
 



 

Apple Technical Publications
© Apple Computer, Inc. 1997

 



 

QuickTime Music Architecture

 

for Macintosh and Windows



 



 

Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved. 
No part of this publication or the 
software described in it may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form 
or by any means, mechanical, 
electronic, photocopying, recording, 
or otherwise, without prior written 
permission of Apple Computer, Inc., 
except in the normal use of the 
software or to make a backup copy 
of the software or documentation. 
The same proprietary and copyright 
notices must be affixed to any 
permitted copies as were affixed to 
the original. This exception does not 
allow copies to be made for others, 
whether or not sold, but all of the 
material purchased (with all backup 
copies) may be sold, given, or loaned 
to another person. Under the law, 
copying includes translating into 
another language or format. You 
may use the software on any 
computer owned by you, but extra 
copies cannot be made for this 
purpose. 
The Apple logo is a trademark of 
Apple Computer, Inc. Use of the 
“keyboard” Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws.
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual 
property rights associated with the 
technology described in this book. 
Every effort has been made to ensure 
that the information in this manual is 
accurate. Apple is not responsible for 
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh, 
QuickDraw, and QuickTime are 
trademarks of Apple Computer, Inc., 
registered in the United States and 
other countries.
The QuickTime logo is a trademark 
of Apple Computer, Inc.
Adobe, Acrobat, Photoshop, and 
PostScript are trademarks of Adobe 
Systems Incorporated or its 
subsidiaries and may be registered in 
certain jurisdictions.
Helvetica and Palatino are registered 
trademarks of Linotype-Hell AG 
and/or its subsidiaries.
ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.

Simultaneously published in the 
United States and Canada.
Printed in the United States of 
America.

 

LIMITED WARRANTY ON MEDIA 
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS 
MANUAL, INCLUDING IMPLIED 
WARRANTIES OF 
MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, ARE 
LIMITED IN DURATION TO NINETY 
(90) DAYS FROM THE DATE OF 
DISTRIBUTION OF THIS PRODUCT.

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 
QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS 
DISTRIBUTED “AS IS,” AND YOU 
ARE ASSUMING THE ENTIRE RISK 
AS TO ITS QUALITY AND 
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE 
FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES RESULTING FROM ANY 
DEFECT OR INACCURACY IN THIS 
MANUAL, even if advised of the 
possibility of such damages.

THE WARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLUSIVE 
AND IN LIEU OF ALL OTHERS, ORAL 
OR WRITTEN, EXPRESS OR IMPLIED. 
No Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion or 
limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights 
which vary from state to state.



   

Contents

      
Preface About This Book 7

Book Structure 7
Conventions Used in This Book 7

Special Fonts 7
Types of Notes 7

Development Environment 8

Chapter 1 QuickTime Music Architecture 9

Introduction to QuickTime Music Architecture 10
Overview of QTMA Components 10

Note Allocator Component 11
Tune Player Component 12
Music Components Included in QuickTime 13
Instrument Components and Atomic Instruments 14

The QuickTime Music Synthesizer Component 16
The General MIDI Synthesizer Component 17
The MIDI Synthesizer Component 17
The Base Instrument Component 17
The Generic Music Component 17
MIDI Components 18

About QuickTime Music Events 19
Note Event and Extended Note Event 21
Rest Event 24
Marker Event 25
Controller Event and Extended Controller Event 26
General Event 28
Knob Event 30

Using the QuickTime Music Architecture 31
QuickTime Settings Music Panel 32
Converting MIDI Data to a QuickTime Music Track Using 

MoviePlayer 34
Importing a Standard MIDI File As a Movie Using the Movie Toolbox 34
3
 



      
Playing Notes With the Note Allocator 35
Note-Related Data Structures 35
Playing Piano Sounds With the Note Allocator 36

Chapter 2 Music Architecture Reference 39

Constants 39
Atom Types for Atomic Instruments 39
Instrument Knob Flags 41
Loop Type Constants 41
Music Component Type 42
Synthesizer Type Constants 42
Synthesizer Description Flags 42
Synthesizer Knob ID Constants 44
Controller Numbers 56
Controller Range 58
Drum Kit Numbers 59
Tone Fit Flags 59
Knob Flags 60
Knob Value Constants 62
Music Packet Status 62
Atomic Instrument Information Flags 63
Flags for Setting Atomic Instruments 63
Instrument Info Flags 64
Synthesizer Connection Type Flags 65
Instrument Match Flags 65
Note Request Constants 66
Pick Instrument Flags 67
Note Allocator Type 67
Tune Queue Depth 68
Tune Player Type 68
Tune Queue Flags 68
MIDI Component Constants 69
MIDI System Exclusive Constants 70
MIDI File Import Flags 70
Part Mixing Flags 71
4
 



   
Data Structures 71
Instrument Knob Structure 71
Instrument Knob List 72
Atomic Instrument Sample Description Structure 72
Synthesizer Description Structure 73
Tone Description Structure 75
Knob Description Structure 78
Instrument About Information 78
MIDI Packet 79
Instrument Information Structure 80
Instrument Information List 80
General MIDI Instrument Information Structure 81
Non-General MIDI Instrument Information Structure 82
Non–General MIDI Instrument Information List 82
Complete Instrument Information List 83
Synthesizer Connections for MIDI Devices 84
QuickTime MIDI Port 85
QuickTime MIDI Port List 85
Note Request Information Structure 85
Note Request Structure 86
Tune Status 86

Functions 87
Tune Player Functions 87
Note Allocator Functions: Note Channel Allocation and Use 103
Note Allocator Functions: Miscellaneous Interface Tools 120
Note Allocator Functions: System Configuration and Utility 125
Music Component Functions: Synthesizer 132
Music Component Functions: Instruments and Parts 143
Music Component Functions: Miscellaneous 155
Instrument Component Functions 158
MIDI Component Functions 162

Functions for Importing MIDI Files 164
Function Provided by the Generic Music Component 166
Functions Implemented by e Generic Music Component Clients 168

Result Codes 173
5
 



     
Appendix A General MIDI Reference 175

General MIDI Instrument Numbers 175
General MIDI Drum Kit Numbers 178
General MIDI Kit Names 179
6
 



  

P R E F A C E

            
About This Book

This book is a programmer’s guide to the music architecture in version 3 of 
QuickTime for Macintosh and Windows. It describes all the features introduced, 
added, or changed in the QuickTime music architecture since QuickTime 
version 1.5, and therefore supersedes all existing documentation for versions 
1.6.1, 2.0, 2.1, and 2.5. 

Book Structure 0

Chapter 1 begins with an overview of the new features in the QuickTime music 
architecture (QTMA), introducing you to its basic concepts. Some programming 
examples are also provided. Chapter 2 offers a QuickTime music architecture 
reference, listing all the constants, data types, and functions in the QuickTime 3 
QTMA. Appendix A is a General MIDI reference with tables listing General 
MIDI instrument numbers and General MIDI drum kit numbers. 

Conventions Used in This Book 0

This book provides various conventions to present information. Words that 
require special treatment appear in specific fonts or font styles. 

Special Fonts 0

All code listings, reserved words, and the names of actual data structures, 
constants, fields, parameters, and functions are shown in Letter Gothic (this is 
Letter Gothic).

Types of Notes 0

There are several types of notes used in this book.
7



   

P R E F A C E

        
Note
A note like this contains information that is interesting but 
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains especially important information 
that is essential for an understanding of the main text. ▲

▲ W AR N I N G

A warning like this indicates potential problems that you 
should be aware of as you design your software. Failure to 
heed these warnings could result in system crashes or loss 
of data. ▲

Development Environment 0

The functions described in this book are available using C interfaces. How you 
access them depends on the development environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of using 
various functions and illustrate techniques for accomplishing particular tasks. 
Although most code listings have been compiled and tested, Apple Computer 
Inc., does not intend for you to use these code samples in your application.
8 



  

C H A P T E R  1

 

Figure 1-0
Listing 1-0
Table 1-0

       
QuickTime Music Architecture 1
This chapter describes the QuickTime music architecture (QTMA), which 
allows QuickTime movies, applications, and other software to play individual 
musical notes, sequences of notes, and a broad range of sounds from a variety 
of instruments and synthesizers. With QTMA, you can also import Standard 
MIDI files (SMF) and convert them into QuickTime movies for easy playback. 

Because the QTMA is component-based and implemented as Component 
Manager components, your application can take advantage of a number of 
QTMA components for extensibility. For example, you can use the QuickTime 
music synthesizer, which is a software-based music synthesizer included with 
QuickTime, to generate sounds or music out of a computer’s built-in audio 
device. You can also use the General MIDI component for playing music on a 
General MIDI device attached to a serial port. 

Before reading this chapter, you should already be familiar with QuickTime and 
QuickTime components. In order to create or use any component, your 
application must use the Component Manager. If you are not familiar with the 
Component Manager, see Chapter 6 of Inside Macintosh: More Macintosh Toolbox. 

You need to read this chapter if you are writing an application that creates 
QuickTime movies and you want to incorporate music tracks as part of the 
movie, either by importing MIDI files or by programmatically generating 
musical sequences. If you want to create a music component or add an 
instrument to the existing library of instruments, you also need to read this 
chapter. These capabilities are explained in the section “Using the QuickTime 
Music Architecture” (page 31). If you are creating new instruments, you should 
be familiar with QT atoms and atom containers, which are described in 
Chapter 1, “Movie Toolbox” in QuickTime 3 Reference. 

Chapter 2 in this book contains an extensive reference section, which describes 
the constants, data types, and functions of the QTMA.
9



 

C H A P T E R  1  

 

QuickTime Music Architecture

                  
Introduction to QuickTime Music Architecture 1

The QuickTime music architecture is implemented as Component Manager 
components, which is the standard mechanism that QuickTime uses to provide 
extensibility. 

QTMA components exist both in QuickTime for Macintosh and QuickTime for 
Windows. Note that in QuickTime 3 for Windows, MIDI output is not yet 
supported; only the QuickTime music synthesizer is available.

Different QTMA components are used by a QuickTime movie, depending on if 
you are playing music or sounds through the computer’s built-in audio device, 
or if you are controlling, for example, a MIDI synthesizer. During playback of a 
QuickTime movie, the music media handler component isolates your 
application and the Movie Toolbox from the details of how to actually play a 
music track. The task of processing the data in a music track is taken care of for 
you by the media handler through Movie Toolbox calls.

The following sections provide overviews of these components and their 
capabilities.

Overview of QTMA Components 1

The QuickTime music architecture includes the following components:

■ the note allocator, which plays individual musical notes

■ the tune player, which plays sequences of musical notes

■ the music media handler, which processes data in music tracks of QuickTime 
movies

■ the QuickTime music synthesizer, a software-based music synthesizer 
included with QuickTime, which plays sounds using the built-in audio of a 
Macintosh or Mac OS–based computer or the sound card or built-in audio 
circuitry of other computers

■ the General MIDI synthesizer, which plays music on a General MIDI device 
connected to the computer

■ the MIDI synthesizer component, which controls a MIDI synthesizer 
connected to the computer using a single MIDI channel
10 Introduction to QuickTime Music Architecture



 

C H A P T E R  1

 

QuickTime Music Architecture

         
■ other music components that provide interfaces to specific synthesizers

These components are described in more detail in the following sections. 
Figure 1-1 illustrates the relationships among the various QTMA components. 

Figure 1-1 How QuickTime music architecture components work together

Note Allocator Component 1

You use the note allocator component to play individual notes. Your 
application can specify which musical instrument sound to use and exactly 

Application

Tune
player

Music media
handler

Movie
Toolbox

Instrument
component

Instrument
component

Note
allocator

"Music
preferences"

Music
component

QuickTime Music
Synthesizer

Music
component

General MIDI

Music
component

Brand X MIDI

Music
component

PCI
Synthesizer
Introduction to QuickTime Music Architecture 11



 

C H A P T E R  1  

 

QuickTime Music Architecture

               
which music synthesizer to play the notes on. The note allocator component can 
also display an Instrument Picker, which allows the user to choose instruments. 
The note allocator, unlike the tune player, provides no timing-related features to 
manage a sequence of notes. Its features are similar to a music component, 
although more generalized. Typically, an application opens a connection to the 
note allocator, which in turn sends messages to the music component. An 
application or movie music track can incorporate any number of musical 
timbres or parts.

To play a single note, your application must open a connection to the note 
allocator component and call NANewNoteChannel with a note request—typically 
to request a standard instrument within the General MIDI library of 
instruments. A note channel is similar in some ways to a Sound Manager sound 
channel in that it needs to be created and disposed of, and can receive various 
commands. The note allocator provides an application-level interface for 
requesting note channels with particular attributes. The client specifies the 
desired polyphony and the desired tone. The note allocator returns a note 
channel that best satisfies the request. 

With an open note channel, an application can call NAPlayNote while specifying 
the note’s pitch and velocity. The note is played and continues to play until a 
second call to NAPlayNote is made specifying the same pitch but with a velocity 
of zero. The velocity of zero causes the note to stop. The note allocator functions 
let you play individual notes, apply a controller change, apply a knob change, 
select an instrument based on a required tone, and modify or change the 
instrument type on an existing note channel. 

There are calls for registering and unregistering a music component. As part of 
registration, the MIDI connections, if applicable, are specified. There is also a 
call for querying the note allocator for registered music components, so that an 
application can offer a selection of the existing devices to the user. 

Tune Player Component 1

The tune player component can accept entire sequences of musical notes and 
play them start to finish, asynchronously, with no further need for application 
intervention. It can also play portions of a sequence. An additional sequence or 
sequence section may be queued-up while one is currently being played. 
Queuing sequences provides a seamless way to transition between sections.

The tune player negotiates with the note allocator to determine which music 
component to use and allocates the necessary note channels. The tune player 
handles all aspects of timing, as defined by the sequence of music events. For 
12 Introduction to QuickTime Music Architecture



 

C H A P T E R  1

 

QuickTime Music Architecture

                
more information about music events and the event sequence that is required to 
produce music in a QuickTime movie track, see the section “About QuickTime 
Music Events” (page 19). 

The tune player also provides services to set the volume and to stop and restart 
an active sequence.

Note
If your application simply wants to play background 
music, it may be easier to use the QuickTime Movie 
Toolbox, rather than call the tune player directly. ◆

Music Components Included in QuickTime 1

Individual music components act as device drivers for each type of synthesizer 
attached to a particular computer. Three music components are included in 
QuickTime:

■ the QuickTime music synthesizer component, for playing music out of a 
computer’s built-in speaker

■ the General MIDI synthesizer component, for playing music on a General 
MIDI device attached to a serial port.

■ the MIDI synthesizer component, which allows QuickTime to control a 
synthesizer that is connected to a single MIDI channel.

Developers can add other music components for specific hardware and 
software synthesizers. To better understand the role of a music component, see 
“The QuickTime Music Synthesizer Component” (page 16).

Applications do not usually call music components directly. Instead, the note 
allocator or tune player handles music component interactions. Music 
components are mainly of interest to application developers who want to access 
the low-level functionality of synthesizers and for developers of synthesizers 
(internal cards, MIDI devices, or software algorithms) who want to make the 
capabilities of their synthesizers available to QuickTime.

In order for an application to call a music component directly, you must first 
allocate a note channel and then use NAGetNoteChannelInfo and 
NAGetRegisteredMusicDevice to get the specific music component and part 
number. 

You can use music component functions to 
Introduction to QuickTime Music Architecture 13



 

C H A P T E R  1  

 

QuickTime Music Architecture

                    
■ obtain specific information about a synthesizer

■ find an instrument that best fits a requested type of sound

■ play a note with a specified pitch and volume 

■ change knob values to alter instrument sounds

Other functions are for handling instruments and synthesizer parts. You can use 
these functions to initialize a part to a specified instrument and to get lists of 
available instrument and drum kit names. You can also get detailed information 
about each instrument from the synthesizer and get information about and set 
knobs and controllers.

Instrument Components and Atomic Instruments 1

When initialized, the note allocator searches for components of type 'inst'. 
These components may report a list of atomic instruments. They are called 
atomic instruments, because you create them with QT atoms. (QT atoms are 
described in Chapter 1, “Movie Toolbox,” of QuickTime 3 Reference). These 
sounds can be embedded in a QuickTime movie, passed via a call to 
QuickTime, or dropped into the System Folder.

QuickTime 3 provides a public format for atomic instruments. Using the 
QuickTime calls for manipulating atoms, you construct in memory a 
hierarchical tree of atoms with the data that describes the instrument (see 
Figure 1-2). The tree of atoms lives inside an atom container. There is one and 
only one root atom per container. Each atom has a four-character (32-bit) type, 
and a 32-bit ID. Each atom may be either an internal node or a leaf atom with 
data.
14 Introduction to QuickTime Music Architecture



 

C H A P T E R  1

 

QuickTime Music Architecture

   
Figure 1-2 An atomic instrument atom container

kaiToneDesc

ID:1

Tone Description

Tone description for this
instrument

Atomic Instrument

Contains tagged data in a
QuickTime atom container

kaiNoteRequestInto

ID:1

NoteRequestInfo

Note request info

kaiKnobList

ID:1

InstKnobList

List of sound parameters

kaiKeyRangeInfo

Contains information
associated with a range of
keyboard pitches. One or
more of these will be present.

ID:1..n

kaiSampleDesc

ID:1

InstSampleDescRec

Description of the audio
samples, including sample
rate, loop points, and lowest
& highest key to play on

kaiKnobList

ID:1

InstKnobList

List of sound parameters

kaiSampleInfo

Contains information related
to the sample data and the
samples. One or more of
these will be present. The
ID number is used in a key
range's instrument sample
description.

ID:1..m

kaiSampleData

ID:1

Audio data in the format
specified by the associated
key range info's sample
description

kaiInstrumentRef

Optionally contains a refer-
ence to another instrument
upon which this one is based.
If there is an instrument
reference present, there
should be no samples
present.

ID:1

kaiToneDesc

ID:1

Tone Description

Tone description of instru-
ment upon which this one is
based. The knobs in this
instrument are applied to the
samples in the referenced
instrument.

kITextAtom

Optionally contains a list of
text atoms with localized
names for the instrument

ID:1

kITextStringAtom

ID:x

Text (no length byte)

The atom ID x is the region
code plus one for this string.
There can be any number of
strings with unique IDs.

kaiInstInfo

Contains various authorship
information which is dis-
played when the user clicks
"About..." in the instrument
picker

ID:1

kaiPict

ID:1

Picture

Optional picture to appear in
the "About..." dialog

kaiWriter

ID:1

Text (no length byte)

Optional name of the author

kaiCopyright

ID:1

Text (no length byte)

Optional copyright information

kaiOtherStr

ID:1

Text (no length byte)

Optional other information
Introduction to QuickTime Music Architecture 15



 

C H A P T E R  1  

 

QuickTime Music Architecture

             
The QuickTime Music Synthesizer Component 1

The QuickTime music synthesizer component is a software-based synthesizer 
that is included with QuickTime. The sound it generates can be sent to the 
built-in speaker of a Macintosh or Mac OS–based computer or to the sound card 
or built-in audio circuitry of other computers.

The QuickTime music synthesizer includes a variety of built-in instruments in 
the atomic instrument format. You can also create new instruments for the 
synthesizer. The instruments used by the QuickTime music synthesizer are 
known as atomic instruments, because they are defined using QuickTime 
atoms.

The instruments of the QuickTime music synthesizer are described by a set of 
knobs and one or more waveforms.

IMPORTANT

To play notes, you normally use the note allocator or tune 
player component. These components invoke the 
QuickTime music synthesizer or another music component 
to generate sounds. If you need to use the QuickTime 
music synthesizer directly, you must open an instance of 
the note allocator, which is responsible for finding the 
instrument components that best fit the criteria for 
instruments, and leave it open while using the synthesizer. 
If the note allocator is not open, the QuickTime music 
synthesizer may be forced to repeatedly open and close 
connections to the note allocator, which can greatly 
diminish performance. This recommendation may also 
apply to other music components that use the note 
allocator’s instrument library routines. ▲

Atomic instruments for the QuickTime music synthesizer are defined by some 
waveform data and a set of knob values. Knobs provide a way to modify the 
instrument sound—for example, by applying a tremolo. Typically, the 
instrument has a full list of knobs, and if the instrument contains more than a 
single sample, each sample contains values for several knobs that are tuned for 
that particular sample. In this context, a sample is defined as a short recording 
of a musical sound. 

Knobs can be specified either by index or by ID. A nonzero value in the high 
byte of the 24-bit number field of an instrument knob record or knobID field of a 
knob description record indicates that it is an ID. The knob index ranges from 1 
16 Introduction to QuickTime Music Architecture



 

C H A P T E R  1

 

QuickTime Music Architecture

           
to the number of knobs; the ID is an arbitrary number. You should generally 
access knobs by ID, because knob IDs do not change over different versions of 
the QuickTime software whereas knob index values might.

The General MIDI Synthesizer Component 1

The General MIDI synthesizer component controls General MIDI devices. These 
devices support 24 voices of polyphony, and each of their MIDI channels can 
access any number of voices. A user can choose this synthesizer in the 
QuickTime Settings control panel. For information about the QuickTime 
Settings control panel, see “QuickTime Settings Music Panel” (page 32). 

The MIDI Synthesizer Component 1

The MIDI synthesizer component allows QuickTime to control a synthesizer 
connected to a single MIDI channel. It works with any synthesizer that can be 
controlled through MIDI.

The MIDI synthesizer component does not get information about the 
synthesizer instruments. Instead, it simply lists available instruments as 
“Instrument 1,” “Instrument 2,” and so on—up to “Instrument 128.”

The Base Instrument Component 1

When you provide additional sounds for the QuickTime music synthesizer, you 
can simplify the creation of the necessary instrument resources by using the 
base instrument component. To create an instrument component, you create a 
component alias whose target is the base instrument component. The 
component alias’s data resources specify the capabilities of an instrument, while 
the code resource of the base instrument component handles all of the 
component requests sent to the instrument component.

For information about component aliases, see Chapter 2, “Component 
Manager,” in QuickTime 3 Reference. 

The Generic Music Component 1

To use a new hardware or software synthesizer with the QuickTime music 
architecture, you need a music component that serves as a device driver for that 
synthesizer and that can play notes on the synthesizer. You can simplify the 
Introduction to QuickTime Music Architecture 17



 

C H A P T E R  1  

 

QuickTime Music Architecture

             
creation of a music component by using the services of the generic music 
component. To create a music component, you create several resources, for 
which you get much of the data by calling functions of the generic music 
component, and implement functions that the generic music component calls 
when necessary. When a music component is a client of the generic music 
component, it handles only a few component calls from applications and more 
relatively simple calls from the generic music component.

MIDI Components 1

A MIDI component provides a standard interface between the note allocator 
component and a particular MIDI transport system, such as the Apple MIDI 
Manager or the Open Music System™ (OMS) developed by Opcode Systems, 
Inc. Each MIDI component supports both input and output of MIDI streams.

The QuickTime music architecture includes MIDI components for the following 
MIDI transport systems: 

■ The MIDI Manager developed by Apple Computer, Inc.

■ The Open Music System (OMS) developed by Opcode Systems, Inc.

■ The FreeMIDI system extension for the Mac OS developed by Mark of the 
Unicorn, Inc.

Hardware and software developers can provide additional MIDI components. 
For example, the developer of a multiport serial card can provide a MIDI 
component that supports direct MIDI input and output using the card. Other 
MIDI components can support MIDI transport systems for operating systems 
other than the Mac OS.

To use a MIDI component, you use the functions described in “MIDI 
Component Functions” (page 162). To create a new MIDI component, you 
create a component that implements these functions.

Note
QuickTime 3 for Windows does not yet support MIDI 
output; only the QuickTime music synthesizer is 
available. ◆
18 Introduction to QuickTime Music Architecture



 

C H A P T E R  1

 

QuickTime Music Architecture

                           
About QuickTime Music Events 1

Music events specify the instruments and notes of a musical composition. A 
group of music events is called a sequence. A sequence of events may define a 
range of instruments and their characteristics and the notes and rests that, when 
interpreted, produce the musical composition. 

The event sequence required to produce music is usually contained in a 
QuickTime movie track, which uses a media handler to provide access to the 
tune player, or an application, which passes them directly to the tune player. 
QuickTime interprets and plays the music from the sequence data.

The events described in this section initialize and modify sound-producing 
music devices and define the notes and rests to be played.

Events are constructed as a group of long words. The uppermost 4 bits (nibble) 
of an event’s long word defines its type, as shown in Table 1-1. 

Table 1-1 Event types 

First nibble
Number of 
long words Event type

000x 1 Rest

001x 1 Note

010x 1 Controller

011x 1 Marker

1000 2 (reserved)

1001 2 Extended note

1010 2 Extended controller

1011 2 Knob

1100 2 (reserved)
About QuickTime Music Events 19



 

C H A P T E R  1  

 

QuickTime Music Architecture

                
Durations of notes and rests are specified in units of the tune player’s time scale 
(default 1/600 second). For example, consider the musical fragment shown in 
Figure 1-3.

Figure 1-3 A music fragment

Assuming 120 beats per minute, and a tune player’s scale of 600, each quarter 
note’s duration is 300. Figure 1-4 shows a graphical representation of note and 
rest data.

1101 2 (reserved)

1110 2 (reserved)

1111 n General

Table 1-1 Event types (continued)

First nibble
Number of 
long words Event type
20 About QuickTime Music Events



 

C H A P T E R  1

 

QuickTime Music Architecture

      
Figure 1-4 Duration of notes and rests

The general event specifies the types of instruments or sounds used for the 
subsequent note events. The note event causes a specific instrument, previously 
defined by a general event, to play a note at a particular pitch and velocity for a 
specified duration of time.

Additional event types allow sequences to apply controller effects to 
instruments, define rests, and modify instrument knob values. The entire 
sequence is closed with a marker event. 

In most cases, the standard note and controller events (two long words) are 
sufficient for an application’s requirements. The extended note event provides 
wider pitch range and fractional pitch values. The extended controller event 
expands the number of instruments and controller values over that allowed by 
a controller event.

The following sections describe the event types in detail.

Note Event and Extended Note Event 1

The standard note event (Figure 1-5) supports most music requirements. The 
note event allows up to 32 parts, numbered 0 to 31, and support pitches from 2 
octaves below middle C to 3 octaves above. The extended note event 
(Figure 1-6) provides a wider range of pitch values, microtonal values to define 

Notes

Rests

60

0

72

74

Pitch

t
300

t
600

t
900

t
1200

t

About QuickTime Music Events 21



 

C H A P T E R  1  

 

QuickTime Music Architecture

      
any pitch, and extended note duration. The extended note event requires two 
long words; the standard note event requires only one.

Figure 1-5 note event

Table 1-2 Contents of a note event

The part number bit field contains the unique part identifier initially used 
during the TuneSetHeader call.

The pitch bit field allows a range of 0–63, which is mapped to the values 32–95 
representing the traditional equal tempered scale. For example, the value 28 
(mapped to 60) is middle C.

The velocity bit field allows a range of 0–127. A velocity value of 0 produces 
silence.

The duration bit field defines the number of units of time during which the part 
will play the note. The units of time are defined by the media time scale or tune 
player time scale.

Use this macro call to stuff the note event’s long word:

qtma_StuffNoteEvent(x, instrument, pitch, volume, duration)

Use these macro calls to extract fields from the note event’s long word:

note event type First nibble value = 001X
Part number Unique part identifier
Pitch Numeric value of 0–63, mapped to 32–95
Velocity 0–127, 0 = no audible response (but used to 

indicate a NOTE OFF)
Duration Specifies how long to play the note in units 

defined by the media time scale or tune 
player time scale

Note

pitch.6 (32-95)part.5 velocity.7 duration.11
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

type.3
0 0 1
22 About QuickTime Music Events



C H A P T E R  1

QuickTime Music Architecture
qtma_Instrument(x)
qtma_NotePitch(x)
qtma_NoteVelocity(x)
qtma_NoteVolume(x) 
qtma_NoteDuration(x)

Figure 1-6 Extended note event

Table 1-3 Contents of an extended note event

The part number bit field contains the unique part identifier initially used 
during the TuneSetHeader call.

If the pitch bit field is less than 128, it is interpreted as an integer pitch where 60 
is middle C. If the pitch is 128 or greater, it is treated as a fixed pitch.

Microtonal pitch values are produced when the 15 bits of the pitch field are 
split. The upper 7 bits define the standard equal tempered note and the lower 8 
bits define 256 microtonal divisions between the standard notes.

Extended note event type First nibble value = 1001
Part number Unique part identifier
Pitch 0–127 standard pitch, 60 = middle C 0x01.00 … 

0x7F.00 allowing 256 microtonal divisions 
between each notes in the traditional equal 
tempered scale

Velocity 0–127 where 0 = no audible response (but used 
to indicate a NOTE OFF)

Duration Specifies how long to play the note in units 
defined by media time scale or tune player time 
scale

Event tail First nibble of last word = 10XX

Extended note

part.12 pitch.15
x x x x x x x x x x x x x x x x x x x x x x x x

velocity.7 duration.22
x x x x x x x x x x x x x x x x x x x x x x x x

type.4
1 0 0 1

1 0

0  x x x

0 x x x x x
About QuickTime Music Events 23



C H A P T E R  1  

QuickTime Music Architecture
Use this macro call to stuff the extended note event’s long words:

qtma_StuffXNoteEvent(w1, w2, instrument, pitch, volume, duration) 

Use these macro calls to extract fields from the extended note event’s long 
words:

qtma_XInstrument(m, l) 
qtma_XNotePitch(m, l) 
qtma_XNoteVelocity(m, 1)
qtma_XNoteVolume(m, l) 
qtma_XNoteDuration(m, l) 

Rest Event 1

The rest event (Figure 1-7) specifies the period of time, defined by either the 
media time scale or the tune player time scale, until the next event in the 
sequence is played. 

Figure 1-7 Rest event

Table 1-4 Contents of a rest event

Use this macro call to stuff the rest event’s long word:

qtma_StuffRestEvent(x, duration)

Use this macro call to extract the rest event’s duration value:

qtma_RestDuration(x)

Rest event type First nibble value = 000X
Duration Specifies the number of units of time until the next 

note event is played in units defined by media time 
scale or tune player time scale

duration.24
x x x x x x x x x x x x x x x x x x x x x x x x

type.3
0 0 0 0 0 0 0 0 
24 About QuickTime Music Events



C H A P T E R  1

QuickTime Music Architecture
Note
Rest events are not used to cause silence in a sequence, but 
to define the start of subsequent events. ◆

Marker Event 1

The marker event has three subtypes. The end marker event (Figure 1-8) marks 
the end of a series of events. The beat marker event marks the beat and the 
tempo marker event indicates the tempo.

Figure 1-8 Marker event of subtype end

The marker subtype bit field contains zero for an end marker (kMarkerEventEnd), 
1 for a beat marker (kMarkerEventBeat), or 2 for a tempo marker 
(kMarkerEventTempo). 

The value bit field varies according to the subtype:

■ For an end marker event, a value of 0 means stop; any other value is 
reserved.

■ For a beat marker event, a value of 0 is a single beat (a quarter note); any 
other value indicates the number of fractions of a beat in 1/65536 beat.

■ For a tempo marker event, the value is the same as a beat marker, but 
indicates that a tempo event should be computed (based on where the next 
beat or tempo marker is) and emitted upon export.

Use this macro call to stuff the marker event’s long word:

Table 1-5 Contents of a marker event

Marker event type First nibble value = 011X

Subtype 8-bit unsigned subtype

Value 16-bit signed value 

value.16subtype.8
0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

type.3
0 1 1 0 0 0 0 0 
About QuickTime Music Events 25



C H A P T E R  1  

QuickTime Music Architecture
qtma_StuffMarkerEvent(x, markerType, markerValue)

Use these macro calls to extract fields from the marker events long word:

qtma_MarkerSubtype(x)
qtma_MarkerValue(x)

Controller Event and Extended Controller Event 1

The controller event (Figure 1-9) changes the value of a controller on a specified 
part. The extended controller event (Figure 1-10) allows parts and controllers 
beyond the range of the standard controller event.

Figure 1-9 Controller event

Table 1-6 Contents of a controller event

For a list of currently supported controller types see “Controller Numbers” 
(page 56).

The part field contains the unique part identifier initially used during the 
TuneSetHeader call.

The controller bit field is a value that describes the type of controller used by 
the part.

The value bit field is specific to the selected controller.

Use this macro call to stuff the controller event’s long word:

controller event type First nibble value = 010X
Part Unique part identifier
Controller Controller to be applied to instrument
Value 8.8 bit fixed-point signed controller specific 

value 

value.16controller.8
x x x x x x x x x x x x x x x x x x x x x x x x

type.3
0 1 0 x x x x x 

part.5
26 About QuickTime Music Events



C H A P T E R  1

QuickTime Music Architecture
qtma_StuffControlEvent(x, instrument, control, value)

Use these macro calls to extract fields from the controller event’s long word:

qtma_Instrument(x)
qtma_ControlController(x) 
qtma_ControlValue(x) 

Figure 1-10 Extended controller event

Table 1-7 Contents of an extended controller event

The part field contains the unique part identifier initially used during the 
TuneSetHeader call.

The controller bit field contains a value that describes the type of controller to 
be used by the part.

The value bit field is specific to the selected controller.

Use this macro call to stuff the extended controller event’s long words:

_StuffXControlEvent(w1, w2, instrument, control, value)

Use these macro calls to extract fields from the extended controller event’s long 
words:

Extended controller type First nibble value = 1010
Part Instrument index for controller
Controller Controller for instrument
Value Signed controller specific value 
Event tail First nibble of last word = 10XX

part.12 pitch.15
x x x x x x x x x x x x

controller.14 value.16

x x x x x x x x x x x x x x x x x x x x x x x x

type.4
1 0 1 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

x x x x x x
About QuickTime Music Events 27



C H A P T E R  1  

QuickTime Music Architecture
qtma_XInstrument(m, l)
qtma_XControlController(m, l)
qtma_XControlValue(m, l)

General Event 1

For events longer than two words, you use the general event with a subtype. 
Figure 1-11 illustrates the contents of a general event.

Figure 1-11 A note request general event

Table 1-8 Contents of a general event

The part number bit field contains a unique identifier that is later used to match 
note, knob, and controller events to a specific part. For example, to play a note 
the application uses the part number to specify which instrument will play the 
note. The general event allows part numbers of up to 12 bits. The standard note 
and controller events allow part numbers of up to 5 bits; the extended note and 
extended controller events allow 12-bit part numbers.

General event type First nibble value = 1111
Part number Unique part identifier
Event length Head is number of words in event
Data words Depends on subtype
Subtype 8-bit unsigned subtype
Event length tail must be identical to head
Event tail First nibble of last word = 11XX

part.12 event length.16 (head & tail identical)
x x x x x x x x x x x x x x x x x x x x x x x x x x x x

up to 2^16-3 (65533) longwords of data
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

subtype.14 event length.16 (head & tail identical)
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

type.4
1 1 1 1

1 1
28 About QuickTime Music Events



C H A P T E R  1

QuickTime Music Architecture
The event length bit fields contained in the first and last words of the message 
are identical and are used as a message format check and to move back and 
forth through the message. The lengths include the head and tail; the smallest 
length is 2. 

The data words field is a variable length field containing information unique to 
the subtype of the general event. The subtype bit field indicates the subtype of 
general event. There are nine subtypes:

■ A note request general event (kGeneralEventNoteRequest) has a subtype of 1. 
It encapsulates the note request data structure used to define the instrument 
or part. It is used in the tune header. 

■ A part key general event (KGeneralEventPartKey) has a subtype of 4. It sets a 
pitch offset for the entire part so that every subsequent note played on that 
part will be altered in pitch by the specified amount.

■ A tune difference general event (kGeneralEventTuneDifference) has a subtype 
of 5. It contains a standard sequence, with end marker, for the tune difference 
of a sequence piece. Using a tune difference event is similar to using key 
frames with compressed video sequences. (This subtype halts QuickTime 2.0 
music).

■ An atomic instrument general event (kGeneralEventAtomicInstrument) has a 
subtype of 6. It encapsulates an atomic instrument. It is used in the tune 
header. It may be used in place of the kGeneralEventNoteRequest. 

■ A knob general event (kGeneralEventKnob) has a subtype of 7. It contains 
knob ID/knob value pairs. The smallest event is four long words.

■ A MIDI channel general event (kGeneralEventMIDIChannel) has a subtype of 
8. It is used in a tune header. One long word identifies the MIDI channel it 
originally came from.

■ A part change general event (kGeneralEventPartChange) has a subtype of 9. It 
is used in a tune sequence where one long word identifies the tune part that 
can now take over the part’s note channel. (This subtype halts QuickTime 2.0 
music.)

■ A no-op general event (kGeneralEventNoOp) has a subtype of 10. It does 
nothing in the current version of QuickTime.

■ A notes-used general event (kGeneralEventUsedNotes) has a subtype of 11. It 
is four long words specifying which MIDI notes are actually used. It is used 
in the tune header. 
About QuickTime Music Events 29



C H A P T E R  1  

QuickTime Music Architecture
Use these macro calls to stuff the general event’s head and tail long words, but 
not the structures described above:

qtma_StuffGeneralEvent(w1, w2, instrument, subType, length)

Macros are used to extract field values from the event’s head and tail long 
words.

qtma_XInstrument(m, l)
qtma_GeneralSubtype(m, l) 
qtma_GeneralLength(m, l) 

Knob Event 1

The knob event is used to modify a particular knob or knobs within a specified 
part.

Figure 1-12 Knob event

0 0 0 0 0 0 0 0 0 0 0 1 1 1

subtype.14

x x x x x x x x x x x x x xx x

message length.16 (2 * knob count + 2)

1 1

x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x

 Knob ID

x x x x x x x x x x x x x x x x

message length.16 (2 * knob count + 2)type.4

1 111 x x x x x x x x x x

instrument.12

x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x

 Knob Value

First knob

Optional 2nd, 3rd, etc knobs
30 About QuickTime Music Events



C H A P T E R  1

QuickTime Music Architecture
Table 1-9 Contents of a knob event

The part field contains the unique part identifier initially used during the 
TuneSetHeader call.

The knob number bit field identifies the knob to be changed.

The 32-bit value composed of the lower 16-bit and upper 16-bit field values is 
used to alter the specified knob. 

Using the QuickTime Music Architecture 1

The QuickTime Music Architecture provides functions that allow applications 
to control all aspects of playing music tracks and generating musical sounds in 
QuickTime movies. 

This section discusses a few of the more common operations your application 
can perform with the QTMA, and it has been divided into the following 
subsections:

■ “QuickTime Settings Music Panel” describes changes to the music panel in 
the QuickTime Settings control panel in QuickTime 3.

■ “Converting MIDI Data to a QuickTime Music Track Using MoviePlayer” 
describes how you can open a standard MIDI file and convert it into a 
QuickTime music track.

■ “Importing a Standard MIDI File As a Movie Using the Movie Toolbox” 
shows how you can read a Standard MIDI File (SMF) and convert it into a 
QuickTime movie.

Knob event type First nibble value = 1111 (general event), 
subtype 7

Length Length of the event will be 2(#knobs+1)
Part Unique part identifier
Knob ID Knob ID within specified part
Knob value Knob value
Event tail First nibble of last word = 11XX, subtype 7
Using the QuickTime Music Architecture 31



C H A P T E R  1  

QuickTime Music Architecture
■ “Playing Notes With the Note Allocator” discusses how you can play notes 
with the note allocator component. A routine is also shown for playing notes 
in a piano sound with the note allocator component.

QuickTime Settings Music Panel 1

In QuickTime 3, the Music panel in the QuickTime Settings control panel has 
been completely revised. It now allows for greater flexibility in setting up 
QTMA synthesizer configurations, including multiple MIDI ports provided by 
OMS, FreeMIDI, or the MIDI Manager and multiple synthesizers. Figure 1-13 
shows the new panel.

Figure 1-13 The new music panel in the QuickTime Settings control panel 

Note that the user can select from a list of available synthesizers for playing 
music and MIDI files. The user can also configure the synthesizers in the list by 
clicking the Edit List button. 

Figure 1-14 displays the dialog box that appears when the user clicks the Edit 
List button. 
32 Using the QuickTime Music Architecture



C H A P T E R  1

QuickTime Music Architecture
Note
The screen displayed in Figure 1-14 is preliminary and 
subject to change. The functionality of configuring 
synthesizers in the list, however, will not change in 
QuickTime 3. ◆ 

Figure 1-14 The Edit List popup dialog box for adding, removing, and configuring 
QTMA synthesizers

If a General MIDI synthesizer is selected in the Synthesizer pop-up menu, the 
user must also specify which MIDI port the synthesizer is connected to, as 
shown in Figure 1-14. If there is no MIDI system installed (for example, OMS, 
Using the QuickTime Music Architecture 33



C H A P T E R  1  

QuickTime Music Architecture
FreeMIDI, or MIDI Manager on the Macintosh), General MIDI does not appear 
in the Synthesizer pop-up menu.

QuickTime 3 includes one additional synthesizer type: a generic “MIDI 
Synthesizer,” which can be any MIDI device that lives on a single channel. 
Figure 1-14 shows the control panel set up for a single MIDI Synthesizer on 
MIDI channel 5.

Converting MIDI Data to a QuickTime Music Track Using 
MoviePlayer 1

The MoviePlayer and SimpleText applications allow you to open a standard 
MIDI file and convert it into a QuickTime music track. After the file is 
converted, the application prompts you to save the converted file as a 
QuickTime movie. Once saved, a movie controller is displayed and you can 
play the music.

Importing a Standard MIDI File As a Movie Using the Movie 
Toolbox 1

Most music content exists in Standard MIDI Files (SMF), which have a standard 
format. All sequencing and composition programs let you save or export files in 
this format. QuickTime provides facilities for reading an SMF and converting it 
into a QuickTime movie. During any kind of conversion, the SMF is assumed to 
be scored for a General MIDI device, and MIDI channel 10 is assumed to be a 
drum track.

The conversion to a QuickTime movie can happen in one of several ways. 
Because it is implemented in a QuickTime 'eat ' component, the conversion 
happens automatically in most cases. Any application that uses the 
StandardGetFile routine to open a movie can also open 'Midi' files 
transparently, and can transparently paste Clipboard contents of type 'Midi' 
into a movie shown with the standard movie controller. 

To explicitly convert a file or handle into a movie, your application can use the 
Movie Toolbox routines ConvertFileToMovieFile and PasteHandleIntoMovie, 
respectively.

When authoring MIDI files to be converted to QuickTime music movies, two 
MIDI system-exclusive messages can be used for more precise control of the 
MIDI import process. Note that QuickTime data is divided into media samples. 
34 Using the QuickTime Music Architecture



C H A P T E R  1

QuickTime Music Architecture
Within video tracks, each video frame is considered one sample; in music 
tracks, each sample can contain several seconds worth of musical information. 

■ F0 11 00 01 xx yy zz F7 sets the maximum size of each media sample to the 
21-bit number xxyyzz. (MIDI data bytes have the high bit clear, so they have 
only seven bits of number.) This message can occur anywhere in an SMF. 

■ F0 11 00 02 F7 marks an immediate sample break; it ends the current 
sample and starts a new one. All messages after a sample break message are 
placed in a new media sample.

Applications can define their own system-exclusive messages of the form F0 11 
7F ww xx yy zz ... application-defined data ... F7, where ww xx yy zz is the 
application’s unique signature with the high bits cleared. This is guaranteed not 
to interfere with Apple’s or any other manufacturer’s use of system-exclusive 
codes. 

Playing Notes With the Note Allocator 1

Playing a few notes with the note allocator component is simple and 
straightforward. To play notes that have a piano sound, for example, you need 
to open up the note allocator component, allocate a note channel with a request 
for piano, and play. When you’ve finished playing notes, you dispose of the 
note channel and close the note allocator component. The code to accomplish 
this is shown in Listing 1-2. Before working through the code, you need to look 
at some important related data structures. 

Note-Related Data Structures 1

A note channel is analogous to a sound channel in that you allocate it, issue 
commands to it to produce sound, and close it when you’re done. To specify 
details about the note channel, you use a data structure called a NoteRequest 
(see Listing 1-1). 

Listing 1-1 Note-related data structures 

struct NoteRequest {
NoteRequestInfo   info;      // in post-QuickTime 2.0 only
ToneDescription   tone;

};
Using the QuickTime Music Architecture 35



C H A P T E R  1  

QuickTime Music Architecture
struct NoteRequestInfo {
UInt8      flags;
UInt8      reserved;
short      polyphony;
Fixed      typicalPolyphony;

};

struct ToneDescription {
OSType   synthesizerType;
Str31      synthesizerName;
Str31      instrumentName;
long      instrumentNumber;
long      gmNumber;

};

The next two fields specify the probable polyphony that the note channel will 
be used for. Polyphony means, literally, many sounds. A polyphony of 5 means 
that five notes can be playing simultaneously. The polyphony field enables 
QTMA to make sure that the allocated note channel can play all the notes you 
need. The typical polyphony field is a fixed-point number that should be set to 
the average number of voices the note channel will play; it may be whole or 
fractional. Some music components use this field to adjust the mixing level for a 
good volume. If in doubt, set the typical polyphony field to 0X00010000. 

The ToneDescription structure is used throughout QTMA to specify a musical 
instrument sound in a device-independent fashion. This structure’s 
synthesizerType and synthesizerName fields can request a particular synthesizer 
to play notes on. Usually, they’re set to 0, meaning “choose the best General 
MIDI synthesizer.” The gmNumber field indicates the General MIDI (GM) 
instrument or drum kit sound, which may be any of 135 such sounds supported 
by many synthesizer manufacturers. (All these sounds are available on a 
General MIDI Sound Module.) The GM instruments are numbered 1 through 
128, and the seven drum kits are numbered 16385 and higher. For synthesizers 
that accept sounds outside the GM library, you can use the instrumentName and 
instrumentNumber fields to specify some other sound. 

Playing Piano Sounds With the Note Allocator 1

The routine in Listing 1-2 plays notes in a piano sound with the note allocator 
component. 
36 Using the QuickTime Music Architecture



C H A P T E R  1

QuickTime Music Architecture
Listing 1-2 Playing notes with the note allocator component 

void PlaySomeNotes(void)
{

NoteAllocator      na;
NoteChannel         nc;
NoteRequest         nr;
ComponentResult   thisError;
long               t, i;

na = 0;
nc = 0;

// Open up the note allocator.
na = OpenDefaultComponent(kNoteAllocatorType, 0);
if (!na)

goto goHome;

// Fill out a NoteRequest using NAStuffToneDescription to help, and
// allocate a NoteChannel.
nr.info.flags = 0;
nr.info.reserved = 0;
nr.info.polyphony = 2;      // simultaneous tones
nr.info.typicalPolyphony = 0x00010000; // usually just one note
thisError = NAStuffToneDescription(na, 1, &nr.tone);  // 1 is piano
thisError = NANewNoteChannel(na, &nr, &nc);
if (thisError || !nc)

goto goHome;

// If we've gotten this far, OK to play some musical notes. Lovely.
NAPlayNote(na, nc, 60, 80); // middle C at velocity 80
Delay(40, &t);                  // delay 2/3 of a second
NAPlayNote(na, nc, 60, 0);      // middle C at velocity 0: end note
Delay(40, &t);                  // delay 2/3 of a second

// Obligatory do-loop of rising tones
for (i = 60; i <= 84; i++) {

NAPlayNote(na, nc, i, 80);       // pitch i at velocity 80
NAPlayNote(na, nc, i+7, 80);    // pitch i+7 (musical fifth) at

 // velocity 80
Delay(10, &t);  // delay 1/6 of a second
Using the QuickTime Music Architecture 37



C H A P T E R  1  

QuickTime Music Architecture
NAPlayNote(na, nc, i, 0); // pitch i at velocity 0: end note
NAPlayNote(na, nc, i+7, 0);   // pitch i+7 at velocity 0: 

// end note
}

goHome:
if (nc)

NADisposeNoteChannel(na, nc);
if (na)

CloseComponent(na);
}

You start by calling OpenDefaultComponent to open a connection to the note 
allocator. If this routine returns 0, the component wasn’t opened, most likely 
because QTMA wasn’t present. Next, you fill in the NoteRequestInfo and 
ToneDescription structures, calling the note allocator’s NAStuffToneDescription 
routine and passing it the GM instrument number for piano. This routine fills in 
the gmNumber field and also fills in the other ToneDescription fields with sensible 
values, such as the instrument’s name in text form in the instrumentName field. 
(The routine can be useful for converting a GM instrument number to its text 
equivalent.)

After allocating the note channel with NANewNoteChannel, you call NAPlayNote to 
play each note. Notice the last two parameters to NAPlayNote: 

ComponentResult NAPlayNote(NoteAllocator na, NoteChannel nc, 
long pitch, long velocity);

The value of the pitch parameter is an integer from 1 to 127, where 60 is middle 
C, 61 is C sharp, and 59 is C flat, or B. Similarly, 69 is concert A and is played at 
a nominal audio frequency of 440 Hz. 

The velocity parameter’s value is also an integer from 1 to 127, or 0. A velocity 
of 1 corresponds to just barely touching the musical keyboard, and 127 indicates 
that the key was struck as hard as possible. Different velocities produce tones of 
different volumes from the synthesizer. A velocity of 0 means the key was 
released; the note stops or fades out, as appropriate to the kind of sound being 
played. 

You stop the notes at this point after delaying an appropriate amount of time 
with a call to the Delay routine. Finally, you dispose of the note channel and 
close the note allocator component. 
38 Using the QuickTime Music Architecture



C H A P T E R  2

Figure 2-0
Listing 2-0
Table 2-0
Music Architecture Reference 2
This chapter describes the constants, data structures, functions, and result codes 
provided by QuickTime music architecture.

Constants 2

This section describes the constants provided by QuickTime music architecture.

Atom Types for Atomic Instruments 2

These constants specify the types of atoms used to build atomic instruments. 
Atomic instruments are described in “Instrument Components and Atomic 
Instruments” (page 14).

enum {
kaiToneDescType = 'tone',
kaiNoteRequestInfoType = 'ntrq',
kaiKnobListType = 'knbl',
kaiKeyRangeInfoType = 'sinf',
kaiSampleDescType = 'sdsc',
kaiSampleDataType = 'sdat',
kaiInstRefType = 'iref',
kaiInstInfoType = 'iinf',
kaiPictType = 'pict',
kaiWriterType = '©wrt',
kaiCopyrightType = '©cpy',
kaiOtherStrType = 'str '

};
Constants 39



C H A P T E R  2  

Music Architecture Reference
Constant descriptions

kaiToneDescType A tone atom, which describes the tone. It contains a tone 
description structure (page 75).

kaiNoteRequestInfoType
A note request information atom, which contains a note 
request information structure (page 85). The note request 
information structure includes information about a tone 
that is not in the tone description. Use a note request 
information atom when embedding an instrument in a 
sample description of a QuickTime movie. If this atom is 
absent, QuickTime assumes “reasonable” values for 
polyphony.

kaiKnobListType A knob list atom, which specifies values for one or more 
knobs. It contains an instrument knob list structure 
(page 72). Use it with a custom instrument, a modified 
built-in instrument, or as part of a sample.

kaiKeyRangeInfoType
A key range information atom contains several other 
atoms. It also refers, via an ID, to one or more sibling 
sample info (kaiSampleInfoType) atoms. Use a key range 
information atom to include a sampled sound in an atomic 
instrument. 

kaiSampleDescType A sample description atom, which contains an atomic 
instrument sample description structure (page 72).

kaiSampleDataType A sample data atom, which contains the actual audio data.
kaiInstRefType An instrument reference atom, which contains a tone 

description to be modified by a knob list atom.
kaiInstInfoType An instrument information atom, which contains four 

optional atoms with information for the instrument About 
box.

kaiPictType A picture atom that includes the graphic used in the 
instrument About box.

kaiWriterType A text atom that has the author information used in the 
instrument About box.

kaiCopyrightType A text atom that has the copyright information used in the 
instrument About box.

kaiOtherStrType A text atom that has additional information for the 
instrument About box.
40 Constants



C H A P T E R  2

Music Architecture Reference
kaiSampleInfoType A text atom that contains a sample data 
(kiaSampleDataType) atom.

Instrument Knob Flags 2

These flags are used in the knobFlags field of an instrument knob list structure 
(page 72) to indicate what to do if a requested knob is not in the list.

enum {
kInstKnobMissingUnknown = 0,
kInstKnobMissingDefault = 1 << 0

};

Constant descriptions

kInstKnobMissingUnknown
If the requested knob is not in the list, do not set its value.

kInstKnobMissingDefault
If the requested knob is not in the list, use its default value.

Loop Type Constants 2

You can use these constants in the loopType field of an atomic instrument 
sample description structure (page 72) to indicate the type of loop you want. 

enum {
kMusicLoopTypeNormal = 0,
kMusicLoopTypePalindrome = 1

};

Constant descriptions

kMusicLoopTypeNormal
Use a regular loop.

kMusicLoopTypePalindrome
Use a back-and-forth loop.
Constants 41



C H A P T E R  2  

Music Architecture Reference
Music Component Type 2

Use this constant to specify a QuickTime music component.

enum {
kMusicComponentType = 'musi'

};

Constant description

kMusicComponentType
The type of any QTML music component. 

Synthesizer Type Constants 2

You can use these constants in a tone description structure (page 75) to specify 
the type of synthesizer you want to produce the tone.

enum {
kSoftSynthComponentSubType = 'ss  ',
kGMSynthComponentSubType = 'gm  '

};

Constant descriptions

kSoftSynthComponentSubType
Use the QuickTime music synthesizer. This is the built-in 
synthesizer. 

kGMSynthComponentSubType
Use the General MIDI synthesizer.

Synthesizer Description Flags 2

These flags describe various characteristics of a synthesizer. They are used in 
the flags field of the synthesizer description structure (page 73).

enum {
kSynthesizerDynamicVoice = 1,
kSynthesizerUsesMIDIPort = 2,
kSynthesizerMicrotone = 4,
42 Constants



C H A P T E R  2

Music Architecture Reference
kSynthesizerHasSamples = 8,
kSynthesizerMixedDrums = 6,
kSynthesizerSoftware = 32,
kSynthesizerHardware = 64,
kSynthesizerDynamicChannel = 128,
kSynthesizerHogsSystemChannel = 256,
kSynthesizerSlowSetPart = 1024,
kSynthesizerOffline = 4096,
kSynthesizerGM = 16384

};

Constant descriptions

kSynthesizerDynamicVoice
Voices can be assigned to parts on the fly with this 
synthesizer (otherwise, polyphony is very important).

kSynthesizerUsesMIDIPort
This synthesizer must be patched through a MIDI system, 
such as the MIDI Manager or OMS.

kSynthesizerMicrotone
This synthesizer can play microtonal scales.

kSynthesizerHasSamples
This synthesizer has some use for sampled audio data.

kSynthesizerMixedDrums
Any part of this synthesizer can play drum parts. 

kSynthesizerSoftware
This synthesizer is implemented in main CPU software and 
uses CPU cycles. 

kSynthesizerHardware
This synthesizer is a hardware device, not a software 
synthesizer or MIDI device. 

kSynthesizerDynamicChannel
This synthesizer can move any part to any channel or 
disable each part. For devices only.

kSynthesizerHogsSystemChannel
Even if the kSynthesizerDynamicChannel bit is set, this 
synthesizer always responds on its system channel. For 
MIDI devices only.
Constants 43



C H A P T E R  2  

Music Architecture Reference
kSynthesizerSlowSetPart
This synthesizer does not respond rapidly to the various set 
part and set part instrument calls. 

kSynthesizerOffline
This synthesizer can enter an offline synthesis mode.

kSynthesizerGM This synthesizer is a General MIDI device.

Synthesizer Knob ID Constants 2

These constants specify knob IDs for the QuickTime music synthesizer. These 
constants are all of the form kQTMSKnobknobnameID. For example, 
kQTMSKnobVolumeLFODelayID is the ID constant for the VolumeLFODelay knob.

enum {
kQTMSKnobEnv1AttackTimeID = 0x02000027,
kQTMSKnobEnv1DecayTimeID = 0x02000028,
kQTMSKnobEnv1ExpOptionsID = 0x0200002D,
kQTMSKnobEnv1ReleaseTimeID = 0x0200002C,
kQTMSKnobEnv1SustainInfiniteID = 0x0200002B,
kQTMSKnobEnv1SustainLevelID = 0x02000029,
kQTMSKnobEnv1SustainTimeID = 0x0200002A,
kQTMSKnobEnv2AttackTimeID = 0x0200002E,
kQTMSKnobEnv2DecayTimeID = 0x0200002F,
kQTMSKnobEnv2ExpOptionsID = 0x02000034,
kQTMSKnobEnv2ReleaseTimeID = 0x02000033,
kQTMSKnobEnv2SustainInfiniteID = 0x02000032,
kQTMSKnobEnv2SustainLevelID = 0x02000030,
kQTMSKnobEnv2SustainTimeID = 0x02000031,
kQTMSKnobExclusionGroupID = 0x0200001C,
kQTMSKnobFilterFrequencyEnvelopeDepthID

= 0x0200003B,
kQTMSKnobFilterFrequencyEnvelopeID = 0x0200003A,
kQTMSKnobFilterKeyFollowID = 0x02000037,
kQTMSKnobFilterQEnvelopeDepthID = 0x0200003D, 

/* reverb threshhold */
kQTMSKnobFilterQEnvelopeID = 0x0200003C,
kQTMSKnobFilterQID = 0x02000039,
kQTMSKnobFilterTransposeID = 0x02000038,
kQTMSKnobLastIDPlus1 = 0x0200003F
44 Constants



C H A P T E R  2

Music Architecture Reference
kQTMSKnobPitchEnvelopeDepthID = 0x02000036, /* filter */
kQTMSKnobPitchEnvelopeID = 0x02000035,
kQTMSKnobPitchLFODelayID = 0x02000013,
kQTMSKnobPitchLFODepthFromWheelID = 0x02000025,

/* volume nnv again */
kQTMSKnobPitchLFODepthID = 0x02000017,
kQTMSKnobPitchLFOOffsetID = 0x0200001B,
kQTMSKnobPitchLFOPeriodID = 0x02000015,
kQTMSKnobPitchLFOQuantizeID = 0x02000018,

/* stereo related knobs */
kQTMSKnobPitchLFORampTimeID = 0x02000014,
kQTMSKnobPitchLFOShapeID = 0x02000016,
kQTMSKnobPitchSensitivityID = 0x02000023,
kQTMSKnobPitchTransposeID = 0x02000012,

/* sample can override */
kQTMSKnobReverbThresholdID = 0x0200003E,
kQTMSKnobStartID = 0x02000000,
kQTMSKnobStereoDefaultPanID = 0x02000019,
kQTMSKnobStereoPositionKeyScalingID = 0x0200001A,
kQTMSKnobSustainInfiniteID = 0x0200001E,
kQTMSKnobSustainTimeID = 0x0200001D,
kQTMSKnobVelocityHighID = 0x02000021,
kQTMSKnobVelocityLowID = 0x02000020,
kQTMSKnobVelocitySensitivityID = 0x02000022,
kQTMSKnobVolumeAttackTimeID = 0x02000001,

/* sample can override */
kQTMSKnobVolumeDecayTimeID = 0x02000002,

/* sample can override */
kQTMSKnobVolumeExpOptionsID = 0x02000026, /* env1 */
kQTMSKnobVolumeLFODelayID = 0x02000007,
kQTMSKnobVolumeLFODepthFromWheelID = 0x02000024,
kQTMSKnobVolumeLFODepthID = 0x0200000B,
kQTMSKnobVolumeLFOPeriodID = 0x02000009,
kQTMSKnobVolumeLFORampTimeID = 0x02000008,
kQTMSKnobVolumeLFOShapeID = 0x0200000A,
kQTMSKnobVolumeLFOStereoID = 0x0200001F,
kQTMSKnobVolumeOverallID = 0x0200000C,
kQTMSKnobVolumeReleaseKeyScalingID = 0x02000005,
kQTMSKnobVolumeReleaseTimeID = 0x02000006,

/* sample can override */
kQTMSKnobVolumeSustainLevelID = 0x02000003,
Constants 45



C H A P T E R  2  

Music Architecture Reference
/* sample can override */
kQTMSKnobVolumeVelocity127ID = 0x0200000D,
kQTMSKnobVolumeVelocity16ID = 0x02000011,

/* pitch related knobs */
kQTMSKnobVolumeVelocity32ID = 0x02000010,
kQTMSKnobVolumeVelocity64ID = 0x0200000F,
kQTMSKnobVolumeVelocity96ID = 0x0200000E

};

Constant descriptions

kQTMSKnobEnv1AttackTimeID
Specifies the attack time of the first general-purpose 
envelope. This is the number of milliseconds between the 
start of a note and the maximum value of the attack. 

kQTMSKnobEnv1DecayTimeID
Specifies the decay time of the first general-purpose 
envelope. This is the number of milliseconds between the 
time the attack is completed and the time the envelope 
level is reduced to the sustain level.

kQTMSKnobEnv1ExpOptionsID
Specifies whether segments of the envelope are treated as 
exponential curves. Bits 0, 1, 2, and 3 of the knob value 
specify the interpretation of the attack, decay, sustain, and 
release segments of the envelope, respectively. If any of 
these bits is 0, the level of the corresponding segment 
changes linearly from its initial to final value during the 
time interval specified by the corresponding envelope time 
knob. If any of these bits is nonzero, the level of the 
corresponding segment changes exponentially during the 
time interval specified by the corresponding envelope time 
knob. During an exponential decrease, the level changes 
from maximum amplitude (no attenuation) to 
approximately 1/65536th of maximum amplitude (96 dB of 
attenuation) during the time interval specified by the 
corresponding envelope time knob, and afterward the level 
immediately becomes 0.

kQTMSKnobEnv1ReleaseTimeID
Specifies the release time of the first general-purpose 
envelope. 
46 Constants



C H A P T E R  2

Music Architecture Reference
kQTMSKnobEnv1SustainInfiniteID
Specifies infinite sustain for the first general-purpose 
envelope. If the value of this knob is true, the knob 
overrides the kQTMSKnobEnv1SustainTimeID knob and causes 
the sustain to last, at undiminished level. Instruments like 
an organ have infinite sustain.

kQTMSKnobEnv1SustainLevelID
Specifies the sustain level of the first general-purpose 
envelope. This is the percentage of full volume that the 
sample is initially played at after the decay time has 
elapsed.

kQTMSKnobEnv1SustainTimeID
Specifies the sustain time of the first general-purpose 
envelope. This is the number of milliseconds it takes for the 
sample to soften to 90% of its sustain level. This softening 
occurs in an exponential fashion, so it never actually 
reaches complete silence. This is used for instruments like a 
piano, which gradually soften over time even while the key 
is held down.

kQTMSKnobEnv2AttackTimeID
Specifies the attack time of the second general-purpose 
envelope. This is the number of milliseconds between the 
start of a note and the maximum value of the attack. 
Percussive sounds usually have zero attack time; gentler 
sounds may have short attack times. Long attack times are 
usually used for special effects.

kQTMSKnobEnv2DecayTimeID
Specifies the decay time of the second general-purpose 
envelope. This is the number of milliseconds between the 
time the attack is completed and the time the sample is 
reduced in volume to the sustain level.

kQTMSKnobEnv2ExpOptionsID
Specifies whether segments of the envelope are treated as 
exponential curves. Bits 0, 1, 2, and 3 of the knob value 
specify the interpretation of the attack, decay, sustain, and 
release segments of the envelope, respectively. If any of 
these bits is 0, the level of the corresponding segment 
changes linearly from its initial to final value during the 
time interval specified by the corresponding envelope time 
knob. If any of these bits is nonzero, the level of the 
Constants 47



C H A P T E R  2  

Music Architecture Reference
corresponding segment changes exponentially during the 
time interval specified by the corresponding envelope time 
knob. During an exponential decrease the level changes 
from maximum amplitude (no attenuation) to 
approximately 1/65536th of maximum amplitude (96 dB of 
attenuation) during the time interval specified by the 
corresponding envelope time knob, and afterward the level 
immediately becomes 0.

kQTMSKnobEnv2ReleaseTimeID
Specifies the release time of the second general-purpose 
envelope. This is the number of milliseconds it takes for the 
sound to soften down to silence after the key is released.

kQTMSKnobEnv2SustainInfiniteID
Specifies infinite sustain for the second general-purpose 
envelope. If the value of this knob is true, the knob 
overrides the kQTMSKnobEnv2SustainTimeID knob and causes 
the sustain to last, at undiminished volume, until the end of 
the sample. Instruments like an organ have infinite sustain.

kQTMSKnobEnv2SustainLevelID
Specifies the sustain level of the first general-purpose 
envelope. This is the percentage of full volume that the 
sample is initially played at after the decay time has 
elapsed.

kQTMSKnobEnv2SustainTimeID
Specifies the sustain time of the second general-purpose 
envelope. This is the number of milliseconds it takes for the 
sample to soften to 90% of its sustain level. This softening 
occurs in an exponential fashion, so it never actually 
reaches complete silence. This is used for instruments like a 
piano, which gradually soften over time even while the key 
is held down.

kQTMSKnobExclusionGroupID
Specifies an exclusion group. Within an instrument, no two 
notes with the same exclusion group number, excepting 
exclusion group, will ever sound simultaneously.This knob 
is generally used only as an override knob within a key 
range. (Note that the key range is not an entire instrument.) 
It is useful for simulating certain mechanical instruments in 
which the same mechanism produces different sounds. For 
example, in a drum kit, the open high hat and the closed 
48 Constants



C H A P T E R  2

Music Architecture Reference
high hat are played on the same piece of metal. If you 
assign both sounds to the same exclusion group, playing a 
closed high hat sound immediately silences any currently 
playing open high hat sounds.

kQTMSKnobFilterFrequencyEnvelopeDepthID
Controls the depth of the envelope for the filter frequency. 
This is an 8.8 signed fixed-point value that specifies the 
number of semitones the frequency is altered when its 
envelope (specified by the 
kQTMSKnobFilterFrequencyEnvelopeID knob)
is at maximum amplitude. If the value of the 
kQTMSKnobFilterFrequencyEnvelopeID knob is 0, which 
specifies not to use an envelope to affect filter frequency, 
the kQTMSKnobFilterFrequencyEnvelopeDepthID knob is 
ignored.

kQTMSKnobFilterFrequencyEnvelopeID
Specifies which of the two general-purpose envelopes to 
use to affect the filter frequency, or not to use an envelope 
to affect filter frequency. If the value of this knob is 0, no 
envelope is used. If the value of this knob is 1 or 2, the 
corresponding general-purpose envelope is used.

kQTMSKnobFilterKeyFollowID
Specifies how closely the frequency of the filter follows the 
note being played. The emphasis note is determined by the 
following formula, expressed in MIDI notes:
EmphasisNote = (PlayedNote – 60) * 
(kQTMSKnobFilterKeyFollowID / 100) – 60 – 
kQTMSKnobFilterTransposeID

kQTMSKnobFilterQEnvelopeDepthID
Controls the depth of the envelope for the emphasis (“Q”) 
of the filter. This is an 8.8 signed fixed-point value that 
specifies the emphasis is altered when its envelope 
(specified by the kQTMSKnobFilterQEnvelopeID knob) is at 
maximum amplitude. If the value of the 
kQTMSKnobFilterQEnvelopeID knob is 0, which specifies not 
to use an envelope to affect filter frequency, the 
kQTMSKnobFilterQEnvelopeDepthID knob is ignored.

kQTMSKnobFilterQEnvelopeID
Specifies which of the two general-purpose envelopes to 
Constants 49



C H A P T E R  2  

Music Architecture Reference
use to affect the emphasis (“Q”) of the filter, or not to use 
an envelope to affect the emphasis. If the value of this knob 
is 0, no envelope is used. If the value of this knob is 1 or 2, 
the corresponding general-purpose envelope is used.

kQTMSKnobFilterQID
Specifies the emphasis (“Q”) of the filter. The value must be 
in the range 0 to 65536, inclusive, where 0 specifies no 
emphasis and disables the filter, and 65536 specifies 
relatively steep emphasis, but not so steep that it 
approaches feedback. 

kQTMSKnobFilterTransposeID
Specifies a transposition, in semitones, of the frequency of 
the filter. The emphasis note is determined by the following 
formula: 
EmphasisNote = (PlayedNote – 60) * 
(kQTMSKnobFilterKeyFollowID / 100) – 60 – 
kQTMSKnobFilterTransposeID

kQTMSKnobPitchEnvelopeDepthID
Specifies the depth of the pitch envelope. This is an 8.8 
signed fixed-point value that specifies the number of 
semitones the pitch is altered when the envelope for the 
pitch (specified by the kQTMSKnobPitchEnvelopeID knob) is at 
maximum amplitude. If the value of the 
kQTMSKnobPitchEnvelopeID knob is 0, which specifies not to 
use an envelope to affect pitch, the 
kQTMSKnobPitchEnvelopeDepthID knob is ignored.

kQTMSKnobPitchEnvelopeID
Specifies which of the two general-purpose envelopes to 
use to affect pitch, or not to use an envelope to affect pitch. 
If the value of this knob is 0, no envelope is used. If the 
value of this knob is 1 or 2, the corresponding 
general-purpose envelope is used to affect pitch. 

kQTMSKnobPitchLFODelayID
Specifies the delay for the pitch LFO. This is the number of 
milliseconds before the LFO takes effect.

kQTMSKnobPitchLFODepthFromWheelID
Specifies the extent to which a synthesizer’s modulation 
wheel (or the MIDI messages it generates) controls the 
depth of the pitch LFO. The value of this knob is multiplied 
50 Constants



C H A P T E R  2

Music Architecture Reference
by the modulation wheel value (a value between 0 to 1), 
and the result is added to the volume LFO depth specified 
by the kQTMSKnobPitchLFODepthID knob. Modulation wheel 
controllers and the MIDI messages they generate are most 
often used to create vibrato and tremolo effects.

kQTMSKnobPitchLFODepthID
Specifies the depth of the pitch LFO. This is the number of 
semitones by which the pitch is altered by the LFO. A value 
of 0 does not change the pitch. A value of 12 changes the 
pitch from an octave lower to an octave higher, with one 
exception: if the square up waveform is used for the LFO, 
the normal pitch is the minimum pitch.

kQTMSKnobPitchLFOOffsetID
Specifies the LFO offset. This is a constant value; the units 
are 8.8 semitones. It is added to the pitch, and is affected by 
the LFO delay and LFO ramp-up times. It is similar to 
transposition but subject to the LFO delay and LFO 
ramp-up times. 

kQTMSKnobPitchLFOPeriodID
Specifies the period for the pitch LFO. This is the 
wavelength of the LFO in milliseconds. (The LFO rate in 
Hz is 1000 / kQTMSKnobPitchLFOPeriodID).

kQTMSKnobPitchLFOQuantizeID
To be provided

kQTMSKnobPitchLFORampTimeID
Specifies the LFO ramp-up time. This is the number of 
milliseconds after the LFO delay that it takes for the LFO to 
reach full effect.

kQTMSKnobPitchLFOShapeID
Specifies the waveform used for the LFO. The available 
waveforms are sine, triangle, sawtooth up, sawtooth down, 
square up, square up-and-down, and random. The sine and 
triangle shapes both produce a smooth rise and fall of the 
pitch. The sawtooth up produces a gradual increase in 
pitch followed by a sudden fall. The sawtooth down shape 
produces a sudden increase in pitch, followed by a gradual 
reduction. The square up and square up-and-down shapes 
apply a sudden pulsing to the pitch; the square up only 
makes the pitch higher, while the up-and-down variant 
Constants 51



C H A P T E R  2  

Music Architecture Reference
makes the sound higher and lower. The random shape 
applies random changes to the pitch, once per LFO period. 

kQTMSKnobPitchSensitivityID
Specifies the pitch key scaling. This determines how much 
the pitch of the struck note affects the pitch of the played 
note. Typically, this is 100%, meaning that a change in 1 
semitone of the struck note produces a change in 1 
semitone of the played note. Setting this knob to zero 
causes every note to play at the same pitch. Setting it to 
50% allows for all notes within the quarter-tone scale (24 
notes per octave) to be played.

kQTMSKnobPitchTransposeID
Specifies a transposition for pitches. The value is the 
number of semitones to transpose; a positive value raises 
the pitch anda negative value lowers it. The value can be a 
real number; the fractional part of the value alters the pitch 
by an additional fraction of a semitone. For example, to 
raise the pitch of every note played on the instrument by an 
octave, set the transpose knob to 12.0.

kQTMSKnobReverbThresholdID
To be provided

kQTMSKnobStartID
To be provided

kQTMSKnobStereoDefaultPanID
Specifies the default pan position for stereo sound. If no 
pan controller is applied, this determines where in the 
stereo field notes for this instrument are played. 

kQTMSKnobStereoPositionKeyScalingID
Specifies the key scaling for stereo sound. Amount to 
modify the stereo placement of notes based upon pitch. At 
the highest setting, high pitched notes are placed 
completely in the right speaker, while low pitched notes 
are placed entirely in the left speaker.

kQTMSKnobSustainInfiniteID
Specifies infinite sustain for the volume envelope. If the 
value of this knob is true, the knob overrides the 
kQTMSKnobSustainTimeID knob and causes the sustain to last, 
at undiminished volume, until the end of the sample. 
Instruments like an organ have infinite sustain.
52 Constants



C H A P T E R  2

Music Architecture Reference
kQTMSKnobSustainTimeID
Specifies the sustain time of the volume envelope. This is 
the number of milliseconds it takes for the note to soften to 
90% of its sustain level. This softening occurs in an 
exponential fashion, so it never actually reaches complete 
silence. This is used for instruments like a piano, which 
gradually soften over time even while the key is held 
down.

kQTMSKnobVelocityHighID
Specifies the maximum velocity value that produces sound 
for a particular note. If the velocity value is greater, the 
note does not sound. This can be used to assign different 
samples to be played for selected velocity ranges.

kQTMSKnobVelocityLowID
Specifies the minimum velocity value that produces sound 
for a particular note. If the velocity value is less, the note 
does not sound. This can be used to assign different 
samples to be played for selected velocity ranges.

kQTMSKnobVelocitySensitivityID
Specifies velocity sensitivity, which determines how much 
the key velocity affects the volume of the note. This value is 
a percentage. At 100%, a velocity of 1 is nearly silent, and a 
velocity of 127 is full volume. At 50%, the volume range is 
from one fourth to three fourths. At 0%, any velocity of key 
strike produces a half volume note. If the value of this knob 
is negative, then the note plays more softly as the key is 
struck harder.

kQTMSKnobVolumeAttackTimeID
Specifies the attack time for the volume envelope. This is 
the number of milliseconds between the start of a note and 
maximum volume. Percussive sounds usually have zero 
attack time; gentler sounds may have short attack times. 
Long attack times are usually used for special effects.

kQTMSKnobVolumeDecayTimeID
Specifies the decay time for the volume envelope. This is 
the number of milliseconds between the time the attack is 
completed and the time the volume is reduced to the 
sustain level.
Constants 53



C H A P T E R  2  

Music Architecture Reference
kQTMSKnobVolumeExpOptionsID
Specifies whether segments of the volume envelope are 
treated as exponential curves. Bits 0, 1, 2, and 3 of the knob 
value specify the interpretation of the attack, decay, sustain, 
and release segments of the volume envelope, respectively. 
If any of these bits is 0, the volume level of the 
corresponding segment changes linearly from its initial to 
final value during the time interval specified by the 
corresponding envelope time knob. If any of these bits is 
nonzero, the volume level of the corresponding segment 
changes exponentially during the time interval specified by 
the corresponding envelope time knob. During an 
exponential decrease the volume level changes from full 
volume (no attenuation) to approximately 1/65536th of full 
volume (96 dB of attenuation) during the time interval 
specified the corresponding envelope time knob, and 
afterward the volume level immediately becomes 0.

kQTMSKnobVolumeLFODelayID
Specifies the delay for the volume LFO. This is the number 
of milliseconds before the LFO takes effect.

kQTMSKnobVolumeLFODepthFromWheelID
Specifies the extent to which a synthesizer’s modulation 
wheel (or the MIDI messages it generates) controls the 
depth of the volume LFO. The value of this knob is 
multiplied by the modulation wheel value (a value 
between 0 to 1), and the result is added to the volume LFO 
depth specified by the kQTMSKnobVolumeLFODepthID knob. 
Modulation wheel controllers and the MIDI messages they 
generate are most often used to create vibrato and tremolo 
effects.

kQTMSKnobVolumeLFODepthID
Specifies the depth of the volume LFO. This is the amount, 
expressed as a percentage, by which the volume is altered 
by the LFO. A value of 0 does not change the volume. A 
value of 100 changes the volume from complete silence to 
twice the volume specified by the envelope, with one 
exception: if the square up waveform is used for the LFO, 
the normal envelope volume is the minimum volume.

kQTMSKnobVolumeLFOPeriodID
Specifies the period for the volume LFO. This is the 
54 Constants



C H A P T E R  2

Music Architecture Reference
wavelength of the LFO in milliseconds. (The LFO rate in 
Hz is 1000 / kQTMSKnobPitchLFOPeriodID).

kQTMSKnobVolumeLFORampTimeID
Specifies the ramp-up time for the volume LFO. This is the 
number of milliseconds after the LFO delay has elapsed 
that it takes for the LFO to reach full effect.

kQTMSKnobVolumeLFOShapeID
Specifies the waveform used for the LFO. The available 
waveforms are sine, triangle, sawtooth up, sawtooth down, 
square up, square up-and-down, and random. The sine and 
triangle shapes both produce a smooth rise and fall of the 
volume. The sawtooth up produces a gradual increase in 
volume followed by a sudden fall. The sawtooth down 
shape produces a sudden increase in volume, followed by a 
gradual reduction (often heard as a “ting” sound). The 
square up and square up-and-down shapes apply a sudden 
pulsing to the volume; the square up only makes the sound 
louder, while the up-and-down variant makes the sound 
louder and softer. The random shape applies random 
changes to the volume, once per LFO period. 

kQTMSKnobVolumeLFOStereoID
If the synthesizer is producing stereo output and the value 
of this knob is 1, the LFO is applied in phase to one of the 
stereo channels and 180° out of phase to the other. This 
often causes a “vibration” effect within the stereo field.

kQTMSKnobVolumeOverallID
Specifies the overall volume of the instrument, in decibels. 
Increasing the value by 6 doubles the maximum amplitude 
of the signal, increasing the value by 12 quadruples it, and 
so on. 

kQTMSKnobVolumeReleaseKeyScalingID
Specifies the release-time key scaling. Modifies the release 
time based on the key pitch. 

kQTMSKnobVolumeReleaseTimeID
Specifies the release time of the volume envelope. This is 
the number of milliseconds it takes for the sound to soften 
down to silence after the key is released.

kQTMSKnobVolumeSustainLevelID
Specifies the sustain level of the volume envelope. This is 
Constants 55



C H A P T E R  2  

Music Architecture Reference
the percentage of full volume that a note is initially played 
at after the decay time has elapsed.

kQTMSKnobVolumeVelocity127ID
To be provided

kQTMSKnobVolumeVelocity16ID
To be provided

kQTMSKnobVolumeVelocity32ID
To be provided

kQTMSKnobVolumeVelocity64ID
To be provided

kQTMSKnobVolumeVelocity96ID
To be provided

Controller Numbers 2

The controller numbers used by QuickTime are mostly identical to the standard 
MIDI controller numbers. These are signed 8.8 values. The full range, therefore, 
is -128.00 to 127+127/128 (or 0x8000 to 0x7FFF). 

All controls default to zero except for volume and pan.

Pitch bend is specified in fractional semitones, which eliminates the restrictions 
of a pitch bend range. You can bend as far as you want, any time you want.

The last 16 controllers (113–128) are global controllers. Global controllers 
respond when the part number is given as 0, indicating the entire synthesizer. 

enum {
kControllerModulationWheel = 1,
kControllerBreath = 2,
kControllerFoot = 4,
kControllerPortamentoTime = 5,
kControllerVolume = 7,
kControllerBalance = 8,
kControllerPan = 10,
kControllerExpression = 11,
kControllerLever1 = 16,
kControllerLever2 = 17,
kControllerLever3 = 18,
kControllerLever4 = 19,
56 Constants



C H A P T E R  2

Music Architecture Reference
kControllerLever5 = 80,
kControllerLever6 = 81,
kControllerLever7 = 82,
kControllerLever8 = 83,
kControllerPitchBend = 32,
kControllerAfterTouch = 33,
kControllerSustain = 64,
kControllerSostenuto = 66,
kControllerSoftPedal = 67,
kControllerReverb = 91,
kControllerTremolo = 92,
kControllerChorus = 93,
kControllerCeleste = 94,
kControllerPhaser = 95,
kControllerEditPart = 113,
kControllerMasterTune = 114

};

Constant descriptions

kControllerModulationWheel
This controller controls the modulation wheel. A 
modulation wheel adds a periodic change to the volume or 
pitch of a sounding tone, depending on the modulation 
depth knobs.

kControllerBreath This controller controls breath.
kControllerFoot This controller controls the foot pedal.
kControllerPortamentoTime

This controller adjusts the slur between notes. Set the time 
to 0 to turn off portamento; there is no separate control to 
turn portamento on and off.

kControllerVolume This controller controls volume.
kControllerBalance This controller controls balance between channels.
kControllerPan This controller controls balance on the QuickTime music 

synthesizer and some others. Values are 256–512, 
corresponding to left to right.

kControllerExpression
This controller provides a second volume control. 

kControllerLever1 through kControllerLever8
These are all general-purpose controllers.
Constants 57



C H A P T E R  2  

Music Architecture Reference
kControllerPitchBend
This controller bends the pitch. Pitch bend is specified in 
positive and negative semitones, with 7 bits per fraction. 

kControllerAfterTouch
 This controller controls channel pressure.

kControllerSustain This controller controls the sustain effect. The value is a 
Boolean—positive for on, 0 or negative for off. 

kControllerSostenuto
This controller controls sostenuto. 

kControllerSoftPedal
This controller controls the soft pedal. 

kControllerReverb This controller controls reverb.
kControllerTremolo This controller controls tremolo.
kControllerChorus This controller controls the amount of signal to feed to the 

chorus special effect unit.
kControllerCeleste This controller controls the amount of signal to feed to the 

celeste special effect unit.
kControllerPhaser This controller controls the amount of signal to feed to the 

phaser special effect unit.
kControllerEditPart

This controller sets the part number for which editing is 
occurring. For synthesizers that can edit only one part.

kControllerMasterTune
This controller offsets the entire synthesizer in pitch.

Controller Range 2

These constants specify the maximum and minimum values for controllers.

enum {
kControllerMaximum = 0x7FFF,
kControllerMinimum = 0x8000

};

Constant descriptions

kControllerMaximum
The maximum value a controller can be set to.
58 Constants



C H A P T E R  2

Music Architecture Reference
kControllerMinimum
The minimum value a controller can be set to.

Drum Kit Numbers 2

These constants specify the first and last drum kit numbers available to   
General MIDI drum kits. 

enum {
kFirstDrumkit = 16384,
kLastDrumkit = (kFirstDrumkit + 128)

};

Constant description

kFirstDrumkit The first number in the range of drum kit numbers, which 
corresponds to “no drum kit.” The standard drum kit is 
kFirstDrumKit+1=16385.

kLastDrumkit The last number in the range of drum kit numbers.

Tone Fit Flags 2

These flags are returned by the MusicFindTone function (page 133) to indicate 
how well an instrument matches the tone description. 

enum {
kInstrumentMatchSynthesizerType = 1,
kInstrumentMatchSynthesizerName = 2,
kInstrumentMatchName = 4,
kInstrumentMatchNumber = 8,
kInstrumentMatchGMNumber = 16

};

Constant descriptions

kInstrumentMatchSynthesizerType
The requested synthesizer type was found.

kInstrumentMatchSynthesizerName
The particular instance of the synthesizer requested was 
found.
Constants 59



C H A P T E R  2  

Music Architecture Reference
kInstrumentMatchName
The instrument name in the tone description matched an 
appropriate instrument on the synthesizer. 

kInstrumentMatchNumber
The instrument number in the tone description matched an 
appropriate instrument on the synthesizer.

kInstrumentMatchGMNumber
The General MIDI equivalent was used to find an 
appropriate instrument on the synthesizer. 

Knob Flags 2

Knob flags specify characteristics of a knob. They are used in the flags field of a 
knob description structure. Some flags describe the type of values a knob takes 
and others describe the user interface. Knob flags are mutually exclusive, so 
only one should be set (all knob flag constants begin “kKnobType”).

enum {
kKnobReadOnly = 16,
kKnobInterruptUnsafe = 32,
kKnobKeyrangeOverride = 64,
kKnobGroupStart = 128,
kKnobFixedPoint8 = 1024,
kKnobFixedPoint16 = 2048,
kKnobTypeNumber = 0 << 12,
kKnobTypeGroupName = 1 << 12,
kKnobTypeBoolean = 2 << 12,
kKnobTypeNote = 3 << 12,
kKnobTypePan = 4 << 12,
kKnobTypeInstrument = 5 << 12,
kKnobTypeSetting = 6 << 12,
kKnobTypeMilliseconds = 7 << 12,
kKnobTypePercentage = 8 << 12,
kKnobTypeHertz = 9 << 12,
kKnobTypeButton = 10 << 12

};
60 Constants



C H A P T E R  2

Music Architecture Reference
Constant descriptions

kKnobReadOnly The knob value cannot be changed by the user or with a set 
knob call.

kKnobInterruptUnsafe
Alter this knob only from foreground task time. 

kKnobKeyrangeOverride
The knob can be overridden within a single key range 
(software synthesizer only).

kKnobGroupStart The knob is first in some logical group of knobs.
kKnobFixedPoint8 Interpret knob numbers as fixed-point 8-bit.
kKnobFixedPoint16 Interpret knob numbers as fixed-point 16-bit.
kKnobTypeNumber The knob value is a numerical value.
kKnobTypeGroupName The name of the knob is really a group name for display 

purposes.
kKnobTypeBoolean The knob is an on/off knob. If the range of the knob (as 

specified by the low value and high value in the knob 
description structure) is greater than one, the knob is a 
multi-checkbox field.

kKnobTypeNote The knob value range is equivalent to MIDI keys.
kKnobTypePan The knob value is the pan setting and is within a range (as 

specified by the low value and high value in the knob 
description structure) that goes from left to right. 

kKnobTypeInstrument
The knob value is a reference to another instrument 
number.

kKnobTypeSetting The knob value is one of n different discrete settings—for 
example, items on a pop-up menu.

kKnobTypeMilliseconds
The knob value is in milliseconds.

kKnobTypePercentage
The knob value is a percentage of the range. 

kKnobTypeHertz The knob value represents frequency. 
kKnobTypeButton The knob is a momentary trigger push button. 
Constants 61



C H A P T E R  2  

Music Architecture Reference
Knob Value Constants 2

These constants specify unknown or default knob values and are used in 
various get knob and set knob calls.

enum {
kUnknownKnobValue = 0x7FFFFFFF,
kDefaultKnobValue = 0x7FFFFFFE

};

Constant descriptions

kUnknownKnobValue Couldn’t find the specified knob value. 
kDefaultKnobValue Set this knob to its default value. 

Music Packet Status 2

These constants are used in the reserved field of the MIDI packet structure 
(page 79).

enum {
kMusicPacketPortLost = 1,
kMusicPacketPortFound = 2,
kMusicPacketTimeGap = 3

};

Constant descriptions

kMusicPacketPortLost
The application has lost the default input port.

kMusicPacketPortFound
The application has retrieved the input port from the 
previous owner. 

kMusicPacketTimeGap
The last byte of the packet specifies how long (in 
milliseconds) to keep the MIDI line silent after sending the 
packet. 
62 Constants



C H A P T E R  2

Music Architecture Reference
Atomic Instrument Information Flags 2

These constants specify what pieces of information about an atomic instrument 
the caller is interested in and are passed to the MusicGetPartAtomicInstrument 
function.

enum {
kGetAtomicInstNoExpandedSamples = 1 << 0,
kGetAtomicInstNoOriginalSamples = 1 << 1,
kGetAtomicInstNoSamples = kGetAtomicInstNoExpandedSamples |

kGetAtomicInstNoOriginalSamples,
kGetAtomicInstNoKnobList = 1 << 2,
kGetAtomicInstNoInstrumentInfo = 1 << 3,
kGetAtomicInstOriginalKnobList = 1 << 4,
kGetAtomicInstAllKnobs = 1 << 5

};

Constant descriptions

kGetAtomicInstNoExpandedSamples
Eliminate the expanded samples.

kGetAtomicInstNoOriginalSamples
Eliminate the original samples.

kGetAtomicInstNoSamples
Eliminate both the original and expanded samples.

kGetAtomicInstNoKnobList
Eliminate the knob list.

kGetAtomicInstNoInstrumentInfo
Eliminate the About box information.

kGetAtomicInstOriginalKnobList
Include the original knob list.

kGetAtomicInstAllKnobs
Include the current knob list. 

Flags for Setting Atomic Instruments 2

These flags specify details of initializing a part with an atomic instrument and 
are passed to the MusicSetPartAtomicInstrument function (page 146).
Constants 63



C H A P T E R  2  

Music Architecture Reference
enum {
kSetAtomicInstKeepOriginalInstrument = 1 << 0,
kSetAtomicInstShareAcrossParts = 1 << 1,
kSetAtomicInstCallerTosses = 1 << 2,
kSetAtomicInstDontPreprocess = 1 << 7

};

Constant descriptions

kSetAtomicInstKeepOriginalInstrument
Keep original sample after expansion.

kSetAtomicInstShareAcrossParts
Remove the instrument when the application quits.

kSetAtomicInstCallerTosses
The caller isn’t keeping a copy of the atomic instrument for 
later calls to NASetAtomicInstrument.

kSetAtomicInstDontPreprocess
Don’t expand the sample. You would only set this bit if you 
know the instrument is digitally clean or you got it from a 
MusicGetPartAtomicInstrument call (page 146).

Instrument Info Flags 2

Use these flags in the MusicGetInstrumentInfo function (page 148) and 
InstrumentGetInfo function (page 158) to indicate which instruments and 
instrument names you are interested in. 

enum {
kGetInstrumentInfoNoBuiltIn = 1 << 0,
kGetInstrumentInfoMidiUserInst = 1 << 1,
kGetInstrumentInfoNoIText = 1 << 2

};

Constant descriptions

kGetInstrumentInfoNoBuiltIn
Don’t return built-in instruments.

kGetInstrumentInfoMidiUserInst
Do return user instruments for a MIDI device.
64 Constants



C H A P T E R  2

Music Architecture Reference
kGetInstrumentInfoNoIText
Don’t return international text strings.

Synthesizer Connection Type Flags 2

These flags provide information about a MIDI device’s connection and are used 
in the synthesizer connections structure (page 84).

enum {
kSynthesizerConnectionMono = 1,
kSynthesizerConnectionMMgr = 2,
kSynthesizerConnectionOMS = 4, 
kSynthesizerConnectionQT = 8,
kSynthesizerConnectionFMS = 16

};

Constant descriptions

kSynthesizerConnectionMono
If set, and the synthesizer can be both monophonic and 
polyphonic, the synthesizer is instructed to take up its 
channels sequentially from the system channel in 
monophonic mode. 

kSynthesizerConnectionMMgr
This connection is imported from the MIDI Manager. 

kSynthesizerConnectionOMS
This connection is imported from the Open Music System 
(OMS).

kSynthesizerConnectionQT
This connection is a QuickTime-only port.

kSynthesizerConnectionFMS
This connection is imported from the FreeMIDI system.

Instrument Match Flags 2

These flags are returned in the instMatch field of the General MIDI 
instrument information structure (page 81) to specify how QuickTime 
music architecture matched an instrument request to an instrument. 
Constants 65



C H A P T E R  2  

Music Architecture Reference
enum {
kInstrumentExactMatch = 0x00020000,
kInstrumentRecommendedSubstitute = 0x00010000,
kInstrumentQualityField = 0xFF000000,
kRoland8BitQuality = 0x05000000

};
typedef InstrumentAboutInfo *InstrumentAboutInfoPtr;
typedef InstrumentAboutInfoPtr *InstrumentAboutInfoHandle;

Constant descriptions

kInstrumentExactMatch
The instrument exactly matches the request.

kInstrumentRecommendedSubstitute
The instrument is the approved substitute.

kInstrumentQualityField
The high-order 8 bits of this field specify the quality of the 
selected instrument. Higher values specify higher quality.

kRoland8BitQuality
For built-in instruments, the value of the high-order 8 bits 
is always kInstrumentRoland8BitQuality, which 
corresponds to the quality of an 8-bit Roland instrument.

Note Request Constants 2

These flags specify what to do if the exact instrument requested is not found. 
They are used in the flags field of the note request information structure 
(page 85).

enum {
kNoteRequestNoGM = 1, 
kNoteRequestNoSynthType = 2

};

Constant descriptions

kNoteRequestNoGM Don’t use a General MIDI synthesizer.
kNoteRequestNoSynthType

Don’t use another synthesizer of the same type but with a 
different name.
66 Constants



C H A P T E R  2

Music Architecture Reference
Pick Instrument Flags 2

The pick instrument flags provide information to the NAPickInstrument 
(page 120) and NAPickEditInstrument (page 122) functions on which 
instruments to present for the user to choose from.

enum {
kPickDontMix = 1,
kPickSameSynth = 2,
kPickUserInsts = 4,
kPickEditAllowPick = 16

};

Constant descriptions

kPickDontMix Show either all drum kits or all instruments depending on 
the current instrument. For example, if it’s a drum kit, 
show only drum kits.

kPickSameSynth Show only instruments from the current synthesizer. 
kPickUserInsts Show modifiable instruments in addition to ROM 

instruments. 
kPickEditAllowPick

Present the instrument picker dialog box. Used only with 
the NAPickEditInstrument function.

Note Allocator Type 2

Use these constants to specify the QuickTime note allocator component.

enum {
kNoteAllocatorType = 'nota'
kNoteAllocatorComponentType = 'not2'

};

Constant description

kNoteAllocatorType
The QTMA note allocator type.

kNoteAllocatorComponentType
The QTMA note allocator component type.
Constants 67



C H A P T E R  2  

Music Architecture Reference
Tune Queue Depth 2

This constant represents the maximum number of segments that can be queued 
with the TuneQueue function (page 91).

enum {
kTuneQueueDepth = 8 

};

Constant description

kTuneQueueDepth Deepest you can queue tune segments. 

Tune Player Type 2

Use this constant to specify the QuickTime tune player component.

enum {
kTunePlayerType = 'tune'

};

Constant descriptions

kTunePlayerType The QuickTime music architecture tune player component 
type.

Tune Queue Flags 2

Use these flags in the TuneQueue function (page 91) to give details about how to 
handle the queued tune.

enum {
kTuneStartNow = 1,
kTuneDontClipNotes = 2,
kTuneExcludeEdgeNotes = 4,
kTuneQuickStart = 8,
kTuneLoopUntil = 16,
kTuneStartNewMaster = 16384

};
68 Constants



C H A P T E R  2

Music Architecture Reference
Constant descriptions

kTuneStartNow Play even if another tune is playing.
kTuneDontClipNotes

Allow notes to finish their durations outside sample.
kTuneExcludeEdgeNotes

Don’t play notes that start at end of tune.
kTuneQuickStart Leave all the controllers where they are and ignore start 

time.
kTuneLoopUntil Loop a queued tune if there is nothing else in the queue.
kTuneStartNewMaster

Start a new master reference timer.

MIDI Component Constants 2

Use these constants to specify MIDI components.

enum {
kQTMIDIComponentType= FOUR_CHAR_CODE('midi')

};

enum {
kOMSComponentSubType= FOUR_CHAR_CODE('OMS '),
kFMSComponentSubType= FOUR_CHAR_CODE('FMS '),
kMIDIManagerComponentSubType = FOUR_CHAR_CODE('mmgr')

};

Constant descriptions

kQTMIDIComponentType
The component type for MIDI components.

kOMSComponentSubType
The component subtype for a Open Music System MIDI 
component.

kFMSComponentSubType
The component subtype for a FreeMIDI component.

kMIDIManagerComponentSubType
The component subtype for a MIDI Manager component.
Constants 69



C H A P T E R  2  

Music Architecture Reference
MIDI System Exclusive Constants 2

System exclusive constants can be used to control where sample breaks occur 
when importing a MIDI file. For more information, see the section “Importing a 
Standard MIDI File As a Movie Using the Movie Toolbox” (page 34). 

enum {
kAppleSysexID = 0x11, 
kAppleSysexCmdSampleSize= 0x0001,
kAppleSysexCmdSampleBreak= 0x0002,
kAppleSysexCmdAtomicInstrument = 0x0010,
kAppleSysexCmdDeveloper= 0x7F00

};

MIDI File Import Flags 2

These flags control the importation of MIDI files.

enum {
kMIDIImportSilenceBefore = 1 << 0,
kMIDIImportSilenceAfter = 1 << 1,
kMIDIImport20Playable = 1 << 2,
kMIDIImportWantLyrics = 1 << 3

};

Constant descriptions

kMIDIImportSilenceBefore
Specifies to add one second of silence before the first note.

kMIDIImportSilenceAfter
Specifies to add one second of silence after the last note.

kMIDIImport20Playable
Specifies to import only MIDI data that can be used with 
QuickTime 2.0. The imported data does not include 
program changes and has at most 32 parts.

kMIDIImportWantLyrics
Specifies to import karaoke lyrics as a text track.
70 Constants



C H A P T E R  2

Music Architecture Reference
Part Mixing Flags 2

Part mixing flags control how a part is mixed with other parts.

enum {
kTuneMixMute= 1,
kTuneMixSolo= 2

};

Constant descriptions

kTuneMixMute Disables the part so that it is not heard.
kTuneMixSolo Specifies to include only soloed parts in the mix if any parts 

are soloed.

Data Structures 2

This section describes the data structures provided by QuickTime music 
architecture.

Instrument Knob Structure 2

An instrument knob structure contains information about an instrument knob. 
It is defined by the InstKnobRec data type.

struct InstKnobRec {
long number;
long value;

};
typedef struct InstKnobRec InstKnobRec;

Field descriptions
number A knob ID or index. A nonzero value in the high byte 

indicates that it is an ID. The knob index ranges from 1 to 
the number of knobs; the ID is an arbitrary number.

value The value the knob is set to.
Data Structures 71



C H A P T E R  2  

Music Architecture Reference
Instrument Knob List 2

An instrument knob list contains a list of sound parameters. It is defined by the 
InstKnobList data type.

struct InstKnobList {
long knobCount;
long knobFlags;
InstKnobRec knob[1];

};
typedef struct InstKnobList InstKnobList;

Field descriptions
knobCount The number of instrument knob structures in the list.
knobFlags Instructions on what to do if a requested knob is not in the 

list. See “Instrument Knob Flags” (page 41).
knob[1] An array of instrument knob structures.

Atomic Instrument Sample Description Structure 2

A sample description structure contains a description of an audio sample, 
including sample rate, loop points, and lowest and highest key to play on. It is 
defined by the InstSampleDescRec data type.

struct InstSampleDescRec {
OSType dataFormat;
short numChannels;
short sampleSize;
UnsignedFixed sampleRate;
short sampleDataID;
long offset;
long numSamples;
long loopType;
long loopStart;
long loopEnd;
long pitchNormal;
long pitchLow;
long pitchHigh;

};
typedef struct InstSampleDescRec InstSampleDescRec;
72 Data Structures



C H A P T E R  2

Music Architecture Reference
Field descriptions
dataFormat The data format type. This is either 'twos' for signed data 

or 'raw ' for unsigned data. 
numChannels The number of channels of data present in the sample.
sampleSize The size of the sample— 8-bit or 16-bit.
sampleRate The rate at which to play the sample in unsigned 

fixed-point 16.16.
sampleDataID The ID number of a sample data atom that contains the 

sample audio data.
offset Set to 0.
numSamples The number of data samples in the sound. 
loopType The type of loop. See “Loop Type Constants” (page 41).
loopStart Indicates the beginning of the portion of the sample that is 

looped if the sound is sustained. The position is given in 
the number of data samples from the start of the sound.

loopEnd Indicates the end of the portion of the sample that is looped 
if the sound is sustained. The position is given in the 
number of data samples from the start of the sound.

pitchNormal The number of the MIDI note produced if the sample is 
played at the rate specified in sampleRate.

pitchLow The lowest pitch at which to play the sample. Use for 
instruments, such as pianos, that have different samples to 
use for different pitch ranges.

pitchHigh The highest pitch at which to play the sample. Use for 
instruments, such as pianos, that have different samples to 
use for different pitch ranges.

Synthesizer Description Structure 2

A synthesizer description structure contains information about a synthesizer. It 
is defined by the SynthesizerDescription data type.

struct SynthesizerDescription {
OSType synthesizerType;
Str31 name;
unsigned long flags;
unsigned long voiceCount;
Data Structures 73



C H A P T E R  2  

Music Architecture Reference
unsigned long partCount;
unsigned long instrumentCount;
unsigned long modifiableInstrumentCount;
unsigned long channelMask;
unsigned long drumPartCount;
unsigned long drumCount;
unsigned long modifiableDrumCount;
unsigned long drumChannelMask;
unsigned long outputCount;
unsigned long latency;
unsigned long controllers[4];
unsigned long gmInstruments[4];
unsigned long gmDrums[4];

};
typedef struct SynthesizerDescription SynthesizerDescription;

Field descriptions
synthesizerType The synthesizer type. This is the same as the music 

component subtype. 
name Text name of the synthesizer type.
flags Various information about how the synthesizer works. See 

“Synthesizer Description Flags” (page 42).
voiceCount Maximum polyphony.
partCount Maximum multi-timbrality (and MIDI channels).
instrumentCount The number of built-in ROM instruments. This does not 

include General MIDI instruments. 
modifiableInstrumentCount

The number of slots available for saving user-modified 
instruments.

channelMask Which channels a MIDI device always uses for 
instruments. Set to FFFF for all channels.

drumPartCount The maximum multi-timbrality of drum parts. For 
synthesizers where drum kits are separated from 
instruments.

drumCount The number of built-in ROM drum kits. This does not 
include General MIDI drum kits. For synthesizers where 
drum kits are separated from instruments
74 Data Structures



C H A P T E R  2

Music Architecture Reference
modifiableDrumCount
The number of slots available for saving user-modified 
drum kits. For MIDI synthesizers where drum kits are 
separated from instruments

drumChannelMask Which channels a MIDI device always uses for drum kits. 
Set to FFFF for all channels

outputCount The number of audio outputs. This is usually two. 
latency Response time in microseconds.
controllers[4] An array of 128 bits identifying the available controllers. 

See “Controller Numbers” (page 56). Bits are numbered 
from 1 to 128, starting with the most significant bit of the 
long word, and continuing to the least significant of the last 
bit.

gmInstruments[4] An array of 128 bits giving the available General MIDI 
instruments.

gmDrums[4] An array of 128 bits giving the available General MIDI 
drum kits. 

Tone Description Structure 2

A tone description structure provides the information needed to produce a 
specific musical sound. The tune header has a tone description for each 
instrument used. Tone descriptions are also used in the tone description atoms 
of atomic instruments. The tone description structure is defined by the 
ToneDescription data type.

struct ToneDescription {
BigEndianOSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
BigEndianLong instrumentNumber;
BigEndianLong gmNumber;

};
typedef struct ToneDescription ToneDescription;
Data Structures 75



C H A P T E R  2  

Music Architecture Reference
Field descriptions
synthesizerType The synthesizer type. See “Synthesizer Type Constants” 

(page 42) for possible types. A value of 0 specifies that any 
type of synthesizer is acceptable.

synthesizerName The name of the synthesizer component instance. A value 
of 0 specifies that the name can be ignored.

instrumentName The name of the instrument to use.
instrumentNumber The instrument number of the instrument to use. This 

value, which must be in the range 1–262143, can specify 
General MIDI and GS instruments as well as other 
instruments (see Table 2-2). The instrument specified by 
this field is used if it is available; if not, the instrument 
specified by the gmNumber field is used. If neither of the 
instruments specified by the instrumentNumber or gmNumber 
fields is available, the instrument specified by the 
instrumentName field is used. Finally, if none of these fields 
specifies an instrument that is available, no tone is played.

gmNumber The instrument number of a General MIDI or GS 
instrument to use if the instrument specified by the 
instrumentNumber field is not available. This value, which 
must be in the range 1–16383, can specify only General 
MIDI and GS instruments (see Table 2-2). The instrument 
specified by the instrumentNumber field is used if it is 
available; if not, the instrument specified by the gmNumber 
field is used. If neither of the instruments specified by the 
instrumentNumber or gmNumber fields is available, the 
instrument specified by the instrumentName field is used. 
Finally, if none of these fields specifies an instrument that is 
available, no tone is played.

GS instruments conform to extensions defined by Roland Corporation to the 
General MIDI specifications. For information about these extensions, see

http://www.rolandcorp.com/vsc/gs1.html

on the World Wide Web.
76 Data Structures



C H A P T E R  2

Music Architecture Reference
Table 2-1

Table 2-2 IRange descriptions

GM instrument An instrument number in this range specifies a standard 
General MIDI instrument that should sound the same on 
all synthesizers that support General MIDI.

GM drum kit An instrument number in this range specifies a standard 
General MIDI drum kit instrument that should sound the 
same on all synthesizers that support General MIDI.

GS instrument An instrument number in this range specifies a standard 
GS instrument that should sound the same on all 
synthesizers that support the Roland GS extensions to 
General MIDI.

ROM instrument An instrument number in this range specifies an 
instrument of a synthesizer that not a standard General 
MIDI or GS instrument.

User instrument Instruments number in this range are transient and are 
assigned when necessary for additional instruments, such 
as instruments in a newly installed GS library or custom 
instruments for a game. Applications should refer to these 
additional instruments by name rather by number.

Internal index An instrument index value returned by the MusicFindTone 
function that can be passed immediately in a call to 
MusicSetPartInstrumentNumber. Values in this range are not 

Name Low High Low (Hex) High (Hex)

GM Instrument 1 128 0x00000001 0x00000080
GM Drumkit 16385 16512 0x00004001 0x00004080

GS Instrument 128 16383 0x00000081 0x00003FFF

ROM Instrument 32768 65535 0x00008000 0x0000FFFF

User Instrument 65536 131071 0x00010000 0x0001FFFF
Internal Index 131072 262143 0x00020000 0x0003FFFF

All Other Numberss Illegal And Resserved
Data Structures 77



C H A P T E R  2  

Music Architecture Reference
persistent and should never be stored or used in any other 
way.

Knob Description Structure 2

A knob description structure contains sound parameter values for a single 
knob. It is defined by the KnobDescription data type.

struct KnobDescription {
Str63 name;
long lowValue;
long highValue;
long defaultValue;
long flags;
long knobID;

};
typedef struct KnobDescription KnobDescription;

Field descriptions
name The name of the knob.
lowValue The lowest number you can set the knob to.
highValue The highest number you can set the knob to.
defaultValue A value to use for the default. 
flags Various information about the knob. See “Knob Flags” 

(page 60).
knobID A knob ID or index. A nonzero value in the high byte 

indicates that it is an ID. The knob index ranges from 1 to 
the number of knobs; the ID is an arbitrary number. Use the 
knob ID to refer to the knob in preference to the knob 
index, which may change.

Instrument About Information 2

The instrument About information structure contains the information that 
appears in the instrument’s About box and is returned by the 
MusicGetInstrumentAboutInfo function (page 148). It is defined by the 
InstrumentAboutInfo data type. 
78 Data Structures



C H A P T E R  2

Music Architecture Reference
struct InstrumentAboutInfo {
PicHandle p;
Str255 author;
Str255 copyright;
Str255 other;

};
typedef struct InstrumentAboutInfo InstrumentAboutInfo;

Field descriptions
p A handle to a graphic for the About box.
author The author’s name.
copyright The copyright information.
other Any other textual information.

MIDI Packet 2

The MIDI packet structure describes the data passed by note allocation calls. It 
is defined by the MusicMIDIPacket data type.

struct MusicMIDIPacket {
unsigned short length;
unsigned long reserved;
UInt8 data[249];

};
typedef struct MusicMIDIPacket MusicMIDIPacket;

Field descriptions
length The length of the data in the packet.
reserved This field contains zero or one of the music packet status 

constants. See “Music Packet Status” (page 62).
data[249] The MIDI data.

Note
This is the count of data bytes only, unlike MIDI Manager 
or OMS packets.
Data Structures 79



C H A P T E R  2  

Music Architecture Reference
Instrument Information Structure 2

The instrument information structure provides identifiers for instruments and 
is part of the instrument information list. It is defined by the 
InstrumentInfoRecord data type.

struct InstrumentInfoRecord {
long instrumentNumber;
long flags;
long toneNameIndex;
long itxtNameAtomID;

};
typedef struct InstrumentInfoRecord InstrumentInfoRecord;

Field descriptions
instrumentNumber The instrument number. If the number is 0, the name is an 

instrument category. See Table 2-2 (page  77) for the ranges 
of instrument numbers. If the value of the instrument 
number is greater than 65536, its value is transient, and the 
instrument should be identified by name rather than by 
number except when the value is immediately passed to 
the MusicSetPartInstrumentNumber function.

flags Unused. Must be 0
toneNameIndex The instrument’s position in the toneNames index stored in 

the instrument information list this structure is a part of. 
The index is a one-based index.

itxtNameAtomID The instrument’s position in the itxtNames index stored in 
the instrument information list this structure is a part of.

Instrument Information List 2

An instrument information list contains the list of instruments available on a 
synthesizer. It is defined by the InstrumentInfoList data type.

struct InstrumentInfoList {
long recordCount;
Handle toneNames;
QTAtomContainer itxtNames;
InstrumentInfoRecord info[1];
80 Data Structures



C H A P T E R  2

Music Architecture Reference
};
typedef struct InstrumentInfoList InstrumentInfoList;
typedef InstrumentInfoList *InstrumentInfoListPtr;
typedef InstrumentInfoListPtr *InstrumentInfoListHandle;

Field descriptions
recordCount The number of structures in the list.
toneNames  A string list of the instrument names as specified in their 

tone descriptions.
itxtNames A list of international text names, taken from the name 

atoms. 
info[1] An array of instrument information structures.

General MIDI Instrument Information Structure 2

The General MIDI instrument information structure provides information about 
a General MIDI instrument within an instrument component. It is defined by 
the GMInstrumentInfo data type.

struct GMInstrumentInfo {
long cmpInstID;
long gmInstNum;
long instMatch;

};
typedef struct GMInstrumentInfo GMInstrumentInfo;
typedef GMInstrumentInfo *GMInstrumentInfoPtr;
typedef GMInstrumentInfoPtr *GMInstrumentInfoHandle;

Field descriptions
cmpInstID The number of the instrument within the instrument 

component.
gmInstNum The General MIDI, or standard, instrument number.
instMatch A flag indicating how the instrument matches the 

requested instrument. See “Instrument Match Flags” 
(page 65).
Data Structures 81



C H A P T E R  2  

Music Architecture Reference
Non-General MIDI Instrument Information Structure 2

The non–General MIDI information structure provides information about 
non-General MIDI instruments within an instrument component. It is defined 
by the nonGMInstrumentInfoRecord data type.

struct nonGMInstrumentInfoRecord {
long cmpInstID;
long flags;
long toneNameIndex;
long itxtNameAtomID;

};
typedef struct nonGMInstrumentInfoRecord nonGMInstrumentInfoRecord;

Field descriptions
cmpInstID The number of the instrument within the instrument 

component. If the ID is 0, the name is a category name.
flags Not used.
toneNameIndex The instrument’s position in the toneNames index stored in 

the instrument information list this structure is a part of. 
The index is a one-based index.

itxtNameAtomID The instrument’s position in the itxtNames index stored in 
the instrument information list this structure is a part of.

Non–General MIDI Instrument Information List 2

A non–General MIDI instrument information list contains the list of 
non–General MIDI instruments supported by an instrument component. It is 
defined by the nonGMInstrumentInfo data type.

struct nonGMInstrumentInfo {
long recordCount;
Handle toneNames;
QTAtomContainer itxtNames;
nonGMInstrumentInfoRecord instInfo[1];

};
typedef struct nonGMInstrumentInfo nonGMInstrumentInfo;
typedef nonGMInstrumentInfo *nonGMInstrumentInfoPtr;
typedef nonGMInstrumentInfoPtr *nonGMInstrumentInfoHandle;
82 Data Structures



C H A P T E R  2

Music Architecture Reference
Field descriptions
recordCount Number of structures in the list.
toneNames A short string list of the instrument names as specified in 

their tone descriptions.
itxtNames A list of international text names, taken from the name 

atoms. 
instInfo[1] An array of non–General MIDI instrument information 

structures.

Complete Instrument Information List 2

The complete instrument information list contains a list of all atomic 
instruments supported by an instrument component. It is defined by the 
InstCompInfo data type.

struct InstCompInfo {
long infoSize;
long GMinstrumentCount;
GMInstrumentInfoHandle GMinstrumentInfo;
long GMdrumCount;
GMInstrumentInfoHandle GMdrumInfo;
long nonGMinstrumentCount;
nonGMInstrumentInfoHandle nonGMinstrumentInfo;
long nonGMdrumCount;
nonGMInstrumentInfoHandle nonGMdrumInfo;

};
typedef struct InstCompInfo InstCompInfo;
typedef InstCompInfo *InstCompInfoPtr;
typedef InstCompInfoPtr *InstCompInfoHandle;

Field descriptions
infoSize The size of this structure in bytes.
GMinstrumentCount The number of General MIDI instruments.
GMinstrumentInfo A handle to a list of General MIDI instrument information 

structures.
GMdrumCount The number of General MIDI drum kits.
GMdrumInfo A handle to a list of General MIDI instrument information 

structures.
Data Structures 83



C H A P T E R  2  

Music Architecture Reference
nonGMinstrumentCount
The number of non–General MIDI instruments.

nonGMinstrumentInfo
A handle to the list of non–General MIDI instruments.

nonGMdrumCount The number of non–General MIDI drum kits.
nonGMdrumInfo A handle to the list of non–General MIDI drum kits.

Synthesizer Connections for MIDI Devices 2

The synthesizer connection structure describes how a MIDI device is connected 
to the computer. It is defined by the SynthesizerConnections data type.

struct SynthesizerConnections {
OSType clientID;
OSType inputPortID;
OSType outputPortID;
long midiChannel;
long flags;
long unique;
long reserved1;
long reserved2;

};
typedef struct SynthesizerConnections SynthesizerConnections;

Field descriptions
clientID The client ID provided by the MIDI Manager or 'OMS ' for 

an OMS port.
inputPortID The ID provided by the MIDI Manager or OMS for the port 

used to send to the MIDI synthesizer.
outputPortID The ID provided by the MIDI Manager or OMS for the port 

that receives from a keyboard or other control device.
midiChannel The system MIDI channel or, for a hardware device, the slot 

number.
flags Information about the type of connection. See “Synthesizer 

Connection Type Flags” (page 65).
unique A unique ID you can use instead of an index to identify the 

synthesizer to the note allocator. 
84 Data Structures



C H A P T E R  2

Music Architecture Reference
reserved1 Reserved. Set to 0.
reserved2 Reserved. Set to 0.

QuickTime MIDI Port 2

This structure provides information about a MIDI port.

struct QTMIDIPort {
SynthesizerConnections portConnections;
Str63 portName;

};
typedef struct QTMIDIPort QTMIDIPort;

Field descriptions
portConnections A synthesizer connections structure (page 84).
portName The name of the output port.

QuickTime MIDI Port List 2

This structure contains a list of QuickTime MIDI port structures.

struct QTMIDIPortList {
short portCount;
QTMIDIPort port[1];

};
typedef struct QTMIDIPortList QTMIDIPortList;

Field descriptions
portCount The number of MIDI ports in the list.
port An array of QuickTime MIDI port structures.

Note Request Information Structure 2

The note request information structure contains information for allocating a 
note channel that’s in addition to that included in a tone description structure. It 
is defined by the NoteRequestInfo data type.
Data Structures 85



C H A P T E R  2  

Music Architecture Reference
struct NoteRequestInfo {
UInt8 flags;
UInt8 reserved;
short polyphony;
Fixed typicalPolyphony;

};
typedef struct NoteRequestInfo NoteRequestInfo;

Field descriptions
flags Specifies what to do if the exact instrument requested in a 

tone description structure is not found. See “Note Request 
Constants” (page 66).

reserved Reserved. Set to 0.
polyphony Maximum number of voices.
typicalPolyphony Hint for level mixing.

Note Request Structure 2

A note request structure combines a tone description structure and a note 
request information structure to provide all the information available for 
allocating a note channel. It is defined by the NoteRequest data type.

struct NoteRequest {
NoteRequestInfo info;
ToneDescription tone;

};
typedef struct NoteRequest NoteRequest;

Field descriptions
info A note request information structure (page 85).
tone A tone description structure (page 75).

Tune Status 2

The tune status structure provides information on the currently playing tune. 
86 Data Structures



C H A P T E R  2

Music Architecture Reference
struct TuneStatus {
unsigned long tune; 
unsigned long tunePtr;
TimeValue time;
short queueCount;
short queueSpots;
TimeValue queueTime;
long reserved[3];

};
typedef struct TuneStatus TuneStatus;

Field descriptions
tune The currently playing tune.
tunePtr Current position within the playing tune.
time Current tune time.
queueCount Number of tunes queued up.
queueSpots Number of tunes that can be added to the queue.
queueTime Total amount of playing time represented by tunes in the 

queue. This value can be very inaccurate.
reserved[3] Reserved. Set to 0.

Functions 2

The functions provided by the note allocator component, the tune player 
component, music components, and instrument components are described in 
the following sections.

Tune Player Functions 2

This section describes the functions the tune player provides for setting, 
queueing, and manipulating music sequences. It also describes tune player 
utility functions.
Functions 87



C H A P T E R  2  

Music Architecture Reference
TuneSetHeader 2

The TuneSetHeader function prepares the tune player to accept subsequent 
music event sequences by defining one or more parts to be used by sequence 
Note events. 

pascal ComponentResult TuneSetHeader( 
TunePlayer tp, 
unsigned long *header);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

header A pointer to a list of instruments that will be used in subsequent 
calls to the TuneQueue function. The list can include note request 
General events with subtypes of kGeneralEventNoteRequest, 
kGeneralEventPartKey, kGeneralEventAtomicInstrument, 
kGeneralEventMIDIChannel, and kGeneralEventUsedNotes. It can 
also include atomic instruments. The list is terminated by a 
marker event of subtype end.

function result A result code.

DISCUSSION

The TuneSetHeader function is the first QuickTime music architecture call to play 
a music sequence. The header parameter points to one or more initialized 
General events and atomic instruments. The event list pointed to by the header 
parameter must conclude with a marker event of subtype end. 

Only one call to TuneSetHeader is required. Each TuneSetHeader call resets the 
tune player.

SEE ALSO

The TuneSetHeaderWithSize function (page 89) and the TuneSetNoteChannels
function (page 89).
88 Functions



C H A P T E R  2

Music Architecture Reference
TuneSetHeaderWithSize 2

The TuneSetHeaderWithSize function is like the TuneSetHeader function in that it 
prepares the tune player to accept subsequent music event sequences by 
defining one or more parts to be used by sequence Note events. But unlike the 
TuneSetHeader function, TuneSetHeaderWithSize allows you to specify the header 
length in bytes. This prevents the call from parsing off the end if the music 
event sequence is missing an end marker.

extern pascal ComponentResult TuneSetHeaderWithSize(
TunePlayer tp,
unsigned long *header,
unsigned long size);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

header A pointer to a list of instruments that will be used in subsequent 
calls to the TuneQueue function. The list can include General 
events with subtypes of kGeneralEventNoteRequest, 
kGeneralEventPartKey, kGeneralEventAtomicInstrument, 
kGeneralEventMIDIChannel, and kGeneralEventUsedNotes. It can 
also include atomic instruments. The list is terminated by a 
marker event of subtype end.

size The size of the header in bytes.

SEE ALSO

The TuneSetHeader function (page 88) and the TuneSetNoteChannels
function (page 89).
Functions 89



C H A P T E R  2  

Music Architecture Reference
TuneSetNoteChannels 2

You use the TuneSetNoteChannels function to assign note channels to a tune 
player. 

extern pascal ComponentResult TuneSetNoteChannels(
TunePlayer tp,
unsigned long count,
NoteChannel *noteChannelList,
TunePlayCallBackUPP playCallBackProc,
long refCon);

tp Specifies the instance of a tune player component for this 
operation. Your software obtains this reference when calling the 
Component Manager’s OpenComponent or OpenDefaultComponent 
function. See the chapter “Component Manager” in QuickTime 3 
Reference for details.

count The number of note channels to assign.

noteChannelList
A pointer to the list of note channels to assign.

playCallBackProc
A pointer to a function in your software that is called for each 
event whose part number is greater than the value of the count 
parameter.

refCon A reference constant that is passed to the function specified by 
the playCallBackProc parameter whenever it is called. 

DISCUSSION

When you call TuneSetNoteChannels, any note channels that were previously 
assigned to the tune player are no longer used and are disposed of.

The parts for the note channels you assign are numbered from 1 to the value of 
the count parameter.

The playCallBackProc and refCon parameters let you to use the tune player as a 
general purpose timer/sequencer. The function in your software pointed to by 
the playCallBackProc parameter is called for each event whose part number is 
greater than the value of the count parameter. Events whose part numbers are 
90 Functions



C H A P T E R  2

Music Architecture Reference
less than or equal to the value of the count parameter are passed to the note 
channel rather than the callback procedure.

The playCallBackProc parameter must point to a function with the following 
prototype:

typedef pascal void (*TunePlayCallBackProcPtr)(
unsigned long *event,
long seed,
long refCon);

The event parameter is a pointer to a QuickTime music event structure in the 
sequence data. The seed parameter is a 32-bit value that is guaranteed to be 
different for each call to the callback routine (unless 2^32 calls are made, after 
which the values repeat), with one exception: the value passed at the beginning 
of a note is also passed at the end of the note’s duration, together with a note 
structure or an extended note in which the velocity bits are set to 0. The refCon 
parameter is the reference constant that is passed to the TuneSetNoteChannels 
function.

TuneQueue 2

The TuneQueue function places a sequence of music events into a queue to be 
played.

pascal ComponentResult TuneQueue(
TunePlayer tp, 
unsigned long *tune, 
Fixed tuneRate,
unsigned long tuneStartPosition, 
unsigned long tuneStopPosition, 
unsigned long queueFlags, 
TuneCallBackUPP callBackProc,
long refCon);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.
Functions 91



C H A P T E R  2  

Music Architecture Reference
tune Pointer to an array of events, terminated by a marker event of 
subtype end.

tuneRate Fixed-point speed at which to play the sequence. “Normal” 
speed is 0x00010000.

tuneStartPosition
Sequence starting time.

tuneStopPosition
Sequence ending time.

queueFlags Flags with details about how to play the queued tunes. For valid 
values see “Tune Queue Flags” (page 68).

callBackProc Points to your callback function. Your callback function must 
have the following form:

pascal void MyCallBackProc 
(QTCallBack cb, long refcon);

refcon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

function result A result code. In addition to QuickTime music architecture 
result codes, this function may return TimeBase result codes.

DISCUSSION

The tuneStartPosition and tuneStopPosition parameters specify, in time units 
numbered from zero for the beginning of the sequence, which part of the 
queued sequence to play. To play all of it, pass 0 and 0xFFFFFFFF, respectively.

If there is a sequence currently playing, the newly queued sequence begins as 
soon as the active sequence ends unless the queueFlags parameter is 
kTuneStartNow, in which case the currently playing sequence is immediately 
terminated and the new one started. 
92 Functions



C H A P T E R  2

Music Architecture Reference
TuneStop 2

The TuneStop function stops a currently playing sequence.

pascal ComponentResult TuneStop( 
TunePlayer tp,
long stopFlags);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

stopFlags Must be zero.

function result A result code.

TuneGetVolume 2

The TuneGetVolume function returns the volume associated with the entire 
sequence. 

pascal ComponentResult TuneGetVolume(
TunePlayer tp);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result The volume as a value from 0.0 to 1.0 or a negative result code.

TuneSetVolume 2

The TuneSetVolume function sets the volume for the entire sequence. 

pascal ComponentResult TuneSetVolume(
TunePlayer tp, 
Fixed volume);
Functions 93



C H A P T E R  2  

Music Architecture Reference
tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

volume The volume to use for the sequence. The value is a fixed 16.16 
number.

function result A result code.

DISCUSSION

The TuneSetVolume function sets the volume level of the active sequence to the 
value of the volume parameter ranging from 0.0 to 1.0. 

Note
Individual instruments within the sequence can maintain 
independent volume levels. ◆

TuneSetSoundLocalization 2

The TuneSetSoundLocalization function passes sound localization data to a tune 
player.

extern pascal ComponentResult TuneSetSoundLocalization(
TunePlayer tp,
Handle data);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

data The sound localization data to be passed.

function result A result code.
94 Functions



C H A P T E R  2

Music Architecture Reference
TuneGetTimeBase 2

The TuneGetTimeBase function returns the time base of the tune player. 

pascal ComponentResult TuneGetTimeBase(
TunePlayer tp, 
TimeBase *tb);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

tb An initialized TimeBase object.

function result A result code.

DISCUSSION

The TuneGetTimeBase function returns, in the tb parameter, the time base used to 
control the sequence timing. The sequence can be controlled in several ways 
through its time base. The rate of playback can be changed, or the TimeBase 
object can be slaved to a clock or time base different than real time. 

TuneGetTimeScale 2

The TuneGetTimeScale function returns the current time scale, in 
units-per-second, for the specified tune player instance.

pascal ComponentResult TuneGetTimeScale(
TunePlayer tp, 
TimeScale *scale);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

scale An initialized TimeScale object. 

function result A result code.
Functions 95



C H A P T E R  2  

Music Architecture Reference
TuneSetTimeScale 2

The TuneSetTimeScale function sets the time scale used by the specified tune 
player instance. 

pascal ComponentResult TuneSetTimeScale(
TunePlayer tp,
TimeScale scale);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

scale The time scale value to be used, in units per second.

function result A result code.

DISCUSSION

The TuneSetTimeScale function sets the time scale data used by the tune player’s 
sequence data when interpreting time-based events.

TuneGetPartMix 2

You use the TuneGetPartMix function to get volume, balance, and mixing 
settings for a specified part of a tune.

pascal ComponentResult TuneGetPartMix (
TunePlayer tp,
unsigned long partNumber,
long *volumeOut,
long *balanceOut,
long *mixFlagsOut);

tp Specifies the instance of a tune player component for this 
request. Your software obtains this reference when calling the 
Component Manager’s OpenComponent or OpenDefaultComponent 
function.

partNumber Specifies the part number for this request.
96 Functions



C H A P T E R  2

Music Architecture Reference
volumeOut Returns the volume for the part.

balanceOut Returns the balance for the part.

mixFlagsOut Returns flags that control part mixing. These flags are described 
in “Part Mixing Flags” (page 71).

TuneSetPartMix 2

You use the TuneSetPartMix function to set volume, balance, and mixing 
settings for a specified part of a tune.

pascal ComponentResult TuneSetPartMix (
TunePlayer tp,
unsigned long partNumber,
long volume,
long balance,
long mixFlags);

tp Specifies the instance of a tune player component for this 
request. Your software obtains this reference when calling the 
Component Manager’s OpenComponent or OpenDefaultComponent 
function.

partNumber Specifies the part number for this request.

volume Specifies the volume for the part.

balance Specifies the balance for the part.

mixFlags Flags that control part mixing. These flags are described in “Part 
Mixing Flags” (page 71).
Functions 97



C H A P T E R  2  

Music Architecture Reference
TuneInstant 2

You can use the TuneInstant function to play the particular sequence events 
active at a specified position.

pascal ComponentResult TuneInstant(
TunePlayer tp,
unsigned long *tune,
unsigned long tunePosition);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

tune Pointer to tune sequence data.

tunePosition Position within tune sequence data in time units.

function result A result code.

DISCUSSION

The TuneInstant function plays the notes that are “on” at the point specified by 
the tunePosition parameter. The notes are started and then left playing on 
return. The notes can be silenced by calling the TuneStop function. This call is 
useful for enabling user “scrubbing” on a sequence.

TunePreroll 2

The TunePreroll function prepares for playing tune player sequence data by 
attempting to reserve note channels for each part in the sequence. 

pascal ComponentResult TunePreroll (TunePlayer tp);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” for details.

function result A result code.
98 Functions



C H A P T E R  2

Music Architecture Reference
TuneUnroll 2

The TuneUnroll function releases any note channel resources that may have 
been locked down by previous calls to TunePreroll for this tune player.

pascal ComponentResult TuneUnroll (TunePlayer tp);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A result code.

TuneGetIndexedNoteChannel 2

You can use the TuneGetIndexedNoteChannel function to determine how many 
parts the tune is playing and which instrument is assigned to those parts.

pascal ComponentResult TuneGetIndexedNoteChannel(
TunePlayer tp, 
long i, 
NoteChannel *nc);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” for details.

i Note channel index or 0 to get the number of parts.

nc Allocated initialized note channel.

function result A positive value is the number of note channels used by the 
tune player; a negative value is a result code.

DISCUSSION

The tune player allocates note channels that best satisfy the requested 
instrument in the tune header. The application can use this call to determine 
which instrument was actually used for each note channel. The 
TuneGetIndexedNoteChannel function takes the tune player in the tp parameter 
Functions 99



C H A P T E R  2  

Music Architecture Reference
and returns the number of parts (1...n) allocated to the tune player. You can then 
pass the function a part index and it returns, in the nc parameter, the note 
channel allocated for that part. 

TuneGetStatus 2

The TuneGetStatus function returns an initialized structure describing the state 
of the tune player instance.

pascal ComponentResult TuneGetStatus(
TunePlayer tp,
TuneStatus *status);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

status A pointer to an initialized tune status structure (page 86).

function result A result code.

TuneSetPartTranspose 2

The TuneSetPartTranspose function modifies the pitch and volume of every note 
of a tune.

extern pascal ComponentResult TuneSetPartTranspose(
TunePlayer tp,
unsigned long part,
long transpose,
long velocityShift);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” for details.

part The part for which you want to change pitch and volume.
100 Functions



C H A P T E R  2

Music Architecture Reference
transpose A value by which to modify the pitch of the note. The value is a 
small integer for semitones or an 8.8 fixed-point number for 
microtones.

velocityShift
A value to add to the velocity parameter passed to the 
NAPlayNote function.

function result A result code.

TuneGetNoteAllocator 2

The TuneGetNoteAllocator function returns the instance of the note allocator 
that the tune player is using.

extern pascal NoteAllocator TuneGetNoteAllocator (TunePlayer tp);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A note allocator or a result code.

TuneSetSofter 2

The TuneSetSofter function adjusts the volume a tune is played at to the softer 
volume produced by QuickTime 2.1. Files imported with QuickTime 2.1 
automatically played softer. Files imported with QuickTime 2.5 or later play at 
the new, louder volume.

extern pascal ComponentResult TuneSetSofter(
TunePlayer tp,
long softer);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” for details.
Functions 101



C H A P T E R  2  

Music Architecture Reference
softer A value of 1 means play at the QuickTime 2.1 volume; a value of 
0 means don’t make the volume softer. 

function result A result code.

TuneSetBalance 2

Use the TuneSetBalance function to modify the pan controller setting for a tune 
player.

extern pascal ComponentResult TuneSetBalance(
TunePlayer tp,
long balance);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

balance Modifies the pan controller setting. Valid values are from –128 to 
128 for left to right balance.

function result A result code.

TuneTask 2

Call the TuneTask function periodically to allow a tune player to perform tasks it 
must perform at foreground task time.

extern pascal ComponentResult TuneTask (TunePlayer tp);

tp A tune player identifier, obtained from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A result code.
102 Functions



C H A P T E R  2

Music Architecture Reference
DISCUSSION

Certain operations can be performed only at foreground application task time. 
Specifically, the QuickTime music synthesizer cannot load instruments from 
disk at interrupt time. As a result, embedded program changes are not 
performed until TuneTask is called.

Note Allocator Functions: Note Channel Allocation and Use 2

The functions described in this section create, manipulate, and get information 
about note channels. 

NANewNoteChannel 2

The NANewNoteChannel function requests a new note channel with the qualities 
described in the noteRequest structure. 

pascal ComponentResult NANewNoteChannel( 
NoteAllocator na, 
NoteRequest *noteRequest,
NoteChannel *outChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteRequest A pointer to a note request structure.

outChannel On exit, a pointer to an identifier for a new note channel or nil if 
the function fails to create a note channel.

function result A result code.

DISCUSSION

The caller can request an instrument that is not currently allocated to a part. In 
that case, the NANewNoteChannel function may return a value in outChannel, even 
though the request cannot initially be satisfied. The note channel may become 
valid at a later time, as other note channels are released or other music 
components are registered.
Functions 103



C H A P T E R  2  

Music Architecture Reference
The NANewNoteChannel function searches all available music components for the 
instrument that best matches the specifications in the ToneDescripion structure 
that is contained within the noteRequest parameter.

If an error occurs, the note noteChannel is initialized to nil.

NANewNoteChannelFromAtomicInstrument 2

You can use the NANewNoteChannelFromAtomicInstrument function to request a 
new note channel for an atomic instrument.

extern pascal ComponentResult NANewNoteChannelFromAtomicInstrument(
NoteAllocator na,
AtomicInstrumentPtr instrument,
long flags,
NoteChannel *outChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

instrument A pointer to the atomic instrument. This may be a dereferenced 
locked QT atom container.

flags These flags specify details of initializing a part with an atomic 
instrument. See “Flags for Setting Atomic Instruments” 
(page 63).

outChannel On exit, a pointer to an identifier for a new note channel or nil 
if the function fails to create a note channel.

function result A result code.

DISCUSSION

The NANewNoteChannelFromAtomicInstrument function takes a note allocator 
identifier in the na parameter and a pointer to the atomic instrument you are 
requesting a new channel for in the instrument parameter. Among other things, 
you can specify how to handle the expanded sample with the flags parameter.
104 Functions



C H A P T E R  2

Music Architecture Reference
The function returns the note channel allocated for the instrument in the 
outChannel parameter or nil if an error occurs.

NADisposeNoteChannel 2

The NADisposeNoteChannel function deletes the specified note channel.

pascal ComponentResult NADisposeNoteChannel(
NoteAllocator na, 
NoteChannel noteChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel to be disposed. You obtain the note channel 
identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

NAGetNoteChannelInfo 2

The NAGetNoteChannelInfo function returns the index of the music component 
for the allocated channel and its part number on that music component. 

pascal ComponentResult NAGetNoteChannelInfo(
NoteAllocator na, 
NoteChannel noteChannel, 
long *index, 
long *part);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.
Functions 105



C H A P T E R  2  

Music Architecture Reference
noteChannel Note channel to get information about. You obtain the note 
channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

index Music component index.

part Music component part pointer.

function result A result code.

DISCUSSION

The NAGetNoteChannelInfo function allows direct access to the music component 
allocated to the note channel by the note allocator. The index returned becomes 
invalid if music components are subsequently registered or unregistered.

NAGetIndNoteChannel 2

The NAGetIndNoteChannel function returns the number of note channels handled 
by the specified note allocator instance. It can also return a requested note 
channel.

extern pascal ComponentResult NAGetIndNoteChannel(
NoteAllocator na,
long index,
NoteChannel *nc,
long *seed);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

index The index of the note channel. If zero, the result is still the 
number of note channels, but *nc is not filled out. 

nc The note channel requested. 

seed A number that changes on successive calls if anything 
significant changes about a note channel—for example, if the 
note channel has been reallocated or released.
106 Functions



C H A P T E R  2

Music Architecture Reference
function result Positive results are the index count; negative results are error 
codes.

DISCUSSION

To get a count of the note channels, pass the NAGetIndNoteChannel function 0 in 
the index parameter. To get a specific note channel, pass the index value 
returned by a previous call to NAGetIndNoteChannel.

NAUseDefaultMIDIInput 2

The NAUseDefaultMIDIInput function defines an entry point to service external 
MIDI device events. This routine, in turn, calls the QuickTime MIDI 
components to query them. NAGetMIDIPorts is the correct call for you to make. 
You should not call QTMIDI. 

pascal ComponentResult NAUseDefaultMIDIInput (
NoteAllocator na, 
MusicMIDIReadHookUPP readHook,
long refCon, 
unsigned long flags);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

readHook Process pointer for MIDI service.

refcon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

flags Must contain zero.

function result A result code.

DISCUSSION

The NAUseDefaultMIDIInput function specifies an application’s procedure to 
service external MIDI events. The specified application's procedure call, defined 
Functions 107



C H A P T E R  2  

Music Architecture Reference
by readHook, is called when the external default MIDI device has incoming 
MIDI data for the application.

NALoseDefaultMIDIInput 2

The NALoseDefaultMIDIInput function removes the external default MIDI service 
procedure call, if previously defined by NAUseDefaultMIDIInput. This routine, in 
turn, calls the QuickTime MIDI components to query them. NAGetMIDIPorts is 
the correct call for users to make. Users should not call QTMIDI. 

pascal ComponentResult NALoseDefaultMIDIInput (NoteAllocator na);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A result code or –1 if a default MIDI device was not in use.

NAPrerollNoteChannel 2

The NAPrerollNoteChannel function attempts to reallocate the note channel if it 
was invalid previously. 

pascal ComponentResult NAPrerollNoteChannel( 
NoteAllocator na,
NoteChannel noteChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel to be re-allocated. You obtain the note channel 
identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

function result A result code.
108 Functions



C H A P T E R  2

Music Architecture Reference
DISCUSSION

The NAPrerollNoteChannel function attempts to reallocate the note channel, if it 
was invalid previously. It could have been invalid if there were no available 
voices on any registered music components when the note channel was created.

NAUnrollNoteChannel 2

The NAUnrollNoteChannel function marks a note channel as available to be 
stolen.

pascal ComponentResult NAUnrollNoteChannel( 
NoteAllocator na,
NoteChannel noteChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel to be unrolled. You obtain the note channel 
identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

NAResetNoteChannel 2

The NAResetNoteChannel function turns off all currently “on” notes on the note 
channel and resets all controllers to their default values.

pascal ComponentResult NAResetNoteChannel( 
NoteAllocator na, 
NoteChannel noteChannel);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.
Functions 109



C H A P T E R  2  

Music Architecture Reference
noteChannel The note channel to reset. You obtain the note channel identifier 
from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

DISCUSSION

The NAResetNoteChannel function resets the specified note channel by turning 
“off” any note currently playing. All controllers are reset to their default state. 
The effects of the NAResetNoteChannel call are propagated down to the allocated 
part within the appropriate music component.

NASetNoteChannelVolume 2

The NASetNoteChannelVolume function sets the volume on the specified note 
channel. 

pascal ComponentResult NASetNoteChannelVolume(
NoteAllocator na, 
NoteChannel noteChannel,
Fixed volume);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel to reset. You obtain the note channel identifier 
from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

volume The volume to set the channel to. The value is a fixed 16.16 
number.

DISCUSSION

The NASetNoteChannelVolume function sets the volume for the note channel, 
which is different from a controller 7 (volume controller) setting. 
110 Functions



C H A P T E R  2

Music Architecture Reference
Both volume settings allow fractional values of 0.0 to 1.0. Each value modifies 
the other. For example, a volume controller value of 0.5 and a 
NASetNoteChannelVolume value of 0.5 result in a 0.25 volume level.

NASetNoteChannelBalance 2

The NASetNoteChannelBalance function modifies the pan controller setting for a 
note channel.

extern pascal ComponentResult NASetNoteChannelBalance(
NoteAllocator na,
NoteChannel noteChannel,
long balance);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel to be balanced. You obtain the note channel 
identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

balance Specifies how to modify the pan controller setting. Valid values 
are from –128 to 128 for left to right balance.

function result A result code.

NASetNoteChannelSoundLocalization 2

The NASetNoteChannelSoundLocalization function passes sound localization data 
to a note channel.

extern pascal ComponentResult NASetNoteChannelSoundLocalization(
NoteAllocator na,
NoteChannel noteChannel,
Handle data);
Functions 111



C H A P T E R  2  

Music Architecture Reference
na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel to pass the data to. You obtain the note 
channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

data Sound localization data.

function result A result code.

NAPlayNote 2

The NAPlayNote function plays a note with a specified pitch and velocity on the 
specified note channel.

pascal ComponentResult NAPlayNote( 
NoteAllocator na, 
NoteChannel noteChannel,
long pitch, 
long velocity);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel to play the note. You obtain the note channel 
identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

pitch The pitch at which to play the note. You can specify values as 
integer pitch values (0–127 where 60 is middle C) or fractional 
pitch values (256 (0x1.00) through 32767 (0x7F.FF)). 

velocity The velocity with which the key is struck. A value of 0 is silence; 
a value of 127 is maximum force. 

function result A result code.
112 Functions



C H A P T E R  2

Music Architecture Reference
DISCUSSION

The NAPlayNote function plays a specific note. If the pitch is a number from 0 to 
127, then it is the MIDI pitch, where 60 is middle C. If the pitch is a positive 
number above 65535, then the value is a fixed-point pitch value. Thus, 
microtonal values can be specified. The range 256 (0x01.00) through 32767 
(0x7F.FF), and all negative values, are not defined, and should not be used.

The velocity refers to how hard the key was struck (if performed on a keyboard 
instrument). Typically, this translates directly to volume, but on many 
synthesizers this also subtly alters the timbre of the tone.

NAGetController 2

You use the NAGetController function to get the controller settings for a note 
channel.

pascal ComponentResult NAGetController (
NoteAllocator na, 
NoteChannel noteChannel,
long controllerNumber, 
long *controllerValue);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel for which to get controller settings. You obtain the 
note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

controllerNumber
The controller for which to get settings. For valid values, see 
“Controller Numbers” (page 56).

controllerValue
On return, the value for the controller setting, typically 0 
(0x00.00) to 32767 (0x7F.FF).
Functions 113



C H A P T E R  2  

Music Architecture Reference
NASetController 2

The NASetController function changes the controller setting on a note channel 
to a specified value.

pascal ComponentResult NASetController 
(NoteAllocator na, 
NoteChannel noteChannel,
long controllerNumber, 
long controllerValue);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel on which to change controller. You obtain the note 
channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

controllerNumber
The controller to set. For valid values, see “Controller Numbers” 
(page 56).

controllerValue
Value for controller setting, typically 0 (0x00.00) to 32767 
(0x7F.FF).

NAGetKnob 2

Use the NAGetKnob function to get the value of a knob for a given note channel. 

extern pascal ComponentResult NAGetKnob(
NoteAllocator na,
NoteChannel noteChannel,
long knobNumber,
long *knobValue);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.
114 Functions



C H A P T E R  2

Music Architecture Reference
noteChannel The note channel whose knob value you want to get. You obtain 
the note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

knobNumber The index or ID of the knob whose value you want to get. 

knobValue On exit, the value of the knob.

function result A result code.

DISCUSSION

The NAGetKnob function takes a note allocator component identifier in the na 
parameter, a note channel identifier in the noteChannel parameter, and the knob 
index or ID in the knobNumber parameter. It returns, in the knobValue parameter, 
a pointer to the current value of the knob. 

NASetKnob 2

The NASetKnob function sets a note channel knob to a particular value.

pascal ComponentResult NASetKnob(
NoteAllocator na, 
NoteChannel noteChannel, 
long knobNumber,
long knobValue);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel on which to set the knob value. You obtain the 
note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

knobNumber Index or ID of the knob to be set.

knobValue Value to set knob to.

function result A result code.
Functions 115



C H A P T E R  2  

Music Architecture Reference
DISCUSSION

The NASetKnob function takes a note allocator component identifier in the na 
parameter, a note channel identifier in the noteChannel parameter, the knob ID 
or index in the knobNumber parameter, and a knob value in the knobValue 
parameter. It sets the specified knob to the given value. 

NAFindNoteChannelTone 2

The NAFindNoteChannelTone function locates the instrument that best fits a 
requested tone description for a specific channel. 

pascal ComponentResult NAFindNoteChannelTone( 
NoteAllocator na, 
NoteChannel noteChannel,
ToneDescription *td, 
long *instrumentNumber);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel for which you want an instrument. You obtain 
the note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

td Description for instrument fit.

instrumentNumber
On exit, the number of the instrument that best fits the tone 
description.

function result A result code.
116 Functions



C H A P T E R  2

Music Architecture Reference
NASetInstrumentNumber 2

The NASetInstrumentNumber function initializes a synthesizer part with the 
specified instrument. 

pascal ComponentResult NASetInstrumentNumber( 
NoteAllocator na, 
NoteChannel noteChannel, 
long instrumentNumber);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel Note channel to initialize with the instrument. You obtain the 
note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

instrumentNumber
Number of the instrument to initialize the part with. This 
number is unique to each synthesizer. General MIDI 
synthesizers all share the range 1–128 and 16365 to 
kLastDrumKit.

function result A result code.

NASetInstrumentNumberInterruptSafe 2

You can use the NASetInstrumentNumberInterruptSafe function to initialize a 
synthesizer part with the specified instrument during interrupt time. 

extern pascal ComponentResult NASetInstrumentNumberInterruptSafe(
NoteAllocator na,
NoteChannel noteChannel,
long instrumentNumber);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.
Functions 117



C H A P T E R  2  

Music Architecture Reference
noteChannel Note channel to initialize with the instrument. You obtain the 
note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

instrumentNumber
Number of the instrument to initialize the part with.

function result A result code.

DISCUSSION

If the instrument is not already loaded when you call the 
NASetInstrumentNumberInterruptSafe function, you have to wait for the next call 
to the NATask function for the instrument to become available.

NASetAtomicInstrument 2

The NASetAtomicInstrument function initializes a synthesizer part with an 
atomic instrument.

extern pascal ComponentResult NASetAtomicInstrument(
NoteAllocator na,
NoteChannel noteChannel,
AtomicInstrumentPtr instrument,
long flags);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel to apply the atomic instrument to. You obtain 
the note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

instrument A pointer to the atomic instrument. This can be a locked, 
dereferenced atomic instrument.

flags Details about how to initialize the part. For a description of the 
flags, see “Flags for Setting Atomic Instruments” (page 63).

function result A result code.
118 Functions



C H A P T E R  2

Music Architecture Reference
NASendMIDI 2

Use the NASendMIDI function to send a MIDI music packet to a synthesizer that 
contains a specific note channel. This routine, in turn, calls the QuickTime MIDI 
components to query them. NAGetMIDIPorts is the correct call for users to make. 
Users should not call QTMIDI. 

extern pascal ComponentResult NASendMIDI(
NoteAllocator na,
NoteChannel noteChannel,
MusicMIDIPacket *mp);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The function sends the packet to the synthesizer that contains 
this note channel. You obtain the note channel identifier from 
the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

mp The music packet to be sent.

function result A result code.

DISCUSSION

The NASendMIDI function sends the MIDI music packet pointed to by the mp 
parameter to the synthesizer that contains the note channel identified by the 
noteChannel parameter. The na parameter specifies the note allocator instance to 
use.

NAGetNoteRequest 2

The NAGetNoteRequest function gets the note request passed to a note channel.

extern pascal ComponentResult NAGetNoteRequest(
NoteAllocator na,
NoteChannel noteChannel,
NoteRequest *nrOut);
Functions 119



C H A P T E R  2  

Music Architecture Reference
na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

noteChannel The note channel whose note request you want to get. You 
obtain the note channel identifier from the NANewNoteChannel or 
the NANewNoteChannelFromAtomicInstrument function.

nrOut On exit, a note request structure (page 86).

function result A result code.

DISCUSSION

The NAGetNoteRequest function takes a note allocator instance in the na 
parameter and a note channel identifier in the noteChannel parameter. It returns, 
in the *nrOut parameter, the note request that was used to allocate the specified 
note channel. 

Note Allocator Functions: Miscellaneous Interface Tools 2

The functions in this section provide a user interface for instrument selection 
and presenting copyright information.

NAPickInstrument 2

The NAPickInstrument function presents a user interface for picking an 
instrument.

pascal ComponentResult NAPickInstrument(
NoteAllocator na, 
ModalFilterUPP filterProc, 
StringPtr prompt, 
ToneDescription *sd, 
unsigned long flags, 
long refCon, 
long reserved1, 
long reserved2);
120 Functions



C H A P T E R  2

Music Architecture Reference
na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

filterProc Standard modal filter universal procedure pointer.

prompt Dialog box prompt “New Instrument”.

sd On entry, the tone description of the instrument that appears in 
the picker dialog box. On exit, a tone description of the 
instrument the user selected.

flags Determines whether to display the picker dialog box and what 
instruments appear for selection. See “Pick Instrument Flags” 
(page 67).

refcon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

reserved1 Must contain zero.

reserved2 Must contain zero.

function result A result code or –1 if there is a problem opening the dialog box.

DISCUSSION

The flags values limit which instruments appear within the dialog box. If the 
kPickDontMix flag is set, the dialog box does not display a mix of synthesizer 
part types. For example, if the current instrument is a drum, only available 
drums appear in the dialog box. The kPickSameSynth flag allows selections only 
within the current synthesizer. The kPickUserInsts flag allows user modifiable 
instruments to appear.

SEE ALSO

NAPickEditInstrument function
Functions 121



C H A P T E R  2  

Music Architecture Reference
NAPickEditInstrument 2

The NAPickEditInstrument function presents a user interface for changing the 
instrument in a live note channel or modifying an atomic instrument. 

extern pascal ComponentResult NAPickEditInstrument(
NoteAllocator na,
ModalFilterUPP filterProc,
StringPtr prompt,
long refCon,
NoteChannel nc,
AtomicInstrument ai,
long flags);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

filterProc Standard modal filter universal procedure pointer.

prompt Dialog box prompt “New Instrument”.

refCon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

nc The live note channel that appears in the dialog box. If you 
specify a note channel, set the ai parameter to 0. You obtain the 
note channel identifier from the NANewNoteChannel or the 
NANewNoteChannelFromAtomicInstrument function.

ai The atomic instrument that appears in the dialog box. If you 
specify an atomic instrument, set the nc parameter to 0. You 
obtain the atomic instrument from the InstrumentGetInst 
function.

flags Flags limiting the instruments presented. See “Pick Instrument 
Flags” (page 67)

function result A result code or –1 if there is a problem opening the dialog box.
122 Functions



C H A P T E R  2

Music Architecture Reference
DISCUSSION

The flags value limits which instruments appear within the dialog box. If the 
kPickDontMix flag is set, the dialog box does not display a mix of synthesizer 
part types. For example, if the current instrument is a drum, only available 
drums appear in the dialog box. The kPickSameSynth flag allows selections only 
within the current synthesizer. The kPickUserInsts flag allows user modifiable 
instruments to appear. If the kPickEditAllowPick flag is not set, no dialog box 
appears.

SEE ALSO

NAPickInstrument function

NAStuffToneDescription 2

The NAStuffToneDescription function initializes a tone description structure 
with the details of a General MIDI note channel.

pascal ComponentResult NAStuffToneDescription(
NoteAllocator na, 
long gmNumber, 
ToneDescription *td);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

gmNumber A General MIDI instrument number.

td On exit, an initialized tone description. The instrument name 
field will be filled in with the string name for the instrument.

function result A result code.
Functions 123



C H A P T E R  2  

Music Architecture Reference
NAPickArrangement 2

The NAPickArrangement function displays a dialog box to allow instrument 
selection.

pascal ComponentResult NAPickArrangement(
NoteAllocator na, 
ModalFilterUPP filterProc, 
StringPtr prompt, 
long zero1, 
long zero2, 
Track t, 
StringPtr songName);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

filterProc Standard modal filter universal procedure pointer.

prompt Dialog box prompt.

zero1 Must be 0.

zero2 Must be 0.

t Arrangement movie track number.

songName Name of song to display in dialog box.

function result A result code or –1 if there is a problem opening the dialog box.

NACopyrightDialog 2

The NACopyrightDialog function displays a copyright dialog box with 
information specific to a music device.

pascal ComponentResult NACopyrightDialog(
NoteAllocator na, 
PicHandle p, 
StringPtr author,
StringPtr copyright, 
124 Functions



C H A P T E R  2

Music Architecture Reference
StringPtr other, 
StringPtr title, 
ModalFilterUPP filterProc, 
long refCon);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

p Picture image resource handle for dialog box.

author Author information.

copyright Copyright information.

other Any additional information.

title Title information.

filterProc Standard modal filter universal procedure pointer.

refcon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

function result A result code or –1 if there is a problem opening the dialog box.

Note Allocator Functions: System Configuration and Utility 2

Use the functions in this section to create and maintain a database of music 
components, to save configuration information in the QuickTime Preferences 
file, to establish connections to external MIDI devices, and to allow the note 
allocator to perform necessary tasks at task foreground time.
Functions 125



C H A P T E R  2  

Music Architecture Reference
NARegisterMusicDevice 2

The NARegisterMusicDevice function registers a music component with the note 
allocator. 

pascal ComponentResult NARegisterMusicDevice( 
NoteAllocator na, 
OSType synthType, 
Str31 name,
SynthesizerConnections *connections);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

synthType Subtype of the music component.

name The synthesizer name.

connections A synthesizer connection structure (page 84) that describes how 
a MIDI device is connected.

function result A result code.

DISCUSSION

The value of the synthType parameter is the music component’s subtype. The 
name parameter provides a means of distinguishing multiple instances of the 
same type of device and is a string that can be displayed to the user. If no value 
is passed in the name parameter, the name defaults to the name of the music 
component type. The name appears in the instrument picker dialog box.

The connections parameter specifies the hardware connections to the device.
126 Functions



C H A P T E R  2

Music Architecture Reference
RESULT CODES

NAUnregisterMusicDevice 2

The NAUnregisterMusicDevice function removes a previously registered music 
component from the note allocator. 

pascal ComponentResult NAUnregisterMusicDevice( 
NoteAllocator na, 
long index);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

index Synthesizer to unregister. The value is 1 through the registered 
music component count returned by the 
NAGetRegisteredMusicDevice function (page 127).

function result A result code. In addition to QTMA result codes, this function 
may return a result code from the CloseComponent function.

NAGetRegisteredMusicDevice 2

The NAGetRegisteredMusicDevice function returns specifics about music 
components registered to the specified note allocator instance. 

pascal ComponentResult NAGetRegisteredMusicDevice( 
NoteAllocator na, 
long index,
OSType *synthType, 
Str31 name,
SynthesizerConnections *connections,
MusicComponent *mc);

SynthesizerErr If too many synthesizers registered.
midiManagerAbsentErr If MIDI not available.
Functions 127



C H A P T E R  2  

Music Architecture Reference
na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

index The index of the music component to get information about or 0 
to get the total number of music components registered with the 
note allocator.

synthType Synthesizer type.

name Synthesizer name as a text string.

connections A synthesizer connections for MIDI devices structure (page 84).

mc Music component instance identifier.

function result Positive values are the number of music components registered 
with the note allocator; negative values are result codes.

DISCUSSION

To get a count of the registered music components, pass the 
NAGetRegisteredMusicDevice function 0 in the index parameter. The return value 
is the count of components. To get information about one of the music 
components registered with the note allocator, pass the music component index 
in the index parameter. The index value can be 1 through the number of 
registered components returned by a previous call to 
NAGetRegisteredMusicDevice. 

If you request information about a specific registered music component, the 
NAGetRegisteredMusicDevice function returns the type of synthesizer the 
component supports in the synthType parameter, the name of the synthesizer in 
the name parameter, and the music component identifier in the mc parameter. For 
MIDI devices, it returns a pointer to a MIDI devices structure with information 
about the synthesizer connections.

NAGetDefaultMIDIInput 2

The NAGetDefaultMIDIInput function is used to obtain external MIDI connection 
information. This routine, in turn, calls the QuickTime MIDI components to 
128 Functions



C H A P T E R  2

Music Architecture Reference
query them. NAGetMIDIPorts is the correct call for you to make. You should not 
call QTMIDI.

pascal ComponentResult NAGetDefaultMIDIInput(
NoteAllocator na, 
SynthesizerConnections *sc);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

sc On exit, a synthesizer connection structure (page 84) that 
describes how a MIDI device is connected.

DISCUSSION

The NASGetDefaultMIDIInput function returns an initialized 
SynthesizerConnections structure containing information about the external 
MIDI device attached to the system that has been selected as the default MIDI 
input device. The external MIDI device provides note input directly to the note 
allocator.

NASetDefaultMIDIInput 2

The NASetDefaultMIDIInput function initializes an external MIDI device used to 
receive external note input.This routine, in turn, calls the QuickTime MIDI 
components to query them. NAGetMIDIPorts is the correct call for users to make. 
Users should not call QTMIDI. 

pascal ComponentResult NASetDefaultMIDIInput(
NoteAllocator na, 
SynthesizerConnections *sc);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

sc A synthesizer connection structure (page 84) that describes how 
a MIDI device is connected.
Functions 129



C H A P T E R  2  

Music Architecture Reference
DISCUSSION

The SynthesizerConnections structure fields clientID, inputPortID, and 
outputPortID are MIDI Manager identifiers. The midiChannel field is the MIDI 
system channel value. 

function result A result code.

NAGetMIDIPorts 2

The NAGetMIDIPorts function gets the MIDI input and output ports available to a 
note allocator.This routine, in turn, calls the QuickTime MIDI components to 
query them. NAGetMIDIPorts is the correct call for you to make. You should not 
call QTMIDI. 

extern pascal ComponentResult NAGetMIDIPorts(
NoteAllocator na,
QTMIDIPortListHandle *inputPorts,
QTMIDIPortListHandle *outputPorts);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

inputPorts On exit, a handle giving the number of input ports (the first two 
bytes) followed by a list of QuickTime MIDI port structures 
(page 85).

outputPorts On exit, a handle giving the number of output ports (the first 
two bytes) followed by a list of QuickTime MIDI port structures 
(page 85).

function result A result code.
130 Functions



C H A P T E R  2

Music Architecture Reference
NASaveMusicConfiguration 2

The NASaveMusicConfiguration saves the current list of registered devices to a 
file. 

pascal ComponentResult NASaveMusicConfiguration (NoteAllocator na);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A result code or –1 if there is a problem opening or creating the 
QuickTime Preferences file.

DISCUSSION

The NASaveMusicConfiguration function saves the current list of registered 
devices to a file. This file is read whenever a note allocator connection is 
opened, restoring the previously configured list of devices. The list is saved in 
the QuickTime Preferences file.

NATask 2

Call the NATask function periodically to allow the note allocator to perform tasks 
in foreground task time. 

extern pascal ComponentResult NATask (NoteAllocator na);

na You obtain the note allocator identifier from the Component 
Manager’s OpenComponent function. See the chapter “Component 
Manager” in QuickTime 3 Reference for details.

function result A result code.

DISCUSSION

The NATask function calls each registered music component’s MusicTask 
function.
Functions 131



C H A P T E R  2  

Music Architecture Reference
Music Component Functions: Synthesizer 2

The functions in this section obtain specific information about a synthesizer and 
obtain a best instrument fit for a requested tone from the available instruments 
within the synthesizer; play a note with a specified pitch, volume, and duration; 
get and set a particular synthesizer knob; obtain synthesizer knob information; 
and get and set external MIDI procedure name entry points.

MusicGetDescription 2

The MusicGetDescription function returns a structure describing the synthesizer 
controlled by the music component device. 

pascal ComponentResult MusicGetDescription( 
MusicComponent mc, 
SynthesizerDescription *sd);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

sd Pointer to synthesizer description structure (page 73).

function result A result code.

DISCUSSION

The MusicGetDescription function returns a structure describing the specified 
music component device. The SynthesizerDescription structure is filled out by 
the particular music component.
132 Functions



C H A P T E R  2

Music Architecture Reference
MusicFindTone 2

The MusicFindTone function returns an instrument number based on a tone 
description. 

pascal ComponentResult MusicFindTone(
MusicComponent mc, 
ToneDescription *td,
long *libraryIndexOut, 
unsigned long *fit);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

td Pointer to a tone description structure (page 75).

libraryIndexOut
On exit, contains the number of the best-matching instrument. 
Only General MIDI numbers are guaranteed to be the same for 
later instantiations of the component.

fit  On exit, indicates how well an instrument matches the tone 
description. For valid values, see “Tone Fit Flags” (page 59).

function result A result code.

DISCUSSION

The MusicFindTone function returns the number of the best-matching instrument 
provided by the specified music component. The closeness of the match is 
specified by the fit parameter.

The music component searches for an instrument as follows:

1. If the synthesizerType field of the td parameter matches the type of the 
specified music component, it first tries to find an instrument that matches 
the value of the instrumentNumber field of the td parameter. If this value is in 
the range 129–16512, which specifies a GS instrument, and the GS instrument 
is not available, it tries to find the General MIDI instrument that corresponds 
to it, which has the number ((GSinstrumentnumber – 1) & 0x7F) + 1)). If the 
value is greater than 16512, which specifies a transient ROM instrument or 
internal instrument index value, it tries to find an instrument that matches 
the synthesizerName field of the td parameter. If that fails, it tries to find an 
Functions 133



C H A P T E R  2  

Music Architecture Reference
instrument that matches the value of the value of the gmNumber field of the td 
parameter. 

2. If the synthesizerType field of the td parameter does not match the type of 
the specified music component, it tries to find an instrument that matches the 
value of the gmNumber field of the td parameter.

If none of these rules apply, or the fields are “blank” (zero for the type or 
numeric fields, or zero-length for the strings), then the call returns instrument 1 
and a fit value of zero. The synthesizerName field may be ignored by the 
component; it is used by the note allocator when deciding which music device 
to use.

MusicPlayNote 2

The MusicPlayNote function plays a note on a specified part at a specified pitch 
and velocity. 

pascal ComponentResult MusicPlayNote(
MusicComponent mc, 
long part, 
long pitch, 
long velocity);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The part to play the note on.

pitch The pitch at which to play the note. Values are 0–127 for MIDI 
pitch or greater than 65535 for microtonal values.

velocity How hard to strike the key. Values are 0–127 where 0 is silence.

function result A result code.

DISCUSSION

The MusicPlayNote function is used to play notes by their pitch. If the pitch is 
specified by a number from 0 to 127, it is a MIDI pitch, where 60 is middle C. If 
134 Functions



C H A P T E R  2

Music Architecture Reference
the pitch is a positive number above 65535, the value is a fixed-point pitch 
value. Thus, microtonal values may be specified. 

Velocity refers to how hard the key is struck (if performed on a 
keyboard-instrument); typically, this translates directly to volume, but on many 
synthesizers this also subtly alters the timbre of the tone.

The current note continues to play until a MusicPlayNote function with the same 
pitch and velocity of 0 turns the note off.

MusicGetKnob 2

The MusicGetKnob function returns the value of the specified global synthesizer 
knob. A global knob controls an aspect of the entire synthesizer. It is not specific 
to a part within the synthesizer.

pascal ComponentResult MusicGetKnob(
MusicComponent mc,
long knobID);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobID Knob index or ID.

function result A result code.

MusicSetKnob 2

The MusicSetKnob function modifies the value of the specified global synthesizer 
knob. A global knob controls an aspect of the entire synthesizer. It is not limited 
to a part within the synthesizer.

pascal ComponentResult MusicSetKnob(
MusicComponent mc,
long knobID, 
long knobValue);
Functions 135



C H A P T E R  2  

Music Architecture Reference
mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobID Knob index or ID.

knobValue Value for specified knob.

function result A result code.

MusicGetKnobDescription 2

The MusicGetKnobDescription function returns a pointer to an initialized knob 
description structure describing a global synthesizer knob. A global knob 
controls an aspect of the entire synthesizer; it is not limited to a part within the 
synthesizer.

 pascal ComponentResult MusicGetKnobDescription(
MusicComponent mc,
long knobIndex, 
KnobDescription *mkd);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobIndex Knob index or ID.

mkd Pointer to a knob description structure (page 78).

function result A result code.

DISCUSSION

The initialized KnobDescription structure provides the application default 
values associated with the particular knob. You can use the information 
returned by a call to the MusicGetKnobDescription function to reset a knob to 
some known, usable value. 
136 Functions



C H A P T E R  2

Music Architecture Reference
MusicGetInstrumentKnobDescription 2

The MusicGetInstrumentKnobDescription function gets the description of an 
instrument knob. 

extern pascal ComponentResult MusicGetInstrumentKnobDescription(
MusicComponent mc,
long knobIndex,
KnobDescription *mkd);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobIndex A knob index or knob ID.

mkd On exit, a knob description structure (page 78).

function result A result code.

DISCUSSION

The MusicGetInstrumentKnobDescription function takes a music component 
instance identifier in the mc parameter and a knob index or knob ID in the 
knobIndex parameter. It returns a knob description structure in the mkd 
parameter.

MusicGetDrumKnobDescription 2

The MusicGetDrumKnobDescription function returns a description of a drum kit 
knob.

extern pascal ComponentResult MusicGetDrumKnobDescription(
MusicComponent mc,
long knobIndex,
KnobDescription *mkd);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobIndex A knob index or knob ID.
Functions 137



C H A P T E R  2  

Music Architecture Reference
mkd A pointer to a knob description structure (page 78).

function result A result code.

DISCUSSION

The MusicGetDrumKnobDescription function takes a music component in the mc 
parameter and a knob index or knob ID in the knobIndex parameter. It returns a 
knob description structure in the *mkd parameter.

MusicGetKnobSettingStrings 2

The MusicGetKnobSettingStrings function returns a list of knob setting names 
known by the specified music component. 

extern pascal ComponentResult MusicGetKnobSettingStrings(
MusicComponent mc,
long knobIndex,
long isGlobal,
Handle *settingsNames,
Handle *settingsCategoryLasts,
Handle *settingsCategoryNames);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

knobIndex The knob index or knob ID.

isGlobal If a knob index is used, indicates whether the specified knob is a 
global knob.

settingsNames
The requested list of knob setting strings formatted as a short 
followed by packed strings.

settingsCategoryLasts
A group of short integers, the first of which contains the number 
of shorts to follow. 
138 Functions



C H A P T E R  2

Music Architecture Reference
settingsCategoryNames
Knob setting category names formatted as a short followed by a 
list of names.

function result A result code.

Note
All handles must be disposed of by the caller.

MusicSetMIDIProc 2

The MusicSetMIDIProc function tells the music component what procedure to 
call when it needs to send MIDI data. This call is implemented only by a music 
component for a MIDI synthesizer.

pascal ComponentResult MusicSetMIDIProc(
MusicComponent mc, 
MusicMIDISendUPP midiSendProc, 
long refCon);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

midiSendProc A pointer to the procedure to use when sending MIDI data. 

refcon Contains a reference constant value. The Movie Toolbox passes 
this reference constant to your error-notification function each 
time it calls your function.

function result A result code.
Functions 139



C H A P T E R  2  

Music Architecture Reference
MusicGetMIDIProc 2

The MusicGetMIDIProc function returns a pointer to the procedure a music 
component is using to process external MIDI notes.

pascal ComponentResult MusicGetMIDIProc(
MusicComponent mc, 
MusicMIDISendUPP *midiSendProc, 
long *refCon);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

midiSendProc
Pointer to a MIDI serial port call.

refcon Contains a reference constant. The Movie Toolbox passes this 
reference constant to your error-notification function each time 
it calls your function.

function result A result code.

DISCUSSION

The MusicGetMIDIProc function returns, in the midiSendProc parameter, a pointer 
to the function that processes external MIDI notes. This function was set by a 
previous call to the MusicSetMIDIProc function. If no function has been set with 
the MusicSetMIDIProc function, MusicGetMIDIProc returns zero in the 
midiSendProc parameter.

MusicGetMIDIPorts 2

The MusicGetMIDIPorts function returns the number of input and output ports a 
MIDI device has. 

extern pascal ComponentResult MusicGetMIDIPorts(
MusicComponent mc,
long *inputPortCount,
long *outputPortCount);
140 Functions



C H A P T E R  2

Music Architecture Reference
mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

inputPortCount
On exit, the number of input MIDI ports available to the music 
component.

outputPortCount
On exit, the number of output MIDI ports available to the music 
component.

function result A result code.

DISCUSSION

The function takes a music component identifier in the mc parameter and 
returns, in the inputPortCount and outputPortCount parameters, the number of 
MIDI input and output ports available to the music component.

This call is implemented only for a hardware synthesizer, such as a NuBus or 
PCI card device.

MusicSendMIDI 2

Use the MusicSendMIDI function to send a MIDI packet to a specified port.

extern pascal ComponentResult MusicSendMIDI(
MusicComponent mc,
long portIndex,
MusicMIDIPacket *mp);

mc Music component instance returned by 
NAGetRegisteredMusicDevice.

portIndex The index of the port to send the MIDI packet to. The index 
value is 1 through the port count returned by the 
MusicGetMIDIPorts function.

mp The music MIDI packet to be sent.

function result A result code.
Functions 141



C H A P T E R  2  

Music Architecture Reference
DISCUSSION

The MusicSendMIDI function takes a music component in the mc parameter and a 
port index in the portIndex parameter. It sends the MIDI music packet specified 
by the mp parameter to the specified port.

This call is implemented only for a hardware synthesizer, such as a NuBus or 
PCI card device.

MusicGetDeviceConnection 2

You can use the MusicGetDeviceConnection function to find out how many 
hardware synthesizers are available to a music component and to get the IDs 
for those devices.

extern pascal ComponentResult MusicGetDeviceConnection(
MusicComponent mc,
long index,
long *id1,
long *id2);

mc Music component returned by NAGetRegisteredMusicDevice.

index Index of the device for which you want to find out the IDs. Set 
to 0 if you are calling to get the number of hardware devices.

id1 On exit, a hardware synthesizer ID.

id2 On exit, another hardware synthesizer ID.

function result A result code.

DISCUSSION

To get the number of hardware synthesizers available to the music component 
specified in the mc parameter and an index you can use to request ID numbers 
for a specific device, call the MusicGetDeviceConnection function with a value of 
0 for the index parameter. You can then pass an index value in the index 
parameter, and the function returns hardware synthesizer IDs in the id1 and id2 
parameters.
142 Functions



C H A P T E R  2

Music Architecture Reference
This call is implemented only for a hardware synthesizer, such as a NuBus or 
PCI card device.

MusicUseDeviceConnection 2

The MusicUseDeviceConnection function tells a music component which 
hardware synthesizer to talk to.

extern pascal ComponentResult MusicUseDeviceConnection(
MusicComponent mc,
long id1,
long id2);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

id1 The ID of the device returned in the *id1 parameter of the 
MusicGetDeviceConnection function.

id2 The ID of the device returned in the *id2 parameter of the 
MusicGetDeviceConnection function.

function result A result code.

DISCUSSION

This call is implemented only for a hardware synthesizer, such as a NuBus or 
PCI card device.

Music Component Functions: Instruments and Parts 2

The functions described in this section initialize a part with an instrument, store 
instruments, list available instruments, manipulate parts, and get information 
about parts.
Functions 143



C H A P T E R  2  

Music Architecture Reference
MusicGetPartInstrumentNumber 2

The MusicGetPartInstrumentNumber function returns the instrument number 
currently assigned to that part.

pascal ComponentResult MusicGetPartInstrumentNumber( 
MusicComponent mc, 
long part);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part number containing instrument.

function result A positive return value is the instrument number; a negative 
value is a result code.

MusicSetPartInstrumentNumber 2

The MusicSetPartInstrumentNumber function initializes a part with a particular 
instrument. 

pascal ComponentResult MusicSetPartInstrumentNumber( 
MusicComponent mc, 
long part, 
long instrumentNumber);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part to be initialized.

instrumentNumber
Number of instrument to initialize part with.

function result A result code.

DISCUSSION

You can use the MusicFindTone function (page 133) to find out an instrument 
number.
144 Functions



C H A P T E R  2

Music Architecture Reference
This function is superseded by MusicSetPartInstrumentNumberInterruptSafe, 
which can be called at interrupt time. You cannot call 
MusicSetPartInstrumentNumber at interrupt time.

MusicSetPartInstrumentNumberInterruptSafe 2

The MusicSetPartInstrumentNumberInterruptSafe function initializes a part with 
a particular instrument.

pascal ComponentResult MusicSetPartInstrumentNumber( 
MusicComponent mc, 
long part, 
long instrumentNumber);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part to be initialized.

instrumentNumber
Number of instrument to initialize part with.

function result A result code.

DISCUSSION

You can use the MusicFindTone function (page 133) to find out an instrument 
number.

You can call the MusicSetPartInstrumentNumberInterruptSafe function at 
interrupt time.
Functions 145



C H A P T E R  2  

Music Architecture Reference
MusicGetPartAtomicInstrument 2

The MusicGetPartAtomicInstrument function returns the atomic instrument 
currently in a part.

extern pascal ComponentResult MusicGetPartAtomicInstrument(
MusicComponent mc,
long part,
AtomicInstrument *ai,
long flags);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The part with the atomic instrument.

ai On exit, an atomic instrument.

flags Specify what pieces of information about an atomic instrument 
the caller is interested in. See “Atomic Instrument Information 
Flags” (page 63).

function result A result code.

MusicSetPartAtomicInstrument 2

The MusicSetPartAtomicInstrument function initializes a part with an atomic 
instrument. 

extern pascal ComponentResult MusicSetPartAtomicInstrument(
MusicComponent mc,
long part,
AtomicInstrumentPtr aiP,
long flags);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The part to initialize with the atomic instrument to.

aiP The atomic instrument.
146 Functions



C H A P T E R  2

Music Architecture Reference
flags These flags specify details of initializing a part with an atomic 
instrument. See “Flags for Setting Atomic Instruments” on 
page 63.

function result A result code.

MusicStorePartInstrument 2

The MusicStorePartInstrument function puts whatever instrument is on the 
specified part into the synthesizer’s instrument store. This enables you to store 
modified instruments.

pascal ComponentResult MusicStorePartInstrument( 
MusicComponent mc,
long part, 
long instrumentNumber);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part containing the instrument to be stored.

instrumentNumber
Instrument number at which to store the part.

function result A result code.

DISCUSSION

The value of the InstrumentNumber parameter must be between 1 and the 
synthesizer’s modifiable instrument count, as defined by the 
modifiableInstrumentCount field of the synthesizer’s description structure.
Functions 147



C H A P T E R  2  

Music Architecture Reference
MusicGetInstrumentAboutInfo 2

The MusicGetInstrumentAboutInfo function gets the information about an 
instrument that appears in its About box.

pascal ComponentResult MusicGetInstrumentAboutInfo(
MusicComponent mc,
long part, 
InstrumentAboutInfo *iai);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Number of the part containing the instrument for which you 
want information.

iai On exit, a pointer to an instrument About information structure 
(page 78) for the instrument currently on the specified 
synthesizer part.

MusicGetInstrumentInfo 2

The MusicGetInstrumentInfo function gets a list of instruments supported by a 
synthesizer. It also gets the names of the instruments.

extern pascal ComponentResult MusicGetInstrumentInfo(
MusicComponent mc,
long getInstrumentInfoFlags,
InstrumentInfoListHandle *infoListH);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

getInstrumentInfoFlags
Use these flags to specify whether you want a list of fixed 
instruments, modifiable instruments, or all instruments. See 
“Instrument Info Flags” (page 64).

infoListH On exit, the list of instruments (page 80).

function result A result code.
148 Functions



C H A P T E R  2

Music Architecture Reference
Note
This handle must be disposed of by the caller.

DISCUSSION

The functions takes a music component in the mc parameter and instructions 
regarding which types of instruments to get information for in the 
getInstrumentNamesFlags parameter. It returns a handle to an instrument 
information list in the infoListH parameter.

MusicGetPart 2

The MusicGetPart function returns the MIDI channel and maximum polyphony 
for a particular part in the MIDIChannel and polyphony parameters. 

pascal ComponentResult MusicGetPart(
MusicComponent mc, 
long part, 
long *MIDIChannel, 
long *polyphony);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The music component part requested.

MIDIChannel On exit, a pointer to a MIDI channel.

polyphony On exit, a pointer to the maximum polyphony.

function result A result code.

DISCUSSION

For non-MIDI devices, the MIDI channel pointed to by the MIDIChannel 
parameter is 0.
Functions 149



C H A P T E R  2  

Music Architecture Reference
MusicSetPart 2

The MusicSetPart function sets the MIDI channel and maximum polyphony for 
the specified part to the values in the MIDIChannel and polyphony parameters.

pascal ComponentResult MusicSetPart(
MusicComponent mc, 
long part, 
long MIDIChannel, 
long polyphony);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part whose MIDI channel and polyphony are to be set.

MIDIChannel The MIDI channel to set the part to.

polyphony The maximum voices or polyphony for the part.

function result A result code.

DISCUSSION

For non-MIDI devices, set the MIDI channel pointed to by the MIDIChannel 
parameter to 0.

MusicGetPartName 2

The MusicGetPartName function returns the string name of a part.

pascal ComponentResult MusicGetPartName(
MusicComponent mc,
long part, 
StringPtr name);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part to get name of.
150 Functions



C H A P T E R  2

Music Architecture Reference
name On exit, the string containing the part name.

function result A result code.

DISCUSSION

The name string is used by selection dialog boxes or configuration information.

MusicSetPartName 2

You can use the MusicSetPartName function to change the name of an instrument 
in a specified part. For example, you might want to change the name of a 
modified instrument before saving it.

pascal ComponentResult MusicSetPartName(
MusicComponent mc,
long part, 
StringPtr name);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part to apply name to.

name Name to apply to part.

function result A result code.

DISCUSSION

The instrument name string is used by selection dialog boxes or in 
configuration information.
Functions 151



C H A P T E R  2  

Music Architecture Reference
MusicGetPartKnob 2

The MusicGetPartKnob function gets the current value of a knob for a part.

pascal ComponentResult MusicGetPartKnob(
MusicComponent mc,
long part, 
long knobID);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The part number.

knobID The knob index or ID.

function result Positive or negative integers are knob values. Result codes are 
returned as 0x8000xxxx, where xxxx is the result code.

MusicSetPartKnob 2

The MusicSetPartKnob function sets a knob for a specified part.

pascal ComponentResult MusicSetPartKnob(
MusicComponent mc,
long part, 
long knobID, 
long knobValue);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The part number.

knobID The index or ID of the knob to be set.

knobValue The value to set the knob to.

function result A result code.
152 Functions



C H A P T E R  2

Music Architecture Reference
MusicResetPart 2

The MusicResetPart function silences all sounds on the specified part, and resets 
all controllers on that part to their default values. .

pascal ComponentResult MusicResetPart(
MusicComponent mc, 
long Part);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part The number of the part.

function result A result code.

DISCUSSION

The default value is 0 for all controllers except volume. Volume is set to its 
maximum 32767 or, in hexadecimal, 7FFF.

MusicGetPartController 2

The MusicGetPartController function returns the value of the specified 
controller on the specified part.

pascal ComponentResult MusicGetPartController(
MusicComponent mc, 
long part, 
MusicController controllerNumber);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part whose controller value you want to get.

controllerNumber
On exit, the controller number. For a list of controller numbers, 
see “Controller Numbers” (page 56).

function result A result code.
Functions 153



C H A P T E R  2  

Music Architecture Reference
MusicSetPartController 2

The MusicSetPartController function initializes the value of the specified 
controller on the specified part.

pascal ComponentResult MusicSetPartController(
MusicComponent mc, 
long part, 
MusicController controllerNumber, 
long controllerValue);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

part Part whose controller value you want to set.

controllerNumber
Controller number. For valid values see “Controller Numbers” 
(page 56).

controllerValue
Value for controller.

function result A result code.

MusicSetPartSoundLocalization 2

The MusicSetPartSoundLocalization function passes sound localization data to a 
specified synthesizer part.

extern pascal ComponentResult MusicSetPartSoundLocalization(
MusicComponent mc,
long part,
Handle data);

mc Music component instance identifier.

part The part to pass the data to.

data The sound localization data.

function result A result code.
154 Functions



C H A P T E R  2

Music Architecture Reference
Music Component Functions: Miscellaneous 2

Use the functions described in this section to get and modify the master tuning 
of the synthesizer, to play off line, and to allow the music component to 
perform tasks it must perform at foreground task time.

MusicGetMasterTune 2

The MusicGetMasterTune function returns a fixed-point value in semitones, 
which is the synthesizer’s master tuning.

pascal ComponentResult MusicGetMasterTune (MusicComponent mc);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

function result The function returns a positive value representing the 
synthesizer’s master tuning or a negative result code.

MusicSetMasterTune 2

The MusicSetMasterTune function alters the synthesizer’s master tuning.

pascal ComponentResult MusicSetMasterTune(
MusicComponent mc, 
long masterTune);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

masterTune The amount by which to transpose the entire synthesizer in 
pitch. The value is a fixed 16.16 number that allows shifts by 
fractional values.

function result A result code.
Functions 155



C H A P T E R  2  

Music Architecture Reference
MusicStartOffline 2

The MusicStartOffline function informs the QuickTime music synthesizer that 
the music will not be played through the speakers. Instead, audio data will be 
sent to a function that will create a sound file to be played back later.

extern pascal ComponentResult MusicStartOffline(
MusicComponent mc,
unsigned long *numChannels,
UnsignedFixed *sampleRate,
unsigned short *sampleSize,
MusicOfflineDataUPP dataProc,
long dataProcRefCon);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

numChannels Number of channels in the music sample. 1 indicates monaural; 
2 indicates stereo.

sampleRate The number of samples per second.

sampleSize The size of the music sample: 8-bit or 16-bit.

dataProc A function to handle the audio data.

dataProcRefCon
A reference constant to pass to the dataProc function.

function result A result code.

DISCUSSION

You pass the MusicStartOffline function the requested values for the 
numChannels, sampleRate, and sampleSize parameters. When the function 
returns, those parameters contain the actual values used.
156 Functions



C H A P T E R  2

Music Architecture Reference
MusicSetOfflineTimeTo 2

The MusicSetOfflineTimeTo function advances the synthesizer clock when the 
synthesizer is not running in real time (due to a call to MusicStartOffline).

extern pascal ComponentResult MusicSetOfflineTimeTo(
MusicComponent mc,
long newTimeStamp);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

newTimeStamp The number of samples to synthesize.

function result A result code.

DISCUSSION

Setting the time generates audio output from the synthesizer.

MusicTask 2

Call the MusicTask function periodically to allow a music component to perform 
tasks it must perform at foreground task time.

extern pascal ComponentResult MusicTask (MusicComponent mc);

mc Music component instance identifier returned by 
NAGetRegisteredMusicDevice.

function result A result code.

DISCUSSION

In the case of the QuickTime music synthesizer, instruments cannot be loaded 
from disk at interrupt time, so if the NASetInstrumentNumberInterruptSafe 
function is called, the instrument is loaded during the next MusicTask call.
Functions 157



C H A P T E R  2  

Music Architecture Reference
Instrument Component Functions 2

This section describes functions that are implemented by instrument 
components.

InstrumentGetInfo 2

The InstrumentGetInfo function returns information about all the atomic 
instruments supported by an instrument component.

extern pascal ComponentResult InstrumentGetInfo(
ComponentInstance ci,
long getInstrumentInfoFlags,
InstCompInfoHandle *instInfo);

ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

getInstrumentInfoFlags
Use these flags to specify whether you want a list of fixed 
instruments, modifiable instruments, or all instruments. See 
“Instrument Info Flags” (page 64).

instInfo On exit, an instrument information list (page 83).

function result A result code.

InstrumentGetInst 2

The InstrumentGetInst function returns an atomic instrument.

extern pascal ComponentResult InstrumentGetInst(
ComponentInstance ci,
long instID,
AtomicInstrument *atomicInst,
long flags);
158 Functions



C H A P T E R  2

Music Architecture Reference
ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

instID The instrument component instrument ID from the information 
list structure returned by the InstrumentGetInfo function.

atomicInst On exit, the atomic instrument.

flags Specifies what pieces of information about an atomic instrument 
the caller is interested in. See “Atomic Instrument Information 
Flags” (page 63).

function result A result code.

InstrumentInitialize 2

Used by developers of instrument components, this is a call the instrument 
component makes to the base class instrument component to tell it how to 
interpret the instrument component resources.

extern pascal ComponentResult InstrumentInitialize(
ComponentInstance ci,
long initFormat,
void *initParams);

ci An instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

initFormat Set to zero.

initParams Set to nil.

function result A result code.
Functions 159



C H A P T E R  2  

Music Architecture Reference
InstrumentOpenComponentResFile 2

The InstrumentOpenComponentResFile function opens the resource file containing 
the instruments in the instrument component and makes it the current resource 
file.

extern pascal ComponentResult InstrumentOpenComponentResFile(
ComponentInstance ci,
short *resFile);

ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

resFile On exit, a resource reference.

function result A result code.

InstrumentCloseComponentResFile 2

The InstrumentCloseComponentResFile function closes a resource file.

extern pascal ComponentResult InstrumentCloseComponentResFile(
ComponentInstance ci,
short resFile);

ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

resFile A reference to the resource file that was returned previously by 
the InstrumentOpenComponentResFile function.

function result A result code.
160 Functions



C H A P T E R  2

Music Architecture Reference
InstrumentGetComponentRefCon 2

The InstrumentGetComponentRefCon function gets the reference constant for an 
instrument component.

extern pascal ComponentResult InstrumentGetComponentRefCon(
ComponentInstance ci,
void **refCon);

ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

refCon A reference constant.

function result A result code.

InstrumentSetComponentRefCon 2

Use the InstrumentSetComponentRefCon function to override the Component 
Manager SetComponentRefCon function and set the instrument component’s 
reference constant to a specified value. 

extern pascal ComponentResult InstrumentSetComponentRefCon(
ComponentInstance ci,
void *refCon);

ci The instrument component instance. You obtain the identifier 
from the Component Manager’s OpenComponent function. See the 
chapter “Component Manager” in QuickTime 3 Reference for 
details.

refCon A reference constant.

function result A result code.
Functions 161



C H A P T E R  2  

Music Architecture Reference
MIDI Component Functions 2

This section describes the functions that are implemented by MIDI components.

These functions implemented by MIDI components are MIDI device drivers, 
and are called by the note allocator MIDI routines. 

Note
NAGetMIDIPorts is the correct call for you to make. You 
should not call QTMIDI. ◆

QTMIDIGetMIDIPorts 2

You use the QTMIDIGetMIDIPorts function to get two lists of MIDI ports 
supported by the specified MIDI component: a list of ports that can receive 
MIDI input and a list of ports that can send MIDI output.

pascal ComponentResult QTMIDIGetMIDIPorts (
QTMIDIComponent ci, 
QTMIDIPortListHandle *inputPorts, 
QTMIDIPortListHandle *outputPorts);

ci Specifies the instance of a MIDI component. Your software 
obtains this reference when calling the Component Manager’s 
OpenComponent or OpenDefaultComponent function. See the 
“Component Manager” chapter in QuickTime 3 Reference.

inputPorts A list of the MIDI ports supported by the component that can 
receive MIDI input.

outputPorts A list of the MIDI ports supported by the component that can 
send MIDI output.

DISCUSSION

The caller of this function must dispose of the inputPorts and outputPorts 
handles.
162 Functions



C H A P T E R  2

Music Architecture Reference
QTMIDISendMIDI 2

You use the QTMIDISendMIDI function to send MIDI data to a MIDI port.

pascal ComponentResult QTMIDISendMIDI (
QTMIDIComponent ci, 
long portIndex, 
MusicMIDIPacket *mp);

ci Specifies the instance of a MIDI component. Your software 
obtains this reference when calling the Component Manager’s 
OpenComponent or OpenDefaultComponent function. See the 
“Component Manager” chapter in QuickTime 3 Reference.

portIndex The index of the MIDI port to use for this operation.

mp A pointer to the MIDI data packet to send.

DISCUSSION

The QTMIDISendMIDI function can be called at interrupt time. However, the same 
interrupt level is used whenever MIDI data is sent by the specified MIDI 
component.

QTMIDIUseReceivePort 2

You use the QTMIDIUseReceivePort function to allocate a MIDI port for input or 
to release the port.

pascal ComponentResult QTMIDIUseReceivePort (
QTMIDIComponent ci, 
long portIndex, 
MusicMIDIReadHookUPP readHook, 
long refCon);

ci Specifies the instance of a MIDI component. Your software 
obtains this reference when calling the Component Manager’s 
OpenComponent or OpenDefaultComponent function. See the 
“Component Manager” chapter in QuickTime 3 Reference.
Functions 163



C H A P T E R  2  

Music Architecture Reference
portIndex The index of the MIDI port to use for this operation.

readHook A pointer to a function in your software that receives incoming 
MIDI data packets, or nil to release the port.

refCon A reference constant passed to the function specified by 
thereadHook parameter. 

DISCUSSION

The MIDI component delivers only MIDI data packets that contain only a single 
status byte.

QTMIDIUseSendPort 2

You use the QTMIDIUseSendPort function to allocate a MIDI port for output or to 
release the port.

pascal ComponentResult QTMIDIUseSendPort (
QTMIDIComponent ci, 
long portIndex, 
long inUse);

ci Specifies the instance of a MIDI component. Your software 
obtains this reference when calling the Component Manager’s 
OpenComponent or OpenDefaultComponent function. See the 
“Component Manager” chapter in QuickTime 3 Reference.

portIndex The index of the MIDI port for this operation.

inUse Specifies whether to allocate the MIDI port for output (if the 
value is 1) or to release the port (if the value is 0).

Functions for Importing MIDI Files 2

This section describes functions you use to control the importation of MIDI 
files.
164 Functions



C H A P T E R  2

Music Architecture Reference
MIDIImportGetSettings 2

You use the MIDIImportGetSettings function to get settings that control the 
importation of MIDI files.

pascal ComponentResult MIDIImportGetSettings (
TextExportComponent ci,
long *setting);

ci Specifies the instance of the text export component used to 
import a MIDI file. Your software obtains this reference when 
calling the Component Manager’s OpenComponent or 
OpenDefaultComponent function. See the “Component Manager” 
chapter in QuickTime 3 Reference.

setting Flags that control the importation of MIDI files. These flags are 
described in “MIDI File Import Flags” (page 70).

DISCUSSION

The flags correspond to the checkboxes in the MIDI Import Options dialog box.

MIDIImportSetSettings 2

You use the MIDIImportSetSettings function to set settings that control the 
importation of MIDI files.

pascal ComponentResult MIDIImportSetSettings (
TextExportComponent ci,
long setting);

ci Specifies the instance of the text export component used to 
import a MIDI file. Your software obtains this reference when 
calling the Component Manager’s OpenComponent or 
OpenDefaultComponent function. See the “Component Manager” 
chapter in QuickTime 3 Reference.

setting Flags that control the importation of MIDI files. These flags are 
described in “MIDI File Import Flags” (page 70).
Functions 165



C H A P T E R  2  

Music Architecture Reference
DISCUSSION

The flags correspond to the checkboxes in the MIDI Import Options dialog box.

Function Provided by the Generic Music Component 2

The generic music component implements the following function that a client 
music component can call.

MusicGenericConfigure 2

You use the MusicGenericConfigure function to tell the generic music 
component what services your music component requires and to point to any 
resources that are necessary.

pascal ComponentResult MusicGenericConfigure (
MusicComponent mc,
long mode,
long flags,
long baseResID);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

mode Must be 0.

flags Flags that control the importation of MIDI files. 

baseResID The resource ID of the lowest-numbered resource used by your 
music component.

These are the possible flags for the flags parameter:

kGenericMusicDoMIDI
Implement normal MIDI messages for note, controllers, 
and program changes 0–127.

kGenericMusicBank0...kGenericMusicBank32
If kGenericMusicBank0 is set, then bank changes for 
instruments numbered above 127 will be sent on controller 
166 Functions



C H A P T E R  2

Music Architecture Reference
zero; if kGenericMusicBank32, then on controller 32. If both 
flags are set, then the bank is sent on controller zero, and 
then a zero value is sent to controller 32

kGenericMusicErsatzMIDI
Some musical devices, such as NuBus cards, may internally 
be driven by a MIDI stream but should not appear to the 
user to be an external MIDI device. The 
kGenericMusicErsatzMIDI flag instructs the generic music 
component to allocate channels appropriately and 
construct MIDI packets. The MIDI packets are always sent 
to the routine MusicDerivedMIDISend, and never to an 
external MIDI port.

kGenericMusicCallKnobs
Specifies that your music component should receive calls to 
its routine MusicDerivedSetKnob for changes to global or 
part knobs. This flag should be set if your component 
implements any knobs.

kGenericMusicCallParts
Specifies that your music component should receive calls to 
its routine MusicDerivedSetPart, in order to alter a specific 
part’s polyphony or, in the case of a MIDI device, MIDI 
channel number.

kGenericMusicCallInstrument
Specifies that your music component should receive calls to 
its routine MusicDerivedSetInstrument, in order to set a part 
to a new instrument. This is for devices that support 
complete user-instruments with knob lists. If this flag is not 
set, then the generic music component calls your music 
component many times to set the value of each knob in the 
instrument.

kGenericMusicCallNumber
Directs the generic music component to call your music 
component’s MusicDerivedSetInstrumentNumber function, 
rather than sending standard MIDI program-change and 
bank-change messages.

kGenericMusicCallROMInstrument
Allows instruments that appear to the user as instruments 
built into the synthesizer to be stored in the derived 
component’s resource file, as 'ROMi' resources. The derived 
Functions 167



C H A P T E R  2  

Music Architecture Reference
component gets a call to MusicDerivedSetInstrument when 
one of these instruments is requested.

DISCUSSION

The baseResID parameter is the lowest resource ID used by your component for 
the standard resources described above. Since the resource numbers are relative 
to this, you can include several music components in a single system extension.

Functions Implemented by e Generic Music Component Clients 2

The following functions are implemented by client music components of the 
generic music component. They are called by the generic music component, 
which make calls that are necessary for responding to function calls made 
directly by applications.

MusicDerivedSetKnob 2

The generic music component calls your music component’s 
MusicDerivedSetKnob function when any of the synthesizer’s knobs are altered.

pascal ComponentResult MusicDerivedSetKnob(
MusicComponent mc,
long knobType,
long knobNumber,
long knobValue,
long partNumber,
GCPart *p,
GenericKnobDescription *gkd);

ComponentCallNow (kMusicDerivedSetKnobSelect,24);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

knobType Specifies the type of knob that has been altered.
168 Functions



C H A P T E R  2

Music Architecture Reference
knobNumber Specifies the number of the knob that has been altered.

knobValue Specifies the new value of the altered knob.

partNumber Specifies the number of the part whose knob has been altered.

p A pointer to the part whose knob has been altered.

gkd A generic knob description structure for the knob.

DISCUSSION

This function is called when any knob on the synthesizer is altered. It should 
look at the Part structure and the GenericKnobDescription structure and address 
the synthesizer hardware appropriately to set the new knob value. For a MIDI 
device, this means to construct a system-exclusive MIDI packet and send it to 
the MIDI routine received by the MusicDerivedSetMIDI call.

These are the possible values for the knobType parameter:

#define kGenericMusicKnob 1
#define kGenericMusicInstrumentKnob 2
#define kGenericMusicDrumKnob 3

MusicDerivedSetPart 2

The generic music component calls your music component’s 
MusicDerivedSetPart function to use the polyphony for the part specified in the 
Part structure.

pascal ComponentResult MusicDerivedSetPart (
MusicComponent mc, 
long partNumber,
GCPart *p);

ComponentCallNow (kMusicDerivedSetPartSelect, 8);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function.
Functions 169



C H A P T E R  2  

Music Architecture Reference
partNumber Specifies the number of the part for this operation.

p A pointer to the part for this operation.

MusicDerivedSetInstrument 2

The generic music component calls your music component’s 
MusicDerivedSetInstrument function to get the complete instrument defined by 
the Part structure to the synthesizer. This is either by hardware addressing in 
the case of a NuBus card, or by constructing a MIDI packet for an external 
synthesizer.

pascal ComponentResult MusicDerivedSetInstrument (
MusicComponent mc,
long partNumber,
GCPart *p);

ComponentCallNow (kMusicDerivedSetInstrumentSelect,8);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

partNumber Specifies the number of the part for this operation.

p A pointer to the part for this operation.

MusicDerivedSetInstrumentNumber 2

The generic music component calls your music component’s 
MusicDerivedSetInstrumentNumber function to set the specified part to the 
instrument number in the Part structure.

pascal ComponentResult MusicDerivedSetInstrumentNumber (
MusicComponent mc,
long partNumber,
GCPart *p);
170 Functions



C H A P T E R  2

Music Architecture Reference
ComponentCallNow (kMusicDerivedSetInstrumentNumberSelect,8);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

partNumber Specifies the number of the part for this operation.

p A pointer to the part for this operation.

DISCUSSION

For a MIDI device that either only supports instruments from 0 to 127 or that 
supports one of the standard bank-switching controller messages, this call 
should not be needed. You would set the kGenericMusicBank0 or 
kGenericMusicBank32 (or both) flags, instead.

MusicDerivedSetMIDI 2

The generic music component calls your music component’s 
MusicDerivedSetMIDI function to set the MIDI channel and other MIDI settings 
for MIDI output only. It sends MIDI out to the synthesizer. 

pascal ComponentResult MusicDerivedSetMIDI(
MusicComponent mc,
MusicMIDISendUPP midiProc,
long refcon,
long midiChannel);

ComponentCallNow (kMusicDerivedSetMIDISelect,12);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

midiProc A pointer to the function in your music component for 
performing MIDI output.
Functions 171



C H A P T E R  2  

Music Architecture Reference
refcon A reference constant sent to the function specified by the 
midiProc parameter.

midiChannel Specifies the MIDI channel to use for the operation.

DISCUSSION

A derived component for a MIDI synthesizer receives this call soon after it is 
opened. It should store the midiProc, refCon, and midiChannel in its global 
variables. When the derived component needs to communicate with the 
synthesizer, it calls the midiProc with this reference constant. The midiChannel 
variable specifies the “system channel” of the device.

MusicDerivedStoreInstrument 2

The generic music component calls your music component’s 
MusicDerivedStoreInstrument function to store the specified instrument in a 
user instrument location.

pascal ComponentResult MusicDerivedStoreInstrument (
MusicComponent mc,
long partNumber,
GCPart *p,
long instrumentNumber )

ComponentCallNow (kMusicDerivedStoreInstrumentSelect,8);

mc Specifies the instance of the generic music component. Your 
software obtains this reference when calling the Component 
Manager’s OpenComponent or OpenDefaultComponent function. See 
the “Component Manager” chapter in QuickTime 3 Reference.

partNumber Specifies the number of the part for this operation.

p A pointer to the part for this operation.

instrumentNumber
Specifies the number of the instrument to store.
172 Functions



C H A P T E R  2

Music Architecture Reference

 

 

Result Codes 2

This section lists all the result codes returned by QuickTime music architecture 
functions.

NOTIMPLEMENTEDMUSICOSERR –2071 Call to a routine that is not supported by a 
particular music component.

CANTSENDTOSYNTHESIZEROSERR –2072 Attempt to use a synthesizer before it has 
been initialized, given a MIDI port to use, or 
told which slot card to use. For example, the 
MusicSetMIDIProc function has not been 
called.

ILLEGALVOICEALLOCATIONOSERR –2074 Attempt to allocate more voices than a 
synthesizer supports.

ILLEGALPARTOSERR –2075 Usually indicates use of a part number 
parameter outside the range 1…partcount.

ILLEGALCHANNELOSERR –2076 Attempt to use a MIDI channel outside the 
range 1…16.

ILLEGALKNOBOSERR –2077 Attempt to use a knob index or knob ID that 
is not valid.

ILLEGALKNOBVALUEOSERR –2078 Attempt to set a knob outside its allowable 
range, as specified in its knob description 
structure.

ILLEGALINSTRUMENTOSERR –2079 Attempt to use an instrument or sound that is 
not available or there is some other problem 
with the instrument, such as a bad instrument
number. 

ILLEGALCONTROLLEROSERR –2080 Attempt to get or set a controller that is 
outside the allowable controller number range
or is not recognized by this particular music 
component.

MIDIMANAGERABSENTOSERR –2081 Attempt to use MIDI Manager for a 
synthesizer when the MIDI Manager is not 
installed.

SYNTHESIZERNOTRESPONDINGOSERR –2082 Various hardware problems with a 
synthesizer.

SYNTHESIZEROSERR –2083 Software problem with a synthesizer.
ILLEGALNOTECHANNELOSERR –2084 Attempt to use a note channel that is not 

initialized or is otherwise errant.
Result Codes 173



C H A P T E R  2  

Music Architecture Reference
NOTECHANNELNOTALLOCATEDOSERR –2085 It was not possible to allocate a note channel.
TUNEPLAYERFULLOSERR –2086 Attempt to queue up more tune segments 

(with TuneQueue) than allowed.
TUNEPARSEOSERR –2087 TuneSetHeader or TuneQueue encountered 

illegal tune sequence data.
174 Result Codes



A P P E N D I X  A

Figure A-0
Listing A-0
Table A-0
General MIDI Reference A

General MIDI Instrument Numbers A

Table A-1 General MIDI instrument numbers

Number Instrument Number Instrument

1 Acoustic Grand Piano 65 Soprano Sax

2 Bright Acoustic Piano 66 Alto Sax

3 Electric Grand Piano 67 Tenor Sax

4 Honky-tonk Piano 68 Baritone Sax

5 Rhodes Piano 69 Oboe

6 Chorused Piano 70 English Horn

7 Harpsichord 71 Bassoon

8 Clavinet 72 Clarinet

9 Celesta 73 Piccolo

10 Glockenspiel 74 Flute

11 Music Box 75 Recorder

12 Vibraphone 76 Pan Flute

13 Marimba 77 Bottle Blow

14 Xylophone 78 Shakuhachi

15 Tubular bells 79 Whistle

16 Dulcimer 80 Ocarina

17 Draw Organ 81 Square Lead
General MIDI Instrument Numbers 175



A P P E N D I X  

General MIDI Reference
18 Percussive Organ 82 Saw Lead

19 Rock Organ 83 Calliope

20 Church Organ 84 Chiffer

21 Reed Organ 85 Synth Lead 5

22 Accordion 86 Synth Lead 6

23 Harmonica 87 Synth Lead 7

24 Tango Accordion 88 Synth Lead 8

25 Acoustic Nylon Guitar 89 Synth Pad 1

26 Acoustic Steel Guitar 90 Synth Pad 2

27 Electric Jazz Guitar 91 Synth Pad 3

28 Electric Clean Guitar 92 Synth Pad 4

29 Electric Guitar Muted 93 Synth Pad 5

30 Overdriven Guitar 94 Synth Pad 6

31 Distortion Guitar 95 Synth Pad 7

32 Guitar Harmonics 96 Synth Pad 8

33 Wood Bass 97 Ice Rain

34 Electric Bass Fingered 98 Soundtracks

35 Electric Bass Picked 99 Crystal

36 Fretless Bass 100 Atmosphere

37 Slap Bass 1 101 Bright

38 Slap Bass 2 102 Goblin

39 Synth Bass 1 103 Echoes

40 Synth Bass 2 104 Space

41 Violin 105 Sitar

42 Viola 106 Banjo

Table A-1 General MIDI instrument numbers

Number Instrument Number Instrument
176 General MIDI Instrument Numbers



A P P E N D I X  

General MIDI Reference
43 Cello 107 Shamisen

44 Contrabass 108 Koto

45 Tremolo Strings 109 Kalimba

46 Pizzicato Strings 110 Bagpipe

47 Orchestral Harp 111 Fiddle

48 Timpani 112 Shanai

49 Acoustic String 
Ensemble 1

113 Tinkle Bell

50 Acoustic String 
Ensemble 2 

114 Agogo

51 Synth Strings 1 115 Steel Drums

52 Synth Strings 2 116 Woodblock

53 Aah Choir 117 Taiko Drum

54 Ooh Choir 118 Melodic Tom

55 Synvox 119 Synth Tom

56 Orchestra Hit 120 Reverse Cymbal

57 Trumpet 121 Guitar Fret Noise

58 Trombone 122 Breath Noise

59 Tuba 123 Seashore

60 Muted Trumpet 124 Bird Tweet

61 French Horn 125 Telephone Ring

62 Brass Section 126 Helicopter

63 Synth Brass 1 127 Applause

64 Synth Brass 2 128 Gunshot

Table A-1 General MIDI instrument numbers

Number Instrument Number Instrument
General MIDI Instrument Numbers 177



A P P E N D I X  

General MIDI Reference
General MIDI Drum Kit Numbers A

Table A-2 General MIDI drum kit numbers

35 Acoustic Bass Drum 51 Ride Cymbal 1

36 Bass Drum 1 52 Chinese Cymbal

37 Side Stick 53 Ride Bell

38 Acoustic Snare 54 Tambourine

39 Hand Clap 55 Splash Cymbal

40 Electric Snare 56 Cowbell

41 Lo Floor Tom 57 Crash Cymbal 2

42 Closed Hi Hat 58 Vibraslap

43 Hi Floor Tom 59 Ride Cymbal 2

44 Pedal Hi Hat 60 Hi Bongo

45 Lo Tom Tom 61 Low Bongo

46 Open Hi Hat 62 Mute Hi Conga

47 Low Mid Tom Tom 63 Open Hi Conga

48 Hi Mid Tom Tom 64 Low Conga

49 Crash Cymbal 1 65 Hi Timbale

50 Hi Tom Tom 66 Lo Timbale
178 General MIDI Drum Kit Numbers



A P P E N D I X  

General MIDI Reference
General MIDI Kit Names A

Table A-3 General MIDI kit names

1 Dry Set

9 Room Set

19 Power Set

25 Electronic Set

33 Jazz Set

41 Brush Set

65-112 User Area

128 Default
General MIDI Kit Names 179



A P P E N D I X  

General MIDI Reference
180 General MIDI Kit Names


	About This Book
	Book Structure
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment

	QuickTime Music Architecture
	Introduction to QuickTime Music Architecture
	Overview of QTMA Components
	Figure�1-1 How QuickTime music architecture components work together
	Note Allocator Component
	Tune Player Component
	Music Components Included in QuickTime
	Instrument Components and Atomic Instruments
	Figure�1-2 An atomic instrument atom container


	The QuickTime Music Synthesizer Component
	The General MIDI Synthesizer Component
	The MIDI Synthesizer Component
	The Base Instrument Component
	The Generic Music Component
	MIDI Components

	About QuickTime Music Events
	Table 1-1 Event types (continued)
	Figure�1-3 A music fragment
	Figure�1-4 Duration of notes and rests
	Note Event and Extended Note Event
	Figure�1-5 note event
	Table 1-2 Contents of a note event
	Figure�1-6 Extended note event
	Table 1-3 Contents of an extended note event

	Rest Event
	Figure�1-7 Rest event
	Table 1-4 Contents of a rest event

	Marker Event
	Figure�1-8 Marker event of subtype end
	Table 1-5 Contents of a marker event

	Controller Event and Extended Controller Event
	Figure�1-9 Controller event
	Table 1-6 Contents of a controller event
	Figure�1-10 Extended controller event
	Table 1-7 Contents of an extended controller event

	General Event
	Figure�1-11 A note request general event
	Table 1-8 Contents of a general event

	Knob Event
	Figure�1-12 Knob event
	Table 1-9 Contents of a knob event


	Using the QuickTime Music Architecture
	QuickTime Settings Music Panel
	Figure�1-13 The new music panel in the QuickTime Settings control panel
	Figure�1-14 The Edit List popup dialog box for adding, removing, and configuring QTMA synthesizers

	Converting MIDI Data to a QuickTime Music Track Using MoviePlayer
	Importing a Standard MIDI File As a Movie Using the Movie Toolbox
	Playing Notes With the Note Allocator
	Note-Related Data Structures
	Listing�1-1 Note-related data structures

	Playing Piano Sounds With the Note Allocator
	Listing�1-2 Playing notes with the note allocator component




	Music Architecture Reference
	Constants
	Atom Types for Atomic Instruments
	Instrument Knob Flags
	Loop Type Constants
	Music Component Type
	Synthesizer Type Constants
	Synthesizer Description Flags
	Synthesizer Knob ID Constants
	Controller Numbers
	Controller Range
	Drum Kit Numbers
	Tone Fit Flags
	Knob Flags
	Knob Value Constants
	Music Packet Status
	Atomic Instrument Information Flags
	Flags for Setting Atomic Instruments
	Instrument Info Flags
	Synthesizer Connection Type Flags
	Instrument Match Flags
	Note Request Constants
	Pick Instrument Flags
	Note Allocator Type
	Tune Queue Depth
	Tune Player Type
	Tune Queue Flags
	MIDI Component Constants
	MIDI System Exclusive Constants
	MIDI File Import Flags
	Part Mixing Flags

	Data Structures
	Instrument Knob Structure
	Instrument Knob List
	Atomic Instrument Sample Description Structure
	Synthesizer Description Structure
	Tone Description Structure
	Table 2-1
	Table 2-2 IRange descriptions

	Knob Description Structure
	Instrument About Information
	MIDI Packet
	Instrument Information Structure
	Instrument Information List
	General MIDI Instrument Information Structure
	Non-General MIDI Instrument Information Structure
	Non–General MIDI Instrument Information List
	Complete Instrument Information List
	Synthesizer Connections for MIDI Devices
	QuickTime MIDI Port
	QuickTime MIDI Port List
	Note Request Information Structure
	Note Request Structure
	Tune Status

	Functions
	Tune Player Functions
	TuneSetHeader
	TuneSetHeaderWithSize
	TuneSetNoteChannels
	TuneQueue
	TuneStop
	TuneGetVolume
	TuneSetVolume
	TuneSetSoundLocalization
	TuneGetTimeBase
	TuneGetTimeScale
	TuneSetTimeScale
	TuneGetPartMix
	TuneSetPartMix
	TuneInstant
	TunePreroll
	TuneUnroll
	TuneGetIndexedNoteChannel
	TuneGetStatus
	TuneSetPartTranspose
	TuneGetNoteAllocator
	TuneSetSofter
	TuneSetBalance
	TuneTask

	Note Allocator Functions: Note Channel Allocation and Use
	NANewNoteChannel
	NANewNoteChannelFromAtomicInstrument
	NADisposeNoteChannel
	NAGetNoteChannelInfo
	NAGetIndNoteChannel
	NAUseDefaultMIDIInput
	NALoseDefaultMIDIInput
	NAPrerollNoteChannel
	NAUnrollNoteChannel
	NAResetNoteChannel
	NASetNoteChannelVolume
	NASetNoteChannelBalance
	NASetNoteChannelSoundLocalization
	NAPlayNote
	NAGetController
	NASetController
	NAGetKnob
	NASetKnob
	NAFindNoteChannelTone
	NASetInstrumentNumber
	NASetInstrumentNumberInterruptSafe
	NASetAtomicInstrument
	NASendMIDI
	NAGetNoteRequest

	Note Allocator Functions: Miscellaneous Interface Tools
	NAPickInstrument
	NAPickEditInstrument
	NAStuffToneDescription
	NAPickArrangement
	NACopyrightDialog

	Note Allocator Functions: System Configuration and Utility
	NARegisterMusicDevice
	NAUnregisterMusicDevice
	NAGetRegisteredMusicDevice
	NAGetDefaultMIDIInput
	NASetDefaultMIDIInput
	NAGetMIDIPorts
	NASaveMusicConfiguration
	NATask

	Music Component Functions: Synthesizer
	MusicGetDescription
	MusicFindTone
	MusicPlayNote
	MusicGetKnob
	MusicSetKnob
	MusicGetKnobDescription
	MusicGetInstrumentKnobDescription
	MusicGetDrumKnobDescription
	MusicGetKnobSettingStrings
	MusicSetMIDIProc
	MusicGetMIDIProc
	MusicGetMIDIPorts
	MusicSendMIDI
	MusicGetDeviceConnection
	MusicUseDeviceConnection

	Music Component Functions: Instruments and Parts
	MusicGetPartInstrumentNumber
	MusicSetPartInstrumentNumber
	MusicSetPartInstrumentNumberInterruptSafe
	MusicGetPartAtomicInstrument
	MusicSetPartAtomicInstrument
	MusicStorePartInstrument
	MusicGetInstrumentAboutInfo
	MusicGetInstrumentInfo
	MusicGetPart
	MusicSetPart
	MusicGetPartName
	MusicSetPartName
	MusicGetPartKnob
	MusicSetPartKnob
	MusicResetPart
	MusicGetPartController
	MusicSetPartController
	MusicSetPartSoundLocalization

	Music Component Functions: Miscellaneous
	MusicGetMasterTune
	MusicSetMasterTune
	MusicStartOffline
	MusicSetOfflineTimeTo
	MusicTask

	Instrument Component Functions
	InstrumentGetInfo
	InstrumentGetInst
	InstrumentInitialize
	InstrumentOpenComponentResFile
	InstrumentCloseComponentResFile
	InstrumentGetComponentRefCon
	InstrumentSetComponentRefCon

	MIDI Component Functions
	QTMIDIGetMIDIPorts
	QTMIDISendMIDI
	QTMIDIUseReceivePort
	QTMIDIUseSendPort
	Functions for Importing MIDI Files
	MIDIImportGetSettings
	MIDIImportSetSettings

	Function Provided by the Generic Music Component
	MusicGenericConfigure

	Functions Implemented by e Generic Music Component Clients
	MusicDerivedSetKnob
	MusicDerivedSetPart
	MusicDerivedSetInstrument
	MusicDerivedSetInstrumentNumber
	MusicDerivedSetMIDI
	MusicDerivedStoreInstrument



	Result Codes

	General MIDI Reference
	General MIDI Instrument Numbers
	Table A-1 General MIDI instrument numbers

	General MIDI Drum Kit Numbers
	Table A-2 General MIDI drum kit numbers

	General MIDI Kit Names
	Table A-3 General MIDI kit names



