Washington Apple Pi π

Volume 4 January 1982 number 1
 Highlights

RUnnIng a telescope with a micro TEXT ON THE HI-RES SCREE

subLOGIC GRAPHICS PACKAGE:
A Review

In This Issue

Page
MEMBERSHIP INFORMATION, CLASSIFIEDS, EDITORIAL, EVENT QUEUE. 3
PRESIDENTS CORNER DAVID MORGANSTEIN 4
WA HOTLINE, VOLUNTEERS NEEDED
MINUTES, NOTICES, SIG NEWS 6
A PAGE FROM THE STACK. . JILL AND VANCE GIBONEY 7
LETTERS TO THE EDITOR. 8
TRICKY GET PROGRAM . L BENDER 8
SIGAMES . JOHN ALDEN 9
QUESTIONS, QUESTIONS, QUESTIONS MARK L CROSBY 10
GROUP PURCHASE POWER .RICH WASSERSTROM 11
I CANT REMEMBER HOW MUCH MEMORY I HAVE DAVID MORGANSTEIN 12
BENEATH APPLESOFT "LIST" AVER P COOPER 14
RUNNING A TELESCOPE WITH A MICROCOMPUTER dave skillman 15
LOOSE DB25 PLUG. BORIS LEVINE 20
TWO SIMPLE WIRING PROJECTS . . .JAY THAD 21
THE INDEX: A REVIEW . BERNIE URBAN 22
USING PADDLE POTS OF ANY VALUE TOM RILEY 30
PERPETUAL JULIAN CALENDAR. 32
APPLE COMPUTER TRIES TO BAN MAIL BUSINESS: A REPRINT. 36
TEXT ON THE HI-RES SCREEN. BRUCE F FIELD 38
APPLE PIE AND THE USE OF "EC" JIM GRAHAM 43
SUBLOGIC GRAPHICS PACKAGE: A REVIEW - DAVID morganstein 44
COLUMNAR CATALOG LISTINGS. bOB CRAFTS 46
tUTORIAL REGISTRATION, ORDER FORMS 48-51
AD RATES, INDEX TO ADVERTISERS 52

-ompulerland
 We know small computers.

8411 Old Courthouse Road at Rt. 123

: 1 Columbia Computer Systems

Buy now to take a BIG byte out of hardware and business software prices!

Description	List \$	Sale $\$$	Description	List $\$$	Saje 5
Apple Computer Apple II or IIt. 48 K DISK II with DOS 3.3 Controller DISK It			Trendeom Printing		
	1,530.00	1449.00	Model 100-40 columns w/graphics	295.00	
	645.00	599.95	Model 200-80 columns w/graphics	395.00	239.95
	525.00	509.95	Pertonal Sotiware		
AMDEK Monitors					
Cotor 1. 13" Color Monitor	449.00	349.95	Visicaic 3.3	199.95 199.95	154.95 169.95
100 G 12"Green Phosphor Monitor	199.00	159.95	Visiplot	179.95	152.95
100. 12" B8W Monitor	169.00	149.95	Visitrend Nisiplot	179.85 25995	152.95 220.95
Epson America ${ }^{\text {a }}$			Visiterm	14995	127.95
MX-100. 132 Column Printer	995.00	795.00	Deskiop Plan II	19995	169.95
MX-80 80 Column Printer	645.00	475.00	Visifile - New -	25000	229.95
MX-806. MX-80 with Hi-Res Graphics	695.00	549.95			229.5
MX-80 F. T. MX-80 with Friction \& Tractor Feed MX-80G F T MX-80 with Hi-Res Graph \& Friction 8 Tractor	745.00	579.00	Visipac-Visicale \& Visifile \& Visitiend/VisiPlot VisiStock-Visifile \& VisiTerm \& VisiTrendNisiPiot		
				659.90	585.95 $\mathbf{5 5 3 . 9 5}$
	795.00	655.95			
8915. Gratrax-80	95.00	80.00	Senyo Monttors		
8131. Apple Parallel Interface	8500	69.95			
8141. Serial Intertace	75.00	65.00	12." high resolution black and white	340.00	179.95 269.95
8161. IEEE 488 interface	60.00	52.50	12". prot green high resolution	360.00	
8230 Apple Parallel Cable	25.00	22.50	13" color high pertormance	550.00	269.95 479.95
8150. Serial Interface W/2K Butier	149.00	129.95	Soltwere Publishing, Inc.		
Mountatn Computer. Inc.			PFS (Personal Filing System)	9500	76.95
MHP-X003 The Clock	280.00	250.00	PFS. Report	9500	76.95
MHP. $\times 004$, 100.000 Day Clock W/Charger	37500	309.00	Botn PFS Programs \longrightarrow Spectal	190.00	76.95 149.95
MHP-X024. Expanston Chassis	75000	649.95	FMd, inc.		
MHP-X031. CPS Multi-Function Card	239.00	179.95	Cool Stack	69.96	54.95
CPS Cables 23.00			Printer Pas P80 (tor MX80 size)	2995	54.95 23.95
MHP-X036. CPS to Centronics (or Epson)	24.95	21.95	Printer Pal P100 (lor MX100 size)	29.95 49.95	41.95
MHP-XIDS. CPS to IDS Printers	24.95	21.95	Howard Sott		
The Keyboard Compeny			Tax Preparer-1981 Edtion	9900	CALL
Numeric Keypad	149.95	129.95	Tax Preparer-1981 Edition Updates-available Jan 1. 1982	3500	CALL
Cursor III	49.95	39.95	Tax Preparer-1982 Edition	15000	
Joystick II	49.95	39.95	K\&A Data Works		
Hand Controller-Paddes	29.95	22.95	Under-Stand	6495	54.95
700.00 649.95			Tame That Tiger	17.95	15.95
			Apple-Under-Glass	24.95	19.95
Microsolt			Data Stand	1895	16.95
Softcara	349.00	259.95	On-Line Syatems \longrightarrow		
RAM caro	195.00	159.95	Now Super Seribe II Word Processing System		
COBOL BO (Soheard 22 disks read)	750.00	649.95	upper/lower case, 70 cols., print spouling		
FORTRAN-80 (Soticard 82 disks reqd)	195.00	169.95	- all w/o hardware modification	129.95	109.95
Hayes Microcomputer			NEC Printery		
MMII. Micromodem for the Apple	379.00	307.95	7710 Spinwriter, 55 cps . RS232	3.29500	$2.595 .00^{\circ}$
Datacomm Pascal Communications Sotiware	50.00	40.00	7730 Spinwriter, 55 cps . Centronics	3.29500	2595.00
Smartmodem Direct Connect-RS232	279.00	235.00	HOR 4 part forms Tractor for 7700s	15500	133.00
Blank Diskettes			VERT Heavy Duty Tractor for 7700s	23000	193.00
Dysan. Pkg of 10	5000	39.95	3510 Spinwriter. 33 cps . AS232	2.29500	1.995 .00
Maxeli Pkg of 10	5500	36.95	3530 Spinwriter. 33 cps . Centronics	2.29500	1.995 .00
3M Pkg of 10	4550	32.95	35-81D Bidirectional Tractor for 3500s	25000	230.00
Data Transforms			35-SS Single-sheet Feeder for 3500s	1.19500	995.00
Grattrix	55.00	42.95	35-28IN Two-bin Adapter for 3500s	24500	220.00
Addison-Westey			35-GUIDE Manual Cut-sheet Feeder for 3500s	10500	95.00
Micro-DSS Finance	1.50000	1.399.95	PC. 8023 Dot Matix. 100 cps tractor/friction	79500	675.00
LKJ Enterprises NEC Monitors					
Lenter Pertec: Word Proc System	149.95	124.95	J8-1201M 12. Green screen	19900	159.95
Edit 6502	49.95	42.95	JC-1201M 12" Color	39900	329.95
Lower Case Generator	34.95	28.95	JC-1202DH Hi-Res RGE Cotor Monitor	1.09500	940.00
			Now IBM Personal Computer Moditication Available for 3C-1202DH		CALL

P.O. Box 40813
Washington, DC 20016
Call (202) 364-0273 any time, every day
 We Deliver to the Washington Apple Pi Meetings

OFFICERS \& STAFFIEDITORIAL

President
Vice President
Treasurer
Secretary
Members-at-Large
-David Morganstein(301) 972-4263 -Mark Crosby 202 488-1980 -Dana Schwartz 301$\}$ 725-6281 -Jesse Wagstaff (301) 937-4215 -John Moon ABBS Sysop -Nancy Philipp (301) 924-2354 -Rich Wasserstrom $\left\{\begin{array}{l}703 \\ 301\end{array}\right) 893-9147$ Immed. Past Pres.- -Bernard Urban (3ernard Urban (above)
Editor \quad-Bernard Urban
Head Librarian -Bill Bowie

- Ben Acton, Andy Baum
-Vance Giboney, Van Kozak
-Sarah Lavilla, Gordon Stubbs
Group Purchases -Rich Wasserstrom
Advertising
Membership -Bob Peck
Volunteer Coord.-Boris Levine
SIG Chairmen:
ASMSIG
CP/M
EDSIG
NEWSIG
Pascal (PIG)
SIGAMES
SIG/DISABLED
-Jim Rose
-Dave Neumann
-Chuck Philipp
-Tom Woteki
-Al Gass
-Curt Robbins

8805 Barnsley Court
Laurel, MD 20811
Washington Apple Pi
P. O. Box 34511

Bethesda, MD 20817
(301) 621-2719

ABBS (301) 983-9317
Apple user groups may reprint without prior permission any portion of the contents herein, provided proper author, title and publication credits are given.
Membership dues for Washington Apple Pi are $\$ 18.00$ per year, beginning in the month joined. If you'would like to join, please call the club phone and leave your name and address, or write to the PO Box above. A membership application will be mailed to you.

Subscriptions to the Washington Apple Pi Newsletter are not available. The newsletter is distributed as a benefit of membership.
Members who would like to sign onto the Washington Apple Pi ABBS system should call the club phone and leave your name (first and last), WAP number and phone number. You will be assigned a password and John Moon will take care of signing you on.

CLASSIF IEDS

ATTN. AUDIOPHILES - FOR SALE OR TRADE: Technique 9010 Barometric Equalizer and Sansui 890 Stereo Receiver. Want enough for disk drive or equitable trade. Rip Toren, (301) 776-6156.

FOR SALE: APPLE Pilot, including backup disk and documentation. $\$ 90$. Dave Einhorn, 593-8420.
FOR SALE: Locksmith 4.0, \$85.00. Kevin Duffy, (202) 363-6245.

I feel that I must comment on the discomfort experienced by many at the Fleamarket last month. We had originally planned to have it in the George Washington University Ballroom but were rescheduled to Building C due to a University sponsored activity which took precedence. Our main club activities took place on the stage where there wasn't sufficient room for the club store, the library diskette sales and the pickup of the newsletters. Our logistics were just wrong, but we could not rework them on the spot. Everyone, volunteer and member alike, grumbled and complained. Some members were given rather short treatment for which I apologize, and I am sure I speak for the others as well. We leave all this behind, for our next and all succeeding (??) meetings will be at USUHS in Bethesda.

We get good comments regarding the newsletter from many out of towners but we rarely hear anything, good or bad, from the folks in the immediate vicinity. Hello! Is there anyone out there? Do you like what you see? How about some feedback? Better still, articles of your choice!
Happy Holidays, folks, and a great New Year!

EVE $\cap T$ QUEUE

Washington Apple Pi meets on the 4 th Saturday of each month at $9: 30$ AM (sales are from 8:30-9:30), at the Uniformed Services University of the Health Services (USUHS), Building A, 4301 Jones Bridge Road, Bethesda, MD, on the campus of the National Naval Medical Center. This is a new meeting site.

Following are the meeting dates for the next three months, with their topics and speakers.

January 23 - Music Boards
February 27 - Assembly Language Prog. Bill Schultheis
March 27 - Assembly Language contd. Bill Schultheis

The Executive Board meets on the 2nd Wednesday evening of each month. All members are welcome to attend. Details will be on the club phone and ABBS.
NOVAPPLE meets on the 2nd Saturday of the month at 1:00 PM at Kings Park Library on Burke Lake Road in Fairfax County; and on the 4 th Thursday of the month at 7:30 PM at Computerland of Tysons Corner. In addition, tutorials will be presented on the 2nd Wednesday at 7:30 PM at Computers Plus on Franconia Road.

All New Years begin with resolutions. The WAP needs its members to resolve to contribute a little bit of time to help continue our activities. Yes, folks, this is a request for aid. We need the following: articles for the magazine; programs for the library; an assistant editor for the magazine; an older member to help the Appleseeds group organize; an advertising chairman; and a NEWSIG chairman. Where do we turn to find this help? To you! Please don't tell us you gave at the office...Call me or our volunteer coordinator, Boris Levine, to offer your services.

The flea market seemed to be very popular. Our last meeting at George Washington University saw a swarm of new faces attend to buy or sell APPLE items. Many thanks to NOVAPPLE for originally proposing the idea and joining in on the work. Thanks also to Nick Santelli, the organizer, and his legions of assistants.

There are now at least two manufacturers of 64 K or more memory cards for the APPLE: Legend Industries and Sorrento Valley Associates. of course, the cards are of no use without software to take advantage of them. The software I have seen so far allows the extramemory to appear as a virtual disk, available for access through the usual DOS commands. This does not mean that the workspace of your computer has been increased. Rather, it means that tasks which previously were slowed down by disk I/O can be done almost as quickly as straight memory operations. Overall, it means more capability for the APPLE owner.

Our tutorial planned for February is picking up steam. We have over 20 members signed up so far. While there is space for another 15 or 20 , if you are interested in participating send in your application soon. A brief course outine and registration form is provided in this issue. We will hold the tutorial in one of the labs at the USUHS so that there will be plenty of table space and power outlets for those who bring their own APPLEs. We have one couple coming down from New Jersey, who will drive down on the Friday evenings before the class day!! We will mail out a more detailed outinne containing reading assignments for those who want to do a little preparation.

UAP HOTLIIE

Have a problem? The following club members have agreed to help. PLEASE, respect all telephone restrictions, where iisted, and no calls after 10:00 PM.

General

Ben Acton	$972-1533$
Robert Fretwell	$971-2621$
Dave Harvey	$527-2704$
Tom Jones	$460-8773$
Robert Martin	$498-6074$

Operating Systems

APPLE DOS	Richard Untied	$241-8678$
CP/M	Roberends only)	
	Fretwell	$971-2621$

Languages ($A=A p p l e s o f t, I=I n t e g e r$, $\mathrm{P}=\mathrm{Pascal}, \mathrm{M}=$ Machine $)$

A, I	Jeff Dillon	422-6458
A,I	Tom Jones	460-8773
A	Mark Pankin	370-9219
A, I, P, M	Bill Schultheis	538-4575
	Richard Uncept Tue	
${ }_{\mathrm{P}}^{\mathrm{A}}, \mathrm{I}, \mathrm{M}$	Richard Untied Robert Fretwell	241-8678
DB Master	Dave Einhorn	593-8420
Printers	Walt Francis	966-5742
Word Proc.	Walt Francis Ben Acton	$\begin{aligned} & 966-5742 \\ & 972-1533 \end{aligned}$
VisiCalc	Ben Acton Walt Francis	$\begin{aligned} & 972-1533 \\ & 966-5742 \end{aligned}$
Time-Sharing	Chuck Reinbrecht Dave Harvey	$\begin{aligned} & 299-6810 \\ & 527-2704 \end{aligned}$
Graphics	Bill Schultheis (except Tue	$\begin{aligned} & 538-4575 \\ & , \text { Thurs. } \end{aligned}$
Games	Jim Eatherly	232-6046
Mem. Expansion	Fred Schulz	223-1397
Other Disk Drives	Fred Schulz	223-1397
$ज \square \square$	$E \in \sqrt{B}$	

ADVERTISING CHAIRMAN. Someone to coordinate the WAP advertising. Work with the advertisers to insure that their ad copy is in and that payment has been received. Contact other potential advertisers for the Pi.
ASSISTANT EDITOR. Someone interested in doing publications. Help the Editor in assembling the magazine. Take a more active role in this process during the summer months.

APPLESEEDS ORGANIZER. Someone to help the younger members get more out of their meetings. Answer questions, arrange speakers and demonstrations for them.

Get your computer projects on track fast. Start with the Index.

You want to start a computer project but you don't know where to begin. You know there's piles of information out there. But you don't have the time to dig through the mess. Start with the Index. And get on track, fast.

Over 30,000 Entries

Over 6 Years of Articles, Editorials \& Columns Written on Personal Computers

References from Over 800 Issues of Personal Computer Magazines

Over 45 Publications
Publications Like Byte, Kilobaud Microcomputing and Apple Orchard

SEE YOUR LOCAL COMPUTER DEALER

or
Order from:
MISSOURI INDEXING, INC.
P.O. Box 301

St. Ann, Mo. 63074
(314) 997-6470

EXECUTIVE BOARD MEETING

The Washington Apple Pi Board met at 7:30 PM on November 11, 1981 at the home of Bernie Urban. President David Morganstein presided; 14 members were present.
A cover price of $\$ 2$ for the Newsletter will go into effect in January 1982.
There will be an increase in advertising rates for the Newsletter. Apple clubs in the U.S. and many foreign countries were sent one-page announcements regarding Inside Apple Pi. Club store policy and issues were discussed, particularly concerning getting the best possible prices for our members vs. obtaining good dealer support. It was moved and passed that the club purchase an answering machine. There was discussion about the role of IAC. Documentation of club disks was discussed.

GENERAL MONTHLY MEETING

Washington Apple Pi met at 9:30 AM on November 21 at George Washington University. The meeting was conducted by Bernie Urban with about 350 people attending.
Announcements were made regarding tutorial classes to be held in February, the club store, the next meeting on November 19 at USUHS, and SIG items. The rest of the meeting was a fleamarket. The meeting adjourned at 11:00 AM.

SPECTAL OFFER ON BACK ISSUES OF WAP

If you have joined Washington Apple Pi in the last few months, you may be interested in obtaining back issues, We are making a special limited offer. If you buy five or more copies by mail, we will pay the postage. If you want to pick up five or more copies at a monthly meeting, we will deduct $\$ 2.00$ from the total price. We haye a good supply of issues since July 1981, but a limited supply of January June 1981. We also still have a good supply of October - December 1980. There is an order form elsewhere in this newsletter which shows prices and further details.

MEMBERSHIP DIRECTORY IS BEING PRINTED

The new WAP Membership Directory has gone to press and should be ready for distribution at the December meeting or for mailing in late December. Only those members who gave us permission to have their names, city, state, zipcode and/or phone (and we tried hard' to get updated permissions) will be listed and receive a copy. The cutoff date was November 21. Any corrections or new members after that date will not appear. Those joining after November 21 who give us their permission to be in the directory will receive a copy
as long as the supply lasts. We will try to print one-sheet updates from time to time.

BRING YOUR CHECKBOOK TO THE MEETINGS

If you plan to make any purchases at the monthly meetings, please bring your checkbook. Checks are preferred because members do not like to be responsible for large sums of cash. Management reserves the right to refuse cash over $\$ 5.00$.

SIG news

SIGAMES is the special interest group of computer hobbyists interested in using their APPLEs for entertainment. They meet immediately following the monthly meeting of Washington Apple P_{i}.
This month's newsletter features two new regular SIGAMES columns: HIT PARADE and SIGAMES NEWS, both by John Alden. HIT PARADE is SIGAMES' new buyer's guide to games. Each month a new group of games will be featured. SIGAMES NEWS will present the agenda for the current month's SIGAMES meeting the next month's agenda, a synopsis of the prior month's meeting and a review of one or two new games.

PIG, the Pascal Interest Group, meets on the third Thursday of each month at 7:30PM at the Uniformed Services University of the Health Sciences, Bldg. A, Room A2054 (2nd floor), on the campus of the National Naval Medical Center at 4301 Jones Bridge Road, Bethesda, MD.

EDSIG will meet immediately after the regular meeting of Washington Apple Pi.

NEWSIG will meet just after the regular Washington Apple Pi meeting. The meeting seems to best help the new members by answering their questions, and telling them what to do to get their system up and running. We also tell them something about WAP, how to order the disks, what's on the disks, etc.
The following members have agreed to answer questions over the phone when someone gets stuck and needs help between meetings:
$\begin{array}{ll}\text { Bob Chesley } & 560-0121 \\ \text { Paul Hoffman } & 831-7433 \\ \text { Sara Lavilla } & 926-6355 \\ \text { Boris Levine } & 229-5730 \\ \text { John H. Smith } & 439-4388 \\ \text { Steve Sondag } & 281-5392\end{array}$

Happy New Year

A PAGE FROM THE STACK

by Jill \& Vance Giboney

We have two new disks for the library this month:

Volume 107 - DOS 3.3 Games B
Volume 108 - DOS 3.3 IAC $10{ }^{\text {B }}$ (Graphics)
Volume 107, The new games disk, consists of games (what else?) of different types, difficulties and sophistication. Rather than try try to describe each game in a useful way, we'll simply give a catalog listing and assume that you will get as much useful information from the names and file lengths as we could give you in a couple of sentences.

DISK VOLUME 107

```
*I 046 APPLE TRIVIA
*A 012 ARTILLERY
*I O29 BRAIN TEASER
*I 050 CLUE
*A 017 COLLISION
*A O2O CONNECT-A-DOT
*A 010 CRAPS
*A 008 DARTS
*I 016 FOOSBALL
*A 032 F00TBALL
*A 002 HELLO
*B 005 HELLO.CATALOG.OBJO
*A 039 HIRES BLACKJACK
*B 003 HIRES CHARACTER GENERATOR
*B 006 HIRES CHARACTER TABLE
*I 030 INTERNA-MAZE
*A 018 KENO II
*A 017 MADLIB 1
*A 012 METEOR STORM
*A 004 NUMBER GUESSER
*A 006 ROCK SCISSORS PAPER
*B 012 SHAPES
*I 026 TV TRIVIA II
*A 020 WHO AM I?
*A 015 WISHING WELL
```

Volume 108, the new IAC disk, comes with the following message from the IAC:

```
DEAR APPLE USER GROUP
FOR A CHANGE OF SCENERY, WE THE IAC, ARE ENCLOSING A GRAPHICS DISK FROM OUR FRIENDS IN EUROPE. WE HOPE YOU LIKE IT.
```

NEIL D. LIPSON
SOFTWARE CHAIRMAN
Many of the programs on this disk give spectacular displays, especially in color. We've included a screen from LACE as an example.
There are more disks in the works, but we need your continuing contributions to keep the library growing.

LACE

an arceadellike race car simulation by RICHARD ORBAN author of THREE MILE ISLAND*

- SPECIAL FEATURES -

Five GRAND PRIX-style road circuits, Including: Oulton Park, Warwick Farm, Kariskoga, and Monaco - Five speed manual or automatic transmission (with or without cruise control) - Elght levels of difficulty.

- additional features -

Seeds to 198 MPH - controlled akidse apinouts e apectaculer crashes o hair pin tumse narrow corners - obstacies - Identified clrcuit features © number of lapes selection o Mashing last lap indicator e 'Christmas tres' controiled start e switch for silent operatcontrol panel: lap timer - race timer - indicator lights e edge detectors © position indicator steering indicator - moving apeed tape e lap counter e gear and RPM indicators e operating fuel gauge

LETTERS TO THE
GDITOR
Concerning the Perpetual Calendar Revision by Donald E. Kahler in the January 1981 Washington Apple Pi Newsletter, I am enclosing some corrections to the program as listed. A friend of mine, Mark Hansel (a non-APPLE owner), and I worked them out together after getting incorrect and improper results under certain conditions.

The corrections will remedy, among other things the problem shown in the calendars for July and September 1981, as printed on page 26 of the January 1981 WAP.
The corrections are:
Change Line 180 to:
INPUT "YEAR ";Y: IF Y < 100 THEN $Y=$ $1900+Y$
Add Line 413:
M2 = M: IF M2 = 1 THEN M2 $=13$
Add Line 417:
$\mathrm{Y} 2=\mathrm{Y}: \mathrm{IF}$ M2 $>\mathrm{M}$ THEN $\mathrm{Y} 2=\mathrm{Y}-1$
Change Line 420 to:
PRINT R ${ }^{(1)}(M 2-1) ;$ PRINT " ${ }^{n}$ "PRINT Y2;:

Add Line 757:
IF EN>. 5 THEN L\$ = ""
I think these corrections will enable the program to render better calendars.
Keep up the good work with WAP. I look forward each month to receiving it.

With Regards,
Stephen E. Bách
P.S. This letter was composed using the best text processor/editor (I hate the term 'Word Processor', thinking it a gross misnomer) for us paupers: APTYPE from the Apple Pugetsound Program Library Exchange. OMISSION IN "INSIDE APPLE PI"
The following letter was sent to us regarding an omission in one of the articles in "Inside Apple Pi":
"The article on page 50 of Inside Washington Apple Pi seems incomplete.
Dr. Wo discusses a UNIT stringstuff which is not reproduced in the article. This UNIT, however, defines several variable types and contains some of the major operational code. Where was this UNIT written up? I would appreciate that a copy of this UNIT be sent to me to complete an otherwise fine article and publication.

> Stan Schretter
> 11110 Running Cedar Road Reston, VA 22091

The article referred to by Mr. Schretter is Dr. Wo's article "Blaise Away - Spring Planting: Seeds for a Text Formatter ${ }^{\text {n }}$ which appeared in the May 1981 issue of Which WAP Newsletter. The last section of
the Pascal listing, beginning with nUNIT stringstuffn was inadvertently omitted in Inside We are including it as a one page insert for those purchasing Inside in the future. If you already have a copy and need this unit, please let us know and we will mail you a copy, or it can be picked up at the monthly meeting.

©

TRICKY GET PROGRAM by L. Benner
 10D REM TRICKY GET PROGRAM
 105 REM BY L BENNER WAP155
 110 CLEAR : HOME : PRINT "THIS P GM LETS YOU ENTER MIXED STRI NGS"
 115 PRINT : PRINT "TRY IT FOR DI SPLAYING AN RREA WITH THE F ORMULA L * $W=A^{\prime \prime}$
 1こ0 PRINT : PRINT "EXAMPLE: ENTE R 24L THEN 4EW THEN 31L T HEN 11.5W THEN T AND WATCH R ESULTS:"
 125 PRINT : PRINT "THEN EXPERIME NT A LITTLE."
 130 REM GET EACH KEYSTROKE
 1.5 GET A\$
 140 IF $A \$=$ "L" THEN 180
 145 IF $A=$ " $=W$ " THEN 200
 150 IF A\$ = "T" THEN 230
 155 REM BACK ARROW ERASES ENTRY

1E® IF $A \$=$ CHR $\$$ (8) THEN PRINT " REDO LAST ENTRY ":A\$ = "": PRINT TAB(12): GOTO 135
165 REM DISPLAY NUMBER ON SCREE N
 135
175 REM TO END STRING
150 IF $A \$=$ "L" THEN PRINT A串,: $L=$ VAL ($\mathrm{E} \Phi): B=1$
135 REM TO ADD LENGTHS IF YOU W ANT THEM
$19 \varnothing L L=L L+L$
195 GOTO 135
200 IF $A^{2}=$ "W" THEN PRINT Aक,: $W=V A L$ ($E \pm$): $B=$ = "
205 REM DO CALCLLATIONS WHEN YO 4 HAVE ENOUGH ENTRIES
$210 \mathrm{~A}=\mathrm{L}$ * W : PRINT A;"A"
215 REM SUM AREAS FOR TOTAL PRI NTOUT
$2 \pi 0 A=A A+A$
2.5 GOTO 135

230 REM TOTALS
235 PRINT "TOTAL AREA $=$ ",, AA

I'm back!!! More reviews and news about SIGAMES events.

The next few months promise to be very exciting. (I told you I would change the opening line for last month but not for this month.)

The categories are: --
A highly recommended purchase. This software is outstanding. You play it many times and it still is interesting and fun.

A recommended purchase. An outstanding program but has a few flaws. A very fine ine exists between this and "a highly recommended purchase".

A suggested purchase. Better than average but I wouldn't go out of my way to buy it.
Average. Speaks for itself.
Poor. Avoid any programs which received this category.

On to the good stuff.

The November meeting featured the darkest dungeons of Wizardry. After the Appleseeds meeting and before they scattered, they were invited to become participants in a Wizardry adventure. Twelve Appleseeds were selected by random drawing and invited to create characters in Wizardry. Six were the main party and the other six were replacements for fallen heroes (or heroines). The adventure was a huge success with the Appleseeds.

Jim Eatherly has arranged for a special speaker for the December meeting. Richard Orban (Three Mile Island and International Gran Prix) will present both games and discuss various aspects of developing games.

Do you have a game you would like demonstrated or explained? Let's hear from you. This is your meeting and we want to help people make educated decisions when purchasing software.

Recently released software includes: From Sirius Software: Hadron, Beer Run and Dark Forest. From Sierra Software: Space Adventure. From Datamost: Snack Attack. From Gebelli: Firebird. ware: Empire I - World Builders.

THE REVIEWS

'Firebird' is a pyromaniac's delight. It's also a super arcade game. "The object of the game is to quench the fires and, failing that, to save the victims from the burning rooms. To quench the flames you must position PIGGO just to the left of the fire and press the space bar. To save a falling victim position PIGGO just to the left of the victim, close enough to touch him. PIGGO will grab him automatically, then take the victim to the top of the ladder where the circling helicopter can pick him up. The helicopter will return with a replacement for the lost room and place it where it is needed most. If you position PIGGO directly over the burning room the leaping victim will knock PIGGO off the ladder... So stay away, you only have three firepigs for the game. Finally, you can't quench fires while PIGGO is holding a victim, and there is only room for one victim at a time at the top of the ladder …' Firebird is terrific. (This is Nasir's newest game and the first since he started his own software company, He plans three more games by the middle of January: More about them when they are released.) If you like roast ham for Christmas (you supply the apple), this is the ideal game. A highly recommended purchase. From Gebelli for $\$ 29.95$.
'Hadron' is a revised 'Epoch'. But what a revision! It has all the excitement. of 'Epoch' and more. The object is to destroy the alien bases. In Epoch' the bases were part of the display. But not in 'Hadron'. You have to follow the fighters back to their bases before you can destroy the base. If you just try to fly and find the bases, you won't. With a choice of paddles joystick, keyboard, or joyport (for the Atari joysticks) you will have hours of adventure and dogfights. Blast off. A highly recommended purchase. From Sirius Software for $\$ 34.95$.
'Dark Forest' is a new approach to both adventure games and wargames. You choose between four predefined maps. The map you choose is fixed on the screen. There are about 30 territories and 6 castles. From one to six persons may play. When less than 6 people play the gruds take over the remaining castles and territory, (I knew the neighborhoods were going to the is to control all the territory at the end of the game. Each player may move only once per turn. If you move into an adjacent territory occupied by another person, you have attacked (not arrived). Only the attacker may retreat. May your Trents survive the firewood season. A highly recommended purchase. From Sirius Software for $\$ 29.95$.

[^0]
QUEST IONS, QUESTIONS, QUESTIONS by Mark L. Crosby

Q. I am experiencing a peculiar symptom when I first turn on my APPLE II and try to boot a disk with "6 Ctrl-P". I get a beep and sometimes double 6's on the screen. On the second try it will boot.
A. Thanks to WAP056 for shedding some light on this. When you power up the APPLE II, the keyboard buffer has random data and the keyboard strobe is set (meaning when you hit RETURN, the APPLE will attempt to process the keyboard buffer as if you had typed in something). When you type " 6 Ctrl-P", then, you are entering that AFTER the random characters. Naturally, this is not the correct syntax that the Monitor expects so it beeps at you (same as a syntax error in BASIC). I always hit RESET twice after I turn on the power. This clears the keyboard buffer (apparently). Another method is to type Ctrl-X first or press RETURN. Both will clear the keyboard buffer. For those of you that have an APPLE II Plus or the Autostart ROM...nevermind this is not for you.
Q. I am having trouble killing the Cyclops in Zork. Does anyone know how to neutralize this character?
A. Because I am opposed to directly answering such questions (though I am not opposed to hearing direct answers), let me refer you to classical literature. There was a certain fellow who slayed a Cyclops. Mention his name and you just might scare it away. This is not the only way, however.
Q. Is the 16 K of RAM in the Language Card available for Applesoft programming?
A. Well, not really. Generally, it is available only to the machine language programmer and not to the native ROM language (Applesoft on the Plus and Integer on the II). The problem here is that when you select the 16 K RAM card, the native language is disabled. This is due to the fact that the same addresses are used for both the language and the RAM ($\$ 0000-\$ D F F F$). Using software switches you may switch back and forth between these two physical areas. For machine language programmers, this is ideal. Machine language can access the 16 K card without disabling itself whereas Applesoft (and Integer) cannot. TO handle the 16 K card, you could CALL some machine language from Applesoft or Integer. The soft switches start at -16256 and go to -16241 (noncontiguous). There may be others. 3 Be careful here if you are using DOS 3.2 . You might affect your diskette or DOS if you start POKEing stuff into these areas. It is beyond the scope of this column to go into much more detail
since the subject is like a bottomless pit. Seek some personal help through the ABBS or at a meeting. Maybe someone will write something about this in a future issue??? (hint, hint).
Q. Is there any way to eliminate (turn off) the cursor using a POKE?
A. See the November-December 1980 CALL A.P.P.L.E. magazine page 23 for details on producing a non-flashing cursor. I have never seen a method to actually eliminate the cursor - only change it. For those of you who would like to experiment, try this as a HELLO program:
NFC HELLO BY RICHARD E. RETTKE
$100 \mathrm{HX} \$=7300: 2054 \mathrm{FF} 9 \mathrm{~A} 681869$ $1185 \quad 38686900853920$ EA $036048293 F 9128684 \mathrm{C} 1 \mathrm{~B}$ FD DO ND823G
200 FOR I = 1 TO LEN (HX\$)
300 POKE $511+\mathrm{I}$, ASC (MID\$ (HX\$,I,1)) $+128$
400 NEXT
500 POKE 72,0
600 CALL -144
700 CALL 768
This code should produce a non-flashing cursor. Hitting RESET or running a program that changes the keyin hooks will disable the code, however. In the article referred to, there is also code to permanently change DOS on a 3.2 disk to produce the non-flashing cursor. Anyone out there have any ideas on this subject?
Q. Is there any way to change the Hi-Res screen to allow more text, such as top half graphics, bottom half text in the same way HGR allows 4 lines of text at the bottom?
A. There are no POKEs that will do what you want. The easiest way is to make the text into Hi-Res characters and place it on the screen along with the graphics. This can be quickly accomplished with a Hi-Res Text generator program. There are several sources: The DOS Tool Kit has such a program. The club library has a disk (\#3i) which has a text generator program and the Apple Software Bank Contributed Programs Volumes 3-5 has an excellent generator for low cost. Higher Text, from Call A.P.P.L.E., is an excellent choice since it has many desirable features such as smooth scrolling, enlarged text (Tall, Wide, Color, etc.) and animation capabilities for a reasonable price. These are usually machine language programs that can easily be hooked up to Applesoft or Integer programs of your own. They are worth their weight in gold.

ERATTA:

Thanks to Bob Sander-Cederlof for a correction to an answer in the November 1981 issue (the last question on page 18). Here is what he says:
"Applesoft NEVER sets decimal mode.
The monitor MOVE subroutine does not
use ADC operations. It uses one SBC,
but only to compare against the upper
limit of the move. The reason behind
the different operation of the two
versions is in the Y-Register.
Applesoft leaves the low half of the
CALL address in the Y-Register
Integer leaves $\mathrm{Y}=0$ The monitor MOVE
subroutine expects Y $=0$.
contd. from pg 9
Run' is a light-headed (not lite-headed my comment)... You are a beer runner at the bottom of the Sirius Building. Your task is to look for Artesians. Clues to the whereabouts of these elusive creatures will occasionally appear on the screen. But, usually, they wil be on the platforms just above you. If you reach the roof, the Sirius blimp will pick you up and transport you to the roof of the Olympia Brewery next door.. "". Along the way, you must avoid the guzzlers and the bouncers. This is the best rendition of an arcade game that I have seen. A highly recommended purchase. From Sirius Software for $\$ 29.95$.

TIRED OF A DISORGAUIZED WORK SPACE FOR YOLR APPLE
PUT IT IN A HONE CUSTOM DESIGTED ND EUILT FOR THE APPLE COMPUTER

FEATURES:
SPACE FOR 2 DISC DRIVES/MONITOR/RECORDER, ETC. BUILT-IIN DISC STOPAGE
MODEM SHELE
BULIT-IN EXT
BUILT-IN EXTENSION FOR GANE $1 / 0$ SOCKET - - HOVES YOUR GANE $1 / 0$
SOCKET TO FPONT PANEI ACCESS AND
SOCKET TO FRONT PANEL ACCESS AND EXPAIIS IT TO TWO SOCKETS
ITO A.C. OUTLETS WITH CONTROL SWITCH AND INDICATOR LIGHT ON FROIT PANEL
OTURUY CABINET COVEREL WITH WANUT TOXE PLASTIC LAMILATE
3 CONDUCTOR A,C, CORD
IIE DOWN STRIPS' TO LESSEN CABLE STRAIN
FAN AVAILABLE - -RECOWTENDED FOR VARM EIVIROMENT (339.95 additiouil)
Custon Lnit - Introductofy Price - $\$ 84.95$
BASIC LiNIT ALSO AVAILABLE (EXQLDES ELECTRONICS 1.E, EXTENSIOII SOCKET, A.C. OUTLET \& CORD, SHITCH, LIGHT, TIE DOWIS, ETC.)

Basic lhili - Introductofy Price - $\$ 49,95$
Also AVAILARLE - - JOYSTICKS
PISTOL GRIP $X-Y$ JoYSTICKS WITH PUSH EUTTO: COITROLS HDUSED II THE GRIP. ENHAVCE TIE REALISM OF YOLR COIPUTER GNES WITH THIS LIFE-LIKE COITRCLLER. Introductory price - $\$ 44.95$
Send Orders To:
SILVER-FISCH ASSOCIATES
SILVER SPRING, MARYLAND 20904
ADD FOR POSTAGE AND HWDLING - $\$ 5.00$ CAEINET, $\$ 2.50$ JOYSTICK: MARYLAND
RESIDENTS ADD 5% SALES TAX - ALLO 4 TO 6 NEEKS DELIVERY.
APPLE IS A REGISTERED TRADEAARK OF APPLE COMFUTER CORPOPATION.

GROUP PURCIHASE

 POUER by Rich
Wasserstrom

Holiday Sale
The W.A.P. Store will offer three goodies at great prices to help you fill your extra holiday programming hours: the Microsoft Z-80 Card, the Mountain Computer CPS Multifunction Card (bi-directional serial interface, parallel output interface, and real-time clock/calendar all on one card), and the Microsoft 16 K Ramcard. See me at the meeting (or call) for prices.
Group Purchases--Printers and Monitors I will continue group purchases of Epson printers and Zenith green-on-black monitors so long as there is interest in these items. The Zenith ZVM-121 strikes me as the best buy among 80 column capable monitors and the Epson printers have proven capable, reliable and popular among those looking for an all-around graphics and character printer.

There are, however, two new dot-matrix printers which appear to eclipse the Epson MX-80/FT at a comparable price: the NEC PC-8023A and the C.Itoh Pro/Writer (8500 Series). Both of these printers offer proportional spacing, bi-directional tractors and friction feed, built-in hires graphics (no extra chips necessary), multiple character sets including Greek, mathematic symbols and, on the C. Itoh, Katakana. Both print at 100 cps , feature a variety of fonts (including Pica and Elite with or without enhancement), and provide correspondence quality print. The NEC is available only with a parallel interface, but the C.Itoh is available with either a parallel interface or, as an option, both serial (1.3 k buffer standard) and parallel interfaces. The best part is that both printers are available for group purchase. at a price more than competitive with the Epson MX-80/FT. See me at the meeting if you are interested.
Member Discounts
The following Washington area computer stores have agreed to extend a 10% discount to W.A.P. members: HLA ${ }_{\text {Beltsville, }}$ Inc $500-\mathrm{J}$ Sunnyside Ave. Beltsville,' Md. (301) 345-1123. HL̇A carries a full line of Apple hardware and software. See their ad elsewhere in this issue.
 Computerware offers ribbons, paper, diskettes and other suppliles. The member discount does not apply to GSA schedule items.
Please present your membership card or your newsletter mailing sticker with other identification to qualify for the 10% discount. Thanks HLA and Computerware!
W.A.P. invites all other Washington area computer stores to participate in this membership program.

I CAM'T REMEMBER HOW MUCH MEMORY

 I HAVE by David MorgansteinWith the advent of the 64 K , then 128 K , and according to an ad in Byte, 256 K memory cards, it is possible to do yet more amazing things with our Apple II's. From last months issue, we know that our esteemed Dr. Wo has already made a 64 K card from Legend Industries look like just another Pascal Volume with 128 blocks. The latest flash is that the 128 K card worked just as well for him and now he has a "hard disk" in the form of another occupied slot in his magic computing machine. When he loads the card with the SYSTEM files, you should see it jump from the E)ditor to the C)ompiler and back again...look Ma, no disk swaps!!!

Well that is all well and good for the Pascal buffs out there, but what about the good DOS users among us? What can we use these new memory cards for? Basically, the same ideas apply. The cards, so far, do not add any more usable memory to the 6502 address space. Thus, they can not be used to work on bigger VisiCalc files and other types of memory resident data. But having a fast access disk available can speed up a lot of jobs that take the relatively slow Apple disks a while to perform.

Let's divide the subject into two pieces, the hardware and the programs that support it. Dr. Wo's article pretty much described the new Legend Industries 64 K memory card. The 128 K version is quite similar, instead of four banks of 16 K (each of which looks like a language card), you get 8 such banks. The more interesting part of the discussion is the software that lets you take advantage of the new cards' power.

The first piece of software sold by Legend Industries is the Memory Manager, a program which moves the DOS up into the first of the 16 K partitions on the card. This program does not really take any more advantage of the added memory and could be used with any old 16 K card. The primary function of relocating the DOS can be accomplished using a program written by C. Bongers and published in Call A.P.P.L.E. in the July/August 1981 issue (and on our Library Disk Vol 101). Each of these two programs to relocate DOS has some unique advantages. The Memory Master has some very nice added features like: a .FLIP command to flip between 13 and 16 sectored DOS; a .BSTAT to print out the starting address and length of the last bloaded file and a . SHOW to indicate the current DOS version.

The C. Bongers version, however, does something that should be part of any new software, it maintains compatibility with currently available utilities. With a one byte change to FID and MUFFIN, needed because of an oversight in them, these handy utilities will work with the Bongers' relocated DOS. One important table used by DOS, the file manager input
parameters (see Beneath Apple DOS, p.6-8), is kept on page $B F$ on the Bonger's version, but moved onto the RAM card in the McLaren version. The way you take advantage of the RAM card, be it for using relocated DOS' or running that "other" Basic, is to turn the card on when its contents are needed and turn it off when the motherboard ROMs are needed. The Legend Industries program has this important table in the RAM card, which is turned off when FID is running. The results are that the poor program is out looking for a table in the middle of the Applesoft ROMs!! I contacted Mike McLaren at Legend and discussed the problem with him. He was very interested in this issue and thought he could make a modification to eliminate the problem by moving the table back into the motherboard RAM address space, pages $0-B F$. Based on his skill in writing the Disk Emulator, this should be no problem for him...

The real gem of a program is the Disk Emulator. Imagine telling DOS to load the 128 K RAM card with the contents of the entire disk in slot 6 , drive 1 by saying ".M1,S6,D1". To move the card contents to a disk use "U1,S6,D1". The M1 and U1 (mount and update) refer to disk emulator 1 (that's right, you can have M2, or M3 if you can afford that many 128 K cards 111). Once a card has a disk Mount'ed (someone at Legend has a sense of humor...) the card is addressed as any other disk device. Type CATALOG S5, D1 (assuming that you assigned the card that slot number...it does not have to physically be in that slot...) to see the fastest catalog in the world. Try Opening and Writing to a file or Reading from one to get really impressed.

I use a statistical package called Astat which has the desirable feature of allowing computations on a file as big as a disk will hold. It performs its computations one record at a time and is therefore not limited to small data files. However, up until now, it has been intolerably slow in completing a task due to the turning on and off of the disk drive after each read...no more delay. By simply .M1,S6,D2 my data file, the program whizzes past the records merrily computing my statistics. Thanks Legend!
Latest-late flash - Mike has already reworked Memory Master to take care of the compatability problem by relocating the data table into the lower 48 K .

CREDIT FOR LAST MONTH'S "TROUBLESHOOTING GUIDE ${ }^{\text {M }}$

Last month we printed "Troubleshooting Guide for the APPLE II and APPLE II PLUS System", with an anonymous author. Credit for this guide goes to Jose Sanchez.

The ACCOUNTANT
 Finance Data Base System from Decision Support Software

"I'LL be able to REALLY manage my finances ! !!"

Was that one of your justifications for purchasing an APPLE ${ }^{\text {nd }}$ computer?

Are you really managing your finances or just using an expensive calculator to help you balance your checkbook(s)?

It takes a double entry system to do the job right. Why ?

Less than half the financial transactions necessary to adequately manage your resources and plan your tax strategy can be accomodated with single entry systems.

How can you use a double entry system if you have never even taken an accounting course?

You can't, if you use software that simply automates the way people do things by hand, . . .
but, with The ACCOUNTANT, by Decision Support Software, the power of your computer is harnessed to offer you the advantages of an automated double entry system even if you don't know a debit from a credit!!!!

Our users tell the story:
'I've tried several other programs - none have the features - especially the double entry system which I have sought for a long time".
"I spent a great deal of effort trying to make TRAC and some of the other'checkbook' programs work, but my high expectations were replaced by disappointment. I kept on looking and finally came across a program that did what I wanted it to do.

The ACCOUNTANT is not only very sophisticated and full of surprising features, such as automatic transactions and linkages to VisiCalc", but is very easy to use".

The detailed records contained in The ACCOUNTANT's data base will enable you to itemize each and every legitimate tax deduction. DBCALC, a VisiCalc ${ }^{\text {T }}$ interface, retrieves data from The ACCOUNTANT's data base and creates a VisiCalc ${ }^{\text {m }}$ file of actual and projected financial data which can be used for financial simulations and tax computations.

The ACCOUNTANT's user - oriented features include: menu driven operations; comprehensive prompting during transaction data entry and modification; the ability to refer to accounts and codes by abbreviated name or by number; and the ability to interupt operations without aborting the session.

SATISFACTION GUARANTEED ! ! ! ! ! !

How many money back guarantees have you seen for computer software?

Decision Support Software offers Washington Apple Pi members, who order directly from DSS, a money back guarantee:

If you exercise The ACCOUNTANT for a period of 90 days, according to instructions, and are not completely satisified, you may return the materials for a full refund.

Decision Support Software

1438 Ironwood Drive
McLean, VA 22101 (703) 241 - 8316

The ACCOUNTANT requires an APPLE II with 48K, APPLESOFT on ROM, single or dual drives, and uses normal DOS 3.3 formatted disks.

INTRODUCTORY PRICE $\mathbf{\$ 8 9 . 9 5}$
(plus $\$ 20.00$ for DBCALC and taxform) APPLE" is a trademark of APPLE Computer Inc., Cupertino, CA.

BEMEATH APPLESOFT ''LIST', by lver P. Cooper

"I've got a little list."
Gilbert \& Sullivan,
The Mikado.
This is the first in a series of articles which will examine the workings of a single Applesoft ROM routine, the routine which allows you to "LIST" a program. (You may wish to look up the "LIST" command in the Applesoft Reference Manual, and make sure that you understand all of its little foibles.)

Enter Applesoft and type the following short program:

1 LIST
 2 REM ABCDEF

Now type "CALL -151" <cr> to put yourself in the Monitor, as shown by the asterisk prompt in the leftmost column of the screen. Type "300: 20 B1 00 4C A5 D6" <cr>. Then type "300L" to see what you have wrought. The screen will be filled with lines, of which only the first two are of interest:

$$
\begin{array}{lllll}
0300- & 20 & \text { B1 } & 00 & \text { JSR }
\end{array} \text { \$00B1 } 1003-24 \text { JMP }
$$

\$00B1 is the location of the CHRGET routine in the ROM version of Applesoft. It increments a two-byte pointer known as TXTPTR, and puts the value it finds in the indicated memory location into the accumulator (A). Depending on the nature of this value, CHRGET sets certain bits, or flags, in the status register. If' the value' of A corresponds to a colon <:> ($\$ 3 \mathrm{~B})$ or an end-of an ine marker (eoi> ($\$ 00$), it sets the Z(ero) flag. If A's value is that of an ASCII number ing.
\$D6A5 is the location of the LIST routine in Applesoft. Typing "D6A5G" in the Monitor, or the equivalent CALL in Basic, will not cause the routine to list the program unless the appropriate value is in A and the Z and C flags are in the appropriate state. This "preconditioning" is performed by CHRGET.
CHRGET, of course, must have its TXTPTR pointed at the location of the Litsin uses as internal shorthand for that command). TXTPTR is at locations B8, B9 in the "zero-page" of your APPLE's memory If your first line contains the LiST command, the "LIST" token will be at $\$ 0805$. This is easily confirmed. Type ${ }^{\prime \prime} 800^{\circ}$ <cr> 〈cr> and, if your first line is " 1 LIST", you will see the following:

```
0800-00
    07 08 01 00 BC 00 14
```

The first two bytes give the address where
line 2, " 2 REM ABCDEF" begins. As is customary, the low byte of the address, "07" is shown before the high byte, "08", and thus bytes $\$ 801$ and $\$ 802$ tell us that the next line starts with byte $\$ 0807$. The third and fourth bytes give the line number in a similar format, so the line number is $\$ 0001$. The fifth byte, $\$ B C$, is the LIST token, and the sixth byte is the end-of-line marker, $\$ 00$.
To point TXTPTR at the "LIST" token in line 1, type "B8: 0508 " <cr>. Now, type "300G" <cr>. Voila! The program is listed, thanks to the short machine language routine we entered at $\$ 300$ earlier.

TXTPTR pointed at the LIST token. The program jumped to the subroutine CHRGET, which incremented TXTPTR. The value it pointed to, the end-of-line marker $\$ 00$ in $\$ 806$, was placed in A, with Z set, and the program jumped to the LIST routine.

Change line 1 to read "1 LIST 2". Enter the Monitor and once again set the TXTPTR to point to $\$ 0805$. Run the routine at $\$ 300$ again. This time it prints 12 REM ABCDEF". Experiment further until you are convinced that this procedure works for all the forms of the LIST command and for progams of greater length.
In this first article, we have learned that some Applesoft machine language routines, like "LIST", require "preconditioning" of certain registers and memory locations in order to run properly. Specifically we have learned one method of running the Applesoft "LIST" routine from the Monitor. In the next article we will talk about how the routine at \$D6A5 parses the "LIST" command (e.g., "LIST 10,1000 "). Later we will learn ' how it steps through the Applesoft program itself, and how it converts tokenized commands such as the byte "80" to the ASCII characters "to END". finally, we will examine an enhanced "LIST" routine, my own "SUPERLIST".

A REPRINT

Editor's Note: The following article, reprinted with permission from SKY AND TELESCOPE, Was given to me last Spring by this article Dave has landed a job in Phoenix Arizona, where he now controls with micros one of the United States' largest telescopes at Kitt Peak. Congratulations, Dave! We would have reprinted this much sooner but someone took a fancy to the SKY AND TELESCOPE issue at our monthly meeting, and it wasn't until three weeks ago that I got another copy from Dave.

GLEANINGS FOR ATM's

CONDUCTED BY ROGER W. SINNOTT
Running a Telescope with a Microcomputer

OBSERVING variable stars with a photoelectric detector is one way that an amateur can make a contribution to astronomy. Accuracies of a few hundredths of a stellar magnitude are typical.

An evening's work, to be sure, seemingly provides only a list of numbers. But then these brightness measures are plotted up, and imagination and analysis are brought to bear. The insights gained often make you feel that you have been carried to the star, and are an intimate spectator of its behavior.

My particular interest is eclipsing binaries. After several years as a member of the American Association of Variable Star Observers (AAVSO), using a variety of photoelectric photometers, I became convinced that it would be a powerful advantage to have a computerized telescope.

With this thought in mind, I began building a fully computer-controlled $121 / 2$ inch reflector in my yard. A fork mount was chosen so that the telescope would be able to follow a star across the meridian without interruption. I took apart the German mounting of my earlier 6 -inch homemade reflector and used its polar and declination bearings on either end of a new, longer polar shaft. The fork was welded together out of $1 / 8$-inch steel, and a 14 -inch box of $1 / 4$-inch welded aluminum formed the telescope tube.

A commercial $12^{1 / 2}$-inch Cassegrain mirror set was ordered with a short back focus, along with a Newtonian diagonal. This diagonal is mounted on a second spider directly in front of the primary mirror, to form a bent Cassegrain configuration whose final focus lies about an inch beyond the side of the tube. Black flock paper and baffles inside the tube reduce stray light.

The bent light path minimizes the forktine length, and also brings the heavy photometer as close as possible to the intersection of the polar and declination axes. This leads to a very stable arrangement, and the telescope is hardly disturbed at all when the photometer is being operated manually. Moreover, the eyepieces of the photometer and 4 -inch finderscope are in close proximity, and always conveniently placed.

DRIVING THE AXES

How could the telescope's right-ascension and declination shafts be aimed automatically? Since I wanted remote positioning capability at the arc-second level, this became a serious problem. Stepper motors were the logical choice on each axis, so that the computer could issue drive pulses and use the total count of
pulses to keep track of the telescope position.

Small telescopes typically have natural vibration frequencies of a few cycles per second, so I knew it would be important that the stepping rate not coincide with, and thus excite, any structural vibration. After several tests, I finally chose a tracking rate of 10 steps per second.

Since the earth rotates 15 arc seconds per second of time, the 10 -step rate required a geared-down step size of $11 / 2$ arc seconds. My hour-angle stepper is connected to a worm through a compliant coupling that helps dampen mechanical vibration. This secondary worm drives a

100 -tooth worm gear that directly turns the primary worm.

Mechanical "slop" between the primary worm and the primary worm gear is minimized by preloading the telescope or unbalancing it slightly. Play between the stepper's worm and its worm gear can easily be held to a tenth of a motor rotation, or about five steps, corresponding to 8 are seconds on the sky. Once the motor has made enough steps to take up this slack, each subsequent step can be depended on for an additional $11 / 2$ arc seconds of motion.

The electronics were completed in stages, with gradually increasing sophistication. I designed special controller circuits, which drive the multiphase steppers using direction and step pulses alone. These circuit boards are mounted near each motor and are fully interchangeable.

Starting from scratch, it took me about

In Maryland, David R. Skillman has built the first amateur observatory, as far as the editors of Sky and Telescope know, that performs complex activities under the remote control of a home computer. The key pad he is holding is used only for initial setting of the $121 / 2$-inch telescope on a variable star field. A 1P21 photomultiplier tube is attached to the eyepiece holder at upper left for measuring star brightnesses to high accuracy.

a year to assemble the telescope and bring it to a point where it could be driven in both axes with a pair of simple oscillators. Then at last, the fun could begin.

COMPUTERIZATION

My plans called for two computers, each handling part of the work load. One is an enhanced KIM-1, the popular singleboard computer developed by MOS Technology, a division of Commodore. I have installed it in the observatory, where it serves as the "telescope controller." The other computer is a standard Apple II located in my house; I call it the "operations controller" because it issues simple commands (normally from a program written in Basic) to the KIM, which in turn handles the details of carrying them out. The KIM will also accept commands from a push-button hand paddle when I am standing beside the telescope.

The hand paddle is a reworked calculator key pad that is routinely scanned by the machine-language program in the KIM. I can use the paddle for slowmotion control of the telescope as well as for on-site display (using LED digits) of the photometer signal.

Within a few months I had gotten the KIM to perform these additional functions: track stars in hour angle, monitor a real-time clock, and integrate the signal coming from the photometer. This made variable star work much more convenient because integrated brightness measurements could be copied off the LED display and written down along with the Universal time. The KIM receives its brightness values through a 12 -bit analog-to-digital converter. Thus, stars that differ by as much as four stellar magnitudes (40 times) can be measured to ± 1 percent directly,

Left: The electronics beside the telescope include the high-voltage supply for the photomultiplier, the photocurrent amplifier (left front box), the KIM-1 telescope-control computer (with cooling fan), and several power supplies. The hand key pad hangs on the fork at left.
Right: The declination drive nestles in the fork. Here are seen the stepper electronics, the stepper motor and gearbox, and the declination worm gear with its protective cover. All photos are by the author's brother Tom.
and there is no need of $1 / 2$-magnitude sensitivity steps on the amplifier, as would be the case if I were putting out the data on a strip-chart recorder.
A 26 -conductor cable was buried underground during construction of the observatory. It runs more than 100 feet, providing a data link to the control area inside my house. Optical isolators were put on each end of the cable to avoid grounding problems, and to prevent failures or electrical shorts in one area from damaging equipment in the other. Each wire in the cable can transfer data at a 10 -kilobaud rate (that is, 10,000 off-on pulses per second).

My "operations control room" contains the Apple computer, a TV-set monitor, a floppy-disk drive, and a printer. This popular type of home computer was chosen because of its excellent documentation, and because it offers high-resolution graphical displays on the video screen. Also, it uses the same 6502 microprocessor chip that is in the KIM, simplifying matters when I am writing assemblylanguage software.

As things now stand, the Apple sends out strings of commands via the underground cable to the KIM, which must execute them and return answers. For example, the Apple might ask for the time, the coordinates to which the telescope is currently aimed, or the signal level produced by the photomultiplier tube. Or it
might tell the KIM to shift the telescope to another star.

Thus, in a very literal sense, the telescope has become a "peripheral device" of the Apple computer 100 feet away! Automatic operation commenced in May, 1980, a little more than two years from the start of the project. Its first variable star was 44 Bootis, on which the system performed very well for some six hours.

A TYPICAL EVENING'S ACTIVITY

As darkness falls, I turn on the Apple and run a prediction program to find out which variables will be in the sky and undergoing an eclipse that night. If I am not familiar with the star, I then prepare a finder chart and select a comparison star. The observatory will already have been opened around sunset to acclimatize the equipment to the night air.

Next I turn on the electronics in the observatory and press the reset button on the KIM. Returning indoors, I power up the Apple again, load in the machinelanguage telescope-controller program, and transmit it through the cable to the KIM.

Moving back out to the telescope, I manually find the comparison star and place it in the aperture of the photometer, which is only 30 arc seconds across. When the sliding mirror is withdrawn, the light of this star alone falls on the sensitive cathode of the 1P21 photomultiplier tube. I adjust the tube voltage and
amplifier gain to provide reasonable signal levels for the comparison and variable, and then leave these settings alone for the rest of the night.
With the comparison star well centered, I press a hand-paddle button labeled "origin," which clears the position counters in the KIM's memory. (Rather than keeping track of the right ascension and declination, the program works more conveniently in step coordinates, with the origin at the comparison star.) I then use the slowmotion controls to select a starless patch of sky that will be used for monitoring the sky background and press another button. Finally, I locate the variable star, center it well, and press a third button. Each time, the KIM stores the relative coordinates. There is no limitation on either the number of objects to be measured or the order in which they will be observed.

Another button starts the sequencing through the list of objects. Every time the telescope successfully returns to the comparison star, the computer clears its position counters, to avoid cumulative errors.

Now the two computers take over complete control of the telescope. I can watch the progress on the video screen in the house, which displays the time, relative coordinates, photometer output, number of data points collected, and a narrative of the operations.

HOMING IN ON A STAR

Periodic error in the primary worm on the polar axis is one area that needed special attention. Such a gear error can easily cause the telescope to miss a star because of the small acceptance angle of the 30 -arc-second diaphragm. To handle this problem, and to fend off a myriad other real-world perturbations (such as wind on the tube), an automatic telescope like this must be able to search a small

The Apple II computer (with keyboard) stays inside the author's house. Flanking it are a cassette recorder (left) and floppy disk drive (right), either of which can store many hours of brightness measurements of stars. In the foreground is the joystick for fine-tuning the telescope aim. The old TV set provides a realtime display of data being gathered. In the rear is the KIM-1 computer, which would normally be out in the observatory, but which can be brought indoors and hooked directly to the Apple for tests.
sky area near the star's coordinates.
In my system, if the telescope slews to a star and finds it absent, the KIM will cause it to sweep in an ever-widening rectangular spiral, looking for the star. If the search fails for some reason, say the brief passage of a cloud, it moves on to the next object. On the other hand, if the star is found during a search (as indicated by a sudden rise in the photometer signal), the telescope will usually overshoot, and the computer must make it backtrack until the star is detected again.

Merely putting the star in the photometer aperture is not sufficient in photo-
electric work; the telescope must center the star as well. My software uses a centering algorithm that is independent of gear errors in the drives.

First the telescope moves 40 arc seconds to the north, then scans slowly southward until the photometer signal has risen and fallen again as the star moves through the aperture. Having counted the number of steps needed for the star's chordal passage, the computer moves the telescope northward again, to the point of redetection and then further by the half-width of the chord. A similar sequence is performed in the east-west direction, thus cen-

The observatory is a $7-$ by-7-foot plywood affair, with easy disassembly as part of the design in case the author wants to move it. He adopted the split clamshell roof because a roll-off type would have required twice as much yard space. In the open position, the roof panels partially obstruct the sky at altitudes lower than 30°, where photometry is not normally attempted. Thus they help to block any wind. The closed structure seen here looks remarkably like a standard tool shed and attracts little attention. At near right is the house.

The eclipsing binary 44 Bootis underwent a primary minimum just after 3 hours UT and a secondary one after 6 hours, as revealed by the author's equipment. Although the eclipses are about 0.4 magnitude deep, the readings include light of a brighter visual companion star 1.0 arc second away, diluting the measured depth to barely 0.15 magnitude. Note the much steadier light of the comparison star, 47 Bootis, which is $0^{\circ} .6$ away.

There are endless enhancements possible on a computerized system like this, and I plan to try a software correction of the periodic worm error. Also, a graphical display of the status would be nice, rather than the present numerical display.

The cost of a system like this is not trivial, of course. But adding it all together - optics, mounting, electronics, observatory building, two computers, printer, disk drive, and photometer - comes to only about half the cost of a station wagon. I have probably put in a thousand hours of my time in design, construction, and software development. With the bulk of the debugging behind me. I am looking forward to future observing sessions, which should be some of my most productive ones.

DAVID R. SKILLMAN contd. on pg 48
tering the star very accurately. For consistency, exactly the same centering technique is used on all stars being observed.

The computer then samples the output of the A/D converter about 100 times per second for 25 seconds; the sum of all these readings is sent back to the Apple for retention as a single data point.
After watching a few cycles through the list of stars, sometimes I interrupt the program and enter better relative coordinates to trim up the operation. Out at the telescope, the movements are quiet, and only the flickering of the needle on the amplifier and the racing digits on the LED display show that the system is functioning. It is fascinating to watch through the finder and see the stars moving back and forth silently.
In general, if the telescope cycles correctly through the sequence once, it will continue to do so indefinitely. But if the telescope is poorly balanced or the wind gusty, I sometimes must go outdoors and relocate the comparison star.
Data reduction is done later, by another computer program on the Apple, during the day or on a cloudy night. This Basic program can take raw readings, plot a light curve on the video screen, and then perform the standard operations of subtracting the sky brightness and converting the readings to magnitude differences between the comparison and variable.

When Howard Landis, the head of the AAVSO photoelectric group, stopped by for a visit last July, we decided to observe u Herculis even though the eclipse wasn't very well placed during the hours of darkness. That night the telescope performed perfectly, although we interrupted it several times for data dumps. After four hours the system was still faithfully gathering data. Then I could see that the variable would be disappearing behind a hedge shortly, so I closed up shop.

This flow chart summarizes the relationships between electronic and mechanical components. Everything in the upper half is located in the observatory, while the lower items are in the Skillman household. The analog-to-digital converter needs only 14 microseconds to change a signal level to its 12 -bit representation. Each I/O port passes 10 bits in and 10 bits out. The WWV receiver is one of the Radio Shack TimeKubes.

GREAT LAKES is proud to announce...

More LEGENDary POWER for your Apple II Computer!!

LEGENDary Hardware from Legend Industries -

* 64KC - 64K Dynamic Memory Board. Feeling a little cramped trying to perform business and scientific applications on a 48 K Apple II? Expand your Apple with as many 64KC boards as your application requires. 64 K of dynamic RAM for only $\$ 349$!!
* DISK EMULATOR SYSTEM - Simulate a very fast disk drive. Do you ever wish that you had an almost instant access disk drive for your Apple II? This package contains two 64KC RAM boards and the Disk Emulator program that allows you to access every byte of memory on the RAM boards with standard DOS 3.3 disk commands. The complete system is priced at only $\$ 700$!!
* 128KDE - 128K Dynamic Memory Board with Disk Emulator. Do you need the additional power of expansion memory and disk emulation, but, cannot fit enough 64 K boards in your available slots? This 128K RAM board complete with Disk Emulator software is the answer. This powerful product is in stock and only $\$ 750$!!
* McLaren LCG 1 \& 2 - Lower Case Generator for the Apple II. A complete solution for using lower case with your Apple. A simple plug-in device that will display upper and lower case characters (with true descenders). The McLaren LCG is compatible with software designed to use lower case and comes with a program that allows you to use lower case in BASIC programs. An excellent buy at $\$ 49.95$.

LEDENDary Software from Legend Industries -

* MEMORY MASTER 1.0 - Memory Management for the Apple II. A program that provides a full 44 K bytes of program storage within a 48 K Apple motherboard by relocating Apple DOS into one of the banks of a 64KC board or most 16K cards. Memory Master 1.0 will also manage you integer or Applesoft firmware card. The program also provides many features and extensions to DOS 3.3. A great program by Mike McLaren and only $\$ 34.95$!
* DISK EMULATOR 2.1 - Simulated Disk Drives for the Apple. The DISK EMULATOR is a remarkably compact (uses only 512 bytes of memory when installed within DOS) yet powerful program that allows the Apple II equipped with DOS 3.3 and one or more Legend 64 KC boards to simulate up to three additional, almost instant access, disk drives for the storage and retreival of standard DOS 3.3 disk files. DISK EMULATOR uses a single 64KC card to simulate 256 sectors (tracks 3 thru 18) or two 64 KC cards to simulate 512 sectors (tracks 3 thru 34). Available now for $\$ 49.95$.

Go to your local dealer and see these LEGENDary products today!!
For dealer orders or if your local dealer does not carry these products - contact:
GREAT LAKES DIGITAL RESOURCES
P.O. Box 32133

Detroit. MI 48232

LOOSE DB25 PLUG
by Boris Levine

The connection between the APPLE and the printer or modem is usually through a standard DB25 receptacle. If you have been irritated because a loose plug gave you intermittent problems at the printer, read on.

My APPLE Communications Board, for exampile, uses a DB25 receptacle, which is clamped firmly in a slot at the rear... However, getting the mating plug to stay in position took a two-step solution.
STEP 1 - See Fig 1:
Take a look at the flange on the plug. It's wider than the slot in the APPLE's cover. So, file the upper corners of the flange until it fits. This doesn't take much, maybe an eighth-inch. (See Fig 1). Push the plug on and it should now hold nicely.

But...if it doesn't...go to
STEP 2 - See Fig 2:
The DB25 plug comes with little fastening screws in its flange which are supposed to screw into matching holes in the receptacle flange. However, the screws which hold the receptacle plates in position also use the same holes and they got there first. So, for Step 2, replace each screw with a a pair of extenders. Use kit, AMP part number 205817-1, which
contains the extenders plus an assortment of nuts and washers. It's obtainable locally from Arlington Electronics. It's also listed in Inmac's catalog. You will need two kits, which run about a dollar each.

To install, simply:
a. Remove the two screws holding the DB25 receptacle in place.
b. Install an extender on each end of the inner plate and lock it in place with one of the nuts in the kit.
c. Place a lockwasher on each remaining extender.
d. Insert one of the extenders into the lower hole of the outer plate; then the other into the upper hole and engage the inner plate loosely.
e. Replace the DB25 receptacle in the slot (following the original instructions for installation).
f. Tighten the outer extender so that the receptacle is held firmly (but not so tightly as to bend the plates).
Now attach the DB25 plug, tighten the little screws to hold it to the receptache, and dare it to fall off.

DB 25
Plug

Clamping Plates with screw

Receptacle

THE IMDEX: A Review by Bernie Urban

This is for all you computerists who don't have enough manuals and documentation, and especially for all you recent purchasers of the APPLE II and others like you who have gone Atari, North Star, Ohio Scientific, TRS-80, etc. There is a new publication on the market, "THE INDEX" which indexes articles that have appeared in over 900 issues of home/personal computer publications. Actually this will prove to be an invaluable reference guide for all of us... especially if it is updated regularly. THE INDEX is put out by Missouri Indexing, Inc. with William H. Wallace as its indexor. William by the way, is a member of Washington Apple Pi.

THE INDEX is subdivided into 14 subindexes which include computer types and chips, a CP/M and a general article subindex. Listed at the end are the names of 45
 our own WASHINGTON APPLE PI. Each article is KWIC (Key Work in Context) indexed by title. Each keyword of the title is permuted and sorted alphabetically within the subindex. KhIC indexing is a relatively inexpensive method of organizing large bodies of information, but the process suffers if the indexed materials do not have meaningful titles. Since our articles are written by volunteers and for the most part strictiy for the fun of it, many times the authors provide titles which are whimsical in nature and not too informative concerning their substance. Missouri Indexing has attempted to ameliorate this weakness by adding "game", "program" or "review" as subject descriptors where appropriate to otherwise cryptic or frivolous titles. By the way, the system limits title length to approximately 55 characters.

Starting last July, they have indexed over 12,000 articles into 30,000 entries, using three APPLE II's and one TRS-80 for data entry. While Missouri Indexing had access to all WAP newsletters through May 1981, not all articles have been indexed. As is typical of such indexing, each article was assessed as to its probable interest and usefulness, and was included or not according to the reviewer's subjective judgment. The data were then transmitted
via the RSTS system to a PDP-11, where they were processed into the index by software written in PDP-11 Basic by Missouri Indexing.

Following this review is a listing of WAP materials which were selected for inclusion and which appear in KWIC format. Thanks, William! This will be especially useful to our newer members. However, by publishing this index I predict that we will be swamped with requests for copies of back issues or specific articles. That is the flip side of this information coin! What about accessibility to the other articles in THE INDEX? MIssouri Indexing suggests University Microfilms, 300 North Zeeb Road, Ann Arbor, MI 48106, as providing a reprint service for several sources. They also suggest local libraries, clubs and individual members. Passing the buck, eh! But they do say (if worse comes to worse - my words added) "contact Missouri Indexing and we will attempt to secure an individual copy of articles that are out of print and for which we can obtain reproduction permission from the publisher".

Apart from an occasional omission or typo, which is to be expected in any first issue of such a product, I think THE INDEX should as a minimum be available in every club library for use by its members. Regarding possible extensions, wouldn't it be nice if it also listed materials by organization and by author? Sorry, but this would obviously triple the size (currently 489 pages) of the index. What about having it on-line on the Source or CompuServe? Perhaps an organization such as the International Apple Core might help subsidize it as a service to APPLE users groups (Ken Silverman, are you listening?).

Missouri Indexing plans to come out with a next edition soon and has already identified 40 additional sources of articles. I hope InfoWorld is one of them. Individual copies of THE INDEX are $\$ 14.95$ and. are available by sending a check to Missouri Indexing, Inc., P.0. Box 301, St. Ann, MO 63074, phone (314) 997-6470. Visa and Master Charge are also accepted. Considerable savings are possible through group purchases.
printout of the infómation for the index ll-vo-yl

3ACT* THE DISAPPEARING	SANCHEZ	WASH	P1	$11 / 80$
3 ADAP TERS* LOWER CASE	RINALDO	WASH	P I	$12 / 79$
3ADDING A CALCULATOR TO YOUR APPLE PROGRAM*	SAND	WASH	PI	$12 / 79$
3 AOUING CULORS TO APPLE 2 HI-RES*	StAFF	WASH	PI	$12 / 79$
3ADOING PHOTOS TO A NEWSLETTER*	CKAB APPLE	WASH	P1	$4 / 80$
3ADJUSTING THE DISK 2 SPEED*	CROSBY	WASH	P I	12179
3ADVENTURE TO DISK AND MUCH MDRE* SAVING AN	THOMAS	WASH	PI	$10 / 80$
3ADVENTURE* DDYSSEY THE COMPLETE	GREENFARB	WASH	PI	$8 / 80$
3AID FOR THE HANDICAPPED* CONTEST SEEKS COMPUTER	STAFF	WASH	P1	$12 / 80$
3AIDS A REVIEW* DAKINS PROGRAMMING	SAND	WASH	P!	$2 / 80$
3AIDS TO FORMATTING REM STATEMENTS*	MITCHELL	WASH	PI	11/80

3AIR TRAFFIC CONTROLLER A REVIEW*
3AMPEKSORT PROGRAM*
3APNOTE APPEND FIX IN DOS-3.2.1 AND DOS-3.2*
3APPEND FIX IN DOS-3.2.1 AND DOS-3.2* APNOTE
3 APPLE*. LOWER CASE INPUT FOR YOUR PASCAL
3APPLE* MULTIPROCESSING WITH THE
3APPLE* REMOTE TEMPERATURE MEASUREMENT WITH THE
3APPLE* WHATAS WHERE IN THE
3APPLE-DOC A REVIEW*
3APPLE-PI PROGRAM* COLUMN-FOKMATTER FOR
3APPLES* A HAROWARE CHANGE LIN NEW
3APPLESJFT HI-RES DEMO PROGRAM* SPIRO AN
3 APPLESOFT* MEMURY MAP IN
3aSSEMblef* a bug in the toolkit
3ASSEMBLEK* IN SEARCH OF A PERFECT
3 AUTG NUMBER PROGRAM*
3AWARENESS TEST PROGRAM*
3 basic machine language linkages* some integer
3 BASIC PROGRAM ERASE ITSELF HOW TO MAKE AN INTEGER
3 GESSEL GRAPHS PRDGRAM* EUUATIONS FOR THE
3 BIURYTHYMS*
3blaise away the pascal to paper tiger connectidn*
3BUG IN THE TOOLKIT ASSEMSLER* A
3 BUY SOFTWARE* HGW TJ
3Cal culatiok tij your apple phockane adoing a
3CASE aUAPTERS* LUNEK
3CASE INPUT FOR YOUR PASCAL APPLE* LOWER
3CATALUG PROGRAM* MASTER
3CHANGE UN NEW APPLES* A TAKUWAHE
3CHANLEES FOR DOS-3.3 PROGRANA
3CLRCK * SOFTWARE FOR THE EXPERIMENTERAS REAL TIME
3CODER* WISHING WELL
3COLOK URGAN PROGRAM* SOFTWARE
3COLDRS TO APPLE 2 HI-RES* ADJING
3COLUMN-FORMATTER FUR APPLE-PI PRUGRAM*
3 COMMENT ON RENUMBER* A
3COMMENTS ON VISICALC*
3CUMMUNICATION SYSTEM A REVIEW* ELECTRONIC
3 CUMMUTER*
3COMPARE INSTKUCTIONS* TESTING THE 6502
3CONNECTIUN* GLAISE AWAY THE PASCAL TO PAPER TIGER
a CONTEST SEEKS COMPUTER AID FOR THE HANDICAPPED*
3CONTROLLER A REVIEW* AIR TRAFFIC
3CONVERSION: APPLE WRITER TO TEXT FILE
3CONVERT FROM DOS-3.3 TO 3.2* HOW TU
3CRAF SUFTWARE REVIEW*
3CREATING DATA STATEMENTS PRDGRAM*
3D.C.-HAYES MICROMODEM OWNERS* UPDATE FOR
3DAKINS PROGKAMMING AIDS A REVIEW*
30ANADS HEX LUADER*
30ATA FROM THE SOURCE* STOCK MARKET
3DATA STATEMENTS PROGRAM* CREATING
3OEMO PROGRAM* SPIRO AN APPLESUFT HI-RES
3UIRTY RAM TEST PROGRAM* A UUICK AND
3OISAPPEARING ACT* THE
30ISK AND MUCH MORE* SAVING AN ADVENTURE TO
3DISK 2 SPEED* ADJUSTING THE
3OISKETTE FILING* ECONOMICAL
3DOS-3.2.1 AND DUS-3.2* APNOTE APPEND FIX IN
300S-3.2.1* AN ERROR IN
30OS-3.2* APNOTE APPEND FIX IN UUS-3.2.1 ANO
3DOS-3.3 A REVIEW*
300S-3.3 AND THE LANGUAGE SYSTEM*
300S-3.3 PROGRAM* CHANGES FOR
3DOS-3.3 TO 3.2* HUW TO CONVERT FROM
300UBLE-SILE GRAPHICS FOR THE SILENTYPE*
3DREADED COMPUTER* THE
3DRIVER FOR THE IDS-440 PRINTER* ERRATA GRAPHICS
3 DRIVER FOR THF IOS-440 PRINTER PROGKAM* GRAPHICS
30UMP FOR THE IDS-440 PRINTER PRUGRAM* EXPANJED GRAPHICS
3EAMON \#1* REVIEW OF
3ECONOMICAL DISKETTE FILING*
3EDUCATION* SIG FUR
3ELECTRONIC COMMUNICATION SYSTEM A REVIEW*
3EPSON MX-80 PRINTEK* A REVIEW OF THE
3fOUATIONS FOR THE BESSEL GRAPHS PROGRAMA
3ERA* INFOKMATION IN THE POST GUTENBERG
3ERASE ITSELF* HÜW TO MAKE AN INTEGER HASIC PROGRAM
TERRATA GRAPHICS ORIVER FOR THE IDS-440 PRINTEF*

3ERRUR IN DOS-3.2.1* AN
3EXEC OR KEYBOARD* RUN PROGRAMS FKOM
3EXPANDED GRAPHICS DUMP FIJR THE IUS-440 PRINTER FROGRAM*
3EXPERIMENTERAS REAL TIME CLOC.K* SOFTWARE FUR THE
3FILE CONVERSION* APPLE WRITER TD TEXT
3FILECABINET 2* SPACED
3FILLMOVER*
3FILING* ECUNOMICAL DISKETTE
3FIX IN DUS-3.2.1 AND DOS-3.2* APNOTE APPEND
3FOUTBALL A REVIEW* TUESUAY NIGHT
3GARUEN PLANNER* COMPUTERILEO
3GKAPHICS DRIVER FOR THE IDS-440 PRINTER* ERRATA
3 GRAPHICS DRIVER FOR THE IDS-440 PRINTER PRJGRAY*
3GRAPHICS OUMP FOR THE IOS-440 PRINTER PROGRAM* EXPANDED
3GRAPHICS FOR THE SILENTYPE* DOUBLE-SILE
3GRAPHICS* ISOMETRIC 30 PLOTS SHOW OFF APPLE
3GKAPHICS* LINEAR SCALING IN HI-RES
3 GRAPHS PROGRAM* EQUATIONS FOR THE BESSEL.
3GUIDE* WORD PRUCESSOR USER
zGUTENBERG ERA* INFORMATION IN THE POST
3HANDICAPPED* CONTEST SEEKS COMPUTER AIO FOR THE
3 HARDWARE CHANGE ON NEW APPLES* A
3HELLO PROGRAM*
3HEX LOADER* DANA AS
3HI-RES DEMO PROGRAM* SPIRO AN APPLESOFT
3HI-RES GRAPHICS* LINEAR SCALING IN
3HI-RES SCREEN* PRINTING OUT THE
3HI-RES* ADOING COLORS TO APPLE 2
3 IDS-440 PRINTER A REVIEW* PAPER-TIGER
3IDS-440 PRINTER PROGRAM* EXPANDED GRAPHICS DUMP FOR THE
3IDS-440 PRINTER PROGRAM* INTERFACING
3 IDS-440 PRINTER PRUGRAM* GRAPHICS DRIVER FOR THE
$310 S-440$ PRINTER* ERRATA GRAPHICS DRIVER FOR THE
310S-460 IMPACT PRINTER A REVIEW*
3 IMPACT PRINTER A REVIEW* IDS-460
3 INCLUDES MASS STORE A REPRINT\# NETWORK LINKS UNITS
3 INFIRMATION IN THE POST GUTENBERG ERA*
3 INFORMATION NETWORKS A USERAS VIEW* PERSONAL
3 INFORMATION UTIL ITY* THE SOURCE AN
3 INPUT FOR YOUR PASCAL APPLE* LOWER CASE
3 INSTRUCTIONS* TESTING THE 6502 COMPARE
3 INTEGER BASIC MACHINE LANGUAÚE LINKAGES* SOME
3 INTEGER BASIC PRUGRAM ERASE ITSELF* HUW TO YAKE AN
3 INTELLIGENT 8O-COLUMN VIDEO INTERFACE SMARTERM*
3 INTERACTIVE PROURAMS* WRITING
3 INTERFACE SMARTERY* INTELLIGENT 80-COLUMN VIDEU
3INTERFACE WITH YUUR OWN LITTLE COMPUTEK A REPRINT*
3 INTERFACE* PARALLEL
3 INTERFACING IDS-440 PRINTER PROGRAM*
3 INTERFACING THE QUICK PRINTER 2 TO THE APPLE 2 PROGRAM*
3INTERNATIONAL-APPLE-CORE* HERE CTMES
3 INTERRUPT YJUR APPLE TFOR THE TIMEO*
3 ISOMETRIC 30 PLOTS SHOW OFF APPLE GRAPHICS*
3KALEIDO SHAPE PRDGRAM*
3KEY BOAKO* RUN PROGRAMS FKUM EAEC JK
3Language linkages* Some integer basic macihine
3LANGUAGE SYSTEM* DOS-3.3 ANO THE
3LETTER WRITING PROGRAM* TINY
3LINEAK SCALING IN HI-RES GRAPHICS*
3linkages* same integer basic macinine lanjuaie
3LIMKS UVIITS INCLUDES MASS STJRE A REPRINT* NETWOKK
3LIST BY SYSTEMS-DESIGN-LAB A REVIEW* MAILING
3LIST FOK THE APPLE PRUGKAM* PAGE
3LITTLE CUMPUTER A REPRINT* INTERFACE WITH YOUR CnN 3LOADER* DANAIIS HEX
3LOWER CASE ADAPTERS*
3LOWER CASE INPUT FOR YOUR PASCAL APPLE*
3MAILING LIST BY SYSTEMS-DESIGN-LAB A REVIEW*
3MAKE AN INTEGER GASIG PROGRAM ERASE ITSELF* HOW TO
3 MAP IN APPLESOFT \# MEMORY
3MARKET DATA FROM THE SOURCE* STJCK
3MASS STORE A REPRINT* NETHURK LINKS UNITS INCLUDES
3MASTER CATALOG PROGRAM*
3MEASUREMENT WITH THE APPLE* REMOTE TEMPEKATURE
3MEMORY FROM O TO 65535*
3MEMORY MAP IN APPLESOFT*
3MICROMODEM OWNERS* UPDATE FOR D.C.-HAYES
3MUCH MDRE* SAVING AN ADVENTURE TO DISK ANO
3MLH TIPRDCESSING WITH THE APPLE*

Pilloff
MODN
BOLSTER
FIELD
SANO
KEEDER
SCHWARTZ
REINBRECHT
STAFF
SChULTHEIS
SHARP
pilleff
pilleff
BOLSTER
FIELD
CGTTRELL
WURZEL
MITCHELL
MODN
STAFF
STAFF
MOON
JONES
SCHWART 2
SIMMUNS
WURZEL
MITCHELL
STAFF
SHARP
BOLSTER
PILluff
pilleff
pilloff
CRDSBY
crusby
STAFF
STAFF
REINBRECHT
REINBRECHT
wo
GFEENFARB
GREENFARB
FIELD
LEFKOWITZ
SANU
LEFKOWITL
STAFF
SKILLMAN
Pilluft
kELLY
URGAN
flell
cotifell
cruser
MOON
GKEER.FARB
LFFKCWITL
MITCHELL
WUR ZEL
greenfakb
STAFF
HAUSMAN
DIAZ
STAFF
SCHWAKTL
FINALDO
wo
HAUSMAN
FIFLD
CKDSBY
Pilloff
STAFF
mitchell
FIELD
CIDER
CROSBY
JUNES
THOMAS
FIELD

WASH	PI	4/80
WASH	PI	8/80
WASH	PI	3/80
WASH	PI	$6 / 80$
WASH	P	$6 / 80$
WASH	P	$10 / 80$
WASH	P1	$7 / 80$
WASH	PI	3/80
WASH	PI	$4 / 80$
WASH	PI	$10 / 80$
WASH	PI	11/80
WASH	PI	$1 / 80$
WASH	PI	12/79
WASH	PI	3/80
WASH	PI	10/80
WASH	PI	10/79
WASH	PI	12180
WASH	PI	$12 / 80$
WASH	P1	$7 / 80$
WASH	PI	$12 / 80$
WASH	Pl	12/80
WASH	PI	4/80
WASH	PI	3/80
WASH	PI	$12 / 80$
WASH	PI	3/80
WASH	PI	12/80
WASH	P1	12/80
WASH	PI	12/79
WADH	PI	$10 / 79$
WASH	PI	$3 / 80$
WASH	P1	11/79
WASH	PI	12179
WASH	PI	1/80
WASH	PI	$11 / 80$
WASH	PI	11/80
WASH	PI	$4 / 80$
WASH	P1	$12 / 80$
WASH	PI	5/80
WASH	PI	3/80
WASH	P1	6/80
WASH	$\boldsymbol{p l}$	11/80
WAS	Pl	5/80
WASH	PI	10179
WASH	PI	11/80
WASH	PI	8/80
WASH	PI	11180
WASH	Pl	11/80
WASH	PI	12/79
WASH	P1	11/79
WASH	PI	2180
WASH	PI	11/79
WASH	PI	$5 / 80$
WASH	P1	10179
WASH	PI	11/79
WASH	P1	8/80
WAjH	PI	5180
WASH	PI	$11 / 80$
WASH	PI	10/80
WASH	PI	$12 / 80$
WASH	P1	¢/80
WASH	PI	$4 / 80$
Wash	P1	$10 / 79$
WASH	PI	$12 / 79$
WASH	PI	11/80
WASH	P1	12/80
WASH	P1	12/79
WASH	PI	6/80
WASH	P!	10/79
WASH	P1	$10 / 79$
WASH	PI	11/80
WASH	PI	1/80
WASH	PI	$4 / 80$
WASH	PI	1/80
WASH	Pl	2180
WASH	PI	12/79
WASH	P1	11/80
WASH	PI	3/80
WASH	PI	10/80
WASH	P1	$10 / 79$
		cont

3MX- 0 P PRINTER* A REVIEW OF THE EPSON
3NATURE OF SURVIVAL SIMULATION* ON THE
3NETHORK LINKS UNITS INCLUDES MASS STORE A REPRINT*
3NETHORKS A USERAS VIEW* PERSONAL INFORMATION
3NIGHT FOOTBALL A REVIEW* TUESDAY
3NUMHER PROGRAM* AUTO
3ODYSSEY THE COMPLETE ADVENTURE*
3ORGAN PROGRAM* SOF TWARE COLOK
3OWNERS* UPDATE FOR D.C.-HAYES MICROMODEM
3PAGE LIST FOR THE APPLE PROGRAM*
3PAPER TIGER CONNECTION* BLAISE AWAY THE PASCAL TO
3PAPER-TLGER IDS-440 PRINTER A REVIEW*
3PARALLEL INTERFACE*
3PASCAL APPLE* LOWER CASE INPUT FQR YOUR
3PASCAL POINTERS* A PRIMER ON
3PASCAL TO PAPER TIGER CONNECTION* BLAISE AWAY THE
3PEKSONAL INFORMATION NETWURKS A USERAS VIEW*
3PHOTOS TO A NEWSLETTER* ADDING
3 PLANNER* COMPUTERILED GARDEN
3PLOTS SHOW OFF APPLE GRAPHICS* ISOMETRIC 30
3POINTERS* A PRIMER ON PASCAL
3POST GUTENBERG ERA* INFORMATION IN THE
3PRETTYLISTING*
3PRIMER UN PASCAL POINTERS* A
3PRINTER A REVIEW* IUS-460 IMPACT
3PRINTEK A REVIEW* PAPER-TIGER IDS-440
3PRINTER PROGRAM* EXPANDED GRAPHICS DUMP FOR THE [DS-440
3PRINTER PROGRAM* GRAPHICS DRIVER FOR THE IDS-44U
3PRINTER PROGRAM* INTERFACING IDS-440
3PRINTER 2 TO THE APPLE 2 PROGRAM* INTERFACING THE QUICK
3PRINTER* A REVIEW OF THE EUSUN MX-80
3PRINTER* ERRATA GRAPHICS DKIVER. FOR THE IDS-440
3PRINTING OUT THE HI-RES SCREEN*
3pROCESSING SYSTEM A REVIEW* THE PROGRAMMA WURD
3PKOCESSOR USER GUIDE* WORD
3PROCESSUR* TAKE THAT WORD
3PROCESSOR* WRITING A WORD
3PROGRAM ERASE ITSELF* HOW TO MAKE AN INTEGER BASIC
3PROGRAM* A UUICK AND DIRTY RAM TEST
$3 P R O U R A M$ * ADO ING A CALCULATOR TO YOUR APPLE
3PROGR AM* AMPERSOKT
3PROGR AM* AUTO NUMBER
3PROGRAM F AWARENESS TEST
3PROGRAM* CHANGES FOR DOS-3.3
3PROGRAM* COLUMN-FORMATTER FOR APPLE-PI
3PRUGRAM* CREATING DATA STATEMENTS
3PROGRAM* EQUATIONS FDR THE BESSEL GRAPHS
3PROGRAM* EXPANDED GRAPHICS DUMP FOR THE IDS-440 PRINTER
3PROGRAM* GRAPHICS DRIVER FOR THE IDS-440 PKINTER
3PRJGGRAM* HELLO
3PROGRAM* INTERFACING THE UUICK PRINTER 2 TO THE APPLE 2
3PROGRAM* INTERFACING 1OS-440 PRINTER
3PRJGRAM * KALEIDO SHAPE
3PRJGRAM \# MASTER CATALOG
3PRJGRAM* PAGE LIST FOR THE APPLE
3PKIGGRAM* RANOOM SPIRO
3PROGRAM* SAVETAPE
3PROGRAM * SIFTWARE COLOR ORGAN
3PROGRAM* SPIRO AN APPLESOFT HI-RES DEMO
3PROGRAM* TINY LETTER WRITING
3PROGRAMING QUICK IE*
3PROGRAMMA WORD PROCESSING SYSTEM A REVIEW* THE
3PROGRAMMING AIOS A REVIEW* DAKINS
3PROGRAMS FROM EXEC OR KEYBOARD* RUN
3PFJGRAMS* HRITING INTERACTIVE
3UUICK PRINTER 2 TO THE APPLE 2 PROGRAM* INTERFACING THE
3 UUILKIE* PROGRAMING
3RAM TEST PROGRAM* A QUICK AND OIRTY
SRANDOM SPIRO PROGRAM*
3REAL TIMF CLOCK* SJFTHARE FJR THE EXPERIMENTERAS
3REM STATEMENTS* AIDS TO FORMATTING
3REMOTE TEMPERATURE MEASUREMENT WITH THE APPLE*
3RENUMBEK* A COMMENT ON
3REPRINT* INTERFACE WITH YOUR DWN LITTLE COMPUTER A
3REPRINT* NETHORK LINKS UNITS INCLUDES MASS STORE A
3REVIEW OF EAMON \#1*
3REVIEW OF THE EPSON MX-8O PRINTER* A
3REVIEW* AIR TRAFFIC CONTROLLER A

WUR LEL	WASH	PI	12/80
CROSBY	WASH	PI	$10 / 79$
STAFF	WASH	P1	$4 / 80$
REINBRECHT	WASH	P1	5/80
SChULTHEIS	WASH	PI	10/80
CAHILL	WASH	P1	12/79
GREENFARB	WASH	PI	8/80
FIELO	WASH	PI	$1 / 80$
JONES	WASH	PI	3/80
DIAL	WASH	PI	$12 / 79$
wo	WASH	P1	5180
SHARP	WASH	PI	10/79
SKILIMAN	WASH	PI	12/79
WO	WASH	P1	$6 / 80$
WO	WASH	PI	7/80
wo	WASH	PI	5180
REINGRECHT	WASH	PI	5/80
CRAB APPLE	WASH	PI	$4 / 80$
SHARP	WASH	PI	11/80
COTTRELL	WASH	PI	10/79
wo	WASH	PI	7/80
Staff	WASH	PI	12/80
SANO	NASH	PI	11/80
wo	WASH	PI	$7 / 80$
CROSty	WASH	PI	11/80
SHARP	WASH	P1	10/79
BULSTER	WASH	P1	3/80
PILLOFF	WASH	PI	12/79
pilloff	WASH	PI	11/79
KELLY	WASH	PI	$2 / 80$
WUSZEL	WASH	PI	12/80
PILLUFF	WASH	P1	$1 / 80$
MITCHELL	WASH	PI	$12 / 80$
LAKAR	WASH	P1	10/80
MUON	WASH	P1	7/80
STAFF	WASH	PI	10/80
MOON	WASH	PI	7/80
+iElU	WASH	PI	$10 / 79$
KELLY	WASH	P1	$1 / 80$
SAND	WASH	PI	12179
HILL	WASH	P1	$12 / 79$
CAHILL	WASH	PI	$12 / 79$
MITCHELL	WASH	PI	1/80
SCHWART 2	WASH	P1	12/80
mitchell	WASH	PI	12/80
fuller	WASH	PI	3/80
MITCHELL	WASH	PI	12/80
BOLSTER	WASH	PI	3/80
PILLEFF	WASH	PI	12/79
JUNES	WASH	PI	3/80
KELLY	WASH	PI	$2 / 80$
PILLOFF	WASH	PI	11/79
CROSBY	WASH	PI	11/79
MITCHELL	WASH	PI	$1 / 80$
DIAL	WASH	P I	12/79
SCHWART 2	WASH	P1	11/79
SCHWART 2	WASH	PI	8/80
field	WASH	PI	$1 / 80$
SIMMONS	WASH	PI	3/80
MITCHELL	WASH	PI	10/80
FIELO	WASH	PI	$4 / 80$
LAKAR	WASH	PI	10/80
SAND	WAsH	PI	2180
MOUN	WASH	PI	8/80
SAND	WASH	PI	8/30
KELLY	WASH	PI	2180
FIELU	WASH	PI	4/80
KELLY	WASH	P1	1/8ü
SCHWAPTL	WASH	PI	11/79
FIELI)	WASH	PI	6180
mitchell	WASH	PI	11/80
fIELC	WASH	PI	2180
SCHMIDT	WASH	PI	$4 / 80$
STAFF	WASH	PI	11/80
StAFF	WASH	P1	4/80
UORMER	WASH	PI	8/80
WURZEL	WASH	PI	12/80
SCHULTHI.IS	hast	PI	10/80
			cont

There's only one place to buy apples.

AT FREDERICK COMPUTER PRODUCTS !!!
As an Authorized Apple Dealer we offer a full selection of both Apple Hardware and Software at low, low prices.

Also, as an Authorized Service Center we provide fast and efficient service on all Apple products.

Frederick Computer Products, Inc.

Microcomputer Systems And Peripherals
5726 INDUSTRY LANE-FREDERICK, MD.- (301)694-8884

apple computer
 © Authorized Deãler

3REVIEW* APPLE FIJRTPAN A
3REVIEW* APPLE-DOC A
3REVIEW* CRAE SOFTWARE
3REVIEW* DAKINS PROGRAMMING AIDS A
3REVIFW* DOS-3.3 A
3REVIEW* ELECTRONIC COMMUNICATION SYSTEM A
3RFVIFW* IUS-460 IMPACT PRINTEP. A
3REVIEW* MAILING LIST BY SYSTEMS-OESIGN-LAB A
3REVIEW* PAPER-TIGER IDS-440 PRINTER A
3REVIFW* THE PROGRAMMA WORD PRUCESSING SYSTEM A
3REVIEW* TINY-PASCAL
3REVIEW* TUESDAY NIGHT FOOTBALL A
3RUN PRDGRAMS FROM EXEC OR KEYBOAQD*
3SAVETAPE PROGRAM*
3SAVING an adventure to disk and much mure*
3SCALING IN HI-RES GRAPHICS* LINEAR
ZSCREEN: PRINTING OUT THE HI-RES
3SEARCH OF A PERFECT ASSEMBLER* IN
3SEFKS COMPUTFR AID FOR THE HANOICAPPED* CONTEST
3 SHAPE PRUGRAM* KALEIDO
3SIG FOR EOUCATION*
TSILENTYPE* DOUBLE-SILE GRAPHICS FOR THE
3SIMULATION* ON THE NATURE DF SURVIVAL
3SMARTERM* INTELLIGENT 80-COLUMN VIDEO INTERFACE
3 SOFTWARE COLOR ORGAN PROGRAM*
3SOFTWARE FOR THE EXPERIMENTERAS REAL TIME CLOCK*
3SOFTVARE REVIEW* CRAE
3SOFTHARE* HOW TO BUY
3SOME INTEGER BASIC MACHINE LANGUAGE LINKAGES*
3 SUURCE AN INFORMATION UTILITY* THE
3SOURCE* STOCK MARKET DATA FRUM THE
3SPACED FILECABINET 2*
3SPEED* ADJUSTING THE DISK 2
3SPIRD AN APPLESOFT HI-RES DEMO PROGRAM*
3SPIKO PROGRAM* RANDOM
3STATEMENTS PROGRAM* CREATING DATA
3STATEMENTS* AIDS TO FORMATTING REM
3STOCK MARKET DATA FROM THE SDURCE*
3STURE A REPRINT* NETWORK LINKS UNITS INCLUDES MASS
3SURVIVAL SIMULATION* ON THE NATURE OF
3SYSTEM A KEVIEW* ELECTRONIC COMMUNICATION
3SYSTEM A REVIEW* THE PROGRAMMA WORD PROCESSING
3SYSTEM* DOS-3.3 AND THE LANGUAGE
3 SYSTEMS-DESIGN-LAB A REVIEW* MAILING LIST BY 3 TAKE THAT WURD PROCESSOR*
3TEMPERATURE MEASUREMENT WITH THE APPLE* REMOTE
3TEST PROGRAM\# A OUICK AND DIRTY RAM
3TEST PROGRAM* AWARENESS
3TESTING THE 6502 CUMPARE INSTRUCTIONS*
3TEXT FILE CONVERSION* APPLE WRITER TO
3tiger connection* blaise away the pascal to paper
3TIME CLOCK * SOFTWARE FOR THE EXPERIMENTERAS REAL
3TIMEם
3TINY LETTER WRITING PROǴKAM*
3TINY-PASCAL REVIEW*
3TUNLKIT ASSEMBLEK* A BUG IN THE
3TRAFFIC CONTROLLER A REVIEW* AIR
3TUFSUAY NIGHT FOUTBALL A REVIEW*
GUNITS INCLUDES MASS STORE A REPRINT* NETWORK LINKS
3UPDATE FJR D.C.-HAYES MICROMODEM OWNERS*
3UTILITY* THE SOURCE AN INFORMATION
3VIDEO INTEPFACE SMARTERM* INTELLIGENT 8)-COLUMV
3VIFW* PERSINAL INFORMATION NETWTRKS A USERAS
avISICALC* COMMENTS ON
3WHATdS WHERE IN THE APPLE*
3WHERE IN THE APPLE* WHATAS
3WISHING WELL CODER*
3WORU PRUCESSING SYSTEM A REVIEW* THE PROGRAMMA
3 WORD PROCESSOR USER GUIOE*
3WORD PROCESSOR* TAKE THAT
2 WORU PRICESSSOR* WRITING A
3WrITER Ti TEXT FILE CONVERSION* APPLE
3WRITING A WORD PROCESSDR*
3WRITING INTERACTIVE PRUGRAMS*
3WRITING PROGRAM* TINY LETTER
3WRITING* APPLE
380-COLUMN VIDED INTERFACE SMARTERM* INTELLIGENT

SAND	WASH	PI	$11 / 80$
hausman	WASH	PI	$1 / 80$
pilligf	WASH	PI	8/80
SANO	WASH	PI	$2 / 80$
GKEENFARB	WASH	PI	$10 / 80$
hauley	WASH	PI	12/80
CF.7Sty	WASH	PI	11/80
HAJSMAN	WASH	PI	$10 / 79$
SHARP	WASH	Pi	10/79
ZAKAR	WADH	PI	$10 / 80$
GREENFAEB	WASH	P1	$1 / 80$
SCHULTHEIS	WASH	P1	10/80
MOON	WASH	PI	8/80
SCHWART 2	WASH	P1	$8 / 80$
thomas	WASH	PI	10/80
WURZEL	WASH	PI	$12 / 80$
MITCHELL	WASH	PI	$12 / 80$
FIELD	WASH	PI	$2 / 80$
STAFF	WASH	P1	12180
CROSBY	WASH	PI	11/79
PHILIPP	WASH	PI	11/80
HELO	WASH	PI	10/80
CROSBY	WASH	PI	10/79
LEFKOWITZ	WASH	PI	11/80
FIELU	WASH	P1	$1 / 80$
FIELD	WASH	PI	6/80
PILLOFF	WASH	PI	8/80
MOON	WASH	PI	4/80
GREENFAKB	WASH	PI	$5 / 80$
REINBRECHT	WASH	PI	3/80
PILLOFF	WASH	PI	$1 / 80$
REEDER	WASH	PI	10/80
CROSBY	WASH	P1	12/79
SIMMONS	WASH	PI	$3 / 80$
SCHWART 2	WASH	PI	11/79
FULLER	WASH	PI	3/80
MITChELL	WASH	P1	$11 / 80$
PILLOFF	WASH	PI	1/80
STAFF	WASH	PI	4/80
CRIJSBY	WASH	PI	10/79
hadley	WASH	PI	12/80
ZAKAR	WASH	P1	10/80
LEFKOWITL	WASH	PI	11/80
HAUSMAN	WASH	P1	10/79
STAFF	WASH	PI	10/80
FIELO	WASH	PI	$2 / 80$
kelly	WASH	PI	1/80
MITCHELL	nASH	PI	$1 / 80$
GREENFARB	nASH	PI	11/80
SAND	WASH	PI	$6 / 80$
ho	WASH	PI	$5 / 80$
FIELD	WASH	PI	$6 / 80$
FIELU	WASH	PI	5/80
MITC.hell	Wast	PI	10/80
GREENFAKB	WAJH	P [$1 / 80$
WUR ZEL	WASH	P I	12/80
SChultheis	WASH	PI	10/80
SCHULTHEIS	H'ASH	PI	$10 / 80$
StAFF	WASH	P1	4/80
JUNES	WASH	P1	3/80
heingrecht	WASH	P1	$3 / 80$
LEFAGWITZ	WASH	P1	11/80
HEIN:GRFCHT	HADH	P1	$5 / 80$
FHANCIS	WASH	PI	12/80
LUEBBERT	WASH	P1	$12 / 79$
LUEBGERT	HADH	PI	12179
MITCHELL	WASH	PI	11/80
LAKAR	WASH	PI	10/80
MOON	WASH	PI	7180
STAFF	WASH	PI	10/80
MUON	WASH	P1	7/80
SANO	WASH	PI	$6 / 80$
MOON	WASH	PI	$7 / 80$
SAND	W'ASH	PI	8/80
MITCHELL	WASH	PI	10/80
WRIGHT	WASH	PI	2/80
LEFKGWITL	WASH	PI	11/80

Buy your family a future.

A future in personal computing.
It can help your children get ahead in school. And it can help you and your mate get ahead in life.

For a limited time, we're offering everything you need to get started in one specially-priced package-the Apple Family System.

See us for a free demonstration. And a brighter future.

New Full-service Store offering

```
- OFF-THE-SHELF HARDWARE AND SOFTWARE
- HANDS-ON TRAINING CLASSES
- INDIVIDUAL CONSULTATIONS
        WRITE YOUR OWN PROGRAM
- IN-STORE RENTALS
- FREE LECTURES AND DEmONSTRATIONS
- IN-HOUSE REPAIRS
- USED COMPUTERS ON CONSIGNMENT
- FOR THE HOLIDAYS, FULL APPLE LINE
    INCLUDING GIFT ITEMS:
    MIIGS, PUZZLES, CARDS, JEWELRY
```

DISCOUNT TO WAP MEMBERS

5700-J Sunnyside Avenue, Beltsville, Md. 20705

HOURS: 9-7 MONDAY thru SATURDAY; SUNDAYS/EVENINGS by appointment

USIMG PADDLE POTS OF AחY VALUE by Tom Riley

In "Changing the Value of Linear Pots", Volume 3, No. 11 of this journal, John DeMarco told how to change the value of a potentiometer by mechanical means to suit the 150 K ohms needed by an APPLE. But wait a minute - there is a much easier way to do this. Let me tell you how.

The paddle reading is controlled by the paddle potentiometer and a capacitor Within the APPLE. Now for the good news almost any value of potentiometer can be used if the capacitor value is adjusted accordingly. Extra caps can be placed in the paddle with no changes in the APPLE!
First, let's get a few terms straight. Potentiometers (pots) are measured in K ohms (thousands of ohms), and the value given is the maximum value. Capacitors (caps) are measured in microfarads (10 to the -6 farads). A farad is about the size of a bathtub, so the necessity for expression in microfarads is evident.

The APPLE reads the paddle by resetting a timer, then trying to count to 255 before time is up. The Iength of time allowed is set by a resistor, in this case the pot in the paddle (wired'as a variable resistor) and by a . 022 microfarad cap inside the APPLE. The timer used in the APPLE is a 558-H13, which is four 555 timers on one chip. The 555 is the most common electronic timer in the world.

To use a different value for the pot we need only keep the product of the resistor and the cap constant. This product is $150 \mathrm{~K} * .022 \mathrm{E}-6=.0333$. (The units of this product, oddly enough, are seconds.) As an example of this procedure, consider a common joy-stick pot at 46 K ohms. Take .0333 divided by $46 \mathrm{~K}=.072$ microfarads. Subtract the existing . 022 and get . 05 microfarads to be added.
The accompanying drawing is a general purpose, easy-to-adapt schematic for any APPLE paddle. It shows you where to add the caps. If the exact value of cap needed is not available, several smaller ones may be paralleled. (Cap values add in parallel.)
You might more easily just buy a sack of cheap caps from Radio Shack or Poly Paks and obtain the right value by trial and error. This is not particularly difficult and it allows very precise adjustment.
If you are buying a separate pot, try to get milittary specification ones. They have a MS or MIL \# in their description and are substantially more linear than cheap pots. Linear here means uniform from one end to the other. Jameco Electronics sells this type for $\$ 2.95$.

If your pot is above 150K, adding caps does not work because you need to reduce
the cap, not increase it. For values of the pot below 7 K , the values of the caps needed get rather large, although good electrolytic caps should work down to about 1 K .

I am currently preparing plans for home-built special purpose paddles. The first plans will be for a spaceship stick an airplane wheel, and a sketch pad. this journal would be interested in such plans, and also what other outlandish purposes and shapes users would like to have in paddles. Please give me a call if you care to comment. Phone: (301) 340-9432.

SCHEMATIC OF A GAME PADDLE

Riluy,
R/Lys
contd.

PERPETUAL JULIAO CALEMDAR by Jill Giboney

In my work at an IBM computer installation, I often need to know the Julian date (day \# 1 to 365), since this is the form the computer uses in much of its output. It can also be a useful and easy way to manipulate dates in programs. Since Julian calendars are usually hard to find, I modified the Perpetual Calendar program that was contributed by Donald E. Kahler Washington Apple' Pi Newsletter, so that it would print not only the Gregorian date, but also the number of the day of the year.
In modifying the program, I had to
reformat the output from 40-columns to 80 -columns to allow room for the three-digit dates. It no longer outputs nicely to the screen (unless you have an 80 -column board). It is set up now to print directly to a printer (in my case an APPLE Silentype). Line 220 can be modified to output to the screen, or to a different slot. I also did not include the option to print less than a full year, so you will get a 12 -month calendar with every run.
The program will be available soon, along with the original Perpetual Calendar, on Wap Disk No. 110 - Personal/Education.

1982

$402 \mathrm{C}=\mathrm{INT}(Y / 100+.005): Y C=Y-100 \div C$
$403 \mathrm{H}(2)=28$
464 IF YC = $4 *$ INT (YC $/ 4+.1$) THEN $\mathrm{A}(2)=29$
405 IF YC<. 5 THEN $\mathrm{A}(2)=28$
406 IF $Y C<.5$ AND $C=4 *$ INT $(C<4+.1)$ THEN $R(2)=29$

420 PFIINT R $\$$ (M - 1) : HTAB T1
430 PFINT R.a(M)
435 PRIINT LU\$5: HTRB T1: PRINT LU\$

455 PRINT LUF;: HTAB T1: PRINT LU\&
46Й REM x 粏
$470 \square 1=\square W-.5: \square E=D X-.5: \square I=0.1: E N=0: E O=0$

490 FOR I = 1 TO 7
500 UT = I $-\mathrm{OW}+1$

524 IF I > 11 THEN $\mathrm{DJ}=[\mathrm{J} .1$
532 NEXT I

537 CK $=[1 I+\bar{H}(M-1)$
538 FOR I $=1$ TOT 7
$540 \mathrm{UU}=\mathrm{I}-\mathrm{D} \times+1$

565 IF I > 12 THEN J2\$(I) = B1\$ + STRF (OK).

570 IF I > 02 THEN DK $=0 K+1$
580 NEXT I
590 GUSUB 900

690 IF [IT $>=$ A(H - 1) THEN EN $=1$
695 FOR I $=1$ TO 7
$700 \mathrm{CT}=\mathrm{DT}+1:$ IF EN $=1$ THEN 758

58

732 IF DT $=\langle$

334 IF CT $=\langle$ A(M -1\rangle THEN DUI $=0.1+1$
352 NEXT I

758 IF OIJ $>=$ A(M) THEN EO $=1$
759 FOR I = 1 TO 7: IF EO $=1$ THEN 839
 GOTO 839
 + STR (DU)

794 IF DU $=\langle\mathrm{A}(\mathrm{M})$ THEN DK $=\mathrm{OK}+1$
820 NEXT I
contd.

GOSUB 900
IF EN = 0 AND $0 T<$ R $(M-1$) THEN 690
IF EO = 1 AND DU $<\boldsymbol{A}(M)$ THEN 755
PRINT
$870 M=M+1:$ IF $M>12.5$ THEN $M=1: Y=Y+1$
$880 N=N-1:$ IF $N>.5$ THEN OJ $=$ OK: GOTO 240
890 TEXT : PR\# 0: END
900 IF EO = 1 AND EN = 1 THEN PRINT : GOTO 1090
910 IF EN $=1$ THEN 1025
1010 PRINT E\$;
1010 FOR I = 1 TO 7: PRINT L1\$(I);: NEXT I
1020 PRINT B2t + E $\$$;
1025 IF EO $=1$ THEN GOTO 1035
1027 HTAB T1: PRINT E \ddagger;
1030 FOR I = 1 TO 7: PRINT L2\$(I):: NEXT I: PRINT B2\$ + E\$
1035 IF EN $=1$ THEN 1065
1037 IF EO $=1$ THEN PRINT
1010 PRINT E ${ }^{105}$
1050 FOR I = 1 TO 7: PRINT J1\$(I);: NEXT I
1060 PRINT B2\$ + E $\$$;
1065 IF EO $=1$ THEN 1072
1067 HTAB T1: PRINT E $\$$
1070 FOR I = 1 TO 7: PRINT J2\$(I);: NEXT I: PRINT B2 $\$+$ E $\$$
1072 IF EO $=1$ THEN PRINT
1075 IF EN $=0$ THEN PRINT LU 1
1060 IF ED $=0$ THEN HTAB T1: PRINT LU\$
1 1882 IF DT $>A(M-1)+.5$ THEN EN $=1$
1084 IF DU $>\mathrm{A}(M)+.5$ THEN EO $=1$
1090 RETURN
1500 REM
1510 [AATA $31,28,31,30,31,30,31,31,30,31,30,31$
1570
1580
1596
1604
1610
1620
1630
1640
1650
1660
1670
1680
1690

JANLIARY	+
FEBRUARY	+
MARCH	+
HFRIL	+
MAY	+
JINE	+
IIUY	+
AUGUST	+
SEPTEMBER	+
OETORER	+
MOUEMBER	+
OECEMBER	+

Apple Computer Tries to Ban Mail Business, Drawing Angry Charges of Trade Restraint

Abstract

By Marilyn Chase Staff Reportet of The Wall Streget Journal CUPERTINO, Calif. - Apple Computer Inc. is trying to stop mail-order houses from selling its personal computers. But with millions of dollars at stake, the company's right to change its policy is being challenged in court on antitrust grounds.

As of today. Apple says it won't allow telephone or mall-order sales of its products. The company says it's making the change because it needs to emphasize personal service if it is to continue dominating the burgeoning market for home computers that it ploneered.

Companies that sell by mall, however, claim the personal-service question is merely a pretext. They say Apple wants to shut them out because of pressure from retailers who don't like being undercut in price by the mail-order houses.

And some mall-order houses say they plan to keep operating as they have-until Apple cuts them off. The new policy, they say. amounts to restraint of trade. "It stinks." says Joseph Sidney, manager of Micro Business World in Tarzana, Calif.

\section*{Ready. for Lawsults}

Exactly how Apple will enforce the policy is still unclear. Even Apple and its largest retail distributor, the 182 -store ComputerLand Corp., disagree in their interpretations of the policy. Apple says exceptions won't be

Apple disputes Mr. Ravel's estimate of the number of mall-order operations; it says there are 75. The company termed yesterday's court action "completely without merlt," but declined further comment.

The flap started last month when Apple asked its 1,100 retall dealers in the U.S. and Canada to sign amended contracts promising not to engage in telephone or mail-order sales. Apple spokesman Fred Hoar says the company has received an "excellent response" from dealers.

In a letter accompanying the new contract, Apple vice president of sales Gene Carter explained the change this way: "Mail-order sales are neither suited to providing the consumer education that emerg-

\section*{"What we're doing is the state of the art in antitrust law," says Apple Chairman Steven Jobs, referring to the ban on mail-order sales. "We could go all the way to the Supreme Court."}

 made-but ComputerLand says it will mail to longstanding or geographlcally remote customers.Although Apple Chairman Steven Jobs maintains that the company's effort to eliminate mail-order sales is both legal and proper, he indicates that Apple is ready for iltigation. "What we're doing is the state of the art in antitrust law," he says. "We could go all the way to the Supreme Court."

Apple's chief antagonist will probably be a voluble French expatriate named Francis Ravel who owns Olympic Sales Co. in Los Angeles and describes himself as one of the most aggressive "wheeler-dealers" in the Apple market.

In the early 1970s. Mr. Ravel mounted an antitrust challenge to Toshiba of Japan and won what his attorney, Willard Horwich, calls a "favorable" out-of-court settlement.

In federal court in los Angeles yesterday, Messrs. Ravel and Horwich asked for a temporary restraining order to block Apple from enforcing its new policy on the grounds that it constitutes restraint of trade. This is an interim step, Mr. Horwich says. until he can obtain a formal hearing of the issues and seek a preliminary injunction.
"There are about 150 black sheep like us," Mr. Ravel says of his mail-order confreres. "All we want is to buy and sell and be left alone. Fair-trade laws have been abolished. They can't tell us not to ship from our store. Hewlett-Packard wouldn't dare do that."
ing markets require, nor are they structured to provide the consumer satisfaction that has become associated with the Apple name."

The mail-order houses say they already provide adequate service and consumer education by mail. Apple's action. Mr. Sidney says, isn't an attempt to improve service. but is "an outright effort to fix prices."

Lack of a Smile

Apple denies that the change has anything to do with prices; the company says it can't and won't attempt to curb discounting by its distributors. "It's not discounting that bothers us," says Apple's Mr. Jobs. "It's the smile-or rather, the lack of it-on our customer's face when service isn't adequate."

Apple's policy change has cheered its network of full-service dealers. "We're encouraged by the program." says ComputerLand president Edward E. Faber.

Mr. Faber says it costs $\$ 150,000$ to open a store with the service centers, test equipment and technicians that Apple requires. "If the dealer makes that kind of investment, he must get a return on the sale of the product," he says, and that becomes diffirult "if the retail pricing is being watered down' by mail-order discounting.
"It's discouraging to do all the presale education and support of a prospective customer, and then have him buy the equipment somewhere else," Mr. Faber says.

Customers will still be able to shop
around for the best price, however, because there is much variation from list prices, and some mallorder outlets have storefronts where they sell at substantial discounts.

The Apple III, for example, in quantitles of four or more, is sold to dealers for $\$ 2,325$. One at a time, it is sold to dealers for $\$ 2,430$.

ComputerLand of San Francisco sells the Apple III for the suggested list price of \$3.495. But at Olympic, Mr. Ravel says, the price for the Apple III has been reduced to about $\$ 2,800$, which is about 20% less than list price.

Dops the policy mean, though, that all customers--even those. Ilving on. say, remote ranches - need to go to a retail store to buy an Apple? It's not clear.

Mr. Faber of ComputerLand says exceptions will be made. He says the policy change means stores won't be able to advertise nationally for mall orders. Computerland franchisees encourage customers to come In , he says, but if the customer can't. or If the customer is a previous Apple purchaser, "they'll ship." Mr. Faber says. "Anyone who tried to abridge that would be stumbling into an area of law that would be untenable."

Hurting Market Share?

Apple, though, maintains that 'there will be no exceptions" to its policy. "A mall sale is no sale," says Mr. Hoar. "Lou can't service a computer by mail. It's inherently unsupported."

However, when pressed to comment on Mr. Faber's statement, Mr. Hoar says Apple's intent is to go after big-volume mallorder houses. "Individual scenarios," he adds. "will be clarified later with the dealers in Applesource." the company's dealer newsletter.

For high-volume mail operations, though, Apple's move could be the end. Joseph Monroe, co-owner of Consumer Computers of San Diego, says about 75% of his company's s 6 million in annual sales comes from mailorder sales. If Apple cuts htm off, he says, "we'll go out of business."

Even if Apple cuts off its authorized dealers who sell by mall, it mightn't be able to stop unauthorized dealers from operating as they please. One such store, 47th Street Photo Inc. in New York, expects to sell about 3,000 Apples this year, according to Jacob Honig, who manages computer sales for the store.

When asked where, if not from Apple, he obtains his supply of Apple computers, Mr. Honig says only: "somewhere else." A source famillar with unauthorized dealerships says they generally get their stock from dealers who order more Apples than they can sell.

And Mr. Sidney, the Tarzana store manager, suggests that Apple, as well as individual dealers, could be hurt by the new policy. "Mail-order sales have increased Apple's market share quite a bit," he says. "They're cutting off their nose to spite their face."

STOCK MARKET AND STOCK OPTION PROGRAMS

$\star \star \star$ Stock Market Utility Programs $\star \star \star$

Provides a complete data base management system for creating and modifying individual stock data files and a graphical evaluation of comparative stock performance.
Five programs provide for entry and storage of stock data, data correction, autoscaling Hi-Res graphical display of performance, and building historical data files electronically from downloaded MicroQuote data. $\$ 80$.

$\star \star \star$ Electronic Stock Package $\star \star \star$

A complete system including a password for accessing, retrieving, storing, and updating individual stock data files electronically using the Dow Jones Stock Quote Reporter. $\$ 120$. (An extra option allows the use of the CCS clock card for automatic data access.)

$\star \star \star$ Stock Option Analysis Program $\star \star \star$

Uses the Black-Scholes model to calculate the fair price of options and then calculates the expected profit or loss from any trade or spread involving up to three classes (e.g. horizontal spreads, vertical spreads, straddles, butterfly spread, etc.) of options on any one underlying stock for any time until the option expires. Supports user definable commission schedules, printer, hard copy graphics, and one or two disk drives. \$250. Manual (alone) \$25.

H \& H SCIENTIFIC

Specializing in Investment Software 13507 Pendleton Street Fort Washington, MD 20744

Tel. (301) 292-3100

TEXT ON THE HI-RES SCREER by Bruce f. field

This article describes two Applesoft programs; the first program prints text on the Hi-res graphics screen, and the second manipulates numbers into a specified format after which they may be printed on the text or graphics screen. I became interested in these topics as a result of wanting to draw graphs on the Hi-res screen with labels and numbers on the axes.

There are a number of programs available to print text on the Hi-res screen. Some of the best known are the Hi-res character generator in DOS Toolkit, the Aldrichs' Higher Text, or the character generator by Bill Schultheis on WAP disk 31. All of these have their uses. In my case I am interested in being able to exactly position the characters on the screen.

Character array oriented programs (such as those mentioned above) restrict the user to printing the characters in a limited number of locations, often 40 horizontal by 24 vertical the same as the text screen. This means that a character may not exactly line up with some mark on the screen. Additionally the user is usually restricted to keeping the character within a particular size array (say 7 by 8 dots). These penalties are sometimes offset by the speed with which characters can be placed on the screen. If you want to build a word processor using the Hi-res screen this is the way to put characters on the screen. Shape table generated characters on the other hand offer more freedom in designing and placing characters on the screen but at the expense of speed.

Why the two different methods? The answer lies in the way the memory of the Hi-res graphics screen is organized. If you look at the memory map of the Hi-res screen on page 21 of the Apple Reference Manual you will see that each byte of memory controls 7 dots on the screen. These dots appear in a horizontal line, so to control the 280 dots in each line requires 40 bytes. The 6502 microprocessor in the Apple does not have any instructions to directly manipulate
single bits within a byte, so to change a single dot we have to get the byte controlling the dot, use several instructions to change only the bit of interest leaving the other 7 alone, and store the byte back to memory. If we have to do this for each dot of the character, printing a character to the screen will be slow. This is in fact how the shape table characters are plotted. If instead we restrict each character so that it occupies exactly one byte horizontally and some N bytes (usually 8) vertically we can simply take a stored "picture" (Boolean array) of the character and copy it to the screen memory. No character occupies bytes that interfere with it's neighbor thus the character can be transferred to the screen very quickly.

Shape tables are more general and allow plotting of a point anywhere on the screen. A "shape" within a shape table is nothing more than a road map; go left 2 dots, up one dot, right 4 dots, etc. As each dot is plotted we must calculate the screen address and change the desired bit in the proper byte. Since we are doing a lot of manipulation for each dot in the character it will take considerably longer to "draw" a character to the screen using a shape table than to "print" it using a character array. But we are free to place the character anywhere on the screen (within one dot position) we wish.

The first part of the program to print text on the screen consists of lines 5000 to 5340 and the shape table listed in Hex. It is designed to be reasonably easy to use. To load the shape table and set the appropriate pointers and program values put the DOS file name of the shape table in string CTABLES and GOSUB 5270. The table will be loaded above Hi-res page 2. Variable CLD contains the table starting address; if a different address is desired set CLD to the address and GOSUB 5280. If you forget to load the shape table (or are lazy like me and don't bother) the first time you try to "print" to the screen the table will be loaded automatically.
contd.

Several different shape tables could be loaded consecutively into memory to provide different character fonts. To switch between different tables put the starting address of the desired table in variable CLD and GOSUB 5310. Variable CT controls the spacing between the characters, and is set for a default of 7 dots. That is the left side of each character is 7 dots from the left side of the preceeding one. Since the characters in the table are mostly 5 dots wide, this gives a 2 dot spacing between characters the same as on the normal Text screen.

The shape table consists of 96 shapes which includes all the printable characters generated by the Apple keyboard, lower case characters, and a few extra symbols. The table is not organized exactly in the order of the ASCII character codes. The shape numbers of upper case letters, numbers, and most symbols correspond to their ASCII code. For example the code for the letter ' A ' is 65 (decimal) and the 65th shape in the table is the letter 'A'. This makes is easy to "print" characters from Applesoft, all you have to do is use the ASC function to determine the shape number of a character. i.e. DRAW ASC("A") at X, Y to print "A" at screen position X,Y.

For reasons I can't exactly explain I decided to store lower case letters below the upper case letters in the shape table. This is contrary to ASCII where the lower case letters have higher numbers than upper case. Whatever, the lower case letters (and a few additional symbols) occupy shapes 1 through 31 in the table. To access these, 64 (decimal) must be subtracted from the ASCII code for the equivalent upper case letter. For example, suppose we wanted a lower case "a", the shape number is ASC("A")-64.
All the character shapes are defined starting in the lower left corner of the character so that they all line up properly when drawn on the screen. If you wish to design your own character set it would be a good idea to follow this convention.

Lines 5090 to 5220 in the program do the actual "printing" of text on the Hi-res screen. You need to store the text you want printed in a string (C\$) and setup
the "tabs", CX the horizontal position (0-279) and $C Y$ the vertical position (0-191) before doing a GOSUB 5090. If the shape table has not been previously loaded (the program checks variable CLD to see if it is zero) it is loaded before printing is begun. The "tab" variables CX and CY are incremented as necessary when printing the string and are left pointing to the next character position at the end of the line. The user should be careful that there is enough room on the screen to print the string as the program will NOT wrap text around to the next line.

Each time the subroutine is called printing defaults to upper case. To switch to lower case insert a control-Q character in the string. The control-Q acts like a toggle, the first occurrence puts you in lower case, the next sends you back to upper case, etc.

One advantage of shape tables is the ability to draw shapes with different rotations. In practice, with small character shapes, only the four 90 degree orientations produce recognizable characters. The program is set up to examine the shape rotation value (set by an Applesoft ROT= command) and print the text in one of four directions. The four are:

> ROT=0 - left to right
> ROT=16 - top to bottom
> ROT=32 - right to left (inverted)
> ROT $=48$ - bottom to top

The rotation value is set to a default value of 0 by the part of the program that loads in the shape table. If you want another orientation use the Applesoft ROT= command after loading the shape table and before printing the text.

The second topic of discussion is formatting of numbers. When a number is printed Applesoft will print as many digits as possible or print it in exponential (scientific) notation if necessary. This makes it easy to use but is annoying if you are trying to produce outputs where decimal points line up (for tables) or extraneous decimal digits are to be eliminated, etc. There are several machine language programs to do formatting, however most are designed for business applications and do not support
exponential notation. The simple Applesoft program presented here handles floating-point notation (numbers with digits after the decimal point), integer notation (whole numbers, no decimal point), and exponential notation (a floating-point number with a power of ten exponent).

The program requires two inputs, the number to be formatted, and a format specification string. It returns the number in a string that may be either printed to the text screen, or using the previous program, printed to the graphics screen. Variable C contains the number, string $C F \$$ contains the format, and $C \$$ is the returned string. The number is formatted according to standard FORTRAN format parameters, i.e. I9, F10.3, or E9.3. After setting C and CF (GOSUB 5450.

Integer format is indicated by the first letter of the format string being an "I". The number following the I is the field width. The field width is the maximum number of character positions that the number is allowed to occupy. For a format of "I9" the maximum number of characters is 9 . If the number were exactly 9 digits long (i.e. 123456789) it would completely fill the field. If it were shorter it would be right justified in the field and padded with blanks to the left. For example, if the number were 3456 (with an 19 format) the returned string would be $\mathrm{C} \$=" \quad 3456^{\prime \prime}$. There would be 5 blanks to the left of the number. The length of the returned string is always exactly the specified field width.

Floating-point format is similar except the number of digits after the decimal point must also be specified. This is done by adding another number to the format specification, i.e. Fl0.3. In this case the field width is 10 and the number of digits after the decimal point is 3 . Using this format the number 2345.66778 would be returned as $C \$=" 2345.668^{\prime \prime}$. The number is rounded properly. With a field width of 10 the range of numbers that can be printed is 999999.999 to -99999.999, because the minus sign occupies one position with negative numbers. If the number to be formatted has more digits than the format specification allows the returned string
will be filled with asterisks.
A quirk in the way Applesoft is written (and the way the program works) prohibits printing numbers with more than 11 digits. But, since Applesoft only has 9 significant digits this doesn't seem like much of a limitation.

Exponential or scientific notation is similar to floating-point but is usually used for extremely large or small numbers. The format specification is of the form E9.3, where 9 is the field width and 3 is the number of digits after the decimal point. For exponential notation the number is always normalized to be between 1 and 10 with an appropriate power of 10 exponent. For example, the number 123445303 in E9. 3 format would be 1.234E9. A smaller number might be expressed as 4.531E-10. As with the other formats the number is right justified in the field. Using this notation requires slightly more care because the exponent will occupy 2 to 4 character positions and it is easy to run out of room if the field width is not large enough.

These subroutines may be easily modified, and in case you haven't noticed, all the variables begin with the letter C. Some variables (notably CLD and CT) must be preserved between subroutine calls, and generally there will be some variables used in your calling programs that should not be disturbed by the subroutines. If you don't use any variables beginning with the letter C there won't be any conflict.

What I have described is a program to provide elementary formatting of numbers so that they may be printed to the text screen or (along with other text) printed on either of the Hi-res graphics screens. Being written in Applesoft they are not particularly fast however they have served my needs well for labelling graphs. contd.

5000	REM
5010	REM ROUTINE PRINTS STRING
5020	REM C\$ AT CX,CY ON HIRES
5030	REM CTABLES IS FONT NAME
5040	REM ALL VARIABLES BEGIN
5050	REM WITH LEITER 'C'
5060	REM CTRL-Q IS U/L CASE
5070	REM TOGGLE
5080	REM
5090	IF CLD $=0$ THEN GOSUB 5270
5100	IF LEN (C\$) $=0$ THEN 5210
5110	CW $=0: C R=$ INT (PEEK (249))
5120	$C I=((C R=0)-(C R=32)) * C T$
5130	$C J=((C R=16)-(C R=48)) * C T$
5140	FOR Cl $=1$ TO LEN (C\$)
5150	IF MIDS (C , $\mathrm{Cl}, 1$) $=$ CHR\$ (17) THEN 5220
5160	$\mathrm{CV}=\operatorname{ASC}(\operatorname{MID} \$(\mathrm{C}, \mathrm{Cl}, 1))-\mathrm{CW}$
5170	IF CV <1 THEN CV $=C V+64$
5180	DRAW CV AT CX,CY
5190	$C X=C X+C I: C Y=C Y+C J$
5200	NEXT Cl
5210	REIURN
5220	$C W=64 *(C W=0):$ GOTO 5200
5230	REM
5240	REM ROUTINE TO LOAD FONT
5250	REM AND INITIALIZE HIRES
5260	REM
5270	CLD $=24576$: REM SHAPE TABLE LOAD ADDRESS
5280	CT $=7$: REM CHARACTER SPACING
5290	SCALE $=1:$ HCOLOR $=3:$ ROI= 0
5300	PRINT CHR\$ (4);"BLOAD ";CTABLES;",A";CLD
5310	$\mathrm{Cl}=\mathrm{INT}(\mathrm{CLD} / 256)$
5320	$\mathrm{C} 2=\mathrm{CLD}-256$ * Cl
5330	POKE 232,C2: POKE 233,Cl
5340	REIURN
5350	REM
5360	REM FORMATTING ROUTINE FOR
5370	REM NUMBERS. ENTER WITH
5380	REM NUMBER IN C, FORMATTED
5390	REM STRING C\$ REIURNED.
5400	REM CF\$ CONTAINS FORMAT
5410	REM SPECIFICATION AS PER
5420	REM STANDARD FORTRAN.
5430	REM Fl0.3, E9.2, I5
5440	REM
5450	CG\$ = LEFT\$ (CFS,1): REM GET FORMAT LETTER
5460	$\mathrm{Cl}=\mathrm{VAL}$ (RIGHT\$ (CFS, LEN (CFS) - l))
5470	REM CS=\#DIGITS, CD=\#DECIMAL PLACES
5480	$\mathrm{CS}=\mathrm{INT}(\mathrm{Cl}): \mathrm{CD}=\mathrm{INT}(10$ * (Cl -CS) + .4)
5490	IF CG\$ = "F" THEN 5560
5500	IF CGS = "E" THEN 5690
5510	IF CG\$ = "I' THEN 5800
5520	CS = "F-ERR" : REIURN
5530	REM
5540	REM FLOATING POINT
5550	REM
5560	$\mathrm{C}=\mathrm{INT}(.5+\mathrm{C}$ * ($10 \wedge \mathrm{CD}$))
5570	IF C > = lEll THEN 5890: REM OVERFLOW
5580	CGS $=$ STR\$ (C)

6000.6467

6000-60 00 C2 00 CC 00 D8 00 6008- E0 00 EC 00 F6 00 FF 00 6010- OC 0115 Ol lC 012301 6018-2F 0136013 F Ol 4601 6020-4F O1 5A 0166 Ol 6D 01 6028-77 O1 800189019101 6030-9B 01 A5 01 Bl 01 BB 01 6038- C2 01 C8 01 D0 01 D7 01 6040- EA 01 EC 01 F2 01 FA 01 6048-09 02170223023002 6050-37 023 F 0247025402 6058-5C 02 5F 0265026802 6060-6E 02 7C 0285029102 6068-9C 02 A7 02 B2 02 BE 02 6070-C6 02 D4 02 DF 02 E4 02 6078- E8 02 Fl 02 FA 020203 6080- OC $0319032503 \quad 3203$ 6088-3C 0347035303 5C 03 6090-67 037303 7В 038303 6098-8F 039803 A4 03 B0 03 60A0- BB 03 C4 03 D0 03 DC 03 60A8- E9 03 Fl 03 FC 030804 60BO- 1404 lF 0428043404 60B8-40 0448045404 5C 04
 60C8-15 lF 3F 0024242456 6188- 0008 E4 6C 09 F6 F6 07
 60D8- 2064 2D B5 123 3F 3 F 00 60EO- 2064 6D 2016 3E 153 E 60E8-15 1F 3F $002064 \quad 2 \mathrm{D} 15$ 60F0- 3E 3F 16 2D 05000924 60F8-1C 2D 0720 OC 040029 6100- 2D 202424 le lC BF 36 6l08- OE 2D 280024242456 6ll0-2D 1536360029 3D 20 6l18-3C OC 2000 A8 2D 2024 6l20-04 2000242424 4E 09 6l28- LE LE LE 75 OE 060029 6130-3D $2024243 F 002424$ 6138-AD 36 6E 24 E4 040024 6140-24 2D AD 3636002064 6148-2D 15 36 lE 3 F 070024 6l50-24 24 OD AD 36 IE $3 F 20$ 6l58-20 0049212424 FC BF 6l60-36 OE 2D 2020002424 6l68- OE OC 2D 0500 2D 2D 38 6170-38 3F 2828 2D 050049 6178-1C 24 1C 2D 07200400

6198- lE 0700 OC 04 EO 4D Fl 6LAO- LE OE OE 060029 2D 20 61A8- 2424 DF 3336 OE 2D 05 61B0- 00 2D 2D DC 63 OC OC 3F 61B8- 3 F 070009 1C E4 OC 64 61C0- 0400092404202400 61C8-09 052005 E0 E4 0400 61D0- 0818 OC 2D OC 040024 6lD8- 2424353636 2E 2424 6lEO- 24353636 2E 242424 6lE8- 0400010009042024 61FO- 240008080820 FC 36 61F8- 0600212424 6C 36 B6 6200- 22 2C 04 F8 IF 16 OD 06 6208-00 28 2D $0538383 F 60$ 6210- 2D FD BO 1616060060 6218- OC OC OC DF 27 AD 92 OA 6220-35 3F 00200420 OC 15 6228- F6 OE OD 1E OE IF $3 F 00$ 6230-08 08180824040009 6238-1C 1C 24 OC OC 040009

6240- OC OC 24 lC lC 040060 6248- 2D 15 DE 242024 8D 1E 6250- lF 072000092024 6C 6258-12 FF 3F 0061240008 6260-18 28 2D 2D 00090500 6268-60 OC OC OC 04002024 6270-64 2D 15 3636 IE 3F 04 6278-60 OC 050009 2D 0720 6280-24 24170700 2D 2D DF 6288-03 60 OC 65 E4 3F 1706 6290-00 70 2D 0520 1C 67 0C 6298-3C 3F 3F 0049242424 62AO- 171717 2E 6D 050070 62A8-2D 0520 E4 3F 27 2C 2D 62B0- 2D 0029 2D 20 1C 3F B7 62B8-24 60 OC 2D 05002164 62C0- 0C OC 3C 3F 3F 002004 62C8-20 0C 2D 15 F6 3F 4D 32 62DO- lE 3F 0700 2D OC OC 24 62D8- E4 3F 1776 2D 050008 62EO- 0804200061242000 62E8- 49 1C 1C 1C OC OC OC 04 62F0- 000818 2D 2D $04383 F$

62F8- 3F 0061 OC OC lC lC 1C 6300-04 00090420 OC OC 1C 6308-3F 170700202464 2D 6310-15 36 E7 36 AD 3A $3 F 07$ 6318-00 2424 OC OC 1515 B6 6320-22 3C 3F 0700242424 6328- 2D AD F6 3F 4D 32 lE 3F 6330-07 00202464 2D 1596 6338- F2 3F 0700242424 2D 6340-AD 3636 lE 3 F 070024 6348-24 24 2D 2D 96 3B B7 2A 6350-2D 0500242424 2D 2D 6358-96 3B 3F 00202464 2D 6360- B5 D2 35 3E 3F 070024 6368-24 $244 \mathrm{D} 31363 F 6 F 11$ 6370-36 070029 3D 202424 6378-6F 0500 A8 2D 052024 6380-24 0400242424 4D Fl 6388- LE LE OE OE OE 0600 2D 6390- 2D DF 032024240400 6398-24 2424159564 OC 36 63AO- 3636060024242456 63A8- OE OE 562424240400

63B0-20 24642 D 153636 lE 63B8- 3F 0700242424 2D AD 63C0- F6 3F 0700202464 2D 63C8- 1536 FE OE OE 1F $3 F 00$ 63D0-24 2424 2D AD F6 3F 15 63D8-15 150500 A8 2D 0520 63E0- 1C 3F 0720 OC 2D 1506 63E8-00 092424242 D DF 3 F 63F0- 00202424 4D 313636 63F8- 1E 3F 070009052820 6400- 24 FC lB 3636 OE 0600 6408-24 2424 4D 313636 E6 6410-1C B4 3B 006404 E0 6C 6418- 09 F6 LE OE OE 360009 6420-24 E4 1C 6C 09 F6 0600 6428-64 0560 OC 3C 3F B7 92 6430- OA 2D 2D $00 \begin{array}{lllll}24 & 24 & 24 & 2 D\end{array}$ 6438- 2D DF 323636 2D 2D 00 6440-49 01 EO IC IC IC 0400 6448- 2D 2D 242424 3F 3F 4D 6450-32 3636000818 OC OC 6458- OE OE 0600 2D 2D 0500 6460-00 00000000000000
by Jim Grahom
Apple Pie is the outstanding word processor previously distributed by Programma, which has been recently acquired by Hayden Computer. Those of us who use Apple Pie with an Epson MX-80 printer have learned from the manual that control characters can be imbedded in text by use of the "Shift-Control M" key sequence. This allows some of the Epson's features to be activated or deactivated while the Apple Pie Format program is running. For many months, however, I had been unable to utilize all the Epson features (commanded from inside the text) because the manual does not explicitly cover the use of the escape command as an imbedded function. I had tried what seemed like every conceivable combination and had even written to Programma. After several months I heard Programma was no longer in business. Eventually, I decided to call Hayden, as the apparent new source of information.
I found out that the "ESC" key is input exactly like the control character; it just is not covered in the manual. other words, to activate or deactivate any escape commanded printer function enter "Shift-Control M" followed by hEscape" (which displays an inverse Applesoft-type prompt character), then followed by whichever escape suffix is appropriate. The suffix must be in upper case. When the Format program runs, the printer is commanded by these imbedded functions, exactly as it would be if they were commanded directly from the keyboard.
In addition, I was told that Hayden does indeed plan to support this fine program, and has at least the following upgrades
and improvements in the works: a spooling capability so the operator can resain use of the keyboard and computer for input while the printer is printing; a dictionary or spelling program, designed specifically for Appie Pie; and a new manual, with index (much needed). Each of these will add significantly to an already great word processor, which appears to have a strong future ahead.

Never Bur Another Procram II!

UTILITIES AVAILABLE SOON....

subLOGIC GRAPHICS PACKAGE:

 A Review by David MorgansteinTwo years ago when I bought the A2-3D1 graphics package from Sublogic I was impressed with the capabilities of their software and detail of their manual. The program seemed written for the serious graphics user who wanted to generate 3-D projections with the APPLE. One of the 3-D data bases that came with the package was that of an imagined piece of "flat" terrain with a landing strip in the middle and a Dick Tracy's nose of a mountain range at one end. With a little reading and many trial and errors I was able to create a flight simulator using the pad-dles (this was before the joystick days). The display was not too fast in switching between Hires pages, giving a 1-2 second per frame motion display. After all, my program was written in Integer Basic (calling the trigonometric functions required out of the machine language A2-3D1 package) so it could only move along just so fast.

As many of you know, it wasn't very long before Flight Simulator appeared from Sublogic. (Their version was considerably better than mine...) More recently, Saturn Navigator, another package using these graphics routines, has come on the market, offering a stimulating space flight to our winged neighbor.
The A2-3D1 package is a set of machine language routines for creating and displaying a data base which projects 3-D images onto the APPLE 2-D screen. The relevant characteristics of the creation and display are: the description of the 3-D image (including its location); the position of the viewer; and the angle of view (pitch, bank and heading) of the viewer. The latter two items related to the viewer can be modified and re-poked into the overall data base, causing the appearance of motion of the viewer relative to the object.

The limitations of the original package were: the 3-D image or images were stationary both relative to each other and relative to the co-ordinate system (that is, only the viewer and the viewer's per-spective could be changed); and the creation of the object data bases were done with a fairly crude editor not allowing viewing of the Hires screen while constructing the object. Needless to say, the latest additions to the Sublogic line, A2-3D2, and A2-GE1 solved all that and added some other niceties as well.

Main Features.
The graphics editor works very smoothly, allowing you to see the 3-D image as you construct it. You can now use color in the figures or switch to a super Hires display with twice as many lines as the usual HGR display provides. Both of these enhancements are part of the A2-3D2 additions. The relevant information regarding the cursor's position and the
position and angle of the "eye" viewing the objects are displayed at the bottom of the Hires screen, in the text area. The current and previous point in the data base is also shown so that by moving forward and backward through the data base, using left and right arrow keys, you can make modifications to the required data. While you can insert a NOP command to delete parts of the data base, you can not insert something new. Rather, if an addition is needed, the image from that point on must be reconstructed.

Another nice feature in the editing of objects is the placement of text in a fixed position relative to the object. In the example discussed in the manual initials are put at the top of a garage which you create. My only comment on the text feature is that, while three text sizes are provided, a smaller size of letter might be desired.

After creating one or more objects and storing them on a separate DOS 3.3 disk, you can enter the motion programmer. This part of the Graphics Editor allows you to define viewed and independent objects, the latter of which can be given motion. The viewed objects are stationary with respect to your position and viewing angle while the independent objects can be given motion relative to their initial point of origin (actually, an additional basic utility allows you to translate independent objects so that they can move relative to any point in the space.) Again, referring to the example presented in the text, you move a garage door around, hang it on the garage and pivot it open and closed.

Phrases can be appended to the motion program so that educational presentations can be made. The motion is controlled by the keyboard with keys for positive and negative movement of the x, y, and z coordinates and of the pitch, bank and heading of the objects or of the viewer's eye. It takes a little practice to perform a desired motion, but once a sequence has been defined, it can be stored as a motion file and replayed automatically.

Still another nice feature of the package is the generation of a slide show, which can be labelled appropriately. The show can then be played back and each screen viewed.

Ease in Learning to Operate.
Whenever you provide a lot of power, you run a risk of confusing the user. To take advantage of the many features of the Sublogic software will require a fair amount of practice. Fortunately, Sublogic provides a Summary Command Card on heavy stock which you can hang in front of you while learning the system. The various
features are so numerous that a myriad of key stroke combinations are required. So far I have not uncovered any simple pattern of mnemonics to begin memorizing the system. For example, shift M switches between eye/cursor manipulation, ctrl R sets Hires mode, shift 4 allows you to save an object file while ctrl I lets you load it back. Other features require only a single key stroke. While I can not suggest a simpler system, this is I belleve a weak area for the package.

Another concern I have is the complexity of using some of the features. The motion playback process is performed by a separate Basic program which does not link directly with the Graphics Editor. The program is supplied on the disk a standard DOS 3.3 disk with its own system, and must be accessed by booting in regular DOS and loading it in to the APPLE. To use several of the features, you must keep a record of object lengths in bytes and merge files of objects and machine code together. While this is all explained carefully, it is done manually by the user and requires a fair amount of study.

However, the results are quite impressive and a great deal of graphics power is provided.

Documentation.
The A2-3D2 extension manual is primarily an update to the Command sheets from the A2-3D1 basic system. This is reasonable since the 3D1 package is required and its manual is very thorough, not only in teaching how to use the package but in discussing 3D graphics.

The A2-GE1 takes you by the hand through the process of editing objects, moving objects and playing back stored motion. It contains no technical information regarding the 3 D to 2 D process since the owner will already have the 3D1 manual. Several good examples are provided including a demonstration of aerodynamics. The examples must all be entered from the keyboard, a minor inconvenience, which provides "hands on" experience.

PROGRAMS FOR THE APPLE ${ }^{\text {C }}$ COMPUTER

MOON \& SUN: within $3^{\prime \prime}$ longitude, $1^{\prime \prime}$ latitude, eclipses, occultations within 1 mile accuracy; all aspects of eclipses $\mathbf{\$ 2 7}$ ECLIPSE MAP: high-resolution map of area of visibility of solar eclipse; usable for occultations also if MOON \& SUN is used . $\$ 25$
PLANETARIUM: stars \& planets in highresolution sky display, anywhere, any time; 2-screen quick-flip to demonstrate rotation about pole, season difference, or precession; or flip between sky and ORRERY display (separate - see below) $\$ 23$ ORRERY: self-updating solar system diagram in high-resolution with date display, sun and planets . $\$ 20$ PLANETS: with sun and moon, Gregorian/Julian/Jewish calendar conversion; helio-, geo-, topocentric coordinates; star identification feature; rise/set, etc. $\$ 23$ WORLD MAP: animated high-resolution with sunrise/set line, flashing + 's where sun and moon are directly overhead, continual realtime update every 5 min utes, static display, or rapid (1-hr./ 2-min.); date, GMT shown $\$ 28$ All are written for the Apple II or Plus with Applesoft on ROM and 48K RAM. All are supplied on diskette.

Chartes Kluepfol

55 W. 14th Street
New York, N. Y. 10011
Other astronomical and games programs available, including one that solves RUBIK'S CUBE* (\$20). Write for info.
-TM Apple Computer Co. - "TM Ideal Toy Corp.
 modes. FOR MULTI-DRIVE SYSTEMS
SMALLER DICTIONARY AVAILABLE FOR ask about QTEXT SINGLE DRIVE SYSTEMS PRICE: $\$ 75.00$

SPECIFY NUMBER OF DISK DRIVES

NEW PRODUCT! QTEXT - provides

 professional quality word processing with APPLE PASCAL EDITOR FEATURES INCLUDE : MAILING IIST CAPABILITY, HEADER AND FOOTER LINES, COPY STANDARD PARAGRAPHS IN DOCUMENTS, PROPORTIONAL SPACING FOR DIABLO AND QUME PRINTERS, USES FORMAT FILES AND OVER 40 EMBEDDED TEXT COMMANDS FOR CONTROL, AUTO PAGE \& CHAPTER NUMBERING, USER FRIENDLY PROMPTING, COMPLETE DOCUMENTATION, RIGHT, LEFT \& CENTER JUSTIFICATION \& MORE PRICE \$ 100 DEALER INQUIRIES WELCOMED1-year software warranty
Intelligent Computer
Systems Corporation

SYSTEM REQUIREMENTS : LANGUAGE SYSTEM
plus $\$ 2.50$ shipping
Va.residents add 4\% sales tax

COLUMAAR CATALOG LISTIMGS by Bob Crofts

I've owned my APPLE for nearly three years now, having come, unfortunately, to APPLE through a sea of like and, it now seems, lesser computers. I'd had a little prior experience with computers and programming, but it was essentially insignificant.
Over the past few years I've had so much fun with the APPLE that my desire to learn more about programming has take a back seat. Isolation from the usual clubs and stores has helped to impede my learning rate as well. I mention all of this in the hope it will at least partially explain the inordinate pride I feel in the little subroutine which follows.

Recently, with time to kill, I resolved to attempt to bring order out of the chaos of my diskette collection. To that end, I got out my master catalog program, a commercial version which i believe is quite popular. In fact, on a club disk (WAP \#14) there is a modified version. (If this program is actually public domain, I'd be happy to send the club a copy, of my version which takes $26 \mathrm{sec}-$ tors.)

In running through the program, it seemed that a feature which it lacked was the ability to print catalog listings in columnar fashion. Although the experience can be extremely frustrating, modifying a well-written program has been for me one of the best ways of learning Basic. So, I resolved to write a column listing routine.

And write it I did. While it worked, it was the worst kind of brute-force job, and labored when the text file it was processing was large. I was disgusted. My creative writing efforts seem to be of the feed-the-unconscious-and-wait variety. So a day or two after I'd finished my original modification the solution blossomed. I wrote it as a free-standing program in order to validate the idea without confusion. It worked well enough so that when I came to insert it into the catalog program the process went off without a hitch.
I'm sending it for several reasons'. Not among them is the idea that it is a noteworthy programming effort. Indeed, amid all this self-applause the idea occurs that it may even contain a flaw, either of logic or syntax. But as I've tested it extensively, the second seems unlikely.
One reason is that it may prove useful in the programs of club members. But the basic reason is that it may demonstrate to other flounderers that persistence is useful, that learning takes place continuously, and that dismembering good programs is a worthwhile practice.

In the following listing I have removed the REM statements and substituted a line number explanation.
] 1000 DIM NA\$ (360): $\mathrm{N}=333$
1010 FOR $\mathrm{I}=0$ TO $59: \mathrm{NAS}(\mathrm{I})=\mathrm{MFIRST":}$ NA $(\bar{I}+60)={ }^{\text {SSECOND" }}: \mathrm{NA} \$(\bar{I}+120)$
 NA\$(I $+{ }^{240)}=$
20000 REM
20020 P.TR2 $=60$
20050 PRINT LEFT\$ (NA\$(I), 30);" "; LEFT\$ (NA\$(I + PTR2),30)
20060 IF I = 0 THEN 20110
20070 CASE $=(I+1) / 60$
20080 IF CASE $=0$ THEN GOSUB 20140
20090 IF CASE - INT (CASE) $=0$ THEN GOSUB 20140
20110 NEXT
20120 END
20140 I= I + PTR2:RETURN
Lines 1000,1010 are not a part of the subroutine but simply set up a sample array.
Line 20020 sets up the pointer spacing as a constant.

Line 20040 loops through the entire array.
Line 20050 prints the leftmost n characters of the first and nth elements in the array. In this case 30 characters of the first and sixtieth elements.
Line 20060 causes the program to skip the end-of-column test on the first pass when it would succeed.

Lines 20070-80 are simply a counter which moves the base pointer over the array elements printed by pointer 2. They could be combined into one line using an "OR" operator. Very probably there is a better way to do this, but not in my kit.

Line 20120 just keeps the routine from falling into the GOSUB. A nickel for each time this has happened to me would keep me in diskettes for a while!
Line 20140 is the line in which the base pointer is actually moved.
(Ed. Note: Bob, WAP\#515, lives on Martha's Vineyard, Edgartown, Mass. Might be nice to have a WAP chapter there in the summer!)

Attention... Pascal Users

DOSIO is an APPLE II Pascal 1.1 utility which creates DOS binary files from Assembler files. Also included is two way text transfer capability and screen oriented disk patching.

Required is a 48 K APPLE II with at least one 16 sector disk. Complete documentation is furnished with one Pascal 5 1/4" diskette for $\$ 35$.

2521-F N. Grand Ave.
Santa Ana, Ca. 92701
Ca. residents add $\$ 2.10$ sales tax.

MINI FLOPPY DISKS FOR APPLE DISK DRIVES

$\begin{array}{ll}\text { KYBE sgl side, dbl density, soft sector } & 28.50 \\ \text { KYBE dual side, dbl density, soft sector (flippy) } & 45.00\end{array}$ MAXELL sgl side, dbl density, soft sector 44.00

PRINTWHEELS AND THIMBLES

QUME Std., AGT, and Diablo	6.40
QUME Special	7.90
NEC Spinwriter thimbles	13.95
88 char. metal printwheels	41.50
96 char. metal printwheels	49.95
Dual Plastic (Vydec type)	18.99

[^1]
PANORAMAS!

Reproduce either Page 1 or Page 2, horizontally or vertically on the paper; or, reproduce both as a two page panorama with both pages butted in perfect registration.

Compose your picture by framing, cropping, positioning, window-erasing, and adding text annotation (upper/lower case, punctuation, numerals and expanded symbology) in all four directions.
GRAF-PAK imposes no scale factor limitations: if it will fit on the paper, GRAF-PAK will reproduce it. GRAF-PAK displays the available scale factors, which depend only on your printer dot density, paper width and chosen cropping boundaries.
Eleven pages of Instructions, Examples and Pictures!

PRINTERS SUPPORTED	POST-PAID PRICE
EPSON MX70/80/100	$\$ 34.95$
IDS 440G/445G	34.95
$460 \mathrm{G} / 560 \mathrm{G}$	39.95
ANADEX DP9000 thru	39.95
DP9501	
NEC PC 8023	34.95
$3510 / 3520 / 3530$	39.95
$5510 / 5520 / 5530$	
$7710 / 7720 / 7730$	
SmartWare	
2281 Cobble Stone Court	
Dayton, Ohio 45431	
(513) 426-3579	

The second WAP tutorial will be held on two consecutive Saturdays, February 13 and 1982, from 10:00 AM to 1:00 PM at USUHS on Jones Bridge Road (on the campus of National Naval Medical Center) in Bethesda, MD. Check the ABBS and club phone for changes in details. An outline of the two sessions is shown below.

February 13, 1982
9:00-11:30 Introduction
A. Binary/hex number systems
B. Bits, bytes, and nibbles
C. RAM, ROM and devices

11:30-1:00 Internals
A. Memory Map: What's really in there
B. The Monitor: Examine, disassemble
C. The mini-assembler, step and trace

February 20, 1982
9:00-11:30 Applesoft
A. Basic programming
B. Commands and appications
C. Memory usage; HIMEM, LOMEM and variable space
11:30-1:00 DOS
A. The Catalog and VTOC
B. Reading and writing files

1. sequential
2. random access

WAP is requiring a nominal fee for this tutorial to assure the interest of attendees and to gauge the number of interested participants. A maximum of 40 people will be included, half with their own APPLE and half without.

NAME \qquad
Daytime Phone \qquad Evening Phone \qquad
Check One:
I will bring an APPLE (fee \$25)
I will not bring an APPLE (fee \$40)
Please return application and check made out to "Washington Apple Pi" to:
David Morganstein
13329 Woodruff Court
Germantown, MD 20874
contd. from pg 18
Another eclipsing star observed by computer was u Herculis. This light curve has been processed more fully than that of 44 Bootis. The sky background has been subtracted from all readings, and the signal levels converted to magnitudes, which are plotted as differences here, in the sense comparison minus variable star.

Washington Apple Pi has a program library, and disks are available for purchase by anyone. The price to members is $\$ 5.00$ per disk and $\$ 8.00$ to non-members. These disks are full of exceptional programs - the utilities are especially useful. The games are some of the best - not just simple and uninteresting ones. You may pick them up at any meeting or have them mailed for $\$ 2.00$ per disk additional. (If you order five or more the additional charge will be $\$ 10.00$ total.)

PROGRAM DISKETTES
Members: $\quad \$ 5.00$ picked up at meeting
$\$ 7.00$ mailed to you (for the first five, remainder at $\$ 5.00$)
Non-members: $\$ 8.00$ per disk picked up at meeting
$\$ 10.00$ mailed to you (for the first five, remainder at $\$ 8.00$)

DOS 3.2 Volume		
lume	1	Utiliti
Volume	2	Utilities II
Volume	3	Games I
Volume	4	Games II
Volume	5	Games III
Volume	6	Games IV
Volume	7	Games V
Volume	8	Utilities III
Volume	9	Educational I
Volume	10	Math/Science
Volume	11	Graphics I
Volume	12	Games VI
Volume	13	Games
Volume	14	IAC Utilities IV
Volume	15	Games VII
Volume	16	Utilities V
Volume	7	Graphics II
Volume	18	Educational II
Volume	19	Commumications
Volume	20	Music
Volume	21	Apple Orchard
Volume	22	Utilities VI
Volume	23	Games VIII
Volume	24	Games IX
Volume	25	Utilities VII
Volume	26	Stocks/Investments
Volume	27	Math
Volume	28	Planetfinder
Volume	29	Utilities VIII
Volume	30	Games X
Volume	31	Plot Utilities
Volume	32	Games XI
Volume	33	Accounting
Volume	34	Solar Tutor
Volume	35	Garden Management
Volume	36	Games XII
Volume	37	Utilities IX
Volume	38	Games XIII
Volume	39	IAC VII
Volume	40	IAC VIII

$\left.\begin{array}{l}\text { DOS 3.3 } \\ \text { Volume 100 Utilities A } \\ \text { Volume 101 Utilities B } \\ \text { Volume 102 Games A } \\ \text { Volume 103 Merry Christmas } \\ \text { Volume 104 Business A } \\ \text { Volume 105 FIGFFORTH/Utilities } \\ \text { Volume 106 Science/Engineering } \\ \text { Volume 107 Games B (Graphics) } \\ \text { Volume 108 IAC } 10 \text { (Graphen }\end{array}\right\}\{$

DOS 3.2 Volume 180 Dungeon Designer Volume 181 Beginner's Cave * Volume 182 Lair of Minotaur *Volume 183 Cave of the Mind *Volume 184 Zyphur Riverventure *Volume 185 Castle of Doom *Volume 186 Death Star
*Volume 187 Devil's Tomb
Volume 188 Caves of Treas. Isl.
*Volume 189 Furioso
*Volume
*Volume
*Vol. 181 required with these disks.
Pascal: Volume Volume Volume Volume Volume Volume
Volume
Volume 300 ATTACH BIOS 30
30
30
3 PIG1:
PIG2:
303 PIG3

Volume 305
306
307 PIG4 PIG6 IG7:

190 The Magic Kingdom
re \} $\}$ \{ \} $\}$

TOTAL ORDER =
\$ \qquad
Check here if you want these shipped \qquad (NOTE: ALLOW 6 to 8 WEEKS FOR MAILING.)

NAME
ADDRESS
CITY, STATE, ZIP
TELEPHONE \qquad WAP MEMBERSHIP NO.

Make checks payable to "Washington Apple Pi"
Send order to:
Washington Apple Pi- ATTN: Librarian
PO Box 34511
Bethesda, MD 20817

BACK ISSUES

If you would like to order back issues of the Washington Apple Pi Newsletter, please check the appropriate space(s) below. Orders will be filled while the supply lasts. Next to each issue is a rough inventory of supply. The cost per issue is $\$ 1.50$ plus $\$.50$ postage. If you order five or more we will pay the postage (limited to U.S. only).

Total No. of issues ___ at $\$ 1.50$ each $=$
If ordering 1-4 add $\$.50$ postage each $=$ (Foreign add $\$ 1.50$ each for postage)

Total for back issues
\$
\qquad

INSIDE APPLE PI

"Inside Apple $\mathrm{Pi}^{\prime \prime}$ is a bound compendium of articles from the Washington Apple Pi Newsletters of 1979 and 1980. We do not plan to print any more of the original 1979 and 1980 newsletters, so this will be the only form in which most of them will be available for purchase. You may order by mail using the form below. Copies will also be available for purchase at our regular monthly meeting (at a slightly lower price than that quoted below because no postage necessary.)
\} $\$ 7.50$ U.S. Canada and Mexico
$\}\{\$ 7.50$ Foreign surface mail
() $\$ 10.50$ Foreign air

Amount enclosed for Inside Apple Pi

TOTAL AMOUNT ENCLOSED \qquad

NAME

ADDRESS

CITY, STATE, ZIP
Make your check to "Washington Apple Pi". Foreign orders must be in U.S. dollars, payable on a U.S. bank.

Send order to: Washington Apple Pi
Attn. Magazines
P.O. Box 34511

Bethesda, MD 20817

ADVERTISING RATES

Washington Apple Pi
Attention: Editor
P.O. Box 34511

Bethesda, MD 20817

	FULL PAGE	HALF PAGE	QTR PAGE	8TH PAGE	BACK COVER 1/2 PAGE
Single Issue (Or split series)	60	$\$ 40$	$\$ 25$	$\$ 15$	$\$ 60$
3-months series (or more)	55	35	20	12	55
Full-year contract	50	30	17	10	NA

INDEX TO ADVERTISERS

As your authorized Apple dealer, Bethesda Computers specializes in the sale of microcomputers, software, peripheral equipment \& accessories. Drop by for a "hands-on" demonstration and professional analysis of your computer needs.

Bethesda Computers
8020 Norfolk Avenue Bethesda, Maryland 20014 (301) 657-1992
u. S. postage

P A | D
PERMIT \#101 Glen Echo, MD

Now you can have letter-quality printing and professional features for just \$1,495*

AJ daisy wheel printer terminals are renowned for exceptional performance, high reliability, and applications versatility. Now you can have all this for only $\$ 1,495^{*}$ in our special limited offer.

- 30 cps letter-quality printing
- Changeable type faces
- Full ASCII keyboard with numeric pad
- High resolution X-Y plotting
- Complete electronic forms control
- 128-character buffer
- Asynchronous RS-232 interface
- Printwheel, ribbon cartridge, and cable included
- 30-day parts/labor warranty

And you can choose from a list of options including forms tractor, pin-feed platen, paper trays, side shelves, extra printwheels, APL keyboard and 2 K buffer.

Call your nearest AJ regional office for details: San Jose, CA (408) 946-2900; Rosemont, IL (312) 671-7155; Hackensack, NJ (201) 488-2525. Or check the phone book for the number of your local AJ sales/service office.

- Pnce exciudes options and is subject to change without notice. Model shown includes certain options Offer avallable only in the contiguous U.S.

ANDERSON JACDBSON

[^0]: 'Beer Run' is the newest arcade game from Sirius (serious). In their words, "'Beer

[^1]: PIN-FEED PAPER
 $91 / 2 \times 11$ 15\# 350027.25
 $91 / 2 \times 11$ 20\# 270025.95
 $\begin{array}{llllll}12 \times 8 & 1 / 2 & 15 \# & 3200 & 31.36\end{array}$
 $\begin{array}{lllll}12 \times 8 & 1 / 2 & 18 \# & 2600 & 31.36\end{array}$
 $147 / 8 \times 11$ 15\# 300032.19
 $147 / 8 \times 1120 \$ 240031.75$
 FORMS TRACTOR
 Rutishauser,
 bidirectional 210.00
 MODEM

 Lexicon,
 LX-11
 300 baud 145.00
 Roberts Information Services, Inc (ROBINS) 8306 Hilltop Road Fairfax, VA 22031 703/ 560-5900 (across from the Post Office in Merrifleld)
 Monday-Friday 9 to 5 Saturday 10 to 2
 We ship by Capitol Messengers and UPS
 703/560-5900

