA 	#0
D77C 85 02 94 STA 	LENGTH
D77E A5 01 95 LDA 	UPTIME
D700 DO 98 96 ENE 	PLAY ; 	IF NOT NOTE *0, 	PLAY IT

97 *
95 * 	'REST' SUBROUTINE' PLAYS NOTE #0
99 ,* SILENTLY, 	FOR SAME DURATION AS
100 * A REGULAR NOTE.
101 *

D782 EA 102 REST 	NOP 	; 	DUMMY
D703 EA 103 NOP 	; 	CYCLE USERS
D784 4C 87 D7 104 JMP 	REST2 ; 	TO ADJUST' TIME
D787 E6 02 105 REST2 	INC 	LENGTH
D739 DO 05 106 ONE 	REST3
D788 E6 03 107 INC 	LENGTH+1
0700 DO 05 108 BNE 	REST4
D78F 60 109 RTS 	; 	IF DURATION EXPIRED
D790 EA 110 REST3 	NOP 	; 	USE UP 	'INC' CYCLES
D791 4C 94 D7 111 JMP 	REST4
D794 DO EC 112 REST4 	BNE 	REST ; 	ALWAYS TAKEN

88

113
114 * NOTE TABLES
115

D796 00 00 F6 116 NOTES HEX 00, 00, F6, F6, EEL ES, DB, DB
079E CF CF C3 117 HEX CF, CF, C3, C3,138,138, AE, AE
117A6 A4 A4 9B 118 HEX A4, A4. 92, 92. 92. 92, 8A, SA
D7AE 82 82 7B 119 HEX 82, 82, 72, 713, 74, 74, 6D, 6E
0786 67 68 61 120 HEX 67, 68, 61, 62, 5C, 5C, 57, 57
D7BE 52 52 4D 121 HEX 52, 52, 40, 4E, 49, 49, 45, 45
D7C6 41 41 3D 122 HEX 41, 41, 3D, 3E, 3A, 3A, 36, 37
D7CE 33 34 30 123 HEX 33, 34, 30, 31, 2E, 2E, 22, 2C
D7D6 29 29 26 124 HEX 29, 29, 26, 27, 24, 25, 22, 23
D7DE 20 21 1E 125 HEX 20, 21, 1E, 1F, ID, 1D, 13, IC
D7E6 IA IA 18 126 HEX 1A, 1A, 18, 19, 17, 17, 13, 16
D7EE 14 15 13 127 HEX 14, 15, 13, 14, 12, 12, 11, 11
D7F6 10 10 OF 128 HEX 10, 10, OF, 10, OE, OF

--- END ASSEMBLY ---

TOTAL ERRORS: 00

89

90

Chapter 1: RENUMBER

(a) To renumber an entire BASIC program:

CLR
START = 1000
STEP = 10
CALL -10531

(b) To renumber a program portion:

CLR
START = 200
STEP = 20

FROM = 300
	

(program portion
TO = 500
	

to be renumbered)

CALL -10521

Chapter 2: APPEND
(a) Load the second BASIC program, with high line numbers:

LOAD

(b) Load and append the first BASIC program, with low line numbers:

CALL -11076

Chapter 3: TAPE VERIFY (BASIC)

(a) Save current BASIC program on tape:

SAVE

(b) Replay the tape, after:

CALL -10955

92

Chapter 4: TAPE VERIFY (Machine Code and Data)

(a) From the Monitor, save the portion of memory on tape:

addressl . address2 W return

(b) Initialize Tape Verify feature:

D52EG return

(c) Replay the tape, after:

addressl . address2 ctrl Y return

Note: spaces shown within the above commands are for easier
reading only; they should not be typed.

Chapter 5: RELOCATE (Machine Code and Data)

(a) From the Monitor, initialize Code-Relocation feature:

D4D5G return

(b) Blocks are memory locations from which program runs.
Specify Destination and Source Block parameters:

Dest Blk Beg < Source Blk Beg . Source Blk End ctrl Y * return

(c) Segments are memory locations where parts of program
reside. If first program Segment is code, Relocate:

Dest Seg Beg < Source Seg Beg . Source Seg End ctrl Y return

If first program Segment is data, Move:

Dest Seg Beg < Source Seg Beg . Source Seg End 	return

(d) In order of increasing address, Move subsequent
contiguous data Segments:

. Source Segment End ctrl Y return

and Relocate subsequent contiguous code Segments:

. Source Segment End M return

Note: spaces shown within the above commands are for easier
reading only; they should not be typed.

93

Chapter 6: RAM TEST

(a) From the Monitor, initialize RAM Test program:

D5BCG return

(b) To test a portion of memory:

address . pages ctrl Y return 	(test begins at address,
continues for length pages.

Note: test length, pages*100, must not be greater than
starting address. One page = 256 bytes ($100 bytes, in Hex).

(c) To test more memory, do individual tests or concatenate:

addrl.pagesl ctrl Y addr2.pages2 ctrl Y addr3.pages3 ctrl Y

Example, for a 48K system:

400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y
3000.20 ctrl Y 4000.40 ctrl Y 7000.20 ctrl Y 8000.40
ctrl Y return

(d) To repeat test indefinitely:

return

N complete test 34:0
	

type one space 	return

Note: except where specified in step (d), spaces shown within the above
commands are for easier reading only; they should not be typed.

Chapter 7: MUSIC

(a) Assign appropriate variable names to CALL
and POKE locations (optional):

MUSIC = -10473
PITCH = 767
TIME = 766
TIMBRE = 765

(b) Set parameters for next note:

POKE PITCH, p
POKE TIME, m
POKE TIMBRE, t

(c) Sound the note:

CALL MUSIC

(p = 1 to 50; 32 = middle C)
(m = 1 to 255; 170 = 1 second)
(t = 2, 8, 16, 32 or 64)

94

Chapter 8: HIGH-RESOLUTION GRAPHICS

(a) Set order of parameters (first lines of program):

1 XO = YO = COLR
2 SHAPE = ROT = SCALE 	 (if shapes are used)

(b) Assign appropriate variable names to subroutine
calling addresses (optional; omit any subroutines
not used in program):

10 INIT = -12288 : CLEAR = -12274 : BKGND = -11471
11 POSN = -11527 : PLOT = -11506 : LINE = -11500
12 DRAW = -11465 : DRAW1 = -11462
13 FIND = -11780 : SHLOAD = -11335

(c) Assign appropriate variable names to color values
(optional; omit any colors not used in program):

20 BLACK = 0 : LET GREEN = 42 : VIOLET = 85
21 WHITE = 127 : ORANGE = 170 : BLUE = 213
22 BLACK2 = 128 : WHITE2 = 255

(d) Initialize:

30 CALL INIT

(e) Change screen conditions, if desired. Set appropriate
parameter values, and CALL desired subroutines by name.

Example:

40 COLR = VIOLET : CALL BKGND : REM TURN BACKGROUND VIOLET
50 FOR I = 0 TO 279 STEP 5
60 X0 = 140 : YO = 150 : COLR = WHITE : REM SET PARAMETERS
70 CALL POSN : REM MARK THE "CENTER"
80 XO = I : YO = 0 : REM SET NEW PARAMETERS
90 CALL LINE : REM DRAW LINE TO EDGE
100 NEXT I : END

95

QUICK REFERENCE TO HIGH-RESOLUTION INFORMATION

Subroutine 	CALLing 	 Parameters
Name 	 Address 	 Needed

INIT 	 -12288
CLEAR 	 -12274
BKGND 	 -11471 	 COLR
POSN 	 -11527 	 X0, YO, COLR
PLOT 	 -11506 	 X0, YO, COLR
LINE 	 -11500 	 X0, YO, COLR
DRAW 	 -11465 	 XO, YO, COLR, SHAPE, ROT, SCALE
DRAW' 	 -11462 	 SHAPE, ROT, SCALE
FIND 	 -11780
SHLOAD 	-11335

Color 	COLR 	 Color 	COLR
Name 	Value 	 Name 	Value

BLACK 	 0 	 BLACK2 	128
GREEN 	 42 	 ORANGE 	170
VIOLET 	85 	 BLUE 	 213
WHITE 	127 	 WHITE2 	255

(Note: on systems below S/N 6000, colors in the second
column appear identical to those in the first column)

CHANGING THE HIGH-RESOLUTION GRAPHICS DISPLAY

Full-Screen Graphics
Mixed Graphics-Plus-Text (Default)
Page 2 Display
Page 1 Display (Normal)
Page 2 Plotting
Page 1 Plotting (Default)

POKE -16302, 0
POKE -16301, 0
POKE -16299, 0
POKE -16300, 0
POKE 806, 64
POKE 806, 32

(Note: CALL INIT sets mixed graphics-plus-text, and Page 1 plotting,
but does not reset to Page 1 display.)

Collision Count for Shapes 	 PEEK (810)

(Note: the change in PEEKed value indicates collision.)

96

Downloaded from www.Apple2Online.com

apple computer inc:
10260 Bandley Drive

Cupertino, California 95014
(408) 996-1010

	Apple Programmer's Aid #1 Installation & Operating Manual
	Table of Contents
	Introduction
	Features of Programmer's Aid #1
	How to Install the Programmer's Aid ROM

	Chapter 1 - Renumber
	Renumbering an Entire BASIC Program
	Renumbering Portions of a Program
	Comments

	Chapter 2 - Append
	Appending One BASIC Program to Another
	Comments

	Chapter 3 - Tape Verify (BASIC)
	Verifying a BASIC Program Saved on Tape
	Comments

	Chapter 4 - Tape Verify (Machine Code or Data)
	Verifying a Portion of Memory Saved on Tape
	Comments

	Chapter 5 - Relocate
	Part A: Theory of Operation
	Relocating Machine-Language Code
	Program Model
	Blocks & Segments Example
	Data Segments
	Code & Data Segments Example
	How to Use the Code-Relocation Feature

	Part B: Code-Relocation Examples
	Straightforward Relocation
	Index into Block
	Immediate Address References
	Unusable Block Ranges
	Changing the Page Zero Variable Allocation
	Split Blocks with Cross-REferencing
	Code Deletion
	Relocating the Apple II Monitor to Run in RAM

	Part C: Plotting Points & Lines
	Technical Information
	Algorithm Used by the Code-Relocation Feature
	Comments

	Chapter 6 - RAM Test
	Testing the Apple's Memory
	Table of Address Ranges for Standard RAM Configurations
	Error Messages
	Testing for Interrmittent Failure
	Comments

	Chapter 7 - Music
	Generating Musical Tones
	Comments

	Chapter 8 - High-Resolution Graphics
	Part A: Setting Up Parameters, Subroutines & Colors
	Positioning the High-Resolution Parameters
	Defining Subroutine Names
	Defining Color Names
	Speeding Up Your Program

	Part B: Preparing the Screen for Graphics
	The Initialization Subroutine
	Changing the Graphics Screen
	Clearing the Screen

	Part C: Plotting Points & Lines
	Part D: Creating, Saving & Loading Shapes
	Introduction
	How to Create a Shape Table
	Saving a Shape Table
	Loading a Shape Table
	First Use of a Shape Table

	Part E: Drawing Shapes from a Prepared Shape Table
	Assigning Parameter Values
	Orientations of Shape Definition
	Drawing Shapes
	Linking Shapes
	Collisions

	Part F: Technical Information
	Locations of High-Resolution Parameters
	Variable-Table Parameter Locations
	Variables Used Within the High-Resolution Subroutines
	Shape Table Information
	Apple II Memory Map For Using High-Resolution Graphics with Integer BASIC

	Part G: Comments

	Appendix I - Source Assembly Listings
	High Resolution Graphics
	Renumber
	Append
	Relocate
	Tape Verify (BASIC)
	RAM Test
	Music

	Appendix II - Summary of Programmer's Aid Commands
	Renumber
	Append
	Tape Verify (BASIC)
	Tape Verify (Machine Code & Data)
	Relocate
	RAM Test
	Music
	High-Resolution Graphics
	Quick Reference to High-Resolution Information

	Back Cover

