
File Type: $E0 (224) Auxiliary Type: $8002 1 of 15

Apple II
File Type Notes

Developer Technical Support
File Type: $E0 (224)
Auxiliary Type: $8002

Full Name: NuFile Exchange Archival Library
Short Name: ShrinkIt (NuFX) document

Revised by: Andy Nicholas and Matt Deatherage July 1990
Written by: Matt Deatherage July 1989

Files of this type and auxiliary type contain NuFX Archival Libraries.
Changes since July 1989: Rewrote major portions to reflect Master Version $0002 of the
NuFX standard.

Introduction

NuFX is a robust, full-featured archival standard for the Apple II family. The standard, as
presented in this Note, allows for full archival of ProDOS and GS/OS files while keeping all file
attributes with each file, as well as providing necessary archival functions such as multiple
compression schemes and multiple archival implementations of the same standard. NuFX is
implemented in the application ShrinkIt, a free archival utility program for enhanced IIe, IIc and
IIGS computers. (Versions for earlier Apple II models are also available.)

The NuFX standard was developed by Andrew Nicholas for Paper Bag Productions. Comments
or suggestions on the NuFX standard, or comments and suggestions on ShrinkIt are welcome at:

Paper Bag Productions
8415 Thornberry Drive East
Upper Marlboro, MD 20772
Attn: NuFX Technical Support

America Online: ShrinkIt
GEnie: ShrinkIt
CompuServe: 70771,2615

History

The Apple II community has always lacked a well-defined method for archiving files. NuFX is
an attempt to rectify the situation by providing a flexible, consistent standard for archiving files,

Apple II File Type Notes

2 of 15 File Type: $E0 (224) Auxiliary Type: $8002

disks, and other computer media. Although many files are archived using the Binary II standard
(see Apple II File Type Note, File Type $E0, Auxiliary Type $8000), it was not designed as an
archival standard and its continued use as such creates problems. More people are using Binary
II as an archival standard than as a way to keep attributes with a file when transferred, and this
use is causing the original intent of Binary II to become lost and unused.

NuFX, developed as an archival standard for the days of GS/OS, allows:

• Filenames longer than 64 characters (GS/OS can create 8,000-character
filenames).

• A convenient way to add to, remove from, and work on an archive.
• Including GS/OS files which contain resource forks.
• Including entire disk images.
• Including comments with a file.
• A convenient way to represent a file compressed or encrypted by a specific

application.
• A true archive standard. Binary IIs original intent was to make transfer of Apple

II files from local machines to large information services possible; otherwise, a
file’s attribute information would be lost. Use of Binary II to archive files rather
than simply maintain their attributes stretches it beyond it’s original intent.

Adding all of these features to the existing Binary II standard would be nearly impossible
without violating the existing standard and causing a great deal of confusion. Although Binary II
is flexible, it is simply unable to address all of these concerns without alienating existing Binary
II extraction programs.

To provide some differentiation between standards and provide a better functioning format, this
Note presents a new standard called NuFX (NuFile eXchange for the Apple II; pronounced new-
F-X). NuFX fixes the problems that Apple IIGS users would soon be experiencing as other filing
systems become available for GS/OS. NuFX attempts to stem a set of problems before they have
a chance to develop. NuFX provides all of the features of Binary II, but goes further to allow the
user the ultimate in flexibility, usefulness and performance.

Additional Date/Time Data type:

Date/Time (8 Bytes):

+000 second Byte The second, 0 through 59.
+001 minute Byte The minute, 0 through 59.
+002 hour Byte The hour, 0 through 23.
+003 year Byte The current year minus 1900.
+004 day Byte The day, 0 through 30.
+005 month Byte The month, 0 through 11 (0 = January).
+006 filler Byte Reserved, must be zero.
+007 weekDay Byte The day of the week, 1 through 7 (1 = Sunday).

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 3 of 15

The format of the Date/Time field is identical to that described for the ReadTimeHex call in
the Apple IIGS Toolbox Reference Manual.

Apple II File Type Notes

4 of 15 File Type: $E0 (224) Auxiliary Type: $8002

Implementation

Figure 1 illustrates the basic structure of a NuFX archive.

Master Header HeaderDataHeader Data

Next RecordFirst Record

Figure 1–NuFX Archive Structure

A single master header block contains values which describe the entire archive (those with
knowledge of structured programming may consider them archive globals). Each of the
succeeding header blocks contains only information about the record it precedes (consider each
an archive local).

Each header block is followed by a list of threads, which is followed by the actual threads. The
data for each thread may be a data fork, resource fork, message, control sequence for a NuFX
utility program, or almost any kind of sequential data.

Possible Block Combinations:

The blocks must occur in the following fashion:

Master Header Block containing N entries

Header Block
Threads list:

filename_thread (16 bytes)
message_thread (16 bytes)
data thread (16 bytes)
.
.
.

filename_thread’s data (filename_thread’s comp_thread_eof # of bytes)
message_thread’s data (message_thread’s comp_thread_eof # of bytes)
data_thread’s data (data_thread’s comp_thread_eof # of bytes)
.
.
.
Next Header Block (notice no second Master Header block)
Threads list (message, control, data or resource)
.
.
.
Nth Header Block
Threads list (message, control, data or resource)

Master Header Block Contents

+000 nufile_id 6 Bytes These six bytes spell the word “NuFile” in alternating ASCII
(low, then high) for uniqueness. The six bytes are $4E $F5
$46 $E9 $6C $E5.

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 5 of 15

+006 master_crc Word A 16-bit cyclic redundancy check (CRC) of the remaining
fields in this block (bytes +008 through +047). Any programs
which modify the master header block must recalculate the
CRC for the master header. (see the section “A Sample CRC
Algorithm”) The initial value of this CRC is $0000.

+008 total_records Long The total number of records in this archive file. It is possible
to chain multiple records (files or disks) together, as it is
possible to chain different types of records together (mixed
files and disks).

+012 archive_create_when
Date/Time The date and time on which this archive was initially created.

This field should never be changed once initially written. If
the date is not known, or is unable to be calculated, this field
should be set to zero. If the weekday is not known, or is
unable to be calculated, this field should be set to null.

+020 archive_mod_when
Date/Time The date of the last modification to this archive. This field

should be changed every time a change is made to any of the
records in the archive. If the date is not known, or is unable to
be calculated, this field should be set to zero. If the weekday
is not known, or is unable to be calculated, this field should be
set to null.

+028 master_version
Word The master version number of the NuFX archive. This Note

describes master_version $0002, for which the next eight
bytes are zeroed.

+030 reserved 8 Bytes Must be null ($00000000).
+038 master_eof Long The length of the NuFX archive, in bytes. Any programs

which modify the length of an archive, either increasing it or
decreasing it in size, must change this field in the master
header to reflect the new size.

Header Block Contents:

Following the Master Header block is a regular Header Block, which precedes each record
within the NuFX archive. A cyclic redundancy check (CRC) has been provided to detect
archives which have possibly been corrupted. The only time the CRC should be included in a
block is for the Master Header and for each of the regular Header Blocks. The CRC ensures
reliability and data integrity.

+000 nufx_id 4 Bytes These four bytes spell the word “NuFX” in alternating ASCII
(low, then high) for uniqueness. The four bytes are $4E $F5
$46 $D8.

+004 header_crc Word The 16-bit CRC of the remaining fields of this block (bytes
+006 through the end of the header block and any threads
following it). This field is used to verify the integrity of the
rest of the block. Programs which create NuFX archives must
include this in every header. It is up to the discretion of the
extracting program to check the validity of this CRC. Any
programs which might modify the header of a particular
record must recalculate the CRC for the header block. The
initial value for this CRC is zero ($0000).

+006 attrib_count Word This field describes the length of the attribute section of each
record in bytes. This count measures the distance in bytes
from the first field (offset +000) up to and including the

Apple II File Type Notes

6 of 15 File Type: $E0 (224) Auxiliary Type: $8002

f i l e n a m e _ l e n g t h field. By convention, the
filename_length field will always be the last 2 bytes of
the attribute section regardless of what has preceded it.

+008 version_number
Word Version of this record. If version_number is $0000, no

option_list fields are present. If the version_number is $0001
option_list fields may be present. If the version_number is
$0002 then option_list fields may be present and a valid CRC-
16 exists for the compressed data in the data threads of this
record. If the version_number is $0003 then option_list fields
may be present and a valid CRC-16 exists for the
uncompressed data in the data threads of this record. The
current version number is $0003 and should always be used
when making archives.

+010 total_threads Long The number of thread subrecords which should be expected
immediately following the filename or pathname at the end of
this header block. This field is extremely important as it
contains the information about the length of the last third of
the header.

+014 file_sys_id Word The native file system identifier:
$0000 reserved
$0001 ProDOS/SOS
$0002 DOS 3.3
$0003 DOS 3.2
$0004 Apple II Pascal
$0005 Macintosh HFS
$0006 Macintosh MFS
$0007 Lisa File System
$0008 Apple CP/M
$0009 reserved, do not use
(The GS/OS Character FST returns this value)
$000A MS-DOS
$000B High Sierra
$000C ISO 9660
$000D AppleShare
$000E–$FFFF Reserved, do not use

If the file system of a disk being archived is not known, it
should be set to zero.

+016 file_sys_info Word Information about the current filing system. The low byte of
this word (offset +016) is the native file system separator. For
ProDOS, this is the slash (/ or $2F). For HFS and GS/OS, the
colon (: or $3F) is used, and for MS-DOS, the separator is the
backslash (\ or $5C). This separator is provided so archival
utilities may know how to parse a valid file or pathname from
the filename field for the receiving file. GS/OS archival
utilities should not attempt to parse pathnames, as it is not
possible to build in syntax rules for file systems not currently
defined. Instead, pass the pathname directory to GS/OS and
attempt translation (asking the user for suggestions) only if
GS/OS returns an “Invalid Path Name Syntax” error. The
high byte of this word is reserved and should remain zero.

+018 access Flag Long Bits 31-8 reserved, must be zero
Bit 7 (D) 1 = destroy enabled
Bit 6 (R)1 = rename enabled
Bit 5 (B)1 = file needs to be backed up
Bits 4-3 reserved, must be zero
Bit 2 (I) 1 = file is invisible

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 7 of 15

Bit 1 (W) 1 = write enabled
Bit 0 (R)1 = read enabled

+022 file_type Long The file type of the file being archived. For ProDOS 8 or
GS/OS, this field should always be what the operating system
returns when asked. For disks being archived, this field
should be zero.

+026 extra_type Long The auxiliary type of the file being archived. For ProDOS 8
or GS/OS, this field should always be what the operating
system returns when asked. For disks being archived, this
field should be the total number of blocks on the disk.

+030 storage_type Word For Files: The storage type of the file. Types $1 through $3
are standard (one-forked) files, type $5 is an extended (two-
forked) file, and type $D is a subdirectory.

file_sys_block_size
Word For Disks: The block size used by the device should be placed

in this field. For example, under ProDOS, this field will be
512, while for HFS it might be 524. The GS/OS Volume call
will return this information if asked.

+032 create_when Date/Time The date and time on which this record was initially created.
If the creation date and time are available from a disk device,
this information should be included. If the date is not known,
or is unable to be calculated, this field should be set to zero. If
the weekday is not known, or is unable to be calculated, this
field should be set to zero.

+040 mod_when Date/Time The date and time on which this record was last modified. If
the modification date and time are available from a disk
device, this information should be included. If the date is not
known, or is unable to be calculated, this field should be set to
zero. If the weekday is not known, or is unable to be
calculated, this field should be set to zero.

+048 archive_when Date/Time The date and time on which this record was placed in this
archive. If the date is not known, or is unable to be calculated,
this field should be set to zero. If the weekday is not known,
or is unable to be calculated, this field should be set to zero.

The following option_list information is only present if the NuFX version number for this
record is $0001 or greater.

+056 option_size Word The length of the FST-specific portion of a GS/OS
option_list returned by GS/OS. This field may be
$0000, indicating the absence of a valid option_list.

A GS/OS option_list is formatted as follows:

+000 buffer_size
Word Size of the buffer for GS/OS to place the

option_list in, including this count word. This
must be at least $2E.

+002 list_size
Word The number of bytes of information returned by

GS/OS.
+004 file_sys_ID

Word A file system ID word (see list above) identifying the
FST owning the file in question.

+006 option_bytes

Apple II File Type Notes

8 of 15 File Type: $E0 (224) Auxiliary Type: $8002

Bytes The bytes returned by the FST. There are
(buffer_size - 6) of them.

The option_list contains information specific to native file systems that GS/OS doesn’t
normally use (such as true creator_type, file_type, and access privileges for
AppleShare). Other FSTs released in the future will follow similar conventions to return native
file system specific parameters in the option_list. Information in the option_list
should always be copied from file to file.

The value option_size in the NuFX header is the value of list_size minus two.
Immediately following the option_size count word are (list_size - 2) bytes. To pass
these values back to the destination file system, construct an option_list with a suitably
large buffer_size, a list_size of the NuFX option_size + 2, the file_sys_id of
the source file, and the FST-returned option_bytes.

+058 list_bytes Bytes FST-specific bytes returned in an option_list. These are
the bytes in the GS/OS option_list not including the FST
ID word. There are o p t i o n _ s i z e of them. If
option_size is an odd number, one zero byte of padding is
added to keep the block size an even number.

Because the attributes section does not have a fixed size, the next field must be found by looking
two bytes before the offset indicated by attrib_count (+006).

+attrib_count - 2
filename_length

Word Obsolete, should be set to zero. In previous versions of
NuFX, this field was the length of a file name or pathname
immediately following this field.

To allow the inclusion of future additional parameters in the
attributes section, NuFX utility programs should rely on the
attribs_count field to find the filename_length
field.

Current convention is to zero this field when building an
archive and put the file or pathname into a filename thread so
the record can be renamed in the archive. Archival programs
should recognize both methods to find a valid file name or
pathname.

+attrib_count
filename Bytes Filename or partial pathname if applicable. If this is a disk

being archived, then the volume_name should be included
in this field. If a volume name is included in this field, a
separator should not be included in, or precede the name. If a
volume name is not available, then this field should be zeros.

If a partial pathname is specified, the directories to which the
current pathname refers need not have preceded this particular
record. The extraction program must test each referenced
directory individually. If the directory in question does not
exist, the extracting program should create it.

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 9 of 15

Any utility which extracts file from a NuFX archive must not
assume that this field will be in a format it is able to handle.
In particular, extraction programs should check for syntax
unacceptable to the operating system under which they run
and perform whatever conversions are necessary to parse a
legal filename or pathname. In general, assume nothing.
(GS/OS programs should pass the filename or pathname
directly to GS/OS, and only attempt to convert the name if
GS/OS returns an “invalid pathname syntax” error.)

Both high and low ASCII values are valid but may not mean
the same to each file system (for example, all eight bits are
significant in AppleShare pathnames while only seven are
significant in ProDOS pathnames).

Apple II File Type Notes

10 of 15 File Type: $E0 (224) Auxiliary Type: $8002

Threads

Thread Records are 16-byte records which immediately follow the Header Block (composed of
the attributes and file name of the current record) and describe the types of data structures which
are included with a given record. The number of Thread Records is described in the attribute
section by a Word, total_threads.

Each Thread Record should be checked for the type of information that a given utility program
can extract. If a utility is incapable of extracting a particular thread, that thread should be
skipped (with the exception of extended files under ProDOS 8, which should be dearchived into
AppleSingle format, or both threads should be skipped). If a utility finds a redundancy in a
Thread Record, it must decide whether to skip the record or to do something with that particular
thread (i.e., if a utility finds two message_thread threads it can either ignore the second one
or display it. Likewise, if a utility finds two data_thread threads for the same file, it should
inspect the thread_kind of each. If they match, it can either overwrite the first thread
extracted, or warn the user and skip the second thread).

Thread records can be represented as follows:

+000 thread_class Word The classification of the thread:
$0000 message_thread
$0001 control_thread
$0002 data_thread
$0003 filename_thread

+002 thread_format Word The format of the data within the thread:
$0000 Uncompressed
$0001 Huffman Squeeze
$0002 Dynamic LZW/1 (ShrinkIt specific)
$0003 Dynamic LZW/2 (ShrinkIt specific)
$0004 Unix 12-bit Compress
$0005 Unix 16-bit Compress

+004 thread_kind Word Describes the kind of data within the thread.

thread_kind must be interpreted on the basis of thread_class. See the table below for
the currently defined thread_kind interpretations:

class $0000 class $0001 class $0002 class $0003
kind $0000 ASCII text create directory data fork of file filename
kind $0001 see below undefined disk image undefined
kind $0002 see below undefined resource fork of file undefined

+006 thread_crc Word For version_number $0003, this field is the CRC of the
original data before it was compressed or otherwise
transformed. The CRC-16’s initial value is set to $FFFF.

+008 thread_eof Long The length of the thread when uncompressed.
+012 comp_thread_eof

Long The length of the thread when compressed.

Class $0000 with kind $0000 is obsolete and should not be used.

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 11 of 15

Class $0000 with kind $0001 has a predefined comp_thread_eof and a thread_eof
whose length may change. This way, a certain amount of space may be allocated when a record
is created and edited later.

Class $0000 with kind $0002 is a standard Apple IIGS icon. comp_thread_eof is the length
of the icon image; thread_eof is ignored.

Class $0003 with kind $0000 has a predefined comp_thread_eof and a thread_eof
whose length may change. After this record is placed into the archive, the thread_eof can be
changed if the name is changed, but the length of the name may not extend beyond the space
allocated for it, comp_thread_eof.

A thread_format of $0001 indicates Huffman Squeeze. NuFX’s Huffman is the same
Huffman used by ARC v5.x, SQ and USQ, the source of which is publicly available and was
originally written by Richard Greenlaw. The first word of the thread data is the number of nodes
followed by the Huffman tree and the actual data. This is also the same algorithm decoded by
the Apple II version of USQ written by Don Elton. The C source to this is widely available.

A thread_format of $0002 indicates a special variant of LZW (LZW/1) used by ShrinkIt.
The first two bytes of this thread are a CRC-16 of the uncompressed data within the thread. This
CRC-16 is initialized to zero ($0000). The third byte is the low-level volume number used by the
eight-bit version of ShrinkIt to format 5.25” disks. The fourth byte is the run-length character
used to decode the rest of the thread. The data which comprises the compressed file or disk
immediately follows the RLE character.

When ShrinkIt compresses a file, it reads 4096-byte chunks of the file until it reaches the file’s
EOF. The last 4096-byte chunk is padded with zeroes if the file’s length is not an exact multiple
of 4096. Compressing a disk is also done by reading sequential blocks of 4096-bytes.

Each 4K chunk is first compressed with RLE compression. The RLE character is determined by
reading the fourth byte of the thread. The RLE character which is used by most current versions
of ShrinkIt is $DB. A run of characters is represented by three bytes, consisting of the run
character, the number of characters in the run and the character in the run. If the 4K chunk
expands after being compressed with RLE then the uncompressed 4K chunk is passed to the
LZW compressor. If the 4K chunk shrinks after being compressed with RLE then the RLE-
compressed image of the 4K chunk is passed to the LZW compressor.

ShrinkIt’s LZW compressor individually compresses each 4K chunk passed to it by using
variable length (9 to 12 bits) codes. The way that ShrinkIt’s LZW compressor functions is
almost identical to the algorithm used in the public domain utility Compress. The first code is
$0101. The LZW string table is cleared before compressing each 4K chunk. If the compressed
chunk increases in size, then the previous 4K chunk (which may be run-length-encoded or just
uncompressed data) is written to the file.

The first word of every 4K chunk is aligned to a byte boundary within the file and is the length
which resulted from the attempt at compressing the chunk with RLE. If the value of this word is
4096, then RLE was not successful at compressing the chunk. A single byte follows the word

Apple II File Type Notes

12 of 15 File Type: $E0 (224) Auxiliary Type: $8002

and indicates whether or not LZW was performed on this chunk. A value of zero indicates that
LZW was not used, while a value of one indicates that LZW was used and that the chunk must
first be decompressed with LZW before doing any further processing.

To decompress a file, each 4K chunk must first be expanded if it was compressed by LZW. If
the 4K chunk wasn’t compressed with LZW, then the word which appears at the beginning of
each chunk must be used to determine if the data for the current chunk needs to be processed by
the run-length decoder. If the value of the word is 4096, then run-length decoding does not need
to occur because the data is uncompressed.

If the word indicates that the length of the chunk after being decompressed by LZW is 4096-
bytes long, then no run-length decoding needs to take place. If value of the word is less than
4096 then the chunk must be run-length decoded to 4096 bytes.

There are four varying degrees of compression which can occur with a chunk: it can be
uncompressed data. It can be run-length-encoded data without LZW compression. It can also be
uncompressed data on which RLE was attempted (but failed) and then was subsequently
compressed with LZW. Or, finally, the chunk can be compressed with RLE and then also
compressed with LZW.

A thread_format of $0003 indicates a special variant of LZW (LZW/2) used by ShrinkIt.
The first byte is the low-level volume number used by the eight-bit version of ShrinkIt to format
5.25” disks. The second byte is the run-length character used to decode the rest of the thread.
The data which comprises the compressed file or disk immediately follows the second byte of
the thread.

The format of LZW/2 is almost the same as LZW/1 with a few exceptions. Unlike LZW/1,
where the LZW string table is automatically cleared before each 4K chunk is processed, the
LZW string table used by LZW/2 is only cleared when the table becomes full, indicating a
change in the redundancy of the source text. Not clearing the string table almost always yields
improved compression ratios because the compressor’s dictionary is not being depleted every 4K
and larger strings are allowed to accumulate. The clear code used by ShrinkIt is $100. Whenever
the decompressor sees a $100 code, it must clear the string table.

The string table is also cleared when the compressor has to “back track” because a 4K chunk
became larger. Whenever a chunk that is not compressed by LZW is seen by the decompressor,
the LZW string table must be cleared. Bits 0-12 of the first word of each chunk in a LZW/2
thread indicate the size of the chunk after being compressed with RLE. The high bit (bit 15)
indicates whether or not LZW was used on the chunk. If LZW was not used (bit 15 = 0), the
data for the chunk immediately follows the first word. If LZW was used (bit 15 = 1), a second
word which is a count of the total number of bytes used by the current chunk follows the first
word. The mark of the next chunk can be found by taking the mark at the beginning of the
current chunk and adding the second word to it, using that as an offset for a ProDOS 8 or GS/OS
SetMark call. This is not normally necessary because the next chunk is processed immediately
after the current chunk.

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 13 of 15

This second word is an improvement over LZW/1 because if a chunk becomes corrupted, but the
second word is valid, the next chunk can be found and most of the file recovered. The second
word is not needed (and not present) when LZW is not used on the chunk because the first word
is also a count of the number of bytes which follow that word.

A thread_format of $0004 indicates that a maximum of 12 bits per LZW code by Compress
was used to build this thread. The actual thread data contains Compress’s usual three-byte
signature, the third byte of which contains the actual number of bits per LZW code that was
actually used. The number of bits may be less than or equal to 12. Optimally, this requires (at
12 bits) a 16K hash table to decode and should be used only for transferring to machines with
limited amounts of memory. The C source to Compress is in the public domain and is widely
available.

A thread_format of $0005 indicates that a maximum of 16 bits per LZW code by Compress
was used to build this thread. The actual thread data contains Compress’s usual three-byte
signature, the third byte of which contains the actual number of bits per LZW code that was
actually used. The number of bits may be less than or equal to 16. Optimally, this requires (at
16 bits) a 256K hash table to decode. The C source to Compress is in the public domain and is
widely available.

If a control_thread indicates that a directory should be created on the destination device,
the path to be created must take the form of a ProDOS partial pathname. That is, the path must
not be preceded with a volume name. For example, /Stuff/SubDir is an invalid path for this
control_thread, while SubDir/AnotherSubDir is valid.

If a control_thread indicates that a path is to be created, all subdirectories that are
contained in the pathname must be created.

control_thread threads will eventually be used to control the execution of utility programs
by allowing them to create, rename, and delete directories and files and to move and modify
files. A form of scripting language will eventually be able to allow utility programs to perform
these actions automatically. control_thread threads will allow extraction programs to
perform operations similar to those of the Apple IIGS Installer, allowing updates to program sets
dependent on such things as creation or modification dates and version numbers.

Extra Information

If the file system of a particular disk is not known, the file_sys_id field should be set to
zero, the volume name should also be zeroed, and all the other fields pertaining only to files
should be set to zero.

If the file system of a particular disk is known, as many of the fields as possible should be filled
with the correct information. Fields which do not pertain to an archived disk should remain set
to zero.

If an entire disk is added to the archive without some form of compression (i.e.,
record_format = uncompressed), then the blocks which comprise the disk image must be

Apple II File Type Notes

14 of 15 File Type: $E0 (224) Auxiliary Type: $8002

added sequentially from the first through the last block. Since there will be no character
included in the data stream to mark the end or beginning of a block, extraction programs should
rely on the file_sys_block_size field to determine how many bytes to read from the
record to properly fill a block.

Some Useful Thread Algorithms:

The beginning of the thread records can be found with the following algorithm:

Threads := (mark at beginning of header) + (attrib_count) + (filename_length)

The end of the thread records can be found with the following algorithm:

endOfThreads := Threads + (16 * total_threads)

The beginning of a data_thread can be found with the following formula:

Data Mark := endOfThreads + (comp_thread_eof of all threads in the thread list which
are not

data prior to finding a data_thread)

The beginning of a resource_thread may be found with the following algorithm:

Resource Mark := endOfThreads + (comp_thread_eof of all threads in the thread list
which

are not data prior to finding a resource_thread)

The next record can be found using the following algorithm:

Next Mark := endOfThreads + (comp_thread_eof of each thread)

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 15 of 15

The file name and its length can be found with the following algorithm:

if (filename_length > 0)
then

length of filename is filename_length;
filename is found at attrib_count;

else
look through list of threads for a filename_thread;
if you find one, then length of filename is thread_eof;
if you don’t find one, then you don’t have a filename.

Directories

Directories are handled almost the same way that normal files are handled with the exception
that there will be no data in the thread which follows the entry. A Thread Record must exist to
inform a utility that a directory is to be created through the use of the proper
control_thread value.

Directories do not necessarily have to precede a record which references a directory. For
example, if a record contains Stuff/MyStuff, the directory Stuff need not exist for the extracting
program to properly extract the record. The extracting program must check to see if each of the
directories referenced exist, and if one does not exist, create it. While this method places a great
burden on the abilities of the extraction program, it avoids the anomalies associated with the
deletion of directories within an archive.

A Sample CRC Algorithm

Paper Bag Productions provides the source code to a very fast routine which does the CRC
calculation as needed for NuFX archives. The routine makeLookup needs to be called only
once. After the first call, the routine doByte should be called repeatedly with each new byte in
succession to generate the cumulative CRC for the block. The CRC word should be reset to null
($0000) before beginning each new CRC.

This is the same CRC calculation which is done for CRC/Xmodem and Ymodem. The code is
easily portable to a 16-bit environment like the Apple IIGS. The only detrimental factor with this
routine is that it requires 512 bytes of main memory to operate. If you can spare the space, this is
one of the fastest routines Paper Bag Productions knows to generate a CRC-16 on a 6502-type
machine.

The CRC word should be reset to $0000 for normal CRC-16 and to $FFFF before generating the
CRC on the unpacked data for each data thread.

Apple II File Type Notes

16 of 15 File Type: $E0 (224) Auxiliary Type: $8002

*-------------------------------
* fast crc routine based on table lookups by
* Andy Nicholas - 03/30/88 - 65C02 - easily portable to nmos 6502 also.
* easily portable into orca/m format, just snip and save.
* Modified for generic EDAsm type assemblers - MD 6/19/89

 X6502 turn 65c02 opcodes on

*-------------------------------
* routine to make the lookup tables
*-------------------------------

makeLookup
 LDX #0 zero first page
zeroLoop STZ crclo,x zero crc lo bytes
 STZ crchi,x zero crc hi bytes
 INX
 BNE zeroLoop

*-------------------------------
* the following is the normal bitwise computation
* tweeked a little to work in the table-maker

docrc
 LDX #0 number to do crc for

fetch TXA
 EOR crchi,x add byte into high
 STA crchi,x of crc

 LDY #8 do 8 bits
loop ASL crclo,x shift current crc-16 left
 ROL crchi,x
 BCC loop1

* if previous high bit wasn't set, then don't add crc
* polynomial ($1021) into the cumulative crc. else add it.

 LDA crchi,x add hi part of crc poly into
 EOR #$10 cumulative crc hi
 STA crchi,x

 LDA crclo,x add lo part of crc poly into
 EOR #$21 cumulative crc lo
 STA crclo,x
loop1 DEY do next bit
 BNE loop done? nope, loop

 INX do next number in series (0-255)
 BNE fetch didn't roll over, so fetch more
 RTS done

crclo ds 256 space for low byte of crc table
crchi ds 256 space for high bytes of crc table

Developer Technical Support July 1990

File Type: $E0 (224) Auxiliary Type: $8002 17 of 15

*-------------------------------
* do a crc on 1 byte/fast
* on initial entry, CRC should be initialized to 0000
* on entry, A = byte to be included in CRC
* on exit, CRC = new CRC
*-------------------------------

doByte
 EOR crc+1 add byte into crc hi byte
 TAX to make offset into tables

 LDA crc get previous lo byte back
 EOR crchi,x add it to the proper table entry
 STA crc+1 save it

 LDA crclo,x get new lo byte
 STA crc save it back

 RTS all done

crc dw 0000 cumulative crc for all data

The following CRC check is written in APW assembler format for an Apple IIGS with 16-bit
memory and registers on entry.

crcByte start

crc equ $0
crca equ $2
crcx equ $4
crctemp equ $6

 sta crca 4
 stx crcx 4

 eor crc+1 on entry, number to add to CRC 4
 and #$00ff is in (A) 3
 asl a 2
 tax 2
 lda crc16Table,x 5
 and #$00ff 3
 sta crcTemp 4

 lda crc-1 4
 eor crc16Table,x 5
 and #$ff00 3
 ora crcTemp 4
 sta crc 4

 lda crca 4
 ldx crcx 4
 rts cycles = 59

Apple II File Type Notes

18 of 15 File Type: $E0 (224) Auxiliary Type: $8002

;
; CRC-16 Polynomial = $1021
;
crc16table anop
 dc i'$0000, $1021, $2042, $3063, $4084, $50a5, $60c6, $70e7'
 dc i'$8108, $9129, $a14a, $b16b, $c18c, $d1ad, $e1ce, $f1ef'
 dc i'$1231, $0210, $3273, $2252, $52b5, $4294, $72f7, $62d6'
 dc i'$9339, $8318, $b37b, $a35a, $d3bd, $c39c, $f3ff, $e3de'
 dc i'$2462, $3443, $0420, $1401, $64e6, $74c7, $44a4, $5485'
 dc i'$a56a, $b54b, $8528, $9509, $e5ee, $f5cf, $c5ac, $d58d'
 dc i'$3653, $2672, $1611, $0630, $76d7, $66f6, $5695, $46b4'
 dc i'$b75b, $a77a, $9719, $8738, $f7df, $e7fe, $d79d, $c7bc'
 dc i'$48c4, $58e5, $6886, $78a7, $0840, $1861, $2802, $3823'
 dc i'$c9cc, $d9ed, $e98e, $f9af, $8948, $9969, $a90a, $b92b'
 dc i'$5af5, $4ad4, $7ab7, $6a96, $1a71, $0a50, $3a33, $2a12'
 dc i'$dbfd, $cbdc, $fbbf, $eb9e, $9b79, $8b58, $bb3b, $ab1a'
 dc i'$6ca6, $7c87, $4ce4, $5cc5, $2c22, $3c03, $0c60, $1c41'
 dc i'$edae, $fd8f, $cdec, $ddcd, $ad2a, $bd0b, $8d68, $9d49'
 dc i'$7e97, $6eb6, $5ed5, $4ef4, $3e13, $2e32, $1e51, $0e70'
 dc i'$ff9f, $efbe, $dfdd, $cffc, $bf1b, $af3a, $9f59, $8f78'
 dc i'$9188, $81a9, $b1ca, $a1eb, $d10c, $c12d, $f14e, $e16f'
 dc i'$1080, $00a1, $30c2, $20e3, $5004, $4025, $7046, $6067'
 dc i'$83b9, $9398, $a3fb, $b3da, $c33d, $d31c, $e37f, $f35e'
 dc i'$02b1, $1290, $22f3, $32d2, $4235, $5214, $6277, $7256'
 dc i'$b5ea, $a5cb, $95a8, $8589, $f56e, $e54f, $d52c, $c50d'
 dc i'$34e2, $24c3, $14a0, $0481, $7466, $6447, $5424, $4405'
 dc i'$a7db, $b7fa, $8799, $97b8, $e75f, $f77e, $c71d, $d73c'
 dc i'$26d3, $36f2, $0691, $16b0, $6657, $7676, $4615, $5634'
 dc i'$d94c, $c96d, $f90e, $e92f, $99c8, $89e9, $b98a, $a9ab'
 dc i'$5844, $4865, $7806, $6827, $18c0, $08e1, $3882, $28a3'
 dc i'$cb7d, $db5c, $eb3f, $fb1e, $8bf9, $9bd8, $abbb, $bb9a'
 dc i'$4a75, $5a54, $6a37, $7a16, $0af1, $1ad0, $2ab3, $3a92'
 dc i'$fd2e, $ed0f, $dd6c, $cd4d, $bdaa, $ad8b, $9de8, $8dc9'
 dc i'$7c26, $6c07, $5c64, $4c45, $3ca2, $2c83, $1ce0, $0cc1'
 dc i'$ef1f, $ff3e, $cf5d, $df7c, $af9b, $bfba, $8fd9, $9ff8'
 dc i'$6e17, $7e36, $4e55, $5e74, $2e93, $3eb2, $0ed1, $1ef0'
 end

Further Reference
• ProDOS 8 Technical Reference Manual
• GS/OS Reference
• Apple IIGS Toolbox Reference Manual
• Apple II File Type Note, File Type $E0, Auxiliary Type $8000
• Apple II Miscellaneous Technical Note #14, Guidelines for Telecommunication

Programs
• “A Technique for High-Performance Data Compssion,” T. Welch, IEEE Computer,

Vol. 17, No.6, June 1984, pp. 8-19.

