Multiplé-Precision Binary Comparison

(MPBCMP)

6J

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags
appropriately. The Zero flag is set to 1 if the
operands are equal and to 0 if they are not
equal. The Carry flag is set to 0 if the operand
with the address' higher in the stack (the
subtrahend) is larger than the other operand
(the minuend); the Carry flag is set to 1
otherwise. Thus, the flags are set as if the
subtrahend had been subtracted from the
minuend.

Procedure: The program compares the
operands one byte at a time, starting with the
most significant bytes and continuing until it
finds corresponding bytes that are not equal.
If all the bytes are equal, it exits with the Zero
flag set to 1. Note that the comparison works
through the operands starting with the most
significant bytes, whereas the subtraction
(Subroutine 6G) starts with the least signifi-
cant bytes.

Registers Used: All

Execution Time: 17 cycles per byte that must be
compared plus 90 cycles overhead. That is, the
program continues until it finds corresponding
bytes that are not equal; each pair of bytes it must
examine requires 17 cycles.

Examples:
1. Comparing two 6-byte numbers that are equal
17 X 6 + 90 = 192 cycles

2. 'Comparing two 8-byte numbers that differ in
the next to most significant bytes

17 X 2 4+ 90 = 124 cycles
Program Size: 54 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
numbers; the pointers start at addresses
MINPTR (00DO0,; in the listing) and SUBPTR
(00D2/; in the listing).

Special Case: A length of zero causes an
immediate exit with the Carry flag and the Zero
flag both set to 1.

Entry Conditions

Order in stack (starting from top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
subtrahend (address containing the least
significant byte)

More significant byte of starting address of
subtrahend (address containing the least
significant byte)

Less significant byte of starting address of
minuend (address containing the least sig-

Exit Conditions

Flags set as if subtrahend had been
subtracted from minuend

Zero flag = 1 if subtrahend and minuend are
equal, 0 if they are not equal

Carry flag = 0 if subtrahend is larger than
minuend in the unsigned sense, 1 if it is less
than or equal to the minuend.

275

276 ARTHMETIC

nificant byte)

More significant byte of starting address of
minuend (address containing the least sig-
nificant byte)

Examples

1. Data: Length of operands (in bytes) = 6 3. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = Top operand (subtrahend) =
19D028A193EA ¢ 19D028A193EA ¢
Bottom operand (minuend) = Bottom operand (minuend) =
4E67BC15A266,, OF37E5991D7C,¢

Result: Zero flag = 0 (operands are Result: Zero flag = 0 (operands are not equal)

not equal) Carry flag = 0 (subtrahend is larger
Carry flag = 1 (subtrahend is than minuend)

not larger than minuend)

2. Data: Length of operands (in bytes)
=6
Top operand (subtrahend) =
19D028A193EA 4
Bottom operand (minuend) =
19D028A193EA

Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is
not larger than minuend)

; Title Multiple-Precision Binary Comparision ;
; Name: MPBCMP H
H H
; ;
Purpose:) Compare 2 arrays of binary bytes and return

the CARRY and ZERO flags set or cleared

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (subtrahend) address,
High byte of array 2 (subtrahend) address,
Low byte of array 1 (minuend) address,
High byte of array 1 (minuend) address

s ™o wa we e Ne W we We %o we N WO
~e %o we wa me WE we We W s me Ne e

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBcMP) 277

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Exit: IF ARRAY 1 = ARRAY 2 THEN
C=1l,z2=1

IF ARRAY 1 > ARRAY 2 THEN
C=1,2=0

IF ARRAY 1 < ARRAY 2 THEN
C=0,2=0

Registers used: All

Time: 17 cycles per byte that must be examined
plus 90 cycles overhead.

Size: Program 54 bytes
Data 2 bytes plus

4 bytes in page zero

T NS NE WO N N WE N NE N NE W N N W me we we s w6 ne we
TE WO ME Ne e NE N Ne NE e N0 e we N e na we e ws N Ne W

; EQUATES
MINPTR: .EQU 0DOH ;PAGE ZERO FOR ARRAY 1 POINTER
SUBPTR: .EQU 0D2H : ;PAGE ZERO FOR ARRAY 2 POINTER
MPBCMP:

}SAVE RETURN ADDRESS

PLA

STA RETADR

PLA :

STA RETADR+1 ;SAVE RETURN ADDRESS

;GET LENGTH OF ARRAYS

PLA

TAY

JGET ADDRESS OF SUBTRAHEND AND SUBTRACT 1 TO SIMPLIFY INDEXING

PLA

SEC- ,

SBC #1 ;SUBTRACT 1 FROM LOW BYTE

STA SUBPTR

PLA

SBC #0 ;SUBTRACT ANY BORROW FROM HIGH BYTE

STA SUBPTR+1

;GET ADDRESS OF MINUEND AND ALSO SUBTRACT 1

PLA

SEC

SBC $1 ;SUBTRACT 1 FROM LOW BYTE

STA MINPTR

PLA -

SBC #$0 iSUBTRACT ANY BORROW FROM HIGH BYTE

STA MINPTR+1

278 ARTHMETIC

; RESTORE RETURN ADDRESS

LDA RETADR+1
PHA
LDA RETADR
PHA
;INITIALIZE
CPY #0 ;IS LENGTH OF ARRAYS = 0 ?
BEQ EXIT ;YES, EXIT WITH C=1,Z=1
LOOP:
LDA (MINPTR) ,Y ;:GET NEXT BYTE
CMP (SUBPTR) , Y ;COMPARE BYTES .
BNE EXIT ;EXIT IF THEY ARE NOT EQUAL, THE FLAGS ARE SET
DEY ;DECREMENT INDEX
BNE LOOP ;CONTINUE UNTIL COUNTER = 0 _
; IF WE FALL THROUGH THEN THE ARRAYS ARE EQUAL
;: AND THE FLAGS ARE SET PROPERLY
EXIT:
RTS
;DATA
RETADR .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
H :
; H
: SAMPLE EXECUTION: ;
i ;
; H
SC0610:
LDA AY1ADR+1
PHA)
LDA AY1ADR
PHA ;PUSH AY1l ADDRESS
LDA AY2ADR+1
PHA
LDA AY2ADR
PHA ;PUSH AY2 ADDRESS
LDA $SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPBCMP ;MULTIPLE-~PRECISION BINARY COMPARISON
BRK ;RESULT OF COMPARE (7654321H,1234567H) IS
; C=1,2=0
JMP SC0610
SZAYS: .EQU 7 ;SIZE OF ARRAYS
AY1ADR: .WORD AY1l ;ADDRESS OF ARRAY 1 (MINUEND)
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2 (SUBTRAHEND)

AY1l:

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 279

.BYTE 021H
.BYTE 043H
.BYTE 065H
.BYTE 007H

+ BYTE 0
.BYTE 0
.BYTE 0

AY2:
.BYTE 067H
.BYTE 045H
.BYTE 023H
.BYTE 001H

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

Multiple-Precision Decimal Addition

(MPDADD)

6K

Adds two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address.
The sum replaces one of the numbers (the
one with the starting address lower in the
stack). The length of the numbers (in bytes)
is 255 or less. The program returns with the
Decimal Mode (D) flag cleared (binary
mode).

Procedure: The program first enters the
decimal mode by setting the D flag. It then
clears the Carry flag initially and adds the
operands one byte (two digits) at a time,
starting with the least significant digits. The
sum replaces the operand with the starting
address lower in the stack (array 1 in the list-
ing). A length of 00 causes an immediate exit
with no addition operations. The program
clears the D flag (thus placing the processor
in the binary mode) before exiting. The final

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles
overhead. For example, adding two 8-byte (16-
digit) operands takes 23 x 8 + 86 or 270 cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
operands, the pointers start at addresses
AYIPTR (00DO,¢ in the listing) and AY2PTR
(00D2,4 in the listing).

Special Case: A length of zero causes an
immediate exit with array 1 unchanged (that is,
the sum is equal to bottom operand). The
Decimal Mode flag is cleared (binary mode) and
the Carry flag is set to 1.

Carry flag reflects the addition of the most-
significant digits.

Entry Conditions

Order in stack (starting from iop}

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
second operand (address containing the
least significant byte of array 2)

More significant byte of starting address of
second operand (address containing the
least significant byte of array 2)

Less significant byte of starting address of
first operand and result (address contain-
ing the least significant byte of array 1)

280

Exit Conditions

First operénd (array 1) replaced by
first operand (array 1) plus
second operand (arr_ay 2).

D flag set to zero (binary mode).

6K MULTIPLE-PRECISION DECIMAL ADDITION {MPDADD) 281

More significant byte of starting address of
first operand and result (address contain-
ing the least significant byte of array 1)

Example

Data: Length of operands (in bytes) = 6
Top operand (array 2) = 1960288193154

Bottom operand (array 1) =
293471605987,

Result: Bottom operand (array 1) = Bottom
operand (array 1) + Top operand
(array 2) = 489500425302,
Carry = 0, Decimal Mode flag =
0 (binary mode)

; Title Multiple-Precision Decimal Addition ;
H Name: MPDADD H
H H
; ;

Purpose: Add 2 arrays of BCD bytes
. Arrayl := Arrayl + Array2

Entry: TOP OF STACK

Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 address,
High byte of array 2 address,
Low byte of array 1 address,
High byte of array 1 address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Exit: Arrayl := Arrayl + Array2

Registers used: All

Time: 23 cycles per byte plus 86 cycles
overhead,

DO NS N W NE N6 N6 SE ST N Ne N Ne e N N % S Ne e %o e we WO
T NS Ne e N M Ne N ne N N0 e NS S we e we we we we we we %6 we s

282 ARTHMETIC

Size: Program 50 bytes
Data 2 bytes plus
4 bytes in page zero

w. me we we we

s EQUATES
AY1PTR: .EQU ODOH ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ; PAGE ZERO FOR ARRAY 2 POINTER
MPDADD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

:GET LENGTH OF ARRAYS

PLA

TAX

:GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE SUM AND DECIMAL MODE, EXIT IF LENGTH = 0

LDY #0

CPX #0 ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;BRANCH IF LENGTH IS 0

SED ;SET DECIMAL MODE

CLC ;CLEAR CARRY
LOOP:

LDA (AY1PTR) ,Y ;GET NEXT BYTE

ADC (AY2PTR) , Y ;ADD BYTES

STA (AY1PTR) ,Y ;STORE SUM

INY ; INCREMENT ARRAY INDEX

DEX ; DECREMENT COUNTER

BNE LOOP ;CONTINUE UNTIL COUNTER = 0
EXIT:

CLD ;sRETURN IN BINARY MODE

~e s e we we

6K MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 283

RTS
; DATA
RETADR .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
H H
H i
H SAMPLE EXECUTION: H
H H
SC0611:
LDA AY1ADR+1
PHA
LDA AY1ADR"
PHA ;PUSH AY1l ADDRESS
LDA AY2ADR+1
PHA
LDA AY2ADR
PHA ;PUSH AY2 ADDRESS
LDA #SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPDADD sMULTIPLE~-PRECISION BCD ADDITION
BRK sRESULT OF 1234567 + 1234567 = 2469134
; IN MEMORY AY1l = 34H
H AY1l+] = 91H
; AY1+42 = 46H
; AY1+3 = Q2H
H AY1+4 = 00H
; AY1+5 = 00H
H AY1+6 = Q0H
JMP SC0611
SZAYS: L.EQU 7 ;S1ZE OF ARRAYS
AY1ADR: .WORD AY1 ;ADDRESS OF ARRAY 1
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2
AY1l:
.BYTE 067H
.BYTE 04 5H
. .BYTE 023H
.BYTE 001H
.BYTE 0
.BYTE 0
.BYTE 0
AY2:

.BYTE 067H
.BYTE 045H
.BYTE 023H

284 ArTHMETIC

.BYTE 001H

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

Multiple-Precision Decimal Subtraction

(MPDSUB)

6L

Subtracts two multi-byte unsigned
decimal numbers. Both numbers are stored
with their least significant digits at the lowest
address. The starting address of the
subtrahend (number to be subtracted) is
stored on top of the starting address of the
minuend (number from which the
subtrahend is subtracted). The difference
replaces the minuend in memory. The length
of the numbers (in bytes) is 255 or less. The
program returns with the Decimal Mode (D)
flag cleared (binary mode).

Procedure: The program first enters the
decimal mode by setting the D flag. It then
sets the Carry flag (the inverted borrow)

" initially and subtracts the subtrahend from
the minuend one byte (two digits) at a time,
starting with the least significant digits. The
final Carry flag reflects the subtraction of the
most significant digits. The difference re-
places the minuend (the operand with the
starting address lower in the stack, array 1 in

Registers Used: All

Execution Time: 23 cycles per byte plus 86 cycles
overhead. For example, subtracting two 8-byte
(16-digit) operands takes 23 X 8 + 86 or 270
cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
operands; the pointers start at addresses
AYIPTR (00DO,, in the listing) and AY2PTR
(00D2¢ in the listing).

Special Case: A length of zero causes an
immediate exit with the difference equal to the
original minuend, the Decimal Mode flag cleared
(binary mode), and the Carry flag set to 1.

the listing). A length of 00 causes an immedi-
ate exit with no subtraction operations. The
program clears the D flag (thus placing the
processor in the binary mode) before exiting.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands. in bytes

Less significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

More significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

Less significant byte of starting address of

Exit Conditions

Minuend (array 1) replaced by minuend
(array 1) minus subtrahend (array 2).

D flag set to zero (binary mode).

285

286 ARITHMETIC

minuend (address containing the least sig-

nificant byte of array 1)

More significant byte of starting address of
minuend (address containing the least sig-

nificant byte of array 1)

Example

Data:

Result:

w. we we ~e

Nt e ws W We e we We We We W Wy e We We W e e %o % S0

Length of operands (in bytes) = 6
Minuend (array 1) = 2934716059874
Subtrahend (array 2) = 196028819315,

Difference (array 1) = 097442786672,.

This numbeér replaces the original minuend

in memory. The Carry flag is set to 1 in accordance
with its usual role (in 6502 programming)

as an inverted borrow.

Decimal Mode flag = 0 (binary mode)

Title
Name:

Purpose:

Entry:

Exit:

Multiple-Precision Decimal Subtraction
MPDSUB

Subtract 2 arrays of BCD bytes
Minuend := Minuend - Subtrahend

TOP OF STACK .

Low byte of return address,

High byte of return address,
Length of the arrays in bytes,
Low byte of subtrahend address,
High byte of subtrahend address,
Low byte of minuend address,
High byte of minuend address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Arrayl := Arrayl - Array2

Registers used: All

~ we we we

Mo %e mE hE N Ne me N6 Ne N8 We WP We Ve ws We wa Ne e W we

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION (Mposug) 287

Time: 23 cycles per byte plus 86 cycles
overhead.

Size: Program 50 bytes
Data 2 bytes plus

4 bytes in page zero

W8 M Ne Ne we we W we we
e %o Ns e we e we ne e

i EQUATES
MINPTR: .EQU 0DOH ;PAGE ZERO FOR MINUEND POINTER
SUBPTR: .EQU 0D2H ;PAGE ZERO FOR SUBTRAHEND POINTER
MPDSUB;

iSAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX A

£ .

;GET STARTING ADDRESS OF SUBTRAHEND

PLA

STA SUBPTR

PLA

STA SUBPTR+1

;GET STARTING ADDRESS OF MINUEND

PLA

STA MINPTR

PLA

STA MINPTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

LDY " #0

CPX #0 ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;YES, EXIT

SED ;SET DECIMAL MODE

SEC ;SET CARRY
LOOP:

LDA (MINPTR) ,Y ;GET NEXT BYTE

SBC (SUBPTR) , Y ;SUBTRACT BYTES

STA (MINPTR) ,Y - iSTORE DIFFERENCE

INY : INCREMENT ARRAY INDEX

DEX ;DECREMENT COUNTER

BNE LOoOop :CONTINUE UNTIL COUNTER = 0

288 ARITHMETIC

EXIT:

H
;DATA
RETADR

~e we e ws we

8C0612:

SZAYS:

AY1ADR:
AY2ADR:

AY1l:

CLD
RTS

.BLOCK

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
. WORD

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

2

AY1ADR+1

AY1ADR

AY2ADR+1

“AY2ADR

#SZAYS

MPDSUB

sco612
2

Ayl
AY2

034H
091H
046H
002H

;RETURN IN BINARY MODE

; TEMPORARY FOR RETURN ADDRESS

;PUSH AY1l ADDRESS

; PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

:+MULTIPLE-PRECISION

BCD SUBTRACTION

;RESULT OF 2469134 - 1234567 = 1234567

IN MEMORY AY1l
AY1l+l
AY1+2
AY143
AY1+4
AY1+5
AY1+6

s we me me wa e w0

;sSIZE OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

67H
45H
23H
0lH
00H
00H
00H

(MINUEND)
(SUBTRAKEND)

~e we we we we

AY2:

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

0678
045H
023H
001n
0
0
0

; PROGRAM

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION {MPDSUB) 289

Multiple-Precision Decimal Multiplication

(MPDMUL)

6M

Multiplies two multi-byte unsigned
decimal numbers. Both numbers are stored
with their least significant digits at the lowest
address. The product replaces one of the
numbers (the one with the starting address
lower in the stack). The length of the num-
bers (in bytes) is 255 or less. Only the least
significant bytes of the product are returned
to retain compatibility with other multiple-
precision decimal operations. The program
returns with the Decimal Mode (D) flag
cleared (binary mode).

Procedure: The program handles each digit

of the multiplicand (array 1) separately. It
masks that digit off, shifts it (if it is in the
upper nibble of a byte), and then uses it as a
counter to determine how many times to add
the multiplier to the partial product. The least
significant digit of the partial product is saved
as the next digit of the full product and the
partial product is shifted right four bits. The
program uses a flag to determine whether itis
currently working with the upper or lower
digit of a byte. A length of 00 causes an exit
with no multiplication.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the size of the digits in the
multiplicand (since those digits determine how
many times the multiplier is added to the partial
product).

If the average digit in the multiplicand has a
value of 5, then the execution lime is approx-
imately

322 x LENGTH? + 390 X LENGTH + 100
cycles where LENGTH is the number of bytes in
the operand. If, for example, LENGTH = 6 (12
digits), the approximate execution time is

322 X 62 + 390 X 6 + 100 = 322 x 36 + 2340

+ 100 = 11,592 + 2440 = 14,032 cycles.
Program Size: 203 bytes

Data Memory Required: 517 bytes anywhere in
RAM plus four bytes on page 0. The 517 bytes
anywhere in RAM are temporary storage for the

partial product (255 bytes starting at address
PROD), the multiplicand (255 bytes starting at
address MCAND), the return address (two bytes
starting at address RETADR), the length of the
operands in bytes (one byte at address
LENGTH), the next digit in the operand (one
byte at address NDIGIT), the digit counter (one
byte at address DCNT), the byte index into the
operands (one byte at address IDX), and the
overflow byte (1 byte at address OVERFLW).
The four bytes on page 0 hold pointers to the two
operands; the pointers start at addresses
AYIPTR (00DO,, in the listing) and AY2PTR
(00D2,; in the listing).

Special Case: A length of zero causes an
immediate exit with the product equal to the orig-
inal multiplicand (array 1 is unchanged), the
Decimal Mode flag cleared (binary mode), and
the more significant bytes of the product (starting
at address PROD) undefined.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

290

Exit Conditions

Multiplicand (array 1) replaced by multipli-
cand (array 1) times multiplier (array 2).

D flag set to zero (binary mode).

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 291

Less significant byte of starting address of
multiplier (address containing the least
significant byte of array 2)

More significant byte of starting address of
multiplier (address containing the least
significant byte of array 2)

Less significant byte of starting address of
multiplicand (address containing the least

. significant byte of array 1)

More significant byte of starting address of
multiplicand (address containing the least
significant byte of array 1) '

Example Note that MPDMUL returns only the less
Data: Length of operands (in bytes) = 04 significant bytes of the product (that is, the
Top operand (array 2 or multiplier) number of bytes in the multiplicand and
= 00003518, o multiplier) to maintain compatibility with
'_3__"88636‘;‘;:”’”" (array 1 or multiplicand) per multiple-precision decimal arithmetic
6 operations. The more significant bytes of the
Result: Bottom operand (array 1) = Bottom
operand (array 1) * Top operand product are available starting with their least
(array 2) = 22142292, significant digits at address PROD. The user
Decimal Mode flag = 0 (binary mode) may need to check those bytes for a possible
overflow or extend the operands with addi-
tional zeros.
Title Multiple-Precision Decimal Multiplication
Name: MPDMUL
Purpose: Multiply 2 arrays of BCD bytes
Arrayl := Arrayl * Array2
Entry: TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (mulitplicand) address,
High byte of array 2 (multiplicand) address,
Low byte of array 1 (multiplier) address,
High byte of array 1 (multiplier) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

e NP NE WE Ne Ne NE NE L %e w0 e ne e e we wa we O e we
WO WO NE e WE N e Ne W6 N N W Ne NS NE ne N we N e we

Exit: Arrayl := Arrayl * Array2

292 ARITHMETIC

Registers used: All

Time: . Assuming the average digit value of ARRAY 1 is
5 then the time is approximately
(322 * length”2) + (390 * length) + 100 cycles

Size: Program 203 bytes
Data 517 bytes plus
4 bytes in page zero

Ne e WMo ws WE we W e ws We Ne N

;EQUATES
AY1PTR: .EQU O0DOH ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ;PAGE ZERO FOR ARRAY 2 POINTER
MPDMUL:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;:GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

+RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

SED ; PUT PROCESSOR IN DECIMAL MODE

LDY #0

LDX LENGTH ;1S LENGTH ZERO ?

BNE INITLP

JMP EXIT ;YES, EXIT

:MOVE ARRAY 1 TO MULTIPLICAND ARRAY, 2ZERO ARRAY 1, AND
; ZERO PRODUCT ARRAY.
INITLP:
LDA (AY1PTR) ,Y
STA MCAND, Y ;MOVE ARY1[Y] TO MCAND[Y]

. wE me Ne ws e W W We N6 “e

LOOP:

DLOOP:

DLOOP1:

ADDLP:

INNER:

DECND:

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL)

LDA 0

STA (AY1PTR), Y ;ZERC ARY1[Y]

STA PROD, Y ;ZERO PROD

INY

DEX ;DECREMENT LOOP COUNTER
BNE INITLP ;CONTINUE UNTIL DONE

s INITIALIZE CURRENT INDEX TO ZERO

LDA $0 -

STA 1DX

i
; LOOP THROUGH ALL THE BYTES OF THE MULTIPLICAND

LDA #0
STA DCNT ;START WITH LOW DIGIT

; LOOP THROUGH 2 DIGITS PER BYTE
i DURING THE FIRST DIGIT DCNT = 0
i DURING THE SECOND DIGIT DCNT = FF HEX (-1)

LDA #0

STA OVRFLW 7iZERO QOVERFLOW

LDY IDX

LDA MCAND, Y ;GET NEXT BYTE

LDX DCNT

BPL DLOOP1 ;BRANCH IF FIRST DIGIT
LSR A ;SHIFT RIGHT 4 BITS
LSR A

LSR A

LSR A

AND #0FH ;AND OFF UPPER DIGIT
BEQ SDIGIT ;BRANCH IF NEXT DIGIT IS ZERO
STA NDIGIT :SAVE

;ADD MULTIPLIER TO PRODUCT NDIGIT TIMES

LDY $#0 ;Y = INDEX INTO ARRAYS

LDX LENGTH iX = LENGTH IN BYTES

CLC ;CLEAR CARRY INITIALY

LDA (AY2PTR) ,Y ;GET NEXT BYTE

ADC PROD, Y ;ADD TO PRODUCT

STA PROD, Y +STORE ‘

INY ;s INCREMENT ARRAY INDEX

DEX i DECREMENT LOOP COUNTER

BNE INNER ;CONTINUE UNTIL LOOP COUNTER = 0
BCC DECND #BRANCH IF NO OVERFLOW FROM ADDITION
INC OVRFLW i {ELSE INCREMENT OVERFLOW BYTE
DEC NDIGIT

BNE ADDLP ;CONTINUE UNTIL NDIGIT = 0

293

294 ARiTHMETIC

;STORE THE LEAST SIGNIFICANT DIGIT OF PRODUCT
; AS THE NEXT DIGIT OF ARRAY 1

SDIGIT:
‘ LDA PROD
AND #0FRH ;CLEAR UPPER DIGIT
LDX DCNT
BPL sSD1l ;BRANCH IF FIRST DIGIT
ASL A ;ELSE SHIFT LEFT 4 BITS TO PLACE
ASL A ; IN THE UPPER DIGIT
ASL A
ASL A
SD1:
LDY IDX ;GET CURRENT BYTE INDEX
ORA (AY1PTR) ,Y ;OR IN NEXT DIGIT
STA (AY1PTR) ,Y ;STORE NEW VALUE
;SHIFT RIGHT PRODUCT 1 DIGIT (4 BITS)
LDY LENGTH . ;SHIFT RIGHT FROM THE FAR END
SHFTLP: ' .
DEY ;DECREMENT Y SO IT POINTS AT THE NEXT BYTE
LDA PROD, Y
PHA ;SAVE LOW DIGIT OF PROD, Y
AND $0FOH ;CLEAR LOW DIGIT

;MAKE LOW DIGIT OF OVERFLOW = HIGH DIGIT OF PROD,Y
;MAKE HIGH DIGIT OF PROD,Y = LOW DIGIT OF PROD,Y

LSR OVRFLW ;SHIFT OVERFLOW RIGHT
ORA OVRFLW ;BIT 0..2 AND CARRY = OVERFLOW
_ ;BITS 4.,7 = PROD
ROR A
ROR A
ROR A
ROR A ;NOW PROD IN BITS 0..3 AND OVERFLOW IN 4..7
STA PROD, ¥ ;STORE NEW PRODUCT '
PLA ;GET OLD PROD,Y
AND $O0FH ;CLEAR UPPER DIGIT
STA OVRFLW ;STORE IN OVERFLOW
TYA : ;CHECK FOR Y = 0
BNE SHFTLP ;BRANCH IF NOT DONE
;CHECK IF WE ARE DONE WITH BOTH DIGITS OF THIS BYTE
DEC ' DCNT ;MAKE 0 GOTO FF HEX TO INDICATE SECOND DIGIT
LDA DCNT - : _
CMP $0FFH ;HAVE WE ALREADY DONE BOTH DIGITS ?
BEQ DLOOP ;BRANCH IF NOT.
; INCREMENT TO NEXT BYTE AND SEE IF WE ARE DONE
INC IDX :
LDA IDX
CMP LENGTH
BCS EXIT ;BRANCH IF BYTE INDEX >= LENGTH
JMP LOOP ;ELSE CONTINUE

EXIT:

’

; DATA
RETADR:
LENGTH:
NDIGIT:
DCNT:
IDX:
OVRFLW:
PROD:
MCAND:

Ne e we we wa

SC0613:

SZAYS:

AY1ADR:
AY2ADR:

AY1l:

CLD
RTS

.BLOCK 2
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 255
.BLOCK 255

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA

LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
.WORD

.BYTE
.BYTE
.BYTE
.BYTE

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDMUL

SC0613
;

AYl
AY2

034H
012H

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL)

sRETURN IN BINARY MODE

; TEMPORARY FOR RETURN ADDRESS
;LENGTH OF ARRAYS

;NEXT DIGIT IN ARRAY

;DIGIT COUNTER FOR BYTES IN ARRAYS
iBYTE INDEX INTO ARRAYS

;OVERFLOW BYTE

: PRODUCT BUFFER

sMULTIPLICAND BUFFER

;PUSH AY]l ADDRESS

;PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS
iMULTIPLE~PRECISION BCD MULTIPLICATION
{RESULT OF 1234 * 1234 = 1522756

; IN MEMORY AY1 = 56H
; " AY1+l = 27H
; AY1+2 = 524
; AY1+3 = 0lH
; AY1+4 = 0OH
; AY1+5 = QOH
: AY1+6 = 0OH

;LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

295

e we we we we

296 ARTHMETIC

. BYTE
.BYTE
.BYTE

AY2:
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

oo

; PROGRAM

Multiple-Precision Decimal Division

(MPDDIV)

6N

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant byte at the lowest address.
The quotient replaces the dividend (the
operand with the starting address lower in the
stack). The length of the numbers (in bytes)
is 255 or less. The remainder is not returned
but the address of its least significant byte is
available starting at memory location
HDEPTR. The Carry flag is cleared if no
errors occur,; if a divide by zero is attempted,
the Carry flag is set to 1, the dividend is left
unchanged, and the remainder is set to zero.

The program returns with the Decimal Mode
(D) flag cleared (binary mode).

Procedure: The program performs division
by trial subtractions, a digit at a time. It deter-
mines how many times the divisor can be
subtracted from the dividend and then saves
that number in the quotient and makes the
remainder into the new dividend. It then
rotates the dividend and the quotient left one
digit. The program exits immediately, setting
the Carry flag, if it finds the divisor to be
zero. The Carry flag is cleared otherwise.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the size of the digits in the quo-
tient (determining how many trial subtractions
must be performed). If the average digit in the
quotient has a value of 5, then the execution time
is approximately

440 X LENGTH? + 765 x LENGTH + 228

cycles where LENGTH is the number of bytes in
the operands. If, for example, LENGTH = 6 (12
digits), the approximate execution time is

440 X 62 + 765 X 6 + 228 = 440 X 36 + 4590
+ 228 = 15,840 + 4818 = 20,658 cycles.

Program Size: 246 bytes

Data Memory Required: 522 bytes anywhere in
RAM plus eight bytes on page 0. The 522 bytes
anywhere in RAM are temporary storage for the
high dividend (255 bytes starting at address
HIDE1), the result of the trial subtraction (255
bytes starting at address HIDE2), the return
address (two bytes starting at address
RETADR), a pointer to the dividend (two bytes
starting at address AY1PTR), the length of the

operands (one byte at address LENGTH), the
next digit in the array (one byte at address
NDIGIT), the divide loop counter (one byte at
address COUNT), and the addresses of the high
dividend buffers (two bytes each, starting at
addresses AHIDE]1 and AHIDE2). The eight
bytes on page 0 hold pointers to the divisor
(address AY2PTR, 00DO,¢ in the listing), the
current high dividend and remainder (address
HDEPTR, 00D2¢ in the listing), the other high
dividend (address ODEPTR, 00D4; in the list-
ing), and the temporary array used in the left
rotation (address RLPTR, 00D6,, in the listing).

Special Cases:

1. A length of zero causes an immediate exit
with the Carry flag cleared, the quotient equal to
the original dividend (array 1 unchanged), the
remainder undefined, and the Decimal Mode flag
cleared (binary mode).

2. A divisor of zero causes an exit with the
Carry flag set to 1, the quotient equal to the origi-
nal dividend (array 1 unchanged), the remainder
equal to zero, and the Decimal Mode flag cleared
(binary mode).

297

298 ArTHMETIC

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
divisor (address containing the least sig-

nificant byte of array 2)

More significant byte of starting address of
divisor (address containing the least sig-

nificant byte of array 2)

Less significant byte of starting address of
dividend (address containing the least sig-

nificant byte of array 1)

More significant byte of starting address of
dividend (address containing the least sig-

nificant byte of array 1)

Exit Conditions

Dividend (array 1) replaced by dividend
(array 1) divided by divisor (array 2)

If the divisor is non-zero, Carry = 0 and
the result is normal.

If the divisor is zero, Carry = 1, the divi-
dend is unchanged, and the remainder is
zero.

The remainder is available with its least
significant digits stored at the address in
HDEPTR and HDEPTR+1

D flag set to zero (binary mode).

Example

Data:

Length of operands (in bytes) = 04

Top operand (array 2 or divisor) = .
00006294,

Bottom operand (array 1 or dividend) =

22142298,

Result: Bottom operand (array 1) = Bottom
operand (array 1)/Top operand
(array 2) = 000035184

Remainder (starting at address in
HDEPTR and HDEPTR+1) =
00000006, = 6,

Decimal Mode flag = 0 (binary mode)
Carry flag is 0 to indicate no

divide by zero error.

Title
Name:

e we we wms

Purpose:

Entry:

Exit:

Time:

Size:

NE e NE NG NE MO e NE W Ne NE N N WE WE MO e NE N ME We Ne W W NE N NE me N6 we Ne e We we e Ne we we we

;EQUATES

AY2PTR: .EQU
HDEPTR: .EQU
ODEPTR: .EQU
RLPTR: .EQU

MPDDIV:

Registers used:

0DOH
OD2H

0D4H

0D6H

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPODIV) 299

Multiple-Precision Decimal Division
MPDDIV

Divide 2 arrays of BCD bytes
Arrayl := Arrayl / Array?2

TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (divisor) address,
High byte of array 2 (divisor) address,
Low byte of array 1 (dividend) address,
High byte of array 1 (dividend) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY [0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Arrayl := Arrayl / Array2
Dvbuf := remainder
If no errors then
carry := 0
ELSE
divide by 0 error
carry :=1
ARRAY 1 := un
remainder :=

All

Assuming the average digit value in the
quotient is 5 then the time is approximately
(440 * length™2) + (765 * length) + 228 cycles

Program 246 bytes
Data 522 bytes plus
8 bytes in page zero

iPAGE ZERO FOR ARRAY 2 (DIVISOR) POINTER

:PAGE ZERO WHICH POINTS TO THE CURRENT
;7 HIGH DIVIDEND POINTER

iPAGE ZERO WHICH POINTS TO THE OTHER

;i HIGH DIVIDEND POINTER

i PAGE ZERO' FOR ROTATE LEFT ARRAY

e ws we we

~. Nu e we we we

Ne ne e e o e e we

| Ne N NE Na ME N4 M we NE NE N e e Me N6 we Ne e We N %6 w6 we we

300 AariTHMETIC

:GET RETURN ADDRESS

PLA -

STA RETADR

PLA

STA RETADR+1

:GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET STARTING ADDRESS OF DIVISOR

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF DIVIDEND

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA - RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

CLD ; PUT PROCESSOR INTO BINARY MODE

sCHECK FOR ZERO LENGTH ARRAYS

LDA LENGTH

BNE INIT ;BRANCH IF NOT ZERO

JMP OKEXIT ;ELSE EXIT

;2ERO BOTH DIVIDEND BUFFERS
INIT:

LDA #0 ;A =0

LDY LENGTH :+X = LENGTH
INITLP:

STA HIDEl-1l,Y

STA HIDE2-1,Y

DEY

BNE INITLP

;SET UP THE HIGH DIVIDEND POINTERS

LDA AHIDE1l

STA HDEPTR

LDA AHIDEl+1

STA HDEPTR+1

LDA AHIDE2

STA ODEPTR

LDA AHIDE2+1

STA ODEPTR+1

CHKDVO:

DVO1l:

DVLOOP:

ROLDVB:

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 301

;NDIGIT := 0 -

LDA #0

STA NDIGIT

;SET COUNT TO NUMBER OF DIGITS PLUS 1

; COUNT := (LENGTH * 2) + 1

LDA LENGTH _

ASL A ;LENGTH * 2

STA COUNT ~ .
LDA #0

ROL A iMOVE OVERFLOW FROM * 2 INTO A
STA COUNT+1 ;STORE HIGH BYTE OF COUNT

INC COUNT

BNE CHKDV0 ' ;BRANCH IF NO OVERFLOW

INC COUNT+1

;CHECK FOR DIVIDE BY ZERO

LDX - LENGTH

LDY #0

TYA

ORA (AY2PTR), Y

INY

DEX

BNE DvVol ;CONTINUE ORING ALL THE BYTES
CMP #0

BNE DVLOOP sBRANCH IF DIVISOR IS NOT 0
JMP " EREXIT ;ERROR EXIT

;PERFORM DIVISION BY TRIAL SUBTRACTIONS

;ROTATE LEFT THE LOWER DIVIDEND AND THE QUOTIENT (ARRAY 1)

; THE HIGH DIGIT OF NDIGIT BECOMES THE LEAST SIGNIFICANT DIGIT
i OF THE QUOTIENT (ARRAY 1) AND THE MOST SIGNIFICANT DIGIT

; OF ARRAY 1 (DIVIDEND) GOES TO THE HIGH DIGIT OF NDIGIT

LDA AY1PTR+1 . ’

LDY AY1PTR .

JSR RLARY sROTATE ARRAY 1

:IF COUNT = 0 THEN WE ARE DONE

DEC COUNT

BNE ROLDVB iBRANCH IF LOWER BYTE IS NOT 0
LDA COUNT+1 ;ELSE GET HIGH BYTE

BEQ OKEXIT jCONTINUE UNTIL COUNT = 0

DEC COUNT+1 ;DECREMENT UPPER BYTE OF COUNT

i ROTATE LEFT THE HIGH DIVIDEND WHERE THE LEAST SIGNIFICANT DIGI
i OF HIGH DIVIDEND BECOMES THE HIGH DIGIT OF NDIGIT '

LDA HDEPTR+1
LDY HDEPTR
JSR RLARY

302 ArTHMETIC

SUBLP:

INNER:

OKEXIT:

EREXIT:

EXIT:

SEE HOW MANY TIMES THE DIVISOR WILL GO INTO THE HIGH DIVIDEND
WHEN WE EXIT FROM THIS LOOP THE HIGH DIGIT OF NDIGIT IS THE NEXT
; QUOTIENT DIGIT AND HIGH DIVIDEND IS THE REMAINDER

* e we

LDA #0

STA NDIGIT ;NDIGIT := 0

SED ;ENTER DECIMAL MODE

LDY* #0 i ;Y = INDEX INTO ARRAYS

LDX LENGTH ;X = LENGTH

SEC ;SET INVERTED BORROW

LDA (HDEPTR) , Y ;GET NEXT BYTE OF DIVIDEND

SBC (AY2PTR) ,Y ;SUBTRACT BYTE OF DIVISOR

STA (ODEPTR) , ¥ ;SAVE DIFFERENCE FOR NEXT SUBTRACTION
INY ; INCREMENT ARRAY INDEX /

DEX ;DECREMENT LOOP COUNTER

BNE INNER ;CONTINUE THROUGH ALL THE BYTES

BCC DVLOOP ;BRANCH WHEN BORROW OCCURS. AT WHICH TIME

; NDIGIT IS THE NUMBER OF TIMES THE DIVISOR
; GOES INTO THE ORIGINAL HIGH DIVIDEND AND
;» HIGH DIVIDEND CONTAINS THE REMAINDER.’

; INCREMENT NEXT DIGIT WHICH IS IN THE HIGH DIGIT OF NDIGIT
LDA NDIGIT o

CLC -

ADC #10H

STA NDIGIT

EXCHANGE POINTERS, THUS MAKING REMAINDER THE NEW DIVIDEND
LDX ° HDEPTR :

LDY HDEPTR+1

LDA ODEPTR

STA HDEPTR

LDA ODEPTR+1

STA HDEPTR+1

STX ODEPTR .

STY ODEPTR+1

JMP SUBLP ;CONTINUE UNTIL DIFFERENCE GOES NEGATIVE

;NO ERRORS, CLEAR CARRY

CLC
BCC EXIT

;DIVIDE BY ZERO ERROR, SET CARRY

SEC

;HDEPTR CONTAINS THE ADDRESS OF THE REMAINDER ‘
CLD ' ;RETURN IN BINARY MODE
RTS

6N MULTIPLE-PRECISION DECIMAL DIVISION (vpoD) 303

H .
; ***********************************

iSUBROUTINE: RLARY

i PURPOSE: ,ROTATE LEFT AN ARRAY ONE DIGIT (4 BITS)

FENTRY: A = HIGH BYTE OF ARRAY ADDRESS '

Y = LOW BYTE OF ARRAY ADDRESS

THE HIGH DIGIT OF NDIGIT IS THE DIGIT TO ROTATE THROUGH
;EXIT: ARRAY ROTATED LEFT THROUGH THE HIGH DIGIT OF NDIGIT

:REGISTERS USED: ALL
PRERR AR AR R KRR R IR AR KRR IR AR AR KRR

~ ~,

RLARY:

:STORE ARRAY ADDRESS

sta RLPTR+1 .

STY RLPTR -

sSHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND

; SHIFT ARRAY LEFT

LDX LENGTH

LDY #0 ;START AT ARY1([0]
SHIFT:

LDA (RLPTR) ,Y ;GET NEXT BYTE

PHA ;SAVE HIGH DIGIT

AND #0FH ;CLEAR HIGH DIGIT

ASL NDIGIT

ORA NDIGIT ;BITS 0..3 = LOW DIGIT OF ARRAY

‘ ;BITS 5..7 AND CARRY = NEXT DIGIT

ROL A

ROL A

ROL A

ROL A ;NOW NDIGIT IN BITS 0..3 AND

: ; LOW DIGIT IN HIGH DIGIT

STA (RLPTR) ,Y sSTORE IT

PLA) ;GET OLD HIGH DIGIT

AND $#0F OH ;CLEAR LOWER DIGIT

STA NDIGIT ;STORE IN NDIGIT

INY ; INCREMENT TO NEXT BYTE

DEX . ;DECREMENT COUNT

BNE SHIFT ;BRANCH IF NOT DONE

RTS
;DATA ,
RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS
AY1PTR: .BLOCK 2 ;ARRAY 1 ADDRESS
LENGTH: * .BLOCK 1 ;LENGTH OF ARRAYS
NDIGIT: .BLOCK 1 ;NEXT DIGIT IN ARRAY
COUNT: .BLOCK 2 ;DIVIDE LOOP COUNTER .
AHIDEl: .WORD HIDEl. ;ADDRESS OF HIGH DIVIDEND BUFFER 1
AHIDE2: .WORD HIDE2 ;ADDRESS OF HIGH DIVIDEND BUFFER 2
HIDEl: .BLOCK 255, ;HIGH DIVIDEND BUFFER 1

HIDE2: .BLOCK 255, ;HIGH DIVIDEND BUFFER 2

304 ArTHMETIC

= ws we we we

SC0614:

SZAYS:

AY1ADR:
AY2ADR:

AY1:

AY2:

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA

LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
.WORD

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#S2AYS

MPDDIV

SC0614
7

AY1l
AY2

056H
027H
052H
OlH

034H
012H

[N =R} =]

: PROGRAM

;PUSH AY1l ADDRESS

;PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS
;MULTIPLE-PRECISION BCD DIVISION
;RESULT OF 1522756 / 1234 = 1234

IN MEMORY AYl
AY1l+l
AY1+2
AY1+3
AY1l+4
AY1+5
AY1+6

e e we wa w we e

:LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

34H
128
00H
00H
00H
00H
00H

o unun

(DIVIDEND)
(DIVISOR)

-~ we w6 we ws

Multiple-Precision Decimal Comparison 60

Compares two multi-byte unsigned
decimal (BCD) numbers and sets the Carry
and Zero flags appropriately. The Zero flag is
set to 1 if the operands are equal and to 0 if
they are not equal. The Carry flag is set to 0 if

the operand with the address higher in the

stack (the subtrahend) is larger then the
other operand (the minuend); the Carry flag
is set to 1 otherwise. Thus the flags are set as

if the subtrahend had been subtracted from
the minuend.

Note: This program is exactly the same as
Subroutine 6J, the multiple-precision binary
comparison, since the CMP instruction oper-
ates the same in the decimal mode as in the
binary mode. Hence, see Subroutine 6J for a
listing and other details.

Examples

1. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
456780153266,)

Result: Zero flag = 0 (operands are not equal)
Carry flag = 1 (subtrahend is not
larger than minuend)

2. Data; Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
196528719340,
Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is not
larger than minuend)

3. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
073785991074,

Result: Zero flag = 0 (operands are not equal)

Carry flag = 0 (subtrahend is larger
than minuend)

305

Bit Set (BITSET)

7A

Sets a specified bit in a 16-bit word to 1.

Procedure: The program uses bits 0
through 2 of register X to determine which
bit position to set and bit 3 to select a particu-
lar byte of the original word-length data. It
then logically ORs the selected byte with a
mask containing a 1 in the chosen bit position
and Os elsewhere. The masks with one 1 bit
are available in a table.

Registers Used: All
Execution Time: 57 cycles
Program Size: 42 bytes

Data Memory Required: Two bytes anywhere in
RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be
interpreted mod 16. That is, for example, bit
position 16 is equivalent to bit position 0.

Entry Conditions

More significant byte of data in accumulator
Less significant byte of data in register Y
Bit number to set in register X

Exit Conditions

More significant byte of result in accumulator
Less significant byte of result in register Y

Examples

(A) = 6E¢ = 01101110,
(more significant byte)
(less significant byte)
(X) = 0C|6 = 1210

(bit position to set)

1. Data:

Result: (A) = 7TE;4 = 01111110,

(more significant byte,
bit 12 set to 1)

(Y) = 39,, = 00111001,
(less significant byte)

306

2. Data: (A) = 6, = 01101110,
(more significant byte)
(Y) = 39, = 00111001,
(less significant byte)
(x) = 0216 = 210

(bit position to set)

Result: (A) = 6E,, = 01101110,

(more significant byte)
(Y) = 3D, = 00111101,
(less significant byte, bit 2 set to 1)

7a@iTseT BT seT 307

; Title Bit set ;
; Name: BITSET ;
; : H
; H
Purpose: Set a bit in a 16 bit word.
Entry: Register A = High byte of word
Register Y = Low byte of word
Register X = Bit number to set
Exit: Register A = High byte of word with bit set
Register Y = Low byte of word with bit set

Registers used: All

e e we Me W Ne e W ME N we SE W N e we we we
Mo Me ME me W Ne Me N Wa mp e e me me we we we we

Time: 57 cycles
Size: Program 42 bytes
Data 2 bytes
BITSET:
;SAVE THE DATA WORD
STA VALUE+1
STY VALUE
;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15
TXA
AND #0FH
;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE
TAX SAVE BIT NUMBER IN X
AND $#07H ;THE LOWER 3 BITS OF THE BIT NUMBER
TAY ; IS THE BIT IN THE BYTE, SAVE IN Y
TXA sRESTORE BIT NUMBER
LSR A ;DIVIDE BY 8 TO DETERMINE BYTE
LSR A
LSR A
TAX iSAVE BYTE NUMBER (0 OR 1) IN X
sSET THE BIT
LDA VALUE, X +GET THE BYTE
ORA BITMSK,Y ;SET THE BIT
STA VALUE, X

:RETURN THE RESULT IN REGISTERS A AND Y

LDA - VALUE+1
LDY VALUE
RTS

308 T MANIPULATIONS AND SHIFTS

BITMSK: .BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

;DATA

00000001B
00000010B
00000100B
000010008
00010000B
001000008
01000000B
100000008

VALUE: .BLOCK 2

~e we wo e W

SCG701:
LDA
LDY
LDX
JSR
BRK

JMP

SAMPLE EXECUTION

VAL+1
VAL
BITN
BITSET

SC0701

;BIT 0 =1
;BIT 1 =1
sBIT 2 =1
sBIT 3 =1
;BIT 4 = 1
;BIT 5 =1
;BIT 6 = 1
:BIT 7 =1

; TEMPORARY FOR THE DATA WORD

e s we e we

;LOAD DATA WORD INTO A,Y

;GET BIT NUMBER IN X

;+SET THE BIT

;RESULT OF VAL = 5555H AND BITN = OF
; REGISTER A = D5H, REGISTER ¥ = 55H

;TEST DATA, CHANGE FOR DIFFERENT VALUES

VAL: .WORD
BITN: .BYTE

.END

5555H
UFH

; PROGRAM

Bit Clear (BITCLR) 7B

Clearsa specified bit in a 16-bit word.

Procedure: the program uses bits 0 through
2 of register X to determine which bit posi-
tion to clear and bit 3 to select a particular Program Size: 42 bytes
byte of the original word-length data. It then Data Memory Required: T\j"Olj’é‘e; anywhere in
logically ANDs the selected byte with a mask RAM‘ (starting at.addre'ss ALUE).)
containing a 0 in the choseq bit positior} and. ?n‘;gf;‘;gtf: s:,:odBnl5?0;2::niss,a?:rveex:a§n;g,l l?i?
1s elsewhere. The masks with one 0 bit are position 16 is equivalent to bit position 0.
available in a table.

Registers Used: All
Execution Time: 57 cycles *

Entry Conditions Exit Conditions

More significant byte of data in accumulator More significant byte of result in accumulator
Less significant byte of data in register Y Less significant byte of result in register Y
Bit number to clear in register X

Examples .
. Data: (A) = 6E, = 01101110, 2. Data: (A) = 6E;q = 01101110,
(more significant byte) (more significant byte)
(Y) =39, = 00111001 (Y) = 39, = 00111001,
(less significant byte) . (less significant byte)
(X) = 0El6 = 14]0 ° ’ (X) = 0416 = 410
(bit position to clear) (bit position to clear)
Result: (A) = 2E|¢ = 01101110, Result: (A) = 6E; = 01101110,
(more significant byte, bit 14 cleared) (more significant byte)
(Y) = 39,, = 00111001, (Y) = 29, = 00101001,
(less significant byte) (less significant byte, bit 4 cleared)

309

31 0 BIT MANIPULATIONS AND SHIFTS

~e we wo ws mE Ne N6 me Ne Wm we We We e We We W No

BITCLR:

Title
Name:

Purpose:’

Entry:

Exit:

Registers used:

Time:

Size:

Bit clear
BITCLR

l\(~s we we

Clear a bit in a 16 bit word.

Register A
Register Y
Register X

High byte of word
Low byte of word
Bit number to clear

i

Ne we ne we we me NS Ne we we e me we S8 S we e N

High byte of word with bit cleared

Register A =

Register Y = Low byte of word with bit cleared
All

57 cycles

Program 42 bytes
Data 2 bytes

;SAVE THE DATA WORD

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

STA VALUE+1
STY VALUE
TXA

AND #0FH
TAX

AND #07H
TAY

TXA

LSR A

LSR A

LSR A

TAX

;CLEAR THE BIT
LDA VALUE, X
AND BITMSK,Y
STA VALUE, X

;RETURN THE RESU

LDA VALUE+1
LDY VALUE
RTS

:SAVE BIT NUMBER IN X

;THE LOWER 3 BITS OF THE BIT NUMBER
; IS THE BIT IN THE BYTE, SAVE IN Y
;sRESTCRE BIT NUMBER :

;DIVIDE BY 8 TO DETERMINE BYTE

;SAVE BYTE NUMBER (0 OR 1) IN X

;GET THE BYTE
;CLEAR THE BIT °

LT IN REGISTERS A AND Y

78 BITCLRIBITCLEAR 311

BITMSK: .BYTE 111111108 ;BIT 0 = 0

.BYTE 11111101B BIT 1 = 0

.BYTE 11111011B ;BIT 2 = 0

.BYTE 11110111B :BIT 3 = 0

.BYTE 11101111B :BIT 4 = 0

.BYTE 11011111B ;BIT 5 = 0

.BYTE 10111111B ;BIT 6 = 0

.BYTE 011111118 ;BIT 7 = 0
; DATA A }
VALUE: .BLOCK 2 ;TEMPORARY FOR THE DATA WORD
;- ! H
; o ;
; SAMPLE EXECUTION ;
; H
H H
sco702:)

LDA VAL+1 ;LOAD DATA WORD INTO A,Y

LDY VAL

LDX BITN ;GET BIT NUMBER IN X

JSR BITCLR ;CLEAR THE BIT ,

BRK . ;RESULT OF VAL = 55558 AND BITN = OOH IS

; REGISTER A = 55H, REGISTER Y = 54H

JMP $C0702
;TEST DATA, CHANGE FOR DIFFERENT VALUES
VAL: .WORD 5555H
BITN: .BYTE 0

.END ; PROGRAM

Bit Test (BITTST)

7C

Sets the Carry flag to the value of a
specified bit in a 16-bit word.

Procedure: The program uses bits 0
through 2 of register X to determine which
bit position to test and bit 3 to select a partic-
ular byte of the original word-length data. It
then logically ANDs the selected byte with a
mask containing a 1 in the chosen bit position
and Os elsewhere. Since the result is zero if
the tested bit is 0 and non-zero if the tested
bit is 1, the Zero flag is set to the complement
of the tested bit. Finally, the program sets the

Regisfers Used: All
Execution Time: Approximately 50 cycles
Program Size: 37 bytes

Data Memory Required: Two bytes anywhere in
RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be
interpreted mod 16. That is, for example, bit
position 16 is equivalent to bit position 0.

Carry flag to the complement of the Zero
flag, thus making it the same as the tested bit
through a double inversion.

Entry Conditions

More significant byte of data in accumulator
Less significant byte of data in register Y

Bit position to test in register X

Exit Conditions

Carry set to value of specified bit position in
data.

Examples

(A) = 6E, = 01101110,
(more significant byte)
(Y) = 39, = 00111001,
(less significant byte)
(X) = 0By = 119

(bit position to test)

1. Data:

Result: Carry = 1 (value of bit 11)

312

2. Data:
(A) = 6E, = 01101110,
(more significant byte)
(Y) = 39,5 = 00111001,
(less significant byte)
(X) = 06l6 = 610
(bit position to test)

Result: Carry = 0 (value of bit 6)

- e we we

NE NE ME Ne ME Ne e N We N me e NE e we we e

BITTST:

EXIT:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Bit test
BITTST

Test.a bit in a 16 bit word.

Register A = High byte of word
Register Y = Low byte of word
Register X = Bit number to test

CARRY = value of the tested bit
All
Approximately 50 cycles

Program 37 bytes
Data 2 bytes

;SAVE THE DATA WORD

STA
STY

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

TXA
AND

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

TAX
AND
TAY
TXA
LSR
LSR
LSR
TAX

VALUE+1
VALUE

#0FH
#0780

A
A
A

;SAVE BIT NUMBER IN X

7c@rTsT BT TesT 313

~e i e wo

We ME e e e N N Ne wE me Ne we e we %o we we

;THE LOWER 3 BITS OF THE BIT NUMBER
;i IS THE BIT IN THE BYTE, SAVE IN Y

;RESTORE BIT NUMBER

;DIVIDE BY 8 TO DETERMINE BYTE

;SAVE BYTE NUMBER (0 OR

;SET THE ZERO FLAG TO THE COMPLEMENT OF THE BIT

LDA
AND

VALUE, X
BITMSK,Y

;GET THE BYTE
;GET THE BIT

1) IN X

:IF THE BIT 1S 0 REGISTER A IS 0 AND Z IS 1

;ELSE REGISTER A IS NOT

0 AND Z IS O

;SET THE CARRY FLAG TO THE COMPLEMENT OF THE ZERO FLAG

CLC
BNE
SEC

RTS

EXIT

;ASSUME THE BIT IS 0
;BRANCH IF THE BIT IS 0
;ELSE THE BIT WAS 1

314 T MANIPULATIONS AND SHIFTS

BITMSK: .BYTE 00000001B ;BIT 0 =1
.BYTE 00000010B ;BIT 1 =1
.BYTE 00000100B sBIT 2 =1
.BYTE 00001000B . ;BIT 3 =1
.BYTE 000100008 ;BIT 4 =1
.BYTE 001000008 ;BIT 5 =1
.BYTE 01000000B sBIT 6 = 1
.BYTE 10000000B ;BIT 7 =1
;DATA
VALUE: .BLOCK 2 :TEMPORARY FOR THE DATA WORD
H
; SAMPLE EXECUTION
’
SC0703: .
LDA VAL+1 ; LOAD DATA WORD INTO A,Y
LDY VAL
LDX BITN ;GET BIT NUMBER IN X
JSR BITTST ;TEST THE BIT
BRK . ;RESULT OF VAL = 5555H AND BITN = 01 IS
;CARRY = 0
JMP $C0703
;sTEST DATA, CHANGE FOR DIFFERENT VALUES
VAL: .WORD 5555H ‘ :
BITN: .BYTE 01H

.END ; PROGRAM

~e we e wo we

Bit Field Extraction (BFE)

7D

Extracts a field of bits from a word and
returns the field in the least significant bit
positions. The width of the field and its start-
ing bit position are specified.

Procedure: The program obtains a mask
with the specified number of 1 bits from a

tabie, shifts the mask left to align it with the
specified starting bit position, and obtains the
field by logically ANDing the mask and the
data. It then normalizes the bit field by shift-
ing it right so that it starts in bit 0.

Registers Used: All

Execution Time: 34 » STARTING BIT POSI-
TION plus 138 cycles overhead. The starting bit
position determines the number of times the
mask must be shifted left and the bit field right.
For example, if the field starts in bit 6, the execu-
tion time is
34«6 + 138 = 204 + 138 = 342 cycles

Program Size: 134 bytes

Data Memory Required: Six bytes anywhere in
RAM for the index (one byte at address
INDEX), the width of the field (one byte at
address WIDTH), the data value (two bytes start-

ing at address VALUE), and the mask (two bytes
starting at address MASK).

Special Cases:

1. Requesting a field that would extend
beyond the end of the word causes the program
to return with only the bits through bit 15. That
is, no wraparound is provided. If, for example,
the user asks for a 10-bit field starting at bit 8, the
program will return only 8 bits (bits 8 through 15).

2. Both the starting bit position and the num-
ber of bits in the field are interpreted mod 16.
That is, for example, bit position 17 is equivalent
to bit position 1 and a field of 20 bits is equivalent
to a field of 4 bits.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Starting (lowest) bit position of field
Number of bits in the field

Less significant byte of data value
More significant byte of data value

Exit Conditions

More significant byte of bit field in
accumulator

Less significant byte of bit field in register Y

Examples

Value = F67C ¢ = 1111011001111100,
Starting bit position = 4
Number of bits in the field = 8

1. Data:

Result: Bit field = 0067, = 0000000001100111,
We have extracted 8 bits from the original
data, starting with bit 4 (that is, bits

4 through 11).

315

316 &iT MANIPULATIONS AND SHIFTS

2. Data: Value = A2D4,, = 1010001011010100, Result: Bit field = 000B,, = 0000000000001011,
Starting bit position = 6 We have extracted S bits from the
Number of bits in the field = § original data, starting with bit 6 (that is,

bits 6 through 10).

Title Bit Field Extraction

H ;
; Name: BFE :
H H
i ;

Purpose: Extract a field of bits from a 16 bit word and
. return the field normalized to bit 0.
NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN
ONLY THE BITS THROUGH BIT 15 WILL BE
RETURNED. FOR EXAMPLE IF A 4 BIT FIELD IS
REQUESTED STARTING AT BIT 15 THEN ONLY 1
BIT (BIT 15) WILL BE RETURNED.

Entry: TOP OF STACK
Low\byte of return address,
High byte of return address,
Starting (lowest) bit position in the field
(0..15),
Number of bits in the field (l1..16),
Low byte of data word,
High byte of data word,

Exit: Register A = High byte of field
) Register Y = Low byte of field

Registers used: All

Time: 138 cycles overhead plus
(34 * starting bit position) cycles

Size: Program 134 bytes
Data 6 bytes

o %o %8 %o We W W6 we WO wo W We We We WS W8 WO Np e Ve WS W W w4 W We W we o we
Ne e w6 s WA we We Ws W Mo ME WE WE W4 VO w3 W NE Wy Wa W W N6 W2 Ne We N we W W

BFE:

;SAVE RETURN ADDRESS IN Y,X
PLA
TAY
PLA
TAX

SHFTLP:

GETFLD:

7D (BFE) BIT FIELD EXTRACTION 317

;GET THE STARTING BIT POSITION OF THE FIELD

PLA
AND
STA

;GET THE NUMBER OF BITS

PLA
SEC
SBC
AND
STA

;GET THE DATA WORD

PLA
STA
PLA
STA

#0FH
INDEX

#1
#0FH
WIDTH

VALUE

VALUE+1

;MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15
sSAVE INDEX

IN THE FIELD (MAP FROM 1..WIDTH TO 0..WIDTH-1)
;SUBTRACT 1

;MAKE SURE IT IS 0 TO 15
;SAVE WIDTH

;RESTORE THE RETURN ADDRESS

TXA
PHA
TYA
PHA

;CONSTRUCT THE MASK

; INDEX INTO THE MASK ARRAY USING THE WIDTH PARAMETER

LDA
ASL
TAY
LDA
STA
INY
LDA
STA

WIDTH
A

MSKARY, Y

MASK

MSKARY, Y

MASK+1

;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

;SHIFT MASK LEFT INDEX TIMES TO ALIGN IT WITH THE BEGINNING
; OF THE FIELD

LDY
BEQ

ASL
ROL
DEY
BNE

INDEX
GETFLD

MASK
MASK+1

SHFTLP

;BRANCH IF INDEX = 0

;SHIFT LOW BYTE, CARRY := BIT 7
;ROTATE HIGH BYTE, BIT 0 := CARRY

;CONTINUE UNTIL INDEX = 0

;GET THE FIELD BY ANDING THE MASK AND THE VALUE

LDA
AND
STA
LDA
AND
STA

VALUE
MASK
VALUE
VALUE+1
MASK+1
VALUE+1

7AND LOW BYTE OF VALUE WITH MASK .
;STORE IN VALUE

;AND HIGH BYTE OF VALUE WITH MASK
;STORE IT

318 &7 MANIPULATIONS AND SHIFTS

;NORMALIZE THE FIELD TO BIT 0 BY SHIFTING RIGHT INDEX TIMES

LDY INDEX .

BEQ EXIT ;BRANCH IF INDEX = 0.

NORMLP: _
LSR VALUE+1 ;SHIFT HIGH BYTE RIGHT, CARRY := BIT 0
ROR VALUE ;ROTATE LOW BYTE RIGHT, BIT 7 := CARRY
DEY
BNE NORMLP ;CONTINUE UNTIL DONE

EXIT: :
LDY VALUE
LDA VALUE+1
RTS
;MASK ARRAY WHICH IS USED TO CREATE THE MASK

MSKARY:

.WORD 0000000000000001B
.WORD 0000000000000011B
.WORD 00000600000001118
.WORD 0000000000001111B
.WORD 0000000000011111B
.WORD 0000000000111111B
.WORD 0000000001111111B
.WORD 0000000011111111B
.WORD 0000000111111111B
.WORD 0000001111111111B
.WORD 0000011111111111B
JWORD 0000111111111111B
LWORD 0001111111111111B
JWORD 0011111111111111B
JWORD 0111111111111111B
JWORD 11111111111111118B

INDEX: .BLOCK 1 ; INDEX INTO WORD -

WIDTH: .BLOCK 1 ;WIDTH OF FIELD (NUMBER OF BITS)

VALUE: .BLOCK 2 ;DATA WORD TO EXTRACT THE FIELD FROM
2 ; TEMPORARY FOR CREATING THE MASK

MASK: .BLOCK

SAMPLE EXECUTION:

~e we wa we we

SC0704:
LDA VAL+1
PHA
LDA VAL .
PHA ;PUSH THE DATA WORD
LDA NBITS .
PHA " ;PUSH FIELD WIDTH (NUMBER OF BITS)

LDA PGS

o we wme we ws

7D (BFE) BIT FIELD EXTRACTION 319

PHA ;PUSH INDEX TO FIRST BIT OF THE FIELD
JSR BFE ; EXTRACT
BRK iRESULT FOR VAL = 1234H, NBITS = 4, POS = 4 IS

; REGISTER A = 0, REGISTER Y = 3

JMP 5C0704

;TEST DATA, CHANGE FOR OTHER VALUES

VAL: .WORD 01234H
NBITS: .BYTE 4
POS: .BYTE 4

. END ; PROGRAM

Bit Field Insertion (BFI)

7E

Inserts a field of bits into a word. The width
of the field and its starting (lowest) bit posi-
tion are specified.

Procedure: The program obtains a mask
with the specified number of 0 bits from a
table. It then shifts the mask and the bit field

left to align them with the specified starting
bit position. It logically ANDs the mask and
the original data word, thus clearing the
required bit positions, and then logically ORs

the result with the shifted bit field.

Registers Used: All

Execution Time: 31 * STARTING BIT POSI-
TION plus 142 cycles overhead. The starting bit
position of the field determines how many times
the mask and the field must be shifted left. For
example, if the field is inserted starting in bit 10,
the execution time is

31+ 10 + 142 = 310 + 142 = 452 cycles.
Program Size: 130 bytes

Data Memory Required: Eight bytes anywhere in
RAM for the index (one byte at address
INDEX), the width of the field (one byte at
address WIDTH), the value to be inserted (two
bytes starting at address INSVAL), the data

value (two bytes starting at address VALUE),
and the mask (two bytes starting at address
MASK).

Special Cases:

1. Attempting to insert a field that would
extend beyond the end of the word causes the
program to insert only the bits through bit 15.
That is, no wraparound is provided. If, for exam-
ple, the user attempts to insert a 6-bit field start-
ing at bit 14, only 2 bits (bits 14 and 15) are
actually replaced.

2. Both the starting bit position and the length
of the bit field are interpreted mod 16. That is, for
example, bit position 17 is the same as bit posi-
tion 1 and a 20-bit field is the same as a 4-bit field.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Lowest bit position (starting position) of field

Number of bits in the field

Less significant byte of bit field (value to

insert)

More significant byte of bit field (value to

insert)

Less significant byte of original data value
More significant byte of original data value

320

Exit Conditions

More significant byte of result in accumulator
Less significant byte of result in register Y

The result is the original data value with the

bit field inserted, starting at the specified

bit position.

7€ (BFI) BIT FIELD INSERTION 321

Examples
1. Data: Value = F67C |, = 1111011001111100, 2. Data: Value = A2D4,, = 1010001011010100,

Starting bit position = 4 Starting bit position = 6

Number of bits in the field = § Number of bits in the field = 5

Bit field = 008B,, = 0000000010001011, Bit field = 0015,, = 0000000000010101,

Result: Value with bit field inserted = A554,4
Result: Value with bitfield inserted = F8BC = 1010010101010100,

= 1111100010111100, The 5-bit field has been

The 8-bit field has been inserted inserted into the original value starting at

into the original value starting at bit 4 bit 6 (that is, into bits 6 through 10).

(that is, into bits 4 through 11). Those five bits were 01011, (0B,,) and

are now 10101, (15,).
\

; Title Bit Field Insertion ;
; Name: BFI ;
i ' i
; H
; ' ;
; Purpose: Insert a field of bits which is normalized to ;
H bit 0 into a 16 bit word. ;
; NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN ;
H ONLY THE BITS THROUGH BIT 15 WILL BE ;
; INSERTED. FOR EXAMPLE IF A 4 BIT FIELD IS H
H TO BE INSERTED STARTING AT BIT 15 THEN H
; ONLY THE FIRST BIT WILL BE INSERTED AT ;
H BIT 15. ;
; ;
; Entry: TOP OF STACK :
; Low byte of return address, ;
H High byte of return address, ;
H Bit position at which inserted field will :
; start (0..15), :
H Number of bits in the field (1..16), ;
H Low byte of value to insert, ;
H High byte of value to insert, H
; Low byte of value, :
: High byte of value H
H H
H Exit: Register A = High byte of value with field ;
; inserted H
: Register Y = Low byte of value with field H
: inserted ;
; H

Registers used: All

322 5T MANIPULATIONS AND SHIFTS

Time: 142 cycles overhead plus
(31 * starting bit position) cycles

Size: . . Program 130 bytes
' Data 8 bytes

e N6 %o we W ws ws we
~e we we W we wa we N

BFI:
;SAVE RETURN ADDRESS IN Y, X
PLA
TAY
PLA
TAX
;GET THE LOWEST BIT NUMBER OF THE FIELD
PLA
AND $0FH ;:MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15
STA INDEX ;SAVE INDEX
;GET THE NUMBER OF BITS IN THE FIELD (MAP FROM 1. .WIDTH TO 0..WIDTH-1)
PLA
SEC
SBC #1 ;SUBTRACT 1
AND $0FH ;MAKE SURE IT IS 0 TO 15
STA WIDTH ;SAVE WIDTH
:+GET THE VALUE TO BE INSERTED (BIT FIELD)
PLA A
STA INSVAL
PLA
STA INSVAL+1
;GET THE DATA WORD
PLA
STA VALUE
PLA
STA VALUE+1
;RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA

;CONSTRUCT THE MASK
; INDEX INTO THE MASK ARRAY USING THE WIDTH P&RAMETER

LDA WIDTH

ASL A ;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH
TAY

LDA MSKARY, Y

STA MASK

INY

LDA MSKARY, Y

STA MASK+1

SHFTLP:

INSERT:

MSKARY:

INDEX:
WIDTH:
INSVAL:
VALUE:
MASK:

7E (BFI) BIT FIELD INSERTION 323

iSHIFT MASK AND BIT FIELD LEFT INDEX TIMES TO ALIGN THEM
; WITH THE BEGINING OF THE FIELD

LDY INDEX

BEQ INSERT ;BRANCH IF INDEX = 0

SEC ;FILL THE MASK WITH ONES

ROL MASK ;ROTATE LOW BYTE SHIFTING A 1 TO BIT 0 AND
’ ; BIT 7 TO CARRY

ROL MASK+1 ;ROTATE HIGH BYTE, BIT 0 := CARRY

ASL INSVAL ;SHIFT THE INSERT VALUE SHIFTING IN ZEROS

ROL INSVAL+1

DEY .

BNE SHFTLP ;CONTINUE UNTIL INDEX = 0

;USE THE MASK TO ZERO THE FIELD AND THEN OR IN THE INSERT VALUE

LDA VALUE

AND MASK ;AND LOW BYTE OF VALUE WITH MASK

ORA INSVAL ' ,
TAY JREGISTER Y = LOW BYTE OF THE NEW VALUE
LDA VALUE+1

AND MASK+1 ;AND HIGH BYTE OF VALUE WITH MASK

ORA INSVAL+1 ;REGISTER A = HIGH BYTE OF THE NEW VALUE
; RETURN

RTS

;MASK ARRAY WHICH IS USED TO CREATE THE MASK

.WORD 1111111111111110B
.WORD 11111111111111060B
+WORD 11111111111110008B
.WORD 1111111111110000B
. WORD 1111111111100000B
«WORD - 1111111111000000B
«WORD 1111111110000000B
.WORD 11111111000000008B
-WORD 1111111000000000B
.WORD 1111110000000000B
-WORD 1111100000000000B
.WORD 1111000000000000B
. WORD 1110000000000000B
.WORD 1100000000000000B
«WORD 1000000000000000B '
+.WORD 0000000000000000B

.BLOCK 1 ;INDEX INTO WORD

.BLOCK 1 ;WIDTH OF FIELD

.BLOCK 2 ;VALUE TO INSERT

.BLOCK 2 ; DATA WORD

.BLOCK 2 ;TEMPORARY FOR CREATING THE MASK

324 5T MANIPULATIONS AND SHIFTS

SAMPLE EXECUTION:

wa wo %o we we

SC0705:
LDA VAL+1 - ;PUSH THE DATA WORD
PHA
LDA VAL
PHA ‘
LDA VALINS+1 ;PUSH THE VALUE TO INSERT
PHA :
LDA VALINS
PHA
LDA NBITS ;PUSH THE FIELD WIDTH
PHA
LDA POS ;PUSH THE STARTING POSITION OF THE FIELD
PHA
JSR BFI ; INSERT
BRK ;RESULT FOR VAL = 1234H, VALINS = OEH,

; NBITS = 4, POS = OCH IS
; REGISTER A = E2H, REGISTER Y = 34H

JMP §C0705

;TEST DATA, CHANGE FOR OTHER VALUES
VAL: .WORD 01234H

VALINS: .WORD OEH

NBITS: .BYTE 04H

POS: .BYTE OCH

.END ; PROGRAM

e we we wo we

Multiple-Precision Arithmetic Shift Right

(MPASR)

7F

Shifts a multi-byte operand right
arithmetically by a specified number of bit
positions. The length of the number (in
bytes) is 255 or less. The Carry flag is set to

the value of the last bit shifted out of the

rightmost bit position. The operand is stored
with its least significant byte at the lowest

address. ,

Procedure: The program obtains the sign
bit from the most significant byte, shifts that
bit to the Carry, and then rotates the entire
operand right one bit, starting with the most
significant byte. It repeats the operation for
the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (18 +
18 * LENGTH OF OPERAND IN BYTES) + 85
cycles.
If, for example, NUMBER OF SHIFTS =
6 and LENGTH OF OPERAND IN BYTES = 8,
the execution time is
6+ (18 + 18+8) + 85 =6+162 + 85 = 1057
cycles

Program Size: 69 bytes

Data Memory Required: Three bytes anywhere
in RAM plus two bytes on page 0. The three bytes
anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)
and the length of the operand (one byte at
address LENGTH) and the most significant byte
of the operand (one byte at address MSB). The
two bytes on page 0 hold a pointer to the operand
(starting at address PTR,00D0j¢ in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted right arithmetically by the
specified number of bit positions. The origi-
nal sign bit is extended to the right. The
Carry flag is set according to the last bit
shifted from the rightmost bit position (or
cleared if either the number of shifts or the
length of the operand is zero).

325

326 i1 MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = (8 2. Data:
Operand = 85A4C719FE06741E 4
Number of shifts = 04

Result: Shifted operand = F85A4C719FE06741 . Result:
This is the original operand shifted right '
four bits arithmetically (the four most
significant bits thus all take on the value
of the original sign bit, which was 1).
Carry = 1, since the last bit shifted from
the rightmost bit position was 1.

Length of operand (in bytes) = 04
Operand = 3F6A42D3
Number of shifts = 03

Shifted operand = 07TED485A .

This is the original operand shifted
right three bits arithmetically (the
three most significant bits thus all
take on the value of the original sign
bit, which was 0).

Carry = 0, since the last bit shifted
from the rightmost bit position was 0.

; Title Multiple-precision arithmetic shift right ;
; Name: MPASR ;
H i
H H
Purpose: Arithmetic shift right a multi-byte operand
N bits.
Entry: TOP OF STACK

The operand is stored

bit propagated.

Registers used: All

Time: 85 cycles overhead plus
Size: Program 69 bytes\
Data 3 bytes plus

N e We e WS NS WE Wy W6 W WG WE W WE W WE We WE We WO W W Ne e We We W e We e o

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand,
High byte of address of the operand

least significant byte and ARRAY [LENGTH-1]
its most significant byte.

Exit: Operand shifted right with the most significant

CARRY := Last bit shifted from least
significant position.

((18 * length) + 18) cycles per shift

2 bytes in page zero

with ARRAY (0] as its

@8 WE ME NE NE NE e e WS NE WA WE W W6 W We Wg WE W MO MI N W W We We Wy N ws W he

7F (MPASR) MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT 327

. ;EQUATES

PTR: .EQU ODOH ;PAGE ZERO FOR POINTER TO OPERAND
MPASR:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA .

PHA ;RESTORE RETURN ADDRESS

;INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT 1EXIT IF LENGTH OF OPERAND IS 0

LDA NBITS .

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

; DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH

; AS A COUNTER AND THE INDEX

LDA PTR .

BNE MPASR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
MPASR1: DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY LENGTH :

LDA (PTR) , ¥ ;GET THE MOST SIGNIFICANT BYTE

STA MSB ;SAVE IT FOR THE SIGN
ASRLP: ' :

LDA MSB ;GET THE MOST SIGNIFICANT BYTE

ASL A ;SHIFT BIT 7 TO CARRY FOR SIGN EXTENSION

LDY LENGTH ;Y = INDEX TO LAST BYTE AND THE COUNTER

iSHIFT RIGHT ONE BIT

328 5T MANIPULATIONS AND SHIFTS

;GET NEXT BYTE
;ROTATE BIT 7 := CARRY, CARRY := BIT 0
:STORE NEW VALUE i
:DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS
:DECREMENT SHIFT COUNTER
;CONTINUE UNTIL DONE

LOOP:
LDA (PTR) , Y
ROR A
STA (PTR) , Y
DEY
BNE LOOP
DEC NBITS
BNE ASRLP
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1
LENGTH: .BLOCK 1
MSB: .BLOCK 1

e ws w2 we we

§C0706:

PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

’

; DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY- .BYTE

.END

AYADR+1

AYADR

$SZAY

SHIFTS

MPASR

SC0706

7
4
AY

; PROGRAM

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND IN BYTES
;MOST SIGNIFICANT BYTE

SAMPLE EXECUTION:

~ e we we we

;PUSH STARTING ADDRESS OF OPERAND

;PUSH LENGTH OF OPERAND

;PUSH NUMBER OF SHIFTS

;SHIFT
;RESULT OF SHIFTING

IN MEMORY AY
AY+1
AY+2
AY+3
AY+4
AY+5
AY+6

~s we ne we we N we =

tonownnnn

; LENGTH OF OPERAND
;NUMBER OF SHIFTS

AY =
AY =
0328
054H
076H
098H
OBAH
ODCH
OFEH

EDCBA987654321H, 4 BITS IS
FEDCBA98765432H, C=0

;:STARTING ADDRESS OF OPERAND
21H,43H,65H, 87H, 0A9H, 0CBH, OEDH

Multiple-Precision Logical Shift Left (MPLSL)

7G

Shifts a multi-byte operand left logically
by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set to the value of the last bit
shifted out of the leftmost bit position. The
operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then rotates
the entire operand left one bit, starting with
the least significant byte. It repeats the opera-
tion for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS + (16 +
20 * LENGTH OF OPERAND IN BYTES) + 73
cycles.

If, for example, NUMBER OF SHIFTS =
and LENGTH OF OPERAND IN BYTES = 6
(i.e., a 4-bit shift of a byte operand) the execution
time is

4+ (6+20+6) + 73 =

617 cycles.

4+ (136) + 73 =

Data Memory Required: Two bytes anywhere!in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0, in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted left logically by the specified
number of bit positions (the least significant
bit positions are filled with zeros). The Carry
flag is set according to the last bit shifted
from the leftmost bit position (or cleared if
either the number of shifts or the length of
the operand is zero).

329

330 BIT MANIPULATIONS AND SHIFTS

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4C719FE06741E¢ Operand = 3JF6A42D3,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = SA4CT19FEQ6741E0,. Result: Shified operand = FB521698,. This is

. e we we

w WS ws WE We ms we WS WE WO WE wa W We W W N W Ne WE WS W We W6 Mo W N "o

This is the original operand shifted
left four bits logically; the four least

significant bits are all cleared. bits are all cleared.

Carry = 0, since the last bit shifted from
the leftmost bit position was 0.

Carry = 1, since the last bit

was 1.

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Multiple-precision logical shift left
MPLSL

Logical shift left a multi-byte operand N bits

TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand

The operand is stored with ARRAY[0] as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte.

Operand shifted left filling the least
significant bits with zeros.
CARRY := Last most significant bit

All .

73 cycles overhead plus
({20 * length) + 16) cycles per shift

Program 54 bytes
Data 2 bytes plus
2 bytes in page zero

the original operand shifted left three
bits logically; the three least significant

shifted from the leftmost bit position

~ we we we

Nt me Ne we ME e, %6 %6 WO W we We we e NE W6 N Ne Se e N Ns We Ns W4 e e W

7G (MPLSL) MULTIPLE‘PRECISION LOGICAL SHIFT LEFT 331

s EQUATES
PTR: ,EQU 0DOH ;PAGE ZERO FOR POINTER TO OPERAND
MPLSL:
;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX
;GET NUMBER OF BITS
PLA
STA NBITS
;GET LENGTH OF OPERAND
PLA
STA LENGTH
{GET STARTING ADDRESS OF THE OPERAND
PLA
STA PTR
PLA
STA PTR+1
;RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA ;RESTORE RETURN ADDRESS
sINITIALIZE
CLC ;CLEAR CARRY
LDA LENGTH
BEQ EXIT ;EXIT IF LENGTH OF THE OPERAND IS 0
LDA NBITS
BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0
; WITH CARRY CLEAR
- ;LOOP ON THE NUMBER OF SHIFTS TO PERFORM
LSLLP:
LDY #0 ;¥ = INDEX TO LOW BYTE OF THE OPERAND
LDX LENGTH ;X = NUMBER OF BYTES .
CLC sCLEAR CARRY TO FILL WITH ZEROS
;SHIFT LEFT ONE BIT
LOOP:
LDA (PTR) ,Y ;GET NEXT BYTE
ROL A sROTATE BIT 0 := CARRY, CARRY := BIT 7
STA (PTR),Y +STORE NEW VALUE
INY ; INCREMENT TO NEXT BYTE
DEX ;DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES

i DECREMENT NUMBER OF SHIFTS
DEC NBITS ;DECREMENT SHIFT COUNTER
BNE LSLLP ;CONTINUE UNTIL DONE

332 it MANIPULATIONS AND SHIFTS

EXIT:
RTS

;DATA SECTION

NBITS: .BLOCK
LENGTH: .BLOCK

we we e we we

SC0707:
LDA
PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

’

:DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY: .BYTE

. END

1
1

SAMPLE EXECUTION:

AYADR+1

AYADR

$#SZAY

SHIFTS

MPLSL

5C0707

7
4

" AY

21H,43H,

; PROGRAM

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND

. me mp w we

; PUSH STARTING ADDRESS OF OPERAND

;PUSH LENGTH OF OPERAND

; PUSH NUMBER OF SHIFTS

;SHIFT

;RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS
H AY = DCBA9876543210H, C=0

; IN MEMORY AY = 010H

; AY+l = 032H

: AY+2 = (054H

; AY+3 = 076H

H AY+4 = 098H

; AY+5 = OBAH

H = 0ODCH

AY+6

;LENGTH OF OPERAND

;:NUMBER OF SHIFTS

;STARTING ADDRESS OF OPERAND
65H,87H, 0A9H, 0OCBH, OEDH

Mulitiple-Precision Logical Shift Right (MPLSR)

7H

Shifts a multi-byte number right logically
by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set to the value of the last bit
shifted out of the rightmost bit position. The
operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then rotates
the entire operand right one bit, starting with
the most significant byte. It repeats the
operation for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (14 +
18 *» LENGTH OF OPERAND IN BYTES) + 80
cycles.

and LENGTH OF OPERAND IN BYTES = §
(i.e., a 4-bit shift of an 8-byte operand), the
execution time is
4+ (14 + 18+8) + 80 = 4+ (158) + 80 =
712 cycles.
Program Size: 59 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

If, for example, NUMBER OF SHIFTS = 4

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS) .
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D, in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted right logically by the
specified number of bit positions (the most
significant bit positions are filled with zeros).
The Carry flag is set according to the last bit
shifted from the rightmost bit position. (or
cleared if either the the number of shifts or
the length of the operand is zero).

333

334 &7 MANIPULATIONS AND SHIFTS

w we we wa

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4CT719FEQ6741E ¢ Operand = 3F6A42D3,,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = 085A4C719FE06741 4. Result: Shifted operand = 07ED485A 6.
This is the original operand shifted right This is the original operand shifted
four bits logically; the four most right three bits logically; the three least
significant bits are all cleared.) significant bits are all cleared.
Carry = 1, since the last bit shifted from Carry = 0, since the last bit shifted
the rightmost position was 1. from the rightmost bit position was 0.
; Title Multiple-Precision logical shift right
; Name: MPLSR
;
Purpose: Logical shift right a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY[0] as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte. T
Exit: Operand shifted right filling the most

significant bits with zeros
CARRY := Last bit shifted from the least
significant position :

Registers used: All

Time: 85 cycles overhead plus
({18 * length) + 14) cycles per shift
Size: Program 59 bytes
Data 2 bytes plus

2 bytes in page zero

~e me e we e Ne we Ne 6 WE Ne We We NS Wa NS We We W& We Ne We W6 Ve e e e W6 e =
e ws ne wo e we we e WS WG WE wp We We We W We %o We e N3 we S N4 NS % Ve %p %e %o

MPLSR:

MPLSR1:

LSRLP:

LOOP:

7H (MPLSR) MULTIPLE-PRECISION LOGICAL SHIFT RIGHT 335

s EQUATES
PTR: .EQU UDOH ;PAGE ZERO FOR POINTER TO OPERAND

;SAVE RETURN ADDRESS

PLA
. TAY

PLA

TAX .

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING' ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA :

PHA - ;RESTORE RETURN ADDRESS
;INITIALIZE ‘ :

CLC . ;CLEAR CARRY

LDA LENGTH -

BEQ EXIT ;EXIT IF LENGTH OF OPERAND IS 0
LDA NBITS .

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS ¢

;7 WITH CARRY CLEAR

;DECREMéET POINTER SO. THAT THE hENGTH BYTE MAY BE USED BOTH
i AS A COUNTER AND THE INDEX

LDA PTR
BNE MPLSR1 . . _

DEC PTR+1 . ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
DEC PTR ;ALWAY DECREMENT HIGH BYTE

; LOOP ok THE NUMBER OF SHIFTS TO PERFORM

LDY LENGTH ;Y = INDEX TO MSB AND COUNTER
CLC ;CLEAR CARRY TO FILL WITH ZEROS

:SHIFT RIGHT ONE BIT
LDA (PTR) ,Y ;GET NEXT BYTE

ROR A jROTATE BIT 7 := CARRY, CARRY := BIT 0
STA (PTR) ,Y ;STORE NEW VALUE

336 T MANIPULATIONS AND SHIFTS

DEY ; DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES
; DECREMENT NUMBER OF SHIFTS
DEC NBITS ;DECREMENT SHIFT COUNTER
BNE LSRLP ;CONTINUE UNTIL DONE '
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1 ;NUMBER OF BITS TO SHIFT
LENGTH: .BLOCK 1 ;LENGTH OF OPERAND

SAMPLE EXECUTION:

~e ws we we e
~e wa ws s s

SC0708:
LDA AYADR+l ;PUSH STARTING ADDRESS OF OPERAND
PHA
LDA AYADR
PHA
LDA #SZAY ;PUSH LENGTH OF OPERAND
PHA .
LDA SHIFTS ;PUSH NUMBER OF SHIFTS
PHA
JSR MPLSR ;SHIFT
BRK :RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS
H "AY = OEDCBA98765432H, C=0
; IN MEMORY AY = 032H
; AY+1l = 054H
; AY+2 = 076H
; AY+3 = 098H X
: AY+4 = (BAH
; AY+5 = ODCH
: AY+6 = OOEH
JMP sC0708
H
;DATA SECTION
SZAY: .EQU 7 ; LENGTH OF OPERAND
SHIFTS: .BYTE 4 ;NUMBER OF SHIFTS
AYADR: .WORD AY _ :STARTING ADDRESS OF OPERAND
AY: .BYTE 21H,43H,65H,87H,0A9H, 0CBH, OEDH

. END ; PROGRAM

Multiple-Precision Rotate Right (MPRR) 71

Rotates a multi-byte operand right by a
specified number of bit positions (as if the
most significant bit and least significant bit
were connected directly). The length of the
operand in bytes is 255 or less. The Carry flag
is set to the value of the last bit shifted out of
the rightmost bit position. The operand is
stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 0 of the
least significant byte of the operand to the
Carry flag and then rotates the entire operand
right one bit, starting with the most signifi-
cant byte. It repeats the operation for the
specified number of shifts.

Registers used: All

Execution Time: NUMBER OF SHIFTS +* (21
+ 18 * LENGTH OF OPERAND IN BYTES)
+ 85 cycles.

If for example, NUMBER OF SHIFTS = 6 and
LENGTH OF OPERAND INBYTES = 4 (j.e.a
6-bit shift of a 4-byte operand), the execution
time is

6*(21 +18+4) + 85=16+(93) + 85

+ 643 cycles.

Program Size: 63 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0,4 in the listing).

Special Cases: :

1. If the length of the operand is zero, the
program exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand rotated right by the specified num-
ber of bit positions (the most significant bit
positions are filled from the least significant
bit positions). The Carry flag is set according
to the last bit shifted from the rightmost bit
position (or cleared if either the number of
shifts-or the length of the operand is zero).

337

338 5T MANIPULATIONS AND SHIFTS ‘

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4CT19FEQ6741E,¢ Operand = 3F6A42D3,,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = E85A4C719F306741 ¢. Result: Shifted operand = 67ED485A . This is
This is the original operand rotated right the original operand rotated right 3 bits;
four bits: the four most significant bits ' the three most significant bits (011) are
are equivalent to the original four equivalent to the original three least
least significant bits. significant bits.
Carry = 1, since the last bit shifted from Carry = 0, since the last bit shifted
the rightmost bit position was 1. from the rightmost bit position was 0.
: Title Multiple-precision rotate right H
; Name: MPRR ;
H ;
; H
Purpose: Rotate right a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY [0]) as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte.
Exit: Operand rotated right

CARRY := Last bit shifted from the least
significant position

Registers used: All

Time: 85 cycles overhead plus
((18 * length) + 21) cycles per shift
Size: Program 63 bytes
Data 2 bytes plus

2 bytes in page zero

N we we we e WO Ws N Wo WE Ne M We We WE W2 W We S Wy Ns N6 S N6 %6 % e ~ we
Ne we we we me we we WP we ws e Ne Ne We Ne e W w2 we e ws N %@ Ne e W %o e Se

;EQUATES
PTR: .EQU ODOH ;PAGE ZERQO FOR POINTER TG OPERAND

MPRR:

MPRR1:

RRLP:

LOOP:

7! (MPRR) MULTIPLE-PRECISION ROTATE RIGHT 339

;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX

;GET NUMBER OF BITS
PLA
STA NBITS

iGET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

:RESTORE THE RETURN ADDRESS

TXA

PHA

TYA ’

PHA :RESTORE RETURN ADDRESS

;INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT 7EXIT IF LENGTH OF THE OPERAND IS 0
LDA NBITS

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

;7 WITH CARRY CLEAR

i DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH
: AS A COUNTER AND THE INDEX)

LDA PTR

BNE MPRR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY #1

LDA (PTR) , Y ;GET LOW BYTE OF THE OPERAND

LSR A ' ;CARRY := BIT 0 OF LOW BYTE

LDY LENGTH ;Y = INDEX TO HIGH BYTE AND COUNTER

;ROTATE RIGHT ONE BIT

LDA (PTR),Y ;GET NEXT BYTE
ROR A ;ROTATE BIT 7 := CARRY, CARRY := BIT 0

340 5T MANIPULATIONS AND SHIFTS

STA (PTR) ,Y :STORE NEW VALUE
DEY ; DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES
:DECREMENT NUMBER OF SHIFTS
DEC . NBITS ;DECREMENT SHIFT COUNTER
BNE RRLP ;CONTINUE UNTIL DONE
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1 ;NUMBER OF BITS TO.SHIFT
LENGTH: .BLOCK 1 ;LENGTH OF OPERAND

SAMPLE EXECUTION:

~e W we we wa
P N

SC0709:
LDA AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND
PHA
LDA AYADR
PHA
LDA $SZAY ;PUSH LENGTH OF OPERAND R
PHA
LDA SHIFTS ;PUSH NUMBER OF SHIFTS
PHA
JSR MPRR ; ROTATE : .
BRK ;RESULT OF ROTATING AY = EDCBA987654321H 4 BITS IS
; AY = 1EDCBA98765432H C=0
; IN MEMORY AY = 032H
H AY+l = U54H
; AY+2 = 076H
H AY+3 = 098H
H AY+4 = OBAH
; AY+5 = ODCH
; AY+6 = UlEH
JMP SC0709
i
; DATA SECTION)
SZAY: . EQU 7 ;LENGTH OF OPERAND IN BYTES
SHIFTS: .BYTE 4 ;sNUMBER OF SHIFTS
AYADR: .WORD AY ; STARTING ADDRESS OF OPERAND
AY: .BYTE 21H,43H,65H,87H,0A9H, 0CBH, OEDH

. END ; PROGRAM

Multiple-Precision Rotate Left (MPRL)

7J

Rotates a multi-byte operand left by a
specified number of bit positions (i.e., as if
the most significant bit and least significant
bit were connected directly). The length of
the operand in bytes is 255 or less. The Carry
flag is set to the value of the last bit shifted
out of the leftmost bit position. The operand
is stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 7 of the
most significant byte of the operand to the
Carry flag. It then rotates the entire operand
left one bit, starting with the least significant
byte. It repeats the operation for the specified
number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS « (27 +
20 » LENGTH OF OPERAND IN BYTES) + 73
cycles.

If, for example, NUMBER OF SHIFTS =
and LENGTH OF OPERAND IN BYTES =
(i.e., a 4-bit shift of an 8-byte operand), the
execution time is

4«27 +20+8) + 73 =487 +73 =

821 cycles.

4
8

Program Size: 60 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0¢ in the listing).

Special Cases:

1. If the length of the operand is zero, the
program exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand rotated left by the specified number
of bit positions (the least significant bit posi-
tions are filled from the most significant bit
positions). The Carry flag is set according to
the last bit shifted from the leftmost bit posi-
tion (or cleared if either the number of shifts
or the length of the operand is zero).

341

342 i1 MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4C719FE06741E ¢ Operand = 3F6A42D34
Number of shifts =04 - Number of shifts = 03
Result: Shifted operand = SA4C719FE06741E8,. Result: Shifted operand = F8521699,6. This is
This is the original operand rotated left the-original operand rotated left three bits;
four bits; the four least significant bits the three least significant bits (001)
are equivalent to the original four most are equivalent to the original three most
significant bits. significant bits.
Carry = 0, since the last bit shifted Carry = 1, since the last bit shifted
from the leftmost bit position was 0. from the leftmost bit position was 1.
; Title . Multiple-precision rotate left :
; Name: MPRL H
i H
. Purpose: Rotate left a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY [0) as its
least significant byte and ARRAY |LENGTH-1]
its most significant byte.
Exit: Number rotated left

CARRY := Last bit shifted from the most
significant position :

‘Registers used: All

Time: 73 cycles overhead plus
((20 * length) + 27) cycles per shift

Size: Program 60 bytes
Data 2 bytes plus
2 bytes in page zero

Ne we NE we W6 N6 W& We We W8 W& ws We Ma WS We We WM& We W %o N N6 N me S %o %o
Ne Mo e wo Tms e wa M e Wb ma W ms We W Ve W Ne W NE My N Wa e e Se Se S e

;EQUATES .
PTR: .EQU ODOH ; PAGE ZERO FOR POINTER TO OPERAND

7J (MPRL) MULTIPLE-PRECISION ROTATE LEFT 343

MPRL:
;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX
;GET NUMBER OF BITS
PLA
STA NBITS
;GET LENGTH OF OPERAND
PLA
STA LENGTH
;GET STARTING ADDRESS OF THE OPERAND
PLA
STA PTR
PLA
STA PTR+1
;RESTORE THE RETURN ADDRESS
TXA ,
PHA
TYA .) .
PHA .;RESTORE RETURN ADDRESS
;INITIALIZE .
CLC ;CLEAR CARRY
LDA LENGTH , » ,]
BEQ EXIT ;EXIT IF THE LENGTH OF THE OPERAND IS 0
LDA NBITS - , ’ .
BEQ EXIT - EXIT IF NUMBER OF BITS TO SHIFT 1S 0
; WITH CARRY CLEAR
;LOOP ON THE NUMBER OF SHIFTS TO PERFORM
RLLP: ,
LDY LENGTH
DEY o ‘
LDA (PTR), Y iGET HIGH BYTE OF THE OPERAND
ASL A "~ ;CARRY := BIT 7 OF HIGH BYTE .
LDY #0 © ;Y = INDEX TO LEAST SIGNIFICANT BYTE
LDX LENGTH ;X = NUMBER OF BYTES
;ROTATE LEFT ONE BIT
LOOP: ’
LDA (PTR) , Y " 3GET NEXT BYTE]
ROL A " $ROTATE BIT 7 := CARRY, CARRY := BIT 0
STA (PTR),Y :sSTORE NEW VALUE -
INY " .;INCREMENT TO NEXT BYTE
DEX .;DECREMENT COUNTER

BNE LOOP ;CONTINUE THROUGH ALL THE BYTES

; DECREMENT NUMBER OF SHIFTS]
DEC NBITS 7DECREMENT SHIFT COUNTER
BNE RLLP ;CONTINUE UNTIL DONE

344 T MANIPULATIONS AND SHIFTS

EXIT:
RTS

;DATA SECTION

NBITS: .BLOCK
LENGTH: .BLOCK

~ we e

SC0710:
LDA
PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

!

;DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY: .BYTE

.END

1
1

SAMPLE EXECUTION:

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND

v N Wy we we

AYADR+1 ;PUSH STARTING ADDRESS OF .OPERAND

AYADR

#SZAY

SHIFTS

MPRL

sC0710

7

4

AY
21H,43H,

; PROGRAM

;PUSH LENGTH OF OPERAND

; PUSH NUMBER OF SHIFTS

; ROTATE
;RESULT OF ROTATING AY = EDCBAY87654321H, 4 BITS IS
; AY = DCBA987654321EH, C=0

H IN MEMORY AY = 0lEH
H AY+l = 032H
; AY+2 = 054H
; AY+3 = 076H
; AY+4 = 098H
H AY+5 = OBAH
; AY+6 = ODCH

; LENGTH OF OPERAND IN BYTES
:NUMBER OF SHIFTS

;ADDRESS OF OPERAND
65H,87H, 0A9H, 0CBH, OEDH

String Compare (STRCMP)

8A

Compares two strings and sets the Carry
and Zero flags appropriately. The Zero flag is
set to 1 if the strings are identical and to 0
otherwise. The Carry flag is set to 0 if the
string with the address higher in the stack
(string 2) is larger than the other string
(string 1); the Carry flag is set to 1 otherwise.
The strings are a maximum of 255 bytes long
and the actual characters are preceded by a
byte containing the length. If the two strings
are identical through the length of the
shorter, then the longer string is considered
to be larger.

Procedure: The program first determines
which string is shorter from the lengths
which precede the actual characters. It then
compares the strings one byte at a time
through the length of the shorter. If the pro-
gram finds corresponding bytes that are not
the same through the length of the shorter,
the program sets the flags by comparing the
lengths.

.

Registers Used: All

Execution Time:

1. If the strings are not identical through the
length of the shorter, the approximate execution
time is

81 + 19« NUMBER OF CHARACTERS
COMPARED.
If, for example, the routine compares five charac-
ters before finding a difference, the execution
time is
81 +19+5 = 81 + 95 = 176 cycles.

2. If the strings are identical through the
length of the shorter, the approximate execution
time is

93 + 19« LENGTH OF SHORTER STRING.

If, for example, the shorter string is eight

bytes long, the execution time is

93 + 19+8 = 93 + 152 = 245 cycles.
Program Size: 52 bytes
Data Memory Required: Four bytes on page 0,
two bytes starting at address SIADR (00DO, in
the listing) for a pointer to string 1 and two bytes

starting at address S2ADR (00D2,; in the listing)
for a pointer to string 2.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
string 2 .

More significant byte of starting address of
string 2 ‘

Less significant byte of starting address of
string 1

More significant byte of starting address of
string 1

Exit Conditions

Flags set as if string 2 had been subtracted -
from string 1 or, if the strings are equal
through the length of the shorter, as if the
length of string 2 had been subtracted from
the length of string 1. -

Zero flag = 1 if the strings are identical, 0
if they are not identical.

Carry flag = 0 if string 2 is larger than string
1, Lif they are identical or string 1 is larger.
If the strings are the same through the
length of the shorter, the longer one is con-
sidered to be larger.

345

346 sTRING MANIPULATIONS

Examples
1. Data: String 1 = 05'PRINT’ (05 is the length of
the string)
String 2 = 03°END’ (03 is the length of
the string)
Result: Zero flag = 0 (strings are not identical)
Carry flag = 1 (string 2 is not larger than
string 1)
2. Data: String 1 = 05*PRINT’ (05 is the length of
the string)
String 2 = 02'PR’ (02 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 1 (string 2 is not larger than
string 1)

The longer string (string 1) is considered
to be larger. If you want to determine
whether string 2 is an abbreviation of string
1, you could use Subroutine 8C (FIND THE
POSITION OF A SUBSTRING) and deter-
mine whether string 2 was part of string 1 and
started at the first character.

String 1 = 05‘PRINT’ (05 is the length of

3. Data:
the string)
String 2 = 06°SYSTEM” (06 is the length
of the string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 0 (string 2 is larger than
string 1)

We are assuming here that the strings con-
sist of ASCII characters. Note that the byte
preceding the actual characters contains a
hexadecimal number (the length of the
string), not a character. We have represented
this byte as two hexadecimal digits in front of
the string; the string itself is surrounded by
single quotation marks.

Note also that this particular routine treats
spaces like any other characters. If for exam-
ple, the strings are ASCII, the routine will
find . that SPRINGMAID is larger than
SPRING MAID, since an ASCIIM (4D,) is
larger than an ASCII space (20,,).

Title
Name:

String compare
STRCMP

s me e e

Purpose: Compare 2 stri

or cleared.
Entry: TOP OF STACK
High byte of
Low byte of
High byte of
Low byte of
High byte of

A string is
a length byt

Exit: IF string 1 =

z=1,C=1

e ™ we WE W8 WE We We We WS N8 We W w2 we W W

Low byte of return address,

~e w0 e we

ngs and return C and Z flags set

return address,
string 2 address,
string 2 address,,
string 1 address,
string 1 address

a maximum of 255 bytes long plus
e which precedes it.

string 2 THEN

we M N6 Ws N e wa WE Wy We W WE e e ws W we

8A STRING COMPARE (STRCMP} 347

IF string 1 > string 2 THEN
2=0,C=1

IF string 1 < string 2 THEN
%2=0,C=0

Registers used: All

Time: Worst case timing for strings which are equal.

e N e W WE We We W N WE ws we wp we
e e we N e N we %e Ne W4 Ne we we we

93 cycles maximum overhead plus (19 * length)
Size: Program 52 bytes
Data 4 bytes in page zero

sEQUATES
S1ADR . EQU ODCOH :PAGE ZERO POINTER TO STRING 1
S2ADR .EQU 0D2H ;PAGE ZERO POINTER TO STRING 2
STRCMP:

;GET RETURN ADDRESS

PLA

TAY

PLA

TAX

sGET THE STARTING ADDRESS OF STRING 2
PLA

STA S2ADR

PLA

STA S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1
PLA

STA S1ADR

PLA

STA S1ADR+1

;RESTORE RETURN ADDRESS
TXA
PHA
TYA
PHA

i
;DETERMINE WHICH STRING IS SHORTER

LDY $#0

LDA (S1ADR) ,Y ;GET LENGTH OF STRING #1

CMP (S2ADR) ,Y

BCC " BEGCMP ;IF STRING #2 IS SHORTER THEN
LDA (S2ADR) ,Y ;7 USE ITS LENGTH INSTEAD

i
{COMPARE THE STRINGS THROUGH THE LENGTH OF THE SHORTER STRING

v

348 sTRING MANIPULATIONS

BEGCMP: -
TAX ;X IS THE LENGTH OF THE SHORTER STRING -
BEQ TSTLEN ' ;BRANCH IF LENGTH IS ZERO
LDY #1 ;POINT AT FIRST CHARACTER OF STRINGS
CMPLP:
LDA (S1ADR) ,Y
CMP (S2ADR),Y
BNE EXIT ;BRANCH IF CHARACTERS ARE NOT EQUAL
; %Z,C WILL BE PROPERLY SET OR CLEARED
sELSE
INY ; NEXT CHARACTER
DEX ;s DECREMENT COUNTER
BNE CMPLP ; CONTINUE UNTIL ALL BYTES ARE COMPARED
;sTHE 2 STRINGS ARE EQUAL TO THE LENGTH OF THE SHORTER
;S0 USE THE LENGTHS AS THE BASIS FOR SETTING THE FLAGS
TSTLEN:
LDY #0 ;COMPARE LENGTHS
LDA (S1ADR),Y
CMP (S2ADR) ,Y :SET OR CLEAR THE FLAGS
;EXIT FROM STRING COMPARE
EXIT:
RTS
i i
H H
H SAMPLE EXECUTION: ;
H H
i H
SC0801:
LDA SADR1+1 ;PUSH STARTING ADDRESS OF STRING 1
PHA
LDA SADR1
PHA
"LDA SADR2+1 ;PUSH STARTING ADDRESS OF STRING 2
PHA
LDA SADR2
PHA
JSR STRCMP ; COMPARE
BRK ;RESULT OF COMPARING "STRING 1" AND "STRING 2"
;1S STRING 1 LESS THAN STRING 2 SO
: ;: 2=0,C=0
JMP sC0801 ; LOOP FOR ANOTHER TEST

’

;TEST DATA, CHANGE TO TEST OTHER VALUES

SADR1 .WORD sl

SADR2 .WORD s2

sl .BYTE 20H,"STRING 1 "
S2 .BYTE 20H,"STRING 2) "

. END ; PROGRAM

String Concatenation (CONCAT)

8B

Combines (concatenates) two strings,
placing the second immediately after the first
in memory. If the concatenation would pro-
duce a string longer than a specified max-
imum, the program concatenates only
enough of string 2 to give the combined
string its maximum length. The Carry flag is
cleared if all of string 2 can be concatenated
and set to 1 if part of string 2 must be drop-
ped. Both strings are a maximum of 255 bytes
long and the actual characters are preceded
by a byte containing the length.

Procedure: The program uses the length of

string 1 to determine where to start adding
characters and the length of string 2 to deter-
mine how many characters to add. If the sum
of the lengths exceeds the maximum, the
program indicates an overflow and reduces
the number of characters it must add (the
number is the maximum length minus the
length of string 1). It then moves the
appropriate number of characters from string
2 to the end of string 1, updates the length of
string 1, and sets the Carry flag to indicate
whether any characters had to be discarded.

Registers Used: All

Execution Time: Approximately 40 « NUMBER
OF CHARACTERS CONCATENATED plus
164 cycles overhead. The NUMBER OF
CHARACTERS CONCATENATED is normally
the length of string 2, but will be the maximum
length of string 1 minus its current length if the
combined string would be longer than the max-
imum. If, for example, NUMBER OF CHARAC-
TERS CONCATENATED is 14,4 (20,,), the
execution time is

40 *.20 + 161 = 800 + 164 = 964 cycles.
Program Size: 141 bytes

Data Memory Required: Seven bytes anywhere
in RAM plus four bytes on page 0. The seven
bytes anywhere in RAM are temporary storage
for the maximum length of string 1 (1 byte at
address MAXLEN), the length of string 1 (1 byte
at address SILEN), the length of string 2 (1 byte
at address S2LEN), a running index for string |
(1 byte at address S1IDX), a running index for

string 2 (1 byte at address S2IDX), a concatena-
tion counter (1 byte at address COUNT), and a
flag that indicates whether the combined strings
overflowed (1 byte at address STRGOV). The
four bytes on page 0 hold pointers to string 1 (two
bytes starting at address SIADR, address 00D0;,
in the listing) and to string 2 (two bytes starting at
address SIADR, address 00D0, in the listing).

Special Cases:

1. Ifthe concatenation would result in a string
longer than the specified maximum length, the
program concatenates only enough of string 2 to
reach the maximum. If any of string 2 must be
truncated, the Carry flag is set to 1.

2. If string 2 has a length of zero, the program
exits with the Carry flag cleared (no errors) and
string 1 unchanged. That is, a length of zero for
either string is interpreted as zero, not 256.

3. Ifthe original length of string 1 exceeds the
specified maximum length, the program exits
with the Carry flag set to 1 (indicating an error)
and string 1 unchanged.

349

350 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Maximum length of string 1

Less significant byte of starting address of
string 2

More significant byte of starting address of
string 2

Less significant byte of starting address of
string 1

More significant byte of starting address of
string 1

Exit Conditions

String 2 concatenated at the end of string 1
and the length of string 1 increased
appropriately. If the resulting string would
e'xceed_thé maximum length, only the part of
string 2 that would give string 1 its maximum
length is concatenated. If any part of string 2
must be dropped, the Carry flag is set to 1.
Otherwise, the Carry flag is cleared.

Examples

1. Data: Maximum length of string 1 = 0Ej¢ = 14,0

String 1 = 07*JOHNSON’ (07is the
length of the string)]

String 2 = 05, DON’ (05 is the length of
the string)

Result: String 1 = 0C‘'JOHNSON, DON’
(0Cg = 12,9 is the length of the
combined string with string 2
placed after string 1).

Carry = 0, since the concatenation did not
produce a string exceeding the

maximum length.

2. Data: Maximum length of string 1 = OE , = 14,4
String 1 = 07*JOHNSON’ (07 is the
length of the string)
String 2 = 09‘, RICHARD’ (09 is the
length of the string)
Result: String 1 = OE‘JOHNSON, RICHA’

(OE ¢ = 14, is the maximum
length allowed, so the last two
characters of string 2 have been
dropped.)

Carry = 1, since the contatenation
produced a string longer than the
maximum length.

Note that we are representing the initial byte (containing the length of the string) as two

hexadecimal digits in both examples.

8B STRING CONCATENATION (CONCAT) 351

; Title String Concatenation ;
; Name: CONCAT - ;
H i
H i
Purpose: Concatenate 2 strings into one string.
Entry:- TOP OF STACK

Low byte of return address,
High byte of return address,
Maximum length of string 1,
Low byte of string 2 address,
High byte of string 2 address,
Low byte of string 1 address,
High byte of string 1 address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: string 1 := string 1 concatenated with string 2
If no errors then
CARRY := 0 ’
else E
begin
CARRY :=1
if the concatenation makes string 1 too
long concatenate only the part of string 2
which will result in string 1 having its
maximum length - ' '
if length(stringl) > maximum length then
no concatenation is done
end;

Registers used: All

Time: Approximately 40 * (length of string 2) cycles
plus 161 cycles overhead

Size: Program 141 bytes
Data 7 bytes plus

4 bytes in page zero

TO WO TE NE NS N6 N6 N Ne We Ne N WE NG %e NE NG N NE M N N Ne Ne we %e we e %o Ne % N6 Ne wo Ne we we we ~
T WO T T N0 T N NE e NE Ne Ne N0 NeNe Ne MO NE Ne me % e e e ne Me Mo N6 %o %8 w6 %4 w6 %o e e e wa e

; EQUATES
S1ADR .EQU ODOH :PAGE ZERO POINTER TO STRING 1
S2ADR .EQU 0D2H iPAGE ZERO POINTER TO STRING 2
CONCAT:

:GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

352 STRING MANIPULATIONS

TOOLNG:

;GET MAXIMUM LENGTH OF STRING 1
PLA
STA

MAXLEN

;GET THE STARTING ADDRESS OF STRING 2
PLA
STA
PLA
STA

S2ADR

S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1
PLA
STA
PLA
STA

;sRESTORE RETURN ADDRESS

TXA
PHA
TYA
PHA

S1ADR

S1ADR+1

;RESTORE HIGH BYTE

;RESTORE LOW BYTE

;DETERMINE WHERE TO START CONCATENATING
LDY
LDA
STA
STA
INC
LDA
STA
LDA
STA

#0
(S1ADR) ,Y
S1LEN
S1IDX
S1IDX
(S2ADR) ,Y
S2LEN

#1

S2IDX

;GET CURRENT LENGTH OF STRING 1

:START CONCATENATING AT THE END OF STRING 1
:GET LENGTH OF STRING 2

;START CONCATENATION AT BEGINNING OF STRING 2

;DETERMINE THE NUMBER OF CHARACTERS TO CONCATENATE
LDA
CLC
ADC
BCS
CMP
BEQ
BCC

S2LEN

S1LEN
TOOLNG
MAXLEN
LENOK
LENOK

;GET LENGTH OF STRING 2

;ADD TO CURRENT LENGTH OF STRING 1
;BRANCH IF LENGTH WILL EXCEED 255 BYTES
;CHECK AGAINST MAXIMUM LENGTH

;BRANCH IF LENGTH DOES NOT EXCEED MAXIMUM

; RESULTING STRING WILL BE TOO LONG SO

INDICATE A STRING OVERFLOW, STRGOV := OFFH

SET NUMBER OF CHARACTERS TO CONCATENATE = MAXLEN - S1LEN
SET LENGTH OF STRING 1 TO MAXIMUM LENGTH

i
.
’

LDA
STA
LDA
SEC
SBC
BCC

#OFFH
STRGOV
MAXLEN

S1LEN
EXIT

;INDICATE OVERFLOW

;EXIT IF MAXIMUM LENGTH < STRING 1 LENGTH

88 STRING CONCATENATION (cONCAT) 353

i (THE ORIGINAL STRING WAS TOO LONG 1)

STA COUNT iSET COUNT TO S1LEN - MAXLEN

LDA MAXLEN '

STA S1LEN ¢SET LENGTH OF STRING 1 TO MAXIMUM
JMP DOCAT ;s PERFORM CONCATENATION

;RESULTING LENGTH DOES NOT EXCEED MAXIMUM

LENGTH OF STRING 1 = S1LEN + S2LEN

INDICATE NO OVERFLOW, STRGOV := 0

SET NUMBER OF CHARACTERS TO CONCATENATE TO LENGTH OF STRING 2

~e we we W

LENOK:
STA S1LEN ;SAVE THE SUM OF THE 2 LENGTHS
LDA #0
STA STRGOV ; INDICATE NO OVERFLOW
LDA S2LEN
STA COUNT iCOUNT := LENGTH OF STRING 2
;CONCATENATE THE STRINGS *
DOCAT:
LDA COUNT
BEQ EXIT ;EXIT IF NO BYTES TO CONCATENATE
CATLP:
LDY S2IDX
LDA (S2ADR) ,Y ;GET NEXT BYTE FROM STRING 2
LDY S1IDX
STA (S1ADR},Y ¢{MOVE IT TO END OF STRING 1
INC S1IDX * ;INCREMENT STRING 1 INDEX
INC S2IDX i INCREMENT STRING 2 INDEX
DEC COUNT : DECREMENT COUNTER
BNE CATLP ;CONTINUE UNTIL COUNT = 0
EXIT: .
LDA S1LEN ;UPDATE LENGTH OF STRING 1
LDY #0
STA (S1ADR),Y
LDA STRGOV ;GET OVERFLOW INDICATOR
ROR A ;CARRY = 1 IF OVERLOW, 0 IF NOT
RTS
H
;DATA

MAXLEN: ,BLOCK
S1LEN: .BLOCK
S2LEN: .BLOCK
S1IDX: .BLOCK
S2IDX: .BLOCK
COUNT: .BLOCK
STRGOV: ,BLOCK

iMAXIMUM LENGTH OF S1

;LENGTH OF Sl

;LENGTH OF S2

;RUNNING INDEX INTO S1

;RUNNING INDEX INTO S2
;CONCATENATION COUNTER .
iSTRING OVERFLOW FLAG

bt bt bt

SAMPLE EXECUTION:

Ne e we we
. %o we we

354 STRING MANIPULATIONS

sc0802:

LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JSR
BRK

JMP

SADR1+1 ;PUSH ADDRESS OF STRING 1
SADR1
SADR2+1 ;PUSH ADDRESS OF STRING 2
SADR2
#20H ;PUSH MAXIMUM LENGTH OF STRING 1
CONCAT ;CONCATENATE
;RESULT OF CONCATENATING "LASTNAME"

; IS S1 = 13H,"LASTNAME, FIRSTNAME"
SC0802 ;LOOP FOR ANOTHER TEST

H
; TEST DATA, CHANGE FOR OTHER VALUES

SADR1
SADR2
sl

s2

.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE

.END

sl ;STARTING ADDRESS OF STRING
s2 ;STARTING ADDRESS OF STRING
8H ;LENGTH OF Sl

"LASTNAME " ;32 BYTE
OBH ;LENGTH OF S2

", FIRSTNAME " ;32 BYTE
;s PROGRAM

AND ", FIRSTNAME®

1
2

MAX LENGTH

MAX LENGTH

8C

Find the Position of a Substring (POS)

Searches for the first occurrence of a
substring within a string. Returns the index
at which the substring starts if it is found and
0 if it is not found. The string and the
substring are both a maximum of 255 bytes
long and the actual characters are preceded
by a byte containing the length. Thus, if the
substring is found, its starting index cannot
be less than 1 or more than 255.

Procedure: The program moves through
the string searching for the substring until it
either finds a match or the remaining part of
the string is shorter than the substring and
hence cannot possibly contain it. If the
substring does not appear in the string, the
program clears the accumulator; otherwise,
the program places the starting index of the
substring in the accumulator,

Registers Used: All

Execution Time: Data-dependent, but the over-
head is 135 cycles, each successful match of one
character takes 47 cycles, and each unsuccessful
match of one character takes 50 cycles. The worst
case occurs when the string and substring always
match except for the last character in the
substring, such as
String = ‘AAAAAAAAR’
Substring = ‘AAB’
The execution time in that case is
(STRING LENGTH — SUBSTRING
LENGTH + 1) » (47 + (SUBSTRING
LENGTH - 1) + 50) + 135
If, for example, STRING LENGTH = 9 and
SUBSTRING LENGTH = 3, the execution time
is
O-=3+1D+@«C3-1)+ 50 + 135
= T=144 + 135 = 1008 + 135 = 1143
cycles.

Program Size: 124 bytes

Data Memory Required: Six bytes anywhere in
RAM plus four bytes on page 0. The six bytes
anywhere in RAM are temporary storage for the
length of the string (one byte at address SLEN),
the length of the substring (one byte at address

SUBLEN), a running index into the string (one
byte at address SIDX), a running index into the
substring (one byte at address SUBIDX), a
search counter (one byte at address COUNT),
and an index into the string (one byte at address
INDEX). The four bytes on page 0 hold pointers
to the substring (two bytes starting at address
SUBSTG, 00D0¢ in the listing) and to the string
(two bytes starting at address STRING, 00D2,,
in the listing).

Special Cases:

1. If either the string or the substring has a
length of zero, the program exits with zero in the
accumulator, indicating that it did not find the
substring.

2. If the substring is longer than the string,
the program exits with zero in the accumulator,
indicating that it did not find the substring.

3. If the program returns an index of 1, the
substring may be regarded as an abbreviation of
the string. That is, the substring occurs in the
string, starting at the first character. A typical
example would be a string PRINT and a substring
PR.

4. If the substring occurs more than once in
the string, the program will return only the index
to the first occurrence (the occurrence with the
lowest starting index).

355

356 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
substring

More significant byte of starting address of
substring

Less significant byte of starting address of
string

More significant byte of starting address of
string

Exit Conditions

Accumulator contains index at which first
occurrence of substring starts if it is found;
accumulator contains zero if substring is not
found. ‘

Examples

1. Data: String = 1D* ENTER SPEED IN MILES
PER HOUR’ (1D} = 29y is the
length of the string).

Substring = 05‘MILES’ (05 is the length
of the substring)

Result: Accumulator contains 10,4 (16,0), the
index at which the substring ‘MILES’
starts.

2. Data: String = 1B‘'SALES FIGURES FOR
JUNE 1981° (1B,4 = 27 gis the
length of the string)

Substring = 04*JUNE’ (04 is the length of
the substring)

Result: Accumulator contains 13,5 (19o), the

index at which the substring ‘JUNE’
starts.

3. Data: String = 10°LET Y1 = X1 + R7’ (104
=16, is the length of the string)
Substring = 02‘R4’ (02 is the length of

the substring)

Result: Accumulator contains 00, since the
substring ‘R4’ does not appear in the

string LET Y1 = X1 + R7.
String =07*‘RESTORE’ (07 is the length
of the string)
Substring = 03‘RES’ (03 is the length of
the substring)

4. Data:

Accumulator contains 01, the index at
which the substring ‘*‘RES’’ starts. An
index of 01 indicates that the substring
could be an abbreviation of the string;
such abbreviations are, for example, often
used in interactive programs (such as
BASIC interpreters) to save on typing and
storage.

Resul_t:

~. we we wo

TO WO MO T TH NE e Ne N %e Ne e e NE NE NE Ne Ve N Ne NE e NS % Ne N6 N we ne we s %o %o e AE e we we we Ne %o we me %o %o ws we o

;EQUATES

Title
Name:

Purpose:

Entry:

BExit:

Registers used:

Time:

8C FIND THE POSITION OF A SUBSTRING (POS)

Find the position of a ‘substring in a string
POS

Search for the first occurrence of a substring
within a string and return its starting index.
If the substring is not found a 0 is returned.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of substring address,
High byte of substring address,
Low byte of string address,
High byte of string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

If the substring is found then
Register A = its starting index
else
Register A = 0

All

Since the algorithm is so data dependent
a simple formula is impossible but the
following statements are true and a
worst case is given below:

135 cycles overhead.
Each match of 1 character takes 47 cycles
A mismatch takes 50 cycles.

Worst case timing will be when the
string and substring always match
except for the last character of the
substring, Such as:

string = 'AAAAAAAAAB'

substring = 'AAB'
135 cycles overhead plus

(length(string) - length(substring) + 1) *

Size:

(((length(substring)-1) .* 47) + 50)

Program 124 bytes
Data 6 bytes plus
4 bytes in page zero

357

we we we we

358 sTRING MANIPULATIONS

SUBSTG
STRING

POS:

LENOK:

SLP1:

. EQU ODOH : ;PAGE ZERC POINTER TO SUBSTRING
.EQU 0D2H :+PAGE ZERO POINTER TO STRING

;GET RETURN ADDRESS

PLA
TAY ;SAVE LOW BYTE
PLA
TAX ;SAVE HIGH BYTE

;GET THE STARTING ADDRESS OF SUBSTRING
PLA

STA SUBSTG
PLA

STA SUBSTG+1

;GET THE STARTING ADDRESS OF STRING
PLA

STA STRING

PLA

STA STRING+1

;RESTORE RETURN ADDRESS

TXA '

PHA ;RESTORE HIGH BYTE
TYA

PHA ;RESTORE LOW BYTE

;SET UP TEMPORARY LENGTH AND INDEX BYTES
LDY . #0

LDA {(STRING) ,Y :GET LENGTH OF STRING

BEQ NOTFND ;EXIT IF LENGTH OF STRING = 0
STA SLEN

LDA (SUBSTG) ,Y ;GET LENGTH OF SUBSTRING

BEQ NOTFND ;EXIT IF LENGTH OF SUBSTRING = 0
STA SUBLEN :

;IF THE SUBSTRING IS LONGER THAN THE STRING DECLARE THE

; SUBSTRING NOT FOUND

LDA | SUBLEN

CMP SLEN -

BEQ LENOK

BCS NOTFND ;CANNOT FIND SUBSTRING IF IT IS LONGER THAN
; STRING

;START SEARCH, CONTINUE UNTIL REMAINING STRING SHORTER THAN SUBSTRING

LDA #1

STA INDEX ;START LOOKING AT FIRST CHARACTER OF STRING

LDA SLEN ;CONTINUE UNTIL REMAINING STRING TOO SHORT

SEC ; COUNT=STRING LENGTH - SUBSTRING LENGTH + 1

SBC SUBLEN ’

STA COUNT

INC COUNT

;SEARCH FOR SUBSTRING IN STRING

8C FIND THE POSITION OF A SUBSTRING (P0s) 359

LDA INDEX
STA SIDX ;START STRING INDEX AT INDEX
LDA $#1
STA SUBIDX ;START SUBSTRING INDEX AT 1
; LOOK FOR SUBSTRING BEGINNING AT INDEX
CMPLP:
LDY SIDX
LDA (STRING),Y ;GET NEXT CHARACTER FROM STRING
LDY SUBIDX
CMP (SUBSTG) ,Y ;COMPARE TO NEXT CHARACTER IN SUBSTRING
BNE SLP2 ;BRANCH IF SUBSTRING IS NOT HERE
LDY SUBIDX
CPY SUBLEN ;TEST IF WE ARE DONE
BEQ FOUND ;BRANCH IF ALL CHARACTERS WERE EQUAL
INY sELSE INCREMENT TO NEXT CHARACTER
STY SUBIDX .
INC SIDX ; INCREMENT STRING INDEX
JMP CMPLP sCONTINUE
sARRIVE HERE IF THE SUBSTRING IS NOT YET FOUND
SLP2:
INC INDEX s INCREMENT INDEX
DEC COUNT s DECREMENT COUNT
BNE SLP1 sBRANCH IF NOT DONE
BEQ NOTFND sELSE EXIT NOT FOUND
FOUND: :
LDA INDEX ;SUBSTRING FOUND, A = STARTING INDEX
JMP EXIT
NOTFND:
LDA #0 s SUBSTRING NOT FOUND, A = 0
EXIT
RTS
;s DATA
SLEN: .BLOCK 1 ;LENGTH OF STRING
SUBLEN: .BLOCK 1 ;LENGTH OF SUBSTRING
SIDX: .BLOCK 1 ;RUNNING INDEX INTO STRING
SUBIDX: .BLOCK 1 ;RUNNING INDEX INTO SUBSTRING
COUNT: .BLOCK 1 sSEARCH COUNTER
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING

SAMPLE EXECUTION:

P T
e wa we v we

SC0803:
LDA SADR+1 ;PUSH ADDRESS OF THE STRING

360 STRING MANIPULATIONS

PHA

LDA SADR

PHA

LDA SUBADR+1 ;PUSH ADDRESS OF THE SUBSTRING

PHA

LDA SUBADR

PHA

JSR POS ;FIND POSITION OF SUBSTRING

BRK) ~ ;RESULT OF SEARCHING "AAAAAAAAAB" FOR "AAB" IS
; REGISTER A=8

JMP sC0803 ;LOOP FOR ANOTHER TEST

i
;TEST DATA, CHANGE FOR OTHER VALUES

SADR .WORD STG
SUBADR .WORD SSTG)
STG .BYTE OAH ;LENGTH OF STRING
.BYTE "ARAAAAAAAB " ;32 BYTE MAX LENGTH
SSTG .BYTE 3H ; LENGTH OF SUBSTRING
.BYTE "AAB " ;32 BYTE MAX LENGTH

.END ; PROGRAM

Copy a Substring from a String (COPY)

8D

Copies a substring from a string, given a
starting index and the number of bytes to
copy. The strings are a maximum of 255
bytes long and the actual characters are pre-
ceded by a byte containing the length. If the
starting index of the substring is zero (i.e.,
the substring would start in the length byte)
or is beyond the end of the string, the
substring is given a length of zero and the
Carry flag is set to 1. If the substring would
exceed its maximum length or would extend
beyond the end of the string, then only the
maximum number or the available number
of characters (up to the end of the string) are
placed in the substring, and the Carry flag is
set to 1. If the substring can be formed as
specified, the Carry flag is cleared.

Procedure: The program exits immediately
if the number of bytes to copy, the maximum
length of the substring, or the starting index
is zero. It also exits immediately if the start-
ing index exceeds the length of the string. If
none of these conditions holds, the program
checks if the number of bytes to copy exceeds
either the maximum length of the substring
or the number of characters available in the
string. If either one is exceeded, the program
reduces the number of bytes to copy
appropriately. It then copies the proper num-
ber of bytes from the string to the substring.
The program clears the Carry flag if the
substring can be formed as specified and sets
the Carry flag if it cannot.

Registers Used: All

Execution Time: Approximately 36 » NUMBER
OF BYTES COPIES plus 200 cycles overhead.

NUMBER OF BYTES COPIED is the number
specified (if no problems occur) or the number
available or the maximum length of the substring
if the copying would go beyond the end of either
the string or the substring. If, for example,
NUMBER OF BYTES COPIED = 12, (0C,),
the execution time is

36 * 12 + 200 = 432 +200 = 632 cycles.
Program Size: 173 bytes.
Data Memory Required: Six bytes anywhere in
RAM plus four bytes on page 0. The six bytes
anywhere in RAM hold the length of the string
(one byte at address SLEN), the length of the
substring (one byte at address DLEN), the max-
imum length of the substring (one byte at address
MAXLEN), the search counter (one byte at
address COUNT), the current index into the
string (one byte at address INDEX), and an error
flag (one byte at address CPYERR). The four
bytes on page 0 hold pointers to the string (two
bytes starting at address DSTRG, 00D0,¢ in the
listing) and to the substring (two bytes starting at
address SSTRG, 00D2, in the listing).

Special Cases:

1. If the number of bytes to copy is zero, the
program assigns the substring a length of zero
and clears the Carry flag, indicating no error.

2. If the maximum length of the substring is
zero, the program assigns the substring a length
of zero and sets the Carry flag to 1, indicating an
error.

3. If the starting index of the substring is zero,
the program assigns the substring a length of zero
and sets the Carry flag to 1, indicating an error.

4. If the source string does not even reach the
specified starting index, the program assigns the
substring a length of zero and sets the Carry flag
to 1, indicating an error.

5. If the substring would extend beyond the
end of the source string, the program places all
the available characters in the substring and sets
the Carry flag to 1, indicating an error. The
available characters are the ones from the starting
index to the end of the string.

6. If the substring would exceed its specified
maximum length, the program places only the
specified maximum number of characters in the
substring. It sets the Carry flag to 1, indicating an
error.

361

362 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Maximum length of substring (destination
string)

Less significant byte of starting address of
substring (destination string)

More significant byte of starting address of
substring (destination string)

Number of bytes to copy
Starting index to copy from

Less significant byte of starting address of
string (source string)

More significant byte of starting address of
string (source string)

Exit Conditions

Substring contains characters copied from
string. If the starting index is zero, the max-
imum length of the substring is zero, or the
starting index is beyond the length of the
string, the substring will have a length of zero
and the Carry flag will be set to 1. If the
substring would extend beyond the end of
the string or would exceed its specified max-
imum length, only the available characters
from the string (up to the maximum length
of the substring) are copied into the
substring; the Carry flag is set in this case
also. If no problems occur in forming the
substring, the Carry flag is cleared.

Examples

String = 10’LET Y1 = R7 + X4’

(10,4 = 16y is the length of the string)
Maximum length of substring = 2
Number of bytes to copy = 2
Starting index = 5
Substring = 02°Y1’ (2 is the length of the

substring)

Carry = 0, since no problems occur in
forming the substring

1. Data:

Resuit:

2. Data: String = 0E‘8657 POWELL ST’

(OE,¢ = 14, is the length of the string)
Maximum length of substring = 10,4 = 164
Number of bytes to copy = 0D, = 13
Starting index == 06
Result: Substring = 09'POWELL ST’ (09 is the

length of the substring)

Carry = 1, since there were not enough
characters available in the string to
provide the specified number of bytes
to copy.

3. Data:

String = 16'9414 HEGENBERGER
DRIVE’ (16, = 22,4 is the length
of the string)

Maximum length of substring = 104
=16,

Number of bytes to copy = 11, = 174

Starting index = 06

Substring = 10'HEGENBERGER DRIV’
(10,4 = 16,4 is the length of the
substring)

Carry = 1, since the number of bytes to
copy exceeded the maximum length of
the substring

Result:

Title
Name:

s we we weo

Purpose:

Entry:

Exit:

Time:

Size:

TOTE VO VR WE N NE W0 NE N NS N e WE NG NE SO NE N M NS NS NE NG e Ne NE ME Ne NE NS Ne We Ne Ne Mo e Ns e e We N6 we we we e

;EQUATES
DSTRG . EQU
SSTRG .EQU

Registers used:

0DOH
OD2H

8D COPY A SUBSTRING FROM A STRING (COPY)

Copy a substring from a string
Copy

Copy a substring from a string given a starting
index and the number of bytes.

TOP OF STACK
Low byte of return address,
High byte of return address,
Maximum length of destination string,
Low byte of destination string address,
High byte of destination string address,
Number of bytes to copy,
Starting index to copy from,
Low byte of source string address,
High byte of source string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Destination string := The substring from the

string.

if no errors then
CARRY := 0

else
begin

the following conditions cause an

error and the CARRY flag = 1.

if (index = 0) or (maxlen = 0) or

(index > length(sstrg) then

the destination string will have a zero
length.:

if (index + count) > length(sstrg)) then
the destination string becomes everything
from index to the end of source string.

END; B

All

Approximately (36 * count) cycles plus 200
cycles overhead.

Program 173 bytes

Data 6 bytes plus
4 bytes in page zero

;PAGE ZERO POINTER TO DESTINATION STRIN
;PAGE ZERO POINTER TO SOURCE STRING

363

~e we e we

MO O NE e e W W N We N NP e e N NE N M e N N NE NS NG NI NE Ne Ne NE W Ne e %5 me W e me e we %e %6 wE we me e wa

G

364 STRING MANIPULATIONS

COPY: '
;GET RETURN ADDRESS
PLA
TAY ;SAVE LOW BYTE
. PLA
TAX ;SAVE HIGH BYTE
;GET MAXIMUM LENGTH OF DESTINATION STRING
PLA
STA MAXLEN
;GET STARTING ADDRESS OF DESTINATION STRING
PLA '
STA DSTRG ;SAVE LOW BYTE
PLA
STA DSTRG+1 ;SAVE HIGH BYTE
;GET NUMBER OF BYTES TO COPY
PLA
STA COUNT
;GET STARTING INDEX OF SUBSTRING
PLA
STA INDEX
;GET STARTING ADDRESS OF SOURCE STRING
PLA
STA SSTRG ;SAVE LOW BYTE (NOTE SSTRG=SOURCE STRING)
PLA
STA SSTRG+1 ;SAVE HIGH BYTE
;RESTORE RETURN ADDRESS
TXA
PHA ;RESTORE HIGH BYTE
TYA _
PHA ;RESTORE LOW BYTE
;INITIALIZE LENGTH OF DESTINATION STRING AND THE ERROR FLAG TO 0
LDA #0
STA DLEN ;LENGTH OF DESTINATION STRING IS ZERO
STA CPYERR ;ASSUME NO ERRORS
;CHECK FOR ZERO BYTES TO COPY OR ZERO MAXIMUM SUBSTRING LENGTH
LDA COUNT
BEQ OKEXIT ;BRANCH IF ZERO BYTES TO COPY, NO ERROR
: DSTRG WILL JUST HAVE ZERO LENGTH
LDA MAXLEN
BEQ EREXIT ;ERROR EXIT IF SUBSTRING HAS ZERO
; MAXIMUM LENGTH.
LDA INDEX
BEQ EREXIT ;ERROR EXIT IF STARTING INDEX IS ZERO

;CHECK IF THE SOURCE STRING REACHES THE STARTING INDEX
;IF NOT, EXIT ‘
LDY $#0

8D COPY A SUBSTRING FROM A STRING (copy) 3658

LDA (SSTRG) ,Y ;GET LENGTH OF SOURCE STRING

STA SLEN ;SAVE SOURCE LENGTH

CMP INDEX ;COMPARE TO STARTING INDEX

BCC EREXIT JERROR EXIT IF INDEX IS TOO LARGE

;CHECK THAT WE DO NOT COPY BEYOND THE END OF THE SOURCE STRING
;IF INDEX + COUNT - 1 > LENGTH (SSTRG) THEN
i COUNT := LENGTH(SSTRG) - INDEX + 1;

LDA INDEX

CLC

ADC COUNT :

BCS RECALC ;BRANCH IF INDEX + COUNT > 255

TAX

DEX

CPX SLEN

BCC CNT10K ;BRANCH IF INDEX + COUNT - 1 < LENGTH (SSTRG)
BEQ CNT10K - BRANCH IF EQUAL

; THE CALLER ASKED FOR TOO MANY CHARACTERS JUST RETURN EVERYTHING
; BETWEEN INDEX AND THE END OF THE SOURCE STRING.
i SO SET COUNT := LENGTH (SSTRG) - INDEX + 1;

RECALC:
LDA SLEN sRECALCULATE COUNT
SEC
SBC INDEX
STA COUNT
INC COUNT ;COUNT := LENGTH(SSTRG) - INDEX + 1
LDA #0FFH
STA CPYERR ;INDICATE A TRUNCATION OF THE COUNT
;CHECK IF THE COUNT IS LESS THAN OR EQUAL TO THE MAXIMUM LENGTH OF THE
; DESTINATION STRING. IF NOT, THEN SET COUNT TQ THE MAXIMUM LENGTH
: IF COUNT > MAXLEN THEN
H COUNT := MAXLEN
CNT1OK:
LDA COUNT :IS COUNT > MAXIMUM SUBSTRING LENGTH ?
CMP MAXLEN
BCC CNT20K iBRANCH IF COUNT < MAX LENGTH
BEQ CNT 20K iBRANCH IF COUNT = MAX LENGTH
LDA MAXLEN
STA COUNT ELSE COUNT := MAXLEN
LDA #0FFH
STA CPYERR ;INDICATE DESTINATION STRING OVERFLOW
;EVERYTHING IS SET UP SO MOVE THE SUBSTRING TO .DESTINATION STRING
CNT20K:
LDX COUNT ;REGISTER X WILL BE THE COUNTER -
BEQ EREXIT ;ERROR EXIT IF COUNT IS ZERO
LDA $#1 ;START WITH FIRST CHARACTER OF DESTINATION
STA DLEN ;DLEN IS RUNNING INDEX FOR DESTINATION
. ;INDEX IS RUNNING INDEX FOR SOURCE
MVLP:
LDY INDEX
LDA (SSTRG) , Y ;GET NEXT SOURCE CHARACTER
LDY DLEN

STA (DSTRG) , Y. ;MOVE NEXT CHARACTER TO DESTINATION

366 STRING MANIPULATIONS

INC INDEX ; INCREMENT SOURCE INDEX
INC DLEN ; INCREMENT DESTINATION INDEX
DEX s DECREMENT COUNTER
BNE MVLP ;CONTINUE UNTIL COUNTER = 0
DEC DLEN ;SUBSTRING LENGTH=FINAL DESTINATION INDEX - 1
LDA CPYERR ;CHECK FOR ANY ERRORS
BNE EREXIT ;BRANCH IF A TRUNCATION OR STRING OVERFLOW
;GOOD EXIT
OKEXIT:
CLC
BCC EXIT
;ERROR EXIT
EREXIT:
SEC
;STORE LENGTH BYTE IN FRONT OF SUBSTRING
EXIT:
LDA DLEN
LDY $0
STA (DSTRG) , Y ;:SET LENGTH OF DESTINATION STRING
RTS

!

;DATA SECTION

SLEN: .BLOCK
DLEN: .BLOCK
MAXLEN: .BLOCK
COUNT: .BLOCK
INDEX: .BLOCK
CPYERR: .BLOCK

;LENGTH OF SOURCE STRING

;LENGTH OF DESTINATION STRING
;MAXIMUM LENGTH OF DESTINATION STRING
;SEARCH COUNTER '
sCURRENT INDEX INTO STRING

;COPY ERROR FLAG

[y e

SAMPLE EXECUTION:

“~r we wme me W
e we me we W

5C0804:
LDA SADR+1 ; PUSH ADDRESS OF SOURCE STRING
PHA : '
LDA SADR
PHA
LDA IDX ; PUSH STARTING INDEX FOR COPYING
PHA
LDA CNT ;PUSH NUMBER OF CHARACTERS TO COPY
PHA
LDA DADR+1 ;PUSH ADDRESS OF DESTINATION STRING
PHA
LDA DADR
PHA
LDA MXLEN ; PUSH MAXIMUM LENGTH OF DESTINATION STRING
PHA ’

JSR COPY ;COPY

BRK

JMP

!
;DATA SECTION

IDX
CNT

MXLEN

SADR
DADR
SSTG

DSTG

.BYTE
.BYTE
.BYTE
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE

. END

8D COPY A SUBSTRING FROM A STRING (CoPy) 367

;RESULT OF COPYING 3 CHARACTERS STARTING AT INDEX 4
;FROM THE STRING "12.345E+10" IS 3,"345"
5C0804 ;LOOP FOR MORE TESTING

4
3

20H

SSTG

DSTG

OAH
"12.345E+10
0

; PROGRAM

;STARTING INDEX FOR COPYING
:NUMBER OF CHARACTERS TO COPY
;MAXIMUM LENGTH OF DESTINATION STRING

;LENGTH OF STRING

" ;32 BYTE MAX LENGTH
;LENGTH OF SUBSTRING

" ;32 BYTE MAX LENGTH

Delete a Substring from a String (DELETE)

8E

Deletes a substring from a string, given a
starting index and a length. The string is a
maximum of 255 bytes long and the actual
characters are preceded by a byte containing
the length. The Carry flag is cleared if the
deletion can be performed as specified. The
Carry flag is set if the starting index is zero or
beyond the length of the string; the string is
left unchanged in either case. If the deletion
extends beyond the end of the string, the
Carry flag is set (to 1) and only the characters
from the starting index to the end of the
string are deleted.

Procedure: The program exits immediately

if the starting index or the number of bytes to
delete is zero. It also exits if the starting index
is beyond the length of the string. If none of
these conditions holds, the program checks

_to see if the string extends beyond the area to

be deleted. If it does not, the program simply
truncates the string by setting the new length
to the starting index minus 1. If it does, the
program compacts the resulting string by
moving the bytes above the deleted area
down. The program then determines the new
string’s length and exits with the Carry
cleared if the specified number of bytes were
deleted and set to 1 if any errors occurred.

Registers Used: All

‘Execution Time: Approximately
36 » NUMBER OF BYTES MOVED DOWN
+ 165 .
where NUMBER OF BYTES MOVED DOWN is
zero if the string can be truncated and is STRING
LENGTH — STARTING INDEX — NUMBER
OF BYTES TO DELETE + 1 if the string must
be compacted. .
Examples
1. STRING LENGTH = 20,4 (32,
STARTING INDEX = 19, (25,9)
NUMBER OF BYTES TO DELETE = 08

Since there are exactly eight bytes left in the
string starting at index 194, all the routine must
do is truncate the string. This takes

36«0 + 165 = 165 cycles.

2. STRING LENGTH = 40/, (64,0)
STARTING LENGTH = 19,4 (25,,)
NUMBER OF BYTES TO DELETE = 08

Since there are 20,4 (32;,) byles above the

truncated area, the routine must move them
down eight positions. The execution time is -
36+ 32 + 165 = 1152 + 165 = 1317 cycles.

Program Size: 139 bytes

Data Memory Required: Five bytes anywhere in
RAM plus two bytes on page 0. The five bytes
anywhere in RAM hold the length of the string
(one byte at address SLEN), the search counter
(one byte at address COUNT), an index into the
string (one byte at address INDEX), the source
index for use during the move (one byte at
address SIDX), and an error flag (one byte at
address DELERR). The two bytes on page 0 hold
a pointer to the string (starting at address STRG,
00DO0,, in the listing).

Special Cases:

1. If the number of bytes to delete is zero, the
program exits with the Carry flag cleared (no
errors) and the string unchanged.

2. If the string does not even extend to the
specified starting index, the program exits with
the Carry flag set to 1 (error indicated) and the
string unchanged.

3. If the number of bytes to delete exceeds the
number available, the program deletes all bytes
from the starting index to the end of the string
and exits with the Carry flag set to 1 (error indi-
cated).

368

8E DELETE A SUBSTRING FROM A STRING (DELETE)

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of bytes to delete
Starting index to delete from

Less significant byte of starting address of
string

More significant byte of starting address of
string

369

Exit Conditions

Substring deleted from string. If no errors
occur, the Carry flag is cleared. If the starting
index is zero or beyond the length of the
string, the Carry flag is set and the string is
unchanged. If the number of bytes to delete
would go beyond the end of the string, the
Carry flag is set and the characters from the
starting index to the end of the string are
deleted.

Examples

String = IE'SALES FOR MARCH AND
APRIL 1980° (1E = 30, is the
length of the string)

Number of bytes to delete = 0A, = 10,4

Starting index to delete from = 10, =
16,4

String = 14‘'SALES FOR MARCH 1980’
(14,4 = 20, is the length of the string
with ten bytes deleted starting with the
16th character — the deleted material is
‘AND APRIL").

Carry = 0, since no problems occurred in
the deletion.

1. Data:

Result:

2. Data: String = 28'THE PRICE IS $3.00 ($2.00
BEFORE JUNE 1)’ (28 = 40, is the
length of the string).

Number of bytes to delete = 30, = 48,
Starting index to delete from = 13,
= 19]0
Result: String = 12'THE PRICE IS $3.00" (12,

= 18,y is the length of the string with all
remaining bytes deleted).
Carry = 1, since there were not as many

bytes left in the string as were supposed
to be deleted.

Title

Name: Delete

e we we we

Purpose:

Entry: TOP OF STACK

WO M ws Ne we we e %o s we we

Delete a substring from a string

Delete a substring from a string given a
starting index and a length. :

Low byte of return address,

High byte of return address,

Number of bytes to delete (count),
Starting index to delete from (index),
Low byte of string address,

High byte of string address

. we we we

W NE Ne e me %e Ne Ne g we W
‘

370

me we we %8 WE e W WE Me WE WE we N TS e We e We me Se WE N N6 N4 S w6 e ™o

STRING MANIPULATIONS

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Substring deleted.
if no errors then
CARRY := 0
else
begin
the following conditions cause an
error with the CARRY flag = 1.
if (index = 0) or (index > length(string})
then do not change the string
if count is too large then
delete only the characters from
index to the end of the string
end;

Registers used: All

Time: Approximately 36 * (LENGTH (STRG) ~INDEX~COUNT+1)
plus 165 cycles overhead.

Size: Program 139 bytes
Data 5 bytes plus

2 bytes in page zero

; EQUATES

STRG

. EQU ODOH ;PAGE ZERO POINTER TO SOURCE STRING

DELETE:

;GET RETURN ADDRESS

PLA
TAY ;SAVE LOW BYTE
PLA
TAX) ;SAVE HIGH BYTE

;GET NUMBER OF BYTES TO DELETE

PLA
STA

COUNT

:GET STARTING INDEX DELETION

PLA
STA

INDEX

‘;GET STARTING ADDRESS OF STRING

PLA
STA
PLA
STA

STRG ;SAVE LOW BYTE

STRG+1 ;SAVE HIGH BYTE

sRESTORE RETURN ADDRESS

TXA

~e s e W6 W NE We WS WE We We WS Ve We we We WO W4 N W NE N Ne W We W N6 N

8E DELETE A SUBSTRING FROM A STRING (DELETE) 371

PHA : sRESTORE HIGH BYTE
TYA .
PHA sRESTORE LOW BYTE

sINITIALIZE ERROR INDICATOR (DELERR) TO 0
;GET STRING LENGTH

LDY $0

STY DELERR

LDA (STRG) ,Y ;GET LENGTH OF STRING

STA SLEN ;SAVE STRING LENGTH

;CHECK FOR A NON ZERO COUNT AND INDEX

LDA COUNT

BEQ OKEXIT ;GOOD EXIT IF NOTHING TO DELETE
LDA INDEX

BEQ EREXIT ;ERROR EXIT IF STARTING INDEX = 0

;CHECK FOR STARTING INDEX WITHIN THE STRING
; EXIT IF IT IS NOT

LDA SLEN ;IS INDEX WITHIN THE STRING ?
CMP INDEX
BCC EREXIT :NO, TAKE ERROR EXIT

;BE SURE THE NUMBER OF CHARACTERS .REQUESTED TO BE DELETED ARE PRESENT
i IF NOT THEN ONLY DELETE FROM THE INDEX TO THE END OF THE STRING

LDA INDEX
CLC
ADC COOUNT
BCS TRUNC iTRUNCATE- IF INDEX + COUNT > 255 -
STA SIDX iSAVE INDEX + COUNT AS THE SOURCE INDEX
TAX ;X = INDEX + COUNT :
DEX
CPX SLEN
BCC CNTOK :BRANCH IF INDEX + COUNT - 1 < LENGTH (SSTRG)
' {ELSE JUST TRUNCATE THE STRING
BEQ TRUNC : ;sTRUNCATE BUT NO ERROR (EXACTLY ENOUGH
; CHARACTERS)
LDA #0FFH
STA DELERR ;INDICATE ERROR - NOT ENOUGH CHARACTERS TO
. ; DELETE
;TRUNCATE THE STRING - NO COMPACTING NECESSARY
TRUNC: ‘
LDX INDEX iSTRING LENGTH = STARTING INDEX - 1
DEX
STX SLEN
LDA DELERR
BEQ OKEXIT ;GOOD EXIT
BNE EREXIT ;ERROR EXIT
;DELETE THE SUBSTRING BY COMPACTING
i MOVE ALL CHARACTERS ABOVE THE DELETED AREA DOWN
CNTOK:

;CALCULATE NUMBER OF CHARACTERS TO MOVE (SLEN - SIDX + 1)

372 stRING MANIPULATIONS

LDA SLEN ;GET STRING LENGTH
SEC
SBC SIDX ;SUBTRACT STARTING INDEX
TAX
INX ;ADD 1 TO INCLUDE LAST CHARACTER
BEQ OKEXIT ;BRANCH IF COUNT = 0
MVLP:
LDY SIDX
LDA (STRG) , Y ;GET NEXT CHARACTER
LDY INDEX
STA (STRG) , Y sMOVE IT DOWN
INC INDEX ; INCREMENT DESTINATION INDEX
INC SIDX ; INCREMENT SOURCE INDEX
DEX : DECREMENT COUNTER
BNE MVLP ;CONTINUE UNTIL COUNTER = 0
LDX INDEX
DEX ;STRING LENGTH = FINAL DESTINATION INDEX - 1
STX SLEN N
;GOOD EXIT
OKEXIT:
CLC
BCC EXIT
sERROR EXIT
EREXIT:
SEC
EXIT:
LDA SLEN
LDY #0
STA (STRG) , ¥ ;SET LENGTH OF STRING
RTS
; DATA
SLEN: .BLOCK 1 ; LENGTH OF SOURCE STRING
COUNT: .BLOCK 1 ;SEARCH COUNTER
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING
SIDX: .BLOCK 1 ;SOURCE INDEX DURING MOVE
DELERR: .BLOCK 1 ;DELETE ERROR FLAG

SAMPLE EXECUTION:

we wo we we we
we %o W e we

SC0805:
LDA SADR+1 ;PUSH STRING ADDRESS
PHA
LDA SADR
PHA

LDA IDX ;PUSH STARTING INDEX FOR DELETION

PHA
LDA
PHA
JSR
BRK

JMP

sDATA SECTION

IDX
CNT
SADR
SSTG

.BYTE
.BYTE
.WORD
.BYTE
.BYTE

.END

8E DELETE A SUBSTRING FROM A STRING (DELETE) 373

CNT . ;PUSH NUMBER OF CHARACTERS TO DELETE

DELETE ;DELETE
;RESULT OF DELETING 4 CHARACTERS STARTING AT INDEX 1
; FROM "JOE HANDOVER" IS "HANDOVER"

SC0805 ;LOOP FOR ANOTHER TEST

1 ;INDEX TO START OF DELETION

4 :NUMBER OF CHARACTERS TO DELETE
SSTG

12 sLENGTH OF STRING

"JOE HANDOVER"

; PROGRAM

Insert a Substring into a String (INSERT)

8F

s

Inserts a substring into a string, given a
starting index. The string and substring are
both a maximum of 255 bytes long and the
actual characters are preceded by a byte con-
taining the length. The Carry flag is cleared if
the insertion can be accomplished with no
problems. The Carry flag is set if the starting
index is zero or beyond the length of the
string. In the second case, the substring is
concatenated to the end of the string. The
Carry flag is also set if the string with the
insertion would exceed a specified maximum
length; in that case, the program inserts only
enough of the substring to give the string its
maximum length.

Procedure: The program exits immediately
if the starting index is zero or if the length of
the substring is zero. If neither of these con-
ditions holds, the program checks to see if
‘the insertion would produce a string longer

than the maximum. If it would, the program
truncates the substring. The program then
checks to see if the starting index is within
the string. If it is not, the program simply
concatenates the substring by moving it to
the memory locations immediately after the
end of the string. If the starting index is
within the string, the program must first open
a space for the insertion by moving the
remaining characters up in memory. This
move must start at the highest address to
avoid writing over any data. Finally, the pro-
gram can move the substring into the open
area. The program then determines the new
string length and exits with the Carry flag set
appropriately (to 0 if no problems occurred
and to 1 if the starting index was zero, the
substring had to be truncated, or the starting
index was beyond the length of the string).

Register; Used: All

Execution Time: Approximately 36 « NUMBER
OF BYTES MOVED + 36 *+ NUMBER OF
BYTES INSERTED + 207

NUMBER OF BYTES MOVED is the number of
bytes that must be moved to open up space for
the insertion. If the starting index is beyond the
end of the string, this is zero since the substring is
simply concatenated to the string. Otherwise, this

. is STRING LENGTH — STARTING INDEX +
1, since the bytes at or above the starting index
must be moved.

NUMBER OF BYTES INSERTED is the length
of the substring if no truncation occurs. It is the
maximum length of the string minus its current
length if inserting the substring would produce a
string longer than the maximum.

Examples

1. STRING LENGTH = 20,4 (32,5)
STARTING INDEX = 19,4 (25,¢)
MAXIMUM LENGTH = 30, (48,,)
SUBSTRING LENGTH = 06

That is, we wani to insert a substring six bytes
long, starting at the 25th character. Since there
are eight bytes that must be moved up (20,4 —
19, + 1 = NUMBER OF BYTES MOVED) and
six bytes that must be inserted, the execution
time is approximately ‘

3628 + 36+ 6 + 207 = 288 + 216 + 207
= 711 cycles.

2. STRING LENGTH = 20, (32;9) : .-
STARTING INDEX = 194 (25,()
MAXIMUM LENGTH = 24,, (369
SUBSTRING LENGTH = 06

374

8F INSEhT A SUBSTRING INTO A STRING (INSERT)

375

As opposed to Example 1, here only four bytes
of the substring can be inserted without exceed-
ing the maximum length of the string. Thus
NUMBER OF BYTES MOVED = 8 and NUM-
BER OF BYTES INSERTED = 4. The execution
time is approximately

36+8+ 36+4 + 207 = 288 + 144 + 207
= 639 cycles.

Program Size: 212 bytes

Data Memory Required: Seven bytes anywhere
in RAM plus four bytés on page 0. The seven
bytes anywhere in RAM hold the length of the
string (one byte at address SLEN), the length of
the substring (one byte at 4ddress SUBLEN), the
maximum length of the string (one byte at
address MAXLEN), the current index into the
string (one byte at address INDEX), running
indexes for use during the move (one byte at
address SIDX and one byte at address DIDX),
and an error flag (one byte at address INSERR).
The four bytes on page 0 hold pointers to the
substrmg (two bytes starting at address SUBSTG,
00DO0, in the Instmg) and the string (two bytes
starting at address STRG, 00D2 in the listing).

Special Cases:

1. If the length of the substring (the insertion)
is zero, the program exits with the Carry flag
cleared (no error) and the string unchanged.

2. If the starting index for the insertion is zero
(i.e., the insertion beginis in the length byte), the
program exits with the Carry flag set to 1 (indicat-
ing an error) and the string unchanged.

.3. If the string with the substring inserted
exceeds the specified maximum length, the pro-
gram inserts only enough characters to reach the
maximum length. The Carry flag is set to 1 to
indicate that the insertion has been truncated.

. 4. If the starting index of the insertion is
beyond the end of the string, the program con-
catenates the insertion. at the end of the string
and indicates an error by setting the Carry flag to

5. If the original length of the strmg exceeds its
specified maxirum..length, the program exits
with the Carry flag sét to 1 (mdicating an error)
and the string unchanged.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
substring '

More significant byte of starting address of
substring

Maximum length of string
Starting index at which to insert the substrmg

Less significant byte of starting address of
string _

More significant byte of starting address of
string

Exit Conditioris

Substring inserted into string. If no errors
occur, the Carry flag is cleared. If the starting
index is zero or the length of the substring is
zero, the Carry flag is set and the string is not
changed. If the starting index is beyond the
length of the string, the Carry flag is set and
the substring is concatenated to the end of
the string. If the string with the substring
inserted would exceed the specified max-
imum length, the Carry flag is set and only
those characters from the substring which
bring the string to-maximum length are
inserted.

376 STRING MANIPULATIONS

Examples

1.

~ we e e

S5 %6 Ne N ME me Mo We We we %o Ne We We We WS We We We We We We W6 %e We we Vs O

Data:

Result:

String = 0A*JOHN SMITH’ (0A,, = 10, 2. Data: String = 0A*JOHN SMITH' (0A,¢ = 10,
is the length of the string) is the length of the string)

Substring = 08‘WILLIAM * (08 is the Substring = 0C*'ROCKEFELLER * (0C ¢

length of the substring) = 12/, is the length of the substring)
Maximum length of string = 14,5 = 20, - Maximum length of string = 14, = 20,
Starting index = 06 . Starting index = 06

String = 12°JOHN WILLIAM SMITH® _ Result: String = 14'JOHN

(12,4 = 18,¢ is the length of the string ROCKEFELLESMITH’ (14, = 20,4 is
with the substring inserted). the length of the string with as much of the
Carry = 0, since no problems occurred in - substring inserted as the maximum length
the insertion. would allow)
Carry = 1, since some of the substring
could not be inserted without exceeding
the maximum length of the string.

Title Insert a substring into a string ;

Name: Insert H
i
;

Purpose: Insert a substring into a string given a

starting index.

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of substring address,
High byte of substring address,
Maximum length of (source) string,
Starting index to insert the substring,
Low byte of (source) string address,
High byte of (source) string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Substring inserted into string.
if no errors then
CARRY = 0
else
begin
the following conditions cause the
CARRY flag to be set.
if index = 0 then
do not insert the substring
if length(strg) > maximum length then
do not insert the substring

e ma NE e ME NP me ne e WA NS Ne Ne Ne WE e We Mo %8 WE e Ne We We we we Ve N

8F INSERT A SUBSTRING INTO A STRING (INSERT) 377

if index > length(strg) then
concatenate substg onto the end of the
source string
if length(strg)+length(substring) > maxlen
then insert only enough of the substring
to reach maximum length
end; :

Registers used: All

Time: Approximately
36 * (LENGTH(STRG) - INDEX + 1) +
36 * (LENGTH(SUBSTG)) +
207 cycles overhead.

Size: Program 214 bytes
) Data 7 bytes plus
4 bytes in page zero

N ME Ne NG NE Ne Me e Ne ME WA NE e %s e e % N Ne %
N Mo W MO N6 NP N ME Wa me N6 N we e we N e W N8 we

;EQUATES
SUBSTG .EQU ODOH ;PAGE ZERO POINTER TO SUBSTRING
STRG .EQU 0D2H ;PAGE ZERO POINTER TO STRING
INSERT:

;GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

iGET STARTING ADDRESS OF SUBSTRING

PLA

STA SUBSTG ;SAVE LOW BYTE

PLA

STA SUBSTG+1 ;SAVE HIGH BYTE

;GET MAXIMUM LENGTH OF STRING

PLA

STA MAXLEN

iGET STARTING INDEX for insertion

PLA

STA INDEX

;GET STARTING ADDRESS OF SOURCE STRING

PLA

STA STRG ;SAVE LOW BYTE

PEA

STA STRG+1 ;SAVE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

PHA sRESTORE HIGH BYTE

TYA

378 STRING MANIPULATIONS

IDXO0:

CHKLEN:

TRUNC:

IDXLEN:

PHA

;ASSUME NO ERRORS

LDA
STA

#0
INSERR

;RESTORE LOW BYTE

+ASSUME NO ERRORS WILL BE FOUND

;:GET SUBSTRING AND STRING LENGTHS
; IF LENGTH (SUBSTG) = 0 THEN EXIT BUT NO ERROR

LDY #0

LDA (STRG) , Y

STA SLEN ;GET LENGTH OF STRING

LDA (SUBSTG) ,Y

STA SUBLEN ;GET LENGTH OF SUBSTRING

BNE IDX0)
JMP OKEXIT ;EXIT IF NOTHING TO INSERT (NO ERROR)
;IF STARTING INDEX IS ZERO THEN ERROR EXIT

LDA INDEX

BNE CHKLEN ;BRANCH IF INDEX NOT EQUAL 0

JMP EREXIT ;ELSE ERROR EXIT

;CHECK THAT THE RESULTING STRING AFTER THE INSERTION FITS IN THE
SOURCE STRING. IF NOT THEN TRUNCATE THE SUBSTRING AND SET THE-
TRUNCATION FLAG.

.
’
.
'

LDA SUBLEN ;GET SUBSTRING LENGTH

CLC

ADC SLEN .

BCS TRUNC ;s TRUNCATE SUBSTRING IF NEW LENGTH > 255
CMP MAXLEN

BCC IDXLEN ;BRANCH IF NEW LENGTH < MAX LENGTH

BEQ IDXLEN :BRANCH IF NEW LENGTH = MAX LENGTH

:SUBSTRING DOES NOT FIT, SO TRUNCATE IT

LDA MAXLEN ;SUBSTRING LENGTH = MAXIMUM LENGTH - STRING
; LENGTH
SEC
SBC SLEN
BCC EREXIT ;ERROR EXIT IF MAXIMUM LENGTH < STRING LENGTH
BEQ EREXIT ;ERROR EXIT IF SUBSTRING LENGTH IS ZERO
; (THE ORIGINAL STRING WAS TOO LONG !!)
STA SUBLEN
LDA $0FFH
STA INSERR ; INDICATE SUBSTRING WAS TRUNCATED

;CHECK THAT INDEX IS WITHIN THE STRING. IF NOT CONCATENATE THE
; SUBSTRING ONTO THE END OF THE STRING.

LDA SLEN ;GET STRING LENGTH
CMP INDEX : ;COMPARE TO INDEX
BCS LENOK ;BRANCH IF STARTING INDEX IS WITHIN STRING
LDX SLEN ;sELSE JUST CONCATENATE (PLACE SUBSTRING AT

; END OF STRING)
INX

LENOCK:

OPNLP:

MVESUB:

MVELP:

STX
LDA
STA
LDA
CLC
ADC
STA
JMP

INDEX
#0FFH
INSERR
SLEN

SUBLEN
SLEN
MVESUB

8F INSERT A SUBSTRING INTO A STRING (INSERT) 379

;START RIGHT AFTER END OF STRING

i INDICATE ERROR IN INSERT
iADD SUBSTRING LENGTH TO STRING LENGTH

;JUST PERFORM MOVE, NOTHING TO OPEN UP

;OPEN UP A SPACE IN SOURCE STRING FOR THE SUBSTRING BY MOVING THE
; CHARACTERS FROM THE END OF THE SOURCE STRING DOWN TO INDEX, UP BY
; THE SIZE OF THE SUBSTRING.

;CALCULATE NUMBER OF CHARACTERS TO MOVE
:= STRING LENGTH - STARTING INDEX + 1

; COUNT

LDA
SEC
SBC
TAX
INX

SLEN

INDEX

;X = NUMBER OF CHARACTERS TO MOVE

;SET THE SOURCE INbEX AND CALCULATE THE DESTINATION INDEX

LDA
STA
CLC
ADC
STA

STA

LDY
LDA
LDY
STA
DEC
DEC

DEX"

BNE

SLEN
SIDX

SUBLEN
DIDX
SLEN

SIDX
(STRG) ,Y
DIDX
(STRG) , Y
SIDX
DIDX

OPNLP

:SOURCE ENDS AT END OF ORIGINAL STRING

A

;DESTINATION ENDS FURTHER BY SUBSTRING LENGTH
;SET THE NEW LENGTH TO THIS VALUE ALSO

iGET NEXT CHARACTER

MOVE IT UP IN MEMORY

; DECREMENT SOURCE INDEX
;DECREMENT DESTINATION INDEX
;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER = 0

;MOVE THE SUBSTRING INTO THBE OPEN AREA

LDA
STA

LDX

LDY
LDA
LDY
STA
INC
INC
DEX
BNE
LDA

#1
SIDX

SUBLEN

SIDX
(SUBSTG) , Y
INDEX
(STRG) , Y
SIDX

INDEX

MVELP
INSERR

iSTART AT ONE IN THE SUBSTRING
;START AT INDEX IN THE STRING
;X = NUMBER OF CHARACTERS TO MOVE

;GET NEXT CHARACTER

;STORE CHARACTER

; INCREMENT SUBSTRING INDEX
: INCREMENT STRING INDEX

; DECREMENT COUNT

;CONTINUE UNTIL COUNTER = 0
iGET ERROR FLAG

380 STRING MANIPULATIONS

BNE EREXIT ;BRANCH IF SUBSTRING WAS TRUNCATED
OKEXIT: .
CLC ;NO ERROR
BCC EXIT
EREXIT:
SEC ;ERROR EXIT
EXIT: .
LDA SLEN
LDY #0
STA (STRG) , ¥ ;SET' NEW LENGTH OF STRING
RTS

;
;DATA SECTION

SLEN: .BLOCK 1 ; LENGTH OF STRING
SUBLEN: .BLOCK 1 ; LENGTH OF SUBSTRING
MAXLEN: .BLOCK 1 ;MAXIMUM LENGTH OF STRING
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING
SIDX: .BLOCK 1 ;A RUNNING INDEX
DIDX: .BLOCK 1 ;A RUNNING INDEX

1

INSERR: .BLOCK ;FLAG USED TO INDICATE IF AN ERROR

i

SAMPLE EXECUTION:

~e ne e wo e
~o w8 we we ws

sC0806:

LDA SADR+1 ;PUSH ADDRESS OF SOURCE STRING

PHA ’ .

LDA SADR

PHA

LDA IDX ;PUSH STARTING INDEX FOR INSERTION
PHA :

LDA MXLEN ;PUSH MAXIMUM LENGTH OF SOURCE STRING
PHA

LDA SUBADR+1 ;PUSH ADDRESS OF THE SUBSTRING

- PHA

LDA SUBADR

PHA

JSR INSERT ;INSERT

BRK ;RESULT OF INSERTING "-" INTO "123456" AT

; INDEX 1 IS "-123456"
-JMP $C0806 ;LOOP FOR ANOTHER TEST

:
;DATA SECTION

IDX ..BYTE 1 ;INDEX TO START INSERTION
MXLEN .BYTE 20H ;MAXIMUM LENGTH OF DESTINATION
SADR .WORD STG ;STARTING ADDRESS OF STRING
SUBADR .WORD SSTG :STARTING ADDRESS OF SUBSTRING

STG .BYTE 06H ;LENGTH OF STRING

8F INSERT A SUBSTRING INTO A STRING (NSERT} 381

.BYTE "123456 : % 732 BYTE MAX LENGTH
SSTG .BYTE 1 ; LENGTH OF SUBSTRING

.BYTE " " ;32 BYTE MAX LENGTH
. END ; PROGRAM

8-Bit Array Summation (ASUM8)

9A

Adds the elements of a byte-length array,
producing a 16-bit sum. The size of the array
is specified and is a maximum of 255 bytes.

Procedure: The program clears both bytes
of the sum initially. It then adds the elements
successively to the less significant byte of the
surn, starting with the element at the highest
address. Whenever an addition produces a
carry, the program increments the more sig-
nificant byte of the sum.

Registers Used: All

Execution Time: Approximately 16 cycles per
byte plus 39 cycles overhead. If, for example, (X)
= 1A = 26, the execution time is approx-
imately

16 = 26 + 39 = 416 + 39 = 455 cycles.
Program Size: 30 bytes

Data Memory Required: Two bytes on page 0 to
hold a pointer to the array (starting at address
ARYADR, 00D0,4 in the listing).

Special Case: An array size of zero causes an
immediate-exit with the sum equal to zero.

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array

(X) = Size of array in bytes

Exit Conditions

(A) = More significant byte of sum
(Y) = Less significant byte of sum

Example

Data: Size of array (in bytes) = (X) = 08
Array elements
F7,4 = 2479
231, = 35y
31 =149y9
70,6 = 1124
5A16 =900
16, = 22y9
CB,, = 203,
El,, = 225,

382

Result: Sum = 03D7¢ == 983,

(A) = more significant byte of sum
03¢

(Y) = less significant byte of sum = D7,

94 8-BIT ARRAY SUMMATION (Asume) 383

; Title 8 BIT ARRAY SUMMATION
; Name: ASUMS8
i
H
Purpose: SUM the data of an array, yielding a 16 bit

result. Maximum size is 255.

Entry: Register A = High byte of starting array address
Register Y = Low byte of starting array address
Register X = Size of array in bytes

Exit: Register A = High byte of sum
Register Y = Low byte of sum

Registers used: All

Time: Approximately 16 cycles per byte plus
39 cycles overhead.
Size: Program 30 bytes

Data 2 bytes in page zero

WO N NE NS NE N Ne wE we we we we %e Ne %8 W we e we we

r

; EQUATES SECTION

ARYADR: .EQU 0DOH ;PAGE ZERO POINTER TO ARRAY
ASUMS:
H
;STORE STARTING ADDRESS
STY ARYADR
STA ARYADR+1
; DECREMENT STARTING ADDRESS BY 1 FOR EFFICIENT PROCESSING
TYA "t ;GET LOW BYTE OF STARTING ADDRESS
BNE ASUMSB1 ;IS LOW BYTE ZERO ?
DEC ARYADR+1 ;YES, BORROW FROM HIGH BYTE
ASUMSB1: DEC ARYADR ;ALWAYS DECREMENT LOW BYTE
sEXIT IF LENGTH OF ARRAY IS ZERO
TXA
TAY
BEQ EXIT sEXIT IF LENGTH IS ZERO
sINITIALIZATION
LDA #0 ;INITIALIZE SUM TO 0
TAX
1SUMMATION LOOP
SUMLP: :
: CLC
ADC (ARYADR) ,Y ;ADD NEXT BYTE TO LSB OF SUM
BCC DECCNT

INX i INCREMENT MSB OF SUM IF A CARRY OCCURS

~e we e .

TV NS N Mo N6 N me me e Mo we e Ne me nE e we we wa we

384 ARRAY OPERATIONS

- e we e e

; DECREMENT COUNT
;CONTINUE UNTIL REGISTER Y EQUALS 0

;REGISTER Y
;REGISTER A

LOW BYTE OF SUM
HIGH BYTE OF SUM

. %o we we we

;Y IS LOW BYTE OF BUFFER ADDRESS
;A IS HIGH BYTE OF BUFFER ADDRESS
;X IS SIZE OF BUFFER

;SUM OF THE INITIAL TEST DATA IS 07F8 HEX,
; REGISTER A = 07, REGISTER Y = F8H

;S1ZE OF BUFFER
;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER

;BUFFER

;DECIMAL ELEMENTS ARE 0,17,34,51,68
85,102,119,136,153,170,187,204
221,238,255

.
Y
i

DECCNT:
DEY
BNE SUMLP
EXIT:
TAY
TXA
RTS
SAMPLE EXECUTION
SC0901:
LDY BUFADR
LDA BUFADR+1
LDX BUF S2
JSR ASUMS
BRK ’
JMP SC0901
;TEST DATA, CHANGE FOR OTHER VALUES
SIZE .EQU 010H
BUFADR: .WORD BUF
BUFSZ: .BYTE SI1ZE
BUF: .BYTE 0UH
.BYTE 118
.BYTE 22H
.BYTE 33H
.BYTE 44H
.BYTE 55H
.BYTE 66H
.BYTE 77H
.BYTE 88H
.BYTE 99H
.BYTE OAAH
.BYTE UBBH
.BYTE 0CCH
.BYTE * -UDDH
.BYTE UEEH
.BYTE OFFH

.END

;SUM = U7F8 (2040 DECIMAL)
; PROGRAM '

16-Bit Array Summation (ASUM16)

9B

Adds the elements of a word-length array,
producing a 24-bit sum. The size of the array
is specified and is a maximum of 255 16-bit
words. The 16-bit elements are stored in the
usual 6502 style with the less significant byte
first.

Procedure: The program clears a 24-bit
accumulator in three bytes of memory and
then adds the elements to the memory
accumulator, starting at the lowest address.
The most significant byte of the memory
accumulator is incremented each time the
addition of the more significant byte of an
element and the middle byte of the sum pro-
duces a carry. If the array occupies more than
one page of memory, the program must
increment the more significant byte- of the

Registers Used: All

Execution Time: Approximately 43 cycles per
byte plus 46 cycles overhead. If, for example, (X)
= 12/, = 18,,, the execution time is approx-
imately

43 + 18 + 46 = 774 + 46 = 820 cycles.
Program Size: 60 bytes

Data Memory Required: Three bytes anywhere
in RAM plus two bytes on page 0. The three bytes
anywhere in RAM hold the memory accumulator
(starting at address SUM); the two bytes on page
0 hold a pointer to the array (starting at address
ARYADR, 00D0, in the listing).

Special Case: An array size of 0 causes an
immediate exit with the sum equal to zero.

array pointer before proceeding to the second
page. :

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array '

(X) = Size of array in 16-bit words

Exit Conditions

(X) = Most significant byte of sum

Example

Data: Size of array (in 16-bit words) = (X) = 08
Array elements

F7AL 4 = 63,393,

239Bc = 9,115,

31D5,¢ = 12,757,

70F2,, = 28,914,

SA36,¢ = 23,094,

166C,, = 5,740,

CBF5,¢ = 52,213,

E107,¢ = 57,607,

I

(A) = Middle byte of sum
(Y) = Least significant byte of sum
Resuft: Sum = 03DBA1,¢ = 252,833,

(X) = most significant byte of sum = 03,
(A) = middle byte of sum = DB,
(Y) = least significant byte of sum = A1,

385

386 ArrAY OPERATIONS

; Title 16 BIT ARRAY SUMMATION H
; Name: ASUM16 ;
H i
i i
Purpose: Sum the data of an array, yielding a 24 bit

result. Maximum size is 255 16 bit elements.

- we wa we we

Entry: Register A
Register Y
Register X

High byte of starting array address;
Low byte of starting array address
size of array in 16 bit elements

Exit: Register X = High byte of sum
Register A = Middle byte of sum
Register Y = Low byte of sum

Registers used: All

Time: Approximately 43 cycles per byte plus
46 cycles overhead.

Size: Program 60 bytes
Data 3 bytes plus

2 bytes in page zero

~e e w6 W8 %6 Ws WO We Ws We We W@ Wh Ns W6 We WO o W8 we Ne N

e we me WO e NE wp wo we WE We We %2 W we N0 e

.
’

;EQUATES SECTION

ARYADR: .EQU 0DOH ;PAGE ZERO POINTER TO ARRAY
ASUM16:
;STORE STARTING ADDRESS
STY ARYADR
STA ARYADR+1
;2ERO SUM AND INITIALIZE INDEX
LDA #0
STA SUM ;SUM = 0
STA SUM+1
STA SUM+2
TAY ;INDEX = 0
;EXIT IF THE ARRAY LENGTH IS ZERO
TXA
BEQ EXIT

;SUMMATION LOOP

SUMLP:
LDA SUM
CLC
ADC (ARYADR) , ¥ ;ADD LOW BYTE OF ELEMENT TO SUM

STA SUM .

NXTELM:

DECCNT:

EXIT:

LDA
INY
ADC
STA
BCC
INC

INY
BNE
INC

DEX
BNE

LDY
LDA
LDX
RTS

;DATA SECTION

SUM:

e we we ne wg

$C0902:

. BLOCK

SUM+1

(ARYADR) , Y
SUM+1
NXTELM
SUM+2

DECCNT
ARYADR+1

SUMLP

SUM
SUM+1
SUM+2

3

SAMPLE EXECUTION

LDY
LDA

"LDX

’

SIZE
BUFADR:
BUFSZ:
BUF:

JSR
BRK

JMP

.EQU

.WORD
. BYTE
. WORD
+«WORD
.WORD
.WORD
. WORD
. WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

BUFADR
BUFADR+1
BUFS2

ASUM16 !

5C0902

010H
BUF
SIZE
0
111
222
333
444
555
666
717
888
999
1010
1111
1212

9B 16-BIT ARRAY SUMMATION (Asum1e) 387

; INCREMENT INDEX TO HIGH BYTE OF ELEMENT
;{ADD HIGH BYTE WITH CARRY TO SUM
;STORE- IN MIDDLE BYTE OF SUM

: INCREMENT HIGH BYTE OF SUM IF A CARRY
;INCREMENT INDEX TO NEXT ARRAY ELEMENT
7MOVE POINTER TO SECOND PAGE OF ARRAY

; DECREMENT COUNT

;CONTINUE UNTIL REGISTER X EQUALS 0

7Y=LOW BYTE
;A=MIDDLE BYTE
;X=HIGH BYTE

;TEMPORARY 24 BIT ACCUMULATOR IN MEMORY

e we we ws we

iA,Y = STARTING ADDRES OF BUFFER

iX = BUFFER SIZE IN WORDS

;RESULT OF THE INITIAL TEST DATA IS. 12570
: REGISTER X = 0, REGISTER A = 311,

;7 REGISTER Y = 1lAH

iLOOP FOR MORE TESTING

;SIZE OF BUFFER IN WORDS
;STARTING ADDRESS OF BUFFER
iSIZE OF BUFFER IN WORDS
+BUFFER

388 ARrRAY OPERATIONS

.WORD 1313

.WORD 1414 .
.WORD 1515 ;SUM = 12570 = 311AH

.END ; PROGRAM i

Find Maximum Byte-Length Element (MAXELM)

9C

Finds the maximum element in an array
of unsigned byte-length elements. The size of
the array is specified and is a maximum of
255 bytes.

Procedure: The program exits immediately
(setting Carry to 1) if the array size is zero. If
the size is non-zero, the program assumes

that the last byte of the array is the largest and
then proceeds backward through the array,
comparing the supposedly largest element to
the current element and retaining the larger
value and its index. Finally, the program
clears the Carry to indicate a valid result.

Registers Used: All

Execution Time: Approximately 15 to 23 cycles
per byte plus 52 cycles overhead. The extra eight
cycles are used whenever the supposed max-
imum and its index must be replaced by the cur-
rent element and its index. If, on the average,
that replacement occurs half the time, the execu-
tion time is approximately
38 » ARRAY SIZE/2 + 52 cycles.

If, for example, ARRAY SIZE = 18,6 = 24,
the approximate execution time is

38 12 + 52 = 456 + 52 = 508 cycles.

Program Size: 45 bytes

Data Memory Required: One byte anywhere in
RAM plus two bytes on page 0. The one byte any-
where in RAM holds the index of the largest ele-
ment (at address INDEX). The two bytes on page
0 hold a pointer to the array (starting at address '
ARYADR, 00D0, in the listing).

Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to 1 to indicate an invalid
result.

2. If more than one element has the largest
unsigned value, the program returns with the
smallest possible index. That is, the index desig-
nates the occurrence of the maximum value
closest to the starting address.

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array

(X) = Size of array in bytes

Exit Conditions

(A) = Largest unsigned element
(Y) = Index to largest unsigned element

Carry = O if result is valid, 1 if size of array is
0 and result is meaningless.

Example

Data: Size of array (in bytes) = (X) = 08
Array elements
3516 = 5349 4416 = 689
A6y = 166, 59, = 89,
D2, = 210, TAe = 122, -
1B = 27,9 CFg = 207,

The largest unsigned element is element
#2 (D2l6 = 210[0)

(A) = largest element (D2,4)

(Y) = index to largest element (02)
Carry flag = 0, indicating that array size is
non-zero and the result is valid

Result:

389

390 ARRAY OPERATIONS

; Title Find the maximum element in an array of unsigned;
H bytes. . ;
H Name: MAXELM ;
:) H
; H
Purpose: Given the starting address of an array and

the size of the array, find the largest element

Entry: Register A
Register Y
Register X

High byte of starting address
Low byte of starting address
Size of array in bytes

Exit: 1f size of the array is not zero then

CARRY FLAG 0

"Register A Largest element

Register Y Index to that element
if there are duplicate values of the largest
element, register Y will have the index
nearest to the first array element

else
CARRY flag =1

oo n

Registers used: All

Time: Approximately 15 to 23 cycles per byte
plus 52 cycles overhead.

Size: Program 45 bytes
Data 1 byte plus

2 bytes in page zero

Ne wE % We we e Ne W ms WS NS we WE W We We wa WO WE e Ws N0 e We Wa e S Se

~e %o w6 WE w6 We We WO Wo WS We e Vs N6 We We We e wa WE N WO We W We W %o N

;EQUATES
ARYADR: .EQU 0DOH ;PAGE ZERO FOR ARRAY POINTER
MAXELM: .
. ;STORE STARTING ARRAY ADDRESS

STA ARYADR+1 ’

STY ARYADR

;SUBTRACT 1 FROM STARTING ADDRESS TO INDEX FROM 1 TO SIZE

TYA)

BNE MAX1

DEC * ARYADR+1) ;BORROW FROM HIGH BYTE IF LOW BYTE = 0
MAX1: DEC ARYADR ;ALWAYS DECREMENT THE LOW BYTE

;TEST FOR SIZE EQUAL TO ZERO AND INITIALIZE TEMPORARIES

TXA

BEQ EREXIT JERROR EXIT IF SIZE IS ZERO
TAY ;REGISTER Y = SIZE AND INDEX
LDA (ARYADR) ,Y ;GET LAST BYTE OF ARRAY

STY INDEX ;SAVE ITS INDEX

9C FIND MAXIMUM BYTE-LENGTH ELEMENT (MAXELM) 391

DEY :
BEQ OKEXIT , ;EXIT IF ONLY ONE ELEMENT

;WORK FROM THE END OF THE ARRAY TOWARDS THE BEGINNING COMPARING
; AGAINST THE CURRENT MAXIMUM WHICH IS IN REGISTER A

MAXLP:
CMP (ARYADR) , Y
BEQ ' NEWIDX ;REPLACE INDEX ONLY IF ELEMENT = MAXIMUM
BCS NXTBYT ;BRANCH IF CURRENT MAXIMUM > ARY[Y]
;ELSE ARY[Y] 3= CURRENT MAXIMUM SO
LDA (ARYADR) ,Y : NEW CURRENT MAXIMUM AND
NEWIDX: STY INDEX ; NEW INDEX
NXTBYT:
DEY ;DECREMENT TO NEXT ELEMENT
BNE MAXLP ;CONTINUE
H
;EXIT
OKEXIT: . .
LDY INDEX ;GET INDEX OF THE MAXIMUM ELEMENT
DEY ;NORMALIZE INDEX TO (0,SIZE-1)
CLC ;NO ERRORS
RTS
EREXIT:
SEC ;ERROR, NO ELEMENTS IN THE ARRAY
RTS
;DATA SECTION
INDEX: .BLOCK 1 ;INDEX OF LARGEST ELEMENT
H H
; ;
; SAMPLE EXECUTION: :
; H
; ;
SC0903:
LDA AADR+1 ;A,Y = STARTING ADDRESS OF ARRAY
LDY AADR
LDX #SZARY ;X = SIZE OF ARRAY
JSR MAXELM
BRK ;RESULT FOR THE INITIAL TEST DATA IS
i A = FF HEX (MAXIMUM), Y=08 (INDEX TO MAXIMUM)
JMP SC0903 ;LOOP FOR MORE TESTING
SZARY: .EQU 10H ;SIZE OF ARRAY
AADR: .WORD ARY ;STARTING ADDRESS OF ARRAY
ARY: .BYTE 8
.BYTE 7
.BYTE 6
.BYTE 5

392 ARRAY OPERATIONS

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

[SN

OFFH
OFEH
OFDH
OFCH
OFBH
OFAH
OF 9H
OF 8H

; PROGRAM

Find Minimum.Byte-Len'gth Element (MINELM)

9D

Finds the minimum element in an array
of unsigned byte-length elements. The size of
the array is specified and is a maximum of
255 bytes. ’

Procedure: The program exits im-
mediately, setting Carry to 1, if the array size
is zero. If the size is non-zero, the program

assumes that the last byte of the array is the
smallest and then proceeds backward through
the array, comparing the supposedly smallest
element to the current element and retaining
the smaller value and its index. Finally, the
program clears the Carry flag to indicate a
valid result.

Registers Used: All

Execution Time: Approximately 15 to 23 cycles
per byte plus 52 cycles overhead. The extra eight
cycles are used whenever the supposed minimum
and its index must be replaced by the current ele-
ment and its index. If, on the average, that
replacement occurs half the time, the execution
time is approximately
38 » ARRAY SIZE/2 + 52 cycles.

If, for example, ARRAY SIZE = 14, = 20,4,
the approximate execution time is

38 * 10 + 52 = 380 + 52 = 432 cycles.

Program Size: 45 bytes

address ARYADR, 00DO0, in the listing).

Data Memory Required: One byte anywhere in
RAM plus two bytes on page 0. The one byte any-
where in RAM holds the index of the smallest
element (at address INDEX). The two bytes on
page 0 hold a pointer to the array (starting at

Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to 1 to indicate an invalid
result.

2. If more than one element has the smallest
unsigned value, the program returns with the
smallest possible index. That is, the index desig-
nates the occurrence of the minimum value
closest to the starting address.

Entry Conditions

(A) = More significant byte of starting
address of array)

(Y) = Less significant byte of starting
address of array

(X) = Size of array in bytes

Exit Conditions

(A) = Smallest unsigned element
(Y) = Index to smallest unsigned element

Carry = 0 if result is valid, 1 if size of array
is zero and result is meaningless.

Example

Data: Size of array (in bytes) = (X) = 08

Array elements

3516 =53 44, = 68,
A6 = 166, 596 = 899
D2, = 210y, TA o =122y,
1Big =27 CFyq =207,

Result: The smallest unsigned element is element

#3 (1Byg = 27,9)

(A) = smallest element (1B)

(Y) = index to smallest element (03)
Carry flag = 0, indicating that array size is
non-zero and the result is valid.

393

394 ArrAY OPERATIONS ¢

; Title Find the minimum element in an array of unsigned;
; bytes. ;
H Name: MINELM ;
i ’ :
i i
Purpose: Given the STARTING ADDRESS and the size of an

array, find the smallest element.

Entry: . Register A
Register Y
Register X

High byte of starting address
Low byte of starting address
Size of array in bytes

Exit: If size of the array is not zero then

CARRY FLAG 0

Register A Smallest element

Register Y Index to that element
if there are duplicate values of the smallest
element Register Y will have the index
nearest to the first array element

else
CARRY flag = 1

Registers used: All

Time: Approximately 15 to 23 cycles per byte
plus 52 cycles overhead.

Size: Program 45 bytes
Data 1 bytes plus

2 bytes in page zero

e e we ®E W s We W We WE W WO Wy W WE We wp N6 WO We Wi W We e we N6 W VO

w8 e Mo WE M %o We Wi e WE NG We e Ne WA W4 We W WO N WE Ws We W6 Wo W We

s EQUATES :
ARYADR: .EQU ODOH ;PAGE .ZERO POINTER TO ARRAY
MINELM: ’
;STORE STARTING ARRAY ADDRESS
STA ARYADR+1
STY ARYADR
;DECREMENT ARRAY ADDRESS BY 1 TO INDEX FROM 1 TO SIZE
TYA .
BNE MIN1
DEC ARYADR+1 ;BORROW FROM HIGH BYTE IF LOW BYTE = 0
MIN1: DEC ARYADR ;ALWAYS DECREMENT THE LOW BYTE
;TEST FOR SIZE EQUAL TO ZERO AND INITIALIZE TEMPORARIES
TXA
BEQ EREXIT ;:ERROR EXIT IF SIZE 1S ZERO
TAY ;REGISTER Y = SIZE AND INDEX
LDA (ARYADR) , Y ;GET LAST BYTE OF ARRAY

STY INDEX ;SAVE ITS INDEX

MINLP:

NEWIDX:
NXTBYT:

OKEXIT:

EREXIT:

DEY
BEQ

OKEXIT

90 FIND MINIMUM BYTE-LENGTH ELEMENT (MINELM) 395

jEXIT IF ONLY ONE ELEMENT

;WORK FROM THE END OF THE ARRAY TOWARDS THE BEGINNING COMPARING
i AGAINST THE CURRENT MINIMUM WHICH IS IN REGISTER A

CMP
BEQ
BCC

LDA
STY

DEY
BNE

; EXIT

LDY
DEY
CLC
RTS

SEC
RTS

;DATA SECTION

INDEX:

we we we we we

5C0904:

SZARY:
AADR:

ARY:

. BLOCK

(ARYADR) , Y
NEWIDX
NXTBYT

(ARYADR) ,Y
INDEX

MINLP

INDEX

1

SAMPLE EXECUTION:

LDA
LDY
LDX
JSR
BRK

JMP

. EQU
.WORD

.BYTE
.BYTE
.BYTE
. BYTE

.BYTE

AADR+1
AADR

#SZARY
MINELM

SC0904

10H
ARY

& oo

;REPLACE INDEX IF MINIMUM = ELEMENT
sBRANCH IF CURRENT MINIMUM < ELEMENT
;ELSE ELEMENT <= CURRENT MINIMUM

;7 NEW CURRENT MINIMUM AND

; NEW INDEX

;DECREMENT TO NEXT BYTE

;GET INDEX OF THE MINIMUM ELEMENT
;NORMALIZE INDEX TO (0,SIZE-1)
;sNO ERRORS

;ERROR, NO ELEMENTS IN THE ARRAY

;INDEX OF SMALLEST ELEMENT

. we we ws we

;A,Y = STARTING ADDRESS OF ARRAY
;X = SIZE OF ARRAY
RESULT FOR THE INITIAL TEST DATA IS

{RE
I
; A = 01H (MINIMUM), Y=07 (INDEX TO MINIMUM)
;LOOP FOR MORE TESTING

;SIZE OF ARRAY
;STARTING ADDRESS OF ARRAY

i

396 ArRAY OPERATIONS

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

3

2

1

OFFH
OFEH
OFDH
OFCH
UFBH
OFAH
OF 9H
OF 8H -

; PROGRAM

Binary Search (BINSCH)

9E

Searches an array of unsigned byte-length
elements for a particular value. The array is
assumed to be ordered with the smallest
element at the starting (lowest) address.
Returns the index to the value and the Carry
flag cleared if it finds the value; returns the
Carry flag set to 1 if it does not find the value.
The size of the array is specified and is a max-
imum of 255 bytes. The approach used is a
binary search in which the value is compared
with the middle element in the remaining
part of the array; if the two are not equal, the
part of the array that cannot possibly contain
the value (because of the ordering) is dis-
carded and the process is repeated.

Procedure: The program retains upper and
lower bounds (indexes) that specify the part
of the array still being searched. In each itera-
tion, the new trial index is the average of the
upper and lower bounds. The program com-
pares the value and the element with the trial
index; if the two are not equal, the program
discards the part of the array that could not
possibly contain the element. That is, if the
value is larger than the element with the trial
index, the part at or below the trial index is
discarded. If the value is smaller than the ele-
ment with the trial index, the part at or above
the trial index is discarded. The program
exits if it finds a match or if there are no ele-
ments left to be searched (that is, if the part
of the array being searched no longer con-
tains anything). The program sets the Carry
flag to 1 if it finds the value and to 0 if it does
not.

In the case of Example 1 shown later
(the value is 0D,), the procedure works as
follows:

In the first iteration, the lower bound is

Registers Used: All

Execution Time: Approximately 52 cycles per
iteration plus 80 cycles overhead. A binary search
will require on the order of log,N iterations,
where N is the size of the array (number of ele-
ments).

If, for example, N = 32, the binary search will
require approximately log,32 iterations or § itera-
tions. The execution time will then be approx-
imately

52+5 + 80 = 260 + 80 = 340 cycles.
Program Size: 89 bytes

Data Memory Required: Three bytes anywhere
in RAM plus two bytes on page 0. The three bytes
anywhere in RAM hold the value being searched
for (one byte at address VALUE), the lower
bound of the area being searched (one byte at
address LBND), and the upper bound of the area
being searched (one byte at address UBND). The
two bytes on page 0 hold a pointer to the array
(starting at address ARYADR, 00D0, in the list-
ing).

Special Case: A size or length of zero causes an
immediate exit with the Carry flag set to 1. That
is, the length is assumed to be zero and the value
surely cannot be found.

zero and the upper bound is the length of the
array minus 1 (since we have started our
indexing at zero). So we have

LOWER BOUND =0

UPPER BOUND = LENGTH —1 = 0F, = 15,

GUESS = (UPPER BOUND + LOWER
BOUND)/2 = 07 (the result is truncated)

Since our value (0D,) is less than
ARRAY(7), there is no use looking at the
elements with indexes of 7 or more, so we
have

LOWER BOUND = 0
UPPER BOUND = GUESS — 1 = 06

397

398 ARRAY OPERATIONS

GUESS = (UPPER BOUND + LOWER
BOUND)/2 = 03
ARRAY(GUESS) = ARRAY(3) = 07

Since our value (0D,) is greater than
ARRAY (3), there is no use looking at the
elements with indexes of 3 or less, so we
have

LOWER BOUND = GUESS + 1 = 04

UPPER BOUND = 06

GUESS = (UPPER BOUND + LOWER

BOUND)/2 = 05
ARRAY (GUESS) = ARRAY(S) = 09

Since our value (0D, is greater than
ARRAY (5), there is no use looking at the

elements with indexes of 5 or less, so we
have '

LOWER BOUND = GUESS + 1 = 06

UPPER BOUND = 06 ‘

GUESS = (UPPER BOUND + LOWER
BOUND)/2 = 06 b

ARRAY(GUESS) = ARRAY(6) = 0D

Since our value (ODIG) is equal to
ARRAY (6), we have found the element. If,
on the other hand, our value were OE,, the
new lower bound would be 07 and there
would no longer be any elements in the part
of the array left to be searched.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Value to find
Size of the array (in bytes)

Less significant byte of starting address of
array (address of smallest unsigned ele-
ment)

More significant byte of starting address of
array (address of smallest unsigned ele-
ment) '

Exit Conditions

Carry = 0 if the value is found, Carry = 1
if it is not found. If the value is found,
(A) = index to the value in the array.

Examples

Length of array = 10, = 16,
Elements of array are 01 ¢, 02,4, 05,4, 0716, 0916, 0916,

0D 4, 106, 2E 6, 3716, SD 1. TE 16 Alyss B4 4. D716 EOy

1. Data:
Result:

Value to find = 0D ¢
Carry"—? 0, indicating value found

(A) = 06, the index of the value in the
array

2. Data:
Result:

Value to find = 9B¢
Carry = 1, indicating value not found

9E BINARY SEARCH (BINSCH) 399

; Title Binary Search H
; Name: BINSCH H
H ;
H i
Purpose: Search an ordered array of unsigned bytes,

with a maximum size of 255 elements. .

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Value to find,
Length (size) .of array,)
Low_byte of starting array address,
High byte of starting array address

Exit: If the value is found then
CARRY flag = 0
Register A = index to the value in the array
ELSE
CARRY flag =1
Registers used: All
Time: Approkimately 52 cycles for each time through

WEME WA NE we Ms ME e N me NE e NE N6 %5 we S we N we s we

the search loop plus 80 cycles overhead.

A binary search will take on the order of log
base 2 of N searches, where N is the number of
elements in the array.

Size: Program 89 bytes
Data 3 bytes plus
2 bytes in page zero

MO WE W We NI NG wp We W W WE ME NE WE WE Ve We W WS N W wh. Wp N %6 we We w» we ws WO

~s e me Ne ws e we we we

.
’

;EQUATES SECTION .
ARYADR: .EQU ODOH +PAGE ZERO POINTER TO ARRAY

,

BINSCH: '
;GET RETURN ADDRESS
PLA
TAY
PLA
TAX

;GET THE VALUE TO SEARCH FOR
PLA
STA VALUE

;GET TBE LENGTH OF THE ARRAY
PLA
STA UBND

400 ARRAY OPERATIONS

;GET THE STARTING ADDRESS OF ARRAY
PLA

STA ARYADR

PLA

STA ARYADR+1

;RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA

;
;CHECK THAT LENGTH IS NOT ZERO

LDX UBND ;GET LENGTH ,

BEQ NOTFND ;EXIT NOT FOUND IF LENGTH EQUALS ZERO
;SET UPPER AND LOWER SEARCH BOUNDS

DEX _

STX UBND ;UPPER BOUND EQUALS LENGTH MINUS 1
LDA #0

STA LBND ;: LOWER BOUND EQUALS 0

SEARCH LOOP
COMPUTE NEXT INDEX TO BE HALF WAY BETWEEN UPPER BOUND AND

LOWER BOUND

~ ws we

NXTBYT:
LDA UBND
CLC
ADC LBND ;:ADD LOWER AND UPPER BOUNDS
ROR A ;DIVIDE BY 2, TRUNCATING FRACTION
TAY ;REGISTER Y BECOMES INDEX
; IF INDEX IS GREATER THAN UPPER BOUND THEN THE ELEMENT IS NOT HERE
CcPY UBND
BEQ TSTLB ;BRANCH IF INDEX EQUALS UPPER BOUND
BCS NOTFND ;BRANCH IF INDEX IS GREATER THAN UPPER BOUND
;IF INDEX IS LESS THAN LOWER BOUND THEN THE ELEMENT IS NOT BERE
TSTLB:
CPY LBND
BCC NOTFND ;BRANCH IF INDEX IS LESS THAN LOWER BOUND
;TEST IF WE HAVE FOUND THE ELEMENT
LDA VALUE
CMP (ARYADR) ,Y
BCC SMALL ;BRANCH IF VALUE IS SMALLER THAN ARYADR[Y]
BEQ FND ;BRANCH IF FOUND

;VALUE IS LARGER THAN ARYADR[Y] S0 SET LOWER BOUND TO BE
; Y + 1 (VALUE CAN ONLY BE FURTHER UP)

INY

STY LBND : .

BNE NXTBYT ;CONTINUE SEARCHING IF LOWER BOUND DOES NOT
; OVERFLOW

BEQ NOTFND ;BRANCH IF LOWER BOUND OVERFLOWED FROM OFFH

: TO O

9E BINARY SEARCH (BINSCH) 401

i VALUE IS SMALLER THAN ARYADR (Y] SO SET UPPER BOUND TO BE
7 Y - 1 (VALUE CAN ONLY BE FURTHER DOWN)

SMALL:
DEY
STY UBND
CPY #0FFH .
BNE NXTBYT ;CONTINUE SEARCHING IF UPPER BOUND DOES NOT
; UNDERFLOW
BEQ NOTFND sBRANCH IF INDEX UNDERFLOWED
;FOUND THE VALUE
FND:
CLC s INDICATE VALUE FOUND
TYA . ;GET INDEX OF VALUE TO REGISTER A
RTS
sDID NOT FIND THE VALUE
NOTFND:
SEC ;INDICATE VALUE NOT FOUND

RTS

sDATA SECTION

VALUE .BLOCK 1 ;VALUE TO FIND
LBND .BLOCK 1 ;INDEX OF LOWER BOUND
UBND .BLOCK 1 ;INDEX OF UPPER BOUND

SAMPLE EXECUTION

. e we we e
~e wo e wa s

’

SC0905:
iSEARCH FOR A VALUE WHICH IS IN THE ARRAY
LDA BFADR+1
PHA ;PUSH HIGH BYTE OF STARTING ADDRESS
LDA BFADR
PHA ;PUSH LOW BYTE OF STARTING ADDRESS
LDA BFSZ
PHA ;PUSH LENGTH (SIZE OF ARRAY)
LDA #7
PHA : ;PUSH VALUE TO FIND
JSR BINSCH ;SEARCH
BRK ;CARRY FLAG SHOULD BE 0 AND REGISTER A = 4
;SEARCH FOR A VALUE WHICH IS NOT IN THE ARRAY
LDA BFADR+1
PHA :PUSH HIGH BYTE OF STARTING ADDRESS
LDA BFADR .
PHA ;PUSH LOW BYTE OF STARTING ADDRESS
LDA BFS?Z
PHA ;PUSH LENGTH (SIZE OF ARRAY}
LDA $#0

PHA :PUSH VALUE TO FIND

402 ARRAY OPERATIONS

’

; DATA
SIZE
BFADR:
BFS2:
BF:

JSR
BRK

JMP

.EQU
.WORD
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

. END

BINSCH ;SEARCH
;CARRY FLAG SHOULD BE 1

SC0905 ;LOOP FOR MORE TESTS

010H ;SIZE OF BUFFER
BF :STARTING ADDRESS OF BUFFER
SIZE ;SIZE OF BUFFER

;BUFFER

81

123
191
199
250
255

; PROGRAM

Bubble Sort (BUBSRT)

OF

Arranges an array of unsigned byte-
length elements into ascending order using a
bubble sort algorithm. An iteration of this
algorithm moves the largest remaining ele-
ment to the top by comparisons with all other
elements, performing interchanges if necess-
ary along the way. The algorithm continues
until it has either worked its way through all
elements or has completed an iteration with-
out interchanging anything. The size of the
array is specified and is a maximum of 255
bytes.

Procedure: The program starts by consider-
ing the entire array. It examines pairs of ele-
ments, interchanging them if they are out of
order and setting a flag to indicate that the
interchange occurred. At the end of an itera-
tion, the program checks the interchange flag
to see if the array is already in order. If it is
not, the program performs another iteration,
reducing the number of elements examined
by one since the largest remaining element
has been bubbled to the top. The program
exits immediately if the length of the array is
less than two, since no ordering is then

Registers Used: All

Execution Time: Approximately
34+ N*sN+25«N+ 170

cycles, where N is the size (length) of the array in
bytes. If, for example, N is 20, (32,,), the execu-
tion time is approximately
34%32+324 25«32+ 70 = 34~1024 + 870
= 34,816 + 870 = 35,686 cycles.

Program Size: 79 bytes

Data Memory Required: Two bytes anywhere in
RAM plus four bytes on page 0. The two bytes
anywhere in RAM hold the length of the array
(one byte at address LEN) and the interchange
flag (one byte at address XCHGFG). The four
bytes on page 0 hold pointers to the first and sec-
ond elements of the array (two bytes starting at
address ALADR, 00D0,, in the listing, and two
bytes starting at address A2ADR, 00D2; in the
listing).

Special Case: A size (or length) of 00 or 01
causes an immediate exit with no sorting.

necessary. Note that the number of pairs is
always one less than the number of elements
being considered, since the last element has
no Successor.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length (size) of array in bytes

Less significant byte of starting address of
array

More significant byte of starting address. of
array

Exit Conditions

Array sorted into ascending order, con-
sidered the elements as unsigned bytes.
Thus, the smallest unsigned byte is now in
the starting address.

403

‘8404 ARRAY OPERATIONS

Example
Data: Length (size) of array = 06 After the second iteration, we have
Elements = 35, 6A ¢, 2B4, 3E ¢, Ddyg, 4F ¢ 2By, 35¢. 3E ¢, 4F 14, 6A 4, Déy4.
Result: After the first iteration, we have The next to largest element is now in the correct
35,6, 2B;g. 3E 4, 6A 4, 4F g, D¢ position and need not be considered further.
The largest element is now at the end of The third iteration leaves the array unchanged,
the array and need not be considered since the elements are already in ascending order.
further.
; Title Bubble sort ;
; Name: BUBSRT H
H H
Purpose: Arrange an array of unsigned bytes into)
ascending order using a bubble sort, with a
maximum size of 255 bytes.
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Length (size) of array,
Low byte of starting array address,
High byte of starting array address
Exit: The array is sorted into ascending order.

Registers used: All

Time: . Approximately (34 * N * N) + (25 * N) cycles
plus 70 cycles overhead, where N is the size of
the array.

Size: Program 79 bytes
: Data 2 bytes plus
4 bytes in page zero

~e Nu %6 me we We W We w6 W We e ME We We We We N N W We W Se we e
e ws A NE we e we W6 we WS Ne NE we WO Te NS Mo Ne Ne W We ws we N e

s EQUATES SECTION

AlADR: .EQU ODOH ;ADDRESS OF FIRST ELEMENT
A2ADR: .EQU 0D2H sADDRESS OF SECOND ELEMENT
i

BUBSRT:

;GET THE PARAMETERS FROM THE STACK
PLA .
TAY ;SAVE LOW BYTE OF RETURN ADDRESS

SRTLP:

INLOOP:

AFTSWP:

PLA
TAX

PLA
STA
PLA
STA
CLC
ADC
STA
PLA
STA
ADC
STA
TXA
PHA
TYA
PHA

LEN
AlADR

#1
A2ADR

AlADR+1
#0
A2ADR+1

9F BUBBLE SORT BUBsRT) 405

;SAVE HIGH BYTE OF RETURN ADDRESS

;SAVE THE LENGTH (SIZE)
;SAVE THE LOW BYTE OF THE ARRAY ADDRESS

;SET LOW BYTE OF A2ADR TO AlADR + 1
;SAVE THE HIGH BYTE OF THE ARRAY ADDRESS
;SET HIGH BYTE OF A2ADR

;RESTORE HIGH BYTE OF RETURN ADDRESS

iRESTORE LOW BYTE OF RETURN ADDRESS

;BE SURE THE LENGTH IS GREATER THAN 1

;EXIT IF THE LENGTH OF THE ARRAY IS
; LESS THAN 2

LENGTH BY 1 SINCE THE LAST ELEMENT HAS NO SUCCESSOR

LDA LEN
CMP $2
BCC DONE
;s REDUCE
DEC LEN
;BUBBLE SORT LOOP
LDX LEN
LDY #0
STY XCHGFG
LDA (A2ADR) ,Y
CMP (AlADR),Y
BCS AFTSWP
PHA
LDA (Al1ADR) ,Y
STA (A2ADR) ,Y
PLA
STA (AlADR) , Y
LDA #l
STA XCHGFG
INY
DEX
BNE INLOOP
; INNER LOOP IS COMPLETE
LDA XCHGFG

- BEQ DONE
DEC LEN
BNE SRTLP

;X BECOMES NUMBER OF TIMES THROUGH INNER LOOP
;Y BECOMES BEGINNING INDEX
;INITIALIZE EXCHANGE FLAG TO 0

;COMPARE 2 ELEMENTS
iBRANCH IF SECOND ELEMENT >= FIRST ELEMENT
;SECOND ELEMENT LESS, SO EXHANGE ELEMENTS

~ iGET SECOND ELEMENT

iSTORE IT INTO THE FIRST ELEMENT
:STORE FIRST ELEMENT INTO SECOND

7SET EXCHANGE FLAG SINCE AN EXCHANGE OCCURRED

;s INCREMENT TO NEXT ELEMENT

;BRANCH NOT DONE WITH INNER LOQP

IF THERE WERE NO EXCHANGES THEN EXIT
iGET EXCHANGE FLAG

;EXIT IF NO EXCHANGE WAS PERFORMED

;CONTINUE IF LENGTH IS NOT ZERO

406 ARRAY OPERATIONS

DONE:
RTS

;DATA SECTION

LEN: .BLOCK 1
XCHGFG: .BLOCK 1

SAMPLE EXECUTION

e we e % we

H .
; PROGRAM SECTION

SC0906:

: ;SORT AN ARRAY
LDA BFADR+1
PHA
LDA BFADR
PHA
LDA - BFSZ
PHA
JSR BUBSRT
BRK
JMP sCco0906

i - ’
; DATA "SECTION

SIZE .EQU 010H
BFADR: .WORD BF
"BFSZ: .BYTE SIZE
. BF:
.BYTE 15
.BYTE 14
.BYTE 13
.BYTE 12
.BYTE 11
.BYTE 10
.BYTE 9
.BYTE 8
.BYTE 7
.BYTE 6
. BYTE 5
.BYTE 4
.BYTE 3
.BYTE 2
.BYTE 1
.BYTE 0

. END ; PROGRAM

;LENGTH OF THE ARRAY

;EXCHANGE FLAG

(1=EXCHANGE,

0=NO EXCHANGE)

~e ws we we wp

;PUSH HIGH BYTE OF STARTING ADDRESS

;PUSH LOW BYTE OF STARTING ADDRESS

;PUSH LENGTH (SIZE OF ARRAY)

; SORT

;THE RESULT FOR THE INITIAL TEST DATA IS

; 0,1,2,3, ...

,14,15

;LOOP FOR MORE TESTS

;SIZE OF BUFFER
;STARTING ADDRESS OF BUFFER
;SIZE OF BUFFER

;BUFFER

RAM Test (RAMTST)

9G

] Performs a test of an area of RAM

memory specified by a starting address and a
length in bytes. Writes the values 00, FF,,
AA (10101010,), and 55, (01010101) into
each byte and checks to see if they can be
read back correctly. Places a single 1 bit in
each position of each byte and sees if that can
be read back correctly. Clears the Carty flag if
all tests can be performed,; if it finds an error
it immediately exits, setting the Carry flag
and returning the address in which the error
occurred and the value that was. being used in
the test.

Procedure: The program performs the
single value checks (with 00, FF,, AA,, and
55, by first filling the memory area and then
comparing each byte with the specified value.
Filling the entire area first should provide
enough delay between writing and reading to
detect a failure to retain data (perhaps caused
by improperly designed refresh circuitry).
The program then performs the walking bit
test, starting with bit 7; here it writes the data
into memory and immediately attempts to
read it back for a comparison. In all the tests,
the program handles complete pages first and
then handles the remaining partial page; the
program can thus use 8-bit counters rather
than a 16-bit counter. This approach reduces
execution time but increases memory usage
as compared to handling the entire area with
one loop. Note that the program exits
immediately if it finds an error, setting the
Carry flag to 1 and returning the location and

Registers Used: All

Execution Time: Approximately 245:cycles per
byte tested plus 650 cycles overhead. Thus, .for
example, to test an area of size 0400, = 1024,
would take

245+ 1024 + 650 = 250,880 + 650
= 251,530 cycles.

Program Size: 229 bytes

Data Memory Required: Six bytes anywhere in
RAM plus two bytes on page 0. The six bytes any-
where in RAM hold the address of thé first ele-
ment (two bytes starting at address ADDR), the
length of the tested area (two bytes: starting at
address LEN), arid the temporary length (two
bytes starting at address TLEN). The two bytes
on page 0 hold a pointer to the tested area (start-
ing at address TADDR, 00DO0, in the listing).

Speclal Cases:

1. An area size of 0000,6 causes an immediate
exit with no memory tested. The Carry flag is
cleared to indicate no errors

2. Since the routine changes all bytes in thé
tested area, using it to test an area that includes
its own temporary storage will produce unpre-
dictable results.

Note that' Case 1 miedans you cannot ask this
routine to test the entire memory, but such a
request would be meaningless anyway since it
would require the routine to test its own tempor-
ary storage.

3. Attempting to test a ROM area will cause a
returfi with an error indication as soon as the pro-
gram attempts to store a value in a ROM location
that is not already there.

the value being used in the test. If all the tests
can be performed correctly, the program
clears the Carry flag before exiting.

407

408 ARRAY OPERATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of size (length) of area
in bytes

More significant byte of size (length) of area
in bytes

Less significant byte of starting address of
test area

More significant byte of starting address of
test area

Exit Conditions

1. Ifan error is found,
Carry =1
(A) = More significant byte of address
containing error

(Y) = Less significant byte of address
containing error

(X) = Expected value (value being used
in test)
2. If no error is found,
Carry =0
All bytes in test area contain 00.

Example

Data: Starting address = 0380,
Length (size) of area = 02004

Area tested is the 0200, bytes, starting at
addresses 0380, That is, address 0380,
through 057F,. The order of the tests is:

1. Write and read 00
2. Write and read FF 4

Result:

3. Writeand read AA ¢ (10101010,)

4. Write and read 55,4 (01010101,)

5. Walking bit test, starting with bit 7 and moving
right. That is, starting with 80, (1000000,) and moving

the 1 bit one position right in each subsequent test ofa
single byte.

: Title RAM test
H Name: RAMTST
H
H
Purpose:

1) Write

4) Write

we we WE me We e N wE we WO we o %O

Perform a test of RAM memory
all 00 hex and
2) Write all FF hex and test
3) Write all AA hex
all 55 hex and
5) Shift a single 1

If the program finds an error,
immediately with the CARRY flag set and
indicates where the error occurred and
what value it used in the test.

~. wo wa w0

test

test
test
bit thourgh all of memory

and

it exits

we we M wE e Mo we %6 we W= we wo e

9G RAM TEST (RamTsT) 409

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of length in bytes,
High byte of length in bytes,
Low byte of starting address of test area,
High byte of starting address of .test area

Exit: If there are no errors then

CARRY flag equals 0

test area contains 00 in all bytes

else

CARRY flag equals 1

Register A = High byte of the address
containing the error
Low byte of the address
containing the error
Register X = Expected value

Register Y

Registers used: All

Time: Approximately 245 cycles per byte plus
: 650 cycles overhead.
Size: Program 228 bytes
Data 6 bytes plus

2 bytes in page zero

O TE | NS Ve Ne Ne Ne N N e Ne Ne Ne NE Ne e Ne we %6 we e e %o ne e we me Ne

TN | N N NE e N N e N N N we NS ma he M e e Ne e S me %o me me we we

~ =

EQUATES SECTION

TADDR: .EQU ODOH ; PAGE ZERO POINTER TO TEST AREA
RAMTST:

;GET THE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET THE LENGTH OF THE TEST AREA

PLA

STA LEN

PLA

STA LEN+1

;GET THE STARTING ADDRESS OF THE TEST AREA

PLA

STA ADDR

PLA

STA ADDR+1

410 ARRAY OPERATIONS

WLKLP:

WLKLP1:

;:RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA

;BE SURE THE LENGTH IS NOT ZERO

LDA LEN

ORA LEN+1

BEQ EXITOK ;EXIT WITH NO ERRORS IF LENGTH IS ZERO
;FILL MEMORY WITH FF HEX (ALL 1'S) AND COMPARE

LDA #0FFH

JSR FILCMP

BCS EXITER ;EX1IT IF AN ERROR

;FILL MEMORY WITH AA HEX (ALTERNATING 1'S AND 0'S) AND COMPARE
LDA #0AAH

JSR FILCMP

BCS EXITER ;EXIT IF AN ERROR

;FILL MEMORY WITH 55 HEX (ALTERNATING 0'S AND 1'S) AND COMPARE
LDA #55H .

JSR FILCMP

BCS EXITER ;EXIT IF AN ERROR

;FILL MEMORY WITH 0 AND COMPARE

LDA #0

JSR FILCMP

BCS EXITER

; PERFORM WALKING BIT TEST

JSR ITEMPS ;INITIALIZE TEMPORARIES

sWALK THROUGH THE 256 BYTE PAGES -

LDX TLEN+1 ;CHECK IF ANY FULL PAGES TO DO

BEQ WLKPRT ;BRANCH IF NONE

LDY $0 ;REGISTER Y IS INDEX

LDA #80H ;SET BIT 7 TO 1, ALL OTHER BITS TO ZERO
STA (TADDR) , Y ;STORE TEST PATTERN IN MEMORY

CMP (TADDR) , Y ;COMPARE VALUE WITH WHAT IS5 READ BACK
BNE EXITER ;EXIT INDICATING ERROR IF NOT THE SAME
LSR A ;SHIFT TEST PATTERN RIGHT ONE BIT

BNE WLKLP1 ;BRANCH IF NOT DONE WITH BYTE

STA (TADDR) , XY ;STORE A ZERO BACK INTO THE LAST BYTE
INY ; INCREMENT TO NEXT BYTE IN PAGE

BNE WLKLP . ;BRANCH IF NOT DONE WITH PAGE

INC TADDR+1 ;s INCREMENT TO NEXT PAGE

DEX ;sDECREMENT PAGE COUNTER

BNE WLKLP . ;BRANCH IF NOT DONE WITH ALL OF THE PAGES

;WALK THROUGH LAST PARTIAL PAGE

WLKPRT:
LDX
BEQ
LDY

WLKLP2:

, LDA

WLKLP3:
STA
CMP
BNE
LSR
BNE
STA
INY
DEX
BNE

EXITOK:
CLC
RTS

EXITER:
JSR
RTS

TLEN
EXITOK
#0

#80H

(TADDR) , Y
(TADDR) ,Y
EXITER

A

WLKLP3
(TADDR) ,Y

WLKLP2

ERROR

96 RAM TEST (RamTsT) 411

;GET NUMBER OF BYTES IN LAST PAGE
JEXIT IF NONE
;INITIALIZE INDEX TO ZERO

;START WITH BIT 7 EQUAL TO 1

;STORE TEST PATTERN IN MEMORY

;COMPARE VALUE WITH WHAT IS READ BACK

;EXIT INDICATING ERROR IF NOT THE SAME
iSHIFT TEST PATTERN RIGHT

;BRANCH IF NOT DONE

iSTORE A ZERO BACK INTO THE LAST BYTE

; INCREMENT TO NEXT BYTE

;DECREMENT BYTE COUNTER

;BRANCH IF NOT DONE

;RETURN WITH NO ERROR

sRETURN WITH AN ERROR

;***********************************

;ROUTINE: FILCMP ’
: PURPOSE: FILL MEMORY WITH A VALUE AND TEST

ADDR
LEN =

ELSE

NE N N6 me %o we e Ne we we we

CARRY FLAG
REGISTER A
REGISTER Y
REGISTER X

;REGISTERS USED: ALL
PR R R R LT R Y R T P Ry R R e

FILCMP:
JSR

ITEMPS

EQUALS 0

EQUALS 1

HIGH BYTE OF ERROR LOCATION
LOW BYTE OF ERROR LOCATION
EXPECTED VALUE

THAT MEMORY CONTAINS THAT VALUE

ENTRY: REGISTER A = VALUE
STARTING ADDRESS
LENGTH
EXIT: 1IF NO ERRORS THEN
CARRY FLAG

;INITIALIZE TEMPORARIES

;FILL MEMORY WITH THE VALUE IN REGISTER A
;FILL FULL PAGES

LDX

BEQ

LDY
FILLP:

STA

INY

BNE

TLEN+1
FILPRT

#0
(TADDR) ,Y

FILLP

;START AT INDEX 0

:STORE THE VALUE
;INCREMENT TO NEXT LOCATION
;BRANCH IF NOT DONE WITH THIS PAGE

412 ARRAY OPERATIONS

INC TADDR+1 ; INCREMENT HIGH BYTE OF TEMPORARY ADDRESS
DEX ; DECREMENT PAGE COUNT
BNE FILLP - ;BRANCH IF NOT DONE WITH FILL
FILPRT:
;FILL PARTIAL PAGE
LDX TLEN ;REGISTER Y IS SET TO SIZE OF LAST PAGE
LDY #0
FILLPl: '
STA (TADDR) ,Y .
INY
DEX .
BNE FILLP1 ;CONTINUE
;COMPARE MEMORY AGAINST THE VALUE IN REGISTER A
CMPARE:
JSR ITEMPS ;INITIALIZE TEMPORARIES
;COMPARE MEMORY WITH THE VALUE IN REGISTER A
; COMPARE FULL PAGES FIRST :
LDX TLEN+1
BEQ CMPPRT
LDY #0 ;START AT INDEX 0
CMPLP:
CMP (TADDR) , Y ;CAN THE STORED VALUE BE READ BACK ?
BNE CMPER ;NO, EXIT INDICATING ERROR
INY ; INCREMENT TO NEXT LOCATION
BNE CMPLP ;BRANCH IF NOT DONE WITH THIS PAGE
INC TADDR+1 ; INCREMENT HIGH BYTE OF TEMPORARY ADDRESS
DEX ; DECREMENT PAGE COUNT
BNE CMPLP ;BRANCH IF NOT DONE WITH FILL
CMPPRT:
;COMPARE THE LAST PARTIAL PAGE
LDX TLEN ;REGISTER Y = SIZE OF PARTIAL PAGE
LDY #0
CMPLP1:
CMP (TADDR) , Y ;CAN THE STORED VALUE BE READ BACK ?
BNE CMPER ;NO, EXIT INDICATING ERROR
INY
DEX
BNE CMPLP1 ; CONTINUE
CMPOK:
CLC ;INDICATE NO ERROR
RTS :
CMPER:
JSR ERROR
RTS

;*********i******************i*t****

;ROUTINE: ITEMPS
; PURPOSE: INITIALIZE TEMPORARIES

,ENTRY ADDR 1S BEGINNING ADDRESS

“e we

e wo -we

ITEMPS:
LDY
STY
LDY
STY

LDY
STY
LDY
STY
RTS

LEN IS NUMBER OF BYTES
sEXIT: TADDR IS SET TO ADDR
TLEN IS SET TO LEN

REGISTERS USED: Y,P
AARARRRARRIRRRA NI R RRRRRR AR KA AR A K

ADDR
TADDR
ADDR+1
TADDR+1

LEN
TLEN
LEN+1
TLEN+1

;**********'k****************************

sROUTINE: ERROR
; PURPOSE: SET UP THE REGISTERS FOR AN ERROR EXIT
/ENTRY: REGISTER A IS EXPECTED BYTE

TADDR IS BASE ADDRESS

REGISTER'Y IS INDEX
EXIT REGISTER X IS SET TO EXPECTED BYTE
SET TO HIGH BYTE OF THE ADDRESS CONTAINING THE ERROR
SET TO LOW BYTE OF THE ADDRESS CONTAINING THE ERROR

Ne we me we we %o we we we W

ERROR:
TAX
TYA
CLC
ADC
TAY
LDA
ADC
SEC
RTS

. +DATA SECTION

ADDR: . BLOCK
LEN: .BLOCK
TLEN: . BLOCK

we ws we we we

REGISTER A IS
REGISTER Y IS
CARRY FLAG IS SET TO 1

REGISTERS USED: ALL
AR S Y Y S22]

9G RAM TEST RaMTST) 413

= EXPECTED BYTE
ERROR = BASE + INDEX
= LOW BYTE OF ERROR LOCATION

= HIGH BYTE OF ERROR LOCATION

;INDICATE AN ERROR BY SETTING CARRY TO 1

;REGISTER X
;GET INDEX
;ADDRESS OF
TADDR
;REGISTER Y
TADDR+1
#0 sREGISTER A
2 ;ADDRESS OF FIRST ELEMENT
2 ;s LENGTH
2 ;TEMPORARY LENGTH

SAMPLE EXECUTION

~e we we we we

414 ArRAY OPERATIONS

SC0907:
;TEST MEMORY
LDA ADR+1
PHA _ ;PUSH HIGH BYTE OF STARTING ADDRESS
LDA ADR .
PHA ;PUSH LOW BYTE OF STARTING ADDRESS
LDA SZ+1
PHA ;PUSH HIGH BYTE OF LENGTH
LDA sz
PHA ;PUSH LOW BYTE OF LENGTH
JSR RAMTST ;TEST
BRK ;CARRY FLAG SHOULD BE 0
JMP $C0907 ;LOOP FOR MORE TESTING
ADR .WORD 2000H
Sz .WORD 1010H

. END ; PROGRAM

Jump Table (JTAB)

9H

Transfers control to an address selected
from a table according to an index. The
addresses are stored in the usual 6502 style
(less significant byte first), starting at address
TABLE. The size of the table (number of
addresses) is a constant LENSUB, which
must be less than or equal to 128. If the index
is greater than or equal to LENSUB, the pro-
gram returns control immediately with the
Carry flag set to 1. '

Procedure: The program first checks if the
index is greater than or equal to the size of
the table (LENSUB). If it is, the program
returns control with the Carry flag set. If it is
not, the program obtains the starting address

Registers Used: A P

Execution Time: 31 cybles overhead, besides the
time required to execute the subroutine.

Program Size: 23 bytes plus 2¥*LENSUB bytes for
the table of starting addresses, where LENSUB is
the number of subroutines.

Data Memory Required: Two bytes anywhere in
RAM (starting at address TMP) to hold the
indirect address obtained from the table.

Special Case: Entry with (A) greater than or
equal to LENSUB causes an immediate exit with
Carry flag set to 1.

of the appropriate subroutine from the table,
stores it in memory, and jumps to it
indirectly.

Entry Conditions

Exit Conditions

If (A) is greater than LENSUB, an immedi-
ate return with Carry = 1. Otherwise, control
transferred to appropriate subroutine as if an
indexed call had been performed. The return
address remains at the top of the stack.

(A) = index

Example

Data: LENSUB (size of subroutine table) = 03.

' Table consists of addresses SUBO, SUBI,

and SUB2.
Index = (A) = 02

Result: Control transferred to address SUB?2
(PC = SUB2).

415

41 6 ARRAY OPERATIONS

; Title Jump table H
; Name: JTAB H
i H
i H
Purpose: Given an index, jump to the subroutine with

that index in a table

Entry: Register A is the subroutine number 0 to
. LENSUB-1, the number of subroutines,
LENSUB must be less than or equal to
128,

Exit: If the routine .number is valid then
execute the routine
else
CARRY flag equals 1

Registers used: A,P

~e we w6 wa ws we e we W we W8 Ws “e S oS e

me we me We Ne we ws wa M WS W@ e We W We W We Ve We W W So

Time: 31 cycles plus execution time of subroutine i
Size: Program 23 bytes plus size of table (2*LENSUB) ;
Data 2 bytes ;
;
:
JTAB:
CMP $LENSUB
BCS JTABER ;BRANCH IF REGISTER A IS TOO LARGE
ASL A ;MULTIPLY VALUE BY 2 FOR WORD-LENGTH INDEX
TAY
LDA TABLE, Y :MOVE STARTING ADDRESS TO TEMPORARY STORAGE
STA TMP
LDA TABLE+1,Y
STA TMP+1
JMP (TMP) ;JUMP INDIRECTLY TO SUBROUTINE
JTABER:
SEC ; INDICATE A BAD ROUTINE NUMBER
RTS
LENSUB .EQU 3
TABLE:
.WORD SUB1 ;ROUTINE 0
.WORD SUB2 . :ROUTINE 1
.WORD SUB3 :ROUTINE 2

TMP: .BLOCK 2 : TEMPORARY ADDRESS TO JUMP INDIRECT THROUGH

9H sump TABLE UTAB) 417

;THREE SUBROUTINES WHICH ARE IN THE JUMP TABLE

SUB1l:
LDA $#1
RTS

sSUB2:
LDA #2
RTS

SUB3:
LDA #3
RTS

SAMPLE EXECUTION

we we¢ ws we e
e w4 we we we

i
; PROGRAM SECTION

SC0908:
LDA #0
JSR JTAB
BRK ;EXECUTE ROUTINE 0, REGISTER A EQUALS 1
LDA #1
JSR JTAB
BRK ;EXECUTE ROUTINE 1, REGISTER A EQUALS 2
LDA #2
JSR JTAB
BRK ;EXECUTE ROUTINE 2, REGISTER A EQUALS 3
LDA #3
JSR JTAB ‘
BRK ;ERROR CARRY FLAG EQUALS 1
JMp SC0908 ;LOOP FOR MORE TESTS

. END ; PROGRAM

Read a Line of Characters from a Terminal

(RDLINE)

10A

Reads ASCII characters from a terminal
and saves them in a buffer until it encounters
a carriage return character. Defines the con-
trol characters Control H (08 hex), which
deletes the character most recently entered
into the buffer, and Control X (18 hex),
which deletes all characters in the buffer.
Sends a bell character (07 hex) to the ter-
minal if the buffer becomes full. Echoes to
the terminal each character placed in the
buffer. Sends a new line sequence (typically
carriage return, line feed) to the terminal
before exiting. _

RDLINE assumes the existence of the
following system-dependent subroutines:

1. RDCHAR reads a single character from
the terminal and places it in the accumulator.

2. WRCHAR sends the character in the
accumulator to the terminal.

3. WRNEWL sends a new line sequence
(typically consisting of carriage return and
line feed characters) to the terminal.

These subroutines are assumed to change
the contents of all the user registers.

RDLINE is intended as an example of a
typical terminal input handler. The specific
control characters and I/0 subroutines in a
real system will, of course, be computer-
dependent. A specific example in the listing
describes an Apple II computer with the
following features:

1. The entry point for the routine that
reads a character from the keyboard is
FDOC,,. This routine returns with. bit 7 set,
so that bit must be cleared for normal ASCII
operations.

418

Registers Used: All

Execution Time: Approximately 67 cycles to
place an ordinary character in the buffer, not con-
sidering the execution time of either RDCHAR
or WRCHAR.

Program Size: 138 bytes

Data Memory Required: Four bytes anywhere in
RAM plus two bytes on page 0. The four bytes
anywhere in RAM hold the buffer index (one
byte at address BUFIDX), the buffer iength (one
byte at address BUFLEN), the count for the
backspace routine (one byte at address COUNT),
and the index for the backspace routine (one byte
at address INDEX). The two bytes on page 0 hold
a pointer to the input buffer (starting at address
BUFADR, 00D0, in the listing).

Special Cases:

1. Typing Control H (delete one character) or
Control X (delete the entire line) when there is
nothing in the buffer has no effect on the buffer
and does not cause anything to be sent to the ter-
minal.

2. If the program receives an ordinary
character when the buffer is full, it sends a Bell
character to the terminal (ringing the bell), dis-
cards the received character, and continues its
normal operations.

2. The entry point for the routine that
sends a character to the monitor is FDED,.
This routine requires bit 7 of the character
(in the accumulator) to be set.

3. The entry point for the routine that
issues the appropriate new line character (a
carriage return) is FD8E .

4. An 08, character moves the cursor left
one position.

A standard reference describing the Apple II
computer is L. Poole et al., Apple 11 User’s
Guide, Berkeley: Osborne/McGraw-Hill,
1981.

Procedure: The program first reads a
character using the RDCHAR routine and
exits if the character is a carriage return. If
the character is not a carriage return, the pro-
gram checks for the special characters Con-
trol H and Control X. In response to Control
H, the program decrements the buffer index
and sends a backspace string (consisting of

" . cursor left, space, cursor left) to the terminal

if there is anything in the buffer. In response
to Control X, the program repeats the

10A READ A LINE OF CHARACTERS ROLINE 419

response to Control H until it empties the
buffer. If the character is not special, the pro-
gram checks to see if the buffer is full. If the
buffer is full, the program sends a bell
character to the terminal and continues. If
the buffer is not full, the program stores the
character in the buffer, echoes it.to the ter-
minal, and adds one to the buffer index.
Before exiting, the program sends a new line
sequence to the terminal using the
WRNEWL routine.

Entry Conditions

(A) = More significant byte of starting
address of buffer

(Y) = Less significant byte of starting
address of buffer

(X) = Length (size) of the buffer in bytes.

Exit Conditions

(X) = Number of characters in the buffer.

Examples

Line (from keyboard is ‘ENTERcr’

Buffer index = 5 (length of line)

Buffer contains ‘ENTER’

‘ENTER’ echoed to terminal, followed by
the new line sequence (typically either car-
riage return, line feed or just carriage
return)

Note that the ‘cr’ (carriage return)
character does not appear in the buffer.

Line (from keyboard) is ‘DMcontrolHN
control XENTETcontrolHRcr'.

Buffer index = 5 (length of actual line)
Buffer contains ‘ENTER’

‘ENTER’ echoed to terminal, followed by
the new line sequence (typically either car-

riage return, line feed or just carriage
return)

1. Data:
Result:

2. Data:

Result:

The sequence of operations is as follows:

Character Initial Final
Typed Buffer Buffer

D empty ‘D’

M ‘D’ ‘DM’
contro! H ‘DM’ ‘D’

N ‘D’ ‘DN’
control X ‘DN’ empty

E empty ‘B’

N ‘E’ ‘EN’

T ‘EN’ ‘ENT’

E ‘ENT’ ‘ENTE’
T ‘ENTE’ ‘ENTET’
control H ‘ENTET’ ‘ENTE’
R ‘ENTE’ ‘ENTER’
cr ‘ENTER’ ‘ENTER’

420 neuT/OUTPUT

What has happened is the following: deleted is not the latest one, the operator types control

X to delete the entire line, and then types ‘ENTET".
d. The operator recognizes that the second ‘T’ is

incorrect (should be *R’), types control H to delete it,

a. The operator types ‘D’, ‘M’
b. The operator recognizes that ‘M’ is incorrect

(should be *N”), types control H to delete it, and types ,nd types ‘R’
‘N, .) .
. . ,. e. The operator types a carriage return to conclude
¢. The operator then recognizes that the initial ‘D’is (e line. P yp &
incorrect also (should be ‘E). Since the character to be
; Title Read line ;
H Name: RDLINE ;
i i
i i
Purpose: Read characters from the input device until

a carriage return is found. RDLINE defines the
following control characters:

Control H -- Delete the previous character.
Control X -- Delete all characters.
Entry: Register A = High byte of buffer address
Register Y = Low byte of buffer address
’ Register X = Length of the buffer
Exit: Register X = Number of characters in the buffer

Registers used: All

Time: Not applicable.
Size: Program 138 bytes
Data 4 bytes plus

2 bytes in page zero

Ne ws w8 we we we W Ve W ws w8 We We WE Ny NE W We Ns e %s owe
Ne ms e we e we ma ws @ we we e me s Ne We e e N oS w6 %o

;PAGE ZERO POINTER

BUFADR .EQU UDOH ; INPUT BUFFER ADDRESS
; EQUATES
DELKEY .EQU 018H ;DELETE LINE KEYBOARD CHARACTER

BSKEY .EQU o8H ;BACKSPACE KEYBOARD CHARACTER

CRKEY
SPACE
BELL

RDLINE:

INIT:

RDLOOP:

RDLP1:

DEL1:

RDLP2:

STRCH:

10A READ A LINE OF CHARACTERS ROLINE) 421

. EQU ODH ;CARRIAGE RETURN KEYBbARD CHARACTER
.EQU 0208 ;SPACE CHARACTER
. EQU 07H iBELL CHARACTER TO RING THE BELL ON THE TERMINAL

.

;SAVE PARAMETERS

STA BUFADR+1 iSAVE HIGH BYTE OF INPUT BUFFER ADDRESS
STY BUFADR ;SAVE LOW BYTE OF 'INPUT BUFFER ADDRESS
STX BUFLEN ;SAVE MAXIMUM LENGTH

;INITIALIZE BUFFER INDEX TO ZERO

LDA #0
STA BUFIDX
;READ LOOP

;READ CHARACTERS UNTIL A CARRIAGE RETURN OCCURS

JSR RDCHAR ;READ A CHARACTER FROM THE KEYBOARD
;DOES NOT ECHO

;CHECK FOR CARRIAGE RETURN AND EXIT IF FOUND

CMP #CRKEY

BEQ EXITRD

;CHECK FOR BACKSPACE AND BACK UP IF FOUND

CMP #BSKEY

BNE RDLP1 sBRANCH IF NOT BACKSPACE CHARACTER
JSR BACKSP ;IF BACKSPACE, BACK UP ONE CHARACTER
JMP RDLOOP ; THEN START READ LOOP AGAIN

;CHECK FOR DELETE LINE CHARACTER AND DELETE LINE IF FOUND

CMP #DELKEY

BNE RDLP2 iBRANCH IF NOT DELETE LINE CHARACTER
JSR BACKSP sDELETE A CHARACTER

LDA BUFIDX ;CONTINUE DELETING UNTIL BUFFER IS EMPTY
BNE DEL1

BEQ RDLOOP iTHEN GO READ THE NEXT CHARACTER

;NOT A SPECIAL CHARACTER
; CHECK IF BUFFER IS FULL
; IF NOT FULL STORE CHARACTER AND ECHO

LDY BUFIDX ;IS BUFFER FULL?

CPY BUFLEN

BCC STRCH ;BRANCH IF NOT

LDA #BELL ;YES IT IS FULL, RING THE TERMINAL'S BELL
JSR WRCHAR

JMP RDLOOP ;THEN CONTINUE THE READ LOOP

STA (BUFADR) ,Y ;STORE THE CHARACTER

JSR WRCHAR ;ECHO CHARACTER TO TERMINAL

422 npuT/OUTPUT

INC . BUFIDX " ; INCREMENT BUFFER INDEX
JMP RDLOOP ;THEN CONTINUE THE READ LOOP

;EXIT SEQUENCE :
ECHO NEW LINE SEQUENCE (USUALLY CR,LF)
{GET LENGTH OF BUFFER

EXITRD: :
JSR WRNEWL ;ECHO THE NEW LINE SEQUENCE
LDX BUFIDX ;RETURN THE LENGTH IN X
RTS ; RETURN

**

THE FOLLOWING SUBROUTINES ARE SYSTEM SPECIFIC,
THE APPLE II WAS USED IN THESE EXAMPLES.

we w6 we ma Ve we

**

;*******************t************************t

. tROUTINE: RDCHAR

© s PURPOSE: READ A CHARACTER BUT DO NOT ECHO TO OUTPUT DEVICE
;ENTRY: NONE

.3EXIT: REGISTER A = CHARACTER

;REGISTERS USED: ALL
;**

RDCHAR:
JSR OFDOCH ;APPLE MONITOR READ KEYBOARD
AND #01111111B ;ZERO BIT 7
RTS

;'k**

sROUTINE: WRCHAR

; PURPOSE: WRITE A CHARACTER TO THE OUTPUT DEVICE
;ENTRY: REGISTER A = CHARACTER

sEXIT: NONE

;REGISTERS USED: ALL
;***

WRCHAR:
ORA #10000000B ;SET BIT 7
JSR OFDEDH :APPLE MONITOR CHARACTER OUTPUT ROUTINE
RTS

;'k****i*****************i**-ﬁ***************

;ROUTINE: . WRNEWL

; PURPOSE: ISSUE THE APPROPRIATE NEW LINE CHARACTER OR
CHARACTERS. NORMALLY, THIS IS A CARRIAGE RETURN

AND LINE FEED, BUT SOME COMPUTERS (SUCH AS APPLE II)
REQUIRE ONLY A CARRIAGE RETURN.

;ENTRY: NONE : '

;EXIT: NONE

:REGISTERS USED: ALL
;***t**************************************i

~ we we

WRNEWL:
JSR
RTS

10A READ A LINE OF CHARACTERS ROLINE) 423

-

OFD8EH ;ECHO CARRIAGE RETURN AND LINE FEED

;**

sROUTINE: BACKSP

; PURPOSE: PERFORM A DESTRUCTIVE BACKSPACE

;ENTRY: BUFIDX

INDEX TO NEXT AVAILABLE LOCATION IN BUFFER

;EXIT: CHARACTER REMOVED FROM BUFFER

;REGISTERS USED:

ALL

;***************************************

BACKSP:

;CHECK FOR EMPTY BUFFER

LDA
BEQ

;BUFFER
DEC

;OUTPUT
LDA
STA
LDA
STA
BSLOOP:

LDA
BEQ
LDY .
LDA
JSR
INC
DEC
JMP

EXITBS:
RTS

CSRLFT .EQU
LENBSS: .EQU
BSSTRG: .BYTE

; DATA

BUFIDX: .BLOCK
BUFLEN: .BLOCK
COUNT: .BLOCK
INDEX: .BLOCK

e we we we w

SAMPLE EXECUTION:

BUFIDX

EXITBS . +EXIT IF NO CHARACTERS IN BUFFER

IS NOT EMPTY SO DECREMENT BUFFER INDEX

BUFIDX ; DECREMENT BUFFER INDEX

BACKSPACE STRING

#LENBSS

COUNT ;COUNT = LENGTH OF BACKSPACE STRING

$0

INDEX ;INDEX = INDEX TO FIRST CHARACTER
COUNT

EXITBS ;EXIT IF ALL CHARACTERS HAVE BEEN SENT
INDEX

BSSTRG, Y ;GET NEXT CHARACTER

WRCHAR ;OUTPUT CHARACTER

INDEX

COUNT

BSLOOP

U8H ;CHARACTER WHICH MOVES CURSOR LEFT ONE LOCATION
3 ;LENGTH OF BACKSPACE STRING

CSRLFT, SPACE,CSRLFT

;INDEX TO NEXT AVAILABLE CHARACTER IN BUFFER
;BUFFER LENGTH

;COUNT FOR BACKSPACE AND RETYPE

;INDEX FOR BACKSPACE AND RETYPE

e

Ne me me e we

424 \\ruT/oUTPUT

SC1001:
;READ LINE
LDA # " ? L}
JSR WRCHAR
LDA ADRBUF+1
LDY ADRBUF
LDX #LINBUF
JSR RDLINE
;ECHO LINE
STX CNT
LDA #0
STA IDX
TLOOP:
LDA CNT
BNE TLOOP1
JSR WRNEWL
JMP SClo0l
TLOOP1:
LDY IDX
LDA INBUFF,Y
JSR WRCHAR
INC IDX
DEC CNT
JMP TLOOP

sDATA SECTION
IDX: .BLOCK
CNT: .BLOCK
ADRBOUF: .WORD
LINBUF: .EQU
INBUFF: .BLOCK

.END

1

1
INBUFF
10H
LINBUF

; PROGRAM

;OUTPUT PROMPT (QUESTION MARK)
;GET THE BUFFER ADDRESS

;GET THE BUFFER LENGTH
;READ A LINE

;STORE NUMBER OF CHARACTERS IN THE BUFFER

;BRANCH IF THERE ARE MORE CHARACTERS TO SEND
;IF NOT ISSUE NEW LINE (CR,LF)
sAND START OVER '

;GET THE NEXT CHARACTER
;OUTPUT IT

;DECREMENT LOOP COUNTER

; INDEX

;COUNTER

;ADDRESS OF INPUT BUFFER
; LENGTH OF INPUT BUFFER

;DEFINE THE INPUT BUFFER

Write a Line of Characters to an Output Device

(WRLINE)

10B

Writes characters to an output device
using the computer-dependent subroutine
WRCHAR, which writes the character in the
accumulator on the output device. Continues
until it empties a buffer with given length and
starting address. This subroutine is intended
as an example of a typical output driver. The
specific 1/0 subroutines will, of course, be
computer-dependent. The specific example
described is the Apple Il computer with the
following features:

1. The entry point for the routine that
sends a character to the monitor is FDED .

2. The character to be written must be
placed in the accumulator with bit 7 set to 1.

Procedure: The program exits immediately
if the buffer length is zero. Otherwise, the
program sends characters to the output

Registers Used: All

Execution Time: 24 cycles overhead plus 25
cycles per byte (besides the execution time of
subroutine WRCHAR).

Program Size: 37 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The (wo bytes
anywhere in RAM hold the buffer index (one
byte at address BUFIDX) and the buffer length
(one byte at address BUFLEN). The two bytes on
page 0 hold a pointer to the output buffer (start-
ing at address BUFADR, 00D0,4 in the listing).

Special Case:

A buffer length of zero causes an immediate
exit with no characters sent to the output device.

device one at a time until the buffer is
emptied. The program saves all its temporary
data in memory rather than in registers to
avoid dependence on the WRCHAR routine.

Entry Conditions

Exit Conditions

(A) = More significant byte of starting None
address of buffer
(Y) = Less significant byte of starting
address of buffer
(X) = Length (size) of the buffer in bytes.
Example
Data: Buffer length = 5 Result: ‘ENTER’ sent to the output device.

Buffer contains ‘ENTER’

425

426 nruT/OUTPUT

Title
Name:

-~ ws we we

Purpose:

Entry:

Exit:
Register

Time:

Size:

~e N6 ™o s Wo WS We Wo Ne We W Ws Ws wa W W We Ne we

Write line

WRLINE

Write characters to the output device

Register A

High byte of buffer address

Register Y = Low byte of buffer address
Register X = Length of the buffer in bytes
None

s used: All

24 cycles overhead plus
(25 + execution time of WRCHAR) cycles per byte

- Program 37 bytes

Data

;s PAGE ZERO POINTER

2 bytes plus
2 bytes in page zero

;OUTPUT BUFFER ADDRESS

;SAVE HIGH BYTE OF OUTPUT BUFFER ADDRESS
;SAVE LOW BYTE OF OUTPUT BUFFER ADDRESS
;SAVE LENGTH

;EXIT IF LENGTH = 0

;GET NEXT CHARACTER
;OUTPUT CHARACTER

; INCREMENT BUFFER INDEX
;DECREMENT BUFFER LENGTH
;BRANCH IF NOT DONE

BUFADR .EQU ODOH
WRLINE:

;SAVE PARAMETERS

STA BUFADR+1

STY BUFADR

STX BUFLEN

BEQ EXIT

; INITIALIZE BUFFER INDEX TO ZERO

LDA #0

STA BUFIDX
WRLOOP:

LDY BUFIDX

LDA (BUFADR) , Y

JSR WRCHAR

INC BUF IDX

DEC BUFLEN

BNE WRLOOP
EXIT:

RTS

~. we e wa we N

*****i*******i****i*********************i*****

THE FOLLOWING SUBROUTINES ARE SYSTEM SPECIFIC,
THE APPLE II WAS USED IN THIS EXAMPLE.

*********t********t**************tt*********i*

~ wo we we

Ne me he w6 me Ne wa Wa We e My N6 W6 %o S w3 we we e

10B WRITE A LINE OF CHARACTERS (WRLINE) 427 . -

;***
;ROUTINE: WRCHAR

i PURPOSE: WRITE A CHARACTER TO THE OUTPUT DEVICE
;ENTRY: REGISTER A = CHARACTER

;EXIT: NONE

;REGISTERS USED: ALL
R T eI T T P Ty o

WRCHAR: :
ORA $#10000000B ;SET BIT 7
JSR OFDEDH ;APPLE MONITOR CHARACTER OUTPUT ROUTINE
RTS ’

Khkkhkhkhkhrhkhhhkhhkhhhkhkhkhkhhkhhhkhkhkhki

~e ws o

DATA SECTION :
BUFIDX: .BLOCK 1 ;INDEX TO NEXT AVAILABLE CHARACTER IN BUFFER
BUFLEN: .BLOCK 1 ;BUFFER LENGTH

SAMPLE EXECUTION:

~o e ws we s
e ~e wo we we

SCl002:
;READ LINE USING THE APPLE MONITOR GETLN ROUTINE AT OFD6AH
;7 33H = ADDRESS CONTAINING APPLE PROMPT CHARACTER
; 200H = BUFFER ADDRESS
LDA #"?" OR 80H ;USE ? FOR PROMPT WITH BIT 7 SET
STA 033H ;SET UP APPLE PROMPT CHARACTER
JSR OFD6AH ;CALL APPLE MONITOR GETLN ROUTINE
STX LENGTH ;RETURN LENGTH IN REGISTER X
;WRITE THE LINE
LDA #02H ;A = HIGH BYTE OF BUFFER ADDRESS
LDY #0 ;Y = LOW BYTE OF BUFFER ADDRESS
LDX LENGTH ;X = LENGTH OF BUFFER
JSR WRLINE ;OUTPUT THE BUFFER
JSR OFD8EH ;iOUTPUT CARRIAGE RETURN VIA APPLE MONITOR
JMP 5C1002 ;CONTINUE

;DATA SECTION
LENGTH: .BLOCK 1

.END ; PROGRAM

Generate Even Parity (GEPRTY)

10C

Generates even parity for a seven-bit
character and places it in bit 7. Even parity for
a seven-bit character is a bit that makes the
total number of 1 bits in the byte even.

Procedure: The program generates even
parity by counting the number of 1 bits in the
seven least significant bits of the accumula-
tor. The counting is accomplished by shifting
the data left logically and incrementing the
count by one if the bit shifted into the Carry
is 1. The least significant bit of the count is an
even parity bit; the program concludes by

Registers Used: A, F

Execution Time: 114 cycles maximum. Depends
on the number of 1 bits in the data and how
rapidly the series of logical shifts makes the data
zero. The program exits as soon as the remaining
bits of data are all zeros, so the execution time is
shorter if the less significant bits are all zeros.

Program Size: 39 bytes

Data Memory Required: One byte anywhere in
RAM (at address VALUE) for the data.

shifting that bit to the Carry and then to bit 7
of the original data.

Entry Conditions

Data in the accumulator (bit 7 is not used).

Exit Conditions

Data with even parity in bit 7 in the
accumulator.

Examples

I. Data: (A) = 42,4 = 01000010, (ASCIi B)

Result: (A) = 42,, = 01000010, (ASCII B with bit
7 cleared)
Even parity is 0, since 01000010, has an

even number (2) of 1 bits.

2. Data: (A) = 43,5 = 01000011, (ASCII C)

Result: (A) = C3,, = 11000011, (ASCII C with bit

7 set)

; Title Generate even parity

; Name: GEPRTY

i

i

;

; Purpose:

; character.

i

; Entry: Register A = Character

428

Generate even parity in bit 7 for a 7-bit

P T

~o e we wo we

10C GENERATE EVEN PARITY (GEPRTY) 429

Exit: Register A = Character with even parity

Registers used: A,F

i ;
i i
H i
i i i
; Time: 114 cycles maximum ;
r I
H Size: Program 39 bytes ;
; Data 1 byte H
: ' ;
i i
GEPRTY:

;SAVE THE DATA -

STA VALUE

;SAVE X AND Y REGISTERS

PHA)

TXA

PHA

TYA

;COUNT THE NUMBER OF 1 BITS IN BITS 0 THROUGH 6 OF THE DATA

LDY #0 sINITIALIZE NUMBER OF 1 BITS TO ZERO

LDA VALUE ;GET DATA

ASL A ;DROP BIT 7 OF THE DATA, NEXT BIT TO BIT 7

STA VALUE
GELOOP: BPL SHFT ;BRANCH IF NEXT BIT (BIT 7) IS 0

INY ;ELSE INCREMENT NUMBER OF 1 BITS
SHFT: ASL A

BNE GELOOP ;BRANCH IF THERE ARE MORE 1 BITS IN THE BYTE

TYA ;BIT 0 OF NUMBER OF 1 BITS IS EVEN PARITY

LSR A ;MOVE PARITY TO CARRY

LDA VALUE

ROR A iROTATE ONCE TO FORM BYTE WITH PARITY IN BIT 7

STA VALUE

sRESTORE X AND Y AND EXIT

PLA

TAY

PLA

TAX

LDA VALUE ;GET VALUE WITH PARITY
RTS : RETURN

;DATA SECTION
VALUE: .BLOCK 1 ; TEMPORARY DATA STORAGE

SAMPLE EXECUTION:

e e we we we
we wa %o we e

430 nruT/OUTPUT

;GENERATE PARITY FOR VALUES FROM 0..127 AND STORE THEM IN BUFFER

SC1003:
' LDX #0

SC1LP:
TXA
JSR GEPRTY ;GENERATE EVEN PARITY
STA BUFFER, X ;STORE THE VALUE WITH EVEN PARITY
INX
CPX #80H
BNE SC1LP' ;BRANCH IF NOT DONE
BRK

BUFFER .BLOCK 128

.END ; PROGRAM

Check Parity (CKPRTY)

10D

Sets the Carry flag to 0 if a data byte has
even parity and to 1 if it has odd parity. A
byte has even parity if it has an even number
of 1 bits and odd parity if it has an odd num-
ber of 1 bits.

Procedure: The program counts the num-
ber of 1 bits in the data by shifting the data
left logically and incrementing a count if the
bit shifted into the Carry is 1. The program
quits as soon as the shifted data becomes zefo
(since zero obviously does not contain Hny 1
bits). The least significant bit of the count is 0
if the data byte contains an even number of 1
bits and 1 if the data byte contains an odd
number of 1 bits. The program concludes by

Registers Used: A, F

Execution Time: 111 cycles maximum. Depends
on the number of 1 bits in the data and how
rapidly the series of logical shifts makes the data
zero. The program exits as soon as the remaining
bits of data are all zeros, so the execution time is
shorter if the less significant bits are all zeros.

Program Size: 25 bytés

Data Memory Required: One byte anywhere in
RAM (at address VALUE) for the data.

shiftihg the least signiﬁcant bit of the count
to the Carry flag.

Entry Conditions

Data byte in the accumulator (bit 7 is
included in the parity generation).

Exit Conditions

Carry = 0 if the parity of the data byte is
even, 1 if the parity is odd.

Examples

1. Data: (A) = 42,5 = 01000010, (ASCII B)

Result: Carry = 0, since 424 (01000010,) has

an even number (2) of 1 bits.

2. Data: A) = 43¢ = 01000011, (ASCII C)

Result: Carry = 1, since 43,4 (01000011,) has

an odd number (3) of 1 bits.

431

432 nrut/oUTPUT

e we we we

w8 w6 W wa Ms We We Me e we We o s %o W we

CKPRTY:

CKLOOP:

SHFT:

Title
Name:

Purpose:
Entry:

Exit:

Registers used:
Time:

Size:

;SAVE DATA VALUE
STA VALUE

;SAVE REGISTERS
TXA
PHA
TYA
PHA

Check parity
CKPRTY

Check parity of a byte

Register A = Byte with parity in bit 7

Carry = 0 if parity is even.
Carry = 1 if parity is odd.
A,F

111 cycles maximum

Program 25 bytes
Data 1 byte

X AND Y

;COUNT THE NUMBER OF 1 BITS IN THE VALUE

LDY #0

LDA VALUE
BPL SHFT
INY

ASL A

BNE CKLOOP

TYA
LSR =~ A

;NUMBER OF 1 BITS = 0

;BRANCH IF NEXT BIT = 0 (BIT 7)
;ELSE INCREMENT NUMBER OF 1 BITS
;SHIFT NEXT BIT TO BIT 7
;CONTINUE UNTIL ALL BITS ARE 0

;CARRY FLAG = LSB OF NUMBER OF 1 BITS

;RESTORE REGISTERS X AND Y AND EXIT

PLA
TAY
PLA
TAX
RTS

~e we o e

Ne we N4 me me N8 SE ws w6 mg N N W we we we

10D CHECK PARITY (ckPRTY) 433

VALUE .BLOCK 1 ;DATA BYTE

SAMPLE EXECUTION:

~e ws we wa w0
. we e we we

;CHECK PARITY FOR VALUES FROM 0..255 AND STORE THEM IN BUFFER

;BUFFER [VALUE] = 0 FOR EVEN PARITY
;sBUFFER[VALUE] = 1 FOR ODD PARITY
SC1004:
LDX #0
SCLP:
TXA
JSR CKPRTY ;CHECK PARITY
LDA #0
ROL A ;GET PARITY TO BIT 0
STA BUFFER, X ;STORE THE PARITY
INX ; INCREMENT VALUE
BNE SCLP ;CONTINUE THROUGH ALL THE VALUES
BRK
JMP SC1004

BUFFER .BLOCK 256

. END ; PROGRAM

CRC-16 Checking and Generation (ICRC16,CRC16) 10E

Generates a 16-bit cyclic redundancy
check (CRC) based on the IBM Binary Syn-
chronous Communications (BSC or Bisync)
protocol. Uses the polynomial X'¢ + X3 +
X2 + 1 to generate the CRC. The entry point
ICRC16 initializes the CRC to 0 and the
polynomial to the appropriate bit pattern.
The entry point CRC16 combines the pre-
vious CRC with the CRC generated from the
next byte of data. The entry point GCRCI16
returns the CRC.

Procedure: Subroutine ICRC16 initializes
the CRC to zero and the polynomial to the
appropriate value (one in each bit position
corresponding to a power of X present in the
polynomial). Subroutine CRC16 updates the
CRC according to a specific byte of data. It
updates the CRC by shifting the data and the
CRC left one bit and exclusive-ORing the
CRC with the polynomial whenever the
exclusive-OR of the data bit and the most sig-
nificant bit of the CRC is 1. Subroutine
CRC16 leaves the CRC in memory locations
CRC (less significant byte) and CRC+1
(more significant byte). Subroutine GCRC16

Registers Used:

1. By ICRCl6: A,F

2. By CRC16: None

3. By GCRC16: A F, Y
Execution Time:

1. For ICRC16: 28 cycles

2. For CRC16: 302 cycles minimum if no !
bits are generated and the polynomial and the
CRC never have to be EXCLUSIVE-ORed. 19
extra cycles for each time the polynomial and the
CRC must be EXCLUSIVE-ORed. Thus, the
maximum execution time is 302 + 19+8 = 454
cycles.

3. For GCRC16: 14 cycles
Program Size:
1. For ICRC16: 19 bytes
2. For CRC16: 53 bytes
3. For GCRC16: 7 bytes

Data Memory Required: Five bytes anywhere in
RAM for the CRC (two bytes starting at address
CRC), the polynomial (two bytes starting at
address PLY), and the data byte (one byte at
address VALUE).

loads the CRC into the accumulator (more
significant byte) and index register Y (less
significant byte). ’

Entry Conditions

1. For ICRC16: none

2. For CRC16: data byte in the accumula-
tor, previous CRC in memory locations CRC
(less significant byte) and CRC+1 (more
significant byte), CRC polynomial in memory

434

locations PLY (less significant byte) and
PLY +1 (more significant byte)
- 3. For GCRC16: CRC in memory loca-
tions CRC (less significant byte), and
CRC+1 (more significant byte).

10E CRC-16 CHECKING AND GENERATION (ICRC16, CRC16, GCRC16) 435

Exit Conditions

1. For ICRC16: zero (initial CRC value)
in memory locations CRC (less significant
byte) and CRC+1 (more significant byte)
CRC polynomial in memory locations PLY
(less significant byte) and PLY+1 (more sig-
nificant byte) .

2. For CRC16: CRC with current data
byte included in memory locations CRC (less

significant byte)-and CRC+1 (more signifi-
cant byte)

3. For GCRC16: CRC in the accumulator
(more significant byte) and index register Y
(less significant byte).

Examples

1. Generating a CRC.

Call ICRC16 to initialize the polynomial and start the
CRC at zero.

Call CRC16 to update the CRC for each byte of data
for which the CRC is to be generated.

Call GCRC16 to obtain the resulting CRC (more sig-
nificant byte in A, less significant byte in Y).

2. Checking a CRC.

Call ICRC16 to initialize the polynomial and start the
CRC at zero.

Call CRC16 to update the CRC for each byte of data
(including the stored CRC) for checking.

Call GCRC16 to obtain the resulting CRC (more sig-
nificant byte in A, less significant byte in Y). If there
were no errors, both bytes should be zero.

Note that only subroutine ICRC16
depends on the particular CRC polynomial
being used. To change the polynomial
requires only a change of the data that
ICRC16 loads into memory locations PLY
(less significant byte) and PLY +1 (more sig-
nificant byte).

Reference

J.E. McNamara, Technical Aspects of Data
Communications, Digital Equipment Corp.,
Maynard, Mass., 1977. This book contains
explanations of CRC and the various com-
munications protocols.

436

~e we we wa

Ne Ss s w6 we e wo wa wa we we We A We We N6 We Ne N2 We We S8 VO Ne 4 e W We W S Se W %e W6 owe s %o

CRC16:

INPUT/OUTPUT
Title Generate CRC-16
Name: CRC16
Purpose: Generate a 16 bit CRC based on the IBM binary
: synchronous communications protocol. The CRC is
based on the following polynomial:
(" indicates "to the power")
X716 + X715 + X"2 +1
To generate a CRC:
1) Call ICRC1lé to initialize the CRC to 0
and the CRC polynomial.
2) Call CRC1l6 for each byte of data for
which the CRC is to be generated.
3) Call GCRC1l6 to get the resulting CRC.
It should then be appended to the data,
high byte first. :
To check a CRC:
1) Call ICRC1l6 to initialize the CRC.
2) Call CRClé for each byte of data and
the 2 bytes of CRC previously generated.
3) Call GCRC1l6 to obtain the CRC. It will
be zero if no errors have occurred.
Entry: " Register A = Data byte
Exit: CRCLO and CRCHI updated

Register A = Data byte

Registers used: None

Time:

Size:

;SAVE
STA

302 cycles minimum if no 1 bits are generated.
454 cycles maximum if all 1 bits are generated.

Program 53 bytes
Data 5 bytes

THE DATA BYTE
VALUE

;SAVE ALL REGISTERS

PHP
PHA
TYA
PHA
TXA
PHA

~ e we wa

e we we ms me ma we me W wme W ws

Ne w6 wa ns ma we e s s WE we W wa S e We % S Ne N Na N6 Ne Se e

10E CRC-16 CHECKING AND GENERATION (ICRC16. CRC16, GCRC16) 437

; LOOP THROUGH EACH BIT GENERATING THE CRC

LDX 48 ;8 BITS PER BYTE
CRCLP:

asL VALUE ;MOVE BIT 7 TO CARRY

ROR A ;MOVE CARRY TO BIT 7

AND #10000000B ;MASK OFF ALL 'OTHER BITS

EOR CRC+1 ;EXCLUSIVE OR BIT 7 WITH BIT 16 OF THE CRC

ASL CRC ;SHIFT CRC LEFT 1 BIT (FIRST THE LOW BYTE,

ROL A ; THEN THE HIGH BYTE)

BCC CRCLP1 ;BRANCH IF THE MSB OF THE CRC IS 1

iBIT 7 IS 1 SO EXCLUSIVE-OR THE CRC WITH THE POLYNOMIAL

TAY ;SAVE CRC HIGH IN Y

LDA CRC ,

EOR PLY ;EXCLUSIVE OR LOW BYTE WITH THE POLYNOMIAL

STA CRC

TYA

EOR PLY+1 ;DO HIGH BYTE ALSO
CRCLP1:

STA CRC+1 ;STORE THE HIGH BYTE OF THE CRC

DEX

BNE CRCLP ;BRANCH IF NOT DONE WITH ALL 8 BITS

;RESTORE THE REGISTERS AND EXIT

PLA

TAX

PLA

TAY

PLA

PLP

RTS

;*_******ﬁ**************i*******i**********

;ROUTINE: ICRClé6 :

; PURPOSE: INITIALIZE CRCHI, CRCLO, PLYHI, PLYLO
sENTRY: NONE ,

JEXIT: CRC AND POLYNOMIAL INITIALIZED

iREGISTERS USED: A,F
AL L SR EEEE LT 2 L L L R Ry S R,

ICRCl6:

LDA #0

STA CRC sCRC = 0

STA CRC+1

LDA #5

sSTa PLY ;sPLY = 8005H
;B8005H IS POR X"16+X"15+X"2+1
; (1 IN EACH POSITION FOR WHICH A POWER
i APPEARS IN THE FORMULA)

LDA #80H

STA PLY+1

RTS

438 nruT/OUTPUT

;***ft**********i*******t********************
;ROUTINE: GCRClé6+r

s PURPOSE: GET THE CRC16 VALUE

sENTRY: NONE

;EXIT: REGISTER A = CRC16 HIGH BYTE

; REGISTER Y = CRC16 LOW BYTE
;REGISTERS USED: A,F,Y
';f**t*************************t***********i*

GCRC16: .
LDA CRC+1 ;A = HIGH BYTE
LDY CRC ;Y = LOW BYTE
RTS :
VALUE: .BLOCK 1 ;DATA BYTE
CRC: .BLOCK 2 ;CRC VALUE
- PLY: .BLOCK 2 ; POLYNOMIAL VALUE USED TO GENERATE THE CRC
H - ;
’ r
: SAMPLE EXECUTION: :
H i
H H
;GENERATE A CRC FOR A VALUE OF 1 AND CHECK IT
"8C1005:
JSR ICRC16
LDA #1
JSR CRC16 ; GENERATE CRC
JSR GCRC16
TAX ;SAVE CRC HIGH BYTE IN REGISTER X
JSR ICRC16 ;INITIALIZE AGAIN
LDA #1
JSR -CRC16 ;CHECK CRC BY GENERATING IT FOR DATA
TXA .)
JSR . CRC16 ; AND THE STORED CRC ALSO
TYA
JSR CRC16
JSR GCRC16
BRK ;THE CRC SHOULD BE ZERO IN REGISTERS A AND Y
;GENERATE ‘A CRC FOR THE VALUES FROM 0..255 AND CHECK IT
JSR ICRC16
LDX #0
GENLP:
TXA ;GET NEXT BYTE
JSR CRC16 ;UPDATE CRC
INX _
BNE GENLP ;:BRANCH IF NOT DONE
JSR GCRC16 ;GET RESULTING CRC
.STA CRCVAL+1 ;AND SAVE IT

STY CRCVAL

CHKLP:

CRCVAL:

10E CRC-16 CHECKING AND GENERATION (ICRC16, CRC16, GCRC16) 439

;CHECK THE CRC BY GENERATING IT AGAIN

JSR ICRC16
LDX #0

TXA

JSR CRC16

INX

BNE CHKLP

;ALSO INCLUDE STORED CRC IN CHECK

LDA CRCVAL+1

JSR CRC16 ;HIGH BYTE OF CRC FIRST
LDA CRCVAL ‘ :

JSR CRC16 ;THEN LOW BYTE OF CRC
JSR GCRC16 ;GET RESULTING CRC

BRK ;IT SHOULD BE 0

JMP SC1005

BLOCK 2

.END

1/0 Device Table Handler (IOHDLR)

10F

Performs input and output in a device-
independent manner using /0O control
blocks and an I/O device table. The 1/O
device table consists of a linked list; each
entry contains a link to the next entry, the
device number, and starting addresses for
routines that initialize the device, determine
its input status, read data from it, determine
its output status, and write data to it. An 1/0
control block is an array containing the
device number, the operation number,
device status, the starting address of the
device’s buffer, and the length of the device’s
buffer. The user must provide IOHDLR with
the address of an appropriate 1/0 control
block and the data if only one byte is to be
written. IOHDLR will return a copy of the
status byte and the data if only one byte is
read.

This subroutine is intended as an example
of how to handle input and output in a
device-independent manner. The 1/0 device
table must be constructed using subroutines
INITIO, which initializes the device list to

empty, and ADDDL, which adds a device to -

the list. A specific example for the Apple 1l
sets up the Apple II console as device 1 and
the printer as device 2; a test routine reads a
line from the console and echoes it to the
console and the printer.

A general purpose program will perform
input or output by obtaining or constructing
an 1/0 control block and then calling
JOHDLR. Subroutine IOHDLR will then

determine which device to use and how to -

transfer control to its I/O driver by using the
1/0 device table.

Procedure: The program first initializes the
status byte to zero, indicating no errors. It

440

Registers Used
1. By IOHDRL: All
2. By INITL: A F
3. By ADDDL: All

Execution Time

1. For IOHDLR: 93 cycles overhead plus
59 cycles for each unsuccessful match of a device
number

2. For INITL: 14 cycles

3. For ADDDL: 48 cycles

Program Size
1. For IOHDLR: 101 bytes
2. For INITL: 9 bytes
3. For ADDDL: 21 bytes

Data Memory Required: Three bytes anywhere
in RAM plus six bytes on page 0. The three bytes
anywhere in RAM hold an indirect address used
to vector to an I/0 subroutine (two bytes starting
at address OPADR) and the X register (one byte
at address SVXREG). The six bytes on page 0
hold the starting address of the 1/0 control block
(iwo bytes starting at address IOCB), the head of
the list of devices (two bytes starting at address
DVLST), and the starting address of the current
device table entry (two bytes starting at address
CURDEV).

then searches the device table, looking for
the device number in the 170 control block. If
it does not find a match in the table, it exits
with an appropriate error number in the
status byte. If the program finds a device with
the proper device number, it checks for a
valid operation and transfers control to the
appropriate routine from the entry in the
device table. That routine must then transfer
control back to the original calling routine. If
the operation is invalid (the operation num-
ber is too large or the starting address for the
routine is zero), the program returns with an
error indication in the status byte.

Subroutine INITDL initializes the device
list, setting the initial link to zero.
Subroutine ADDDL adds an entry to the

10F /0 DEVICE TABLE HANDLER (0HDLR) 441

device list, making its address the head of the
list and setting its link field to the old head of
the list.

Entry Conditions

1. For IOHDLR:
(A) = More significant byte of starting
address of input/output control block
(Y) = Less significant byte of starting
address of input/output control block
(X) = Byte of data if the operation is to write
one byte.

2. For INITL: None
3. For ADDDL:
(A) = More significant byte of starting

address of a device table entry

(Y) = Less significant byte of starting
address of a device table entry.

Exit Conditions

1. For IOHDLR:

(A) = 1/0 control block status byte if an
error is found; otherwise, the routine exits to
the appropriate 1/0 driver.

(X) = Byte of data if the operation is to read
one byte.
2. For INITL:
Device list header (addresses DVLST and
DVLST+1) cleared to indicate empty list.
3. For ADDDL:
Device table entry added to list.

Example

In the exampie provided, we have the follow-
ing structure:

INPUT/OUTPUT OPERATIONS

0'3::;:" Operation
0 Initialize device
1 Determine input status
2 Read | byte from input device
3 Read N bytes from input device (normally
one line) :
4 Determine output status .

W

Write one byte to output device

6 Write N bytes to output device (normally
one line)

INPUT/QUTPUT CONTROL BLOCK

Index Contents

0 : Device number

1 Operation number

2 Status

3 Less significant byte of starting address of
buffer

4 More significant byte of starting address of
buffer

S Less significant byte of buffer length

6 More significant byte of buffer length

442 npuT/OUTPUT

tndex

e we ne e

~ w8 ne we me we we

10

11

DEVICE TABLE ENTRY

Contents
Less significant byte of link field (starting
address of next element)

More significant byte of link field (starting
address of next element)

Device number

Less significant byte of starting address of
device initialization routine

More significant byte of starting address of
device initialization routine

Less significant byte of starting address of .

input status determination routine
More significant byte of starting address of
input status determination routine
Less significant byte of starting address of
input driver routine (read 1 byte only)
More significant byte of starting address of
input driver routine (read 1 byte only)
Less significant byte of starting address of
input driver routine (N bytes or 1 line)
More significant byte of starting address of
input driver routine (N bytes or 1 line)
Less significant byte of starting address of
output status determination routine

12

13

14

15

16

More significant byte of starting address of
output status determination routine
Less significant byte of starting address of
output driver routine (write 1 byte only)
More significant byte of starting address of
output driver routine (write 1 byte only)
Less significant byte of starting address of
output driver routine (N bytes or | line)
More significant byte of starting address of
output driver routine (N bytes or 1 line)

If an operation is irrelevant or undefined
for a particular device (e.g., output status
determination for a keyboard or an input
driver routine for a printer), the correspond-
ing starting address in the device table must
be set to zero (i.e., 0000,).

Value

STATUS VALUES

Description
No errors
Bad device number (no such device)

Data available from input device, no such
operation for I/0

Output device ready

Title

Name: IOHDLR

Purpose:

devices

I/0 Device table handler

Perform I1/0 in a device independent manner.
This can only be implemented by accessing all
in the same way using a I1/0 Control
Block (IOCB) and a device table. The routines
_here will allow the following operations:

~o wa we wa

~o %o wE Ne e we ws

WE NS ME NE ME NS SO N8 NE NS NE We NE W NE N N NG Ne NS Ne N NS NS NG NG Se W6 N6 wp we we wE e e w6 we we wa

SO We NE N Na N e NE we N6 %o % N e ha we N

Entry:

Exit:

Operatio

AU WO

10F /0 DEVICE TABLE HANDLER (IOHOLR) 443

n number Description
Initialize device
Input status
Read 1 byte
Read N bytes
Output status
Write 1 byte
Write N bytes

Other operations that could be included are

Open, Cl
would su
A IOCB w
IOCB + 0
IOCB + 1
I0OCB + 2
IOCB + 3
IOCB + 4
I0OCB + 5
IOCB + 6
The devi

ose, Delete, Rename, and Append which
pport devices such as floppy disks.

ill be an array of the following form:

Device number

Operation number

Status

Low byte buffer address
High byte of buffer address
Low byte of buffer length
High byte of buffer length

ce table is implemented as a linked

list. Two routines maintain the list: INITIO,
which initializes the device list to empty, and
ADDDL, which adds a device to the list.

A device table entry has the following form:

DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL

DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL
DVTBL

+++ bbb+

Register
Register
Register

Register
Register

Status b

Low byte of link field

High byte of link field

Device number

Low byte of initialize device

High byte of initialize device

Low byte of input status routine
High byte of input status routine
Low byte of input 1 byte routine
High byte of input 1 byte routine
Low byte of input N bytes routine
10= High byte of input N bytes routine
ll= Low byte of output status routine
12= High byte of output status Troutine
13= Low byte of output 1 byte routine
14= High byte of output 1 byte routine
15= Low byte of output N bytes routine
16= High byte of output N bytes routine

WO WNNHO

A = High byte of IOCB

Y = Low byte of IOCB

X = For write 1 byte contains the byte
to write, a buffer is not used.

A = a copy of the IOCB status byte

X = For read 1 byte contains the byte

read, a buffer is not used.
yte of IOCB is 0 if the operation was

N %o w6 me we %o wE e we

WO W NE NG TE N6 NE WE NE WE Me WO NE NE WE NE e W NE Ne NG NG %e NE W Ne e NB Na NE W6 Me e e me N6 we %o we Wo. e S8 we we we e wa

444 \rut/oUTPUT

completed successfully; otherwise it contains
the error number.

Status value Description
0 . No errors
1 Bad device number
2 Input data available, no such
operation
3 . Output ready

Registers used: All

Time: 93 cycles minimum plus 59 cycles for each
device in the list which is not the requested
device.

Size: Program 131 bytes
Data 3 bytes plus

6 bytes in page zero

N mE me wa w6 wE wE We ws we Wa W WA NS W WE we W N we ~e
w6 e we ®s we ME we W6 s W6 N WE e W We WO we Wa NE e N SO

;IOCB AND DEVICE TABLE EQUATES

IOCBDN: .EQU 0 ;IOCB DEVICE NUMBER

I0OCBOP: .EQU 1 ;IOCB OPERATION NUMBER

IOCBST: .EQU 2 ;IOCB STATUS

IOCBBA: .EQU 3 ;IOCB BUFFER ADDRESS

IOCBBL: .EQU- 5 ;IOCB BUFFER LENGTH

DTLNK: .EQU 0 ;:DEVICE TABLE LINK FIELD

DTDN: .EQU 2 ;DEVICE TABLE DEVICE NUMBER :

DTSR: .EQU 3 ;BEGINNING OF DEVICE TABLE SUBROUTINES
;OPERATION NUMBERS °
NUMOP: .EQU 7 ;NUMBER OF OPERATIONS

INIT: .EQU 0 ;INITIALIZATION

ISTAT: .EQU 1 ; INPUT STATUS

R1BYTE: .EQU 2 ;READ 1 BYTE

RNBYTE: .EQU . 3 ;READ N BYTES

OSTAT: .EQU 4 ;:OUTPUT STATUS

W1BYTE: .EQU 5 ;WRITE 1 BYTE

WNBYTE: .EQU 6 ;WRITE N BYTES

;PAGE ZERO DEFINITIONS
IOCBA: .EQU ODOH ;ADDRESS OF THE IOCB

DVLST: .EQU OD2H ;ADDRESS OF A LIST OF DEVICES
CURDEV: .EQU OD4H ;STARTING ADDRESS OF THE CURRENT DEVICE TABLE ENTRY
IOHDLR:

;SAVE IOCB ADDRESS AND X REGISTER

STA IOCBA+l

STY IOCBA

STX SVXREG

SRCHLP:

_ FOUND:

10F /0 DEVICE TABLE HANDLER (toHOLR) 445

;INITIALIZE STATUS BYTE TO ZERO (NO ERRORS)

LDY #IOCBST

LDA #0

STA (IOCBA),Y ;STATUS := 0

7;SEARCH DEVICE LIST FOR THIS DEVICE

LDA DVLST ;START AT THE BEGINNING OF THE DEVICE LIST

STA CURDEV

LDA DVLST+1

STA CURDEV+1

;GET DEVICE NUMBER FROM IOCB TO REGISTER X

LDY #IO0CBDN

LDA (IOCBA),Y

TAX

;CHECK IF AT END OF DEVICE TABLE LIST (LINK FIELD = 0000)

LDA CURDEV

ORA CURDEV+1

BEQ BADDN ;BRANCH IF NO MORE DEVICES

;CHECK IF THIS IS THE CORRECT DEVICE

TXA

LDY #DTDN

CMP (CURDEV) , Y ;COMPARE THIS DEVICE NUMBER WITH THE REQUESTED
; NUMBER

BEQ FOUND ;BRANCH IF THE DEVICE IS FOUND

;ADVANCE TO THE NEXT DEVICE TABLE ENTRY THROUGH THE LINK FIELD

; MAKE CURRENT DEVICE = LINK

LDY #DTLNK

LDA (CURDEV) ,Y 7GET LOW BYTE OF LINK FIELD

PHA ; SAVE ON STACK

INY

LDA (CURDEV) , Y ;GET HIGH BYTE OF LINK FIELD

STA CURDEV+1

PLA ;RECOVER LOW BYTE OF LINK FIELD

STA CURDEV

JMP SRCHLP ;CONTINUE SEARCHING

;FOUND THE DEVICE SO VECTOR TO THE APPROPRIATE ROUTINE IF ANY

;CHECK THAT THE OPERATION IS VALID

LDY #I0CBOP

LDA (IOCBA),Y ;GET OPERATION NUMBER

CMP $NUMOP

BCS BADOP ;BRANCH IF OPERATION NUMBER IS TOO LARGE

;GET OPERATION ADDRESS (ZERO INDICATES INVALID OPERATION)

ASL A {MULTIPLY OPERATION NUMBER BY 2 TO INDEX

CLC : ADDRESSES

ADC $DTSR ;ADD TO OFFSET FOR DEVICE TABLE SUBROUTINES

TAY ;USE AS INDEX INTO DEVICE TABLE

446 nrut/OUTPUT

LDA (CURDEV) , ¥ '
STA OPADR ;STORE LOW BYTE
INY
LDA (CURDEV) , ¥ o
STA OPADR+1 ;STORE HIGH BYTE
ORA OPADR :CHECK FOR NON-ZERO OPERATION ADDRESS
BEQ BADOP ;BRANCH IF OPERATION IS INVALID (ADDRESS = 0)
LDX SVXREG ;RESTORE X REGISTER
JMP (OPADR) ;GOTO ROUTINE
BADDN:
LDA #1 ;ERROR CODE 1 -- NO SUCH DEVICE
BNE EREXIT
BADOP: -
LDA #2 ;ERROR CODE 2 -- NO SUCH OPERATION
EREXIT:
LDY $10CBST .
STA (IOCBA),Y ;STORE ERROR STATUS
RTS

;***ti**t*****************_*******t**i****

sROUTINE: INITDL

;PURPOSE: INITIALIZE THE DEVICE LIST TO EMPTY
;ENTRY: NONE

;EXIT: THE DEVICE LIST SET TO NO ITEMS

;REGISTERS USED: A,F
-*****i**tt*************t****i****t***i***

INITDL:
;INITIALIZE DEVICE LIST TO 0 TO INDICATE NO DEVICES
LDA $0
STA DVLST
STA DVLST+1
RTS

H i******i**************,*******************t*

'ROUTINE ADDDL

;PURPOSE: ADD A DEVICE TO THE DEVICE LIST

;ENTRY: REGISTER A = HIGH BYTE OF A DEVICE . TABLE ENTRY
; REGISTER Y = LOW BYTE OF A DEVICE TABLE ENTRY
;EXIT: THE DEVICE TABLE ADDED TO THE DEVICE LIST

;REGISTERS USED: ALL
-**************t***************t*************

ADDDL:
:X,Y = NEW DEVICE TABLE ENTRY
TAX

; PUSH CURRENT HEAD OF DEVICE LIST ON TO STACK
LDA DVLST+1)

10F /0 DEVICE TABLE HANDLER (ioHDLR) 447

PHA ;PUSH HIGH BYTE OF CURRENT HEAD OF DEVICE LIST
LDA DVLST
PHA ;PUSH LOW BYTE ALSO
;MAKE NEW DEVICE TABLE ENTRY THE HEAD OF THE DEVICE LIST
STY DVLST
STX DVLST+1
iSET LINK FIELD OF THE NEW DEVICE TO THE OLD HEAD OF THE DEVICE LIST
PLA
. LDY #0
STA (DVLST) , ¥ ;STORE THE LOW BYTE
PLA
INY
STA (DVLST),Y ;STORE THE HIGH BYTE
RTS

’
;DATA SECTION

OPADR: ,BLOCK 2 ;OPERATION ADDRESS USED TO VECTOR TO
; SUBROUTINE
SVXREG: .BLOCK 1 i TEMPORARY STORAGE FOR X REGISTER

SAMPLE EXECUTION:

This test routine will set up the APPLE II console as
device 1 and an APPLE II printer which is assumed to be
in slot 1 as device 2. The test routine will then read
a line from the console and echo it to the console and
the printer. : '

VO e e me me Na we we wb we we
Ne N we wE we me e Mo we we we

; EQUATE
CR .EQU 08DH ;APPLE II CARRIAGE RETURN CHARACTER
CBUF .EQU OD6H ;STARTING ADDRESS OF 1/0 BUFFER
SC1006:
t ;INITIALIZE DEVICE LIST

JSR INITDL

;SET UP APPLE CONSOLE AS DEVICE 1

LDA CONDVA +1

LDY CONDVA

JSR ADDDL ;ADD CONSOLE DEVICE TO DEVICE LIST

LDA $INIT ;INITIALIZE OPERATION

STA IOCB+I0OCBOP '

LDA #1

STA IOCB+IOCBDN ;DEVICE NUMBER = 1

LDA AIOCB+1 '

LDY AIOCB

JSR IOHDLR ; PERFORM INITIALIZATION

448 npuT/OUTPUT

TSTLP:

:SET UP APPLE PRINTER AS DEVICE 2

LDA PRTDVA+1

LDY PRTDVA

JSR ADDDL ;ADD PRINTER DEVICE TO DEVICE LIST
LDA $INIT ;INITIALIZE OPERATION

STA IOCB+IOCBOP

LDA #2

STA . IOCB+IOCBDN ;DEVICE NUMBER = 2

LDA AIOCB+1

LDY AIOCB

JSR IOHDLR ;INITIALIZE PRINTER DEVICE

; LOOP READING LINES FROM CONSOLE, AND ECHOING THEM TO
; THE CONSOLE AND PRINTER UNTIL A BLANK LINE IS ENTERED

LDA $#1 ;SET DEVICE TO NUMBER 1 (CONSOLE)

STA IOCB+IOCBDN ‘

LDA $RNBYTE ;SET OPERATION TO READ N BYTES

STA IOCB+IQOCBOP

LDA $LENBUF ;SET BUFFER LENGTH TO LENBUF

STA IOCB+IOCBBL :
LDA #0 ;THE HIGH BYTE OF LENBUF IS 0 IN OUR EXAMPLE
STA IOCB+IOCBBL+1

LDA AJOCB+1 ;SET REGISTERS A,Y TO THE 10CB ADDRESS

LDY ATOCB

JSR IOHDLR sREAD A LINE

;ECHO THE LINE TO THE CONSOLE
;DEVICE IS STILL CONSOLE FROM THE READ LINE ABOVE

LDA $WNBYTE :SET OPERATION TO WRITE N BYTES

STA IOCB+IOCBOP

LDA AIOCB+l ;SET REGISTERS A,Y TO THE IOCB ADDRESS
LDY AIOCB

JSR IOHDLR sWRITE N BYTES

;OUTPUT A CARRIAGE RETURN TO CONSOLE

LDX #CR ;SET REGISTER X TO CARRIAGE RETURN CHARACTER
LDA $W1BYTE :SET OPERATION TO WRITE 1 BYTE

STA IOCB+IOCBOP

LDA AIOCB+1 :SET REGISTERS A,Y TO THE IOCB ADDRESS
LDY AIOCB :

JSR ° IOHDLR ;WRITE 1 BYTE

;ECHO THE LINE TO THE PRINTER ALSO

LDA #2 ;SET DEVICE TO NUMBER 2 (PRINTER)

STA IOCB+IOCBDN

LDA $WNBYTE ;SET OPERATION TO WRITE N BYTES

STA I10CB+IOCBOP

LDA AIOCB+1 ;SET REGISTERS A,Y TO THE IOCB ADDRESS
LDY AIOCB

JSR IOHDLR ;WRITE N BYTES

N

;WRITE A CARRIAGE RETURN TO THE PRINTER
LDX #8DH ;SET REGISTER X TO CARRIAGE RETURN CHARACTER
LDA #W1BYTE ;SET OPERATION TO WRITE 1 BYTE

STA
LDA
LDY
JSR

LDA
LDY
ORA
BNE

BRK
JMP

IOCB+IOCBOP
AIOCB+1
AIOCB
IOHDLR

IOCB+IOCBBL
IOCB+IOCBBL,Y
TSTLP

SC1006

:IOCB FOR PREFORMING THE IO

AIOCB: ,WORD

I0CB .BLOCK
. BLOCK
.BLOCK
.WORD
.WORD

iBUFFER

LENBUF .EQU
BUFFER .BLOCK

I0CB

1

1

1
BUFFER
LENBUF

127
LENBUF

;DEVICE TABLE ENTRIES

CONDVA: ,WORD
CONDV: .WORD
«BYTE
+.WORD

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

PRTDVA: .WORD
PRTDV: ,WORD
.BYTE
.WORD
.WORD
. WORD
.WORD
.WORD
.WORD
.WORD

CONDV
0
1
CINIT

CISTAT
CIN
CINN
COSTAT
cour
COUTN

PRTDV
0

2
PINIT
0

0

0
POSTAT
POUT
POUTN

10F 1/0 DEVICE TABLE HANDLER (0HDLR) 449

iSET REGISTERS A,Y TO THE IOCB ADDRESS
;WRITE 1 BYTE
;GET LOW BYTE

;OR WITH HIGH BYTE
iBRANCH IF BUFFER LENGTH IS NOT ZERO

;ADDRESS OF THE 10CB
;DEVICE NUMBER
;OPERATION NUMBER
;STATUS

;BUFFER ADDRESS
sBUFFER LENGTH

;CONSOLE DEVICE ADDRESS
;LINK FIELD

+DEVICE 1

;CONSOLE INITIALIZE

;CONSOLE INPUT STATUS
;CONSOLE INPUT 1 BYTE
;CONSOLE INPUT N BYTES
;CONSOLE OUTPUT STATUS
;CONSOLE OUTPUT 1 BYTE
;CONSOLE OUTPUT N BYTES

i PRINTER DEVICE ADDRESS
;LINK FIELD

;DEVICE 2

sPRINTER INITIALIZE

;NO PRINTER INPUT STATUS
;NO PRINTER INPUT 1 BYTE
iNO PRINTER INPUT N BYTES
;PRINTER OUTPUT STATUS

; PRINTER OUTPUT 1 BYTE
;PRINTER OUTPUT N BYTES

;ﬁ'k***********************i*********

;CONSOLE 1/0 ROUTINES
FRR A AR R R R Rk kR AN R AR AR AR R RN A AR A Ak ok

450 npuT/OUTPUT

;CONSOLE INITIALIZE

CINIT:
LDA #0 ;A = STATUS NO ERRORS
RTS ;NO INITIALIZATION NECESSARY
;CONSOLE INPUT STATUS (READY IS BIT 7 OF ADDRESS 0CO00H)
CISTAT:
LDA - 0C000H ;GET KEYBOARD STATUS BYTE
BPL CNONE ;BRANCH IF CHARACTER IS NOT READY
LDA $2 ; INDICATE CHARACTER IS READY
BNE CIsl ;BRANCH ALWAYS TAKEN
CNONE:
' LDA $#0 ;NOT READY
CISsl
LDY $I10CBST .
STA (IOCBA) ,Y ;STORE STATUS AND LEAVE IT IN REGISTER A
RTS

;CONSOLE READ 1 BYTE

CIN:
LDA cooon
BPL CIN ;WAIT FOR CHARACTER TO BECOME READY
TXA) ;MOVE CHARACTER TO REGISTER X
LDA #0 :STATUS = NO ERRORS
RTS
;CONSOLE READ N BYTES
CINN:
;READ LINE USING THE APPLE MONITOR GETLN ROUTINE AT OFD6AH
; 33H = PROMPT LOCATION ‘
: 200H = BUFFER ADDRESS
LDA $"?" OR 80H ;SET BIT 7
STA 033H ;SET UP APPLE PROMPT CHARACTER
JSR OFD6AH : ;CALL APPLE MONITOR GETLN ROUTINE
; VERIFY THAT THE NUMBER OF BYTES READ WILL FIT INTO THE CALLERS BUFFER
LDY $I0CBBL+1
LDA (IOCBA) ,Y ;GET HIGH BYTE
BNE CINN1 ;BRANCH IF HIGH BYTE IS NOT ZERO
DEY
TXA
CMP (IOCBA) ,Y
BCC CINN1 ;BRANCH IF THE NUMBER OF CHARACTERS READ IS
; LESS THAN THE BUFFER LENGTH
BEQ CINN1 ;BRANCH IF THE LENGTHS ARE EQUAL
LDA (I0CBA) ,Y _
TAX ;OTHERWISE TRUNCATE THE NUMBER OF CHARACTERS
; READ TO THE BUFFER LENGTH
CINN1:
TXA)
STA (IOCBA) ,Y ;SET BUFFER LENGTH TO NUMBER OF CHARACTERS READ
LDA $0
INY

STA (IOCBA),Y :ZERO UPPER BYTE OF BUFFER LENGTH

10F 1/0 DEVICE TABLE HANDLER {IOHDLR) 45 1

;MOVE THE DATA FROM APPLE BUFFER AT 200H TO CALLER'S BUFFER

LDY #I0CBBA ;GET POINTER TO CALLER'S BUFFER FROM IOCB
LDA (IOCBA),Y
STA CBUF ;SAVE POINTER ON PAGE ZERO
INY
LDA (IOCBA) ,Y ;SET UP MSB OF POINTER ALSO
STA CBUF+1
TXA
BEQ CINN3 jEXIT IF NO BYTES TO MOVE
LDY $0
;NOW MOVE THE DATA TO CALLER'S BUFFER
CINN2:
LDA 200H,Y GET A BYTE FROM APPLE BUFFER
STA (CBUF),Y ;MOVE BYTE TO CALLER'S BUFFER
INY
DEX
BNE CINN2 ;COUNT BYTES
;GOOD STATUS (U) - NO ERRORS
CINN3:
LDA #0 ;NO ERRORS
RTS .

;CONSOLE OUTPUT STATUS

COSTAT:
LDA #3 ;STATUS IS ALWAYS READY TO OUTPUT
RTS

;CONSOLE OUTPUT 1 BYTE

CouT:
TXA
COouTl:
JSR OFDEDH ;APPLE CHARACTER OUTPUT ROUTINE
LDA #0 ;STATUS = NO ERRORS e
RTS
COUT1A: .WORD couTl ;ADDRESS OF OUTPUT ROUTINE TO BE PLACED IN A,Y

;CONSOLE OUTPUT N BYTES

COUTN:
LDA COUT1A+1 .
LDY COouTla ;A,Y = ADDRESS OF OUTPUT ROUTINE
JSR OUTN ;CALL OUTPUT N CHARACTERS
LDA #0 ;STATUS = NO ERRORS
RTS

;***************************************

; PRINTER ROUTINES
i ASSUME PRINTER CARD IS IN SLOT 1

;*****t******t*t******t**t*****t****t***

452 npuT/OUTPUT

; PRINTER INITIALIZE

PINIT:
LDA $0 ;s NOTHING TO DO, RETURN NO ERRORS
RTS

; PRINTER OUTPUT STATUS

POSTAT:
LDA #0 sASSUME IT IS ALWAYS READY
RTS

; PRINTER OUTPUT 1 BYTE

POUT:
TXA

POUT1:
JSR 0C107H ;CHARACTER OUTPUT ROUTINE
LDA #0
RTS

ADDRESS OF CHARACTER OUTPUT ROUTINE TO BE
PLACED IN A,Y .

POUT1A: .WORD POUT1

-
’
.
'

; PRINTER OUTPUT N BYTES

POUTN:
LDA POUT1A+1
LDY POUTI1A ;A,Y = ADDRESS OF OUTPUT ROUTINE
JSR OUTN ;CALL OUTPUT N CHARACTERS
LDA #0 ;NO ERRORS
RTS

;********************************t********

;ROUTINE: OUTN

;PURPOSE: OUTPUT N CHARACTERS :

;ENTRY: REGISTER A = HIGH BYTE OF CHARACTER OUTPUT SUBROUTINE ADDRESS
REGISTER Y = LOW BYTE OF CHARACTER OUTPUT SUBROUTINE ADDRESS
H IOCBA = STARTING ADDRESS OF AN IOCB

;EXIT: DATA OUTPUT

;REGISTERS USED: ALL
;********************i************t*******i

~e

OUTN:
;STORE ADDRESS OF THE CHARACTER OUTPUT SUBROUTINE
STA COSR+1
STY COSR
;GET OUTPUT BUFFER ADDRESS FROM IOCB, SAVE ON PAGE ZERO
LDY $#I0CBBA '
LDA (IOCBA),Y
STA CBUF
INY
LDA (IOCBA),Y

STA CBUF+1

OUTLP:

LPO:

LP1:

LP2:

DECLS:

OUT3:

COSR:
BUFLEN:
IDX:

i

10F I/O DEVICE TABLE HANDLER (OHDLR) 453

;GET BUFFER LENGTH FROM IOCB, EXIT IF IT IS ZERO

LDY #I0CBBL

LDA (IOCBA),Y

STA BUFLEN

INY

LDA (IOCBA),Y

STA BUFLEN+1

ORA BUFLEN

BEQ ouT3 iBRANCH IF BUFFER LENGTH IS ZERO
:START AT BEGINNING OF BUFFER

LDA #0

STA IDX

LDY IDX

LDA (CBUF) ,Y ;GET NEXT CHARACTER FROM BUFFER
JSR LPO iWRITE CHARACTER TO OUTPUT DEVICE
JMP LP1

JMP (COSR) ;OUTPUT THE CHARACTER VIA THE CURRENT

; OUTPUT SUBROUTINE

i INCREMENT TO THE NEXT CHARACTER IN THE BUFFER

INC IDX
BNE LP2
INC CBUF +1 ; INCREMENT THE HIGH BYTE IS NECESSARY

;DECREMENT BUFFER LENGTH, CONTINUE LOOPING IF IT IS NOT ZERO

LDA BUFLEN

BNE DECLS

DEC BUFLEN+1 ;BORROW FROM HIGH BYTE IF NECESSARY
DEC BUFLEN ;ALWAYS DECREMENT LOW BYTE

BNE OUTLP

LDA BUFLEN+1

BNE ouTLP ;CONTINUE UNLESS ALL CHARACTERS SENT
RTS

. WORD 0 ;ADDRESS OF THE CHARACTER OUTPUT SUBROUTINE
.WORD 0 ;TEMPORARY BUFFER LENGTH

.BYTE 0 ; TEMPORARY INDEX

.END

Initialize 1/0 Ports (IOPORTS)

10G

Initializes a set of 170 ports from an array
of port addresses and initial values. Examples
are given of initializing programmable 1/0
devices such as the 6520 Peripheral Interface
Device (Adapter), the 6522 Versatile Inter-
face Adapter, the 6530 Multifunction
Device, the 6532 Multlfunctlon Device, the
6551 Asychronous Commumcatnons Device
Adapter, and the 6850 Asynchronous Com-
munications Device Adapter. -

This subroutine is intended as a
generalized method for initializing 1/0 sec-
tions. The initialization may involve data
ports, data direction registers that determine
‘whether bits are inputs or outputs, control or
command registers - that determine the
operating modes of programmable devices,
counters (in timers), priority registers, and
other external registers or storage locations.

Some of the tasks the user may perform
with this routine are:

1. Assign bidiréc;ional 1/0 lines as inputs
or outputs.

" 2. Initialize output ports to known starting
values.

3. Enable or disable interrupts from pe-
ripheral chips.

4. Determine operating modes, such as
whether inputs are latched, whether strobes
are produced, how priorities are assigned,
whether timers operate continuously or only
on demand, etc. '

5. Load initial counts into timers.

454

ngistqrs Used: All

Execution Time: 16 cycles overhead plus 52
cycles per port entry. If, for example, NUMBER
OF PORT ENTRIES = 10, execution time is

52* 10 + 16 = 520 + 16 = 536 cycles.

Program Size: 40 bytes plus the size of the table
(three bytes per entry)

Data Memory Required: Four bytes on page 0,
two for a pointer to the array (starting at address
ARYADR, 00D04 in the listing) and two for a
pointer to the port (starting at address PRTADR,
00D2,¢ in the listing).

6. Select bit rates for communications.

7. Clear or reset devices that are not tied
to the overall system reset line.

8. Initialize priority registers or assign
initial priorities to interrupts or other opera-
tions. '

9. Initialize vectors used in servicing'
interrupts, DMA requests, and other inputs.

Procedure: The program loops through the
specified number of ports, obtaining the port
address and the initial value from the array
and storing the initial value in the port
address. This procedure does not depend on
the type of devices used in the 1/0 section or
on the number of devices. Additions and
deletions can be made by means of appropri-
ate changes in the array and in the parameters
of the routine, without changing the routine
itself.

106 INITIALIZE 1/0 PORTS (iPORTS) 455

4

Entry Conditions , Exit Conditions

(A) = More significant byte of starting All ports initialized.
address of array of ports and initial values

(Y) = Less significant byte of starting
address of array of ports and initial values

(X) = Number of entries in array (number
of ports to initialize).

Example
Data: Number of ports to initialize = 3 Result: Initial value for port 1 stored in port 1
Array elements are: address
High byte of port 1 address Initial value for port 2 stored in port 2
Low byte of port 1 address ad‘d.ress .
Initial value for port 1 Initial value for port 3 stored in port 3
address. .

High byte of port 2 address

Low byte of port 2 address . .
Initial value for port 2 Note that each element in the array consists

High byte of port 3 address of 3 bytes Comaining:
Low byte of port 3 address Less significant byte of port address
Initial value for port 3 More significant byte of port address

Initial value for port

e s e we we we %o wa
Ne wp ws me we we we e

Title Initialize I/0 ports
Name: IPORTS
Purpose: Initialize I/0 ports from an array of port

addresses and values.

~e %o we we owe
e we wa we we

Entry: . Register A = High byte of array address

456 nruT/OUTPUT

Register Y = Low byte of array address
Register X = Number of ports to initialize

The array consists of 3 byte elements.

array+0 = High byte of port 1 address

array+l = Low byte of port 1 address

array+2 = Value to store in port 1 address

array+3 = High byte of port 2 address

array+4 = Low byte of port 2 address

array+5 = Value to store in port 2 address
Exit: None

Registers used: All

Time: 16 cycles overhead plus

52 cycles per port to initialize
Size: Program 40 bytes

Data 2 bytes in page zero

WO me me W N ME Ne ME M WA W WE e W We W NG e W e W W Ne o W
.

;PAGE ZERO POINTERS

ARYADR .EQU ODOH ;ARRAY ADDRESS
PRTADR .EQU OD2H ; PORT ADDRESS
IPORTS:
;SAVE STARTING ADDRESS OF INITIALIZATION ARRAY
STA ARYADR+1
STY ARYADR
;EXIT IF THE NUMBER OF PORTS IS ZERO
TXA ;SET FLAGS
BEQ EXITIP ;EXIT IF NUMBER OF PORTS = 0

;LOOP PICKING UP THE PORT ADDRESS AND
; SENDING THE VALUE UNTIL ALL PORTS ARE INITIALIZED

LOOP:

;GET PORT ADDRESS FROM ARRAY AND SAVE IT
LDY #0
LDA (ARYADR) , Y :GET LOW BYTE OF PORT ADDRESS
STA PRTADR
INY

. LDA (ARYADR) ,Y : ;GET HIGH BYTE OF PORT ADDRESS
STA PRTADR+1
;GET THE INITIAL VALUE AND SEND IT TO THE PORT
INY
LDA (ARYADR) , Y sGET INITIAL VALUE
LDY $#0

STA (PRTADR) , ¥ sOUTPUT TO PORT

e me NE mE mE N0 SO We B we Ne w6 W wa N e e N WA We e e Ne W e

106G INITIALIZE 170 PORTS (iPORTS) 457

;POINT TO THE NEXT ARRAY ELEMENT

LDA ARYADR
CLC
ADC #3 ;ADD 3 TO LOW BYTE OF THE ADDRESS
STA ARYADR
BCC LOOP1
INC ARYADR+1 ; INCREMENT HIGH BYTE IF A CARRY
LOOP1:
;DECREMENT NUMBER OF PORTS TO DO,EXIT WHEN ALL PORTS ARE INITIALIZED
DEX
BNE LOOP
EXITIP:
RTS
; :
; ;
; SAMPLE EXECUTION: ;
; ;
s r
;
;INITIALIZE
; 6520 PIA
; 6522 via
; 6530 ROM/RAM/IO/TIMER
; 6532 RAM/IO/TIMER
; 6850 SERIAL INTERFACE(ACIA)
: 6551 SERIAL INTERFACE(ACIA)
SC1007:
LDA ADRARY+1
LDY ADRARY
LDX SZARY
JSR IPORTS ;INITIALIZE THE PORTS
BRK
ARRAY:

;INITIALIZE 6520, ASSUME BASE ADDRESS FOR REGISTERS AT 2000H
; PORT A = INPUT
H

CAl = DATA AVAILABLE, SET ON LOW TO HIGH TRANSITION, NO INTERRUPTS
;7 CA2 = DATA ACKNOWLEDGE HANDSHAKE
.WORD 2001H ;6520 CONTROL REGISTER A ADDRESS
.BYTE 00000000B ;INDICATE NEXT ACCESS TO DATA DIRECTION

;i REGISTER (SAME ADDRESS AS DATA REGISTER)

.WORD 2000H ;6520 DATA REGISTER A ADDRESS
.BYTE 00000000B sALL BITS = INPUT \
.WORD 20018 ;6520 CONTROL REGISTER A ADDRESS
.BYTE 00100110B ;SET UP CAl,CA2 AND SET BIT 2 TO DATA REGISTER

; PORT B = OUTPUT

; CBl = DATA ACKNOWLEDGE, SET ON HIGH TO LOW TRANSITION, NO INTERRUPTS
; CBZ = DATA AVAILABLE, CLEARED BY WRITING DATA REGISTER B

; SET TO 1 BY HIGH TO LOW TRANSITION ON CBl

458 nput/OUTPUT

.WORD
.BYTE

.WORD
.BYTE
.WORD
.BYTE

2003H
00000000B

2002H
11111111B
20034
00100100B

;6520 CONTROL REGISTER B ADDRESS

;INDICATE NEXT ACCESS TO DATA DIRECTION

; REGISTER

:6520 DATA REGISTER B ADDRESS

;ALL BITS = OUTPUT

;6520 CONTROL REGISTER B ADDRESS

:SET UP CB1,CB2 AND SET BIT 2 TO DATA REGISTER

;INITIALIZE 6522, ASSUME BASE ADDRESS FOR REGISTERS AT 2010H

PORT A = BITS 0..3 = OUTPUT, BITS 4..7 = INPUT

CA2 ARE NOT USED.

= LATCHED INPUT

DATA AVAILABLE, ‘SET ON LOW TO HIGH TRANSITION
DATA ACKNOWLEDGE HANDSHAKE

;6522 DATA DIRECTION REGISTER A
;BITS 0..3 = OUTPUT, 4..7 = INPUT
:6522 DATA DIRECTION REGISTER B
sALL BITS = INPUT

;6522 PERIPHERAL CONTROL REGISTER
;SET UP CBl, CB2

:6522 AUXILIARY CONTROL REGISTER
;MAKE PORT B LATCH THE INPUT DATA

;INITIALIZE 6530, ASSUME BASE ADDRESS FOR REGISTERS AT 2020H

’

; CAl,

; PORT B

; CBl =

; CB2 =

.WORD 2013H
.BYTE 00001111B
.WORD 2012H
.BYTE 00000000B
.WORD 201CH
.BYTE 100100008
. WORD 201BH
.BYTE 000000108
; PORT A = OUTPUT
; PORT B = INPUT
.WORD 20211
.BYTE 111111118
.WORD 2023H
.BYTE 000000008

s~ me w

.WORD
.BYTE
.WORD
.BYTE

s ma we we we

.WORD
.BYTE
.WORD
.BYTE
. WORD
.BYTE

; PORT B

BIT 7
= INPUT
2031H
01111111B
2033H
000000008B

2041H

0

2042H
10011110B
20438
00000011B

;6530 DATA DIRECTION REGISTER A
;ALL BITS = OUTPUT
26530 DATA DIRECTION REGISTER B
;ALL BITS = INPUT

. INITIALIZE 6532, ASSUME BASE ADDRESS FOR REGISTERS AT 2030H
PORT A = BITS 0..6 = OUTPUT

= INPUT FOR PORT B DATA AVAILABLE.

;6532 DATA DIRECTION REGISTER A
;BITS 0..6 = OUTPUT, BIT 7 = INPUT
;6532 DATA DIRECTION REGISTER B
;ALL BITS = INPUT

INITIALIZE 6551, ASSUME BASE ADDRESS FOR REGISTERS:AT 2040H
8 BIT DATA, NO PARITY
1 STOP BIT
9600 BAUD FROM ON BOARD BAUD RATE GENERATOR
NO INTERRUPTS

;WRITE TO 6551 STATUS REGISTER TO RESET
;THIS VALUE COULD BE ANYTHING

;6551 CONTROL REGISTER

;1 sSTOP, 8 BIT DATA, INTERNAL 9600 BAUD
;6551 COMMAND REGISTER

;NO PARITY, NO ECHO, NO RECEIVER INTERRUPT,
;DTR LOW .

;INITIALIZE 6850, ASSUME BASE ADDRESS FOR REGISTERS AT 2050H
; 8 BIT DATA, NO PARITY .

10G INITIALIZE 1/0 PORTS (PORTS) 459

; 1 STOP BIT
; DIVIDE MASTER CLOCK BY 1
; NO INTERRUPTS

.WORD 2050H ;WRITE TO 6850 CONTROL REGISTER
.BYTE 00000011B ; PERFORM A MASTER RESET
.WORD 20500 ;6850 CONTROL REGISTER
.BYTE 00010101B iNO INTERRUPTS, RTS LOW,
' ;8 BITS, 1 STOP, DIVIDE BY 1
ENDARY: sEND OF ARRAY
ADRARY: .WORD ARRAY ;ADDRESS OF ARRAY
SZARY: .BYTE (ENDARY - ARRAY) / 3 iNUMBER OF PORTS TO INITIALIZE

- END ; PROGRAM

Delay Milliseconds (DELAY)

10H

Provides a delay of between 1 and 255
milliseconds, depending on the parameter
supplied. The user must calculate the value
MSCNT to fit a particular computer.

MSCENT = (100/CYCLETIME — 10)/5
= 200/CYCLETIME — 2

CYCLETIME is the number of micro-
seconds per clock period for a particular com-
puter (1 for KIM-1, SYM-1, and AIM-65,
0.9799269 for APPLE 1I™).

Procedure: The program simply counts
down the index registers for the appropriate
amount of time as determined by the user-

Registers Used: X, Y, P

Execution Time: | millisecond (Y). If (Y) =0,
the minimum time is 17 cycles including a JSR
instruction.

Program Size: 156 bytes
Data Memory Required: None

Special Case: (Y) = 0 causes an exit with a
minimum execution time of 17 cycles including a
ISR instruction. {Y) = 0 and (X) is unchanged.

supplied constant. A few extra NOPs take
account of the call instruction, the return
instruction, and the routine overhead.

Entry Conditions

(Y) = Number of milliseconds to delay

Exit Conditions

Returns after the specified number of milli-
seconds with (X) = (Y) = 0.

(1to 255).
Example
Data: (Y) = number of milliseconds = 2A, = 42y,
Result: Software delay of 2A,, (42,,) milliseconds,

assuming that user supplies the proper value

of MSCNT.

Mo me w4 wp we we N we

Ne ws e me ms e we we

Title Delay milliseconds
Name: Delay
; Purpose: Delay from 1 ‘to 255 milliseconds :

460

10H DELAY MILLISECONDS (DELAY) 461

Entry: : Register Y = number of milliseconds to delay.

Exit: Returns to calling routine after the
specified delay.

Registers used: X,Y,P

e we wa me we we me me

Time: 1 millisecond * Register Y.
If Y = 0 then the minimum time is 17
cycles including the JSR overhead.

Size: Program 29 bytes
Data NONE

L I I . L LI T i

~e %o we e me me e e we

HERE IS THE FORMULA FOR COMPUTING THE DELAY COUNTS MSCNT1 AND MSCNT2

MSCNT = 200/CYCLETIME - 2 WHERE CYCLE TIME IS THE LENGTH
OF A PARTICULAR COMPUTER'S CLOCK PERIOD IN MICROSECONDS

EXAMPLES: KIM, SYM, AIM HAVE 1 MHz CLOCKS, SO MSCNT = 198,
APPLE HAS A 1.023 MHz CLOCK, SO MSCNT = 202.

IN THE LAST ITERATION, WE REDUCE THE COUNT BY 3 (MSCNT)
TO DELAY 1 MILLISECOND LESS THE OVERHEAD WHERE THE
OVERHEAD 1S:

6 CYCLES ==> JSR DELAY
2 CYCLES ==> CPY #0
2 CYCLES ==> BEQ EXIT (ASSUMED NOT TAKEN)
2 CYCLES ==> NOP :
2 CYCLES ==> CPY #l1
3 CYCLES ==> BNE DELAYA (ASSUMED TAKEN)
2 CYCLES ==> DEY

-1 CYCLE ==> THE LAST BNE DELAYl NOT TAKEN
2 CYCLES ==> LDX #MSCNT2

-1 CYCLE ==> THE LAST BNE DELAY2 NOT TAKEN
6 CYCLES ==> RTS

25 CYCLES OVERHEAD

TE NS N NS N Ne Ne N N WE e NE me %e e wa e %e e W we e we w8

H

; EQUATES
; 1 MHZ CLOCK
iMSCNT . EQU 0C6H 1198 TIMES THROUGH DELAY1
i
; APPLE (1.023 MHZ)
MSCNT . EQU OCAH ;202 TIMES THROUGH DELAY1
DELAY: _
CPY #0 ; 2 CYCLES
BEQ EXIT : 2 CYCLES (EXIT IF DELAY = 0)
NOP i 2 CYCLES (TO MAKE OVERHEAD = 25 CYCLES)

462 nrut/OUTPUT

;IF DELAY IS TO BE 1 MILLISECOND THEN GOTO LAST]
; THIS LOGIC IS DESIGNED TO BE 5 CYCLES THROUGH EITHER PATH

CPY #1 ; 2 CYCLES
BNE DELAYA ; 3 CYCLES (IF TAKEN ELSE 2 CYCLES)
JMP LAST1 ; 3 CYCLES
;DELAY 1 MILLISECOND TIMES (Y-1)
DELAYA: ‘
DEY : 2 CYCLES (PREDECREMENT Y)
DELAYO:
LDX #MSCNT ; 2 CYCLES
DELAY1:)
DEX ; 2 CYCLES
BNE DELAYl ; 3 CYCLES
NOP ; 2 CYCLES
NOP ; 2 CYCLES
DEY ; 2 CYCLES
BNE DELAYO ; 3 CYCLES
LAST1:
;DELAY THE LAST TIME 25 CYCLES LESS TO TAKE THE
;. CALL, RETURN, AND ROUTINE OVERHEAD INTO ACCOUNT
LDX #MSCNT-3 ; 2 CYCLES
DELAY2:
‘ DEX ; 2 CYCLES
BNE DELAY2 ; 3 CYCLES
EXIT: .
RTS ; 6 CYCLES
;
; SAMPLE EXECUTION:
SC1008:
;DELAY 10 SECONDS
; CALL DELAY 40 TIMES AT 250 MILLISECONDS EACH
LDA $#40 ;40 TIMES (28 HEX)
STA COUNT
;DELAY 1/4 SECOND
QTRSCD:
' LDY #250 ;250 MILLISECONDS (FA HEX)
JSR DELAY
DEC COUNT
BNE QTRSCD
BRK ;STOP AFTER 10 SECONDS

JMP §C1008

~e wo we we we

10H DELAY MILLISECONDS (DELAY) 463

;DATA SECTION
COUNT .BYTE 0

.END ; PROGRAM

Unbuffered Interrupt-Driven Input/Output

Using a 6850 ACIA (SINTIO)

11A

Performs interrupt-driven input and out-
put using a 6850 ACIA and single-character
input and output buffers. Consists of the
following subroutines: '

* 1. INCH reads a character from the input
buffer.

2. INST determines whether there is a
character available in the input buffer.

3. OUTCH writes a character into the out-
put buffer.

4. QUTST determines whether the output
buffer is full.

5. INIT initializes the 6850 ACIA, the
interrupt vectors, and the software flags
(used to transfer data between the main pro-
gram and the interrupt service routine).

6. IOSRVC determines which interrupt
occurred and provides the proper input or
output service. In response to the input inter-
rupt, it reads a character from the ACIA into
the input buffer. In response to the output
interrupt, it writes a character from the out-
put buffer into the ACIA.

Examples describe a 6850 ACIA on an
Apple II serial 1/0 board in slot 1.
Procedures: '

1. INCH waits for a character to become
* available, clears the Data Ready flag
(RECDF), and loads the character into the
accumulator.

2. INST sets the Carry flag from the Data
Ready flag (memory location RECDF).

3. OUTCH waits for the character buffer
to empty, places the character in the buffer,
and sets the Character Available flag
(TRNDF).

464

Registers Used:

1. INCH AF Y

2. INST A, F

3. O0UTCH A,F, Y

4. OUTST A,F

5. INIT A, F

Execution Time:

1. INCH 33 cycles if a character is available
2. INST 12 cycles

3. OUTCH 92 cycles if the output
buffer is empty and the ACIA is ready to send
data

4, OUTST 12 cycles
S. INIT 73 cycles

6. IOSRVC 39 cycles to service an input
interrupt, 59 cycles to service an output interrupt,
24 cycles to determine interrupt is from another
device

Program Size: 168 bytes

Data Memory Required: Six bytes anywhere in
RAM. One byte for the received data (at address
RECDAT), one byte for the receive data flag (at
address RECDF), one byte for the transmit data
(at address TRNDAT), one byte for the transmit
data flag (at address TRNDF), and two bytes for
the address of the next interrupt service routine
(starting at address NEXTSR).

4. QUTST sets the Carry flag from the
Character Available flag (memory location
TRNDF).

5. INIT clears the software flags, sets up
the interrupt vector, resets the ACIA (a
master reset, since the ACIA has no reset
input), and initializes the ACIA by placing
the appropriate value in its control register
(input interrupts enabled, output interrupts
disabled).

6. IOSRVC determines whether the inter-
rupt was an input interrupt (bit 0 of the ACIA
status register = 1), an output interrupt (bit

11A UNBUFFERED INTERRUPT-DRIVEN 1/0 USING A 6850 ACIA (SINTIO) 465

1 of the ACIA status register = 1), or the
product of some other device. If the input
interrupt occurred, the program reads the
data, saves it in memory, and sets the Data
Ready flag (RECDF). If the output interrupt
occurred, the program determines whether
data is available. If not, the program simply
disables the output interrupt. If data is availa-
ble, the program sends it to the ACIA, clears
the Character Available flag (TRNDF), and
enables both the input and the output inter-
rupts.

The only special problem in using these
routines is that an output interrupt may occur
when no data is available. We cannot ignore
the interrupt or it will assert itself
indefinitely, creating an endless loop. The
solution is to disable output interrupts. But
now we create a new problem when data is
ready to be sent. That is, if we have disabled
output interrupts, the system cannot learn
from an interrupt that the ACIA is ready to
transmit. The solution to this is to create an
additional, non-interrupt-driven entry to the
routine that sends a character to the ACIA.
Since this entry is not caused by an interrupt,
we must check the ACIA-to see that its out-
put register is actually empty before sending
it a character.

The special sequence of operations is the
following:

1. Output interrupt occurs before new

data is available (that is, the ACIA becomes

ready for data). The response is to disable the
output interrupt, since there is no data to be
sent. Note that this sequence will not occur
initially, since INIT disables the output inter-
rupt. Otherwise, the output interrupt would
occur immediately, since the ACIA surely
starts out empty and therefore ready to
transmit data.

2. Output data becomes available. That is,
the system now has data to transmit. But
there is no use sitting back and waiting for the
output interrupt, since it has been disabled.

3. The main program calls the routine
(OUTDAT) that sends data to the ACIA.
Checking the ACIA’s status shows that it is,
in fact, ready to transmit a character (it told
us it was when the output interrupt occur-
red). The routine then sends the character
and reenables the interrupts.

The basic problem here is that output
devices may request service before the com-
puter is ready for them. That is, the devices
can accept data but the computer has nothing
to send. In particular, we have an initializa-
tion problem caused by output interrupts
asserting themselves and expecting service.
Input devices, on the other hand, request
service only when they have data. They start
out in the not ready state; that is, an input
device has no data to send initially, while the
computer is ready to accept data. Thus output
devices cause more initialization and
sequencing problems in interrupt-driven
systems than do input devices.

Our solution may, however, result in an
odd situation. Let us assume that the system
has some data ready for output but the ACIA
is not yet ready for it. Then the system must
wait with interrupts disabled for the ACIA to
become ready; that is, an interrupt-driven
system must disable its interrupts and wait
idly, polling the output device. We could
eliminate this drawback by keeping a soft-

“ware flag that would be changed when the

output interrupt occurred at a time when
there was no data. Then the system could
check the software flag and determine
whether the output interrupt had already
occurred. (See Subroutine 11C.)

466 NTerRRUPTS

Entry Conditions Exit Conditions
1. INCH: none 1. INCH: character in accumulator
2. INST: none 2. INST: Carry flag = 0 if no character
3. QUTCH: character to transmit in is available, 1 is a character is available
accumulator 3. OUTCH: none
4. OUTST: none 4. QUTST: Carry flag = 0 if output
5. INIT: none buffer is empty, 1 if it is full.
: Title Simple interrupt input and output using a 68504 H
; ACIA and a single character buffer. ;
H Name: SINTIO ;
Purpose: This program consists of 5 subroutines which

perform interrupt driven input and output using
a 6850 ACIA.

INCH
Read a character.
INST
Determine input status (whether the input
buffer is empty).
OUTCH
Write a character.
OUTST
Determine output status (whether the output
buffer is full).
INIT
Initialize.

Entry: INCH
No parameters.
INST
No parameters.
OUTCH
Register A = character to transmit
QouUTST
No parameters.
INIT
No parameters.

Exit: INCH
Register A = character.
INST
Carry flag equals 0 if input buffer is empty,
1 if character is available.

Ne ws we we we Se We we We WS We %6 W NG e e Ve We Ne WE Ne Ne We We Sr %e e S0 Ne [e [W W S

we we ®a %o W %e WE WO Ne WE M W NS VS Ne WE Ve W Ne W We We W NS We W Ne WO Ve N0 W W We e

11A UNBUFFERED INTERRUPT-DRIVEN 1/0 USING A 6850 ACIA (SINTIO) 467

OUTCH
No parameters
OUTST
Carry flag equals 0 if output buffer is
empty, 1 if it is full.
INIT
No parameters.

Registers used: INCH
A,F,Y
INST
A,F
OUTCH
A,F,Y
OUTST
A,F
INIT
A,F

Time: INCH

33 cycles if a character is available

INST
12 cycles

OuUTCH
92 cycles if the output buffer is empty and

the ACIA is ready to transmit

OUTST
12 cycles

INIT
73 cycles

_ IOSRVC

24 cycles minimum if the interrupt is not ours
39 cycles to service a input interrupt
59 cycles to service a output interrupt

Size: Program 168 bytes
Data 6 bytes

TE VS WO TE N N Ne T TE Ne e Ne Ne % % NE Ne TSI Ve Me e e Ne %6 e NP NE N NE wa we Ne e %e NE e W8 %e we

TE NS NS NE Me Ne NE WO N NE Ne NE NE NE N e NE NE N N6 me k%8 we MO W We Ne Ne N %8 N6 We N N6 we we Wi we

7EXAMPLE 6850 ACIA PORT DEFINITIONS FOR AN APPLE SERIAL BOARD IN SLOT 1

ACIASR .EQU 0C094H ;ACIA STATUS REGISTER
ACIADR .EQU 0C095H ;ACIA DATA REGISTER
ACIACR .EQU 0C094H ;ACIA CONTROL REGISTER
IRQVEC .EQU 03FEH sAPPLE IRQ VECTOR ADDRESS
;READ A CHARACTER
INCH:
JSR INST ;GET INPUT STATUS
BCC INCH iWAIT IF CHARACTER IS NOT AVAILABLE
PHP :SAVE CURRENT STATE OF INTERRUPT SYSTEM
SEI ;DISABLE INTERRUPTS
LDa #0
STA RECDF ;INDICATE BUFFER IS NOW EMPTY
LDA RECDAT ;GET THE CHARACTER FROM THE BUFFER

PLP ;RESTORE FLAGS

468 rerruPTS

IF DATA IS AVAILABLE)

;GET THE DATA READY FLAG
;SET CARRY FROM FLAG
; CARRY = 1 IF CHARACTER IS AVAILABLE

;SAVE STATE OF INTERRUPT FLAG
;SAVE CHARACTER TO OUTPUT

BUFFER TO EMPTY, THEN STORE THE NEXT CHARACTER

;GET THE OUTPUT STATUS

;WAIT IF THE OUTPUT BUFFER 1S FULL

;DISABLE INTERRUPTS WHILE LOOKING AT THE

; SOFTWARE FLAGS

:GET THE CHARACTER

;STORE THE CHARACTER

; INDICATE CHARACTER AVAILABLE (BUFFER FULL)

;SEND THE DATA TO THE PORT
;RESTORE FLAGS

1 IF BUFFER IS FULL)

;CARRY = 1 IF CHARACTER IS IN THE BUFFER

;SAVE CURRENT STATE OF FLAGS
;DISABLE INTERRUPTS DURING INITIALIZATION

;INITIALIZE THE SOFTWARE FLAGS

;NO INPUT DATA AVAILABLE
;OUTPUT BUFFER EMPTY

. ;SAVE THE CURRENT IRQ VECTOR IN NEXTSR

;SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

RTS
;RETURN INPUT STATUS (CARRY
INST:
LDA RECDF
LSR A
RTS
;sWRITE A CHARACTER
OUTCH:
PHP
PHA
;sWAIT FOR THE CHARACTER
WAITOC:
JSR OUTST
BCS WAITOC
SEI
PLA
STA TRNDAT
LDA $OFFH
STA TRNDF
JSR OUTDAT
PLP
RTS
:OUTPUT STATUS .(CARRY
OUTST:
LDA TRNDF
LSR A
RTS
;sINITIALIZE
INIT:
PHP
SEI
LDA $0
STA RECDF
STA TRNDF
LDA IRQVEC
STA NEXTSR
LDA IRQVEC+1
STA NEXTSR+1
LDA AIOS
STA IRQVEC
LDA AIOS+1
STA IRQVEC+1
;INITIALIZE THE 6850
LDA $#011B
STA ACIACR
LDA $10010001B
STA ACIACR

;sMASTER RESET ACIA

;INITIALIZE ACIA MODE TO

11A UNBUFFERED INTERRUPT-DRIVEN 1/0 USING A 6850 ACIA (SINTIO) 469

DIVIDE BY 16

8 DATA BITS

2 STOP BITS

OUTPUT INTERRULPTS DISABLED (NOTE THIS)
INPUT INTERRUPTS ENABLED

w. we we we o,

PLP sRESTORE CURRENT STATE OF THE FLAGS

RTS
AIOS: .WORD IOSRVC ;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE
; INPUT OUTPUT INTERRUPT SERVICE ROUTINE
IOSRVC:

PHA ' sSAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE ACIA STATUS: BIT 0 = 1 IF AN INPUT INTERRUPT
;BIT 1 = 1 IF AN OUTPUT INTERRUPT

LDA ACIASR
LSR A sBIT 0 TO CARRY '
BCS IINT ;BRANCH IF AN INPUT INTERRUPT
LSR A ;BIT 1 TO CARRY
BCS OINT ;BRANCH IF AN OUTPUT INTERRUPT
;THE INTERRUPT WAS NOT CAUSED BY THIS ACIA
PLA
JMP (NEXTSR) ;GOTO THE NEXT SERVICE ROUTINE
;SERVICE INPUT INTERRUPTS
IINT:
LDA ACIADR +READ THE DATA
STA RECDAT ;STORE IT AWAY
LDA #0FFH
STA RECDF ;INDICATE WE HAVE A CHARACTER IN RECDAT
JMP EXIT ;EXIT IOSRVC
;SERVICE OUTPUT INTERRUPTS
OINT:
LDA TRNDF {GET DATA AVAILABLE FLAG
BEQ NODATA ;BRANCH IF NO DATA TO SEND

JSR OUTDT1 ; ELSE OUTPUT THE DATA,
; (WE DO NOT NEED TO TEST THE STATUS)
JMP EXIT

;IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,

WE MUST DISABLE THE INTERRUPT TO AVOID AN ENDLESS LOOP.

LATER WHEN A CHARACTER BECOMES AVAILABLE, WE CALL THE

OUTPUT ROUTINE, OUTDAT, WHICH MUST TEST ACIA STATUS BEFORE
SENDING THE DATA. THE OUTPUT ROUTINE MUST ALSO REENABLE THE OUTPUT
INTERRUPT AFTER SENDING THE DATA. THIS PROCEDURE OVERCOMES THE
PROBLEMS OF AN UNSERVICED OUTPUT INTERRUPT ASSERTING ITSELF
REPEATEDLY, WHILE STILL ENSURING THAT OUTPUT INTERRUPTS ARE
RECOGNIZED AND THAT DATA IS NEVER SENT TO AN ACIA THAT IS

NOT READY FOR IT. THE BASIC PROBLEM HERE IS THAT AN OUTPUT
DEVICE MAY REQUEST SERVICE BEFORE THE COMPUTER HAS

ANYTHING TO SEND (WHEREAS AN INPUT DEVICE HAS DATA WHEN "IT

WO Ne me we we we we we w0 we wg

‘470 INTERRUPTS

; REQUESTS SERVICE)

NODATA:
LDA #10010001B ;DISABLE OUTPUT INTERRUPTS, ENABLE INPUT
; INTERRUPTS, 8 DATA BITS, .2 STOP BITS, DIVIDE
; BY 16 CLOCK
STA ACIACR ;TURN OFF OUTPUT INTERRUPTS
EXIT:
PLA ;RESTORE REGISTER A
RTI ;RETURN FROM INTERRUPT

;*******tt**t**********t**********t**i

;ROUTINE: OUTDAT, OUTDTl (OUTDAT IS NON-INTERRUPT DRIVEN ENTRY POINT)
; PURPOSE: SEND A CHARACTER TO THE ACIA

;ENTRY: TRNDAT = CHARACTER TO SEND

sEXIT: NONE

;REGISTERS USED: A,F
;**********************f**************** .

;NON-INTERRUPT ENTRY. MUST CHECK IF ACIA IS READY OR WAIT FOR IT
OUTDAT: '

LDA ACIASR ;CAME HERE WITH INTERRUPTS DISABLED
AND #00000010B ;TEST THE ACIA OUTPUT REGISTER FOR EMPTY
BEQ OUTDAT sBRANCH IF IT IS NOT EMPTY
OUTDT1: LDA TRNDAT ;GET THE CHARACTER
STA ACIADR ;OUTPUT DATA
LDA #0
STA TRNDF ; INDICATE BUFFER EMPTY
LDA #10110001B
STA ACIACR ;ENABLE 6850 OUTPUT AND INPUT INTERRUPTS,

; 8 DATA BITS, 2 STOP BITS, DIVIDE BY 16 CLOCK
RTS

;:DATA SECTION

RECDAT .BLOCK
RECDF .BLOCK
TRNDAT .BLOCK
TRNDF ..BLOCK

;RECEIVE DATA

;RECEIVE DATA FLAG (0 = NO DATA, FF = DATA)

; TRANSMIT DATA

; TRANSMIT DATA FLAG (0 BUFFER EMPTY,

H FF BUFFER FULL)

;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

N R

NEXTSR .BLOCK

SAMPLE EXECUTION: -

w. we me we ws
~e Ne we we we

SC1101:
JSR INIT ;INITIALIZE
CLI ;ENABLE INTERRUPTS

11A UNBUFFERED INTERRUPT-DRIVEN I/0 USING A 6850 ACIA (siNTio) 471

;SIMPLE EXAMPLE

LOOP: " : .
JSR INCH ;READ A CHARACTER
PHA .
JSR OUTCH 3ECHO IT
PLA o . . o
CMP #1BH 1S IT AN ESCAPE CHARACTER ?
BNE LOOP . 3STAY IN LOOP IF NOT
BRK .
;AN ASYNCHRONOUS EXAMPLE. L o
: OUTPUT "A" TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE
_ ;7 INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.
ASYNLP:
;OUTPUT AN "A" IF OUTPUT IS NOT BUSY .
JSR ouTST ;IS OUTPUT BUSY ?
BCS ASYNLP ;BRANCH IF IT IS
LDA #°A" ,
JSR OUTCH ;OUTPUT THE CHARACTER
;GET A CHARACTER FROM THE INPUT PORT IF ANY
JSR INST ;IS INPUT DATA AVAILABLE ?
BCC ASYNLP ;BRANCH IF NOT (SEND ANOTHER "A")
JSR INCH +GET . THE CHARACTER
CMP #1BH ;1S IT AN ESCAPE CHARACTER ?
BEQ DONE +;BRANCH IF IT 1S
JSR OUTCH :ELSE ECHO IT
JMP ASYNLP ;AND CONTINUE
DONE:
BRK A
JMP S§C1101

.END ; PROGRAM

Unbuffered Interrupt-Driven Input/Output

Using a 6522 VIA (PINTIO)

11B

Performs interrupt-driven input and out-
put using a 6522 VIA and single-character
input and output buffers. Consists of the
following subroutines:

1. INCH reads a character from the input
buffer.

2. INST determines whether there is a
character available in the input buffer.

3. OUTCH writes a character into the out-
put buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the 6522 VIA, the
interrupt vectors, and the software flags.

6. IOSRVC determines which interrupt
occurred and provides the proper input or
output service (i.e., it reads a character from
the VIA into the input buffer in response to
the input interrupt and it writes a character
from the output buffer into the VIA in
response to the output interrupt).

Examples describe a 6522 VIA attached to

an Apple 11 computer.

Procedure:

1. INCH waits for a character to be availa-
ble in the input buffer, clears the Data Ready
flag (RECDF), and loads the character from
the buffer into the accumulator.

2. INST sets the Carry flag from the Data
Ready flag (memory location RECDF).

3. OUTCH waits for the output buffer to
be emptied, places the character (from the
accumulator) in the buffer, and sets the
character available (buffer full) flag
(TRNDF). If an unserviced output interrupt

472

Registers Used:

1. INCH: A FY

2. INST: A, F

3. OUTCH: A F Y

4. INIT A,F
Execution Time:

i. INCH: 33 cycles if a character is
available

2. INST: 12 cycles

3. OUTCH: 83 cycles if the output buffer is
empty and the VIA is ready for data

4. QUTST: 12 cycles

S. INIT: 93 cycles

6. IOSRVC: 43 cycles to service an input

interrupt, 81 cycles to service an output interrupt,
24 cycles to determine that interrupt is from
another device

Program Size: 194 bytes

Data Memory Required: Seven bytes anywhere
in RAM. One byte for the received data (at
address RECDAT), one byte for the Receive
Data flag (at address RECDF), one byte for the
transmit data (at address TRNDAT), one byte
for the Transmit Data flag (at address TRNDF),
one byte for the Output Interrupt flag (at address
OIE), and two bytes for the address of the next
interrupt service routine (starting at address
NEXTSR).

has occurred (i.e., the output device has
requested service when no data was availa-
ble), OUTCH actually sends the data to the
VIA.

4. OUTST sets the Carry flag from the
Character Available flag (memory location
TRNDPF).

5. INIT clears the software flags, sets up
the interrupt vector, and initializes the 6522
VIA. It makes port A an input port, port B an
output port, control lines CAl and CBI
active low-to-high, control line CA2 a brief

’

11B UNBUFFERED INTERRUPT-DRIVEN {/0 USING A 6522 VIA {PINTIO) 473

output pulse indicating input acknowledge
(active-low after the CPU reads the data),
and control line CB2 a write strobe (active-
low after the CPU writes the data and lasting
until the peripheral becomes ready again).
INIT also enables the input interrupt on CAl
and the output interrupt on CB1.

6. IOSRVC determines whether the inter-
rupt was an input interrupt (bit 1 of the VIA
interrupt flag register = 1), an output inter-
rupt (bit 4 of the VIA interrupt flag register
= 1), or the product of some other device. If
the input interrupt occurred, the program
reads the data, saves it in the input buffer,
and sets the Data Ready flag (RECDF). If the
output interrupt occurred, the program
determines whether any data is available. If
not, the program simply clears the interrupt
and clears the flag (OIE) that indicates the
output device is actually ready (that is, an
output interrupt has occurred at a time when
no data was available). If data is available, the
program sends it from the output buffer to
the VIA, clears the Character Available flag
(TRNDF), sets the Output Interrupt flag
(OIE), and enables both the input and the
output interrupts.

The only special problem in using these
routines is that an output interrupt may occur
when no data is available to send. We cannot

ignore the interrupt or it will assert itself
indefinitely, creating an endless loop. The
solution is to simply clear the interrupt by
reading the data register in port B. But now
we create a new problem when the main pro-
gram has data ready to be sent. The interrupt
indicating that the output device is ready has
already occurred (and been cleared), so there
is no use waiting for it. The solution is to es-
tablish an extra flag that indicates (with a 0)
that the output interrupt has occurred with-
out being serviced. We call this flag OIE, the
Output Interrupt flag. The initialization
routine sets it initially (since the output
device has not requested service), and the
output service routine clears it when an out-
put interrupt occurs that cannot be serviced
(no data is available) and sets it after sending
data to the VIA (in case it might have been
cleared). Now the output routine QUTCH
can check OIE to determine whether the out-
put interrupt has already occurred (a 0 value
indicates it has, FF hex that it has not).
Note that we can clear a VIA interrupt
without actually sending any data. We cannot
do this with a 6850 ACIA (see Subroutines
11A and 11C), so the procedures there are
somewhat different. This problem of unser-
viced interrupts occurs only with output
devices, since input devices request service
only when they have data ready to transfer.

474 nTerrUPTS

Entry Conditions

1. INCH: none
2. INST: none

3. OUTCH: character to transmit in
accumulator

4. QUTST: none
5. INIT: none

Exit Conditions

1. INCH: character in accumulator

2. INST: Carry flag = 0if no character
is available, 1 if a character is available

3. OUTCH: none

4. QUTST: . Carry flag = 0 if output
buffer is empty, 1 if it is full.

5. INIT: none

H
H Name: PINTIO
i
Purpose:
a 6522 VIA.
INCH

INST

OUTCH

OUTST
INIT

Entry: INCH
INST
OUTCH
OUTST

INIT

Exit: INCH

we s %o W %e W s We N6 e WS WO we N4 Na WE We W N We W Ne W6 N No We W e Ne W e S

INST

Title Simple interrupt input and output using a 6522
VIA and a single character' buffer.

This program consists of 5 subroutines which
perform interrupt driven input and output using

Read a character.

Determine input status (whether the input
buffer is empty).

Write a character.

Determine output status (whether the output
buffer is full). .

Initialize.

No parameters.
No parameters.
Register A character to transmit
No parameters.

No parameters.

Register A character.

e we wme wo wa

we NS %e W Ne NE we NE Ne We WO NS WG O NS We wa We ws WE N6 WE W W N4 N0 Ne N W N Ne Vo

118 UNBUFFERED INTERRUPT-DRIVEN 1/0 USING A 6522 VIA (PINTIO) 475

Carry flag equals 0 if input buffer is empty,
1 if character is available.

OUTCH
No parameters

ouUTST
Carry flag equals 0 if output buffer is
empty, 1 if it is full.

INIT
No parameters.

Registers used: INCH
A,F,Y
INST

Time: INCH
33 cycles if a character is available
INST ’
12 cycles
OUTCH
83 cycles if the output buffer is empty and
the VIA is ready to transmit
OUTST
12 cycles
INIT
93 cycles
IOSRVC
24 cycles minimum if the interrupt is not ours
43 cycles to service a input interrupt
8l cycles to service a output interrupt

Size: Program 194 bytes
Data 7 bytes,

-
WO M Ne NE NE Me Ne ME Ne NS Mo NG N NE NS N Ns Me e We NP NS Ne ME N N N6 Ve WE wp NE %o We we e N6 e wa w5 we e

MO NE WE W We Me NE NE ME W N6 e ME W Me e e W ME We e ME Wh WE NE WO WS WE NP e N W Ne NP Me wE We w2 we ws we

;EXAMPLE 6522 VIA PORT DEFINITIONS

via .EQU 0CO090H ;VIA BASE ADDRESS

VIABDR .EQU vIia . ;VIA PORT B DATA REGISTER

VIAADR .EQU VIA+l ;VIA PORT A DATA REGISTER, WITH HANDSHAKING
VIABDD .EQU VIA+2 ;VIA PORT B DATA DIRECTION REGISTER

VIAADD .EQU VIA+3 ;VIA PORT A DATA DIRECTION REGISTER

VIAACR .EQU VIA+l1 ;VIA AUXILIARY CONTROL REGISTER

VIAPCR .EQU VIA+12 ;VIA PERIPHERAL CONTROL REGISTER

VIAIFR .EQU VIA+13 :VIA INTERRUPT FLAG REGISTER

VIAIER .EQU VIA+l4 ;VIA INTERRUPT ENABLE REGISTER

IRQVEC .EQU 03FEH ;APPLE IRQ VECTOR ADDRESS

sREAD A CHARACTER

476 inTERRUPTS

INCH:
JSR
BCC
PHP
SEI
LDA
LDA
STA
LDA
PLP
RTS

;RETURN INPUT STATUS (CARRY

INST:
LDA
LSR

RTS

INST
INCH

RECDAT
#0
RECDF
RECDAT

.RECDF

A

;WRITE A CHARACTER

OUTCH:
PHP
PHA

WAITOC:
JSR
BCS
SEI

PLA
STA
LDA
STA
LDA

BNE
JSR
OUTCH1l: PLP
RTS

;WAIT FOR THE CHARACTER

OUTST
WAITOC

TRNDAT
#0FFH
TRNDF
OIE

OUTCH1
OUTDAT

;OUTPUT STATUS (CARRY

OUTST:
LDA
LSR
RTS
;INITIALIZE
INIT:
PHP
SEI

;INITIALIZE THE

TRNDF
A

;GET INPUT STATUS

;sWAIT IF CHARACTER IS NOT AVAILABLE
;SAVE CURRENT STATE OF INTERRUPT SYSTEM
;DISABLE INTERRUPTS

;GET THE CHARACTER FROM THE BUFFER

;INDICATE BUFFER IS NOW EMPTY
;GET THE CHARACTER FROM THE BUFFER
;RESTORE FLAGS

IF DATA IS AVAILABLE)

;GET THE DATA READY FLAG
;SET CARRY FROM FLAG
; CARRY = 1 IF CHARACTER IS AVAILABLE

;SAVE STATE OF INTERRUPT FLAG
;SAVE CHARACTER TO OUTPUT

BUFFER TO EMPTY, THEN STORE THE NEXT CHARACTER

;GET THE OUTPUT STATUS

;WAIT IF THE OUTPUT BUFFER IS FULL
;DISABLE. INTERRUPTS WHILE LOOKING AT THE

; SOFTWARE FLAGS

;GET THE CHARACTER

;STORE THE CHARACTER

;INDICATE CHARACTER AVAILABLE (BUFFER FULL)

;HAS THE OUTPUT DEVICE ALREADY REQUESTED
; SERVICE?

NO, BRANCH AND WAIT FOR AN INTERRUPT

; YES, SEND THE DATA TO THE PORT NOW
;RESTORE FLAGS

~

1 IF BUFFER IS FULL)

;CARRY = 1 IF CHARACTER IS IN THE BUFFER

;SAVE CURRENT STATE OF FLAGS
;DISABLE INTERRUPTS

SOFTWARE FLAGS

AIOS:

118 UNBUFFERED INTERRUPT-DRIVEN 1/0 USING A 6522 ViA (PINTIO) 477

LDA .#0

STA RECDF ;NO INPUT DATA AVAILABLE

STA TRNDF ;OUTPUT BUFFER EMPTY

LDA #0FFH +OUTPUT DEVICE HAS NOT REQUESTED SERVICE

STA OIE

;SAVE THE CURRENT IRQ VECTOR IN NEXTSR

LDA IRQVEC

STA NEXTSR

LDA IRQVEC+1

STA NEXTSR+1

;SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

LDA AIOS

STA IRQVEC

LDA AIOS+1

STA IRQVEC+1

;INITIALIZE THE 6522 VIA

LDA #00000000B

STA VIAADD ;SET PORT A TO INPUT

LDA #11111111B '

STA VIABDD ;SET PORT B TO OUTPUT

LDA #10001010B

STA VIAPCR ;SET PORT A TO
;7 INTERRUPT ON A LOW TO HIGH OF CAl (BIT 0 = 1)
; OUTPUT A LOW PULSE ON CA2 (BITS 1..3 = 101)
;SET PORT B TO
{ INTERRUPT ON A LOW TO HIGH OF CBl (BIT 4 = 1)
; HANDSHAKE OUTPUT MODE (BITS 5..7 = 001)

LDA $#00000001B

STA VIAACR ;SET AUXILIARY CONTROL TO ENABLE INPUT LATCHING
;7 FOR PORT A

LDA #00010010B ;SET INTERRUPT ENABLE REGISTER TO ALLOW
; INTERRUPTS ON CAl (BIT 1) AND CBl (BIT 4)

STA VIAIER .

PLP sRESTCRE CURRENT STATE OF THE FLAGS

RTS

-WORD IOSRVC ;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE

:INPUT OUTPUT INTERRUPT SERVICE ROUTINE

IOSRVC:

PHA . ;SAVE REGISTER A
CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE VIA STATUS: BIT 1 = 1 IF AN INPUT INTERRUPT
;BIT 4 = 1 IF AN OUTPUT INTERRUPT

LDA VIAIFR

AND #10B ;TEST BIT 1

BNE IINT ;GOTO INPUT INTERRUPT IF BIT 1 = 1
LDA VIAIFR

AND $#1000B ;TEST BIT 4

BNE OINT 1GOTO OUTPUT INTERRUPT IF BIT 4 = 1

478 inTERRUPTS

:+THE INTERRUPT WAS NOT CAUSED BY THIS VIA

PLA .
JMP (NEXTSR) :GOTO THE NEXT SERVICE ROUTINE
;SERVICE INPUT INTERRUPTS
IINT:
LDA VIAADR ;READ THE DATA
; (WHICH PULSES CA2 FOR THE HANDSHAKE AND
; CLEARS THE INTERRUPT FLAG)
STA RECDAT ;STORE DATA
LDA $OFFH
STA RECDF ;INDICATE WE HAVE A CHARACTER IN RECDAT
JMP EXIT +EXIT IOSRVC

;SERVICE OUTPUT INTERRUPTS

;NOTE THAT WE CAN CLEAR A 6522 INTERRUPT BY READING THE DATA
REGISTER. THUS WE CAN CLEAR AN OUTPUT INTERRUPT WITHOUT
SERVICING IT OR DISABLING IT. HOWEVER, IF WE DO THIS, WE

MUST HAVE A FLAG (OIE) THAT INDICATES THE OUTPUT INTERRUPT

HAS OCCURRED BUT HAS NOT BEEN SERVICED. OUTCH CAN THEN USE
THE-QIE FLAG TO DETERMINE WHETHER TO SEND THE DATA IMMEDIATELY
OR WAIT FOR AN OUTPUT INTERRUPT TO SEND iT.

O ~e ~e ne me ws we

INT:

LDA TRNDF ;GET DATA AVAILABLE FLAG
BNE NODATA ;BRANCH IF THERE IS NO DATA TO SEND
JSR OUTDAT ; ELSE OUTPUT THE DATA
JMP EXIT

NODATA:
LDA VIABDR ;READ THE PORT B DATA REGISTER TO CLEAR THE

' ; INTERRUPT.

LDA #0 ; INDICATE OUTPUT INTERRUPT HAS OCLURRED
STA OIE ; BUT HAS NOT BEEN SERVICED

EXIT:
PLA ;RESTORE REGISTER A .
RTI iRETURN FROM INTERRUPT

;******************_************ii*****t**

;ROUTINE: OUTDAT]

; PURPOSE: SEND A CHARACTER TO THE VIA
;ENTRY: TRNDAT = CHARACTER TO SEND
;EXIT: NONE

;REGISTERS USED: A,F
-*t*****************i*****t**************

OUTDAT:
LDA TRNDAT ;GET THE CHARACTER
STA VIABDR ;OUTPUT DATA TO PORT B
LDA #0 _ .
STA TRNDF ;INDICATE BUFFER EMPTY
LDA $0FFH : A
STA OIE ;INDICATE NO UNSERVICED OUTPUT INTERRUPT

RTS

118 UNBUFFERED INTERRUPT-DRIVEN I/0 USING A 6522 VIA (PINTIO) 479

+DATA SECTION

RECDAT .BLOCK 1 sRECEIVE DATA
RECDF .BLOCK 1 ;RECEIVE DATA FLAG (0 = NO DATA, FF = DATA)
TRNDAT .BLOCK 1 ;TRANSMIT DATA
TRNDF +BLOCK 1 :TRANSMIT DATA FLAG (0 = BUFFER EMPTY
H FF = BUFFER FULL)
OIE .BLOCK 1 ;OUTPUT INTERRUPT FLAG
’ ; (0 = INTERRUPT OCCURRED WITHOUT SERVICE
i FF = INTERRUPT SERVICED)
NEXTSR .BLOCK 2 ;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

SAMPLE EXECUTION:

“e we we we .we
‘we we me wa we

SC1102:
JSR INIT sINITIALIZE
CLI ;ENABLE .INTERRUPTS
;SIMPLE EXAMPLE
LOOP: i
JSR INCH ;READ A CHARACTER
PHA .
JSR OUTCH ;ECHO IT
PLA
CMP #1BH ;IS IT AN ESCAPE CHARACTER ?
BNE LOOP ;STAY IN LOOP IF NOT
BRK
;AN ASYNCHRONOUS EXAMPLE
; OUTPUT "A"™ TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE
i INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.
ASYNLP: S
;OUTPUT AN "A" IF QUTPUT IS NOT BUSY
JSR QUTST ;IS OUTPUT BUSY ?
BCS ASYNLP sBRANCH IF IT IS
LDA #ma"
JSR OUTCH ;OUTPUT THE CHARACTER
7GET A CHARACTER FROM THE INPUT PORT IF ANY
JSR INST ;IS INPUT DATA AVAILABLE ?
BCC ASYNLP iBRANCH IF NOT (SEND ANOTHER "“A")
JSR INCH ;GET THE CHARACTER)
CMP #1BH ;IS IT AN ESCAPE CHARACTER ?
BEQ DONE ;BRANCH IF IT IS
JSR OUTCH ;ELSE ECHO IT
JMP ASYNLP ;AND CONTINUE
DONE:
BRK
JMP SC1102

.END : PROGRAM

-

Buffered Interrupt-Driven Input/Output

Using a 6850 ACIA (SINTB)

11C

Performs interrupt-driven input and out-
put using a 6850 ACIA and multiple-
character buffers. Consists of the following
subroutines:

1. INCH reads a character from the input
buffer.

2. INST determines whether there are any
characters in the input buffer.

3. OUTCH writes a character into the out-
put buffer.

4. OUTST determines whether the output
buffer is full.

5 INIT initializes the buffers and the
6850 device.

6. IOSRVC determines which interrupt
occurred and provides the proper input or
output service.

Procedures:

1. INCH waits for a character to become
available, gets the character from the head of
the input buffer, moves the head of the
" buffer up one position, and decreases the
input buffer counter by 1.

2. INST sets the Carry to 0 if the input
buffer counter is zero and to 1 if the counter
iS non-zero.

3. OUTCH waits until there is empty
space in the output buffer (that is, until the
output buffer is not full), stores the character
at the tail of the output buffer, moves the tail
of the buffer up one position, and increases
the output buffer counter by 1.

4. OUTST sets the Carry flag to 1 if the
output buffer counter is equal to the buffer’s
length and to O if it is not.

480

Registers Used:

1. INCH: A,F, Y
.INST: A,F
. OUTCHA,F, Y
. OUTST:A, F
. INIT: A,F

Execution Time:
1. INCH: 70 cycles if a character is available
2. INST: 18 cycles

3. OUTCH: 75 cycles minimum, 105 cycles
maximum if the output buffer is not fult and the
ACIA is ready to transmit

oW

4. QUTST: 12 cycles
5. INIT: 89 cycles
6. IOSRVC: 173 cycles to service an input

interrupt, 102 cycles to service an output inter-
rupt, 27 cycles to determine the interrupt is from
another device.

Program Size: 258 bytes

Data Memory Required: Seven bytes anywhere
in RAM plus the input and output buffers. The
seven bytes anywhere in RAM hold the input
buffer counter (one byte at address ICNT), the
index to the head of the input buffer (one byte at
address ITHEAD), the index to the tail of the
input buffer (one byte at address ITAIL), the
output buffer counter (one byte at address
OCNT), the index to the head of the output
buffer (one byte at address OHEAD), the index
to the tail of the output buffer (one byte at
address OIE), and an Output Interrupt Enable
flag (one byte at address OIE). The input buffer
starts at address IBUF and its size is IBSZ; the
output buffer starts at address OBUF and its size
is OBSZ.

5. INIT clears the buffer counters, sets
both the heads and the tails of the buffers to
zero, sets up the interrupt vector, resets the
ACIA by performing a master reset on its
control register (the ACIA has no reset
input), and places the ACIA in its required
operating mode by storing the appropriate

11C BUFFERED INTERRUPT-DRIVEN I/0 USING A 6850 ACIA {SINTB) 481

value in its control register. INIT enables the
input interrupt and disables the output inter-
rupt. It does, however, clear the output inter-
rupt enable flag, thus indicating that the
ACIA is ready to transmit data, although it
cannot cause an output interrupt.

6. IOSRVC determines whether the inter-
rupt was an input interrupt (bit 0 of the ACIA
status register = 1), an output interrupt (bit
1 of the ACIA status register = 1), or the
product of some other device. If the input
interrupt occurred, the program reads the
data and determines if there is room for it in
the buffer. If there is room, the processor
stores the character at the tail of the input
buffer, moves the tail of the buffer up one

"position, and increases the input buffer
counter by 1. If the output interrupt oc-
curred, the program determines whether
there is any data in the output buffer. If there
is none, the program disables the output
interrupt (so it will not interrupt repeatedly)
and clears an Output Interrupt flag that indi-
cates the ACIA is actually ready. The flag lets
the main program know that the ACIA is
ready even through it cannot declare its
readiness by forcing an interrupt. If there is
data in the output buffer, the program
obtains a character from the head of the
buffer, sends it to the ACIA, moves the head
of the buffer up one position, and decreases
the output buffer counter by 1. It then ena-
bles both input and output interrupts and sets
the Output Interrupt flag (in case that flag
had been cleared earlier).

The new problem that occurs in using
multiple-character buffers is the manage-
ment of queues. The main program must
read the data in the same order in which the
input interrupt service routine receives it.
Similarly, the output interrupt service

routine must send the data in the same order
that the main program stores it. Thus we
have the following requirements for handling
input:

1. The main program must know whether
there is anything in the input buffer.

2. If the input buffer is not empty, the
main program must know where the oldest
character is (that is, the one that was received
first).

3. The input interrupt service routine
must know whether the input buffer is full.

4. If the input buffer is not full, the input
interrupt service routine must know where
the next empty place is (that is, it must know
where it should store the new character).

The output interrupt service routine and
the main program have a similar set of
requirements for the output buffer, although
the roles of sender and receiver are reversed.

We meet requirements 1 and 3 by main-
taining a counter ICNT. INIT initializes
ICNT to zero, the interrupt service routine
adds 1 to it whenever it receives a character
(assuming the buffer is not full), and the
main program subtracts 1 from it whenever it
removes a character from the buffer (assum-
ing the buffer is not empty). Thus the main
program can determine whether the input
buffer is empty by checking if ICNT is zero.
Similarly, the interrupt service routine can
determine whether the input buffer is full by
checking if ICNT is equal to the size of the
buffer.

We meet requirements 2 and 4 by main-
taining two indexes, IHEAD and ITAIL,
defined as follows:

1. ITAIL is the index of the next empty
location in the buffer.

482 INTERRUPTS

2. IHEAD is the index of the oldest
character in the buffer.

INIT initializes IHEAD and ITAIL to
zero. Whenever the interrupt service routine
receives a character, it places it in the buffer
at index ITAIL and increments ITAIL by 1
(assuming that the buffer is not full).
Whenever the main program reads a
character, it removes it from the buffer at
index IHEAD and increments IHEAD by 1
(assuming that the buffer is not empty).
Thus IHEAD ‘‘chases’” ITAIL across the
buffer with the service routine entering

characters at one end (the tail) while the
main program removes them from the other
end (the head). The occupied part of the
buffer thus could start and end anywhere. If
either IHEAD or ITAIL reaches the physical
end of the buffer, we simply set it back to
zero. Thus we allow wraparound on the
buffer; that is, the occupied part of the buffer
could start near the end (say, at byte #195 of
a 200-byte buffer) and continue back to the
beginning (say, to byte #10). Thus IHEAD
would be 195, ITAIL would be 10, and the
buffer would contain 15 characters occupying
bytes #195 through 199 and 0 through 9.

Entry Conditions

Exit Conditions

1. INCH: character in accumulator

2. INST: Carry flag = 0 if no
characters are available, 1 if a character
is available

3. OUTCH: none

4. OQUTST: Carry flag = 0 if output
buffer is not full, 1 if it is full

5. INIT: none

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in
accumulator

4. OUTST: none

5. INIT: none
: Title
; Name: SINTB

Purpose:’

a 6850 ACIA.

INCH

we we W8 wa o W WO

Interrupt input and output using a 6850
ACIA and a multiple character buffer.

This program consists of 5 subroutines which
perform interrupt driven input and output using

Read a character.

e wa we No we

~e we Ws ws we we e

TOOTE NO TE TE Ne N0 NS Ve Ne N N N N NI e N N NE NS e Se %e N MO e Ne NE ME Ve W6 Ne A8 N6 %e e %6 %6 e WS we wo we WE WO N M NS NS me % N we e e we

Entry:

Exit:

Registers used:

Registers used:

11C BUFFERED INTERRUPT-DRIVEN 1/0 USING A 6850 ACIA (SINTB) 483

INST
Determine input status (whether a character
is available).

OUTCH
Write a character.

OuUTST
Determine output status (whether the output
buffer is full).

INIT
Initialize.

INCH
No parameters.
INST
No parameters.
OUTCH
Register A = character to transmit
OUTST
No parameters.
INIT
No parameters.

INCH
Register A = character.
INST
Carry flag equals 0 if no characters are
available, 1 if charaé¢ter is available.
OUTCH
No parameters
OUTST
Carry flag equals 0 if output buffer is
empty, 1 if it is full.
INIT
No parameters.

INCH
A,F,Y
INST
A,F
OUTCH
A,F,Y
OUTST
A,F
INIT
A,F

WO NE TE TE N0 M Ne VO N0 N We WO N W N N W Ve W N N e Ne N MO N Ne e N N6 NE N8 % we we e % e We we %o we we e we We me Ne we me Ne we we ws we W

484 \TerRUPTS

e we we Ms wo we we We W we Mo we NS We W& We N Wa %o SO W WE e We We Ne Se We W N N5 N6 W@ W Mo Se W6 e e Se Ne %6 N6 We W we ~s me we we We wu ws we

Time:

Size:

Buffers:

Note:

A,F

INCH
70 cycles if a character is available
INST
18 cycles
OUTCH
75 cycles minimum, if the output buffer is
not full and the ACIA is ready to transmit
OUTST '
12 cycles
INIT
89 cycles
IOSRVC
27 cycles minimum if the interrupt is not ours
73 cycles to service a input interrupt
102 cycles to service a output interrupt

Program 258 bytes
Data 7 bytes plus size of buffers

The routines assume two buffers starting at
addresses IBUF and OBUF. The lengths of the
buffers in bytes are IBSZ and OBSZ. For the
input buffer, IHEAD is the index of the oldest
character {(the next one the main program should
read), ITAIL is the index of the next empty
element (the next one the service routine
should £ill), and ICNT is the number of bytes
currently filled with characters. For the
output buffer, OHEAD is the index of the oldest
character (the next one the service routine
should send), OTAIL is the index of the next
empty element (the next one the main program
should fill), and OCNT is the number of bytes
currently filled with characters.

Wraparound is provided on both buffers, so that
the currently filled area may start anywhere
and extend through the end of the buffer and
back to the beginning. For example, if the
output buffer is 40 hex bytes long, the section
filled with characters could exetend from
OBUF+32H (OHEAD=32H) to OBUF+10H (OTAIL=11H).
That is, there are 19H filled bytes occupying
addresses OBUF+32H through OBUF+39H and
continuing to OBUF through OBUF+10H. The buffer
thus looks like a television picture with the
vertical hold skewed, so that the frame starts
above the bottom of the screen, leaves off at
the top, and continues at the bottom.

;EXAMPLE 6850-ACIA PORT DEFINITIONS FOR AN APPLE SERIAL BOARD IN SLOT 1

e we we e me ws e w8 4o e wo we we NS Ne me NE Mo WE WO WS WO WE WS Ne SO We We We WE NE We W N W6 N6 e Ne Ne W6 Ne [Ne W N6 We ws WS we WE we We W W

11C BUFFERED INTERRUPT-DRIVEN I/0 USING A 6850 ACIA (siNTB) 485

ACIASR .EQU 0CO094H ;ACIA STATUS REGISTER
ACIADR .EQU 0CO095H sACIA DATA REGISTER
ACIACR .EQU 0C09%4H ;ACIA CONTROL REGISTER
IRQVEC .EQU 03FEH ;APPLE IRQ VECTOR ADDRESS
sREAD A CHARACTER
INCH:
JSR INST ;IS A CHARACTER AVAILABLE ?
BCC INCH sBRANCH IF NOT
PHP ;SAVE CURRENT STATE OF INTERRUPTS
. SEI +DISABLE INTERRUPTS
LDY IHEAD
LDA IBUF,Y ;GET CHARACTER AT HEAD OF BUFFER
INY
CPY #IBSZ ' ;DO WE NEED WRAPARQOUND IN BUFFER ?
BCC INCH1 ;BRANCH IF NOT
LDY #0 ;ELSE SET HEAD BACK TO ZERO
INCH1: .
STY IHEAD
DEC ICNT ;s DECREMENT CHARACTER COUNT
PLP ;RESTORE FLAGS
RTS

;RETURN INPUT STATUS (CARRY = 1 IF CHARACTERS ARE AVAILABLE, 0 IF NOT)
INST: :

CLC ;CLEAR CARRY (ASSUME NO CHARACTERS AVAILABLE)
LDA ICNT
BEQ INST1 ;BRANCH IF THERE ARE NONE
SEC ;CARRY = 1 (CHARACTERS ARE AVAILABLE)
INSTI:
RTS
sWRITE A CHARACTER
OUTCH:
PHP ;SAVE STATE OF INTERRUPT FLAG
PHA ;SAVE CHARACTER TO OUTPUT
;WAIT UNTIL THERE IS EMPTY SPACE IN THE OUTPUT BUFFER
WAITOC:
JSR OUTST ;IS THE OUTPUT BUFFER FULL ?
BCS WAITOC sBRANCH IF IT IS FULL
SEI ;DISABLE INTERRUPTS WHILE LOOKING AT THE
;7 SOFTWARE FLAGS '
PLA sGET THE CHARACTER
LDY OTAIL
STA OBUF, Y ;STORE CHARACTER IN THE BUFFER
INY
CPY #0BS2Z ' ;DO WE NEED WRAPAROUND ON THE BUFFER ?
BCC OUTCH1 sBRANCH IF NOT
LDY #0 sELSE SET TAIL BACK TO ZERO
OUTCH1: .
STY OTAIL
INC OCNT ; INCREMENT BUFFER COUNTER
LDA OIE ;ARE INTERRUPTS DISABLED BUT THE ACIA IS

. :+ ACTUALLY READY ?
BNE OUTCH2 ;EXIT IF ACIA INTERRUPTS NOT READY AND ENABLED

486 NTERRUPTS

JSR OUTDAT
OUTCH2:

PLP
RTS

;OUTPUT STATUS

;ELSE SEND THE DATA TO THE PORT AND ENABLE
; INTERRUPTS '

;RESTORE FLAGS

1S OUTPUT BUFFER FULL ?
IF OCNT >= OBSZ THEN
CARRY = 1 INDICATING THAT THE OUTPUT
‘ BUFFER IS FULL
ELSE - ‘
CARRY = 0 INDICATING THAT THE CHARACTER
CAN BE PLACED IN THE BUFFER

~e we we we we we wu

;SAVE CURRENT STATE OF FLAGS
;DISABLE INTERRUPTS

;INITIALIZE THE SOFTWARE FLAGS

;NO INPUT DATA

;NO OUTPUT DATA

;sACIA IS READY TO TRANSMIT (NOTE THIS

-—
—
~—

;SAVE THE CURRENT IRQ VECTOR IN NEXTSR

;SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

;MASTER RESET ACIA

;INITIALIZE ACIA MODE TO

QUTST:
LDA OCNT
CMP #0BS2Z
" RTS
;INITIALIZE
INIT:
PHP
SEI
LDA
STA ICNT
STA IHEAD
STA ITAIL
STA OCNT
, STA OHEAD
STA OTAIL
STA OIE
LDA IRQVEC
STA NEXTSR
LDA IRQVEC+1
STA NEXTSR+1
LDA AIOS
STA IRQVEC
LDA AIOS+1
STA IRQVEC+1
;INITIALIZE THE 6850 ACIA
LDA $#011B
STA ACIACR
LDA $10010001B
STA ACIACR

; DIVIDE BY 16
; 8 DATA BITS
; 2 STOP BITS

11C BUFFERED INTERRUPT-DRIVEN |/O USING A 6850 ACIA {SINTB) 487

; OUTPUT INTERRUPTS DISABLED (NOTE THIS !!)
; INPUT INTERRUPTS ENABLED

PLP ;RESTORE CURRENT STATE OF THE FLAGS

RTS ’
AIOS: .WORD IOSRVC ;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE
;INPUT OUTPUT INTERRUPT SERVICE ROUTINE
IOSRVC:

PHA ;SAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE ACIA STATUS: BIT 0 = 1 IF AN INPUT INTERRUPT
;BIT 1 = 1 IF AN OUTPUT INTERRUPT

LDA ACIASR
LSR A ;BIT 0 TO CARRY
BCS - IINT ;BRANCH IF AN INPUT INTERRUPT
LSR A ;BIT 1 TO CARRY
BCS OINT ;BRANCH IF AN OUTPUT INTERRUPT
s THE INTERRUPT WAS NOT OURS
PLA .
JMP (NEXTSR) ;GOTO THE NEXT SERVICE ROUTINE
;SERVICE INPUT INTERRUPTS
IINT:
TYA
PHA ;SAVE REGISTER Y
sGET THE DATA AND STORE IT IN THE BUFFER IF THERE IS ROOM
LDA ACIADR sREAD THE DATA
LDY ICNT ;IS THERE ROOM IN THE BUFFER ?
CPY $1IBS2Z
BCS EXIT sEXIT, NO ROOM IN THE BUFFER
LDY ITAIL ;ELSE STORE THE DATA IN THE BUFFER
STA IBUF,Y .
INY ; INCREMENT TAIL INDEX
CPY $IBS2Z DO WE NEED WRAPAROUND ON THE BUFFER ?
BCC IINT1 ;BRANCH IF NOT
LDY #0 ;ELSE SET TAIL BACK TO ZERO
IINT1:
STY ITAIL ;STORE NEW TAIL INDEX
INC ICNT ; INCREMENT INPUT BUFFER COUNTER
JMP EXIT JEXIT IQOSRVC
;SERVICE OUTPUT INTERRUPTS
OINT:
. TYA
PHA ;SAVE REGISTER Y
LDA OCNT ;IS THERE ANY DATA IN THE OUTPUT BUFFER ?
BEQ NODATA ;BRANCH IF NOT (DISABLE THE INTERRUPTS)
JSR OUTDAT ;ELSE SEND A CHARACTER

JMP EXIT

488 nTERRUPTS

NODATA:
LDA

STA
LDA
- STA

EXIT:
PLA
TAY
PLA
RTI

#10010001B

ACIACR
#0
OlE

;DISABLE OUTPUT INTERRUPTS, ENABLE INPUT

; INTERRUPTS, 8 DATA BITS, 2 STOP BITS, DIVIDE
; BY 16 CLOCK

;TURN OFF INTERRUPTS

;INDICATE OUTPUT INTERRUPTS ARE DISABLED
; BUT ACIA IS ACTUALLY READY

;RESTORE REGISTER Y
;sRESTORE REGISTER A
;RETURN FROM INTERRUPT

H Y2 2222222222223222 22222222222 222l R

'ROUTINE

OUTDAT

;PURPOSE: SEND A CHARACTER TO THE ACIA FROM THE OUTPUT BUFFER
;sENTRY: OHEAD IS THE INDEX INTO OBUF OF THE CHARACTER TO SEND

;EXIT: NONE

;REGISTERS USED: A,F
i******************t**i******ti*tt*t***

OUTDAT:
LDA
AND
BEQ
LDY
LDA
STA
INY
CPY
BCC
LDY

OUTD1:
STY
DEC
LDA
STA

LDA
STA

RTS

;DATA SECTION

ICNT .BLOCK
IHEAD .BLOCK
ITAIL .BLOCK
OCNT .BLOCK
OHEAD . BLOCK
OTAIL «BLOCK
OIE .BLOCK
IBSZ .EQU

IBUF «BLOCK

ACIASR
$#00000010B
OUTDAT
OHEAD
OBUF,Y
ACIADR

#0OBS2Z
OouTDl1
#0

OHEAD
OCNT
$10110001B
ACIACR

#0FFH
OIE

N N N R

IBSZ

;IS ACIA OUTPUT REGISTER EMPTY ?
;BRANCH IF NOT EMPTY (BIT 1 = 0)

;GET THE CHARACTER FROM THE BUFFER
;SEND THE DATA

;DO WE NEED WRAPAROUND ON THE BUFFER ?
;BRANCH IF NOT
;ELSE SET HEAD BACK TO ZERO

;SAVE NEW HEAD INDEX
; DECREMENT OUTPUT BUFFER COUNTER

;ENABLE 6850 OUTPUT AND INPUT INTERRUPTS,
; 8 DATA BITS, 2 STOP BITS, DIVIDE BY 16 CLOCK

; INDICATE THE OUTPUT INTERRUPTS ARE ENABLED

;INPUT BUFFER COUNTER

;INDEX TO HEAD OF INPUT BUFFER

;INDEX TO TAIL OF INPUT BUFFER

;OUTPUT BUFFER COUNTER

; INDEX TO HEAD OF OUTPUT BUFFER
;INDEX TO TAIL OF OUTPUT BUFFER
;OUTPUT INTERRUPT ENABLE FLAG

; INPUT BUFFER SIZE
; INPUT BUFFER

e,

11C BUFFERED INTERRUPT-DRIVEN I/0 USING A 6850 ACIA (SINTB) 489

OBS2 .EQU 80 ;OUTPUT BUFFER SIZE
OBUF .BLOCK OBSZ ;OUTPUT BUFFER
NEXTSR .BLOCK 2 ;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

SAMPLE EXECUTION:

e Ne %o %o we
we we me we we

SC1103:
JSR INIT ;INITIALIZE
CLI ;ENABLE INTERRUPTS
:SIMPLE EXAMPLE
LOOP:
JSR INCH ;READ A CHARACTER
PHA
JSR OUTCH ;ECHO IT
PLA
CMP #1BH ;IS CHARACTER AN ESCAPE ?
BNE LOOP ;BRANCH IF NOT, CONTINUE LOOPING
BRK
;AN ASYNCHRONOUS EXAMPLE
; OUTPUT "A" TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE
; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.
ASYNLP:
;OUTPUT AN "A" IF OUTPUT IS NOT BUSY
JSR OUTST ;IS OUTPUT BUSY ?
BCS ASYNLP ;BRANCH IF IT IS
LDA #IIAII
JSR OUTCH ;OUTPUT THE CHARACTER
;GET A CHARACTER FROM THE INPUT PORT IF ANY
JSR INST ;IS INPUT AVAILABLE ?
BCC ASYNLP ;BRANCH IF NOT (SEND ANOTHER "A")
JSR INCH ;GET THE CHARACTER
CMP #1BH ;IS CHARACTER AN ESCAPE ?
BEQ DONE ;BRANCH IF IT 1S
JSR OUTCH ;ELSE ECHO IT
JMP ASYNLP ; AND CONTINUE
DONE:
BRK

. END ; PROGRAM

Real-Time Clock and Calendar (CLOCK)

11D

Maintains a time-of-day 24-hour clock
and a calendar based on a real-time clock
interrupt. Consists of the following sub-
routines:

1. CLOCK returns the starting address of
the clock variables. '

- 2. ICLK initializes the clock interrupt and
initializes the clock variables to their default
values.

3. CLKINT updates the clock after each
interrupt (assumed to be spaced one tick
apart).

A long example in the listing describes a
time display routine for the Apple II com-
puter. The routine prompts the operator for
an initial date and time. It then continuously
displays the date and time in the center of the
monitor screen. The routine assumes an
interrupt board in slot 2.

Procedure:

1. CLOCK loads the starting address of
the clock variables into the accumulator
(more significant byte) and index register Y
(less significant byte). The clock variables are
stored in the following order (lowest address
first): ticks, seconds, minutes, hours, days,
months, less significant byte of year, more
significant byte of year.

2. ICLK loads the clock variables with
their default values (8 bytes starting at
address DFLTS) and initializes the clock
interrupt (this would be mostly system-
dependent).

3. CLKINT decrements the remaining
tick count by one and updates the rest of the
clock if necessary. Of course, the number of
seconds and minutes must be less than 60
and the number of hours must be less than

490

Registers Used:

1. CLOCK: AF Y
2. ICLK: AY
3. CLKINT: none
Execution Time:
1. CLOCK: 14 cycles
2. ICLK: 166 cycles
3. CLKINT: 33 cycles if only TICK must

be decremented, 184 maximum if changing to a
new year.

Program Size:

1. CLOCK: 7 bytes
2. ICLK: 39 bytes
3. CLKINT: 145 bytes

Data Memory Required: 18 bytes anywhere in
RAM. These include eight bytes for the clock
variables (starting at address ACVAR), eight
bytes for the defaults (starting at address
DFLTS), and two bytes for the address of the
next service routine (starting at address NEX-
TSR).

24. The day of the month must be less than or
equal to the last day for the current month;
an array of the last days of each month begins
at address LASTDY. If the month is Febru-
ary (that is, month 2), the program must
check to see if the current year is a leap year.
This requires a determination of whether the
two least significant bits of memory location
YEAR are both zeros. If the current year is a
leap year, the last day of February is the 29th,
not the 28th. The month number may not
exceed 12 (December) or a carry to the year
number is necessary. The program must
reinitialize the variables properly when car-
ries occur; that is, TICK to DTICK; seconds,
minutes, and hours to zero; day and month
to 1 (meaning the first day and January,
respectively).

Entry Conditions

1. CLOCK: none
2. ICLK: none
3. CLKINT: none

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 491

Exit Conditions

1. CLOCK: more significant byte of
starting address of clock variables in
accumulator, less significant byte in register Y

2. ICLK: none

3. CLKINT: none

Examples

These examples assume that the tick rate
is DTICK Hz (less than 256 Hz — typical
values would be 60 Hz or 100 Hz) and that
the clock and calendar are saved in memory
locations

TICK number of ticks remaining before a
carry occurs, counted down from
DTICK

SEC seconds (0 to 59)

MIN minutes (0 to 59)

HOUR hour of day (0 to 23)

DAY day of month (1 to 28, 30, or 31,
depending on month)

MONTH month of year (1 through 12 for
January through December)

YEAR &

YEAR+1 current year

1. Starting values are March 7, 1982.
11:59.59 and 1 tick left.

That is,
(TICK) =1
(SEC) =59
(MIN) =59
(HOUR) =23
(DAY) =07
(MONTH) = 03

(YEAR) = 1982

Result (after the tick): March 8, 1982
12:00.00 and DTICK ticks
That is,

" (TICK)
(SEC)
(MIN)
(HOUR) =0
(DAY) =08
(MONTH) = 03
(YEAR) = 1982

DTICK
0
0

by

2. Starting values are Dec. 31, 1982.
11:59.59 p.m. and 1 tick left

That is,

(TICK) =1
(SEC) =59
(MIN) =59
(HOUR) = 23
(DAY) =31
(MONTH) = 12
(YEAR) = 1982

Result (after the tick): Jan.
12:00.00 a.m. and DTICK ticks

That is,

(TICK) = DTICK

(SEC) =0

(MIN) =0

(HOUR) =0

(DAY) =1

(MONTH) = 1

(YEAR) = 1983

1, 1983.

492 NTERRUPTS

~e wo wo wa

e we me be We we W6 wa ME WE w8 W6 s WS W we we WO W We Ws W6 WA We Ne e We N6 Ne N Ne W %6 Wa %6 S ~ =

IRQVEC:
CLKPRT:
CLKIM:
TRUE:
FALSE:

; RETURN
CLOCK:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

. EQU 03FEH
.EQU 0COAOH"
. EQU 0lH
.EQU OFFH
.EQU 0
ADDRESS

LDA ACVAR+1
LDY ACVAR

RTS

Real time clock and calendar
CLOCK

This program maintains a time of day 24 hour
clock and a calendar based on a real time clock
interrupt.

CLOCK .

Returns the address of the clock variables
ICLK

Initialize the clock interrupt

CLOCK
None

ICLK
None

CLOCK
Register A

L[}

High byte of the address of the
time variables.

Low byte of the address of the
time variables.

Register Y

ICLK
None

All

CLOCK

14 cycles
ICLCK

166 cycles
CLKINT

22 cycles

33 cycles

184 cycles

normally if decrementing tick
maximum if changing to a new year

Program 191
Data 18

bytes
bytes

;APPLE IRQ VECTOR

minimum if the interrupt is not ours

~ ws we e

ms ws we wy Wa ms ws me W6 we Wa ws we we

N ws e we e we s We W WS we e N6 WS Ne w0 NS S0 We e Ne we W %

sSLOT 2 I0 LOCATION OF AN INTERRUPT BOARD

;BIT 0 = INTERRUPT REQUEST BIT
;NOT ZERO = TRUE
;ZERO = FALSE

OF THE CLOCK VARIABLES

;GET ADDRESS OF CLOCK VARIABLES

11D REAL-TIME CLOCK AND CALENDAR (cLock) 493

;INITIALIZE CLOCK INTERRUPT

ICLK:
PHP ;SAVE FLAGS
SEI ;DISABLE INTERRUPTS
;INITIALIZE CLOCK VARIABLES TO THE DEFAULT VALUEs
LDY #8
ICLK1:
LDA DFLTS-1,Y
STA CLKVAR-1,Y
DEY
BNE ICLK1
;SAVE CURRENT IRQ VECTOR
LDA IRQVEC
STA NEXTSR
LDA IRQVEC+1
STA NEXTSR
;SET IRQ VECTOR TO CLKINT
LDA ACINT
STA IRQVEC
LDA ACINT+1
STA IRQVEC+1

JHERE SHOULD BE CODE TO INITIALIZE INTERRUPT HARDWARE

;EXIT
PLP ;RESTORE FLAGS
RTS

;HANDLE THE CLOCK INTERRUPT

CLKINT:
PHA ;SAVE REGISTER A
CLD ;BE SURE PROCESSOR IS IN BINARY MODE
;CHECK IF THIS IS OUR INTERRUPT
; THIS IS AN EXAMPLE ONLY
LDA CLKPRT
AND #CLKIM ;LOOK AT THE INTERRUPT REQUEST BIT
BNE OURINT ;BRANCH IF IS OUR INTERRUPT

. PLA . ;RESTORE REGISTER A
: JMP (NEXTSR) ;WAS NOT OUR INTERRUPT,
; TRY NEXT SERVICE ROUTINE

; PROCESS OUR INTERRUPT

OURINT:
DEC TICK 4
BNE EXIT1 ;BRANCH IF TICK DOES NOT EQUAL ZERO YET

; EXIT1 RESTORES ONLY REGISTER A

LDA DTICK
STA TICK ;RESET TICK TO DEFAULT VALUE

;SAVE X AND Y NOW ALSO
"TYA
PHA

494 \nTerRUPTS

v

TXA

PHA

: INCREMENT SECONDS
INC SEC

LDA SEC

CMP $60

BCC EXIT

LDY #0

STY SEC

; INCREMENT MINUTES
INC MIN

LDA MIN

CMP #60

BCC EXIT

STY MIN

; INCREMENT HOURS

INC HOUR
LDA HOUR
CMP $24

BCC EXIT
STY HOUR

; INCREMENT DAYS

;SECONDS = 60 ?

{EXIT IF LESS THAN 60 SECONDS
;ELSE '

; ZERO SECONDS, GO TO NEXT MINUTE

;MINUTES = 60 2

;EXIT IF LESS THAN 60 MINUTES
;ELSE ’

; ZERO MINUTES, GO TO NEXT HOUR

;HOURS = 24 ?

sEXIT IF LESS THAN 24 HOURS
;ELSE '

; ZERO HOURS, GO TO NEXT DAY

;GET CURRENT MONTH
;DAY = LAST DAY OF THE MONTH ?
sEXIT IF LESS THAN LAST DAY

HANDLE 29TH OF FEBRUARY)

;IS THIS FEBRUARY ?
;BRANCH IF NOT FEBRUARY
;IS IT A LEAP YEAR?

;BRANCH IF YEAR IS NOT LEAP YEAR

;THIS IS A FEBRUARY AND A LEAP YEAR SO‘29 DAYS NOT 28 DAYS

INC . DAY
LDA DAY
LDX MONTH
CMP LASTDY-1,X
BCC EXIT
; INCREMENT MONTH (
CPX #2
BNE INCMTH
LDA YEAR
AND #00000011B
BNE INCMTH
LDA DAY
CMP $29
BEQ EXIT
INCMTH:
LDY #1
STY DAY
INC MONTH
LDA MONTH
cMP $13
BCC EXIT
STY MONTH

;EXIT IF NOT 29TH OF FEBRUARY

;CHANGE DAY TO 1, INCREMENT MONTH

;DONE WITH DECEMBER ?

sEXIT IF NOT

;ELSE :

; CHANGE MONTH TO 1 (JANUARY)

EXIT:

EXIT1:

;ARRAY OF THE LAST DAYS OF EACH

4
; INCREMENT . YEAR
YEAR
EXIT

INC
BNE
INC

;RESTORE REGISTERS

PLA
TAX
PLA
TAY

PLA
RTI

YEAR+1

PR

11D REAL-TIME CLOCK AND CALENDAR (CLock} 495

; INCREMENT LOW BYTE

; INCREMENT HIGH BYTE

;RETURN FROM INTERRUPT

MONTH

; JANUARY _
;FEBRUARY (EXCEPT LEAP YEARS)
;MARCH

;APRIL

;MAY

; JUNE

;JULY

;AUGUST

;s SEPTEMBER

;OCTOBER \
;NOVEMBER

;DECEMBER

;BASE ADDRESS OF CLOCK VARIABLES

;TICKS LEFT IN CURRENT SECOND

; SECONDS
:MINUTES
;HOURS

;DAY = 1 THROUGH NUMBER OF DAYS IN A MONTH
sMONTH 1=JANUARY

12=DECEMBER

LASTDY:
.BYTE 31
.BYTE 28
.BYTE 31
.BYTE 30
.BYTE 31
.BYTE 30
.BYTE 31
.BYTE 31
.BYTE 30
.BYTE 31
.BYTE 30
.BYTE 31
;CLOCK VARIABLES
ACVAR: .WORD CLKVAR
CLKVAR:
TICK: .BLOCK 1
SEC: .BLOCK 1
MIN: .BLOCK 1
HOUR: .BLOCK 1
DAY: .BLOCK 1
MONTH: .BLOCK 1
YEAR: .WORD 0
; DEFAULTS
DFLTS: .
DTICK: .BYTE 60
DSEC: .BYTE 4]
DMIN: .BYTE 0
DHR: .BYTE 0
DDAY: .BYTE 1
DMTH: .BYTE 1 -
DYEAR: ,WORD 1981
NEXTSR: .BLOCK 2
ACINT: .WORD CLKINT

;s YEAR

;DEFAULT TICK (60HZ INTERRUPT)
; DEFAULT SECONDS

; DEFAULT MINUTES

;DEFAULT HOURS

:DEFAULT DAY

: DEFAULT MONTH

;DEFAULT YEAR

7ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE
;ADDRESS OF THE CLOCK INTERRUPT ROUTINE

496 NTERRUPTS

SAMPLE EXECUTION:

This routine prompts the operator for an initial date and time,
it then continuously displays the date and time in the center of
the screen.

The operator may use the escape Key to abort the routine. Any
other key will reprompt for another initial date and time.

e Mo Me We NE w6 W W we we W o
~e ms w6 me w8 me we ws me wa wa e

~

;CLK VARIABLE OFFSETS
OTICK: .EQU 0 ;OFFSET TO TICK

OSEC: .EQU 1 ;OFFSET TO SECONDS
OMIN: . EQU 2 ;OFFSET TO MINUTES
OHR: .EQU 3 ;OFFSET TO HOURS
ODAY: . EQU 4 ;OFFSET TO DAY
OMTH: .EQU 5 ;OFFSET TO MONTH
OYEAR: .EQU 6 ;OFFSET TO YEAR

; PAGE ZERO TEMPORARY

CVARS: .EQU ODOH ;PAGE ZERO TEMPORARY FOR THE CLOCK VARIABLES
; ADDRESS

;APPLE EQUATES FOR THE EXAMPLE
ESC: . EQU 1BH ;ESCAPE CHARACTER
CH .EQU 241 :APPLE MONITOR CURSOR HORIZONTAL POSITION
cv . EQU 25H ;APPLE MONITOR CURSOR VERTICAL POSITION
HOME: .EQU OFCS8H ;APPLE MONITOR HOME ROUTINE
VTAB: .EQU OFC22H ;APPLE MONITOR VTAB ROUTINE
RCHAR: .EQU OFDOCH ;APPLE MONITOR CHARACTER INPUT ROUTINE
COUT: .EQU OFDEDH ;APPLE MONITOR CHARACTER OUTPUT ROUTINE
GETLN1: .EQU OFD6FH ;APPLE MONITOR GET LINE WITH OUR PROMPT ROUTINE
SC1104:

JSR ICLK ;INITIALIZE

;GET TODAYS DATE AND TIME MM/DD/YY HR:MIN:SEC
; PRINT PROMPT

PROMPT:
JSR HOME ;HOME AND CLEAR SCREEN
LDA $0
STA MSGIDX

PMTLP:
LDY MSGIDX
LDA MSG,Y
BEQ RDTIME ;BRANCH IF END OF MESSAGE
INC MSGIDX ; INCREMENT TO NEXT CHARACTER
JSR WRCHAR ;OUTPUT CHARACTER THROUGH APPLE MONITOR
JMP PMTLP ;CONTINUE

;READ THE TIME STRING

RDTIME:

11D REAL-TIME CLOCK AND CALENDAR (cLock) 497

JSR RDLINE iREAD A LINE INTO THE APPLE LINE BUFFER AT
;7 200H. RETURNS WITH LENGTH IN X

iGET THE ADDRESS OF THE CLOCK VARIABLES

JSR CLOCK iGET CLOCK VARIABLES
STA CVARS +1

$TY CVARS ;STORE ADDRESS

; INITIALIZE VARIABLES FOR READING NUMBERS

STX LLEN ;SAVE LENGTH OF LINE
LDA #0

STA LIDX ;INITIALIZE LINE INDEX TO ZERO
;GET MONTH

JSR NXTNUM ;GET NEXT NUMBER FROM INPUT LINE
LDY $OMTH

STA (CVARS) , Y ;SET MONTH

;GET DAY

JSR NXTNUM

LDY #ODAY

STA (CVARS) , Y

;GET YEAR

JSR NXTNUM

LDY $OYEAR

STA (CVARS) , Y

CLC

ADC CEN20 ;ADD 1900 TO ENTRY

STA (CVARS) , Y ;SET LOW BYTE OF YEAR
LDA CEN20+1

ADC $0

INY

STA (CVARS) , ¥ ;SET HIGH BYTE OF YEAR
;GET HOUR

JSR NXTNUM

LDY #OHR

STA (CVARS), ¥

:GET MINUTES

JSR ° NXTNUM

LDY #OMIN

STA (CVARS) , ¥

;GET SECONDS

JSR NXTNUM

LDY #OSEC

STA (CVARS), Y

;i ENABLE INTERRUPTS
CLI ;ENABLE INTERRUPTS

;sHOME AND CLEAR THE SCREEN

498 nTERRUPTS

JSR HOME

; LOOP PRINTING THE TIME EVERY SECOND
;MOVE CURSOR TO LINE 12 CHARACTER 12

LOOP:
LDA #11
STA cv ;SET CURSOR VERTICAL POSITION
STA CH ;SET CURSOR HORIZONTAL POSITION
JSR VTAB ;POSITION CURSOR
; PRINT MONTH
LDY $OMTH
LDA (CVARS) , Y
JSR PRTNUM ;PRINT THE NUMBER
LDA #ll/ll .
JSR WRCHAR ;PRINT A SLASH
; PRINT DAY
LDY $ODAY
LDA (CVARS) , Y
JSR . PRTNUM ;PRINT THE NUMBER
LDA #u/n
JSR WRCHAR ;PRINT A SLASH
;PRINT YEAR
LDY $OYEAR
LDA (CVARS) , Y
SEC
SBC CEN20 ;NORMALIZE YEAR TO 20TH CENTURY
JSR PRTNUM ; PRINT THE NUMBER
; PRINT SPACE AS DELIMITER
LDA #ll " . '
JSR WRCHAR :PRINT A SPACE BETWEEN DATE AND TIME
; PRINT HOURS
LDY $OHR
LDA (CVARS) , ¥
JSR PRTNUM ;PRINT THE NUMBER
LDA #" : L]
JSR WRCHAR ;PRINT A COLON
; PRINT MINUTES
LDY $OMIN
LDA (CVARS) , ¥
JSR PRTNUM ;PRINT THE NUMBER
LDA gon
JSR WRCHAR ;PRINT A COLON
; PRINT SECONDS
LDY $0SEC
LDA (CVARS) , Y
JSR PRTNUM ;PRINT THE NUMBER

:WAIT UNTIL SECONDS CHANGE THEN PRINT AGAIN
;EXIT IF OPERATOR PRESSES A KEY

11D REAL-TIME CLOCK AND CALENDAR (cLock) 499

LDY #0SEC

LDA (CVARS) ,Y

STA CURSEC iSAVE IN CURRENT SECOND
WAIT:

;CHECK KEYBOARD

JSR KEYPRS

BCS RDKEY ;BRANCH IF OPERATOR PRESSES A KEY

LDA (CVARS) ,Y ;GET SECONDS

CMP CURSEC

BEQ WAIT ;WAIT UNTIL SECONDS CHANGE

JMP LOOP ;CONTINUE

;OPERATOR PRESSED A KEY - DONE IF ESCAPE, PROMPT OTHERWISE
RDKEY:

JSR RDCHAR :GET CHARACTER

CMP #ESC ;IS IT AN ESCAPE?

BEQ DONE iBRANCH IF IT 1S, ROUTINE IS FINISHED

JMP PROMPT iELSE PROMPT OPERATOR FOR NEW STARTING TIME
DONE:

LDA #0

STA CH :CURSOR TO HORIZONTAL POSITION 0

LDA #12

STA cv

JSR VTAB #MOVE CURSOR TO LINE 13 BELOW DISPLAY

BRK

JMP 5C1104 ;CONTINUE AGAIN

G RAI R R AR AR AR R AR Rk kAR AR KA K&k

;ROUTINE: KEYPRS

i PURPOSE: DETERMINE IF OPERATOR HAS PRESSED A KEY
;ENTRY: NONE

;EXIT: 1IF OPERATOR HAS PRESSED A KEY THEN

; CARRY = 1
H ELSE
H CARRY = 0

;REGISTERS USED: P
s RRRA AR KR KRR AR A KRk kb hhhhhhkk

KEYPRS:
PHA
LDA 0cooon ;READ APPLE KEYBOARD PORT
ASL A ;MOVE BIT 7 TO CARRY
i CARRY = 1 IF CHARACTER IS READY ELSE 0
PLA
RTS

;*******************************

;ROUTINE: RDCHAR

i PURPOSE: READ A CHARACTER
;ENTRY: NONE

;EXIT: REGISTER A = CHARACTER

;REGISTERS USED: A,P
A Y E R e T o

500 iNTERRUPTS

RDCHAR:
PHA ;SAVE A,X,Y
TYA
PHA
TXA
PHA

JSR RCHAR ;APPLE MONITOR RDCHAR

TSX

AND $#01111111B ;ZERO BIT 7

STA 103H,X ;STORE CHARACTER IN STACK SO IT WILL BE
; RESTORED TO REGISTER A

PLA ;RESTORE A,X,Y

TAX)

PLA

TAY

PLA

RTS

;******t**t**************t******

;ROUTINE: WRCHAR

;PURPOSE: WRITE A CHARACTER
;ENTRY: REGISTER A = CHARACTER
;EXIT: NONE

;REGISTERS USED: P
-*******t***********************

WRCHAR: -
PHA ;SAVE A,X,Y
TYA
PHA
TXA
PHA

TSX

LDA 103H,X :GET REGISTER A BACK FROM STACK
ORA #10000000B ;SET BIT 7

JSR CcouT ;OUTPUT VIA APPLE MONITOR

PLA ;RESTORE A,X,Y
TAX
PLA
TAY
PLA
RTS

.***#*********t*i**ii****i******

'ROUTINE RDLINE

s PURPOSE: READ A LINE TO 200H USING THE APPLE MONITOR
;ENTRY: NONE

;EXIT: REGISTER X = LENGTH OF LINE

;REGISTERS USED: ALL

H **t**t***********'k*i************

11D REAL-TIME CLOCK AND CALENDAR (cLock) 501

RDLINE:
JSR GETLN1 ;CALL THE APPLE MONITOR GETLN1

RTS

AR Y T S R L E Y
;ROUTINE: NXTNUM

i PURPOSE: GET A NUMBER FROM THE INPUT LINE IF ANY

; IF NONE RETURN A 0

ENTRY: LLEN = LENGTH OF THE LINE

LIDX = INDEX INTO THE LINE OF NEXT CHARACTER
REGISTER A = LOW BYTE OF NUMBER

REGISTER Y = HIGH BYTE OF NUMBER

LIDX = INDEX OF THE FIRST NON NUMERICAL CHARACTER

REGISTERS USED: ALL
AAKRKRIARKK KRR AR R AR AR AR AR AR Rk &k

m
>
]
-3

e Ne we we me we e

NXTNUM:
LDA #0
STA NUM
STA NUM+1 ;INITIALIZE NUMBER TO 0
;WAIT UNTIL A DECIMAL DIGIT IS FOUND (A CHARACTER BETWEEN 30H AND 39H)
JSR GETCHR ;GET NEXT CHARACTER
BCS EXITNN ;EXIT IF END OF LINE
CMP $"on
BCC NXTNUM ;WAIT IF LESS THAN "O"
CMP $"9"+1
BCS NXTNUM ;WAIT IF GREATER THAN "9"
;FOUND A NUMBER

GETNUM:
PHA ;SAVE CHARACTER ON STACK
sMULTIPLY NUM BY TEN
LDA NUM
ASL A
ROL NUM+1
STA NUM iNUM = LOW BYTE OF NUM * 2
LDX NUM+1 {REGISTER X = HIGH BYTE OF NUM * 2
ASL A ’
ROL NUM+1
ASL A REGISTER A = LOW BYTE OF NUM * 8
ROL NUM+1 ;NUM + 1 = HIGH BYTE OF NUM * 8
CLC 7 (NUM * 8) + (NUM * 2) = NUM * 10
ADC NUM
STA NUM
TXA
ADC NUM+1
STA NUM+1
ADD THE CHARACTER TO NUM
PLA :GET NEXT CHARACTER
AND #00001111B ;NORMALIZE THE CHARACTER TO 0..9
CLC
ADC NUM

STA NUM

502 INTERRUPTS

BCC .- GETNM1
INC NUM+1
GETNM1:

;GET THE NEXT CHARACTER
JSR GETCHR
BCS EXITNN ;EXIT IF END OF LINE
CMP #IIOII
BCC EXITNN ;EXIT IF LESS THAN "0"
CMP $"9"+1 _
BCC: GETNUM ;STAY IN LOOP IF DIGIT (BETWEEN "0" AND ngn)

. EXITNN: .

: LDA NUM ;RETURN THE NUMBER

LDY NUM+1
RTS

";********************************

“;sROUTINE: GETCHR
+PURPOSE: GET A CHARACTER FOR THE LINE
ENTRY: LIDX = NEXT CHARACTER TO GET
) LLEN = LENGTH OF LINE |
EXIT: IF NO MORE CHARACTERS THEN
CARRY = 1
ELSE .
CARRY = 0
REGISTER A = CHARACTER

REGISTERS USED: ALL
P Y2222 22222 2 2 S A R R A LA

we wa w8 we we S we we

GETCHR:
LDA LIDX
CMP LLEN : 4
. BCS EXITGC ;EXIT CHARACTER GET WITH CARRY = 1 TO
; INDICATE END OF LINE (LIDX >= LLEN)
; OTHERWISE, CARRY IS CLEARED
TAY -
LDA 200H,Y ;GET CHARACTER
AND $01111111B ;CLEAR BIT 7
INY . ; INCREMENT TO NEXT CHARACTER
STY LIDX
; CARRY IS STILL CLEARED
EXITGC:
RTS

;**i****-k*_*t*******************
;ROUTINE: PRTNUM

;PURPOSE: PRINT A NUMBER BETWEEN 0..99
;ENTRY: A = NUMBER TO PRINT
- sEXIT: NONE

;REGISTERS USED: ALL

;*****************************

11D REAL-TIME CLOCK AND CALENDAR (cLock) - D03

PRTNUM:
LDY $"0"-1 ;INITIALIZE Y TO "0" -1
SEC ; Y WILL BE THE 10'S PLACE
DIV10:
INY ; INCREMENT 10°'S
SBC #10
BCS DIV10
ADC #10+"0" sMAKE REGISTER A AN ASCII DIGIT
;REG A = 1'S PLACE
sREG Y = 10'S PLACE
TAX ;SAVE 1°'S
TYA
JSR WRCHAR ;OUTPUT 10'S PLACE
TXA
JSR WRCHAR ;OUTPUT 1'S PLACE
RTS
#DATA SECTION
CR . . EQU 0DH sASCII CARRIAGE RETURN
MSG .BYTE "ENTER DATE AND TIME ",CR," (MM/DD/YR HR:MN:SC)? ",0
MSGIDX .BLOCK 1 ;INDEX INTO MESSAGE
NUM: .BLOCK 2 ;NUMBER
LLEN: .BLOCK 1 ; LENGTH OF INPUT LINE
LIDX: .BLOCK 1 ;INDEX OF INPUT LINE
CEN20: .WORD 1900 ; 20TH CENTURY
CURSEC: .BLOCK 1 ;CURRENT SECOND

. END ; PROGRAM

Appendix A 6502 Instruction Set
Summary

Copyright © 1982 Synertek, Inc.
Reprinted by permission.

Table A-1. 6502 Instructions in Alphabetical Order

INSTAUCTIONS MMEOIATE ABSOLUTE | ZEROPAGE] ACCum PLIED o, x o). ¥ 2 PAGE R AR, X ASS Y MELATIVE | INOIRECT 2.5 6K Y CONDITION COOES
WREMONIC OPEAATION OPIN | MOPIN | #lOPIN| #]OP[N | #joPiN | for|N| #for|N| o or(n | #lor!n] «Jorin | #lor|n #|OPIN| #lOPIN[#IN 2 C 1 O Vv
ADcC| a+mec-a wmesf2|2]ep]s]3[es3] 2 e1(6(2[71[s]2]|75[a [2]70]a|3]78]a 3 J iy - <
AND| AAM-A)29|212|20|4 [3|28]3]2 21|6]{2]31|5| 2|3s]a | 2[30]a |3]20[a |3 VY e e -
asL | ca[l___ olao oef6 [3le6(s ! 2]eal2 |1 66 2|1e7 |3 VAR
BCC | BRANCHONC- {2) o202 1|V])]----~2
BCS | BRANCHONC=1 (2) sol2l2 | [} | []-----_
BEQ | BRANCHON Z=1 _ (2) fl22] (| T T T-- ===
BIT | AAM 2c(4|3[24[3]2 Moy - - M
BMI | BRANCHONN=1 (2) a2zl | [1]]-----=2
BNE | BRANCHON 2= (2) oeiz |2 PR
BPL | BRANCHONN=3 () welofe [[]]------
BRK | (Ses Fig A1) w7 T T T T T T T T i T r T T
BVC | BRANCHON V= (2} sol2f2] ||| []|]-----"_
BVS | BRANCHON V=1 (2) wlzlz) [1] |] 1----2--
cLc | 9~c 18§2]1 [
ctple-p o8l2 1 . _ g -
cLl [0t 58[2 |1 [R—
cLv |9V " E Y [I I O T T T I I Y T I I [0
cCMP | A-M 1|ce|2 | 2[co|a |3]cs (3|2 cile| 2|o1(s | 2|os|4 | 2]onja [3]09]a [3 VR R
cPx | x-m 0|2 |2]ec|4 |3fess |2 V.- -
cPy | vm ce|2|2]ccla{3|cala|2 IR
DEC | M-1=M CE[6]3|cas |2 6|6 [2[DE[7[3 7y - -<-<C
DEX | X-1-+X% cal2f1 Vi -
DEV | v1ay 8821 G- e
EOR | AyM-~aA ({4s|2|2]en|e [3]as |32 #1{e|2|s1|8|2|eeis |2|sDla|3]s0]a |3 V4 - -
INC [Me1m eej6|3fesls |2 rel6 [2]re]7 |3 Jd - - =
INX | X+1—X €8]2 |1 PRV —
INY [Ye1ay cal2|1 V- = -
JMP | JUMP TO NEW LOC acla]a eclsla] | [|- - - - __
ISR | (See Fig. A2} JUMP SUB F- ICXE [T N T T U T T A O O O DO
LOA|M=A t1|aeiz |2fap|a |alas|a]2 a16f2|e1[s| 21854 |2|so[a |3]e9|4 |3 e

B06 6502 ASSEMBLY L ANGUAGE SUBROUTINES

Table A-1. 6502 Instructions in Alphabetical Order (Continued)

MMEDIATE | ABSOLUTE | ZEMO PAGE ACCUN. MPLIEO! o, X1 eeL Y 2,PABEX AR X AR Y RELATIVE | WIBIRECT TPASE. Y CONDITION CODES
ovenation oe[n | sjor|n | eJor|n| #]orin | #|or|n | o or[n! #lorin] #]or|n [#loe[n] #lop]n | slor|n | #lopin] #lopinfdn 2 ¢ 1 D v
LDX | M= X]az[2 2[aea|3]as[3]2 BE[4 3 Bslaf2]v v - - ~ -
LoY | M-y ()jad|2 [2]acle|3|aa3|2 Baj4] 2|BC[4 |3 P
Lsr | o= _oc 46 |3[46(5]2]eal2 1 566 | 2|s€{7 |3 eV -~ -
NOP | NOOPERATION ea{2[1 O T T T O I N I O [P
ORA|AVM=A 0912 | 2[ap]a [3]es|3]2 os|2|11]s]2|15]a|2]1D]a]3][19]a]|3 e
PHA | A+ Ms S8 s [T 1T T T T r I i i rirrity=-—=---
PHP | PoMs 514§ eslald v 111t it b it ity ltg==-----
PLA [S+1-5§ Ms~ A 68|41 Vu- - -
PLP | S+1-8 Mo P 2841t (RESTORED)
rou (L defcle 266 | 3|26(s | 2}2a|2 {1 366 | 2|3e]7 |3 Vv - - -
ROR 6E(63|66(5]2[8A(2 |1 7618 | 2| 7€]7 |3 R
AT | (See Fig. A-1) RTRN INT. 4961 RESTOREDI
RTS | {See Fig. A-2) RTRAN SUS esle/of (VL VT ETT LT LY i V] -==--=--
58C | A-ME~A (lesj2i2]eols | 3lesis|2 e1|6] 2|r1|5] 2|r8|al2|rola|3]|reja|a - -y
SEC | 1~C 38|21 PR .
sep | 1-D F8{2 |1 =1 -
SEI | 1f ; 78|21 [BRPRIU N
STA | A=M ENUE R 81|6| 2|9116] 2|96 [a|2{eD|s|3]99[5 |3 - - -
STX | XM 8e(e|3{66(3]2 o6la]2]~ - « - ~ -
STY | YoM 8c|a|3[sal3|2 9ala|2 [
TAX | A=X Aaf2 |1 T
TAY | A~Y A8{2 (1 Vo4 - = - -
TSX | s-+X 8a2 |1} PRS-
TxA|x~A 8aj2 |1 VY-
TXS | X=§ 9a|2 1 - - -
Tya|v—a 98|21 Vv - -
{1i ADD 170 "N" IF PAGE BOUNDARY IS CROSSED X INDEX X + ADD - NOT MODIFIED
(2) ADD 1 TO “N" IF BRANCH OCCURS TO SAME PAGE Y INDEX Y — SUBTRACT M7 MEMORY BIT 7
ADD 2 TO “N* IF BRANCH OCCURS TO DIFFERENT PAGE A ACCUMULATOR A AND M, MEMORY BIT 6
(3) CARRY NOT = BORROW M MEMORY PER EFFECTIVE ADDRESS v OR N NUMBER OF CLOCK
(4) 1F IN DECIMAL MODE Z FLAG IS INVALID Ms MEMORY PER STACK POINTER ¥ EXCLUSIVE OR CYCLES
ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT / MODIFIED # NUMBER OF BYTES

Table A-2. 6502 Operation Codes in Numerical Order

LSD LSD,
L] il 2 3 4 s & 7 8 9 A B c o E F
[MSD MSD|
9 |BRX ORA-IND, X - ORA.Z Page |ASL-Z PAGE ORA-IMM ASL A ORA.ABS ASL-ABS L]
§WRCT T TORRND. ¥ L e AZPmXIASL-Z, Pige, X ORAABS: ¥ ORA-ABS, X | ABLADS, X 1
2 PSR AND-IND, X BIT-Z, Page |AND-Z Page |ROL-Z. Page AND-IMM ROL-A aIT-A8s AND-ABS ROL-ABS 2
LR TS ANDIND, g ik A B PagX = Anpans, x| ROLABS, X 3
4 |RTI EQRIND. X EOR 2,Page [LSR.ZPage LSR-A JMP-ABS EOR-ABS LSR-A8S 4
L T szn:inu, ¥ : . . TeOR 2PN LER 2 Pagex { : L EORAGS, X | (AR ASS, X)
6 [RTS ADC-INO. X [ADC-Z,Page |ROR -Z, Page ROR-A JMPIND ADC-ABS ROR-ABS L]
7 Vs - ADEHD, Y] R EER B g AT § ADGABS: % 7
L] STA-IND. X STY-Z, Page |STA-Z Page gTX-Z,’m TXA STY.ABRS STA-ABS STX-AI.S L]
] ! STAND; ¥] RN MaEs: V& o X} "% JIRE STAADS, % ” »
A |LDY IMM LDAIND. X | LDX-IMM LDY-Z Page |LDA-Z,Page TAX LDY-ABS LDA-ABS LDX-ABS A
3 | iomime. ¥} g kS L LR P, E Do) Jree - ADVASE, X {LOAARE X | LOX-ANS, ¥ [}
C [CPY.IMM CMPAND, X CPY-ZPage {CMP-Z Page DEX CPY-ABS CMP-A8S DEC-ABS <
o ane GMean, ¥ . : FEMPARS: X | OECABS, X [
E SBCIND. X CPX-Z,Page NOP CPX-ABS 58C-ABS INC-ABS E
¥ ND, ¥ L [SOCABS, X] INCAME, X L

APPENDIX A. 6502 INSTRUCTION SET SUMMARY D507

Table A-3. Summary of 6502 Addressing Modes

IMM - IMMEDIATE ADDRESSING — THE OPERAND 1S CONTAINED IN THE SECOND BYTE OF THE
INSTRUCTION.

ABS - ABSOLUTE ADDRESSING — THE SECOND BYTE OF THE INSTRUCTION CONTAINS THE 8
LOW ORDER BITS OF THE EFFECTIVE ADDRESS. THE THIRD BYTE CONTAINS THE 8
HIGH ORDER BITS OF THE EFFECTIVE ADDRESS.

Z. PAGE - 2ERO PAGE _ADDRESSING ~ SECOND BYTE CONTAINS THE 8 LOW ORDER BITS OF
THE EFFECTIVE ADDRESS. THE 8 HIGH ORDER 8ITS ARE ZERO.

A - ACCUMULATOR ~ ONE 8YTE INSTRUCTION OPERATING ON THE ACCUMULATOR.

2. PAGE, X - Z PAGE, Y . ZERQ PAGE INDEXED ~ THE SECOND BYTE OF THE INSTRUCTION IS
AODED TO THE INDEX ICARRY IS DROPPED) TO FORM THE LOW ORDER BYTE OF THE
EA. THE HIGH ORDER BYTE OF THE EA IS ZERO

ABS, X ABS, Y ABSOLUTE INDEXED . THE EFFECTIVE ADDRESS IS FORMED BY ADDING THE
INDEX TO THE SECOND AND THIRD BYTE OF THE INSTRUCTION

{IND, X} - INDEXED INDIRECT ~ THE SECOND BYTE OF THE INSTRUCTION IS ADDED TO THE X
INDEX, DISCARDING THE CARRY, THE RESULTS POINTS TO A LOCATION ON PAGE
ZERO WHICH CONTAINS THE B LOW ORDER BITS OF THE EA. THE NEXT BYTE CON-
TAINS THE 8 HIGH ORDER BITS.

(IND), Y - INDIRECT INDEXED — THE SECOND BYTE OF THE INSTRUCTION POINTS TO A LOCA-
TION IN PAGE ZERO. THE CONTENTS OF THIS MEMORY LCCATION IS ADDED TO THE ¥
INDEX, THE RESULT BEING THE LOW ORDER EIGHT BITS OF THE EA. THE CARRY
FRAOM THIS OPERATION 15 ADDED TO THE CONTENTS OF THE NEXT PAGE ZERO LOCA-
TION, THE RESULTS BEING THE B HIGH ORDER BITS OF THE EA.

Table A-4. 6502 Assembler Directives, Labels, and Special Characters

ASSEMBLER DIRECTIVES

® OPT - SPECIFIES OPTIONS FOR ASSEMBLY
OPTIONS ARE: (OPTIONS LISTED FIRST ARE THE DEFAULT VALUES).
NOC (COU OR CNT} — DO NOT LIST ALL INSTRUCTIONS AND THEIR USAGE.
NOG (GEN) — DO NOT GENERATE MORE THAN ONE LINE OF CODE FOR ASCIt STRINGS.
XRE (NOX) — PRODUCE A CROSS-REFERENCE LIST IN THE SYMBOL TABLE.
ERR (NOE) — CREATE AN ERROR FILE.
MEM (NOM) ~ CREATE AN ASSEMBLER OBJECT OUTPUT FILE.
LIS (NOL) — PRODUCE A FULL ASSEMBLY LISTING.
¢ BYTE — PRODUCES A SINGLE BYTE IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.
® WORD - PRODUCES AN ADDRESS (2 BYTES) IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.
® DBYTE — PRODUCES TWO BYTES IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.
® SKIP — GENERATE THE NUMBER OF BLANK LINES SPECIFIED BY THE OPERAND.
® PAGE —~ ADVANCE THE LISTING TO THE TOP OF A NEW PAGE AND CHANGE TITLE.
® END — DEFINES THE END OF A SOURCE PROGRAM.
* =~ DEFINES THE BEGINNING OF A NEW PROGRAM COUNTER SEQUENCE.

LABELS

LABELS ARE THE FIRST FIELD AND MUST BE FOLLOWED BY AT LEAST ONE SPACE OR A COLON

LABELS CAN BE UP TO 6 ALPHANUMERIC CHARACTERS LONG AND MUST BEGIN WITH AN ALPHA
CHARACTER.

A.X.YS,P AND THE 56 OPCODES ARE RESERVED AND CANNOT BE USED AS LABELS.

LABEL = EXPRESSION CAN BE USED TO EQUATE LABELS TO VALUES.

LABEL *=* +N CAN BE USED TO RESERVE AREAS IN MEMORY.

CHARACTERS USED AS SPECIAL PREFIXES:

* INDICATES AN ASSEMBLER DIRECTIVE

SPECIFIES THE IMMEDIATE MODE OF ADDRESSING
$ SPECIFIES A HEXADECIMAL NUMBER

@ SPECIFIES AN OCTAL NUMBER

% SPECIFIES A BINARY NUMBER

' SPECIFIES AN ASCII LITERAL CHARACTER

{) INDICATES INDIRECT ADDRESSING

: INDICATES FOLLOWING TEXT ARE COMMENTS

< SPECIFIES LOWER HALF OF A 16 BIT VALUE

> SPECIFIES UPPER HALF OF A 16 BIT VALUE

BO08 6502 ASSEMBLY LANGUAGE SUBROUTINES

ADDRESS MEMORY
ADH | ADL | MNEMONIC | OP CODE LOW MEMORY
e 1le € | @~=== SP AFTER IRQ OR NM)
7//// BUT BEFORE RTI
e 1]e F TATUV [
e 1|1 @ / PCL]
8 1|1 1 PCH, 03 |ete—— SP BEFORE IHQ OR NMI
AND AFTER RTI
o 11y 2 / A STACK L
‘L A, A ,L_.' -~
T T e] 7
PC e |8 3|0 0 PC AT TIME OF IRQ OR
NMI THIS INSTRUCTION
—i9¢ 3|0 1 WILL COMPLETE BEFORE
INTERRUPT 1S SEAVICED
>0 3|e 2 | €= PC AFTER ATI
»lo alo s . INTERRUPT SERVICE
MAIN BODY
e 4o 6 .
¢ a0 7 RTI RETURN FROM
INTERRUPT
F F F A ADL
NMI VECTOR
F F|F B| aDH
F FlF cf aoL
RESET VECTOR
F F F D ADH
L-» e F|F E|l aoL o5
IRQ VECTOR
F FlF f] oW [
<= HIGH MEMORY

Figure A-1. Response to IRQ and NMI Inputs and
Operation of the RTI and BRK Instructions

ADDRESS MEMORY
ADH ADL MNEMONIC | OP CODE LOW MEMORY
e t|e € «==== SP AFTER JSR BUT BEFORE
7 /// RETUAN (RTS)
e Vo F PCL / 92
e 1|1 e / PCH 93 |—— SP BEFORE JSR AND AFTER
RETURN (RTS) FROM
e 1| SUBROUTINE
E / STACK
- -~ /A ~
pc = > r =4 -
o 3(0 of 4 s 2 JUMP TO SUBROUTINE
e 3|e 1l AD L ") '
9 3|9 2| aoH [
¢ 3|e 3 RETURN FROM SUBROUTINE TO
THIS LOCATION
4 4 L ph ps
¥ = 4 - -
® 4f{0 s . SUBROUTINE MAIN
80DY
o 4afo 6 .
o 4afleo 7 .
9 ajlo 8fl RTS 6 RETURN FROM SUBROUTINE

HIGH MEMORY

Figure A-2. Operation of the JSR and RTS Instructions

APPENDIX A. 6502 INSTRUCTION SET SUMMARY 509

]
[}
PCL]
[]

ACCUMULATOR A

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER “PC” OR "P"
STACK POINTER “g"

PROCESSOR STATUS “P"” OR "F"
CARRY 1 = CARRY OR NO BORROW
ZERO 1 = RESULT ZERO

IRQ DISABLE 1 = DISABLE

DECIMAL MODE 1 = DECIMAL, O = BINARY
BRK COMMAND 1 ALWAYS

NOT USED

OVERFLOW 1 = TRUE

NEGATIVE 1 = NEGATIVE

Figure A-3. Programming Model of the 6502 Microprocessor

Appendix B Programming Reference
for the 6522 Versatile
Interface Adapter (VIA)

Copyright © 1982 Synertek, Inc.
Reprinted by permission.

vss 11 a0 car
PAG 1 2 39[ca2
PRI (] 3 38[] Rso
PAZ [a 3700 Rs1
PA3 [5 3s]J rs2
PAd 6 35[7] rs3
Pas [7 34[] RES
ra6 [] 8 337 po
pa7 [0 321 b1
P80 (10 syes2 31{) D2
p1 [30{] 03
e82 12 29[pa
pB3 []13 281 o5
rea 14 27[] ve
res s 26[] o7
ree []16 25 ®2
PB? (17 24[] cs
ce1 s 23] €52
cB2 E{ 19 22[7] R/W
vee [J20 217 irG

Figure B-1. 6522 Pin Assignments

510

APPENDIX B. PROGRAMMING REFERENCE FOR THE 6522 via 511

INTERRUPT
CONTROL

FLAGS INPUT LATCH

(FR) {IRA}
—-J; ___________ ourur BUFFERS
ENABLE
QER)) (ORA} @ Pa) /::>’°R”

pata L | DATA DIR.
DBATSA BUS (DDRA}
v BUFFERS 1

PORT A REGISTERS

PERIPHERAL
$ {PCR)
""""""" a1
AUXILIARY PORT A c

(ACR) > __________ €Az
FUNCTION

PORT B
CONTROL
HANDSHAKE
CONTROL
LATCH LATCH
RES _-(_T:L_T _____ fll'_L_)__ SHIFT REG. o8
RN ———] (SR} c82
counTER | CounTER
#2 —eey (TIC-H) mic.L)
it *1 cuie TIMER 1 PORT B REGISTERS
t%———f access
Ao CONTROL TIMER 2 INPUT LATCH
(1RB)
RS tatch || | F--------4
T2L-1)
|| L —] A o KOs K vonrs
[a— COUNTER | COUNTER]
(T2C-H) T2¢1) OATA DI

{DDRB)

Figure B-2. Block Diagram of the 6522 Versatile Interface Adapter (VIA)

Table B-1. 6522 Internal Registers

Register RS Coding Regi Description
Number RS3 | RS2 | RS1 | RSO Desig. Write Read
0 0 0 0 0 ORB/IRB Output Register *'B* Input Register "“B"
1 0 0 0 1 ORA/IRA | Output Register “A” Input Register “A’
2 0 0 1 0 DDRB Data Direction Register *‘B”
3 0 0 1 1 DDRA Data Direction Register A"’
4 0 1 0 0 TiC-L T1 Low-Order Latches T1 Low-Order Counter
5 0 1 0 1 Ti1C-H T1 High-Order Counter
6 0 1 1 0 TIL-L T1 Low-Order Latches
7 0 1 1 1 TIL-H T1 High-Order Latches
8 1 0 o 0 T2C-L T2 Low-Order Latches | T2 Low-Order Counter
9 1 (o} 0 1 T2C-H T2 High-Order Counter
10 1 0 1 0 SR Shift Register
1 1 (¢} 1 1 ACR Auxiliary Control Register
12 1 1 0 0 PCR Peripheral Control Register
13 1 1 0 1 IFR Interrupt Flag Register
14 1 1 1 0 IER Interrupt Enable Register
15 1 1 1 1 ORA/IRA | Same as Reg 1 Except No “Handshake"’

812 6502 ASSEMBLY LANGUAGE SUBROUTINES

[lefelelolo] o]

L— rag]
PB1
B2 .
PB3 QUTPUT REGISTER “B"” (ORB)
o OR
e
PB4 INPUT REGISTER "‘B” (ORB)
PBS
PB6
PB7
Pin
Data Direction WRITE READ
Selection

DDRE = “1” {OUTPUT)

MPU writes Output Level
{ORB)

MPU reads output register bit
in ORB. Pin level has no affect.

DDRB = 0" (INPUT)
{Input latching disabled)

MPU writes into ORB, but
no effect on pin level, until

MPU reads input level on PB
pin.

DDRB ch d

DDRB = 0" (INPUT)
(Input latching enabled)

MPU reads IRB bit, which is
the level of the PB pin at the
time of the last CB1 active
transition,

Figure B-3. Output Register B and Input Register B (Register 0)

[rie]s[efo]2]r]o]

L pad]
PA1
e PA2
P ISTER “A" {ORA
PA3 OUTPUT REGIS {)
o OR
PA4 INPUT REGISTER “A” (IRA)
PAS
PA6
Pa7)
Pin
Data Direction WRITE READ
Selection
DDRA = “1' (OUTPUT) { MPU writes Output Level | MPU reads leve) on PA pin.
{Input latching disabled) | {ORAI.
DDRA ="'1" (OUTPUT) MPU reads IRA bit which is

(Input latching enabled) the level of the PA pin at the
time of the last CA1 active
transition.

MPU reads level on PA pin,

DDRA = "0" (INPUT}
{Input latching disabled)

MPU writes into ORA, but
no effact on pin level, until
DDRA changed.

DDRA = “'0" (INPUT)
(input latching enabled}

MPU reads IRA bit which is
the level of the PA pin at the
time of the last CA 1 active
transition.

Figure B-4. Output Register A and Input Register A (Register 1)

APPENDIX B. PROGRAMMING REFERENCE FOR THE 6522 VIA 51 3

[7]e]s]s]s]2]1]0] 7|6]s|a]3|2]1]o0

L PBO/PA] I 256
PB1/PA1 512
PB2/PA2 1024
PB3/PA3| DATA DIRECTION REGISTER L2048 | count
“B” OR “A” (DDRB/DDRA) VALUE
I— T-7Y 7 V' 4096
PBS/PAS 8192
PBG/PAG 16384
PB7/PA7] 32768
0" ASSOCIATED PB/PA PIN 1S AN INPUT WRITE — 8 BITS LOADED INTO T1 HIGH-ORDER
{HIGH-IMPEDANCE) LATCHES. ALSO, AT THIS TIME BOTH
“1” ASSOCIATED PB/PA PIN IS AN OUTPUT, HIGH AND LOW-ORDER LATCHES
WHOSE LEVEL IS DETERMINED BY TRANSFERRED INTO T1 COUNTER.
ORB/ORA REGISTER BIT. T1INTERRUPT FLAG ALSO IS RESET.
READ — 8 BITS FROM T1 HIGH-ORDER COUNTER
TRANSFERRED TO MPU.
Figure B-6. Data Direction Registers B Figure B-7. Timer 1 High-Order Counter
(Register 2) and A (Register 3) (Register 5)
7]6‘5]4[3210 7]le|s]|a|3]2f1]0
; [1 I
| , "
| 2
 ————
| 4 —
‘ 8 | count L 8| counr
| 16| VALUE [~ VALUE
16
32 32
64 64
i
| 128) 128
]
‘ WRITE — 8 BITS LOADED INTO T1 LOW-ORDER WRITE — 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES. LATCH CONTENTS ARE LATCHES. THIS OPERATION IS THE
TRANSFERRED INTO LOW-ORDER SAME AS WRITING INTO
COUNTER AT THE TIME THE HIGH- REGISTER 4.
f ORDER COUNTER IS LOADED (REG 5). READ — 8 BITS FROM T1 LOW-ORDER LATCHES
READ — 8 BITS FROM T1 LOW-ORDER COUNTER TRANSFERRED TO MPU. UNLIKE REG 4
TRANSFERRED TO MPU, IN ADDITION, OPERATION, THIS DOES NOT CAUSE
T1 INTERRUPT FLAG IS RESET (BIT 6 RESET OF T1 INTERRUPT FLAG.

IN INTERRUPT FLAG REGISTER).

Figure B-6. Timer 1 Low-Order Counter Figure B-8. Timer 1 Low-Order Latches
(Register 4) (Register 6)

|
1
i
i

B514 6502 ASSEMBLY LANGUAGE SUBROUTINES

716]|5]4]3|2]1}]0

l———zse"

—————— 512

1024

2048 | count
006 | VALUE

8192

16384
3276§J

WRITE — 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES. UNLIKE REG 4 OPERATION
NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE.

READ — 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU.

Figure B-9. Timer 1 High-Order Latches
(Register 7)

Llefelele[2]]e]

[__1‘1
L2
4
38 | COUNT
VALUE
S—T
32
64
128

WRITE — 8 BITS LOADED INTO T2 LOW-ORDER
LATCHES.

READ — 8 BITS FROM T2 LOW-ORDER COUNTER
TRANSFERRED TO MPU. T2 iINTERRUPT
FLAG 1S RESET.

Figure B-10. Timer 2 Low-Order Counter
(Register 8)

Llefsfe]sfz]1]]
I—zss?

612

1024.

e 2048 | COUNT
VALUE

4096

— 8192

16384

32768

WRITE — 8BITS LOADED INTO T2 HIGH-ORDER
COUNTER. ALSO, LOW-ORDER LATCHES
TRANSFERRED TO LOW-ORDER
COUNTER. IN ADDITION, T2 INTERRUPT
FLAG IS RESET.

READ — 8BITS FROM T2 HIGH-ORDER COUNTER
TRANSFERRED TO MPU.

Figure B-11. Timer 2 High-Order Counter
(Register 9)

SHIFT
= REGISTER
BITS

NOTES:

1. WHEN SHIFTING QUT. BIT 7 IS THE FIRST BIT
OUT AND SIMULTANEOUSLY IS ROTATED BACK
INTO BIT 0.

2. WHEN SHIFTING IN, BITS INITIALLY ENTER
BIT 0 AND ARE SHIFTED TOWARDS BIT 7.

Figure B-12. Shift Register
(Register 10)

APPENDIX B. PROGRAMMING REFERENCE FORTHE 6522 via D15

L fefe]els]z[+]o]

1 L T T

T1 TIMER CONTROL I L LATCH ENABLE/DISABLE
7|6 OPERATION PB7 ———FPB 0= DISABLE
0[O0 TIMED INTERRUPT 1

EACH TIME T118

LOADED DISABLED
0 1/ CONTINUOUS

INTERRUPTS
1[0| TIMED INTERRUPT | ONE-SHOT

EACH TIMET11S | OUTPUT feer——————————— SHIFT REGISTER CONTROL

LOADED
1] 1[CONTINUOUS SQUARE 4132 | OPERATION

INTERRUPTS WAVE 010/0] DISABLED

OUTPUT 010 1]SHIFT IN UNDER CONTROL OF T2
0[1[0 SHIFT IN UNDER CONTROL OF ¢2
T2 TIMER CONTROL 0 1] 1[SHIFT IN UNDER CONTROL OF EXT. CLK
5| OPERATION 1{0[0[SHIFT OUT FREE-RUNNING AT T2 RATE
0] TIMED INTERRUPT 1]0[1[SHIFT OUT UNDER CONTROL OF T2
7| COUNT DOWN WITH 1[1|0[SHIFT OUT UNDER CONTROL OF ¢2
PULSES ON PB6 1]7[1[SHIFT OUT UNDER CONTROL OF EXT. CLK.

Figure B-13. Auxiliary Control Register (Register 11)

CB2 CONTROL —:—' CATINTERRUPT CONTROL
7]6][5]OPERATION 0= NEGATIVE ACTIVE EDGE
0]0]0]INPUT-NEGATIVE ACTIVE EDGE 1= POSITIVE ACTIVE EDGE

i B

5[] | mossesney wrenmueT —T
0]1]0[INPUT-POSITIVE ACTIVE EDGE 3[2]1] operaTION
0[] 1|INDEPENDENT INTERRUPT 000 INPUT-NEGATIVE ACTIVE EDGE

INPUT POS EDGE 0[0[1] INDEPENDENT INTERRUPT
1[0 [0 |HANDSHAKE OUTPUT INPUT-NEG EDGE
1]0]77PULSE OUTPUT 0[1]0[INPUTPOSITIVE ACTIVE EDGE
1]1[0]LOWOUTPUT 0| 1] 1] INDEPENDENT INTERRUPT
171 [HIGH ouTPUT INPUT-POS EDGE
CB1INTERRUPT CONTROL 110 10/ HANDSHAKE OUTPUT

101 [PULSE OUTPUT

0= NEGATIVE ACTIVE EDGE 1[1[0] Low OUTPUT
1 = POSITIVE ACTIVE EDGE 11 [1]RIGH ouTPUT

Figure B-14, Peripheral Control Register (Register 12)

816 6502 ASSEMBLY LANGUAGE SUBROUTINES

Llelsle[=] o] ~

SET BY CLEARED BY
a2 JCAZACTIVE EDGE | READ OR WRITE
REG 1 (ORA)
CA1——{CATACTIVE EDGE | READ OR WRITE
REG 1 (ORA)
SHIFT REG{COMPLETE 8 SHIFTS | READ OR WRITE
SHIFT REG
B2 CBZ ACTIVE EDGE | READ OR WRITE ORB
cB DB1 ACTIVE EDGE__| READ OR WRITE ORB
TIMER 2 TIME-OUT OF T2 READ T2 LOW OR
WRITE T2 HIGH
. TIME-OUT OF T1 READ T1 LOW OR
—TIMER 1 WRITE T1 HIGH
Lira ANY ENABLED CLEARALL
INTERRUPT INTERRUPTS

Figure B-16. Interrupt Flag Register (Register 13)

[LLTELT

-

caz]

cAal

SHIFT REG
cB2 0 = INTERRUPT DISABLED

—_—CB1 1= INTERRUPT ENABLED

TIMER 2

TIMER 1
SET/CLEAR

NOTES:

1IFBIT7I1SA 0", THEN EACH “1” INBITS 0 - 6 DISABLES THE
CORRESPONDING INTERRUPT.

2 (FBIT71SA “1”, THEN EACH “1” INBITS 0 - 6 ENABLES THE
CORRESPONDING INTERRUPT.

3. IF AREAD OF THIS REGISTER IS DONE, BIT 7 WiLL BE “1” AND
ALL OTHER BITSWILL REFLECT THEIR ENABLE/DISABLE STATE,

Figure B-16. Interrupt Enable Register (Register 14)

Appendix C ASCII Character Set

Copyright © 1982 Synertek, Inc.

Reprinted by permission.

-
()
o]

MSD

000

010

o
- W
-

0

101

110

0000
0001
0010
0011
0100
0101

NUL
SOH
STX
ETX
EOT
ENG

sp

0110
o
1000
1001
1010

ACK
BEL
BS
HT
LF

- IR g

OO N s W -0

-l Q 0 T o

T o

x

MmO O P OW O N OO & W KN - O

1011
1100
mom
1110
1M

vT
FF
CR
o)
st

Oz2zrAlc-Tonmoow>»oga

s TN X X 2 <jIC 4 v DO ©

o 3 3

- o [N €

DEL

517

Glossary

A

Absolute addie_ss. An address that identifies a storage location or a device without
the use of a base, offset, or other factor. See also Effective address, Relative
offset.

Absolute addressing.. An addressing mode in which’ the instruction contains the
actual address required for its execution. In 6502 terminology, absolute
addressing refers to a type of direct addressing in which the instruction con-
tains a full 16-bit address as opposed to zero page addressing in which the
instruction contains only an 8-bit address on page 0. :

Absolute indexed addressing. A form of indexed addressidg in which the instruc-
tion contains a full 16-bit base address.

Accumulator. A register that is the implied source of one operand and'the destina-
tion of the result for most arithmetic and logic operations.

ACIA (Asynchronous Communications Interface Adabter). A serial interface
device. Common ACIAs in 6502-based computers are the 6551 and 6850
devices. See also UART.

Active transition (in a PIA or VIA) The edge on the control line that sets an Inter-
rupt flag. The alternatives are a negative edge (1 to 0 transition) or a positive
edge (0 to 1 transition).

Address. The identification code that distinguishes one memory location or input/
output port from another and that.can be used to select a specific one.

Addressing modes. The methods for specifying the addresses to be used in execut-
ing an instruction. Common addressing modes are direct, immediate, indexed,
indirect, and relative.

519

520 6502 ASSEMBLY LANGUAGE SUBROUTINES

Address register. A register that contains a memory address.

Address space. The total range of addresses to which a particular computer may
refer.

ALU. See Arithmetic-logic unit.

Arithmetic-logic unit (ALU). A device that can perform any of a variety of
arithmetic or logical functions; function inputs select which function is per-
formed during a particular cycle.

Arithmetic shift. A shift operation that preserves the value of the sign bit (most
significant bit). In a right shift, this results in the sign bit being copied into the
succeeding bit positions (called sign extension).

Arm. See Ena,blbe, but most often applied to interrupts.

Array. A collection of related data items, usually stored in consecutive memory
addresses.

ASCII (American Standard Code for Information Interchange). A 7-bit character
code widely used in computers and communications.

Assembler. A computer progra'm that converts assembly language programs into a
form (machine language) that the computer can execute directly. The assem-
bler translates mnemonic operation codes and names into their numerical
equivalents and assigns locations in memory to data and instructions.

Assembly language. A compuier language in which the programmer can use
mnemonic operation codes, labels, and names to refer to their numerical
equivalents. '

Asynchronous. Operating without reference to an overall timing source, that is, at
irregular intervals.

Autodecrementing. The automatic decrementing of an address register as part of
the execution of an instruction that uses it.

Autoincrementing. The automatic incrementing of an address register as part of the
execution of an instruction that uses it.

Automatic mode (of a peripheral chip). An operating mode in-which the peripheral
chip produces control signals automatically without specific program interven-
tion.

Base address. The address in memory at which an array or table starts. Also called
starting address or base.

GLossary 521

Baud. A measure of the rate at which serial data is transmitted, bits per second,
but including both data bits and bits used for synchronization, error checking,
and other purposes. Common baud rates are 110, 300, 1200, 2400, 4800, and
9600.

Baud rate generator. A device that generates the proper time intervals between
bits for serial data transmission.

BCD (Binary-Coded Decimal). A representation of decimal numbers in which
each decimal digit is coded separately into a binary number.

Bidirectional. Capable of transporting signals in either direction.
Binary-coded decimal. See BCD.

Binary search. A search in which the set of items to be searched is divided into two
equal (or nearly equal) parts during each iteration. The part containing the
item being sought is then determined and used as the set in the next iteration.
A binary search thus halves the size of the set being searched with each itera-
tion. This method obviously assumes the set of items is ordered.

Bit test. An operation that determines whether a bit is 0 or 1. Usually refers to a
logical AND operation with an appropriate mask.

Block. An entire group or section, such as a set of registers or a section of
memory.

Block comparison (or block compare). A search that extends through a block of
memory until either the item being sought is found or the entire block is
examined.

Block move. Moving an entire set of data from one area of memory to another.

Boolean variable. A variable that has only two possible values, which may be
represented as true and false or as 1 and 0. See aiso Flag.

Borrow. A bit which is set to 1 if a subtraction produces a negative result and to 0
if it produces a positive or zero result. The borrow is used commonly to
subtract numbers that are too long to be handled in a single operation.

Bounce. To move back and forth between states before reaching a final state.
Branch instruction. See Jump instruction.
Break instruction. See Trap.

Breakpoint. A condition specified by the user under which program execution is
to end temporarily. Breakpoints are used as an aid in debugging. The specifica-
tion of the conditions under which execution will end is referred to as setting

B22 6502 ASSEMBLY LANGUAGE SUBROUTINES

breakpoints and the deactivation of those conditions is referred to as clearing
breakpoints.

BSC (Binary Synchronous Communications or BISYNC). An older line protocol
often used by IBM computers and terminals.

Bubble sort. A sorting technique which goes through an array exchanging each
pair of elements that are out of order.

Buffer. Temporary storage area generally used to hold data before it is transferred
to its final destination.

Buffer empty. A signal that is active when any data entered into a buffer or register
has been transferred to its final destination.

Buffer full. A signal that is active when a buffer or register is completely occupied
with data that has not been transferred to its final destination.

Buffer index. The index of the next available address in a buffer.

Buffer pointer. A storage location that contains the next available address in a
buffer.

Bug. An error or flaw.

Byte. A unit of eight bits. May be described as consisting of a high nibble or digit
(the four most significant bits) and a low nibble or digit (the four least signifi-
cant bits).

Byte-length. A length of eight bits per item.

Cc

Call (a subroutine). Transfers control to the subroutine while retaining the infor-
mation required to resume the current program. A call differs from a jump or
branch in that a call retains information concerning its origin, whereas a jump
or branch does not.

Carry. A bit that is 1 if an addition overflows into the succeeding digit position.

Carry flag. A flag that is 1 if the last operation generated a carry from the most sig-
nificant bit and 0 if it did not.

CASE statement. A statement in a high-level computer language that directs the
computer to perform one of several subprograms, depending on the value ofa
variable. That is, the computer performs the first subprogram if the variable
has the first value specified, etc. The computed GO TO statement serves a
similar function in FORTRAN. '

cLossary 523

Central processing unit (CPU). The control section of the computer which controls
its operations, fetches and executes instructions, and performs arithmetic and
logical functions.

Checksum. A logical sum that is included in a block of data to guard against
recording or transmission errors. Also referred to as longitudinal parity or
longitudinal redundancy check (LRC).

Circular shift. See Rotate.

Cleaning the stack. Removing unwanted items from the stack, usually by adjust-
ing the stack pointer.

Clear. Set to zero.
Clock. A regular timing signal that governs transitions in a system.

Close (a file). To make a file inactive. The final contents of the file are the last
information the user stored in it. The user must generally close a file after
working with it.

Coding. Writing instructions in a computer language.
Combo chip. See Multifunction device.
Command register. See Control register.

Comment. A section of a program that has no function other than documentation.
Comments are neither translated nor executed, but are simply copied into the
program listing.

Complement. Invert; see also one’s complement, two’s complement.

Concatenation. Linking together, chaining, or uniting in a series. In string opera-
tions, placing of one string after another.

Condition code. See Flag.

Control (command) register. A register whose contents determine the state of a
transfer or the operating mode of a device.

Control signal. A signal that directs an I/0 transfer or changes the operating mode
of a peripheral.

Cyclic redundancy check (CRC). An error-detecting code generated from a
polynomial that can be added to a block of data or a storage area.

B24 6502 ASSEMBLY LANGUAGE SUBROUTINES

D

Data accepted. A signal that is active when the most recent data has been trans-
ferred successfully.

Data direction register. A register that determines whether bidirectional 1/0 lines
are being used as inputs or outputs. Abbreviated as DDR in some diagrams.

Data-link control. A set of conventions governing the format and timing of data
exchange between communicating systems. Also called a protocol.

Data ready. A signal that is active when new data is available to the receiver. Same
as valid data.

Data register. In a PIA or VIA, the actual input/output port. Also called an output
register or a peripheral register.

DDCMP (Digital Data Communications Message Protocol). A widely used pro-
tocol that supports any method of physical data transfer (synchronous or
asynchronous, serial or parallel).

Debounce. Convert the output from a contact with bounce into a single, clean
transition between states. Debouncing is most commonly applied to outputs
from mechanical keys or switches which bounce back and forth before settling
into their final positions.

Debounce time. The amount of time required to debounce a change of state.

Debugger. A program that helps in locating and correcting errors in a user pro-
gram. Some versions are referred to as dynamic debugging tools or DDT after
the famous insecticide.

Debugging. The process of locating and correcting errors in a program.
Device address. The address of a port associated with an input or output device.

Diagnostic. A program that checks the operation of a device and reports its find-
ings.

Digit shift. A shift of one BCD digit position or four bit positions.

Direct addressing. An addressing mode in which the instruction contains the
address required for its execution. The 6502 microprocessor has two types of
direct addressing: zero page addressing (requiring only an 8-bit address on

page 0) and absolute addressing (requiring a full 16-bit address in two bytes of
memory).

Disarm. See Disable, but most often applied to interrupts.

6Lossary 525

Disable (or disarm). Prohibit an activity from proceeding or a signal (such as an
interrupt) from being recognized.

Double word. A unit of 32 bits.
Driver. See 1/0 driver.

Dump. A facility that displays the contents of an entire section of memory or
group of registers on an output device.

Dynamic allocation (of memory). The allocation of memory for a subprogram
from whatever is available when the subprogram is called. This is as opposed to
the static allocation of a fixed area of storage to each subprogram. Dynamic’
allocation often reduces memory usage because subprograms can share areas;
it does, however, generally require additional execution time and overhead
spent in memory management.

EBCDIC (Expanded Binary-Coded Decimal Interchange Code). An 8-bit
character code often used in large computers.

Echo. Reflects transmitted information back to the transmitter; sends back to a
terminal the information received from it.

Editor. A program that manipulates text material and allows the user to make cor-
rections, additions, deletions, and other changes.

Effective address. The actual address used by an instruction to fetch or store data.
EIA RS-232. See RS-232.

Enable (or arm). Allows an activity to proceed or a signal (such as an interrupt) to
be recognized.

Endless loop or jump-to-self instruction. An instruction that transfers control to
itself, thus executing indefinitely (or until a hardware signal interrupts it).

Error-correcting code. A code that the receiver can use to correct errors in
messages; the code itself does not contain any additional message.

Error-detecting code. A code that the receiver can use to detect errors in messages;
the code itself does not contain any additional message.

Even parity. A 1-bit error-detecting code that makes the total number of 1 bitsin a
unit of data (including the parity bit) even.

B26 6502 ASSEMBLY LANGUAGE SUBROUTINES

EXCLUSIVE OR function. A logical function that is true if either of its inputs is
true but not both. It is thus true if its inputs are not equal (that is, if one of
them is a logic 1 and the other is a logic 0).

External reference. The use in a program of a name that is defmed in another pro-
gram.

F
F (flag) register. See Processor status register.

File. A collection of related information that is treated as a unit for purposes of
storage or retrieval.

Fill. Placing values in storage areas not previously in use, initializing memory or
storage.

Flag (or condition code or status bit). A single bit that indicates a condition within
the computer, often used to choose between alternative instruction sequences.

Flag (software). An indicator that is either on (1) or off (0) and can be used to
select between two alternative courses of action. Boolean variable and
semaphore are other terms with the same meaning.

Flag register. See Processor status register.

Free-running mode. An operating mode for a timer in which 1t indicates the end of
a time interval and then starts another of the same length. Also referred to as a
continuous mode.

Function key. A key that causes a system to perform a function (such as clearing
the screen of a video terminal) or execute a procedure.

G

Global. This is a universal variable. Deﬁ'ned in more than one section of a com-
puter program, rather than used only locally.

H

Handshake. An asynchronous transfer in which sender and receiver exchange
predetermined signals to establish synchronization and to indicate the status of
the data transfer. Typncally, the sender indicates that new data is available and
the receiver reads the data and indicates that it is ready for more.

cLossary 527

Hardware stack. A stack that the computer automatically manages when execut-
ing instructions that use it.

Head (of a queue). The location of the item most recently entered into the queue.
Header, queue. See Queue header.

Hexadec:mal (or hex). Number system with base 16. The digits are the decnmal
numbers 0 through 9, followed by the letters A through F.

Hex cqde. See Object code.

High-level language. A programming language that is aimed toward the solution of
problems, rather than being designed for convenient conversion into com-
puter instructions.A compiler or interpreter translates a program written in a
high-level language into a form that the computer can execute. Common high-
lével languages include BASIC, COBOL, FORTRAN, and Pascal.

Immediate addressing. An addressing mode in which the data required by an
instruction is part of the instruction. The data immediately follows the opera-
tion code in memory.

Independent mode (of a parallel interface). An operating mode in which the status
and control signals associated with a parallel I/O port can be used indepen-
dently of data transfers through the port.

Index. A data item used to identify a particular element of an array or table,

Indexed addressing. An addressing mode in which the address is modified by the
contents of an index register to determine the effective address (the actual
address used).

Indexed indirect addressing. An addressing mode in which the effective address is
determined by mdexmg from the base address and then using the indexed
address indirectly. This is also known as preindexing, since the indexing is per-
formed before the indirection. Of course, the array starting at the given base
address must consist of addresses that can be used indirectly.

Index reglster A register that can be used to modify memory addresses

Indirect addressmg An addressing mode in which the effective address is the con-
tents of the address included in the instruction, rather than the address itself.

Indirect indexed addressing. An addressing mode in which the effective address is
determined by first obtaining the base address indirectly and then indexing
from that base address. Also known as postindexing, smce the mdexmg is per-
formed after the indirection.

B28 5502 ASSEMBLY LANGUAGE SUBROUTINES

Indirect jump. A jump instruction that transfers control to the address stored in a
register or memory location, rather than to a fixed address.

Input/output control block (IOCB). A group of storage locations that contain the
information required to control the operation of an 1/0 device. Typically
included in the information are the addresses of routines that perform opera-
tions such as transferring a single unit of data or determining device status.

Input/output control system (I10CS). A set of computer routines that control the
performance of 1/0 operations.

Instruction. A group of bits that defines a computer operation and is part of the
instruction set.

Instruction cycle. The process of fetching, decoding, and executing an instruction.

Instruction execution time. The time required to fetch, decode, and execute an
instruction.

Instruction fetch. The process of addressing memory and reading an instruction
into the CPU for decoding and execution.

Instruction length. The amount of memory needed to store a complete instruction.

Instruction set. The set of general-purpose instructions available on a given com-
puter. The set of inputs to which the CPU will produce a known response when
they are fetched, decoded, and executed.

Interpolation. Estimating values of a function at points between those at which the
values are already known.

Interrupt. A signal that temporarily suspends the computer’s normal sequence of
operations and transfers control to a special routine.

Interrupt-driven. Dependent on interrupts for its operation, may idle until it
receives an interrupt.

Interrupt flag. A bit in the input/output section that is set when an event occurs
that requires servicing by the CPU. Typical events include an active transition
on a control line and the exhaustion of a count by a timer.

Interrupt mask (or interrupt enable). A bit that determines whether interrupts will
be recognized. A mask or disable bit must be cleared to allow interrupts,
whereas an enable bit must be set.

Interrupt request. A signal that is active when a peripheral is requesting service,
often used to cause a CPU interrupt. See also Interrupt flag.

Interrupt service routine. A program that performs the actions required to respond
to an interrupt.

GLossary 529

Inverted borrow. A bit which is set to 0 if a subtraction produces a negative result
and to 1 if it produces a positive or O result. An inverted borrow can be used
like a true borrow, except that the complement of its value (i.e., 1 minus its
value) must be used in the extension to longer numbers.

IOCB. See Input/output control block.
10CS. See Input/output control system.

1/0 device table. A table that establishes the correspondence between the logical
devices to which programs refer and the physical devices that are actually used
in data transfers.-An 1/0 device table must be placed in memory in order to run
a program that refers to logical devices on a computer with a particular set of
actual (physical) devices. The 1/0 device table may, for example, contain the
starting addresses of the 1/0 drivers that handle the various devices.

I/0 driver. A computer program that transfers data to or from an I/0 device, also
called a driver or I/O utility. The driver must perform initialization functions
and handle status and control, as well as physically transfer the actual data.

J

Jump instruction (or Branch instruction). An instruction that places a new value in
the program counter, thus departing from the normal one-step incrementing,
Jump instructions may be conditional; that is, the new value may be placed in
the program counter only if a condition holds.

Jump table. A table consisting of the starting addresses of executable routines,
used to transfer control to one of them.

L

Label. A name attached to an instruction or statement in a program that identifies
the location in memory of the machine language code or assignment produced
from that instruction or statement.

Latch. A device that retains its contents until new data is specifically entered into
it.

Leading edge (of a binary pulse). The edge that marks the beginning of a puise.

Least significant bit. The rightmost bit in a group of bits, that is, bit 0 of a byte or a
16-bit word.

Library program. A program that is part of a collection of programs and is written
and documented according to a standard format.

B30 6502 ASSEMBLY LANGUAGE SUBROUTINES

LIFO (last-in, first-out) memory. A memory that is organized according to the
order in which elements are entered and from which elements can be retrieved
only in the order opposite from that in which they were entered. See also Stack.

Linearization. The mathematical approximation of a function by a straight line
between two points at which its values are known.

Linked list. A list in which each item contains a pointer (or /ink) to the next item.
Also called a chain or chained list.

List. An ordered set of items.

Logical device. The input or output device to which a program refers. The actual
or physical device is determined by looking up the logical device in an 1/0
device table — a table containing actual I/0 addresses (or starting addresses
for 1/0 drivers) corresponding to the logical device numbers.

Logical shift. A shift operation that moves zeros in at the end as the original data is
shifted.

Longitudinal parity. See Checksum.

Logical sum. A binary sum with no carries between bit positions. See also
Checksum, EXCLUSIVE OR function.

Longitudinal redundancy check (LRC). See Checksum.

Lookup table. An array of data organized so that the answer to a problem may be
determined merely by selecting the correct entry (without any calculations).

Low-level language. A computer language in which each statement is translated
directly into a single machine language instruction.

M

Machine language. The programming language that the computer can execute

directly with no translation other than numeric conversions.

Maintenance (of programs). Updating and correcting computer programs that are
in use. : :

Majority logic. A combinational logic function that is true when more than half the
inputs are true.

Manual mode (of a peripheral chip). An operating mode in which the chip pro-
duces control signals only when specifically directed to do so by a program.

Mark. The 1 state on a serial data communications line.

Mask. A bit pattern that isolates one or more bits from a group of bits.

cLossary 531

Maskable interrupt. An interrupt that the system.can disable.

Memory capacity. The total number of different memory addresses (usually
specified in terms of bytes) that can be attached to a particular computer.

Microcomputer. A computer that has a microprocessor as its central processing
unit,

Microprocessor. A complete central processing unit for a computer constructed
from one or a few integrated circuits.

Mnemonic. A memory jogger, a name that suggests the actual meaning or purpose
of the object to which it refers.

Modem (Modulator/demodulator). A device that adds or removes a carrier fre-
quency, thereby allowing data to be transmitted on a high-frequency channel
or received from such a channel.

Modular programming. A programming method whereby the overall program is
divided into logically separate sections or modules.

Module. A part or section of a program.

Monitor. A program that allows the computer user to enter programs and data,
run programs, examine the contents of the computer’s memory and registers,
and utilize the computer’s peripherals. See also Operating system.

Most significant bit. The leftmost bit in a group of bits, that is, bit 7 of a byte or bit
15 of a 16-bit word.

Multifunction device. A device that performs more than one function in a com-
puter system; the term commonly refers to devices containing memory, input/
output ports, timers, etc., such as the 6530, 6531, and 6532 devices.

Moultitasking. Used to execute many tasks during a single period of time, usually
by working on each one for a specified part of the period and suspending tasks
that must wait for input, output, the completion of other tasks, or external
events.

Murphy’s Law. The famous maxim that “‘whatever can go wrong, will.”

N

Negate. Finds the two’s complement (negative) of a number.
Negative edge (of a binary pulse). A 1-to-0 transition.
Negative flag. See Sign flag.

532 6502 ASSEMBLY LANGUAGE SUBROUTINES

Negative logic. Circuitry in which a logic zero is the active or ON state.

Nesting. Constructing programs in a hierarchical manner with one level contained
within another, and so forth. The nesting level is the number of transfers of
control required to reach a particular part of a program without ever returning
to a higher level.

Nibble (or nybble). A unit of four bits. A byte (eight bits) may be described as
consisting of a high nibble (four most significant bits) and a low nibble (four
least significant bits).

Nine’s complement. The result of subtracting a decimal number from a number
having nines in each digit position.

Nonmaskable interrupt. An interrupt that cannot be disabled within the CPU.
Nonvolatile memory. A memory that retains its contents when power is removed.

No-op (or no operation). An instruction that does nothing other than increment
the program counter.

Normalization (of numbers). Adjusting a number into a regular or standard for-
mat. A typical example is the scaling of a binary fraction so that its most signifi-
cant bit is 1.

o}

Object code (or object program). The program that is the output of a translator
program, such as an assembler. Usually it is a machine language program ready
for execution.

Odd parity. A 1-bit error-detecting code that makes the total number of 1 bitsin a
unit of data (including the parity bit) odd.

Offset. Distance from a starting point or base address.

One’s complement. A bit-by-bit logical complement of a number, obtained by re-
placing each 0 bit with a 1 and each 1 bit with a 0.

One-shot. A device that produces a pulse-output of known duration in response to
a pulse input. A timer operates in a one-shot mode when it indicates the end of a
single interval of known duration.

Open (a file). Make a file ready for use. The user generally must open a file before
working with it.

Operating system (OS). A computer program that controls the overall operations
of a computer and performs such functions as assigning places in memory to

cLossary B33

programs and data, scheduling the execution of programs, processing inter-
rupts, and controlling the overall input/output system. Also known as a moni-
tor, executive, or master-control program, although the term monitor is
usually reserved for a simple operating system with limited functions.

Operation code (op code). The part of an instruction that specifies the operation to
be performed. .

OS. See Operating system.

Output register. In a PIA or VIA, the actual input/output port. Also called a data
register or a peripheral register.

Overflow (of a stack). Exceeding the amount of memory allocated to a stack.

Overflow, two's complement. See Two’s complement overflow.

P

P register. See Processor status register, Program counter. Most 6502 reference
material abbreviates program counter as PC and processor status register as P,
but some refer to the program counter as P and the processor status (flag)
register as F.

Packed decimal. A binary-coded decimal format in which each 8-bit byte contains
two decimal digits.

Page. A subdivision of the memory. In 6502 terminology, a page is a 256-byte
section of memory in which all addresses have the same eight most significant
bits (or page number). For example, page C6 consists of memory addresses
C600 through C6FF.

Paged address. The identifier that characterizes a particular memory address on a
known page. In 6502 terminology, this is the eight least significant bits of a
memory address. .

Page number. The identifier that characterizes a particular page of memory. In
6502 terminology, this is the eight most significant bits of a memory address.

Page 0. In 6502 terminology, the lowest 256 addresses in memory (addresses
0000 through 00FF).

Parallel interface. An interface between a CPU and input or output devices that
handle data in paralle] (more than one bit at a time).

Parameter. An item that must be provided to a subroutine or program in order for
it to be executed.

B34 6502 ASSEMBLY LANGUAGE SUBROUTINES

Parity. A 1-bit error-detecting code that makes the total number of 1 bits in a unit
of data, including the parity bit, odd (odd parity) or even (even parity). Also
called vertical parity or vertical redundancy check (VRC).

Passing parameters. Making the required parameters available to a subroutine.

Peripheral Interface. One of the 6500 family versions of a parallel interface; exam-
ples are the 6520, 6522, 6530, and 6532 devices.

Peripheral ready. A signal that is active when a peripheral can accept more data.

Peripheral register. In a PIA or VIA, the actual input or output port. Also called a
data register Of an output register.

Physical device. An actual input or output dev:ce as opposed to a logical device.

PIA. (Peripheral Interface Adapter). The common name for the 6520 or 6820
device which consists of two bidirectional 8-bit 1/0 ports, two status lines, and
two bidirectional status or control lines. The 6821 is a similar device.

Pointer. A storage place that contains the address of a data item rather than the
item itself. A pointer tells where the item is located.

Polling. Determining which I/0 devices are ready by examinjng the status of one
device at a time. ’

- Polling interrupt system. An interrupt system in which a program determmes the
source of a particular interrupt by exammmg the status of potential sources
one at a time.

Pop. Removes an operand from a stack.

Port. The basic addressable unit of the computer s input/output section.
Positive edge (of a bmary pulse). A 0-to-1 transition.

Postdecrementing. Decrementmg an address register after using it.
Postincrementing. Incrementing an address register after using it.
Postindexiﬁg. See Indirect indexed addressing.

Power fail interrupt. An interrupt that informs the CPU of an impending loss of
power. : :

Predecrementing. DeCrements an address register before using it.
Preincrementing. Increments an address register before usmg it.

Preindexing. See Indexed indirect addressing.

Gtossary 535

Priority interrupt system. An interrupt system in which some interrupts have prece-
dence over others, that is, they will be serviced first or can interrupt the
others’ service routines.

Processor status (P or F) register. A register that defines the current state of a com-
puter,. often containing various bits indicating internal conditions. Other
names for this register include condition code register, flag (F) register, status
register, and status word.

Program counter (PC or P register). A register that contains the address of the
next instruction to be fetched from memory.

Programmable 1/0 device. An 1/0 device that can have its mode of operation
determined by loading registers under program control.

Programmable peripheral chip. A chip that can operate in a variety of modes_; its
current operating mode is determined by loading control registers under pro-
gram control. '

Programmable timer. A device that can handle a variety of timing tasks, including
the generation of delays, under program control,

Program relative addressing. A form of relative addressing in which the base
address is the program counter. Use of this form of addressing makes it easy to
move programs from one place in memory to another.

Programmed input/output. Input or output performed under program control with-
out using interrupts or other special hardware techniques.

Protocol. See Data-link control.

Pseudo-operation (or pseudo-op or pseudo-instruction). An assembly language
" operation code that directs the assembler to perform some action but does not
result in the generation of a machine language instruction.

Pull. Removes an operand from a stack, same as pop.

Push. Stores an operand in a stack.

Q

Queue. A set of tasks, storage addresses, or other items that are used in a first-in,
first-out manner; that is, the first item entered in the queue is the first to be
removed.

Queue header. A set of storage locations describing the current location and status
of a queue.

536 6502 ASSEMBLY LANGUAGE SUBROUTINES

R
RAM. See Random-access memory.

Random-access memory (RAM). A memory that can be both read and altered
(written) in normal operation.

Read-only memory (ROM)..A memory that can be read but not altered in normal
operation.

Ready for data. A signal that is active when the receiver can accept more data.
Real-time. In synchronization with the actual occurrence of events.
Real-time clock. A device that interrupts a CPU at regular time intervals.

Real-time operating system. An operating system that can act as a supervisor for
programs that have real-time requirements. May also be referred to as a real-
time executive or real-time monitor.

Reentrant. A program or routine that can be executed concurrently while the
same routine is being interrupted or otherwise held in abeyance.

Register. A storage location inside the CPU.

Relative addressing. An addressing mode in which the address specified in the
instruction is the offset from a base address.

Relative offset. The difference between the actual address to be used in an instruc-
tion and the current value of the program counter.

Relocatable. Can be placed anywhere in memory without changes; that is, a pro-
gram that can occupy any set of consecutive memory addresses.

Return (from a subroutine). Transfers control back to the program that originally
called the subroutine and resumes its execution.

RIOT. (ROM/1/O/timer or RAM/1/O/timer). A device containing memory
(ROM or RAM), 1/0 ports, and timers.

ROM. See Read-only memory.

Rotate. A shift operation that treats the data as if it were arranged in a circle, that
is, as if the most significant and least significant bits were connected either
directly or through a Carry bit.

Row major order. Storing elements of a muiltidimensional array in a linear
memory by changing the indexes starting with the rightmost first. That is, if
the elements are A(I,J,K) and begin with A(0,0,0), the order is A(0,0,0),
A(0,0,1), ...,A(0,1,0), A(0,1,1),... The opposite technique (change leftmost
index first) is called column mqjor order.

cLossary 537

RRIOT. ROM/RAM/1/O/timer, a device containing read- only memory, read/
write memory, 1/0 ports, and timers.

RS-232 (or EIA RS-232). A standard interface for the transmission of serial
digital data, sponsored by the Electronic Industries Association of Washing-
ton, D.C. It has been partially superseded by RS-449,

S

Scheduler. A program that determines when other programs should be started and
terminated.

Scratchpad. An area of memory that is especially easy and quick to use for storing
variable data or intermediate results. Page 0 is generally used as a scratchpad in
6502-based computers. .

SDLC (Synchronous Data Link Control). The successor protocol to BSC for IBM
computers and terminals.

Semaphore. See Flag.
Serial. One bit at a time.

Serial interface. An interface between a CPU and input or output devices that han-
dle data serially. Serial interfaces commonly used in 6502-based computers are
the 6551 and 6850 devices. See also UART.

Shift instruction. An instruction that moves all the bits of the data by a certain
number of bit positions, just as in a shift register.

Signed number. A number in which one or more bits represent whether the num-
ber is positive or negative. A common format is for the most significant bit to
represent the sign (0 = positive, 1 = negative).

Sign extension. The process of copying the sign (most significant) bit to the right
as in an arithmetic shift. Sign extension preserves the sigh when two’s comple-
ment numbers are being divided or normalized.

Sign flag. A flag that contains the most significant bit of the result of the previous
operation. It is sometimes called a negative flag, since a value of 1 indicates a
negative signed number.

Sign function. A function that is 0 if its parameter is positive and 1 if its parameter
is negative. .

Software delay. A program that has no function other than to waste time.

Software interrupt. See Trap.

B38 6502 ASSEMBLY LANGUAGE SUBROUTINES

Software stack. A stack that is managed by means of specific instructions, as
opposed to a hardware stack which the computer manages automatically.

Source code (or source program). A computer program written in assembly
language or in a high-level language.

Space. The zero state on a serial data communications line.

. Stack. A section of memory that can be accessed only in a last-in, first-out man-
ner. That is, data can be added to or removed from the stack only through its
top; new data is placed above the old data and the removal of a data item makes
the item below it the new top.

Stack pointer. A register that contains the address of the top of a stack.The 6502’s
stack pointer contains the address on page 1 of the next available (empty)
stack location.

Standard (or 8,4,2,1) BCD. A BCD representation in which the bit positions have
the same weights as in ordinary binary numbers.

Standard teletypewriter. A teletypewriter that operates asynchronously at a rate of
ten characters per second.

Start bit. A 1-bit signal that indicates the start of data transmission by an
asynchronous device.

Static allocation (of memory). Assignment of fixed storage areas for data and pro-
grams, as opposed to dynamic allocation in which storage areas are assigned at
the time when they are needed.

Status register. A register whose contents indicate the current state or operating
mode of a device. See also Processor status register.

Status signal. A signal that describes the current state of a transfer or the operating
mode of a device.

Stop bit. A 1-bit signal that indicates the end of data transmission by an
asynchronous device.

String. An array (set of data) consisting of characters.

String functions. Procedures that allow the programmer to operate on data consist-
ing of characters rather than numbers. Typical functions are insertion, dele-
tion, concatenation, search, and replacement.

Strobe. A signal that identifies or describes another set of signals and that can be
used to control a buffer, latch, or register.

" cLossary 539

Subroutine. A subprogram that can be executed (called) from more than one
place in a main program.

Subroutine call. The process whereby a computer transfers control from its current
program to a subroutine while retaining the information required to resume
the current program.

Subroutine linkage. The mechanism whereby a computer retains the information
required to resume its current program after it completes the execution of a
subroutine.

Suspend (a task). Halts execution and preserves the status of the task until some
future time.

Synchronization (or sync) character. A character that is used only to synchronize
the transmitter and the receiver.

Synchronous. Operating according to an overall timing source or clock, that is, at
regular intervals.

Systems software. Programs that perform administrative functions or aid in the
development of other programs but do not actually perform any of the com-
puter’s ultimate workload.

T

Tail (of a queue). The location of the oldest item in the queue, that is, the earliest
entry.

Task. A self-contained program that can serve as part of an overall system under
the control of a supervisor.

Task status. The set of parameters that specify the current state of a task. A task
can be suspended and resumed as long as its status is saved and restored.

Teletypewriter. A device containing a keyboard and a serial printer that is often
used in communications and with computers. Also referred to as a Teletype (a
registered trademark of Teletype Corporation of Skokie, Illinois) or TTY.

Ten's complement. The result of subtracting a decimal number from zero (ignoring
the negative sign), the nine’s complement plus one.

Terminator. A data item that has no function other than to signify the end of an
array.

Threaded code. A program consisting of subroutines, each of which automaticall
transfers control to the next one upon its completion. '

540 6502 ASSEMBLY LANGUAGE SUBROUTINES

\

Timeout. A period during which no activity is allowed to proceed, an inactive
period.

Top of the stack. The address containing the item most recently entered into the
stack.

Trace. A debugging aid that provides information about a program while the pro-
gram is being executed. The trace usually prints all or some of the intermediate
results.

Trailing edge (of a binary pulse). The edge that masks the end of a pulse.

Translate instruction. An instruction that converts its operand into the corres-
ponding entry in a table.

Transparent routine. A routine that operates without interfering with the opera-
tions of other routines.

Trap (or software interrupt). An instruction that forces a jump to a specific (CPU-
dependent) address, often used to produce breakpoints or to indicate hardware
or software errors.

True borrow. See Borrow.

Two’s complement. A binary number that, when added to the original number in a
binary adder, produces a zero result. The two’s complement of a number may
be obtained by subtracting the number from zero or by adding 1 to the one’s
complement.

Two's complement overflow. A situation in which a signed arithmetic operation
produces a result that cannot be represented correctly — that is, the magnitude
overflows into the sign bit.

U

UART (Universal Asynchronous Receiver/Transmitter). An LSI device that acts
as an interface between systems that handle data in parallel and devices that
handle data in asynchronous serial form. ‘

Underflow (of a stack). Attempting to remove more data from a stack than has
been entered into it.

Unsigned number. A number in which all the bits are used to represent magnitude.

Utility. A general-purpose program, usually supplied by the computer manufac-
turer or part of an operating system, that executes a standard or common
operation such as sorting, converting data from one format to another, or
copying a file.

cLossary 541

\")
Valid data. A signal that is active when new data is available to the receiver.

Vectored interrupt. An interrupt that produces an identification code (or vector)
that the CPU can use to transfer control to the appropriate service routine. The
process whereby control is transferred to the service routine is called vectoring.

Versatile Interface Adapter (VIA). The name commonly given to the 6522 parallel
interface device; it consists of two 8-bit bidirectional 1/0 ports, four status and
control lines, two 16-bit timers, and a shift register.

VIA. See Versatile Interface Adapter.

Volatile memory. A memory that loses its contents when power is removed.

w

Walking bit test. A procedure whereby a single 1 bit is moved through each bit
position in an area of memory and a check is made as to whether it can be read
back correctly.

Word. The basic grouping of bits that a computer can process at one time. In deal-
_ing with microprocessors, the term often refers to a 16-bit unit of data.

Word boundary. A boundary between 16-bit storage units containing two bytes of
information. If information is being stored in word-length units, only pairs of
bytes conforming to (aligned with) word boundaries contain valid information.
Misaligned pairs of bytes contain one byte from one word and one byte from
another.

Word-length. A length of 16 bits per item.

Wraparound. Organization in a circular manner as if the ends were connected. A
storage area exhibits wraparound if operations on it act as if the boundary loca-
tions were contiguous.

Write-only register. A register that the CPU can change but cannot read. If a pro-
gram must determine the contents of such a register, it must save a copy of the
data placed there.

Y 4

Zero flag. A flag that is 1 if the last operation produced a result of zero and 0 if it
did not.

542 6502 ASSEMBLY LANGUAGE SUBROUTINES

Zero page. In 6502 terminology, the lowest 256 memory addresses (addresses
0000 through O0OFF).

Zero page addressing. In 6502 terminology, a form of direct addressing in which
the instruction contains only an 8-bit address on page 0. That is, zero is implied
as the more significant byte of the direct address and need not be included
specifically in the instruction.

Zero-page indexed addressing. A form of indexed addressing in which the instruc-
tion contains a base address on page 0. That is, zero is implied as the more sng-
nificant byte of the base address and need not be included exphcltly in the
instruction.

Zoned decimal. A binary-coded decimal format in which each 8-bit byte contams
only one decimal digit.

Index

A

A register. See Accumulator
Abbreviations, recognition of, 346, 355, 356
Absolute (direct) addressing, 10— 11, 14, 141
instructions, 8
order of address bytes, 5
Absolute indexed addressing, 11—12, 13, 14
instructions, 9
limitation (to 256-byte arrays), 146
order of address bytes, 5
Absolute value (16-bit), 86—87, 175—176, 243 —44
Accépting an interrupt, 65— 68, 508
Accuttfulator (register A), 6, 7, 10
decint8l operations, 74— 82
decision sequences, 26
decrement by 1, 3, 81
exchange with top of stack, 100
functions, 6
increment by 1, 3, 79—80
instructions, 7
testing, 94—95
Active transition in a 6522 VIA, 56, 59
ADC, 2,15, 16, 17, 135, 136
Carry flag, exclusion of, 2, 15, 16, 136
decimal mode, 3, 144—45
flags, 3, 135
increment by 1, 3
result, 135
Addition
BCD, 3,74—176, 79, 80—81, 28084
binary, 2, 15—17, 38—39, 7476, 253—56
decimal, 3, 74—76, 79, 8081, 280—84
8-bit, 2, 15—17,74—176, 79
multiple-precision, 38 ~ 39, 253— 56, 280—84
16-bit, 75, 76, 80, 230—32
Addition instructions, 74 ~76
with Carry, 75—76
without Carry, 74—75
Address arrays, 32, 35—-37,415—17
Address format in memory (upside-down), 5, 141
Addressing modes
absolute (direct), 10—11, 14, 141
absolute indexed, 11—12, 13, 14, 146
autoindexing, 127—29
default (absolute direct), ix, 8, 150
direct, 7, 8,10—11, 14, 141
immediate, 11, 13, 141
indexed, 8, 1112, 13, 14, 125—-27 .
indexed indirect (preindexed), 2, 9, 12, 32, 5152, 130, 141
indirect, 2, 3536, 123—25
indirect indexed (postindexed), 2, 4,9, 12, 3134, 41—43
postindexed, 2,4,9,12,31—34,41-43
preindexed, 2,9, 12, 32, 51—52, 130, 141
6502 terminology, 11
summary, 507
zero page (direct), 7, 10—11, 14
zero page indexed, 8, 11—12
Adjust instructions, 122

AND, 88—89
clearing bits, 17—18
input instruction, 49
masking, 52—53, 339—40, 345—46
testing bits, 21—22
Apostrophe indicating ASCII character, viii
Arithmetic, 230— 305
BCD, 3,.280—305
binary, 2, 15—17, 38— 39, 230-79
decimal, 3, 280305
8-bit, 2, 15— 17
multiple-precision, 38 — 39, 253 —305
16-bit, 23052
Arithmetic instructions, 74— 88
Arithimetic shift, 20, 83—84, 92, 325—28
Atrays, 29— 34, 12729, 193229, 382—417
addresses, 32, 35—37,415—17
initialization, 19396
long (exceeding 256 bytes), 32~ 34, 385
manipulation, 29— 34
variable base addresses, 31—34
ASCII, 517
assembler notation, viii —~ix
conversions, 168—92
table, 517
ASCII to EBCDIC conversion, 187—89
ASL, 22, 33,49
Assembler
defaults, 14243, 150
error recognition, 149-—51
format, viii —ix, 507
pseudo-operations, 507
Asynchronous Communications Interface Adapter (ACIA), 53,
458—59, 46471, 48089
Autoindexing, 127-29
Autopostdecrementing, 129
Autopostincrementing, 128
Autopredecrementing, 12829
Autopreincrementing, 127~ 28

B (indicating binary number), viii
B (Break) flag, vii
Base address of an array or table, 11, 12, 29, 30
Baud rates, common, 521
BCC, 23—-24, 26,27
BCD (decimal) arjthmetic, 3, 74~81, 144—45, 280305
BCD to binary conversion, 166 —67
BCS, 23~25, 26, 27
BEQ, 22, 23, 138
Bidirectional ports, 153, 457—58
Binary-coded-decimal (BCD), 3, 143
Binary search, 397 —402
Binary to BCD conversion, 163—65
Bit field extraction, 315—19
Bit field insertion, 320—24
BIT, 22, 137, 140
addressing modes, 4, 16, 125

B44 6502 ASSEMBLY LANGUAGE SUBROUTINES

BIT (continued)
flags, 4, 137
input instruction, 49, 152

Bit manipulation, 17—20, 88—92, 30624

Block compare, 86, 34548

Block move, 99, 197—203

.BLOCK pseudo-operation, viii

BMLI, 4, 25,139

BNE, 4,21, 23, 38,29

Booiean algebra, 17

Borrow, 2, 23—24

BPL, 22, 25, 140

Branch instructions, 26 —27, 102—17
conditional branches, 103—17
decision sequences, 26—27
indexed branches, 10203
signed branches, 110—12
unconditional branches, 102—03, 149
unsigned branches, 112—17

Break (B) flag, vii

BRK, 508

BSC protocol, 434

Bubble sort, 403 —06

Buffered interrupts, 480 —89

BVC, 4,122

BVS, 22, 25, 139, 140

.BYTE pseudo-operation, viii, 188, 191—92

c

Calendar, 490—503
Call instructions, 117—18. See also JSR
Carry (C) flag
adding to accumulator, 74, 75
arithmetic applications, 2, 38—39
branches, 2627
CLC,2,38-139
comparison instructions, 2, 22-23, 135
complementing, 92
decimal arithmetic, 3
decrement instructions (no effect), 137
increment instructions (no effect), 137
instructions affecting, 138
inverted borrow, 2, 135
meaning, 2
multiple-precision arithmetic, 38 -39
position in status register, vii, 509
SBC, 2
SEC, 2,76
shifts, 18
subtracting from accumulator, 76, 77
subtraction, 2
Case statements, 36
Character manipulation, 37. See also String manipulation
Checksum, 91. See also Parity
Circular shift (rotation), 18—19, 94, 337—44
CLC,2,38-39
CLD, 3, 68, 74. See also Decimal Mode flag
Clear instructions, 5, 100~01
Clearing an array, 32—33, 196
Clearing bits, 17, 18, 101, 329—32
Clearing flags, 89
Clearing peripheral status, 58, 60, 153, 154, 465, 481
CLI, 5,123
CLV, 122
CMP, 135
Carry flag, 2, 22—23, 135
input instruction, 49
Overflow flag (no effect), 25, 138
SBC, differences from, 16
use of, 22—24
Zero flag, 2223

Code cenversion, 3738, 163—92
Colon (optional delimiter after label), viii
Combo chips, 53
Command register, 153. See also Control register
Comment, viii
Common programming errors, 133—55
interrupt service routines, 15355
1/0 drivers, 15153

Communications between main program and interrupt service

routines, 154—55, 464—65,472—173, 480— 82

Compacting a string, 396—97
Comparison instructions, 8486

bit-by-bit (logical Exclusive OR), 91

Carry flag, 2, 22—23, 135

decimal, 3, 305

multiple-precision, 275—79

operation, 16

16-bit, 24952

string, 34548

Zero flag, 22—23
Complementing (inverting) bits, 17, 18, 91
Complementing Carry flag, 92
Compl ting the lator (EOR #8FF), 16, 91
Complement (logical NOT) instructions, 91—92
Concatenation of strings, 177—78, 349—54
Condition code. See Flags; Status register
Conditional branch instructions, 26 —27, 103—17

execution time (variable), 505, 506

page boundary, 505, 506
Conditional call instructions, 118
Conditional return instructions, 119
Control lines on 6522 VIA, 57—61
Controli register, 53, 153

6522 VIA, 55~61
Control signal, 5253
Copying a substring, 361 —67
CPX, 27,70, 135
CPY, 27,70, 135
CRC (cyclic redundancy check), 434—39

D

D (Decimal Mode) flag, vii, 3, 68, 509
Data direction register (DDR), 54, 57
6520 PIA, 45758
6522 VIA, 54, 47,458, 513
Data transfer instructions, 95—101
.DBYTE pseudo-operation, viii
Debugging, 133—55
interrupt service routines, 153—355
1/O drivers, 151—53
Decimal (BCD) arithmetic
addition, 280—84
binary conversions, 163—67
comparison, 305
decrement by 1, 81, 82, 122, 145
division, 297—304
8-bit, 74—81
flags, 3 .
increment by 1, 80, 122, 145
multibyte, 280— 305
multiplication, 290—96
subtraction, 285—89
validity check, 122
Decimal Mode (D) flag
CLD, 3,68,74
default value in most computers, 3, 145
initialization, 3, 145
interrupt service routines, 68, 145, 154
meaning, 3
position in status register, vii, 509

Decimal Mode (D) flag (continued)
reset (no effect), 3
saving and restoring, 3, 74— 75

SED, 68, 144
testing, 105, 107
use, 3

DEC

Carry flag (no effect), 137
clearing bit 0, 18
complementing bit 0, 18, 91
decimal mode, 3
decision sequences, 23, 27, 95
output instruction, 49
Decision sequences, 26—27
Decrement instructions, 81 —82
accumulator, 3, 81
16-bit number, 29, 8182, 137
Defaults in assembler, 142~43, 150
Delay program, 460— 63
Deletion of a substring, 368—73
Device numbers, 51 —52, 440
Digit {4-bit) shift, 93, 303
Direct addressing
absolute version, 10— 11, 14, 141
immediate addressing, difference from, 141
6502 terminology, 11
use of, 10—11
zero page version, 7, 10—11, 14
Direction of stack growth, 5, 12—13, 508
Disassembly of numerical operation codes, 506
Division, 83 —84
by 2,83—84
by 4, 40, 83
by 10, 164
by 100, 164
decimal, 297—-304
multiple-precision binary, 26774
simple cases, 40, 83 —84
16-bit, 24048
Documentation of programs, 22, 36
Dollar sign in front of hexadecimal numbers, viii, 142
Doubling an element number, 33, 34—36
Dynamic allocation of memory, 46— 47, 67—68

EBCDIC to ASCII conversion, 190—92
8080/8085 microprocessors, differences from 6502, 3, 5, 135
Enabling and disabling interrupts
accepting an interrupt, 65— 68
CLIL, 5,123
interrupt status, saving and restoring, 67, 123
interrupt status, testing, 105, 107
RTI, 66, 508
SEI 5, 67,123
6522 VIA, 63—65
stack, 66—67
when required, 67
.END pseudo-opération, viii
Endless loop instruction, 121—22

EOR, 90-91
comparison (bit-by-bit), 90
compl ing lator (EOR#$FF), 16, 91

inverting bits, 91
logical sum, 91
.EQU pseudo-operation, viii
Equal values, comparison of, 24, 136
Error-correcting codes. See CRC
Error-detecting codes. See Parity
Error handling, 158~ 59
Errors in programs, 133—55

s ——————————,———— e

noex 5456

Even parity, 428—33

Exchange instructions, 100

Exchanging elements, 31, 100, 405
Exchanging pointers, 272, 302

Exclusive OR function, 16. See also EOR
Execution time, reducing, 68 —69
Execution times for instructions, 505 —06
Extend instructions, 8788

F

F (Nag) register, 533. See also Flags; Status register
FIFO buffer (queue), 42—43, 481—82
Fill memory, 99, 193—96
Flag registers. See Status register
Flags
decimal mode, 3
instructions, effects of, 505—06
loading, 97
organization in status register, vii, 509
storing, 98
use of, 26—27
Format errors, 142—45
Format of storing 16-bit addresses, §

H

H (indicating hexadecimal number), viii, 142
Handshake, 57 —62

Head of a queue, 42—43, 48182

Hexadecimal ASCII to binary conversion, 171—73
Hexadecimat to ASCII conversion, 168 —70

Iflag. See Interrupt Disabie flag
Immediate addressing
assembler notation, ix
direct addressing, difference from, 141
store instructions (lack of), 13
use of, 11
Implementation error (indirect jump on page boundary), 151
Implicit effects of instructions, 147 —48
INC
Carry Nag (no effect), 137
complementing bit 0, 18, 91
decimal version, 80
output instruction, 49
setting bit 0, 18
16-bit increment, 80, 81
Increment instructions, 79—81
accumulator, 3, 79, 80
16-bit number, 4, 29, 80, 81, 137
Independent mode of 6522 VIA control lines, 5859, 62, 63
Indexed addressing
absolute version, 11—12, 13, 14
errors in use, 134
indexed indirect (preindexed) version, 12, 32, 51 —52, 130
indirect indexed (postindexed) version, 12, 32—33, 130
offset of | in base address, 30
16-bit index, 33—34, 35
subroutine calls, 35-37,415—17
table lookup, 34
use of, 2930, 35— 36
zero page version, 8, 1112
Indexed jump, 35—37, 10203, 415~17
Indexing of arrays, 29—37, 39—40, 204—29
byte arrays, 204—06, 210— 14
multidimensional arrays, 221—29
one-dimensional byte array, 204 —06
one-dimensional word array, 207 —09

B46 6502 ASSEMBLY LANGUAGE SUBROUTINES

Indexing of arrays (continued)
two-dimensional byte array, 39—40, 210—14
two-dimensional word array, 21520
word arrays, 207—209, 215—20

Index registers
CPX, CPY, 27,70, 135
decision sequences, 27
differences between Xand Y, 6, 10
exchanging, 100
instructions, 7
LDX, LDY, 10, 11
tength, 4
loading from stack, 12—13
saving in stack, 13
special features, 6
STX, STY, 13
table tookup, 3437
testing, 95
transfers, 98
use of, 6, 10

Indirect addressing, 41, 96, 102, 12325
absolute version (JMP only), 2, 141

indexed indirect version (preindexing), 12, 32, 5152, 130

indirect indexed version (postindexing), 12, 32—33, 130
IMP, 2, 141
simulating with zero in an index register, 2, 96, 123—25
subroutine calls, 35136, 102, 117—18
Indexed indirect addressing (preindexing), 12, 32, 5152,
130, 141
errors, 52, 141
even indexes only, 12
extending, 130
instructions, 9
restrictions, 12
use, 32, 51, 124
word alignment, 141, 542
wraparound on page 0, 52, 130
Indirect call, 11718
Indirect indexed addressing (postindexing), 2, 4, 12, 3134,
41-43, 141
extending, 130
instructions, 9
long arrays, 32—33
restrictions, 12
variable base addresses, 34— 35, 41 —43
Indirect jump, 35—36, 102, 117—18, 445—46
error on page boundary, 151
Initialization
arrays, 193—96
Decimal Mode flag, 3, 148, 154
indirect addresses, 15, 97
interrupt system, 464, 468 —69 472—73,476~77
1/0 devices, 454—59
pointer on page 0, 15, 97
RAM, 14-15,193~-96
6522 VIA, 54—63, 458, 477
6850 ACIA, 45859, 468 —69, 486 —87
stack pointer, 96
status register, 97
Initialization errors, 148
Input/Qutput(1/0)
controt block (I0CB), 44053
device-independent, 440— 59
device table, 5152, 440—53
differences between input and output, 152, 465, 473, 481
errors, 151—53
initialization, 454—59
instructions, 49—51
interrupt-driven, 464—89
logical devices, 51
output, generalized, 425—-27

Input/Qutput (1/0) {(continued)
peripheral chips, 53 ~65
physical devices, 51
read-only ports, 49— 51
6522 VIA, 54—65,472—~179
6850 ACIA, 458 —59, 464—71, 48089
status and control, 52—53
terminal handler, 41824
Insertion into a string, 37481
Instruction execution times, 505—06
Instruction set
alphabetical list, 505—06
numerical list, 506
Interpolation in tables, 70
Interrupt Disable (1) flag
accepling an interrupt, 65
changing in stack, 66— 67
CLI 5,123
meaning, §
position in status register, vii, 105, 509
RTI, 66, 508
saving and restoring, 57, 123
SEI 5, 67,123
setting in stack, 66 —67
testing, 105, 107
Interrupt enable register (in 6522 VIA), 63—64,477, 516

Interrupt flag registers (in 6522 VIA), 59, 60, 63— 65, 477, 516

Interrupt response, 65— 66, 508
Interrupt status
changing in stack, 66 —67
saving and restoring, 67, 123
6502 CPU, 65—66, 123
6522 VIA, 63—65,477, 516
Interrupts. See aiso Enabling and disabling interrupts
accepting, 65—68, 508 *
buffered, 480—89
elapsed time, 490— 503
flags (6522 VIA), 63—65, 477, 516
handshake, 464 — 89
order in stack, 66
programming guidelines, 65—68, 153— 55
real-time clock, 490— 503
reenabling, 66—67, 123
response, 65—66
service routines, 464 — 503
6522 VIA, 6365, 472—79
6850 ACIA, 464—71, 48089
Interrupt service routines, 46465, 472—73, 480—81, 490
errors, 153—55
examples, 464 —503
main program, communicating with, 154—55, 464—65,
472173, 48082
programming guidelines, 65— 68
real-time clock, 490—503
6522 VIA,472-79
6850 ACIA, 46471, 480—89
Inverted borrow in subtraction, 2, 23—24, 135
Inverting bits, 17, 18, 91
Inverting decision logic, 134, 136, 137
170 control block (I0CB), 440—53
1/0 device table, 51—52, 440—53

J

IMP, 2,5, 141
absolute addressing, 141
addressing modes, meaning of, 141
indirect addressing, 35— 36
page boundary, error on (indirect), 1512
ISR, 3
addressing modes, meaning of, 141

JSR (continued)
offset of 1 in return address, 3, 44 —45
operation, 508
return address, 3
variable addresses, 415—17

Jump table, 35~237, 152,415—17
implementations, 142

L

LDA,3,11,12,22
LDX (LDY), 10, 11
Limit checking, 23—25, 37, 186
Linked list, 40—43, 441, 442, 447—48
List processing, 40— 42, 446—47
Load instructions, 96—97
addressing limitations, 11
flags, 3, 22
Logical /0 device, 51-52, 440, 441
Logical instructions, 88 —95
Logical shift, 18, 19, 20, 49, 92—93, 32936
Logical sum, 90. See also Parity
Long arrays (more than 256 bytes), 4, 32— 34, 146
full pages separately, 193, 195
Lookup tabies, 34—37, 69, 70, 187—92
Loops, 28—29
reorganizing to save time, 68 ~ 69
Lower-case ASCII letters, 185—86
LSR, 19, 20, 49

Magazines specializing in 6502 microprocessor, 71
Manual output mode of 6522 VIA, 58 —62
Masking bits, 52— 53, 339—40, 345—46
Maximum, 389—92

Memory fill, 99, 193-96

Memory test, 407—14

Memory usage, reduction of, 70
Millisecond delay program, 460—63
Minimum byte length element, 393—96
Missing instructions, §, 73123

Move instructions, 98 —99

Move left (bottom-up), 197, 201

Move multipte, 99

Move right (top-down), 197, 201 —02
Multibit shifts, 18, 19

Multibyte entries in arrays or tables, 31, 34--37, 207—09,

205-29

Multidimensional arrays, 221 —29
Multiple-precision arithmetic, 38— 39, 253~ 305
Multiple-precision shifts, 325—44

arithmetic right, 325—28

digit (4-bit) shift left, 303

logical left, 329—32

logical right, 333~ 36

rotate left, 341 —44

rotate right, 337—-40
Multiplication, 39—40, 82—83

by a small integer, 39, 8283

by 10, 167, 182—83

decimal, 29096

multiple-precision, 261 — 66, 290—96

16-bit, 236 —39
Multi-way branches (jump table), 34—37, 415—17

N flag. See Negative flag
Negative, calculation of, 8687, 244

noex 547

Negative (N) flag
BIT, 4,22, 137
branches, 24—27
comparisons, 13637
decimal mode, 3
instructions, effect of, 505—06
load instructions, 3
position in status register, vii, 509
SBC, 139
store instructions (no effect), 3
Negative logic, 152
Nested loops, 2829
Nibble (4 bits), 164, 167
Nine’s complement, 87
NOP, filling with, 196
Normalization, 93—94
NOT instructions, 91 —92
Number sign (indicating immediate addressing), ix
Numerical comparisons, 23—25

(o]

Odd parity, 431
One-dimensional arrays, 204 —09
One’s complement, 91 —92. See also EOR
Operation (op) codes
alphabetical order, 505—06
numerical order, 506
ORA, 17, 18, 89—90, 307, 323. See also Setting bits to 1
Ordering elements, 31, 403—06
ORG (*=) pseudo-operation, viii
Output line routine, 425—27
Overflow (V) flag
BIT, 4, 22, 140
branches, 27
CLV, 122
instructions affecting, 138
position in status register, vii, 509
Set Overflow input, 122
uses of, 22, 2425
Overflow of a stack, 43, 107—-08, 109
Overflow, two’s complement, 24~25, 110—12, 136—37, 139

P

P (processor status) register, vii, 509, 533. See aiso Flags; Status
register
Page boundary, crossing, 4, 32— 33
error in indirect jump, 151
example, 145—47
Purallel/serial conversion, 18, 49, 50
Parameters, passing, 44—48, 157—58
Parentheses around addresses (indicating indirection), viii
Parity, 428—33 .
checking, 428—30
even, 428, 431
generation, 431 —33
odd, 431
Passing parameters, 44—48, 157—58
memory, 44—46
registers, 44
stack, 4648
PC register, 509. See also Program counter
Percentage sign (indicating binary number), viii, 142
Peripheral Interface Adapter (6520 PIA), 53, 153, 457~58
Peripheral Ready signal, 58—61
PHA, 13, 46, 47, 66, 97, 120
PHP, 67, 98, 122, 123
Physical I/0 device, 51—52, 440
PIA (6520 Peripheral Interface Adapter), 53, 153, 457—58
PLA, 1213, 44, 45, 47, 66, 98, 121

B48 6502 ASSEMBLY LANGUAGE SUBROUTINES

PLP, 12, 67,97 Row major order (for storing arrays), 221, 537
Pointer, 2, 4, 15, 41 RTI, 66, 508

exchanging, 272, 302 RTS, 3, 102

loading, 97 addition of 1 to stored address, 3, 36
Polling indexed jump, 36

6522 VIA, 60, 477 operation, 508

6850 ACIA, 569, 487
Pop instructions, 121
Position of a substting, 355—60 s
Postdecrement, 129 S register. See Stack pointer

stack pointer, 5, 13 Saving and restoring interrupt status, 67, 123
Postincrement, 128 Saving and restoring registers, 66, 120~ 21
Postindexing (indirect indexed addressing), 2, 4, 9, 12,3234, Saving and restoring D flag, 3, 74—75

130, 141 SBC, 2, 16, 135

Predecrement, 128 —29 Carry flag, 2, 135
Preincrement, 127—28 CMP, difference from, 16

stack pointer, 5, 13 decimal mode, 3, 81
Preindexing (indexed indirect addressing), 9, 12, 33, 5152, decrementing accumulator by 1, 3, 81

130, 141 operation, 2, 135

Progam counter, 509 Scratchpad (page 0), 6

ISR, 3, 141, 508 Searching, 37, 397—402

RTS, 3,36—37, 508 SEC, 2,76
Programmable I/0 devices, 5354 SEIL 5, 67, 123

advantages of, 53 Semicolon indicating comment, viii
initialization, 454~ 59 Serial input/output, 18, 53, 464—71, 480—89
operating modes, 53 Serial/parallel conversion, 18, 53

6522 VIA, 5465, 472—479 Set instructions, 101

6850 AC,IA= 464—71,480— ” Set Origin (.ORG or »=) pseudo-operation, viii
Programming model of 6502 microprocessor, 509 Set Overflow input, 122

Pseudo-operations, viii—ix, 507 Setting bits to 1, 17, 18, 89— 90, 30608
Push instructions, 12021 Setting directions

initialization, 457—58

Q 6522 VIA, 54, 57
Setting flags, 90
Queue, 4243, 481—82 Shift instructions, 18—~ 20, 92—94
Quotation marks around ASCII string, ix diagrams, 19
170, 49—-51
R multibit, 18, 20
multibyte, 325—44
RAM Sign extension, 20, 84, 8788, 325—28
filling, 193—96 Sign flag. See Negative flag
initialization, 14—15, 148 Sign function, 88
saving data, 13— 14 Signed branches, 110—12
testing, 407—14 Signed numbers, 24—25
Read-only ports, 49— 51 16-bit operations, 2, 41
Ready flag (for use with interrupts), 464, 472 absolute value, 86 —87
Real-time clock, 490—503 addition, 75, 76, 230—32
Reenabling interrupts, 6667, 123 comparison, 84 —85, 249—52
Reentrancy, 44, 46—48, 67— 68 counter, 4
Registets, vi—vii, 6—14, 509 decrement by 1, 29, 81 —82, 137
functions, 6 division, 240—48
instructions, 7 increment by 1, 4, 29, 80, 81, 137
length, vi—vii indexing, 33—35
order in stack, 65— 66, 120 ' multiplication, 236—239
passing parameters, 44 pop, 121
programming model, 509 push, 121
saving and restoring, 120—21 registers, lack of, 2, 41
special features, 6, 10 shifts, 92—94
transfers, 10 subtraction, 77,79, 233 —3S
Register transfers, 10, 98, 100 test for zero, 43, 95, 245
flags, 3 6520 Peripheral Interface Adapter (P1A), 153,457~ 58
Reset 6522 Versatile Interface Adapter (VIA), 5465, 458, 472~79,
Decimal Mode flag (no effect), 3 510-16
6522 VIA, 57 active transition in, 56, 59
Return instructions, 118 19. See also RTS addressing, 54, 55, 511
Return with skip instructions, 119 auxiliary control register, 56, 62—63, 515
RIOT, 53 automatic modes, 58 —62
ROL, 19, 20, 49 block diagram, 511
ROM (read-only memory), 49, 407 control lines, 57—61
ROR, 18, 19, 20, 49 control registers, 5456, 515

Rotation (circular shift), 18, 19, 20, 94, 33744 data direction registers, 54, 57, 513

6522 Versatile Interface Adapter (VIA) (continued)
differences between port A and port B, 61
independent mode, 5859, 62, 63
initialization examples, $7—63, 458
input control lines, 57— 59
input/output control lines, 57—61
input port, 512
internal addressing, 54, 55, 511
interrupt enable registers, 63 —64, 516 .
interrupt flag registers, 59, 60, 63—65, 516
interrupts, 63 —65, 472—79 '
1/0 ports, 512
manual mode, 58 62
operating modes (summary), 62, 63
output registers, 512
peripheral control register, 56, 59— 62, 515
pin assignments, 510
read strobe, 59—61
registers, 511
reset, 57
shift register, 62, 514
timers, 62, 51314
write strobe, 5961

6530 Multifunction Device (RRIOT), 458

6532 Multifunction Devicé (RIOT), 458

6551 ACIA, 458

6800 microprocessor, differences from 6502, 5, 135, 138

6809 microprocessor, differences from 6502, $, 89, 90, 135, 138

6850 ACIA, 458~59, 46471, 480—89

Skip instructions, 117

Software delay, 460~ 63

Software stack, 43

Sorting, 403~ 06

SP register. See Stack pointer

Special features of 6502, summary of, 2—6

Stack, 2, 3,5, 12—13
accessing through indexing, 46
changing values, 6667
data transfers, 5, 13
downward growth, 36
limitation 1o 256 bytes, 2
overflow, 43
page 1, location on, 2, 13
passing parameters, 46 —48
PHA, 13, 46, 47, 66, 97, 120
PHP, 67, 98, 122, 123
PLA, 1213, 44, 45, 47, 66, 98, 121
PLP, 12, 67,97
pointer, §
saving registers, 13
software, 43
underflow, 43

Stack pointer
automatic change when used, §, 13
comparison, 85
contents, 5 R
decrementing, 81
definition, §
dynamic allocation of memory, 46 —47
incrementing, 80
loading, 10, 96
next available address, 5
page number (1), 2
reduction, 46—47
size of change, 147
storing, 10, 98
transfers, 98

Stack transfers, 5, 13

Status bit. See Flags; Status register

Status register
changing, 97

noex D49

Status Register (continued)
changing in stack, 66— 67
definition, vii, 509
loading, 6, 97
organization, vii, 509
storing, 6, 98
transfers to or from accumulator, 98
unused bit, vii

Status signals, 52—53

Store instructions, effect on flags (none), 3, 136

String operations, 37, 34581
abbreviations, recognition of, 346, 355, 356
compacting, 396—97
comparison, 345—48
concatenation, 34954
copying a substring, 361 —67
deletion, 368—73
insertion, 374—81
position of substring, 355—60
search, 37

Strobe from 6522 VIA, 59, 61

Subroutine call, 3, 11718, See also JSR
variable addresses, 117—18

Subroutine linkage, 3, 507

Subscript, size of, 158, 211, 216, 221

Subtraction
BCD, 3,77—179, 28589
binary, 2, 16, 76—79
Carry flag, 2, 135
decimal, 3, 77—79, 285—89
8-bit, 2, 16, 77—79
inverted borrow in, 2, 23—24, 135
multiple-precision, 38, 257—60
reverse, 78
setting Carry first, 2, 16, 38
16-bit, 77~ 79, 23335

Subtraction instructions
inreverse, 78
with borrow, 79
without borrow, 76 —77

Summation
binary, 30, 38288
8-bit, 30, 382—84
16-bit, 385—88

Systems programs, conflict with, 134

T

Table, 3437, 69, 70, 18792
Table lookup, 34— 137, 69, 70
Tail of a queue, 48182
Ten’s complement, 87
Terminal 1/0, 418—27
Testing, 94—95
bits, 17, 21-22, 26—27, 95
bytes, 22—-27, 94—-95
muitiple-precision number, 271, 301
16-bit number, 43, 90, 95
.TEXT pseudo-operation, viii
Threaded code, 42
Threshold checking, 21, 23—25
Timeout, 460—63
Timing for instructions, 505—06
Top of stack, 5
Transfer instructions, effect on flags, 3, 22
Translate instructions, 123
Trivial cases, 158
TSX, 10, 22, 46, 98
Two-byte entries, 31, 32, 34—35, 123
Two-dimerisional arrays, 39—40, 210—20
Two’s complement, 86 —87

BB0 6502 ASSEMBLY LANGUAGE SUBROUTINES

Two's complement overflow, 24—25, 139, 140
TXS, 10,96
flags, effect on (none), 3, 22

]

UART. See 6551 ACIA,; 6850 ACIA
Unconditional branch instructions, 102—-03
Underflow of stack, 43, 85

Upside-down addresses, §

v

V (Overflow) flag, 22, 24—25, 27, 122, 136, 138, 139
Variable base addresses, 3233

w

Wait instructions, 121—22

Word alignment, 141

Word boundary, 141

.WORD pseudo-operation, viii, 45
Wraparound on page 0, vii, 52, 130
Write-only ports, 49— 53, 152, 153, 155

X

X register. See Index registers

Y

Y register. See Index registers

F 4

2 flag. See Zero flag
Z-80 microprocessor, differences from 6502, 3, 5, 135
Zero flag
branches, 26—27
CMP, 22-23, 136
decimal mode, 3
INC, 29, 137
inversion in masking, 21, 89
load instructions, 3, 22
masking, 21
meaning, 136
position in status register, vii, 509
transfer instructions, 3, 22
uses of, 21, 26—27
Zero page, special features, 6
Zero page addressing modes
direct, 7, 10—11, 14
indexed, 8, 11—12
instructions, 7

