Jef Raskin Document # 025

Apple Manuals  Apple Il Pascal Apple Macintosh [ Swyft Card Canon Cat

Jef Raskin
Information

§w7f7[ Card Manual-
ng,y Y, f ﬂ/Oel’ﬁ{/'dZY

COMPILED BY
DAVID T CRAIG
736 EDGEWATER, WICHITA, KANSAS 67230
U.5.A.

Apple Manuals  Apple Il Pascal Apple Macintosh ][ Swyft Card Canon Cat

“RaskinDoc025 0.PICT” 123 KB 2000-02-21 dpi: 300h x 300v pix: 2038h x 2833v
| Source: David T. Craig Page 0001 of 0008 |




Jef Raskin Document # 025

Jef Raskin Info ::: SwgftCard Theorg of Operatlon

This Appendix is divided into three sections: interface, software,
and hardware. The sections are not system documentation, but
guides to the spirit of design in each area.

SwyftCard User Interface Theory of Operation

The paradigms used in SwyftCard were invented to cure a host of
problems shared by almost all current systems, most of them small
enough in their own right, but which taken together make learning and
using conventional software far more time consuming than
necessary: and make using computers a frustrating and annoying
process.

We have always wondered why, for example, you have to format disks
— isn't the computer smart enough to see if a disk isn't formatted and
do it if necessary? We find cursor control keys far too slow, and when
you consider the number of auxiliary commands they require (move to
next/previous word, sentence, paragraph, page, move to
beginning/end of line, document, file...) we find them too complex. The
mouse, we find, is small improvment since it takes your hands away
from the keyboard, and uses up much screen space for menus, scroll
bars, and the rest of the associated mouse apparatus. We are
annoyed when we are put through menus instead of being able to do
what we want right now, and we are puzzled by the huge number of
commands in most systems. We hate disk systems that allow you to
lose work through trivial human error. We are amazed that many word
processors can't keep up with human typing speed.

SwyftCard shows that, with proper design, all these questions and
bothers, and many others that have plagued us for years, can be
answered and fixed. And it works on an inexpensive computer with
only one disk drive, with minimum memory requirements. Our product
does what most people need, without operating system, expensive
price tag, or bells and whistles.

The major design principles include a few innovations, and many
examples of applying what we have learned from the work of others.

1. The cursor LEAP concept, whose average time to target is about

one third that of the most advanced method in common use up to
now: the mouse.

DAVID T. CRAIG - 736 EDGEWATER WICHITA KS 67230 (USA)

“RaskinDoc025_1.PICT” 249 KB 2000-02-21 dpi: 300h x 300v pix: 2290h x 2903v

S T Flaraa] — 7955

J

EX LIBRIS
David T. Craig

[

| Source: David T. Craig

Page 0002 of 0008 |




Jef Raskin Document # 025

¢ Je

2. The cursor design itself, which shows both where what you type
will appear and where delete will operate. The cursor also
collapses upon being moved so that you do not have to aim "one
off" if you want to delete.

3. Finding a very small set of fundamental operations that allow you
to easily accomplish a wide range of tasks.

4. Eliminating the operating system and allowing all operations to be
performed directly and immediately from the editor without having
to go into different modes.

5. The elimination of modes in general, which makes habit formation
easy since you do not have to think about what state the system
is in to figure out what a command will do. This property is called
"modelessness.”

6. Not providing many ways to do a task — again so that you do not
have to think about alternate strategies when you are about to do
something. This, too, aids in habit formation. We call this
principle "monotony.”

7. The emphasis on habit formation is itself a fundamental principle
of the design, and one often overlooked by others. We consider it
important that after a brief period of learning, a user should not
have to think about the system while using it.

8. The DISK command, which simplifies the usual complexities of a
DOS (Disk Operating System) into a simple command. |t also
provides protection against most common mistakes that on other
systems would cause loss of data. This kind of command is
possible due to the technique of making one disk correspond to
one text.

9. The emphasis on speed of operation proportional to frequency of
use (often done tasks must be very fast, seldom done tasks can
be slow).

10. What you see is what you get — the way it looks on-screen is the
way it prints on paper. (This was violated for underlining due to a |
imitation in the Apple display hardware.)

“RaskinDoc025_2.PICT” 205 KB 2000-02-21 dpi: 300h x 300v pix: 2173h x 2903v

Page 0003 of 0008 |

| Source: David T. Craig




Jef Raskin Document # 025

..............................

11. Noun-verb design of commands. You always specify what you are
going to work on first (which gives you time to make sure you are
right and to make corrections), and then you give the order as to
what to do. Some systems work the other way around, or — what
is even worse — mix the two styles.

12. It is very hard to louse yourself up or clobber something you are
working on. Not impossible, but hard enough to do that it is not
likely to happen by chance.

13. The inclusion of programming and communications within a

general purpose environment, where the output is placed in the
editor/retrieval environment.

14. The allowance of months of testing and re-working time in the

schedule, so that purchasers of the system are not being used as
test subjects.

This is only a barest sketch — the system specs run to some 50
pages — but we hope it gives you a feel for what led us to design
SwyftCard the way we did.

SwyftCard Software Theory of Operation

The system is small and operates quickly partly because it is
implemented in FORTH and assembly language, and partly because it
has an inherently clean and simple design. There are few commands,
and they operate uniformly. Text is not cluttered with special
markers. All of this minimizes programming effon.

The structure of the text, although not unique to SwyftCard, is key.
The beginning of the text (from the first character up to the last
character of the highlight) is stored in the lower portion of the text
area, and the end of the text (from the character at the cursor or one
after the cursor to the last character of the text) is stored in the upper
end of the text area. Between the upper and lower texts lies the gap.
This means that typing just puts characters into the gap, and thus can
proceed very rapidly. Updating the screen is the only task that need
be done while typing is going on, which is one reason why it is possible
for SwyftCard to do word wrap and unwrap on the fly. The other
reason is the uniformity of text.

T. CRlG - 736 EDGEWATER. WICHITA. KS 67230 (USA
“RaskinDoc025 3.PICT” 218 KB 2000-02-21 dpi: 300h x 300v pix: 2185h x 2909v
| Source: David T. Craig Page 0004 of 0008 |




Jef Raskin Document # 025

.....................................................

Searching is fast because text lies entirely in RAM, contains no codes
or other obstructions, and is in only two contiguous areas. The disk
operates quickly because we do not use Apple's encoding scheme,
and because we only write or read as much text as necessary. As a
consequence of this decision, a ProDos conversion routine is
provided to establish a link to other Apple software. Formatting is
done on the fly, since we write a whole track at a time, including sync
bits. Not only is this fast, but it eliminates the need for a separate
formatting step on the part of the user.

The system pointers are stored on disk so that SwyftCard texts come
up in the exact state they were last saved. A serial number is written
on each disk so that we can detect whether it is the same disk that
was booted or if the user has changed disks. When backup disks are
made, the same serial number is written on the master and all
backups.

Updating the display after a leap is sped up by having a table of
pointers to the places where pages begin. Thus, in order to figure out
how the text should be formatted, the display algorithm has only to go
back to the nearest page break prior to the text that is to be displayed
at the beginning of the screen.

When inserting text, large areas of memory may have to be moved
bodily. This "brute force"” approach is surprisingly fast, but with very
large texts does lead to a perceptible slowing. Still, SwyftCard is
much faster than any other program that does a similar task on the

Apple.

A deletion puts the deleted text at the beginning of the text area and
moves the lower part of text up out of the way. This means that there
is no limit to the amount of text that can be deleted, since we do not
have to set aside room for a separate delete buffer.

Decisions of this sort abound, ultimately leaving an unusually large
amount of space for the user — in this case over 80% of the memory
that Apple does not dedicate to specific uses. SwyftCard does not
use the extra memory afforded by the extended 80-column card, as
the bank switching required would make the program operate too
slowly for the high-quality interaction we think important.

The CALC, PRINT, and SEND command are all fundamentally the

same. They take the highlighted chunk of text and transmit it to the
BASIC interpreter, the printer port, and the serial port respectively.

Ve
IIITITIITVIIFIIFFIIIIIFIFIFIIIIIIFIIIIIIINIIIIFIITITITIIIIFIIIFIFIIIII FIIIIT, FIIIAIIT

DAVID T. CRAIG - 736 EDGEWATER, WICHITA K3 67230 (USA)

“RaskinDoc025_4.PICT” 242 KB 2000-02-21 dpi: 300h x 300v pix: 2202h x 2909v

| Source: David T. Craig Page 0005 of 0008 |




Jef Raskin Document # 025

Jef Raskin Info ::: SwyftCard Theory of Operation

Of these, dealing with the BASIC interpreter is the most difficult, since
SwyftCard operates in the same address space as BASIC, and
because of Applesoft's documentation.

The keyboard tables are in RAM so that software developers can
redirect commands to execute code that they provide. BASIC
programs that amplify SwyftCard's abilities can also be written. By
changing the value of one word (BT%), the bottom of text can be
moved up so that developers can have room for their own code.

SwyftCard's software amounts to less than 16 Kbytes. Approximately
half is in a tokenized FORTH, and half in assembly code.

SwyftCard Hardware Theory of Operation

The SwyftCard is a plug-in card for the Apple //e that operates in Slot
3. The card contains three integrated circuits which provide a
power-on reset circuit, storage for the SwyftCard program, and control
signals for the card. The card operates by asserting the Apple //e bus
signal INH' which disables the built-in ROM and enables the SwyftCard
ROM. This permits the SwyftCard program to take over the system at
power-on and run the SwyftCard program. (Please refer to the
schematic.)

The LM311 voltage comparator is connected to provide the power-on
reset function. When the Apple /e is first turned on, the power-on
reset circuit resets the PAL, turning on the SwyftCard and disabling
the Apple //e internal ROM. The power-on reset circuit must be
provided because the existing Apple //e reset function is used by
many Apple //e programs for a "warm starnt™: if Apple //e reset always
started the SwyftCard, other programs could not use the "warm start.”

The 27128 PROM s used to store the SwyftCard program. The PROM
contains 16384 bytes which are mapped into the address space
$D000 - $FFFF. Since the address space is only 12 Kbytes, there are
two 4 Kbyte sections of the PROM mapped into the address space
$D000-$DFFF.

The card is controlled by the PAL. When the SwyftCard is active, the
PAL asserts the INH' signal, enables the PROM, and bank switches
the $D000-$DFFF address space. The card is controlled by two soft
switches. The soft switches are controlled by accessing the following
memory locations with either a read or a write operation.

DAVID T. CRAIG - 736 EDGEWATER. WICHITA, KS 67230 (USA)
“RaskinDoc025 5.PICT” 242 KB 2000-02-21 dpi: 300h x 300v pix: 2196h x 2932v
| Source: David T. Craig Page 0006 of 0008 |




Jef Raskin Document # 025

$COBO - SwyftCard active, Bank 1
$COB1 - SwyftCard inactive, Bank 1
$COB2 - SwyftCard active, Bank 2

When the power-on reset circuit asserts the RES signal on Pin 3 of the
PAL, the SwyftCard is made active in Bank 1. Accessing location
$COB1 deactivates the SwyftCard for normal Apple //e operation.

The INH' line is driven by a tri-state driver, so if another card in the
Apple //e asserts the INH' signal there will not be a bus contention.
However, there will be a bus contention on the data bus if another card
attempts to control the bus while the SwyftCard is active.

DAVID T. CRAIG - 736 EDGEWATER WICHITA KS 57230 (USA)
“RaskinDoc025_6.PICT” 121 KB 2000-02-21 dpi: 300h x 300V pix: 2196h x 2914v

| Source: David T. Craig Page 0007 of 0008 |




[ p
& e}
1 k=)
; S
T R N N o S i 1©
N
Sl ©
2l oo
>
m o
<] ©
il e
it < B
" ” Do-D7 % —
o . - N
- - Vee ) S 3
s O 3 o 2
poril: Ao-Ais 5 8 8
0 RES 27 i los ~ o
e b 34 o
: O oﬂ<2 <
m %. sV v 2 _w>o ooT " 9
To) ; 5T cc Al D1 A S
W - %mam Wﬁ._ uﬂr._ %._ (lm Ars RESET}2 wE o».__m.- ) < m
: O aNo_ | Aia A3 D3f2 = &
H+ g = 26 1 flw Ai3 BANKI- M,>a Da ”w.. = H_
I= 8 = N——A12 AS Dsp?l— 4 O S
c \ o
(O] . —.OI /Iwbo alse Ds "M M M
: A A7 7
El § 2 OEy SEL ~ TOPAL e A’ 27128 ° g
O : - Q3 DEV 2afp 4 m mn.m
m : o ¥ 8 2ni0 m_gz T
- Vec Hewk Ot EL1INT <
£ § © 261813 =
. . [FE]
|~m : O oK S33K Vee acthe 2051 L
mﬂa 5 ﬂ IN4148 33K 3 _..n_.U..
s RES 13
- : = 2 Vee og 'NH 22 ©
L% : 3 I 8 10 0 OE "
ik ¥ N \m LM3 7 < ~
g opf 3. 4 e L 14 20 |
' H 33K 1 ')
: i = <
: :m 1 o
= s SWYFTCARD SCHEMATIC - o
y -4 .
i 0 o T
} © T
. W
¥
2 M ..
; ©
et
...................... _ - =
o
)]
r J




