
File Type: $BD (189) Auxiliary Type: All 1 of 2

Apple II
File Type Notes

Developer Technical Support

®

File Type: $BD (189)
Auxiliary Type: All

Full Name: GS/OS File System Translator
Short Name: GS/OS File System Translator

Written by: Matt Deatherage September 1990

Files of this type and auxiliary type contain file system translators for GS/OS.

Files of type $BD contains file system translators, or FSTs. FSTs do not load if bit 15 of their
auxiliary type is set.

GS/OS calls FSTs to interpret the physical file systems stored on block devices. By asking
translation software to read the file system, GS/OS can read virtually any file system while
having only an abstract file system assumed in the operating system code. Not all released file
system translators are required, saving space on disk and in memory.

The format for FSTs is Apple confidential and subject to change with every system software
release; Apple will release all future FSTs for GS/OS. Third-party developers may not create
GS/OS FSTs—no documentation is available, and disassembly of the code for this purpose is not
permitted. This is not an easy decision for Apple, which is a company that was built upon and
operates with the goal to empower individuals through computing. Not revealing information
isn’t exactly consistent with this goal. There are, however, reasons for this policy.

First, FSTs are not as modular as they could be. Some GS/OS level changes require changes to
all of the FSTs to be implemented. These changes range in magnitude from internal system
service call changes to adding new parameters to existing calls. GS/OS is not tolerant of FSTs
that do not know about such changes. The FST structure is straightforward, but it is also
complex enough that disassembly of existing FSTs does not cover all the bases.

Second, it can create chaos for users. Two file system translators for a file system is far worse
than none at all. No physical file system exactly matches the GS/OS abstract file system, so
every FST must have file system specific behavior. Although some of these behaviors are well
documented (parameters that do not fit in the abstract file system go in the option_list, for
example), no two independently-designed FSTs for the same file system can possibly do such
things identically.

For example, if there were two third-party DOS 3.3 FSTs available, each would have its own
FSTSpecific subcalls, option_list parameters and other implementation differences.

Apple II File Type Notes

2 of 2 File Type: $BD (189) Auxiliary Type: All

Since there is only one file_sys_ID per file system, programs that create correct data
structures for one DOS 3.3 FST may blow up with the other one.

Developer Technical Support September 1990

File Type: $BD (189) Auxiliary Type: All 3 of 2

If users somehow manage to figure this out, the only way to change FSTs is to enter the
*:System:FSTs folder, deactivate one FST, activate another one and reboot, which is not
acceptable. Even switching FSTs is unacceptable for archival and copying programs which may
have stored option_list parameters embedded in files. Futhermore, if the file system is
bootable, that makes boot blocks and a file system stub which are also tied to an FST, and users
would have a horrible time changing those.

The best solution to these problems for Apple’s customers (who are also your customers) is for
Apple to maintain control over the development of file system translators. Apple will provide
file system translators for other file systems. If you have requests for how certain features of any
file system should be handled by future FSTs, please contact Developer Technical Support.

Further Reference
• GS/OS Reference

