Apple Macintosh Early Technical Information < Inside Macintosh

g

EARLY MACINTOSH TECHNICAL INFORMATION

INSIDE MACINTOSH
QUICKDRAW: A PROGRAMMER'S GUIDE

COMMENT

VERY EARLY INSIDE MACINTOSH QUICKDRAW
CHAPTER SHOWING QUICKDRAW'S EARLY
STRUCTURE FROM 1982 AND ALSO EDITING BY
CAROLINE ROSE OF CHRIS ESPINOSA'S SOMEWHAT
ROUGH DRAFT

AUTHOR
APPLE COMPUTER

DATE
15 FEBRUARY 1982

SOURCE
DAVID T CRAIG ¢ JANUARY 2004

| QuickDraw Programmer's Guide < 15 February 1982 Page 0001 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

N, |
W ot e gl

\)}‘{‘ | U [oed :/q . z' 3 /2,* \[2 F%\ fM “’Q>

~ Ar (H Seleet

MACINTOSH PUBLICATIONS w svd Ptr

QuickDraw: A Programmer”s Guide /QUICK.DRAW/QUIKDRAW

See Also:

Modification History: First Draft 'C. Espinosa 11/27/81
Revised and Edited C. Espinosa 2/15/82

ABSTRACT

This document describes the QuickDraw graphics package, heart of the
Macintosh User Interface ToolBox routines. It describes the
conceptual and physical data types used by QuickDraw, the procedures
and functions available in QuickDraw, and the details of preparing,
compiling, and linking a program for use on the Macintosh.

;éQQ((AdZ{ 2 llp(ﬂszé; . L o]
’/57/“&1 - 747//(’:1;/)4 M,éffl/ 7// /J{(Zﬁ.’wa . v_?ﬁ

See. PE7- Lo) A 15
“Mac Gt PRI
W‘QCYCV\CLL’{’O ac. & rf((f {) ;’)Ib
.07

(G uys Ghémd(v(cﬂ@(f
[-isa Grad D—TT /Zj{,{;&rﬁs’

W conts w apyph copo

| QuickDraw Programmer's Guide < 15 February 1982 Page 0002 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

Quickiraw Frogrammer”s Guide Vﬂp&

o

TABLE OF CONTENTS
3 Introduction to QuickDraw
5 About This Manual ~
6 The Mathematical Foundation of QuickDraw é/)\
7 Points { P/
8 Rectangles £5 .
19 Regions V/‘ Nd/
11 Graphic Objects N 3¢
12 The Bit Image L L
13 Patterns; the bitMap
16 Cursors
17 The grafPort
21 Coordinates in GrafPorts
23 Character Fonts
25 General Discussion of Drawing
28 Transfer modes
29 Description of QuickDraw Procedures
29 GrafPort Procedures -
33 Cursor-Handling Procedures
34 Pen and Drawing Procedures
36 Character Drawing Procedures
38 Calculations with Rectangles
49 Graphic Operations on Rectangles
42 Graphic operations on Ovals
43 Graphic Operations on Rounded-Corner Rectangles
45 Calculations with Regions
49 Graphic Operations on Regions
51 Miscellaneous Utilities
53 Using QuickDraw from Assembly Language
57 Summary of QuickDraw
T 62 Default Values

| QuickDraw Programmer's Guide < 15 February 1982

Page 0003 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

o
w\cv INTRODUCTION TO QUICKDRAW 3

QW

INTRODUCTION TO QUICKDRAW

QuickDraw is a set of graphics procedures, functions, and data types
that allow a Pascal or assembly*language programmer of Macintosh to
perform highly complex graphic operations very easily and very quickly.

This document introduces you to QuickDraw and its programmatic
interface. It covers the graphic concepts behind QuickDraw, as well as
the technical details of the data types, procedures, and functions you
will use in your programs. It also describes the fundamentals of
preparing, compiling, and linking a program to rum on Macintosh.

What QuickDraw Can Do
QuickDraw allows you to divide the Macintosh screen into a number of
individual areas, aﬁglg}thin each area you can draw-many things:-

- Straight lines of any length and width;
flled toe =

- Rectangles, either solid or hollow;

- Circles and ovals, also either solid or hollow;

- Rectangles with rounded corners, solid or hollow;

‘L‘:’-’ U”J)w oV
3 Any other arbitrary shape or collection of shapes, again either;[ﬂw7@ /
O solid or hollow; “%&/ /Alkﬁfﬂaa'
~ o b M"W/
>< - Images defined dot-by-dot and stored in a file or in the program éLALpC
N itself; /'/UU ¥
~ /'
5. Text characters in a number of proportionally-spaced fonts, with
\\;<) ariations that include émbolden italicilging, shadowing, and
) i le terspaciﬁgb '
<
&
%
3
>
B4
N
AN
2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0004 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

e \‘L -
4 QuickDraw Programmer”s Guide . \'V iv \ ; ’V/hk“‘/ 2 cJ

) \ W > ! v‘

Q//) e Of) v &- ¢
4 v

N N

i _‘\A‘)"’L s
X

Figure 1. Samples of QuickDraw”s Abilities

In addition, Quiv”raw has some other abilities that you won”“t find in
many other graphics packages. These abilities take care of most of the x:
"housekeeping?i) the trivial but time-consuming overhead that”s N
necessary to keep things sﬁfaigh@engé_ug—bue-eee—ﬁee%&y—befhe;soma—%e ¢
de—youue-l—a Among thepe. are: ' ordoy / \ \(
' e»ctua W am (,J' Quut/()(Loy ,\'
- The ability to define many distinct “ports” on the screen, . egﬁ t;y

with its own complete drawing environment{) “fts own coordinite

system, drawing location, character set, location on the screen)

etc. You can switch from one(ﬁ?ﬁgzag environment{to another witwi;wi ‘{yf%

just one command. Jk@*'s o {

- Full and complete'%l;pping to arbitrary fegéene It”s like a
super-duper coloring book that won”t let you color outside of the
lines. You don“t have to worry about accidentally drawing over
something else on the screen, or drawing off the screen and
trashing memory.

- Off-screen drawing. Anything you can draw on the screen, you can
draw into an off-screen buffer, so you can prepare an image for an
output device without disturbing the screen, or you can prepare a
picture and move it onto the screen very quickly.

And QuickDraw lives up to its name! It is very fast. The speed and
responsiveness of the Macintosh user interface is due primarily to the
speed of the QuickDraw package. You can do good-quality animation,
fast interactive graphics, and complex yet speedy text displays using

the full features of QuickDraw. '77LLO Lot 1}},?L Ao € 7(¢4£_/

‘[[D /{w rRed ‘7‘//\1: ;z,vu/\a,Q‘ ey - CPWC(Q O ’U.n‘;{-ﬁw
(\l;é}ﬂ o L&’f,Bé &%mma‘nw I i»..f(vl § ruf 43’

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0005 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

INTRODUCTION TO QUICKDRAW 5
‘1¢~‘ Joe {(L;J (et
et . D <

How To Use QuickDraw ‘ L P XC
QuickDraw has no user interface of its own; you must write and compile 0&
(or assemble) a Pascal (or assembly-language) program that includes the x;

proper QuickDraw calls, link the resulting object code with the
§ QuickDraw code, and execute the linked object file. [:f”/// %/
: VJ“
é'\Some programming models are supplied at the end of this manual; they)<
show the structure of a prOperlj6rganized QuickDraw pregram. What’s th

best for beginners is to obtain a machine-readable version of e of
§E these ggrams (see the Macintoéh;software coordlnator), read through

the-aagk and using the superstructure of the program as a "shell”,
\EBHII?WQDto suit your own purposes. Once you get the hang of writing

programs inside the presupplied shell, you can work on changing the

shell itself.

In the final Macintoshes, QuickDraw will be stored permanently in the

ROM memory (right now, it resides in high RAM). All access is made -
through an indirection table in low RAM. When you write a program that) lJ_u‘
uses QuickDraw, you link it with this indirection table. Each time you {A11b
call a QuickDraw procedure or function, or load a predefined constant, *d‘p

the request goes through the table into QuickDraw. You“ll never access

any QuickDraw address directly, nor will you have to code constant

addresses into your program. The linker will make sure all address

references get straightened out.

QuickDraw can be used from either Pascal or(68#@§ machine language. To

be clear, concise, and more intuitive, this manual gives all examples
in their Pascal form; a section near the end describes the details of
the machine language interface to QuickDraw.

QuickDraw includes only the graphics and utility procedures and
functions you”1ll need to create graphics on the screen. Keyboard
input, mouse input, and larger user-interface constructs such as

wind and menus are implemented in separate packages that use
QuickDraw but are linked in as separate units. You don”t need these
units in order to use QuickDraw; however, you’ll probably want to get
the documentation for @ach of the above’and learn how to use them with
your Macintosh programs. Voo
Lm\u‘ux v éf VAL |

N
W\,{"l/(4/1/‘ le/vf’{\[ki p

ABOUT THIS MANUAL

Liso
We assume that you are with programming inAPascal and

assembly language; this graphics package is for programmers, not end
users.

The manual begins by stepping back a little and looking at the
mathematical concepts that form the foundation for QuickDraw:
coordinate pleges, points, and rectangles. The mathematics are then
associated W% raphic entities that can be seen on the screen. Once
you understand these concepts, read on about the graphic entities based

2/17/87 Faninosa /OUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0006 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

/

6 QuickDraw Programmer”s Guide

- —
on those concepts() how the mathematical world of planes and rectangles \
is translated into the physical phenomena of light and shadow.

Then comes some discussion%;ow t usS’some—eé—ikmfnﬁscellaneous parts

of QuickDraw, such as using graphics ports , and

manipulating character fonts. Following this discussion is a summary

of the basic drawing process. This tells you how to structure your

programs so that everything happens in the right order and in the right \
way. This is a particularly important section: it”s got a lot of .’ '
helpful hints on how to build programs that work right the first time.

Finally, there”s the detailed, blow-by-blow description of every ?(\
QuickDraw procedure and function, their parameters, calling protocol, / pPJ~
effects, side effects, etdefy—all the business that you 11 Tefer—to—amy~_

time you write a program for Macintosh. It”s a lengthy section,

because there are a lot of QuickDraw calls. But the calls and the

parameters are summarized in an appendix for quick reference once O/rjl)

you“ve learned what they do.
et A ,\’/0 _},,)Q- M)
S ?: \‘)
3 i

THE MATHEMATICAL FOUNDATION OF QUICKDRAW W

To create graphics that are both precise and pretty requires not
supercharged features but a firm mathematical foundation for the
features you have. If the mathematics that underlie a graphics package
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines
some clear mathematical constructs that are widely used in its
procedures, functions, and data types: the coordinate plane, the
point, the rectangle, and the region. o

@o“ﬂxtmffﬁi)

The Coordinate Plang/)>—\mjilé;glv4WL

All information about (pasdtéen location, placement] or movement -that
you give to QuickDraw is in terms of coordinates on a plane. The
coordinate plane is a two-dimensional grid:

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0007 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7

Horizornoal

—ACIRT) 32767

~327ET ~32F6F
Wertical 0 0 ertical
i
32767 32FEF

—32767 0 S2TE7 A

Horizonoal \

Figure 2. Coordinate Plane
There are two distinctive features of the QuickDraw coordinate plane:
- All grid coordinates are integers; and
- All grid lines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw
plane is finite, not infinite (although it is very large). Horizontal
coordinates range from -32768 to +32767, and vertical coordinates range
from -32768 to +32767 also. (An auxiliary package is available that
maps real Cartesian space, with X, Y, and Z coordinates, onto
QuickDraw”s integer coordinate system.)

Second, they mean that all elements represented on the coordinate. plane
are mathematically pure. Mathematical calculations using integer
arithmetic will produce intuitively correct results. If you keep in
mind that coordinates are infinitely thin (and a couple more related
concepts), you”ll never have “endpoint paranoia”--the confusion that
results from not knowing whether that last dot is included in the line
or not.

Points

On the coordinate plane are 4,294,967,296 unique points; each point is
at the intersection of a horizontal grid line and a vertical grid line.
As the grid lines are infinitely thin, a point is infinitely small. Of
course there are more points on this grid than there are dots on the
Macintosh screen: when using QuickDraw you associate small parts of
this grid with areas on the screen, so that you aren”t bound into an
arbitrary, limited coordinate system.

The coordinate origin (#,P) is in the middle of the grid. Horizontal
coordinates increase as you move left to right, and vertical

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0008 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

8 QuickDraw Programmer”s Guide

coordinates increase as you move top to bottom. This is the way both a
TV screen and a page of English text are scanned: from the top left to
the bottom right.

You can store the coordinates of a point into a Pascal variable whose
type is defined by QuickDraw. The type Point is a record of two
{ntegers, and has this structure: gy
/ 1 \)W’CU rsd &v&‘“ Ut
(A H

\\k = RECORD CASE INTEGER OF >~
A 7 INTEGER
N XY
\ib\h\}” @: (v : INTEGER;
<? DN h : INTEGER);
S
¥) . 1: (vh: ARRAY[VHSelect] OF INTEGER) /

\yﬁ\ , QW& END; : i

. The eame variantjallows you to access the vertical and horizontal
' components of a point either individually or as an array. For example,
if the variable EKeemim were declared to be of type Point, the

references é%aﬁes
gﬁ:&::.v, ggizi:jh _
Ee-aa-i-a.vh[l] m.gh[‘t_\}

would all%refer to the coordinate aarts of the point.

Rectangles
Any two points can define the top left and bottom right corners of a
rectangle. As these points are infinitely small, the borders of the
rectangle are infinitely thin.

. Lefe !
TWJp
— Bottom
Right
3 1
Figure 3. A Rectangle
2/17/82 Esvpinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982

Page 0009 of 0064)

Apple Macintosh Early Technical Information < Inside Macintosh

R
e

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 9
td .
‘ i L= >
Rectangles are\used to definekggEiEEShreas on the screen, to assign
coordinate syskﬁms to graphic entities, and to specify the locations
and sizes for. veriouy drawing commands.y All these uses of rectangles
are described in the section "Graphi Operations on Rectangles”.
QuickDraw also allows you to perform many mathematical calculations on
rectangles: changing their sizes, shifting them around, etc.

(hand)
Remember that rectangles, like points, are mathematical
concepts that have no direct representation on the
screen. The association between these conceptual
elements and their physical representations is made by a
bitMap, described below.

The data type for rectangles is called the Rect, and consists of four
integers or two points:

TYPE ,Kect = RECORD CASE INTEGER OF

® : (top : INTEGER;
left : INTEGER;
bottom: INTEGER;
right : INTEGER)

we

1 : (topLeft : Point;
botRight: Point)

END;
Once again, the record variant allows you to access a variable of type
Rect either as four coordinate boundaries or as two diagonally opposing

corner points. Combined with the record variants for points, all of
the following references to the Rect named Train are legal: VAR

Train........................;..................g%ﬂ%ct f3P¢ E /LLAZiZE;T

Train.topLeft............Train.botRight.........ggfbint %W@Li§

¢’
T&A‘Nx *

TEAin.topessssessnsesnsasTrain.lefteeeneensss.s. SUINTEGER fype- §
Train.topLeft.v.e..c.o.....Train.topLeft.hoceo.o . JUINTEGER
Train.topLeft.vh[v]......Train.topLeft.vh[h]......INTEGER .
Train.bottomessseeesssessTrain.righteccecccscess s .INTEGER
Train.botRight.v.........Train.botRight.h.cec.... . INTEGER '
Train.botRight.vh[v].....Train.botRight.vh[h].....INTEGER

(eye)
If the bottom coordinate of a rectangle 1s not greater
than the top, or the right coordinate is not.greater than
the left, then the rectangle is not a rectangle. All
operations that use that rectangle will have no effect
whatsoever.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0010 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

10 QuickDraw Programmer”s Guide

Regions a
Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw has the unique and
amazing ability to gather an arbitrary set of
into a structure called a region, and perform complex yet rapid
manipulations and calculations on such structures. This remarkable S
featuré:éiiijﬁﬁf*nﬂiygmakegffir standard programs simpler and faster, N Yad

but will let you perform ofeetrations that would otherwise be nearly’
impossible; it is fundamentadl to the Mqﬁintosh user interface.

L

. . Vi 4P)
You define a region by{drawing 1inesi s-—":?:‘f*, rectangles, ovals, \V*)\ RY
uﬂ}pounded*corner rectangles), orfother regions The outline of a region ‘¢§ 5ﬁ9

1y_defined~as ope or more cllosed loops. A region can be A

concave or convex, can consist\of one area\or many disjoint areas, and
. A X "
> ¢ can even have "holes™ in the mi

\ Yo >
__//_—\ g,{'; \'/{4«11-_”;, -

% “HH

— HH
S tgé |
A Q}V ! I S
W v Ran :E anas
w 4 J HH
H ases
| .
444 j

Figure 4. Regions /LE*-/B %Aj/ho//
(;v‘

Because a region can be any arbitrary area&gn the coordinate plane, it
takes a variable amount of information to store the outline of a
region. The data structure for a region, therefore, is a
variable-length entity with two fixed fields at the beginning, followed
by a variable-length data field:

TYpE /\égion = RECORD f¢” W
gnSize : INTEGER; ¥
gnBBox : Rect; ke, o’ &;)

{optional region definition data} A6

p/(/ OJ\) T)) \
END; U(\/\L“ By N
The‘x/n81ze field contains the size, in bytes, of the(region variable

The KgnBBox field is a rectangle which completely encloses the region.
For ‘example, if the variable Lumbar is a region, then the field
Lumbar .RgnBBox.top contains the minimum vertical coordinate of all
points in the region.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW. 2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0011 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11 NG

N
The simplest region is a rectangle; in this case, the rgnBBox field (ﬁ'CK\\‘
serves Lo define the entire region, and there 1is no optional region g}f’ x xm‘
data. For rectangular regions (or empty regions), the rgnSize field %y
contains 19.) _ o c)*?ﬂ
o \

As regions are of variable size, they are stored dynamically on the
heap, and the Memory Manager moves them around as their sizes change.
Being dynamic, a region can be accessed only through a pointer; but
when a region is moved, all pointers referring to it must be updated.
For this reason, all regions are accessed through handles, which point
to one raster pointer which in turn points to the region.

CaTen ups’
/{\{Q%;p\gnptr = “Fegion; :
RgnHandle = ‘BgnPtr;

When the Memory Manager relocates a region”s data in memory, it updates
only the KgnPtr master pointer to that region. The references through
the master pointer can find the region”s new home, but those references
that pointed directly to the region”s previous position in memory now
point at dead bits. To access individual fields of a region, use the
region handle ang double indirection:

.rgnSize Size of region whose handle is Steve Ve
~.rgnBBox Boundary box of same region Tt

Steve”.rgnBBox Syntactically incorrect; will not compile
if Steve is a rgnHandle

Regions are created by a QuickDraw function which allocates space for
the region, creates a master pointer, and returns a KgnHandle. When
you“re done with a region you can dispose of it with another QuickDraw
call, which frees up the space used by the region. Only these calls
allocate or deallocate regions; DO NOT use the Pascal procedure NEW to
create a new region!

Pt
Many calculations can be performed on regions. A region can be "geézn"
or "shrunkkili;iggiven any two regiong,QuickDraw can find their union,
intersectioi, ference, and exclusive-OR; it can also determine 2
whether a given point or rectangle intersects a given region, etc. N
There 6 of course a set of graphi operationi;on regions to-draw or J”f

outline Phem on the screen, O (ﬁﬁﬂwﬂfawﬂffLiL(0w/(f_ﬁ22}
: Ve~
The outline of a region is i Y
operations, which are described in the section "
Procedures”. o / (deb _ . ,
Vi SH{U L%Lm,,ej — aK/L@WL o
Cﬁwi;;ﬁ fU v‘élrup7ﬁl> K;ibbl;{JZQ \j

b ‘ .
GRAPHIC OBJECTS S5 ’QZ(_

Coordinate planes, points, rectarigles, and regions are all good
mathematical models, but they aren”t really graphic elements--they
don”t have a direct physical appearance. Some graphic entities that do

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0012 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

Mb

‘at lb
1

12 QuickDraw Programmer”s Guide

have a direct graphic interpretation are the bit image, pattern,

cursor, and bitMap. This section describes the data structure of these
graphic entities and how they relate to the mathematical constructs \
described above. The next section begins to describe the graphic
operations that you can perform with QuickDraw to draw pictures.

The Bit Image
A bit image is a collection of bits in memory which have a rectilinéar‘_}
representation. Take a collection of words’ in memory and lay them end
to end so that bit 15 of the lowest-numbered word is on the left and
bit ¢ of the highest-numbered word is on the far right. Then take this
array of bits and divide it, on § boundaries, into a number of
equal-size rows. Stack these rows vertically so that the first row is
on top and the last row is on bottom.

First ‘ <
Byte

Last
Byte

Figure 5. A Bit Image

The result is a matrix like the above--rows and columns of bits, with
each row containing the same number of bytes. The number of bytes in
each row of the bit image is called the row width of that image.

or dynamic variable, and can be

row width. qK) 304/,

A bit image can be stored in any static
of any length that is a multiple of the

wo(a/

The Macintosh screen itself is one large visible e. The upper v%é\ K$§J
r'FIZEbetes of memory is displayed as a matrix o@} ixels™ on the Q A‘A’
scr€eeny each bit corresponding to one pixel. T ‘s value is @, ’ 3\){
its pixel is white; if the bit”s value is 1, the pixel is black. Y{C”‘Jw
X \0"
o

The screen isels tall an pixels wide, and the row width of
is b

its bit image ytes.

Each pixel on the screen is square; the
the display is 3:2@ e '
A,/ﬁw——./

R STANTI .
LH) L\ Q\ﬁ) k)} Q\5 NI /_.’,))‘(V
TR DR R O
2/17/82 Espino/sa R 43%‘»

/QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982

Page 0013 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

GRAPHIC OBJECTS 13

(hand)
As each pixel on the screen represents one bit in a bijwt¢”%f£&7
' image, whenever this document says "&it", you can(v)
substitute pixe&_ . %y >
Q\ {\\ \ i)\M\/

Patterns
"A pattern is a 64-bit 1mag€}\g;§:;ized as-gn/8-by-8-bit square, which aﬁ)
1s used to define a repeating or tondl m Patterns can ‘be J
ordfunctlon 3

¢ G

‘ gaggaéfgg;ag adJacent-es-over%upp*ag areas wdis tern& -
prediures. a -continuous, coordinated patterqf—'ﬁﬁfgﬁﬁzaw ‘providesy 15 P
predefined patterns for White, Black, Gray, LtGray, and DkGray. Any
other 64-bit variable or constant can be used as a pattern, too. : The
data type definition for a pattern is as follows:

used to draw with, to fill an area “the source for a

bitwise operation. 7£(

{YPL Fattern = PACKED ARRAY[@..7] OF §..255

-~ The row width of a pattern is 1 byte.
b Qe
The @tt{ap / \

When you combine the physical lentity of a bit image with the conceptual

entities of the coordinate and rectangle, you get a bitMap. A
bitMap is ay descriptor ‘that has three parts: a pointer to a bit image 3
ectangle which NPtQK £y QA
nate system. Notice N QW\\}

bits themselves: a bitMap is a descriptor containing a pointer to a
bit image.

. Because a bitMap points to a bit image, there can be several bitMaps

* extant simultaneously that all impose different coordinate systems on
the same bit image. This important feature is explained more fully in
“Coordinates in grafPorts"”, below.

(, - - ' M}\ \X\i/v A(; !

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0014 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

14 QuickDraw Programmer”s Guide

Base 3‘;

- Adidress
t.) '19{5 Ié‘l ':i’:ir
rowBures
bournds sy 1

.t

-
I
s
1)

Tk o~ Row Width ———— 5|

\0.

4

Figure 6. A bitMap

A
A Y
The data structure of a bitMap follows: & ;?“
\\\ 5 r
/Mpé bitMap = RECORD y %7\ Vb//)/
baseAddr : WordPtm); |
rowBytes : INTEGER;
bounds : Rect
END*

The baseAddr field is a pointer to the beginning of the bit image in
memory, and the rowBytes field is the number of bytes in each row of
the image. Both of these should always be even: a bitMap should
always begin on a word boundary, and contain an integral number of
words in each row.

(]
—
The bounds field is a bound that both encloses the m
- area of the bit Image and i pose a coordinate system upon it. 2 wgﬁ
«

relationship of the bound rectangle and bit image in a bitMap is
simple yet very important. First, a few general rules:

ank
- Bits in a bitgaglgﬁil between points on the coordinate g;ﬁe:

- A rectangle divides a bit image into two sets of bits: those bits

inside the rectangle and those outside the rectangle.

- A rectangle that is H points wide and V points tall encloses

exactlyq_‘{jé/)biff-“_, —— (H-0)* (v-1)

The top left cor of the bounding rectangle is aligned around the

first{pit in the bi The width of the rectangle determines how
many bits of one row afYe !Qgicallz owned by the bitMap; the ’
relationship

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982

Page 0015 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

AN
L\,k‘“k’ l,%[‘“m\?
; ' ol
ﬁhvp ' GRAPHIC OBJECTS 15
gzjgéMap.rowBytes >= @(Map.bounds.right-Map.bounds.left))(.

must always be true. The height of the rectangle determines how many <
rows of the image are logically owned by the bitMap; the relationship . 3((@N
Wy g
W

SIZEOF(Map.baseAddr™) >= (Map.bounds.bottom-Map.bounds.top)
: * Map.rowBytes

LT 6 (TL(; m / : + e JL 7;(‘,\}/&_; “’}O * i cﬁ’f(,- 07)/ n (/1,,(C&

must always be true to ensure that th€ number of bits in the 1ogicél {? Y
bitMap area is not larger than the number of bits in the bit image. I §§
Normally, the bound rectangle completely encloses the bit image: *
the width of the boundﬁéa rectangle is equal to the number of bits in ?
one row of the image, and the height of the rectangle is equal to the N

number of rows in the image. If the rectangle is smaller than the
dimensions of the image, the least significant bits in each row, as
well as the last rows in the imagg{\are not affected by any operations

on the bitMap. s (7N
fTuAMI‘Aﬂtﬂﬂéﬁlﬂglm"é Php'\<a/
TheAbi-tMap alo impodes a coordinate system on the image. Because bits e
fall between coordinate points, the coordinate system assigns integer
"values to the lines that border and sgpara£e4bi&sT—a9%~f2;§pe~hit %;v }Dﬂaﬂﬂjdi
positions themselves. (fE‘E'EIEEEE—I; assigned the bound rectangle /
(19,-%) (3%,-§) (19,8) (3$,8), the bottom right bit in the image will
be between|/hotizontal cooxdinates 34 and 3§, and between vertical

coordinatep 7{and 8. 7 &
¢ A 8 A
4 X o N, ot), (()”MJ\‘SO{
T T W’\ }« W

it 447 "/\'\’{Vg/’r y/V
N
o/

YA
| R

(10,8) Gt 8)Y s,

Figure 7. Coordinates and bitMaps

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0016 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

16 QuickDraw Programmer”s Guide

N Cursors
A cursor is a small \image)that appears on the screen and is controlled

by the mouse. Cursors are defined as a 256-bit image, a 16~ by-16——/é/‘i'
square. The row width of a cursor is 2 bytes.

N
!
Q l}é\ 16

!
0 B ““ IT113
ST
b TGS
‘d\ k saagsnss
gt \.'xﬁ'
ia‘_?‘,LuI,(T
iy R
1wy Sl
1 NS
TR
é .
: .
g 8
. : 8 8

Figure 8. Cursors

-

A cursor has three fields: a l6-word data field filét contains the
" image itself, a l6-word mask field that contains information about the

screen appearance of each bi W and/a "hotSpot” point that
on of the moq§e. % Lo %

aligns the cursor with the pos
;4,4):t ﬁuc..'(,c_.»k-c.«»

Cursor = RECORD
ARRAY([@..15] OF /INTEGER;

data =
mask = ARRAY[@..15] OF INTEGER;
hotSpot = Point v
END S ,é/
at
The data for the cursor must begin on a word boundary. D)f/l;/v
whpwu‘dé ’
- The curs appéars on the screen as a 16-by-16-bit square. Xach bit of
_ the square is two corresponding bits in the data and)
mask €. and md;é;#af /5 J /y "/7&./9/&& ‘pnde” My st/ (‘%& e
Data. fﬁ; ' NUW e THe genetas Lt
t : ‘ / Phet .
2 T%e Ja s M
[} Blwel—ip-curser=appeets White ;
1 Rielmitr—cursemspppears—Black Aa~
V [;‘ixel under cursor GMT //Z,{‘M M@/
\\0‘\ 1 ¢J«AW;6,:, ixel under cursor w * .
\q vt
The hot §pot aligns a point in géi }@t a bit, a point!) with Laih
the mouse position. Imagine the rectangle with corners (§,f) and gz o
A

(E4e35) framing the imagef; the hotSpot Is defined iIn this coordinate

systeu& A hotSpot of (@,0) is at the top left of the image; A hotSpot
er/yfoTJmove the

of () is in the exact center of the image., Whenev

g% : e 7 L/ { fk.t LW WWJ 3 \“’*)'prt

2/17/82 Espinosa L0 stnhev) UICK.DRAW/QUIKDRAW.2

| QuickDraw Programmer's Guide < 15 February 1982 Page 0017 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

GRAPHIC OBJECTS 17

mouse, the low-level interrupt-driven mouse routines move the cursor”s
hot spot to be aligned with the new mouse position.

(hand)
The mouse position is always, unalterably linked to the
cursor position. You can”t reposition the cursor through
software: the only control you have is whether it 1is
visible or not, and what shape it will assume. Think of
it as being hard-wired: if the cursor is visible, it
always follows the mouse over the full size of the
screen.

QuickDraw supplies one predefined cursor, a pointing arrow, named
Arrow.

- e
—

ThqurafPort

A grafPort is a complete drawing environment that defines how and where
graphic operations will have their effect. A grafPort is like a
logical output device: it contains all the information about one
instance of graphic output that is kept separate from all other
instances. You can have many grafPorts open at once, and each one will
have its own coordinate system, drawing pattern, background pattern,
pen size and location, character font, size, and style, and bitMap i
which drawing takes place; one statement will instantly switch you from
one port to another. GrafPorts are the structures on which we build
windows, which are fundamental to the Macintosh “overlapping folders"
user interface.

e

A grafPort is a dynamic data structure with ten fields:

jﬂQQ'grafPtr = ~grafPort; R
grafPort = RECORD . p (g,{ﬁ»if/gg[” k‘“'@”ﬁ) ll%
- portBits : BitMap;{¢') y A
portRect : Rect; LAM$4&*'6 D ep wid %"66%1i7 W
visRgn : RgnHandle; (j),c{auu‘ is Pod’?Mi‘ '
clipRgn : RgnHandle;
bkPat : Patt 5
chStyle :(Céi%???i%}
pnLoc : Point;
pnSize : Point;
pnMode : INTEGER;
pnPat : Pattern
END*
J

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure NEW and use the resultant pointer in
calls to QuickDraw. You could, of course, declare a static VAR of type
grafPort, and obtain a pointer to that static structure (with_ the @
operator), but as most/ grafPorts will be used dynamically, their data
structures should be dynamic also.

(&«,~\ e ¢) ﬁ

2/17/82 Espinosa - /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0018 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

18 QuickDraw Programmer”s Guide

(hand) ﬁ \
You can access all fields and sub-fields of a grafPort 05h\§§
normally, but you should not store new values directly CN
into them. QuickDraw has procedures for altering all Xﬂ\\&«
Vfields of a grafPort, and using these procedures ensures k, xﬂ
that changing a grafPort produces no unusual side
effects.

The portBits field of a grafPort is the bitMap that points to the bit
image in memory to be used by the grafPort. All drawing that is done
in this grafPort will take place in this bit image. . The default bitMap
- uses they! ntqsh video screen as its bit igage a rowBytes of 48
and kes a boundigg-rectangle of (9,9 (3§4 256). The bitMap can be ——27
changed to indicate a different structure in memory: all graphics,
procedures work in exactly the same fashion regardless of whether their
- effects are visible on the screen. A program can, for example, prepare
an image to be printed on a printer without ever displaying the image
on the screen; or a picture can be developed in an off-screen bitpap
before being transferred whole to the screen. The coordinate system of N

the grafPort can be changed by altering the coordinates of the ‘\i\
portBits.bounds rectangle; with a QuickDraw procedure call, you can set Iy
¢ arbitrary coordinate system for each grafPort, even if ¢hey all use \E N
the same bit image (i.e. C}heAscreen) " oresct T
(F%th %"v
The portRect field is a rectangle that defines a subset 6% the bitMap NI §

N
A o~
for use by the grafPort. ts coordinates are in the system defined by Q? Y ﬁ7$§ 3
R

- the portBit bitMap”s bound rectangle. All drawing done by the user |\ "
or application program is clipped to the inside of this rectangle; the Qvé PV B
portRect usually defines the “"writable" interior area of a folder, ;§ . 3 jg § \
document, or other object on the screen. ‘§%E \5\§ y

R
NN

N
The visRgn field is manipulated by the Window Manager; users and ¢ \¥
programmers will normally never change a grafPort”s visRgn. It \g

indéc?tes that region (remember, an arbitrary area or set of areas)
§ actually visible on the screen. For example, if you move one

~

of overlap from the visRgn of the folder on bottom. When you draw into
the bottom folder, whatever”s being drawn is clipped to the visRgn so
that it doesn”t run over onto the top folder. The default visRgn is
set to the portRect.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0019 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

GRAPHIC OBJECTS 19 .

T Y,
[riEperiing

Figure 9. grafPort Regilons

The clipRgn is an arbitrary region that you can use to limit drawing to
any reglon within the portRect. If, for example, you want to draw a
half circle on the screen, you can set the clipping region to half the
square that would enclose the whole circle, and go ahead and draw the
whole circle. Only the half within the clipRgn will actually be drawn
in the grafPort. The default clipping region is set arbitrarily large,
and you have full control over its setting.

&k&@Akﬁl& _Qafit o Y

plcture during erasing or scrollin
patterns, is always drawn aligned with the local coordinates of the
grafPort.

The chStyle is a record (see below) that determines the font and style
of characters drawn in the grafPort.

The last four fields deal with the graphics pen. Each grafPort has one
and only one graphics pen, which 1s used for drawing lines and printing
text. The pen has four characteristics: a location, a size, a drawing
mode, and a drawing pattern.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0020 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

20 QuickDraw Programmer”s Guide

cyelie

IRIEL IR

SHEeHE £)

R eaicliclelcs
s

AIREEIRIA

“rajfd)
gl

—Height

Vi 0 ‘“‘K\:Pamm \5 3
By Wi V7
Location

5 Figure 1f. A Graphics Pen

S

The ﬁgn location is a point in the local coordinate system of the
grafPort (see below). The pen location can be anywhere on the
coordinate plane: there are no restrictions on the movement or
placement of the pen. Remember that the\pen location is a poin ; on the

coordinate plane, not a pixel in a BitMap! b\¢’ﬁ4ﬂfﬂ don't Lo g’
£ hane o)“
The pen is rectangular in shape, and has a user<definable width and N
height. The default size is a l—by*ldéﬁaare; the width and height can W Y
range from (@, ﬂ) to (32767,32767). 1f either the pen width or the pen Y
height.sne less than 1 \however, the pen will not draw on the screen. J Q
‘6 ’ \y 3 ‘\J
- The pen .appears-as a rectangle with its uppe:rleft corner at the 5\ e
pen location; it hangs below and to the right of the pen location. ‘PJﬁJV X
The pnMode and pnPat fields of a grafPort determine how those bits ~ N
under the pen are affecteq?——Thé’ﬁﬁFEffis a pattern that is used like Q?\}V
the "ink" in the pen. The' pattern is drawn on the bitMap aligned with 2 v
the local coordinate system of the grafPort, so that drawing adjacent !

or overlapping areas in the same pattern produces a continuous,
coordinated pattern. Five patterns are predefined (white, black, and
three shades of gray); you can create your own tonal or repeating
pattern and use it as the pnPat. (A utility procedure, called
StuffHex, allows you to fill patterns easily.)

The pnMode field determines how the pen pattern is to affect what”s

- already on the bitMap. When the pen draws, QuickDraw first determines
what bits of the bitMap will be affected, and finds their corresponding
bits in the pattern. It then does a bit-by-bit evaluation based on the
pen mode, which specifies one of eight boolean operations to perform.
The resulting bit is placed into its proper place in the bitMap. The
pen modes are discussed in “Transfer Modes", below.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982

Page 0021 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

GRAPHIC OBJECTS 21

_The following graphics procedures use the pnSize when drawing:

LineTo Line
FrameRect FrameOval
FrameRoundRect FraneRgn

These procedures, as well as the ones above, also use the pnMode and
pnPat when drawing:

PaintRect PaintOval
PaintRoundRect PaintRgn

COORDINATES IN GRAFPORTS

Each grafPort has its own local coordinate system. All fields in the
grafPort are expressed in these coordinates, and all calculations and
actions performed in QuickDraw use the local coordinate system of the K{
currently selected port.)*J/

Two things are important to remember:

similarly-sized portion of a bit image.

. P (“ﬂ»l /("rl Lot '.‘ﬂ Lot d) u/f L ,(}':\t

- The portBits.bounds field defines the local coordinates for a

grafPort. 7 ;‘&P
e Q
The interrelationship between the portBits.bounds and po;ZEEZZID 'Vm4;t:

- - Each grafPort maps a portion of a coordinate gzid into a v AN
r :‘Jy :
"

J
'

rectangles is very important, ~Fimek, -fhe top left cormer of L/’//,/
portBits.bounds is always aligned around the first bit ip the hit

mage; the coordinates of that corner "anchor” a point on the grid to (,Sﬁ;ﬂ

Eﬁzz-bixel in the bit image. This forms a common reference point for
multiple grafPorts using the same bit image (such as the screen); given
a portBits.bounds rectangle for each port, you know that their top left

. corners coincide.

As the portBits.bounds rectangle establishes a coordinate system for ——~27VL
the port, th rtRect rectangle indicates the section of the) N
coordinateﬁ&&ggfand thus the bit image)[ﬁiii be usedpfor drawing ~ ‘fz
portRect usually falls inside the portBits.bounds rectangle, but it is

not required to do 50 ffza*”M”4\"]
When a new gr, s created and initialized, it's bitMap is @et to

point to the [Macintosh screen, and both the portBits.bounds and the /k'A‘
portRect rectangles are set to 384-by-256,rectangles, with the origin
point (§,P) at the top left corper of theLEE?EEE?\\ ~ Lt

Hu frgake Ty J
Yoult {¥ocal ortgin polnt of the gratPort is alwaysdthe top left cornmer &0

of the portRett.—You can change the,local ith the SetOrigin QO\
procedure; this recalculates(all coofdinate in the grafPort to
. V4% i
! 7
2/17/82 Espinosa Q@(Jﬂh‘\ .{ % /QUICK.DRAW/QUIKDRAW.3 V>

| QuickDraw Programmer's Guide < 15 February 1982 Page 0022 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

22 QuickDraw pProgrammer”s Guide

be relative to the new origin point. For example, calling the
procedure

¢ XD X
(omand);,\,sa“’ VRN "
D ¥\ x\y \&J"}J N R Ky

‘Setorigin(20,50)-.

\\i&"v c)”)ﬁﬁ \ e N:y\ Qﬁ:\w& \\7)} A ,

e .
A LV
\ ﬁorcRect%_g% LY o
WA = Y

)) feied -

200”'%3 preens 31 160 — : s

Jeg— i ERRRRRE 26— KRR R KKEE] %QX

Before SetOrigin After SerOriging20,50) | s o

e 0
Jd- \
Figure 1l. Setting Local Coordinates /2 Q KPQL

will recalculate the coordinate components of these elements:

Oakland” .portBits.bounds Oakland” .portRect
Oakland” .visRgn

All of the above items are always “{n sync", so to speak: all
calculations, comparisons, or operations that seem right, work right.

~
\

Notice that when the local coordinates of a grafPort are offset, the
visRgn of that port is of fset also, but the clipRgn is mot. A good way
to think of it is that if a document is being shown inside a grafPort,
__ the document “sticks” to the coordinate systemig¥and the port’s
structure "sticks”™ to the screengs rolling a document upwards inside
{ts port involves keeping w(w
at the same §§%%'i6nf”hhile 211 the port s stuff (like its
portBits.bounds, portRect, and visRgn) 1is moved downwards. Je the top

left cornmer of portBits.bounds s'fixed, moving its @‘ inates down ' :

1ooks like you“re moving theent ups> S ks qor OIAB T
’ ; V)\,LA./:\J« \ Y$‘~ J N '\m‘

(hand)) ’ 4 W SCM wm “Hu'

All drawing takes place within a grafPort and uses the ;

1ocal coordinates of that grafPort. If you are moving, -

comparing, or otherwise dealing with mathematical items

in different grafPorts (for example, finding the

intersection of two regioms in two different grafPorts),

you must adjust to a common coordinate system before you

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982

Page 0023 of 0064)

Apple Macintosh Early Technical Information < Inside Macintosh

BB

MISSING PAGE

BB BBBB

| QuickDraw Programmer's Guide < 15 February 1982 Page 0024 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

" S
24 QuickDraw Programmer”s Guide —i:l:j (i;Z/ZL,u%

.,f_; Y. ¢ oL
g 7)
QuickDraw first determines what bits of the bitMap will be affected,

and dues a bit-by-bit comparison based on|the mode (described in
“Transfer Modes", below). The_ resultant bits are stored into the

bitMap. o =
p R ."\,\\.l ‘V\“-/ B T —_ \P f}/
(hand) 7 "‘\9\&“‘)
The character drawing mode(should be pkstricted to either LR

srcOr, srcXor, or srcBic in oTdE o make kerned
characters not obliterate each other.

The_next four fields control the appearance of the font: .
Li;g}igi_"Egijlgtterspacing, and shadowing. You can apply these either
alone oY in combination; however, combinations of modes usually look
good only for large fonts. All parameters should be positive; never
set any of these parameters less than zero!

&g) |) \
\ Normaal Chatacters &/ ‘ \

‘}hﬂmcwrs

Q kalic cheracress
§ oldenéd fralic characiers

v s aaoWe dlEIhac e Sl
\ shiad'owed
v Faiie Dedomed GROroeasrs

in ethes fonts,
toaf

X
n \\\\)’7
&

ASZ/&/

Figure 12. Character Styles o
The bold parameter controls linear overstriking of characters: the
character is repeatedly "printed” one bit to the righE,the number of
times specified by the bold field.

* The slant parameter adds an italic slant to the characters. A slant of
p produces characters whose verticals are perpendicular to the

- baseline; a slant of 8 produces a nice amount of italicifling for a
19-point font. The number of dots of horizontal skew per vertical line
is determined by this formula:

skewdots := =w=w-- -
Character bits above the baseling are skewed right; bits below the

. baseline are skewed left.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0025 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

. oL
un *ﬁf
\rﬂj,\/‘l CHARACTER FONTS 25 \Jy\b’ 4

SN L Q o iﬁyfg
y \, au DA
The extra parameter adds space after the character; the rmemwal extra - &&“6&\
cpace is . You can add extra space in order td detbersy L o
Mame; it“s also helpful to add extra spac:wzoip(,
shado aracters. 9% slanted characters are kerned, it”s not uql.iiij
necessary to give them extra space.

Nrbdacin ~

(Character shadowing, controlled by the shadow parameter, is like
t s a hollow, outlined character rather than a solid

one. Like , the shadow parameter controls the number of .
times the character is-lgverstruck”; reasonable values are @, 1, 2, and
3. X

A b X
v &W}}u\g\\.‘,&wﬂ =N
A

- e

CENERAL DISCUSSION OF DRAWING

- Drawing occurs:
- Always inside of a grafPort, with the port”s coordinate system;

[|
~ Usually with the grafPort”s pen (that is, pen location, size, and .Pvmu(éLﬁ/
pattern);

- On the grafPort”s bitMap; and

visible region, and clipping region.

Three things can be drawn: 1lines, shapes, and characters. Shapes
include rectangles, ovals, rounded-corner rectangles, and regions,

either@or framed (hollow).

ines are defined by two points: the current pen locatios

destination location. When drawing a line, QuickDray e top w ﬂ{) "

left corner of the pen along the mathematical trajectd rom the~

_current location to the destination. The pen hangs below and to the HALAJ}AU/
right of the trajectory.

[iled s

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0026 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

26 QuickDraw Programmer”s Guide

Figure 13. Drawing Lines)i -

\/’ mn 41“ LVt - . o 4ﬂ“?'

No mathematical eledént (such as the pen location) is
ever affected by cl&pping; clipping only determines what
B ¥ I1f you draw a line to a
location outside of your grafPort the pen location will
+is~gemaiiDthere; but only the portion of the line that is
~ inside the pott will actually be drawn. This is true for
all drawing procedures.

(hand)

Simple shapes (rectangles, ovals, and rounded-corner rectangles) are
defined by two corner points. The shapes always appear inside the
mathematical rectangle defined by the two points. A region is defined
in a more complex manner, but it too appears only within the rectangle

of—4:ts—bounding~bex.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW. 3

| QuickDraw Programmer's Guide < 15 February 1982

Page 0027 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

’ GENERAL DISCUSSION OF DRAWING 27

wlwlin

et e Bt il ik el bbbl

e

Seld-
Figure 14. Drawing{Shapes

In the case of framed shapes, the outline still appears within the
defining rectangle, and the vertical and horizontal thickness of the
outline is determined by the pen size:

000 O I I O I N O O I O O Y I I
Egisi_ A s o e =R
= HITE
T 5118 =
= =] B =]
| =]] =] =]
| =] B3] H
= = =" 5
l ‘ﬁg Eg b EEEEEEEEEiEi!ﬁEE;F
=]] | ‘ﬁ: a]fm -
m______g“” _.?alﬁ%ﬁ.._ 8 |
HEBEREEE JAEEEEEER, }
= B o ey o p—
; SEF =3 x
=0 =
Pt ‘iﬁ—EﬂEEE_ | 2 iz
" 3
11 EEEEEN ’ [N

Figure 15. Drawing Framed Shapes

The pen pattern is used to fill in the bits that are affected by the
drawing operation. The pen mode defines how those bits are to be
affected by directing QuickDraw to apply one of eight boolean
operations to the bits in the shape and the corresponding
screen)

on the

y _Characters are placed to the right of the current pen location,
their baselines at the pen vertical locatien, and the pen is moved

"2/17/82 Espinosa Qm (,00) ' /QUICK.DRAW/QUIKDRAW.3

| QuickDraw Programmer's Guide < 15 February 1982 Page 0028 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

\/U/ W <ves >Mﬂ) \“St.’-’)),;‘f{ ;»‘ W‘/c,mﬂhw‘i el c(jw
‘v ‘\ sl 7 At EVed >

\" Co
/58 uickDraw rLUdemmcr s Guide

i — . Z
i
;(“

4
/ x\ngfhe right a distance equal to the width of the character. , No wrap
or carriage return is performed automatically.

—

The method QuickDraw uses in placing characters is controlled by a mode
: parameter similar to the pen mode. This parameter is explained in
"Transfer Modes", below. Clipping of characters is performed4$5fg Pﬁ; (

? nMu;’L]
exactly the same manner as all other clipping in QuickDraw. 5‘ C g%jlx

{i i és RS I
Chineg n SHiapeo b ood)
Transfer Modes / l LS (
g mtiang.crshnshomeetens, the pnMode éoe—é?ﬁagiewmu&e)
field determines how the drawlng is to appcar on the screen For each

bit in the item to be drawn, QuickDya inds the corresponding bit in
the bit image,amsd performs one of Toolean

the pair of bits, and stores the r&sutting bit into the bit image.

There are four basic operations: Copy, OR, XOR, and BIC. Each of
these has a variant in which the drawing bit is inverted before the
operation is performed, giving eight operations. These eight are used v

or drawing with a pattern; there are another eight for transfer@ng one
nto another, giving gixteen operations in a Each mode is
by name as a constant in QuicKDraw. T
Tranéferfiﬁg\a\§ource Bit Image~ (XferRect Xfeng -
S N~ ~on I-L cn destinati : W/
T A Action‘for each bit in source:

\\ -
A \ILB_léck;w 1f White: ——womm=""" M

“"Paint” Force Black Force White P
“"Overlay” \Force Black Leave Alone "7 \
N “Invert"” nvert Leave Alone- “V“@R"
' “"Erase" rce White Leave Alone Jn_ -
f notSrcCopy “Paint" Fprce Black Force White—""
4 ., notSrcOr “Overlay” Leave Alone Force White
.. % notSrcXor “Invert"” Eeave Alone Invert ﬁfh@ﬁ§37uv
. notSrcBic "Erase” Leave Alone Force White ﬂbd*
L ! '
Lk o
M

Transferring a Pattern (Line, LineTo, Paint, Fram — oyL

;2£§%ZL / Actionfor each bit in pattern:
Mode / \Black: White:

\ (;/ patCopy “Paint” Force—Brack—Force-Wiite W
ot patOr "Overlay” Force Black Leave Alone
patXor "Invert" Invert Leave Alone 4///’
patBic "Erase/ Force Whité Leave Alone

notPatCopy "Paint” Force Black Force White
*. notPatOr "Overlay” Leave Alone Force White

\\PotPathr "Invert"” Leave Alone Invert .
nQtPatBic tfﬁa e" Leave Alone Force White
N
The pnMode parameter must be one of the patternfmodes; the chStyle.mode
parameter must be one of the sounee modes.

2/17/82 Espinosa é /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0029 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

/’;
ot o/ DESCRIPTIION OF QUICKDKRAW PROCEDURES 29

/ DESCRIPTION OF GUICKDRAW PRGCLDURES

/ —The -

K The following pages describe <aeh function™ and procedurésin QuickDraw,
their parameters, and their operation. They are given in their Pascal

\ form; instructions on how to make procedure and function calls from

\\\assembly language appearéi;fter the calls.

grafPort Procedures T~

PROCEDURE InitGraf;

Call once and only once at the beginnin
QuickDraw. It initializes the QuickDra

of your program to initialize /ZLO&AL/
global variables: ﬁfZLL/

« Variable Type Setting - 441/” /LﬁA/t
, « white Pattern ~white pattern % - ,
‘\ black Pattern All-black pattern
\ gray Pattern S@% gréy
\ 1ltGray Pattern 33% grpy pattern
\&.‘ dkGray Pattern 667% grpy pattern
~ Y arrow Cursor /,jbint arrow cursor
o N charNormal (:harStyle »\\;;ﬂ;éEEf)SrCOr mode, no extras
N screenBits ﬁ&tMap ¢intosh screen, (0,0,384,256)
\ﬁ‘ < thePort ~ T @rafPer— ——— NIL
! \;iifrgnSave\\\ ‘BOOLEAN als g
-
" \
InitGrafﬂiiﬁﬁ“?laCES“thewcursor on the screen. %jﬁ M¢V)p
a (7 \/}\“ ;\(\' 4 .
: (Al \
e =
PROCEDURE OpenPort (gp: (JGrafPtr); : %

Initializes the selected grafPort and makes it the current port (see
SetPort). You must perform an OpenPort before using any grafPort. To
use OpenPort, perform a NEW to create a GrafPtr and use this GrafPtr in
the OpenPort call.

These default values are set by OpenPort:

Variable Type ' Setting
portBits BitMap ScreenBits (see InitGraf)
portRect Rect ScreenBits.bounds (@,0,384,256)
visRgn™" Region Rectangular, (9,9,384,256)
clipRgn~" Region Rectangular, (-30000,-30000,30000,30000)
bkPat Pattern White
chStyle CharStyle CharNormal
pnLoc Point 9,0)
pnSize Point (1,1)
pnMode INTEGER patCopy r‘kp

‘ pnPat Pattern - Black, X’\v""\

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0030 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

BB

MISSING PAGE

BB BBBB

| QuickDraw Programmer's Guide < 15 February 1982 Page 0031 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 31

The top left corner of the portRect remains at its same location; the
width of the portRect is set to width, and the height of the portRect
is set to height. 1In other words, PortSize moves the bottom right

corner of the portRect to a position relative to the top left corner.

PortSize does not(iédate)the clipRgn or the visRgn, nor does it affect v
the local coordinate system of the grafPort: it only changes its width \)U
and height. Remember that all drawing occurs only in the intersection v

of the portRect, the portBits.bounds, the visRgn, and the clipRgn. .. \ﬁﬁy

D §X 2
PROCEDURE MovePortTo (leftclobal,topcloSalz INTEGER); {}ycy)ifﬂy'j}
Ceerresnd G A vﬁl\? X & X
Changes the position of the, portRect in the bitMap “(__gga.d_*"o\n_the\{] z)‘
screen”){yithout altering ﬂ%e local coordinate system of the port) \ D
THIS DOES NOT AFFECT THE SCREEN; 1t merely changes the location or the .~)‘D
screen at which drawing inside the port will appear. oo |ast<th pfvi & AN
(hand)
This procedure is normally called only by the Window
Manager.
leftGlobal and topGlobal set the distance between the corners of ‘ ',;jjAj
’ . L] L
portBits.bounds and the new portRect For example, 7bfT— c/yr

MovePortTo(i;;jzgg;:\\\\\5&3&&AL4L, mJAJi”UubM e

will move the top left corner of the portRect to the center of the
screen (if portBits is the Macintosh screen) regardless of the local
coordinate system.

all other coordinates unchanged.

v oA 1S n
- w’/
PROCEDURE SetOrigin (h,v: INTEGER); ' Al
W\
, S
s_changes the dinate system of the current grafPort.(THIS . Vk‘v;
__DOES NOT AFFECT THE SCREEN;j)it does, however, affect where subsequent '
~drawing and calculation WiTl appear in the por. It W @/"J
updates the coordinates of the portRect, the portBits.bounds, and the)#'LLP’
visRgn. All subsequent drawing and calculation commands will use the ﬂﬂ

new coordinate system.

The h and v parameters set the coordinates of the top left corner of

the portRect. All other coordinates arg calculated from this point. MFK
All relative distances among any {elements)in th& pot 11 remain the

same; only their absolute local coor “change.

_/
(hand) _

SetOrigin does not update the coordinates of the clipRgn
or the pen; these items [Stick to e document,inside the) o

e
Ol%’£ﬁ> -

port, Mot the port on the &cree o
(4£2:j;v&~/ V (V)
/\1(M v u(ﬂh-c/ J’[«—/’v e F A 1£L k (;Ii
2/17/82 Espinosa “qut»ﬁ>«mif' /QUICK.DRAW/QUIKDRAW. 4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0032 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

32 QuickDraw Programmer”s Guide

PROCEDURE SetVisRgn (rgn: RgnHandle);

Declares the region whose handle is supplied In rgn to be the visible
region of the current port.

This procedure is normally called only by the Window Manager. — . -~

(hand)
Note that SetVisRgn does not make a copy of the object
region; it merely saves the RgnHandle inee—-
grafPort.visRgn. Thus, any subsequent changes you make
to rgn will also affeiiithe visible region of the port.

Be careful never to dispose(a egion that has been set as the visible

region of a grafPortg unless you are also disposingpthe grafPort)

itself. %ﬂ Ras (7/
\p ALY

PROCEDURE GetVisRgn (VAR rgn: RgnHandle); 0)5 \é \J’ &

WJ
Returns a pointer to the current visible region& It is defined in the \§>f
coordinate system of the grafPort; if you wish to use this region in

another port, you must offset it (see "Coordinate Systems)

PROCEDURE SetClipé§§ (rgn: RgnHandle); i;%b #?g

Declares the region w handle is supplied in rgn to be the clipping
+ region of the current(%?? You can set the clipping region to any
" arbitrary region, to ald you in drawing inside the grafPort. The /?/
default clipRgn is an arbitrarily large rectangle. ()ﬂ
(hand) L
Note that SetClipRgn does not make a copy of the object)

region; it merely saves the RgnHandle 1 —L
grafPort.clipRgn. Thus, any subsequent changes you make

—__to rgn will also affect theyclipping region of the port.
Be careful never to dispos region that has been set as
(o)

the clipping region {(inles u are disposing of the
grafPort itsel

PROCEDURE GetCli@

Returns a handle to the clippihg region of the current grafPort. You
can use this, for example, to get a handle to use in a region operation
such as XorRgn, UnionRgn,‘Offset:Rgn,.»MF;‘_/’/n

O d_

It is defined in the coordinate system of the frraflPorty if you wish to
use this region in another port, you must offset it (see the
LocalToGlobal and GlobalToLocal calls).)

\ \Q% g y ‘ij;:;,b

rgn: RgnHandle);

2/17/82 Espinosa \))Q /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982

Page 0033 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

7
-
C E‘A/ ’
oty
P (// R \ DESCRIPTION OF QUICKDRAW PROCEDURES 33

)
PROCEDUKE ClipRect/(r: Rect);

\

—
Sets the clipping [region of the current grafPort to a rectangle

&équivalent to the \rectangle r. NOTE that this does not change the

region handle, but affect# the region itselfy in combination with

SetClipRgn, this may produce umexpected “side effects. For example,
SetClipRgn(myRegion); \/x&/"\’ﬂh(’/ " ‘
{eeeed} ' 0 a\{/' i
ClipRect(anyRect) /QO) ¢

will not only set the clipping region to anyRect, but will also chan Qc/ﬂ
myRegion to anyRect. Hore S0 ,d: M,u % ‘f\t ’ a-n,, AKX, | 7
e T g e et Xy
S T }“.‘9 - o \‘/7 L ¢
PROCEDURE BackPat (pat' Pattern), g ~— WP

Sets the background pattern of the current grabert to pat. The-
background pattern is used raseRect, EraseOval, EraseRoundRect,

raseR@p, and ScrollRect. (r—:\/wj{(b)
I
~ ’” 'A/L_/
| A

Cursor-Handling Procedures

. PROCEDURE SetCursor (crsr: Cursor);

Sets the current cursor to the 16-by-16"image in crsr. If the cursor
is hidden, it remains hidden and will attain the new appearance when it
is uncovered; if the cursor is already visible, it attains the new
appearance immediately.

The initial(cursor image, when a port is created, is visible on the 7/
R screen as as/a)north-northwest: arrow. There is no way to } 'é’ Wt
retrieve the current cursor image. r ‘6 »j\‘
7 B AR G V).
(D-rc/zife 200/ d‘ pmv'“‘ o
PROCEDURE HideCursor; ~"Gi/"Z BillAthinvn M W {)\J/V
ﬁDdNﬂfcr / ‘ n
Removes the cursor from the screen, restoring the bits under it. \;x "
HideCursor also decrements a "cursor-level” variable, which keeps track U/’,S
of the number of times the cursor has been hidden to compensate for »{0 Wb p, :
nested calls to HideCursor and ShowCursor. Every call to HideCursor \N” 4
should be balanced by-a_ subsequent call to ShowCursor.) W \0
initialization, the cursor is not hidden.\ ,‘,{\ M\/ P 'f
ﬂfo CW 5 ;

' (We 7 \»w)f\ AT
) PROCEDURE ShowCursor; /“ Y ‘\v\é
> \? _
ncrements the "cursor-level” variable and, if the level becomes) \X‘ ""‘y"‘
ositive, displays the cursor on the screen. The level @ at zero, (;MW (
{

so extra calls to ShowCursor don”t hurt. Each call to ShowCursor YA ,,,;\‘

N should balance a previous call to HideCursor. NE ‘:_ .-
2 vk é.&,
. T
' d W
2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0034 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

34 QuickDraw Programmer”s Guide

QuickDraw low-level interrupt-driven routines link the cursor with the
mousc position, so that if the cursor level is @ (visible), the cursor
automatically follows the mouse. You don”t need to do anything but a
ShowCursor to have a cursor track the mouse. There is no way to
"disconnect” the cursor from the mouse; you can”t force the cursor to a
certain position, nor can you easily prevent the cursor from entering a
certain area of the screen.

If the cursor has been changed (with SetCursor) while hidden,
ShowCursor presents the new cursor.

The initial cursor state is a north-northwest arrow, not hidden.

PROCEDURE CursorVis (visible: BOOLEAN);

A general-purpose cursor showing and hiding procedure: CursorVis(TRUE)
simply calls ShowCursor, and CursorVis(FALSE) calls HideCursor. -

Pen and Drawing Procedures rjgla}%wﬁji

The pen and drawing procedures are—all-dependemt—uport the coordinate

system of the current grafPort. Remember that each grafPort has its
own pen; if you draw in one grafPort, change to another, and return to
the first, the pen will have remained in the same location.

b

_PROCEDURE PenSize (width,height: INTEGER); W Q],,}’ .

Sets the dimensions of the graphics pen in eAcu:xenLNgEEz%:ft. All
subsequent Line, LineTo,<FrameRect, FrameQOval, FrameRoundRetty and
FrameRgn procedure calls in the same grafPort will use ew pen

dimensions.

. i
A .

If either of the pen dimensions are set tocgonpositive valueﬁ{ the pen
 assumes the dimensions PpY¥and no drawing is performed. The current
pen dimensions can be 3atCTessed in the variable thePort”.pnSize, which
is of type Point (it has compomnents .h and .v). For a discussion of
how the pen draws, see the "General Discussion of Drawing” earlier in
this document.

PROCEDURE GetPen (VAR pt: Point);

Returns the current pen location, in the local coordinates of the
current grafPort.

(eye)
If the coordinate system has been changed with SetOrigin
since the last pen motion, the pen will not be in the
same location on the screen. The pen "sticks”
document: moving the document with
SetOrigin carries the pen with it into a new location in
the grafPort. It will, however, be in the same location

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0035 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

DESCR1IPTION OF QUICKDRAW PROCEDURES 35
relative to the coordinates of other items.

PROCEDURE GetPenState (VAR pnState: PenState);

Saves the pen location, size, and pattern into a storage variable, to
be restored later with SetPenState (below). This is useful when
calling short subroutines that operate in the current port but must
change the graphics pen: each such procedure can save the pen”s state
when it”s called, do whatever it needs to do, and restore the previous
pen state immediately before returning.

The PenState data type is not really useful for anything except saving
the pen”s state. ,

PROCEDURE SetPenState (pnState: PenState);

Sets the pen”s location, size, and pattern in the current grafPort to
the values stored in pnState. This is usually called at the end of a

- procedure that has altered the pen parameters and wants to restore them
to their state at the beginning of the procedure (see GetPenState,

above).
on ik

Sets the transfer mode through which thel\E is transferred onto the

}ﬁtMap. The mode may be any one of the pat -'nxuezzgiﬁzkﬁf_____

patCopy patXor notPatCopy notPatXor
pator patBic notPatOr J,“*m‘notPatBic

1f the mode is one of the lL;g;:rﬂ&eing modes(é:z~ii5%;ositive),

drawing is performed. The current pen mode c¢ be obtained~as an
integer in the variable thePort~.pnMode. The initial pen mode is
patCopy, in which the pen pattern is copled directly to the bitMap.

PROCEDURE PenMode (mode: INTEGER);

PROCEDURE PenPat (pat: Pattern);

Sets the'repeaﬁin@fgattern that is used by the pen in this grafPort.

Standard patterns are defined for White, Black, Gray, LtGray, and

DkGray; the initial pnPat is Black. The current pen pattern can be

obtained in the variable thePort”.pnPat, and this value can be assigned
- (but not compared!) to any other variable of type Pattern.

PROCEDURE PenNormal; v ‘ M o ff&ﬁw‘l/

Resets the intial state of the pen in thie grafPor%{,

PnSize (1,1)
PnMode patCopy
2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0036 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

VN
36 QuickDraw Programmer”s Guide w}&ﬁj K “\\
. , \ |

PnPat Black - \<<M }VP

The pen location is not changed. \ﬁ

I I
PROCEDURE MoveTo (h,v: INTEGER); \ [i-%

Moves the pen to location (h,v) in the local coordinates of the current %1‘;1,
grafPort. No drawing is performed. . P

PROCEDURE Move (dh,dv: INTEGER);

Moves the pen a distance dh horizontally and a distance dv vertically
from its previous location. The positive directions are down and
right. No drawing is performed.

o
N\

\\\’,;\PROCEDURE LineTo (h,v: INTEGER);

‘§ Draws a line from th cuE;;;E>pen location to the location specified
‘*§(in local coordinates) Py h and v. The new pen location becomes (h,v)
\\after the line is drawp. See the general discussion on drawing. i

If\s\}egion is opem\gnd bein

the trajectory of ,the new line is ?7
mathematically added

to the region”s boundary.
)(\M“ A
PROCEDURE Line (‘K,dv: INTEGER); V*k/
; CbU (} e ,LGWNH.

/ S \/rf//o J o
Draws a line a/digdtance dh d/zzontal y and a dlS ance dv vertically =2
from 1ts Prew ocationgd The positive direction e down and 9f QK‘&~
right. J
line.

See the general discussion on d

If a region is open and being formed, the trajectory of the new line is "
mathemégigally added to the region”s boundary.

(]tli
Chara&ter-Drawing Procedures

Each grafPort has its own character style, and all these procedures
deal wi_thhe character style of the current port.

< D v A %_L_ Cg,é(/ Nr\uﬁ i (.[o .
™~ j@ 259
PROCEDURE DrawCha¥ (ch: CHAR); - N -

Places the selected character to the right of the pen location, and
advances the pen the width of the character. If the character is not V//

in the font, the font”s "missing symbol”™ will be drawn; if the font’s

"missing symbol"” is itself missing, expect a crash (in this incarnation
of QuickDraw).

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0037 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

e

DESCRIPTICN OF QUICKDRAW PRCCIDURES 37

PROCEDURE DrawString (s: Str255);

Performs comsecutive calls to DrawChar for each character in the
supplied string; the string is placed beginning at the current pen
location chd extending right. No formatting (carriage returns, line
feeds,Jijgp is performed by QuickDraw. The pen location ends up to the
right he last character in the string.

(eye)
If the string of characters extends beyond the clipping
boundaries of the current grafPort, clipping will be
performed as normaﬁzyﬁut the pen location will remain to

the right of the ladt character completely or partially /(6244L/
drawn, not the last character in the string. This is the) .
only exception to the rule that clipping never affects $g4%/‘ ~/
the pen location. s - L7 'y
- Firsl oo o U ///LM//
a/l/w - ﬂ/

PROCEDURE DrawText (textBuf: WordPtr; firstByte,byteCount: INTEGER);

Vs

~63ﬁ;ws text from an arbitrary structure in memory specified by textBuf,
starting\ firstByte bytes into the structure and continuing for
byteCount bytes, and draws them on the screen in a string. The string
is placed beginning at the current pen location and extending right.
No formatting (carriage returns, line feeds,gifg) is performed by
QuickDraw. The pen location ends up to the right of the last character
in the string (but see the warning for DrawString, above).

The textBuf parameter, although of type WordPtr, is really a byte

pointer; it may be an odd value to point abyte in a word). 73
; o B i ¢

e ¢ T T T S - NS——

FUNCTION CharWidth (ch: CHAR): INTEGER; 2

<

Returns the width of the given character; thiz—giae value is added to
the pen horizontal coordinate whenever the specified character is’
drawn. The CharWidth includes the effects of the extra space
parameter.

FUNCTION StringWidth (s: Str255): INTEGER;

Returns the width of the given text string; this same value is added to
the pen horizontal coordinate whenever the specified string is drawn.
The StringWidth includes the effects of the extra space parameter; if
you change this parameter before actually drawing the string, your
width will not be accurate.

(eye)
StringWidth and TextWidth always return the true length
of the string as it would be drawn, regardless of
clipping. But the actual difference between the
beginning and ending pen locations may be affected by
clipping (see DrawString and DrawText, above): in such

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0038 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

38 QuickDraw Programmer”s Guide

cases, the distance the pen moves while drawing the
string is not the same as the width as xiven by
StringWidth or TextWidth.

FUNCTION TextWidth (textBuf: WordPtr; firstByte,byteCount: INTEGER):

INTEGER; '
€A4QL& WUAA&

Returns the width of the g$vuaflext f¥S¥-=ws arbitrary structure in -
memory specified by textBuf, starting firstByte bytes into the
structure and continuing for byteCount bytes. The TextWidth includes
the effects of the extra space parameter; if you change this parameter
before actually drawing the text, your width will not be accurate.
(See also the warning for StringWidth, above).

The textBuf parameter, although of type WordPtr, is really a byte
pointer; it may be an odd value to point at either byte in a word.

PROCEDURE SetChar (chS: CharStyle); fz'
Sets the chS to be the character style of the current e

grafPort. You must initialize all fields of a CharStyle HYfore
installing it with SetChar. Calling SetChar(charNormal) will restore
" the default character font.

After calling SetChar, all previously calcuated character, string, and
text widths may become invalid due to a new font or extra space
parameter.

The current character style may be retrieved from the variable
thePort”.chStyle.

F

Calculations with Rectangles

’ (
(hand) A \\j&/ ;
Calculation procedures are independent of the current Vafp
o

coordinate systems; a calculation will operate the same W

regardless of which grafPort is @. P/

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);

Utility to assign four boundary coordinates to a rectangle. The result .
is a rectangle with coordinates (left,top,right,bottom). {;p¢t7 o G

o {¢e¢t proa’
This(brocedure is fupplied to help you shorten your ;s 1f you

wantjmore readable 2 at the expense of length, you can assign
integers (or points) directly into.the rectangle®s fields. There-1is no
significant code size or execution speed advantage to either method;
one”s just easier to write, and the other”s easier to read.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.4

| QuickDraw Programmer's Guide < 15 February 1982 Page 0039 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PKOCEDURES 39

PROCEDURE Of fsetRect (VAR r: Rect; dh,dv: INTEGER);

"Moves" the coordinates of a rectangle a distance dh horizontally and a

distance dv vertically; positive directions are right and down. The

rectangle retains its shape and size; only its coordinate 1ocation5£1
L e

altered.
ed

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

Shrinks or ééiggﬂg rectangle. The top and bottom are moved towards the
center by the amount specified in dv; the left and right sides are
moved in by the amount in dh. The effect is to alter the size by 2*dh
horizontally and 2*dv vertically, with the rectangle remaining centered
in the same place on the coordinate plane. If dh or dv is negative,
the appropriate pair of sides is moved outwards instead of inwards.

If either the resultant width or height becomes less than 1, the
" rectangle is set to the null rectangle ($,9,0,0).

FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect):
BOOLEAN;

Calculates the rectangle that is the intersection of the two input
rectangles, and returns TRUE if they indeed intersect and FALSE if they
do not. Rectangles that "touch” at a line or a point are not

" considered intersecting, because their intersection rectangle (really,

in this case, an intersection line or point) does not enclose any bits
on the)ftMap.

If the rectangles do not intersect, the destination rectangle is set
(9,0,0,0). SectRect works correctly even if ong of the source

(hand) A !
If the reckaMgles > appropriate to)/me different mJ j .
grafPorts,} their mathematical Infegsection (éa L»V“
SectRect) may be different g ﬁgE%f?ﬁéir physical w¥ 1 ‘
intersection on the screen. To adjust the points of a

rectangle into another port”s coordinate system, see the

LocalToGlobal and GlobalToLocal calls.

FUNCTION PtInRect (pt: Point; r: Rect): BOOLEAN; fﬁﬁtiﬁﬁ;i;A dJ '5(9
Determines if the pixel below and to the right of the giveanoint is / Q% '
enclosed in the given rectangle, and returns TRUE if so FALSE if A/Q}y

not. (The chosen pixel is the one that would be altered by a LineY$,9)

at the current pen location with a pen size of (1,1 Both the
and the rectangle must be in the same coordinate system.

) wﬁﬁxdhfx \NGD
7 neloyD)

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982 Page 0040 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

40 QuickDraw Programmer”s Guide

Graphichl) Cperations on Rectangles

PROCEDURE PaintRect (r: Rect);

Paints the specified rectangle with the pen pattern and modq. The
rectangle on the bitMap is filled with the pnPat, according to the
transfer mode specified by pnMode. The pen at its original -
location.

PROCEDURE FrameRect (r: Rect);

Draws a hollow outline with the pen pattern, mode, and size just inside .
the specified rectangle. The outline is as wide as the pen width and — ku441££4éL
\

as tall as the pen height. The outline on the bitMap is filled with ~
the pnPat, according to the transfer mode specified by pnMode. The pen
remains at its original location. ‘ o

If a region is open and being formed, the outside outline of the new
rectangle is mathematically added to the region”s boundary. l
PROCEDURE EraseReet (r" Rect);

Paints the specified rectangle with the background pattern bkPat. The

pnPat and pnMode are ignored() he pen remains at its original location.
R ;

PROCEDURE InvertRect (r: Rect);

The bits enclosed by the specified rectangle are inverted: every white
bit becomes black and every black bit becomes white. The pnPat,
pnMode, and bkPat are all ignored@,f%e pen remains at its original
location. ' -)

PROCEDURE FillRect (r: Rect;. pat: Pattern);

Paints the specified rectangle with e given pattern. The pnPat,
pnMode, and bkPat are all ignoredj Ahe pen remains at its original
location.) — .

PROCEDURE ScrollRect (dstRect: Rect; dh,dv: INTEGER;\updateRgn:
rgnHandle);

ScrollRect alters only those bits inside the dstRect, the visRgn, the
clipRgn, the portRect, and the portBits.bounds. The bits in the -
intersection of all those get shifted a distance of dh horizontally and
a distance of dv vertically; positive directions are right and down.
Bits that are shifted out of the scroll area are lost; they are neither
placed outside the area nor saved The background pattern bkPat is

2/17/82 Espinosa CZ /QUICK.DRAW/QUIKDRAW.5

(]

| QuickDraw Programmer's Guide < 15 February 1982 Page 0041 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

e

JY&\&F7 DESCRIPTION JF QUICKDRAW FROCEDURES 41

— . %& an
scrolled @ the space created by the scrolr. _In additlon, updateRgn Jo dzb/{wul
s changed,to contain all bits that were : ’

\ ~ T Before SorolRect Afrer SoroliRver(dStRect,~10,5...) A
N s{f ' Ki/*- =
O b
Y E | kPat
Ny Roors of N (
VoA -
COU QuickDraw... 12 0 . N
o \S& Euvi:;faforaw... ¢ W& éﬁaé e
NN NN N 214 AW oRTme
,\“j dstRect / iT'A - U 4

- UpdateRgn 5 . - A
SR AN)¢ '
J 3 — (\/—\(A}/K,L(/%/) W\/\:/“,JE }r./

16.

Figure Scrolling

ct (srcBits,dstBits: {éitMap, srcRect dstRect: Rect;
: NTEGER, pat:Pattern
i

rectangu ar area\\within a/KitMap. The transfer fay be

he transfer modes. The transfer is always a&
clipped to thof the'destination bitMap, and, if the Q
destination bitMap is the current grafPort s portBits the transfer is S’b

clipped inside the clipRgn, vingn,\and portRect, too W
@b \

. 7y '
s \

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.S

| QuickDraw Programmer's Guide < 15 February 1982 Page 0042 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

42 QuickDraw Programmer”s Guide

Vl‘

} /Q C/ﬂﬁaz/ﬂ -
/)LUJ U{/%)

f’ .

{‘L

i_

}\:N

) s
o] 255 P .
i\& ~ modes :

1 i
vs ve

1
.o

Pattern Destinasion. Bithap.

Zc/ Figure 17. Operation of XferRect

] 4
The‘pééRect coordinates are in terms of the dstBits.bounds coordinate CP(ALC}LZLA
system; the SrcRect coordinates are in terms of the srcBit '
coordinates. When ccopying Trom the source to the destination, the top
left corner of the source rectangle is aligned with the top left cormer
of the destination rectangle; the size of the source rectangle is
ignored.

_—
In the source:uﬁing‘transfer modes, each bit of the source is
transferred to the destination according to the rules of that mode, and
the pattern is ignored (we suggest you set it to white). The eight
source-wadsy modes are as follows:

srcCopy srcXor notSrcCopy notSrcXor
srcOr srcBic notSrcOr notSrcBic

In the pattern~wedmwp- transfer modes, the specified pattern is
/trans into the destination rectangle according to the chosen mode.
The soufce bitMap and source rectangle are not used; we sugge

t you set
these to the Zﬁ;ination bitMap and destination rectangle. LL?AXJ fuﬁtti°“J

.
»

patCopy . patXor notPatCopy notPatXor -
pator patBic notPatOr notPatBic

- Thesef¥§§£§¥2; modes are useful for filling a rectangle that is outside

the current grafPort. For filling a rectangle inside the current
grafPort, however, the FillRect procedure i1s much easier to use.

Cg . e 4 /A"fru G-l KL«L c(x/
Graphicé/ Operations on Ovals J 7

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982 Page 0043 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 43

PROCEDURE PaintOval (r: Rect);

Paints an oval just inside the specified rectangle with the pen pattern
and mode. The oval on the bitMap is filled with the pnPat, according
to the transfer mode specified by pniode. The pen remains at its
original location.

PROCEDURE FrameOval (r: Rect);

Draws a hollow outline with the pen pattern, mode, and size just iInside
the oval that fits inside the specified rectangle. The outline is as
wide as the pen width and as tall as the pen height. The outline on
the bitMap is filled with the pnPat, according to the transfer mode
specified by pnMode. The pen remains at its original location.

If a region is open and being formed, the outside outline of the new
oval is(i?tﬁéﬁéti?EIIﬁ)added to the region”s boundary. -

PROCEDURE EraseOval (r: Rect);

Paints an oval just inside the specified rectangle with the background
pattern bkPat. The pnPat and pnMode are ignored; the pen remains at
its original location.

PROCEDURE InvertOval (r: Rect);

The bits enclosed by an oval just inside the specified rectangle are
inverted: every white bit becomes black and every black bit becomes
white. The pnPat, pnMode, and bkPat are all ignored; the pen remains
at its original location.

PROCEDURE FillOval (r: Rect; pat: Pattern);
Paints an oval just inside the specified rectangle with the given

pattern. The pnPat, pnMode, and bkPat are all ignored; the pen remains
at its original location.

Graphidall Operations on Rounded-Corner Rectangles
\J

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

Paints the specified rounded-corner rectangle with the pen pattern and
mode. The rounded-corner rectangle on the bitMap is filled with the
pnPat, according to the transfer mode specified- by pnMode. The pen
remains at its original location. OvalWidth and ovalHeight specify the
diameters of curvature for the corners.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982

Page 0044 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

44 QuickDraw Programmer”s Guide

ovalWideh ovalHeight

Figure 18. Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

Draws a hollow outline with the pen pattern, mode, and size just inside
the specified rounded-corner rectangle. _The is as wide as the
pen_width and as tall as the pen height. The outline on the bitMap is
filled with the pnPat, according to the transfer mode specified by
pnMode. The pen remains at its original location. OvalWidth and
ovalHeight specify the diameters of curvature for the corners.

If a region is open and being formed, the outside outline of the new
rounded-corner rectangle is mathematically added to the region”s
boundary.

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

Paints the specified rounded-corner rectangle with the background
pattern bkPat. The pnPat and pnMode are ignored; the pen remains at
its original location. OvalWidth and ovalHeight specify the diameters
of curvature for the corners.

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

The bits enclosed by the specified rounded-corner rectangle are
inverted: every white bit becomes black and every black bit becomes
white. The pnPat, pnMode, and bkPat are all ignored; the pen remains
at its original location. OvalWidth and ovalHeight specify the
diameters of curvature for the corners.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.S

| QuickDraw Programmer's Guide < 15 February 1982 Page 0045 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 45

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat:
Pattern);

Paints the specified rounded-corner rectangle with the given pattern.
The pnPat, pnMode, and bkPat are all ignored; the pen remains at its
original location. OvalWidth and ovalHeight specify the diameters of

curvature for the corners.

Calculations with Regions

fonchon

FUNCTION NewRgn: RgnHandle;

Creates space for a new,dynamic, variable-size region, initializes it
to the empty region, and returns a handle to the new region. Only this

creates new regions; all other procedures just alter the size PN
and shape of regions you create. - /////’ \
. Never refer to a region without using its handle; regions are toovbig J \
and awkward to be carried around any other way.

" eye) ‘ pias

You must call NewRgn to initialize a region”s handle
bifore that handle can be used in any region drawi or

culation procedure.

PROCEDURE DisposeRgn (rgn: RgnHandle);

Deallocates space for the region whose handle is supplied, and returns
the memory used by the region to the free memory pool. Use this only
after you are completely through with a temporary region.

(eye)
NEVER use a region once you have deallocated iELJELJEBL«L;J
will risk being hung by dangling pointers! /Beware of
——TSetClipRgn and SetVisRgn; they don”t duplicate the

region, they only make a copy of the handle. If you

deallocate a region that<f§§;plﬁllgg§lx)§5t’t6"55 your

clipRgn, your clipping goes away and very strange things
will occurp.

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);
T TS

Copies thehmathematicai‘structure of srcRgn into dstRgn; i.e. it makes

a duplicate copy of srcRgn. Once this is done, srcRgn may be altered

(even disposed of) without affecting dstRgn.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982 Page 0046 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

46 QuickDraw Programmer”s Guide

PKOCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: INTEGER);
Destroys the previous ”éfa structuré) of rgn, then sets the new
structure to the rectangle specified by left, top, right, and bottom.
This is a good way to obtain a rectangular region, and also to set a
region to the null region (9,90,9,9).

If the rectangle specified is not rectangular (i.e. leftd>=right or
top>=bottom), the region is set to the null region.

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

Destroys the previous data structure of rgn, then sets the new

structure to the rectangle specified by r. This is operationally
he input rectangle is defined by a

pdary coordinate
i iy~

rectangle, not four bo

OpenRgn tells QuickDraw to alloci;7/§;mporary spaceezﬂg start saving
line segments/and framed shapes later be- processed as a region
efinition.

The global BOOLEAN variable RgnSave indicates whether a

region is open; flipping RgnSave FALSE disables the collection of lines
and frames, and restoring RgnSave TRUE resumes the region definition.

S
All Line, LineTo,<E%;;§g££§;ﬂ552me0val, FrameRoundRect AjunLJhgmuﬂ“;;::>
on

procedure calls while s open affect the outline of the

region. Only the line endpoints and shape boundaries affect the region v
definition, not the pen mode, pattern, size, or location. In fact, ﬁﬂ
it“s best to set the penSize to (§,) before drawing a region: aerEZ‘_'
pen hangs below and to the right on a line, drawing lines with even the
smallest pen will change bits that do not mathematically belong to the
region. -

PROCEDURE OpenRgnj;

The outline of a region is mathematically defined and infinitely thin, }
and separates the bitMap into two groups of bits: those within the]
region and those outside it. A region should consist of one or more |
closed loopss Each frame itself constitutes a loop; any lines drawn

with Line or LineTo should connect with each other or with a frame. |
Even though the on-screen presentation of a region is clipped to the |
portRect, etc., the creation of a region is not; you can define a

region anywhere on the coordinate plane with complete disregard for the
location of various grafPort entities on that plane.

(eye)
Do not perform an OpenRgn while another region is already
open. All open regions but the most recent will behave
strangely.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982 Page 0047 of 0064

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 47

PROCEDURE CloseRgn (dstRgn: RgnHandle);

Stops the collection of endpoints and outlines, organizes them into a
region definition, and saves the resulting region into the region
indicated by dstRBgn. You should perform one and only one CloseRgn for
every OpenRgn.

Here”s an example of how to create and open a region, define a barbell

shape, close the region, and draw it: uM}}})

'
Barbell := NewRgn; é}\\\£5ake a new region} @
PenSize(H,0); {Udon“t draw it on the screen}
OpenRgn; {begin collecting stuff}

SetRect(tempRect,20,28,38,50); fBrav”the left weight}
“FrameOval(tempRect);

SetRect(tempRect,39,30,8¢,40); {Airaw’/ the bar)
~FrameRect(tempRect); . .

SetRect(tempRect, 80, 2¢,9¢,5¢); {éraw”the right weight}
~ FrameOval(tempRect);

CloseRgn(Barbell); e re done; save in barbell}
FillRgn(Barbell,Black); — W draw it! } z
DisposeRgn(Barbell) {we don"t need you anymore...}

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

Mathematically moves the region a distance of dh horizontally and dv
vertically; positive directions are right and down. The region retains
its size and shape; it merely is moved on the coordinate plane.

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

Shrinks or ~ the region. All points on the region boundary are
moved inwards a distance of dv vertically and dh horizontally; if*dh or
dv is negative, the points are moved outwards in that direction.
InsetRgn leaves the region "centered” at the same position, but moves
the outline in (for positive values) or out (for negative values).
InsetRgn of a rectangular region works just like InsetRect (see).

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

Calculates the intersection of two regions and places the intersection
in a third region. THIS DOES NOT CREATE THE DESTINATION REGION: you
must use NewRgn to create the dstRgn before you call SectRgn. The
destRgn can be one of the source regions, if desired.

If the regions do not intersect, or one of the regions is the empty

region, the destination is set to the empty region, which you can test
with the EmptyRgn function.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.S

| QuickDraw Programmer's Guide < 15 February 1982 Page 0048 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

48 QuickDraw Programmer”s Guide

1f the regions were defined in different grafPorts, the mathematical
{ntersection (from SectRgn) wmay not correspond to their physical
intersection on the screen. To adjust a region into another port”s
coordinate system, see the LocalToGlobal and GlobalToLocal calls.

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

Calculates the union of two regions and places the union in a third
region. THIS DOES NOT CREATE THE DESTINATION REGION: you must use
NewRgn to create the dstRgn b ggre you call UnionRgn. The destRgn can
be one of the source regions, If desired.

1f both regions are empty, the destination is set to the empty region,
which you can test with the EmptyRgn function.

If the regions were defined in different grafPorts, the mathematical
union (from UnionRgn) may not correspond to their physical union on the
screen. To adjust a region into another port”s coordinate system, see
the LocalToGlobal and GlobalTolLocal calls.

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

Subtracts srcRgnB from srcRgnA and places the difference in a third
region. THIS DOES NOT CREATE THE DESTINATION REGION: you must use
NewRgn to create the dstRgn beggre you call DiffRgn. The destRgn can
be one of the source regions, Yf desired.

If the first source region is the empty region, the destination is set
to the empty region, which you can test with the EmptyRgn function.

If the regions were defined in different grafPorts, the mathematical
difference (from DiffRgn) may not correspond to their physical
difference on the screen. To adjust a region into another port”s

" coordinate system, see the LocalToGlobal and GlobalToLocal calks.

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

Calculates the difference between the union and the intersection of two
regions and places the result in a third region. THIS DOES NOT CREATE
THE DESTINATION REGION: you must use NewRgn to create the dstRgn
begore you call XorRgn. The destRgn can be one of the source regions,
if desired.

If the regions are coincident, the destination is set to the empty
region, which you can test with the EmptyRgn function.

1f the regions were defined in different grafPorts, the mathematical
Xor (from XorRgn) may not correspond to their physical Xor on the
screen. To adjust a region into another port”s coordinate system, see
the LocalToGlobal and GlobalToLocal calls.

2/17/82 Espinosa /QUICK.DRAW/QUIKDRAW.5

| QuickDraw Programmer's Guide < 15 February 1982 Page 0049 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

BB

MISSING PAGE

BB BBBB

| QuickDraw Programmer's Guide < 15 February 1982 Page 0050 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

BB

MISSING PAGE

BB BBBB

| QuickDraw Programmer's Guide < 15 February 1982 Page 0051 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 51

rnaskRgn

yER

)

Patremn Destination BitMap

-—

Figure 19. Operation of XferRgn

The DstRect and MaskRgn coordinates are in terms of the dstBits.bounds
coordinate system; the SrcRect coordinates are in terms of the
srcBits.bounds coordinates. When copying from the source to the
destination, the top left corner of the source rectangle is aligned
with the top left corner of the destination rectangle; the size of the
source rectangle is ignored.

In the source-usimg transfer modes, each bit of the source is
transferred to the destination according to the rules of the mode. The
pat parameter is ignored; we recommend you set it to white. The
source=-gstae-modes are as follows:

srcCopy srcXor notSrcCopy notSrcXor
srcOr srcBic notSrcOr notSrcBic
In the pattern=mng transfer modes, the specified pattern is
transfered into the destination rectangle according to the chosen mode.
The source bitMap and rectangle are not used; we suggest you set these
to the destination bitMap and rectangle.

patCopy patXor notPatCopy notPatXor
pator patBic notPatOr notPatBic

The-J transfer modes are useful for filling a region that is in some
other GrafPort.

Miscellaneous Utilities

2/17/81 Espinosa /QUICK.DRAW/QUIKDRAW.6

| QuickDraw Programmer's Guide < 15 February 1982 Page 0052 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

52 QuickDraw Programmer”s Guide x& ‘ﬁ: ~ ,)

FUNCTION Random: INTEGER;

Returns a 16-bit signed integer, uniformly distrﬁbuted pseudo-random.
]

”
] X ; N
xo#y

FUNCTION GetPixel (h,v: INTEGER): BOOLEAN; \ \'ﬁ\;’pw

NS W\
Peeks _at a single bit in memory (perhaps a pixel) and returns TRUE if T
: theis black and FALSE if the dot is white. The selected pixel-is L\/’ M
the one immediately below and to the right of the point whose ,
coordinates are given in h and v; these points are in the local b'

coordinates of the current grafPort. There is no guarantee that the
pixel actually belongs to the port, however; it may have been drawn by
a port overlapping the current one. To see if the point indeed belongs
to the current, port, perform a PtInRgn(pt,thePort”.visRgn).

PROCEDURE AddPt (src: Point; VAR dst: Point); -

Adds the first point to the second, returns the sum in the second
point.

PROCEDURE SubPt (src: Point; VAR dst: Point);

Subtracts the first‘point from the second, returns the result in the
second point.

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

Assigns two integer coordinates to a variable of type point.

PROCEDURE LocalToGlobal (VAR pt: Point); .
Converts the given point from the current grafPort”s local coordinate
system into a global coordinate system with the origin (#,8) at the top
left corner of the port”s bitMap (such as the screen). This global
point can then be compared to other global points, or be changed into
the local coordinates of another grafPort. For example, if the
rectangle ballRect is defined in the gamePort grafPort, and you want to
use that rectangle in the selectPort grafPort, you would calculate the
ball”s coordinates like this:

SetPort(gamePort); { start in origin port}
SelectBall := ballRect; {make a copy to be moved}
LocalToGlobal(SelectBall.topLeft); { put both cormers into }
LocalToGlobal(SelectBall.botRight); { global coordinates }
SetPort(selectPort); { switch to destination port }
GlobalToLocal(SelectBall.topLeft); { put both cormers into }
GlobalToLocal(Selectball.botRight); { these local coordinates }
FillOval(SelectBall,BallColor,8,8); { Now you have the ball! }

2/17/81 Espinosa /QUICK.DRAW/QUIKDRAW.6

| QuickDraw Programmer's Guide < 15 February 1982 Page 0053 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

DESCRIPTION OF QUICKDRAW PROCEDURES 53

You can also convert rectangles and regions into global coordinates
without performing a LocalToGlobal call for each point. Simply perform
LocalToGlobal for one point (for example, the top left corner of the
region”s bounding box), then use OffsetRect or OffsetRgn to move the
rest of the object the distance of displacement:

CopyRgn(myRgn, tempRgn);

tempPoint := tempRgn~".rgnBBox.topLeft;
LocalToGlobal(tempPoint);

Of fsetRgn(tempRgn, tempPoint.h, tempPoint.v)

PROCEDURE GlobalToLocal

Takes a point expressed in global coordinates (with the top left cormer
of the bitMap as coordinate (f,P)) and converts it into the local
coordinates of the current grafPort.. The global point can be obtained
with the LocalToGlobal call (see above).

You can convert global-coordinate rectangles and regions into local
coordinates without performing a GlobalToLocal call for each point.
Simply perform GlobalToLocal for one point (for example, the top left
corner of the region”s bounding box), then use OffsetRect or OffsetRgn
to move the rest of the object the distance of displacement:

SetPort(MyNewPort);

tempPoint := globRgn"".rgnBBox.topLeft;
GlobalTolocal(tempPoint);

Oof fsetRgn(globRgn, =-tempPoint.h, -tempPoint.v)

~

PROCEDURE StuffHex (thingptr: WordPtr; s:Str255);

Pokes bits (expressed as a string of hexadecimal digits) into any-data
structure. This is a good way to create cursors, patterms, or bit
images to be “stamped™ onto the screen with XferRect. For example, ;:>

StuffHex(@stripes,” $10204$810204380") p

places a striped pattern into the pattern variable stripes. Beware;
there is no range checking on the size of the destination variable;
it”s easy to overrun the variable and something if you don”t know
what you“re doing.

USING QUICKDRAW FROM ASSEMBLY LANGUAGE

All Macintosh User Interface ToolBox routines can be called from
assembly-language programs as well as from Pascal. When you write an
assembly-language program to use these routines, though, you must

2/21/82 Espinosa /QUICK.DRAW/QUIKDRAW.8

| QuickDraw Programmer's Guide < 15 February 1982 Page 0054 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

54 QuickDraw Programmer”s Guide

emulate Pascal”s parameter passing and variable transfer protocols.

The remainder of this section discusses how to use the QuickDraw
constants, glabal variables, data types, procedures and functions from
assembly language.

The primary aid to assembly-language programmers is a file named
GRAFEQU.TEXT. If you .INCLUDE this file when you assemble your
program, all the QuickDraw constants, offsets to locations of global
variables, and offsets into the fields of structured types will be
available in symbolic form to your programs.

Constants :
QuickDraw constants are stored in the GRAFEQU.TEXT file, and you can
use the constant values symbolically. For example, if you“ve loaded
the effective address of the thePort”.chStyle.mode field into address
register A2, you can set that field to the srcXor mode with this..
statement:

MOVE.W #SRCXOR, (A2)

The only constants defined at this point are the sixteen transfer
modes.

Data Types)
Pascal s strong typing ability lets you write Pascal programs without
really considering the size of a variable. But in assembly language,
you must keep track of the size of every variable. The sizes of the
standard Pascal data types are as follows:

Type Size

INTEGER Word (2 bytes)

LONGINT Long (& bytes)

Pointer Long (4 bytes) . =
BOOLEAN Word (2 bytes)

REAL Long (4 bytes)

CHAR - Word (2 bytes)

INTEGERs and LONGINTs are in two”s complement form; BOOLEANS have their
boolean value in bit 8 of the word (the low-order bit of the byte at
the same location); CHARs are stored in the high-order byte of the
word; and REALs are in the KCS standard format.

QuickDraw simple data types are constructed out of these fundamental

types.
Type Size
WordPtr Long (4 bytes) _
Str255 Page (256 bytes) -
Pattern 8 bytes
Bitslé 32 bytes

2/21/82 Espinosa /QUICK.DRAW/QUIKDRAW.8

| QuickDraw Programmer's Guide < 15 February 1982 Page 0055 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 55

Other data types are constructed as records of variables of the above
types. The size of such a type is the sum of the sizes of all the
fields in the record; the fields appear in the variable with the first
field in the lowest address. For example, the data type BitMap, which
is defined like this:

BitMap = RECORD
baseAddr: WordPtr;
rowBytes: INTEGER;
bounds: Rect
END ¢

would be arranged in memory as seven words: a long for the baseAddr, a
word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you in referring to
the fields inside a variable that has a structure like this, the
GRAFEQU.TEXT file defines constants that you can use as offsets into
the fields of a structured variable. For example, to move a bitMap’s
rowBytes value into D3, you would execute the following instruction:

MOVE.W MYBITMAP+ROWBYTES,D3

é Displacements are given in the GRAFEQU.TEXT file for all fields of all
§§ data types defined by QuickDraw.-

\§ To do double 1ndirectio;g(for example, to get at the top coordinate of
T a Teglon s bounding bo%L you perform an LEA indirectly to obtain the
effective address from the handle:

MOVE.L MYHANDLE,Al 3 Load handle into Al
MOVE.L (Al),Al ;s Use handle to get pointer
MOVE.W RGNSIZE+TOP(Al),D3 ; Load value using pointer

(eye)
For regions (and all-other variable-length structures =
with handles), you must not move the pointer into a
register once and just continue to use that pointer; you
must do the double indirection each time. Every
QuickDraw, ToolBox, or memory management call you make
can possibly trigger a heap compaction that renders all
pointers to movable heap items (like regions) invalid.
The handles will remain valid, but pointers you“ve
obtained through handles can be rendered invalid at any
subroutine call or trap in your program.

Global Variables
Global variables are stored in a special section of Macintosh low
memory; register A5 always points to this section of memory. The.
GRAFEQU.TEXT file defines a constant GRAFGLOB that points to the
beginning of the QuickDraw variables in this space, and other constants
to point at the individual variables. To access one of the variables,
just sum the constants and index off of A5. For example, if y(are

2/21/82 Espinosa /QUICK.DRAW/QUIKDRAW.8

| QuickDraw Programmer's Guide < 15 February 1982 Page 0056 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

56 QuickDraw Programmer”s Guide

preparing a bitMap record and you want that bitMap to share the same
bit image as the screenBits global variable, you”d perform the
following instruction:

MOVE.L GRAFGLOB+SCREENBITS+BASEADDR(AS5),MYBITMAP+BASEADDR

Procedures and Functions’
To call a QuickDraw procedure or function, you must push all parameters
to that function on the stack, then JSR to the function or cedure.
When you link your program with QuickDraw, these JSRs are aéé%}ted to v//
refer to the jump table in low RAM, so that a JSR into the le
redirects you to the actual location of the procedure or function.
After the procedure or function has unstacked all its parameters and
performed its operation, it returns to you with the stack cleared.

The only difficult part about. calling.QuickDraw procedures and .
functions is stacking the parameters. You must follow some strict
rules:

- Save all registers you wish to preserve before you begin pushing
parameters. Any QuickDraw procedure can destroy the contents of
the registers A, Al, D, D1, and D2, but the others are never
altered.

- Push the parameters in the order that they appear in the Pascal
procedural interface.

- For integers, booleans, and characters, push a word; for pointers,
handles, long integers, and reals, push a long.

- For any structured variable longer than four (4) bytes, push a
pointer to the variable.

- For all VAR parameters, regardless of size, push a pointer to the
variable.

- When calling a function, FIRST push a null entry equal to the size
of the function result, THEN push all other parameters. The
result will be left on the stack after the function returns to
you.

This makes for a lengthy interface, but it also guarantees that you can
mock up a Pascal version of your program, and when you later translate
it into assembly code, it works the same. For example, the Pascal
statement :

Blackness := GetPixel(5@,MousePos.v);

would be written in assembly-language like this:~ - - - -

CLR.W -(SP) - ; Save space for boolean result
MOVE.W #32,-(SP) s Push constant 5@ (decimal)
2/21/82 Espinosa /QUICK.DRAW/QUIKDRAW.8

| QuickDraw Programmer's Guide < 15 February 1982 Page 0057 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 57

MOVE.W MOUSEPOS+V,-(SP) 3 Push the value of MOUSEPOS.V
JSR GETPIXEL ; Call routine
MOVE.W (SP)+,BLACKNESS ; Fetch result from stack.

This is a simple example, pushing and pulling word-long constants.
Normally, you”1ll be pushing more pointers, using the PEA (Push
Effective Address) instruction:

FillRoundRect(MyRect,1l,thePort”.penSize.v,White);

PEA MYRECT ; Push pointer to MYRECT
MOVE.W #1,~-(SP) 3 Push constant 1
MOVE.W GRAFGLOB+THEPORT+PENSIZE+V(AS5),~-(SP)

3 Push value of ThePort”.penSize.v
PEA GRAFGLOB+WHITE(AS) 3 Push pointer to global var White
JSR FILLROUNDRECT ; Call the subroutine

Beware that the horizontal and vertical parts of a point do not appear
in the same order in the data structure as they do in a procedure call!
Even though you can move a point around with a MOVE.L instruction, you
can”t push that point as a parameter to a procedure which requires two
integer coordinates. For example, to call MoveTo with a point
argument, you must do two separate pushes:

MOVE.W MOUSEPOS+H,-(SP) ; Push horizontal position
MOVE.W MOUSEPOS+V,-(SP) ; Push vertical position
JSR MOVETO

Just doing a MOVE.L MOUSEPOS,-(SP) would transpose the vertical and
horizontal results, and make MoveTo work funny.

SUMMARY OF QUICKDRAW

CONST srcCopy = @ { Destination := Source })
srcOr = 13 { Destination := Source OR Destination } Cl
srcXor = 23 { Destination := Source XOR Destination } ES\/ !
srcBic = 3; { Destination := Source BIC Destination }
notSrcCopy = 4; { Destination := NOT(Source) } '
notSrcOr = 53 { Destination := NOT(Source) OR Destination }
notSrcXor = 6; { Destination := NOT(Source) XOR Destination }
notSrcBic = 7; { Destination := NOT(Source) BIC Destination }
patCopy = 83 { pestination := Pattern }
pator = 93 { Destination := Pattern OR Destination }
patXor = 10; { Destination i= Pattern XOR Destination }
patBic = 11; { Destination := Pattern BIC Destination }
notPatCopy = 12; { Destination := NOT(Pattern) }
notPatOr = 13; { pDestination := NOT(Pattern) OR Destination }
notPatXor = 1l4; { Destination := NOT(Pattern) XOR Destination }
notPatBic = 15; { Destination := NOT(Pattern) BIC Destination }

2/15/82 Espinosa /QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide < 15 February 1982 Page 0058 of 0064 |

Apple Macintosh Early Technical Information

* |nside Macintosh

58

QuickDraw Programmer”s Guide

TYPE WordPtr =

Str255 =
Pattern = PACKED ARRAY[@..7] OF ..255;
Bitslé = ARRAY[@..15] OF INTEGER;

_VHSelect = (v,h);
Point = RECORD CASE INTEGER OF

¢: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER);

END;
Rect = RECORD CASE INTEGER OF
p: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER);
1: (topLeft: APoint;

botRight: Point);

END;
BitMap = RECORD
baseAddr: WordPtr;
- rowBytes: INTEGER;
bounds: Rect;
END;
Cursor = RECORD
data: Bitsl6;
mask: Bitsl6;
hotSpot: Point;
END;
CharStyle = RECORD
fontPtr: Handle;
mode: INTEGER;
bold: INTEGER;
slant: INTEGER;
extra: INTEGER;
shadow: INTEGER;
END;
PenState = RECORD
pnLoc @ Point;
pnSize : Point;
pnMode : INTEGER;
pnPat : Pattern
END; -

2/15/82 Espinosa

/QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide < 15 February 1982

Page 0059 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

RgnHandle =
RgnPtr
Region

GrafPtr =

RgnPtr;
Region;
RECORD

rgnSize:
rgnBBox:

SUMMARY OF QUICKDRAW 59

INTEGER;
Rect;

{ rgnSize = 1@ for rectangular }

{ more data if not rectangular }

END;

“GrafPort;

GrafPort = RECORD

VAR thePort:

portBits:
portRect:

visRgn:
clipRgn:
bkPat:
chStyle:
pnLoc:
pnSize:
pnMode:
pnPat:

END;

Gr

afPtr;

BitMap;
Rect;
RgnHandle;
RgnHandlej
Pattern;
Charstyle;
Point;
Point;
INTEGER;
Pattern;

white,black,gray,ltGray,dkGray: Pattern;

arrow: Cursor;
grafError: INTEGER;
grafDebug: BOOLEAN;
screenBits: BitMap;
charNormal: CharStyle;
swapFont: ProcPtr;
rgnSave: BOOLEAN;

Housekeeping and GrafPort Procedures

PROCEDURE InitGraf; =
PROCEDURE OpenPort (gp: GrafPtr);

PROCEDURE SetPort (gp: GrafPtr);

PROCEDURE GetPort (VAR gp: GrafPtr);

PROCEDURE SetPortBits(bm: BitMap);

PROCEDURE PortSize (width,height: INTEGER);
PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);
PROCEDURE SetOrigin (h,v: INTEGER);

PROCEDURE SetVisRgn (rgn: RgnHandle);

PROCEDURE GetVisRgn (VAR rgn: RgnHandle);

PROCEDURE SetClipRgn (rgn: RgnHandle);

PROCEDURE
PROCEDURE
PROCEDURE

GetClipRgn (VAR rgn: RgnHandle);

ClipRect
BackPat

2/15/82 Espinosa

(r: Rect);
(pat: Pattern);

/QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide < 15 February 1982

Page 0060 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

60 QuickDraw Programmer”s Guide

Cursor Handling

PROCEDURE SetCursor (crsr: Cursor);

PROCEDURE HideCursor;

PROCEDURE ShowCursor;

PROCEDURE CursorVis (visible: BOOLEAN);
Pen and Line Drawing

PROCEDURE GetPen (VAR pt: Point);

PROCEDURE GetPenState
PROCEDURE SetPenState
PROCEDURE PenSize
PROCEDURE PenMode
PROCEDURE PenPat
PROCEDURE PenNormal;
PROCEDURE MoveTo
PROCEDURE Move
PROCEDURE LineTo
PROCEDURE Line

Character Drawing

(VAR pnState: PenState);
(pnState: PenState);
(width,height: INTEGER);
(mode: INTEGER);

(pat: Pattern);

(h,v: INTEGER);
(dh,dv: INTEGER);
(h,v: INTEGER);
(dh,dv: INTEGER);

PROCEDURE DrawChar
PROCEDURE DrawString
PROCEDURE DrawText
FUNCTION CharWidth
FUNCTION StringWidth
FUNCTION TextWidth
PROCEDURE SetChar

(ch: char);

(s: Str255);

(textBuf: WordPtr; firstByte byteCount: INTEGER);
(ch: CHAR): INTEGER;

(s: Str255): INTEGER;

(textBuf: WordPtr; firstByte,byteCount: INTEGER):
(chS: CharStyle);

INTEGER;

Calculations with Rectangles

PROCEDURE SetRect
PROCEDURE Of fsetRect
PROCEDURE InsetRect
FUNCTION SectRect
FUNCTION PtInRect

Graphicézfg;eratio

(VAR r: Rect; left,top,right,bottom: INTEGER);

(VAR r: Rect; dh,dv: INTEGER);

(VAR r: Rect; dh,dv: INTEGER);

(srcRectA, srcRectB Rect; VAR dstRect: Rect) BOOLEAN;
(pt: Point; r: Rect): BOOLEAN;

ns on Rectangles

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

FrameRect
PaintRect
EraseRect
InvertRect
FillRect
ScrollRect
XferRect

2/15/82 Espinosa

(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect; pat: Pattern);

(dstRect: Rect; dh,dv: INTEGER; updateRgn: rgnHandle);
(srcBits,dstBits: BitMap; srcRect,dstRect: Rect;

mode :INTEGER; pat:Pattern);

/QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide < 15 February 1982

Page 0061 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

SUMMARY OF QUICKDRAW 61

Operations on QOvals

Graphida
PROCEDURE FrameOval (r:
PROCEDURE PaintOval (r:
PROCEDURE EraseQval (r:

PROCEDURE InvertOval (r:
PROCEDURE FillOval (r:

Rect);
Rect);
Rect);
Rect);
Rect; pat: Pattern);

Graphicéﬁr;perations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat: Pattern);

Calculations with Regions

FUNCTION NewRgn:
PROCEDURE

RgnHandle;
DisposeRgn(rgn: RgnHandle);

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

PROCEDURE SetRectRgn(rgn: RgnHandle; left,top,right,bottom: INTEGER);
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OpenRgn; -

PROCEDURE CloseRgn (dstRgn: RgnHandle); .
PROCEDURE Of fsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

FUNCTION PtInRgn

FUNCTION RectInRgn
FUNCTION EqualRgn
FUNCTION EmptyRgn

(pt: Point; rgn: RgnHandle): BOOLEAN;
(r: Rect; rgn: RgnHandle): BOOLEAN;
(rgnA, rgnB: RgnHandle): BOOLEAN;
(rgn: RgnHandle): BOOLEAN;

Graphidgikgggrations on Regions

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

FrameRgn
PaintRgn
EraseRgn

FillRgn
XferRgn

(rgn: RgnHandle);
(rgn: RgnHandle);
(rgn: RgnHandle);

InvertRgn (rgn: RgnHandle);

(rgn: RgnHandle; pat: Pattern);
(srcBits,dstBits: BitMap; srcRect,dstRect: Rect;
mode:%ﬁTEGER; pat:{attern; maskRgn: RgnHandle);

ol L

Miscellaneous Utility Routines

FUNCTION Random: INTEGER;

FUNCTION GetPixel (h,v: INTEGER): BOOLEAN;

PROCEDURE AddPt (src: Point; VAR dst: Point);- =
PROCEDURE SubPt (src: Point; VAR dst: Point);

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

PROCEDURE LocalToGlobal (VAR pt: Point);

2/15/82 Espinosa

/QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide

e 15 February 1982

Page 0062 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

62 QuickDraw Programmer”s Guide

I
PROCEDURE GlobalToLocal (VAR pt: Point); _
PROCEDURE StuffHex (thingptr: WordFtr; s:Str255);

DEFAULT VALUES

These default values are set when you initialize MacGraf with the
InitGraf procedure:

Global Type Setting

white Pattern All-vwhite patterm

black Pattern All-black pattern

gray Pattern 5¢% grey pattern

1tGray Pattern 33% grey pattern

dkGray Pattern 66% grey pattern

arrow Cursor Pointing arrow cursor _
charNormal charStyle NO FONT, OR mode, no extras
screenBits BitMap Macintosh screen, (9,0,384,256)
thePort GrafPtr NIL

rgnSave BOOLEAN FALSE

These default values for a single GrafPort are set by OpenPort:

Variable Type Setting

portBits BitMap ScreenBits (see InitGraf)

portRect Rect ScreenBits.bounds (@,9,384,256)

visRgn™" Region Rectangular, (9,9,384,256)

clipRgn~" Region Rectangular, (-3¢000,-30¢0¢,3000¢,300008)

bkPat Pattern White

chStyle CharStyle CharNormal

pnLoc Point (8,9)

pnSize Point 1,1)

pnMode INTEGER patCopy (8)

pnPat Pattern Black -
2/15/82 Espinosa /QUICK.DRAW/QUIKDRAW.7

| QuickDraw Programmer's Guide < 15 February 1982 Page 0063 of 0064 |

Apple Macintosh Early Technical Information < Inside Macintosh

END OF DOCUMENT

| QuickDraw Programmer's Guide < 15 February 1982 Page 0064 of 0064 |

