mini＇app＇les
 apple computer user group newsietter

UEDNESOHY MRY 1E． 1979 7：3日 F．M

MHPEGQTA FEDEFAL GFVING＇α LOAR 31 GTH AVENUE SO．HOFKINS MN．
HOW WOUL vOU LIKE TO FUN YOUR FROGRAM 16 TIMES FASTERG＂IT EANT EE OONE＂GOU SF＇Y．IT GAN EE DONE FND SOHE FFOGRAMS WILL EE FASTER THFN THAT． LEARN HOW YOU OAN OG IT AT THE NEXT MEETING．DAVE LARGON FND CHUCK THIEGFELD WILL DEHONSTFATE SFLO SFLG IS A HIGH LEVEL LANGUAGE MUCH LIKE FHSGAL．AHH vOU vE HEARD FEOUT FBSGAL．WELL FUMOES HAvE IT FAGCAL

 FRD STRUCTURE INTEINSIES GAN EE MEITTEN FOR FLL YOUR SFECIAL FUNGTIONS EVEN FLOATING FOINT．HERES A GHANEE FOR vOU BEGINNERS TO GET IN ON THE FIFET LESGON．DONT MISS YOUR CHANGE TO GET STARTED WFITING EETTER FFOGERNS NOW．
－－－－－－LETTEF FEOM THE EDITOR：
I WANT TG TAKE THIS GFORTUNIT＇Y TO SA＇Y THIS CLIE HAS MADE A YEF＇Y GGMD gTART AT HELFING ITS MEMBERE．THE MAIP FURFOSE OF THE CLUE IS TO ERINE FEGFLE MITH A GOMMON INTEREST GFFLES OF GOUREE TOGETHER ARD WHEN THAT HAFFENS THE＇V SHARE ENFEFIENGES．FFOELEMS FND FCOGMFLISHMENTS．TO THAT END GO DOES YOUR NEWGLETTER STRIVE．SO SHARE MOUR FFOGRESS MITH EvERYONE IH THE NEWGLETTER．WEITE FBOUT YOUR FROGRAMS YOUR NEEDS vOUR DREARS．TO MFKE IT EASIER FOR YOU AND ME，I FRODUEE THE REWSLETTER ON THE AFFLE．I WILL ACGEFT ARTICLES IN FN＇FORN BUT THE EEST WA＇Y IS B＇ GAESETTE 《WHIOH MILL EE FETURNED E＇Y THE WA＇\％．A SIMFLE BINAF＇Y DUMP OF BGCII GIDES IS TH EEST．A DUIOK FEGGRAM LIKE THE FGLLOMING GAN BE USED TO ETORE IT．

```
10 CHLL-9EE ONT=6:EFGE=4日GE: DIM L#GSG
2G INFUT LF
30 FOR F=1 TO LENCLक>-1
46 FOKE A+CNT+EHSE, HSGCA.GO:NENT A
SG ONT=CNT+LENCLま
60 IF GNT2EG4S [GTO1GG
FG GOTO 2G
10日 FRINT "FESET THEN 1GGG. 136GQ"
12g FRINT "MAIL TG C.N.THIESFELO"
186 FRINT "BG1E FUSEELL FVE."
```

A FROGEAM WILL EE FUT ON THE USEF ERNK WHICH CAN EDIT WITH UFFER GND LOUEE GASE IF YOU HANT TO LIET REALL'Y FANE'Y.

EUT THE FOINT IS REFLL'Y ---- SHARE VOUR SUCCESS RND SORROWS. --...FOULL FEEL EETTEF.

THE MINLTES FOR THE EUSIPESS NEETING OF FFRIL 181979
THE MEETING WHG GALLED TG GRDER AT $7: 4.5$ BY THE CHAIRMAN DAN EUCHLER.
THE FLQOR WAS GFENED FOR NOMINHTION FGR OFFICERS. THERE MERE NO
 ACOLAMATION B' KE MN FND SECONDED B' KEN SLINGSE'Y. THE MOTION WFS CAREIED EN UWARIMOUS AFFFOUFL. THE OFFICERS GRE FRESIDENT - DANIEL EIICHLER, SECRETAR'Y - CHFRLES BODO' AND TREFSURER - CHARLES THIESFELD.

THE FFEEIDENT GALLED FOR NOMINATION FGR EGARD MENEERS TG BE FCOEPTED FGR THE FUSITIONS OF LIERARIFN, FROGRFM EDITGR, TECHNICAL FDUISOR, NEWSLETTER EDITOR, EIELIOGRAFHER, FND ACTIUITY COORDINATOR. A MOYE WFG MADE TG FCCEFT KEITH MFDOUNA. FGB WENTHGRETH, JIM HENKE, CHAFLEES THIEGFELD. DEFN RHDEFGON FRD DAN BUCHLER RESFECTIWEL'r FGR THE GBCHE FGSITIONS EV FOCLAMATION E' FHIL SHLLER. THE MOTION WAS SECONDED B' STAN EFOUKS FRD CARRIED E''UNHNIMOUS DECISIGN.

A GUGEESTION WHS MADE FGR NAME THGS FGR FUTURE MEETINGE.
IT WHS RNWOUNCED THAT MECC CAN BE FCCESSED FHD THE'Y NOW HFWE A DQUN LOADER FOR THE RFFLE. THE CUST IS \$5G. 06 FGR 5 G HOLRS IN 3 MONTHE. THE

A GUGGESTIGN WAS MADE FGR A FROJELT TO COLLECT GUBFOUTINES FGR TEADE. IF YOU HAWE A GUITAELE ROUTINE CONTRET THE LIBRARIFN.
 WGEFK FNO \$S. GU FER EOF'W WILL EE GOLLECTED.

OLES HERE AFFFOVED AT \$1E. GQ FER YEAR.
THE FREGIDENT RECOGNIEED COMFUTERLFND AND THANKED THEM FQR THEIR TEENENDOUS HELF FND SUFFORT.

IT WHS SURGESTED THAT THE EEGINNEF:S HANE F MEETING. THE TECHNICAL FDWISOR IIM HENKE EAN BE CONTACTED AT $369-6371$

KEITH MRDONNA GND RGE WENTWORTH GABE A LIST OF THE CURRENT LIBRAF'Y FFOGRBNE.

 EEFGOLGTIGN THE TIME OF THIS WRITING. WE HOFE TO HEWE IT READV FOR

 AENT FRINTING GR GRDER INE FFOM A.F.F.L.E. -

Manipulation of data blocks in Applesoft (discussed elsewhere in this issue) require an understanding of the storage organisation of Applesoft.

The STRING POINTER in the ARRAYS \& STRING POINTERS area will be updated to point to the string, and the counter will contain the length of the string (1 byte). Also the Base Page Pointer in 111-112 will be updated to point to the first character of the string which is at the bottom of the STRING STORAGE space.
Simple String Variables
Simple Strings(non dimensioned strings) are treated in a similar way to string arrays. Each simple string consists of a 7 byte field stored in the simple variable space. Within that 7 byes are the string name and a pointer/counter identical in format to that of the string array elements.
Arrays
Space is reserved for the Arrays in the ARRAY and STRING POINTERS space on execution of a DIM statement

$$
\text { e.g. DIM } A(100)
$$

reserves space for 100 floating point (real) numbers of 5 bytes each. The array is added to the top of. the area ARRAY \& STRING POINTERS, and the base page pointer 109-110 is updated to point to the next available byte above that area.

DATA STORAGE IN APPLESOFT (Cont)

Simple Variables

Space is reserved for simple variables in the SIMPLE VARIABLES area. (See figure above) As simple variables are encountered in the program, they are added to the top of the SIMPLE VARIABLES space. Also the base page pointers 107-108 and
109-110 are updated to point to the start of THE SIMPLE VARIABLES space and FREE SPACE accordingly.
Note whenever a new statement is added to a program, both the simple variables, and the ARRAY \& STRING POINTER space must move up in memory to make room for new statements. In actual fact, changing the size of the program in APPLESOFT will be cause for initialization of all the base page pointers

Note:
SPACE UTILIZATION IN APPLESOFT

Type	Example	Bytes required
INTEGER VARIABLES	I\%	7
REAL VARIABLES	X	7
INTEGER ARRAYS	$\mathrm{A} \%(10)$	$7+2 n$
(1 dimension)*	$\mathrm{B}(20)$	$7+5 n$
REAL ARRAYS (1 dimension)*	$\mathrm{C} \$$	$7+\mathrm{c}$
SIMPLE STRINGS	C	$7+3 n+\mathrm{c}$

Key
*Add 2 bytes for each additional dimension
$n=$ total number of elements in
array.
$\begin{aligned} c= & \text { total number of characters relating } \\ & \text { to each simple string or } \\ & \text { the whole string array. }\end{aligned}$
NOTE on STRINGS. Use of a literal
eg $A \$=$ "THIS IS A LITERAL"
will not store anything in the string space. The pointers in the ARRAY \& STRING POINTERS area will point to the literal char ters in the program itself.

UPPER/LOWER CASE EDIT

In the April MINI'APP'LES newsletter, we reported on the Wentworth subroutine package which creates characters of your choice in the HIRES mode. That package slightly modified, in conjunction with an APPLESOFT INPUT routine, provides the capability to upgrade almost any BASIC text edit package to full ASCII. That is, the EDIT package will be able to output ASCII codes for upper and lower case letters and one can view the characters as upper and lower case.
The Game button \#'O' is used as the shift key. The output of the EDIT package may then be printed on printers which provide upper and lower case characters.A full description of the modified Wentworth software and the input routine will appear in next month's newsletter.
The abovesoftware has been incorporated in a mini-EDIT program the function of which is to allow pursons who wish to provide documentation for the newsletter a means of creating it on their Apples. Besides allowing upper/lower case manipulation, the output is a text file on cassette tape. (could easily be changed to a disk file). The output is then entered into the more general word processing editor which we plan to use for the newsletter.

LOADING MACHINE CODE SUBROUTINES - (Idea courtesy Val Golding, et al)
The guys from A.P.P.L.E. have recently adopted an interesting and very powerful technique for executing Monitor functions with complex cammand lines, right in the middle of an : APPLESOFT program. In particular this allows an easy way to input or load machine code that goes with your Basic program.
Define your machine code or Monitor command sequence just as if you were using the Monitor, only instead of tying the line follwing a * prompt character, inclose the line in quotes as a literal string.
Example 1 below loads the hex data C9 48 etc into location 300, 301 etc

```
310 A$ = * 300:C9 48 DO 12 20 B1
        00 20 F8 E6 8A 20 DA FD 20 B 700 C9 2C FO EF 60 4C CC .16"
```

350 A\$ $=A \$+{ }^{\prime \prime} N$ D823G": REM
Example 2 executes a Monitor Move command

```
400 FOR I = 1 TO LEN (A$): POKE
    511 + I; ASC ( MIDS (A$,I,1)
        ) + 128: NEXT : POKE 72;0: CALL
        - 144
410 GOTO 36
```

Note: In statement 350, the N (a monitor - 'Normal Text mode' command delimits(ends) the list of bytes for storing in memory; the D823G is an entry point in Applesoft which clears the stack and returns control to the Applesoft program at the next statement following the CALL -144. In this case, statement 410, if the D823G is not included in the literal string, control returns to the Monitor and you end up with an * prompt character ! Because the stack is cleared, the CALL -144 must not be inside a subroutine called by a GOSUB.

NEW PRODUCTS/NEW IDEAS
Micromodem II D.C.Hayes of Atlanta Ga. have just announced a combined Modem and Interface card for the Apple. The combination consists of a card that plugs into an Apple slot and a small box connected by cable to the card.. The combination provides: ${ }^{\circ}$ Bell 103 Data set compatible transmission at 110 or 300 baud.
${ }^{\circ}$ Direct connect to phone line using the RJ11 type jack commonly found on Western Electric manufactured phones and handsets.
${ }^{\circ}$ Firmware in ROM on the card.
${ }^{\circ}$ Auto-Answer and Auto-Dial
The price is around $\$ 380$ which actually compares favourably with price of Apple Comm card and currently available quality modems. In fact the Auto-Answer/Auto-dial would normally cost you alot more.
Homemade If the $\$ 380$ above scares you, and you want communications on your system, look at the article in April 1979 Byte magazine entitled "Cross Pollinating the Apple II" by R.Campbell. It describes the construction of an RS-232 compatible programmable interface based on the INTEL 8251 chip. The device can be built for about $\$ 25$ in parts not including the P.C. board. A prototyping board with good documentaion is available from Apple or you can save money by buying a similar board from some other sources who offer boards that are plug compatible with the Apple slot.(see below)
Printers Heathkit are now offering a good quality dot matrix printer in kit form for $\$ 600$ (Builtup $\$ 900$). It has specifications similar to the Brightwriter IP-225 including tractor feed. It does not have graphic option but has some other features. It has a serial interface which will connect to Game Port via a 3 part lashup.

Radio Shack have a cheap Thermal print- $\$ 220$. But its only 36 columns. Has serial interface too.

APPLESOFT II ALL ENCOMPASING TAPE DATA SAVE

There is no direct way in APPLESOFT to save strings on casette tape. Contact \#3 described a method which writes data on tape as follows.

> RECORD 1 Length of string area
> RECORD 2 Pointers for one string array (USES STORE statement)
> RECORD 3 All of String Storage

This works fine if everything to be saved is in one string array. However, typically one will wish to save alot of string arrays, and simple string variables. The Applesoft manual tells one to convert strings to numerical data and use the STORE statement. This is not practical with large amounts of string storage. I just completed a program in which it was necessary to save the following:

$$
4 \text { string arrays }
$$

2 numeric arrays
12 simple varaibles
Using the technique deseribed in CONTACT \#3, and assuming the simple variables were stored in a 3rd numeric array, 9 records would be required to output the data as follows:

1 RECORD. Size of string area
4 RECORDS of string pointers
3 RECORDS of numeric arrays
1 RECORD of the string area
Because the tape records each include the standard long 'leader', the I/O time would be excessive.
The solution is to save all of the 'data' in one fell swoop. Refer to data organization chart in.accompanying article on Applsoft storage organisation. For efficiency one does not want to save the unused part of memory (FREE SPACE). This could result in very long records for systems with large memory sizes(48k). Therefore three records are required:

> RECORD 1 length of simple variable/array \& string pointer space RECORD 2 simple variables; array \& string pointer space; address of start of string space; length of string space RECORD 3 string space

The following program will output all of the data in the above format. Also, the program may change between output and inputting the data provided certain restrictions are observed. Those restrictions are:

1. HIMEM cannot change. This is because the string pointers are absolute adresses.
2. If the DIM statements are changed, no effect will be observed since the input data redefines all data space. DIM statements executed after input will of course be observed.
3 There must be at least 4 bytes of FREE SPACE to store the pointer and length inf in record 2.

NOTES: This program uses DEF statements as described elsewhere in newsletter. The complex code with lots of PEEKS and POKES was necessary to avoid referencing variables during the redefinition of pointers. A slightly more efficient technique would involve finding 6 unused bytes in the base page somewhere. Anyone want to try ? (Program listing next page)

NEW PRODUCTS/NEW IDEAS (Continued from previous page)

Apple II Delicacies California Computer Systems has a series of boards (delicacies) that plug into an Apple slot. Included are: a 2716 PROM board, Programmable Timer , IEEE 488 Interface, Asynchronous Serial Interface with ROM ($\$ 100$), Synchronous Serial Interface with ROM, Parallel Interface with ROM, Arithmetic Processor with 32 bit floating point capability-uses AMD 9511 chip ($\$ 400$), 3.5 digit BCD A-D converter, solder tail board (\$21), Wire Wrap Board, and Etch board.

27ə 37 ：dod 0zloz
W甘ygoyd Nith ni no jnnilnoj way olloz

- - - - - - - - -
 30vds 5nidis 434 ：0EO62

 （ $2+\forall d) \mathrm{OH} \mathrm{NJ}=\mathrm{Gd}:($
 （ごI）Yヨヨd

 95E＊（9se／

Mヨad ） LMI －（（（EIT）Maヨd

 （（015）YB3d w 9G己＋（605）

 0g062 ansos stscz $9 \mathrm{se} / \mathrm{yd}_{6} \mathrm{OT}$
 sivitu a syun

（sot） $\mathrm{Na}+\cos 0 \mathrm{NA}=\mathrm{Zd}$ OeSte 278 H157 1003：W3 ：0806

ヨdyl WOyd Indili 01 JNilnoyens

 95E＊（99E／
d）LMI－d＝（d）HEA 1300 OOE

ansos souto ansos andayay

it＝It LMisd：0000z ansos 0016z
Nunlzy ：9se

（panu！quos）
－лә77ə！sməu s！！
LJOS 3 Idd \forall u！SNOIITNN」 $37 d W I S$ ə $3!7$ le

－00962 1000082 小ə47！ə 6u！77v3 07
 30vd

 N8ก173：

 $I+I$
 Menlay ： 108 －77＊J：

Manlay ：0459 ヨiod ：IEscy

INJ ：0050Z 4nSOS ：as 31

aindimon imivd ostec S5NTHLS 1
ก० ヨ1I』M Wコy fotocz ancos octaz
（ITT）ONJ
 OEOS己 ansos 00IEE SAV\＆ty 5 Sy
 $+{ }^{+}+$

 ヨn \forall

 （己II）桪 6 d $+\forall d$
 （ $601 \% \mathrm{NJ}=\forall \mathrm{Na}$ OEOBC SA甘yyy y syyn H15N7 31I\＆M W3y ：0T06E ancos ：0se／$\forall d^{6}$ IE ヨMOd：（ $\forall \mathrm{A}) \mathrm{H}$ NJ ${ }^{5} 0 \mathrm{E}$ ヨMOd OCOBE votóc ansos 0tose
 t + （SOL） 0 NJ －

－pead
are suzqu！od arofaq pazeวolle ale solqe！len

S37．ddY，INIW

SUMMARY OF ARTICLES IN Call A.P.P.L.E.
In past issues of this newsletter, we have reproduced whole articles from, or extracted from the Call A.P.P.L.E. newsletter. In fact there are some ideas extracted from A.P.P.L.E in this issue. In as much as that newsletter is one of, if not the source of latest techniques, ideas and information on the Apple, it was thought appropriate to include a summary of the lead articles in our own newsletter. We do have a newsletter exchange with Seattle. Thus if anyone sees something that might be of interested they can borrow the appropriate issue from our Librarian or whoever has one. All of you might consider getting your own subscription, which costs $\$ 7.50$ per year. It is an excellent publication.
Call A.P.P.L.E. Feb issue:

> The Talking Apple by Mark A.Cross - Describes a speech synthesis method which utilizes some very simple hardware interfaced to the Game port. It is supposedly superior to Appletalker(Bob Bishop) and as inteligible as Chaining Applesoft (Cont from Jan edition) by Randy Wiggington Addendum in Mar issue.
> Disk-to-Disk Transfer by Ron Aldrich
> INteger Basic Entry Points by Val Golding --Describes a program which will display
> entry points for various tokens., the entry points being addresses in the BASIC ROM.

Call_A.P.P.L.E March issue:
 mapping;a routine to create a Dispatch Table List; how to Append; and how Applesoft pointers are used.
The Mystery of Text Files by Darrell Aldrich---Discusses sequential \& random access. Disk Access Utility by Don Paymar-- A program to dump entire contents of a disk, track by track, sector by sector to display. Applelock by Dick Sedgewick --- Technique to write protect or lock a disk program. Keyboard Modification to get"[","\" or "_" characters by Dan Paymar---- Shows how to modify P.C. board under keyboard to provide keyboard generation of above characters with SHIFT K, SHIFT L and SHIFT D respectively.
Call A.P.P.1.E has instigated a Cassette of the month plan in which $\$ 3.50$ buys a cassette from Call A.P.P.L.E. containing whatever new programs are available that month. We Mini'App'Les are thinking of subscribing on behalf of our bank. Any comments ?

PRINTING WITH TABS IN APPLESOFT

A session with a printer connected to an APPLE SERIAL INTERFACE card revealed some interesting problems related to the use of TAB with APPLESOFT. A particular Applesoft program includes code to select the order in which fields are printed according to the value of the variables used as argument of the TAB function.

100 PRINT	TAB(A) ; "FIELD 1";	GO TO next line
200 PRINT	TAB(B) ; "FIELD 2";	GO TO next line

The logic of the program is such that
500 IF $A<B$ THEN 100
600 GO TO 200

In a particular case, $A=1, B=42$. On the standard TV display, we see
FIELD 1
FIELD 2

PRINTING WITH TABS IN APPLESOFT (continued from previous page)

Applesoft Tabs assume a string length of 255 characters (maximum), but a line length of 40 , so the TAB (42) results in a second line..
The Serial Interface card has a DIP switch on which one can select certain standard line lengths. The setting for 80 cols was used and the resulting output for this example was

FIELD 1

The manual for the card does state that 'there are certain restrictions on the use of tabs'. What apparently happens above is that the C / R from the end of the first 40 character line is converted to a Line Feed by the firmware !
The serial interface card firmware also makes use of memory location 1785 for the line length (for slot \#1)

POKE 1785,80 sets the line length. In this example, the
message
OUT OF MEMORY ERROR at stmt no
was encountered on use of the tab feature so long as the tab variable value was greater than 40 - I did'nt try every combination.
The moral of the story is'be careful how you ses TAB in Applesoft with printers on the serial interface board'. Perhaps use of the SPC function might solve the above problems.

SIMPLE FUNCTICNS IN APPLESOFT.
Few Applesoft programs seem to use the DEF capability. One neat application of DEF is to reduce the code needed to handle common usages of PEEKS and POKES. Two examples of this type of application are

1. Simulate the INTEGER BASIC MOD function
$10 \operatorname{DEF} \operatorname{FNM}(X)=X-\quad \operatorname{INT}(X / 256) * 256$
50 POKE 105, FNM(A) : REM PUTS LOW ORDER BYTE OF INTEGER PORTION OF A IN 105
60 POKE 106, A/256 : REM HIGH ORDER BYTE OF INTEGER PART OF A IN 106
The above are equivalent to the INTEGER BASIC statements:
50 POKE 105, A MOD 256
60 POKE 106, A/256
2. Access 2 byte (16 bit) address or data in 2 memory locations
$20 \operatorname{DEF} \operatorname{FNQ}(Y)=\operatorname{PEEK}(Y)+256 * \operatorname{PEEK}(Y+1)$

50 PRINT FNQ(105) : REM PRINTS 16 BIT address or data stored in 105 \& 106

NEW PRODUCTS/IDEAS (Continued from page 6)
Clock/Proto-board West Side Electronics, Chatsworth, Ca. offers the APPLETIME clock board. It can utilize internal, AC or battery power and sells for $\$ 60$. They also list a prototyping board for $\$ 17$.

HOW MARY FFFLES

FOCOGRDING TO DATAMATION MAGREINE, FRGDUCTIUN OF FERGONAL GOMFUTERS
 LINITE, FFFLE $2 G$, WGG LNITS, NOT EHD CONSIDERING THAT GFFLE STARTED GELLING AFTER FET, FWD DFFERS A MGRE EXPENSIVE SVETEM. TALKING ABOUT GTHEF MFKES, THE RUMOUR MILL IS WORKING GYERTIME FBOUT T. I. SEEMS, THAT A SYETEM IS LIKEL'Y TO EE FNNOUNEED EEFORE END OF YEAR IN THE FSBG-\$IE6G FRICE ERACKET. T. I. WILL FROEAEL'Y FNNOUNCE A EUSINESS
 FOM! RLSG 2 FRINTERE, FND DISKETTE. ROM WILL CONTAIN A wARIET'Y OF EUEINES GOFTUREE.

MINI FFFFLES UGER ERHK INCLLUDED IN THE EHNK HKE SEVEFAL FROLRANS SDEMITTED B'Y AFFLE-FI OF COLORADO AS AN EXCHANGE FOR SOHE FROGFANS SUEMITTED ON OUR EEHFLF E' KEITH MRDONNA. WE FRE STILL WGEKING ON A EGUD DISTRIBUTION FFOGEDURE. UNTIL SUGH A FFOLEDURE IS DEVISED FND FUELISHED: FLEASE CONTRCT EITHEF K MADONNA (474-S376) OR F. WENTWORTH ©SES-GUSS., IF YUU WISH TO FIND OUIT HOU TO GET COPIES. A GATHLEG OF THE EFHK MILL BE FUBLISHED NEXT MENTH.

page 10

MINI'APP'LES
13516 GRAND AVENUE SOUTH
BURNSVILLE
MINN., 55337

