Apple Macintosh Early Technical Information < Inside Macintosh

4

EARLY MACINTOSH TECHNICAL INFORMATION

INSIDE MACINTOSH
A ROAD MAP

COMMENT

FIRST INSIDE MACINTOSH DOCUMENT WHICH
MACINTOSH PROGRAMMERS READ, THIS LISTED ALL
THE DIFFERENT INSIDE MACINTOSH CHAPTERS

AUTHOR
APPLE COMPUTER

DATE
10 SEPTEMBER 1984

SOURCE
DAVID T CRAIG e JANUARY 2004

| Road Map + 10 September 1984 Page 0001 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

MACINTOSH USER EDUCATION

INSIDE MACINTOSH: A ROAD MAP /ROAD .MAP/ROAD

See Also: Macintosh User Interface Guidelines
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programer's Guide
The Toolbox Utilities: A Programmer's Guide
Macintosh Packages: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The File Manager: A Programmer's Guide
Printing from Macintosh Applications
The Device Manager: A Programmer's Guide
The Sound Driver: A Programmer's Guide
The Vertical Retrace Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
The Structure of a Macintosh Application
Putting Together a Macintosh Application
Index to Technical Documentation

Modification History: First Draft (ROM 4.4) Caroline Rose 8/8/83
Second Draft (ROM 7) Caroline Rose 12/22/83

Third Draft Caroline Rose 9/1¢/84

ABSTRACT

This manual introduces you to the Macintosh technical documentation and
the "inside" of Macintosh: the Operating System and other routines that
your application program will call. It will help you figure out which
software you need to learn more about and how to proceed with the rest
of the documentation. It also presents a simple example program.

Since the last draft, changes and additions have been made to the
overviews, an example program has been added, and the structure of a
typical Inside Macintosh manual is discussed.

| Road Map + 10 September 1984 Page 0002 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

2

Inside Macintosh Road Map

TABLE OF CONTENTS

(oW N0, IS S VL V)

11
18
19
2¢

About This Manual

About Inside Macintosh
Everything You Know Is Wrong
Conventions

The Structure of a Typical Manual

Overview of the Software

The Toolbox and Other High-Level Software
The Operating System and Other Low-Level Software

A Simple Example Program
Where to Go From Here

Appendix: Resource Compiler Input for Example Program

Glossary

Copyright (c) 1984 Apple Computer, Inc.
Distribution of this draft in limited quantities does not constitute
publication.

All rights reserved.

| Road Map + 10 September 1984

Page 0003 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual introduces you to the Macintosh technical documentation and
the "inside" of Macintosh: the Operating System and User Interface
Toolbox routines that your application program will call. It will help
you figure out which software you need to learn more about and how to
proceed with the rest of the documentation. To orient you to the
software, it presents a simple example program. *¥* Eventually it will
become the preface and introductory chapter in the comprehensive Inside
Macintosh manual. *%%

ABOUT INSIDE MACINTOSH

Inside Macintosh *** (currently a set of separate manuals) *** tells
you what you need to know to write software for the Macintosh.

Although directed mainly toward programmers writing standard Macintosh
applications, it also contains the information necessary for writing
simple utility programs, desk accessories, device drivers, or any other
Macintosh software. It includes:

- the user interface guidelines for applications on the Macintosh
- a complete description of the routines available for your program
to call (both those built into the Macintosh and others on disk),
along with related concepts and background information
-~ a description of the Macintosh hardware *** (forthcoming) #***
It does mot include:
- information about getting started as a developer (for that, see

the Apple 32 Developer's Handbook, available from Apple Computer's
Software Industry Relations)

- any information that's specific to the development system being
used, except where indicated *** (The manual Putting Together a
Macintosh Application will not be part of the final Inside
Macintosh.) **%*

The routines you'll need to call are written in assembly language, but
they're also accessible from high-level languages. The development
system currently available from Apple supports Lisa Pascal and includes
Pascal interfaces to all the routines (except for a few that are called
only from assembly language). Inside Macintosh documents these Pascal
interfaces; if you're using a development system that supports a
different high-level language, its documentation should tell you how to
apply the information presented here to that system.

Inside Macintosh is intended to serve the needs of both Pascal and
assembly-language programmers. Every routine is shown in its Pascal
form (if it has one), but assembly-language programmers are told how to

9/10/84 Rose /ROAD .MAP/ROAD.2

| Road Map + 10 September 1984 Page 0004 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

4 Inside Macintosh Road Map

translate this to assembly code. Information of interest only to
assembly-language programmers is isolated and labeled so that Pascal
programmers can conveniently skip it.

Familiarity with Lisa Pascal is recommended for all readers, since it's
used for most examples. Lisa Pascal is described in the Pascal
Reference Manual for the Lisa. You should also be familiar with the
basic information that's in Macintosh, the owner's guide, and have some
experience using a standard Macintosh application (such as MacWrite).

Everything You Know Is Wrong

On an innovative system like the Macintosh, programs don't look quite
the way they do on other systems. For example, instead of carrying out
a sequence of steps in a predetermined order, your program is driven
primarily by user actions (such as clicking and typing) whose order
cannot be predicted. You'll probably find that many of your
preconceptions about how to write applications don't apply here.
Because of this, and because of the sheer volume of information in
Inside Macintosh, it's essential that you read the Road Map *** (the
rest of this manual) ***, Tt will help you get oriented and figure out
where to go next.

Conventions

The following notations are used in Inside Macintosh to draw your
attention to particular items of information:

(note)
A note that may be interesting or useful

(warning)
A point you need to be cautious about

Assembly-language note: A note of interest to assembly-language
programmers only *** (in final manual, may instead be a shaded
note or warning) **#*

[No trap macro]

This notation is of interest only to assembly-language
programmers *** (may be shaded in final manual) ***; jit's
explained along with other general information on using assembly
language in the manual Programming Macintosh Applications in
Assembly Language. -

9/10/84 Rose /ROAD.MAP/ROAD.2

| Road Map + 10 September 1984 Page 0005 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

ABOUT INSIDE MACINTOSH 5

The Structure of a Typical Manual

**% This section refers to "manuals'" for the time being; when the
individual manuals become chapters of Inside Macintosh, this will be
changed to '"chapters'. #***

Most manuals of Inside Macintosh have the same structure, as described
below. Reading through this now will save you a lot of time and effort
later on. It contains important hints on how to find what you're
looking for within this vast amount of technical documentation.

Every manual begins with a very brief description of its subject and a
1ist of what you should already know before reading that manual. Then
there's a section called, for example, "About the Window Manager",
which gives you more information about the subject, telling you what
you can do with it in general, elaborating on related user interface
guidelines, and introducing terminology that will be used in the
manual. This is followed by a series of sections describing important
related concepts and background information; unless they're noted to be
for advanced programmers only, you'll have to read them in order to
understand how to use the routines described later.

Before the routine descriptions themselves, there's a section called,
for example, "Using the Window Manager'. It introduces you to the
routines, telling you how they fit into the general flow of an
application program and, most important, giving you an idea of which
ones you'll need to use. Often you'll need only a few routines out of
many to do basic operations; by reading this section, you can save
yourself the trouble of learning routines you'll never use.

Then, for the details about the routines, read on to the next section.
It gives the calling sequence for each routine and describes all the
parameters, effects, side effects, and so on.

Following the routine descriptions, there may be some sections that
won't be of interest to all readers. Usually these contain information
about advanced techniques, or behind-the-scenes details for the

curiouse.

For review and quick reference, each manual ends with a summary of the
subject matter, including the entire Pascal interface and a subsection
for assembly-language programmers. *** For now, this is followed by a
glossary of terms used in the manual. Eventually, all the individual

glossaries will be combined into one. idd

9/10/84 Rose /ROAD.MAP/ROAD.2

| Road Map + 10 September 1984 Page 0006 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

6 Inside Macintosh Road Map

OVERVIEW OF THE SOFTWARE

The routines available for use in Macintosh programs are divided
according to function, into what are in most cases called "managers' of
the application feature that they support. As shown in Figure 1 on the
following page, most are part of either the Operating System or the
User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does basic tasks such
as input and output, memory management, and interrupt handling. The
User Interface Toolbox is a level above the Operating System; it helps
you implement the standard Macintosh user interface in your
application. The Toolbox calls the Operating System to do low-level
operations, and you'll also call the Operating System directly
yourself.

RAM-based software is available as well. 1In most cases this software
performs specialized operations that aren't integral to the user
interface but may be useful to some applications (such as printing and
floating-point arithmetic).

The Toolbox and Other High-Level Software

The Macintosh User Interface Toolbox provides a simple means of
constructing application programs that conform to the standard
Macintosh user interface. By offering a common set of routines that
every application calls to implement the user interface, the Toolbox
not only ensures familiarity and consistency for the user but also
helps reduce the application's code size and development time. At the
same time, it allows a great deal of flexibility: an application can
use its own code instead of a Toolbox call wherever appropriate, and
can define its own types of windows, menus, controls, and desk
accessories.

Figure 2 shows the various parts of the Toolbox in rough order of their
relative level. There are many interconnections between these parts;
the higher ones often call those at the lower levels. A brief
description of each part is given below, to help you figure out which
ones you'll need to learn more about. Details are given in the Inside
Macintosh documentation on that part of the Toolbox. The basic
Macintosh terms used below are explained in the Macintosh owner's
guide.

9/10/84 Rose /ROAD.MAP/ROAD.2

| Road Map + 10 September 1984 Page 0007 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

OVERVIEW OF THE SOFTWARE

A MACINTOSH APPLICATION PROGRAM

7

THE USER INTERFACE TOOLBOX
(in ROM)

Resource Manager
QuickDraw

Font Menager
Toolbox Event Manager
Window Manager
Control Msnager
Menu Manager
TexiEdit

Dialog Manager
Desk Manager
Screp Manager
Toolbox Utilities
Package Manager

OTHER HIGH-LEVEL SOFTWARE
{not in ROM)

Binary-Decimal Conversion Package

International Utilities Package
Standard File Package

THE OPERATING SYSTEM
(in ROM)

Memory Manager

Segment Loader

Operating System Event Manager
File Mansger

Device Manager

Disk Driver

Sound Driver

Serisl Drivers

Vertical Retrace Manager
System Error Handler
Operating System Utilities

OTHER LOW-LE VEL SOFTWARE
(not in ROM)

Printing Manager

Printer Driver

AppleBus Manager

Disk Initislization Package

Floating-Point Arithmetic Package
Transcendental Functions Package

THE MACINTOSH HARDWARE

Figure 1.

9/10/84 Rose

Overview

/ROAD.MAP/ROAD.2

| Road Map + 10 September 1984

Page 0008 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

8 Inside Macintosh Road Map

[Dialog Manager J

[Control Manager J F Menu Mansger J [TextEdit J

[wWindow Manager]

[Toolbox Utilities]

[Toolbox Event Manager]

[Desk Manager J [Scrap Manager J

[QuickDraw J

[Package Manager] [Font Manager J

[Resource Manager]

Figure 2. Parts of the Toolbox

To keep the data of an application separate from its code, making the
data easier to modify and easier to share among applications, the
Toolbox includes the Resource Manager. The Resource Manager lets you,
for example, store menus separately from your code so that they can be
edited or translated without requiring recompilation of the code. It
also allows you to get standard data, such as the I-beam pointer for
inserting text, from a shared system file. When you call other parts
of the Toolbox that need access to the data, they call the Resource
Manager. Although most applications never need to call the Resource
Manager directly, an understanding of the concepts behind it is
essential because they're basic to sc many other Toolbox operations.

Graphics are an important part of every Macintosh application. All
graphic operations on the Macintosh are performed by QuickDraw. To
draw something on the screen, you'll often call one of the other parts
of the Toolbox, but it will in turn call QuickDraw. You'll also call
QuickDraw directly, usually to draw inside a window, or just to set up
constructs like rectangles that you'll need when making other Toolbox
calls. QuickDraw's underlying concepts, like those of the Resource
Manager, are important for you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw
calls the Font Manager, which does the background work necessary to
make a variety of character fonts available in various sizes and
styles. Unless your application includes a font menu, you need to know
only a minimal amount about the Font Manager.

An application decides what to do from moment to moment by examining
input from the user in the form of mouse and keyboard actioms. It
learns of such actions by repeatedly calling the Toolbox Event Manager
(which in turn calls another, lower-level Event Manager in the
Operating System). The Toolbox Event Manager also reports occurrences
within the application that may require a response, such as when a

9/10/84 Rose /ROAD.MAP/ROAD.2

| Road Map + 10 September 1984 Page 0009 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

OVERVIEW OF THE SOFTWARE 9

window that was overlapped becomes exposed and needs to be redrawn.

All information presented by a standard Macintosh application appears
in windows. To create windows, activate them, move them, resize them,
or close them, you'll call the Window Manager. It keeps track of
overlapping windows, so you can manipulate windows without concern for
how they overlap. For example, the Window Manager tells the Toolbox
Event Manager when to inform your application that a window has to be
redrawn. Also, when the user presses the mouse button, you call the
Window Manager to learn which part of which window it was pressed in,
or whether it was pressed in the menu bar or a desk accessory.

Any window may contain controls, such as buttons, check boxes, and
scroll bars. You create and manipulate controls with the Control
Manager. When you learn from the Window Manager that the user pressed
the mouse button inside a window containing controls, you call the
Control Manager to find out which control it was pressed in, if any.

A common place for the user to press the mouse button is, of course, in
the menu bar. You set up menus in the menu bar by calling the Menu
Manager. When the user gives a command, either from a menu with the
mouse or from the keyboard with the Command key, you call the Menu
Manager to find out which command was given.

To accept text typed by the user and allow the standard editing
capabilities, including cutting and pasting text within a document via
the Clipboard, your application can call TextEdit. TextEdit also
handles basic formatting such as word wraparound and justification.
You can use it just to display text if you like.

When an application needs more information from the user about a
command, it presents a dialog box. In case of errors or potentially
dangerous situations, it alerts the user with a box containing a
message or with sound from the Macintosh's speaker (or both). To
create and present dialogs and alerts, and find out the user's
responses to them, you call the Dialog Manager.

Every Macintosh application should support the use of desk accessories.
The user opens desk accessories through the Apple menu, which you set
up by calling the Menu Manager. When you learn that the user has
pressed the mouse button in a desk accessory, you pass that information
on to the accessory by calling the Desk Manager. The Desk Manager also
includes routines that you must call to ensure that desk accessories
work properly.

As mentioned above, you can use TextEdit to implement the standard text
editing capability of cutting and pasting via the Clipboard in your
application. To allow the use of the Clipboard for cutting and pasting
text or graphics between your application and another application or a
desk accessory, you need to call the Scrap Manager.

Some generally useful operations such as fixed-point arithmetic, string
manipulation, and logical operations on bits may be performed with the
Toolbox Utilities.

9/10/84 Rose /ROAD.MAP/ROAD.2

| Road Map + 10 September 1984 Page 0010 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

10 Inside Macintosh Road Map

The final part of the Toolbox, the Package Manager, lets you use RAM-
based software called packages. The Standard File Package will be
called by every application whose File menu includes the standard
commands for saving and opening documents; it presents the standard
user interface for specifying the document. Some of the Macintosh
packages can be seen as extensions to the Toolbox Utilities: the
Binary-Decimal Conversion Package converts integers to decimal strings
and vice versa, and the International Utilities Package gives you
access to country-dependent information such as the formats for
numbers, currency, dates, and times.

The Operating System and Other Low-Level Software

The Macintosh Operating System provides the low-level support that
applications need in order to use the Macintosh hardware. As the
Toolbox is your program's interface to the user, the Operating System
is its interface to the Macintosh.

The Memory Manager dynamically allocates and releases memory for use by
applications and by the other parts of the Operating System. Most of
the memory that your program uses is in an area called the heap; the
code of the program itself occupies space in the heap. Memory space in
the heap must be obtained from the Memory Manager.

The Segment Loader is the part of the Operating System that loads
program code into memory to be executed. Your program can be loaded
all at once, or you can divide it up into dynamically loaded segments
to economize on memory usage. The Segment Loader also serves as a
bridge between the Finder and your application, letting you know
whether the application has to open or print a document on the desktop
when it starts up.

Low-level, hardware-related events such as mouse-button presses and
keystrokes are reported by the Operating System Event Manager. {The
Toolbox Event Manager then passes them to the application, along with
higher-level, software-generated events added at the Toolbox level.)
Your program will ordinarily deal only with the Toolbox Event Manager
and rarely call the Operating System Event Manager directly.

File I/0 is supported by the File Manager, and device I/0 by the Device
Manager. The task of making the various types of devices present the
same interface to the application is performed by specialized device
drivers. The Operating System includes three built-in drivers:

— The Disk Driver controls data storage and retrieval on 3 1/2-inch
disks.
- The Sound Driver controls sound generation, including music

composed of up to four simultaneous tones.

~ The Serial Driver reads and writes asynchronous data through the
two serial ports, providing communication between applications and
serial peripheral devices such as a modem or printer.

9/10/84 Rose /ROAD .MAP/ROAD.2

| Road Map + 10 September 1984 Page 0011 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

OVERVIEW OF THE SOFIWARE 11

The above drivers are all in ROM; other drivers are RAM-based. There's
a Serial Driver in RAM as well as the one in ROM, and there's a Printer
Driver in RAM that enables applications to print information on any
variety of printer via the same interface (called the Printing
Manager). The AppleBus Manager is an interface to a pair of RAM
drivers that enable programs to send and receive information via an
AppleBus network. More RAM drivers can be added independently or built
on the existing drivers. For example, the Printer Driver was built on
the Serial Driver, and a music driver could be built on the Sound
Driver.

The Macintosh video circuitry generates a vertical retrace interrupt 6¢
times a second. An application can schedule routines to be executed at
regular intervals based on this "heartbeat" of the system. The
Vertical Retrace Manager handles the scheduling and execution of tasks
during the vertical retrace interrupt.

If a fatal error occurs while your application is running (for example,
if it runs out of memory), the System Error Handler assumes control.
The System Error Handler displays a box containing an error message and
provides a mechanism for the user to start up the system again or
resume execution of the application.

The Operating System Utilities perform miscellaneous operations such as
getting the date and time, finding out the user's preferred speaker
volume and other preferences, and doing simple string comparison.

(More sophisticated string comparison routines are available in the
International Utilities Package.)

Finally, there are three Macintosh packages that perform low-level
operations: the Disk Initialization Package, which the Standard File
Package calls to initialize and name disks; the Floating-Point
Arithmetic Package; and the Transcendental Functions Package.

A SIMPLE EXAMPLE PROGRAM

To illustrate various commonly used parts of the software, this section
presents an extremely simple example of a Macintosh application
program. Though too simple to be practical, this example shows the
overall structure that every application program will have, and it does
many of the basic things every application will do. By looking it
over, you can become more familiar with the software and see how your
own program code will be structured.

The example program's source code is shown in Figure 4, which begins on
page 15. A lot of comments are included so that you can see which part
of the Toolbox or Operating System is being called and what operation
is being performed. These comments, and those that follow below, may
contain terms that are unfamiliar to you, but for now just read along
to get the general idea. All the terms are explained at length within
Inside Macintosh. If you want more information right away, you can
look up the terms in the Glossary or the Index *** (currently the

9/10/84 Rose /ROAD.MAP/ROAD.3

| Road Map + 10 September 1984 Page 0012 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

12 Inside Macintosh Road Map

individual glossaries in the various manuals, and the manual Index to
Technical Documentation) ***

The application, called Samp, displays a single, fixed-size window in
which the user can enter and edit text (see Figure 3). It has three
menus: the standard Apple menu, from which desk accessories can be
chosen; a File menu, containing only a Quit command; and an Edit menu,
containing the standard editing commands Undo, Cut, Copy, Paste, and
Clear. The Backspace key may be used to delete, and Shift-clicking
will extend or shorten a selection. The user can move the document
window around the desktop by dragging it by its title bar.

Figure 3. The Samp Application
The Undo command doesn't work in the application's document window, but
it and all the other editing commands do work in any desk accessories
that allow them (Note Pad, for example). Some standard features this
simple example doesn't support are as follows:

- Text cannot be cut (or copied) and pasted between the document and
a desk accessory.

- The pointer remains an arrow rather than changing to an I-beam
within the document.

— The standard keyboard equivalents——Command-Z, X, C, and V for
Undo, Cut, Copy, and Paste—-aren't in the Edit menu. They won't
work in the document window (but they will work in desk
accessories that allow those commands).

Because the File menu contains only a Quit command, the document can't
be saved or printed. Also, the application doesn't have an "About

9/10/84 Rose /ROAD.MAP/ROAD. 3

| Road Map + 10 September 1984 Page 0013 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

A SIMPLE EXAMPLE PROGRAM 13

Samp" command as the first item in its Apple menu, nor does it present
any dialog boxes or alerts. All of these features and more are
illustrated in programs in the Sample Macintosh Programs manual *%%*
(forthcoming) #***,

In addition to the code shown in Figure 4, the Samp application has a
resource file that includes the data listed below. The program uses
the numbers in the second column to identify the resources; for
example, it makes a Menu Manager call to get menu number 128 from the
resource file.

Resource Resource ID Description

Menu 128 Menu with the apple symbol as its
title and no commands in it

Menu 129 File menu with one command, Quit

Menu 139 Edit menu with the commands Undo

(dimmed), Cut, Copy, Paste, and
Clear, in that order, with a
dividing line between Undo and Cut
Window 128 Document window without a size box;
template top left corner of (5¢,48) on
QuickDraw's coordinate plane,
bottom right corner of (3¢@,450);
title "A Sample"; no close box

Each menu resource also contains a "menu ID" that's used to identify
the menu when the user chooses a command from it; for all three menus,
this ID is the same as the resource ID.

(note)
To create a resource file with the above contents, you
can use the Resource Editor *** (for now, the Resource
Compiler) *** or any similar program that may be
available on the development system you're using; for
more information, see the documentation for that program.
*** The Resource Compiler is documented in Putting
Together a Macintosh application. The Resource Compiler
input file for the Samp application is shown in the
appendix of this manual. All these files will eventually

be provided to developers by Macintosh Technical Support.
Kk

The program starts with a USES clause that specifies all the necessary
Pascal interface files. (The names shown are for the Lisa Workshop
development system, and may be different for other systems.) This is
followed by declarations of some useful constants, to make the source
code more readable. Then there are a number of variable declaratioms,
some having simple Pascal data types and others with data types defined
in the Pascal interface files (like Rect and WindowPtr). Variables
used in the program that aren't declared here are global variables
defined in the interface to QuickDraw.

The variable declarations are followed by two procedure declarations:
SetUpMenus and DoCommand. You can understand them better after looking

9/10/84 Rose /ROAD.MAP/ROAD.3

| Road Map + 10 September 1984 Page 0014 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

14 Inside Macintosh Road Map

at the main program and seeing where they're called.

The program begins with a standard initialization sequence. Every
application will need to do this same initialization (in the order
shown), or something close to it.

Additional initialization needed by the program follows. This includes
setting up the menus and the menu bar (by calling SetUpMenus) and
creating the application's document window (reading its description
from the resource file and displaying it on the screen).

The heart of every application program is its main event loop, which
repeatedly calls the Toolbox Event Manager to get events and then
responds to them as appropriate. The most common event is a press of
the mouse button; depending on where it was pressed, as reported by the
Window Manager, the sample program may execute a command, move the
document window, make the window active, or pass the event on to a desk
accessory. The DoCommand procedure takes care of executing a command;
it looks at information received by the Menu Manager to determine which
command to execute.

Besides events resulting directly from user actions such as pressing
the mouse button or a key on the keyboard, events are detected by the
Window Manager as a side effect of those actions. For example, when a
window changes from active to inactive or vice versa, the Window
Manager tells the Toolbox Event Manager to report it to the application
program. A similar process happens when all or part of a window needs
to be updated (redrawn). The internal mechanism in each case 1is
invisible to the program, which simply responds to the event when
notified.

The main event loop terminates when the user takes some action to leave
the program--in this case, when the Quit command is chosen.

That's it! Of course, the program structure and level of detail will
get more complicated as the application becomes more complex, and every
actual application will be more complex than this one. But each will
be based on the structure illustrated here.

9/10/84 Rose /ROAD.MAP/ROAD.3

| Road Map + 10 September 1984 Page 0015 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

A SIMPLE EXAMPLE PROGRAM 15

PROGRAM Samp;

{ Samp -- A snall sample application written in Pascal by Macintosh User Education }
{ It displays a single, fixed-size window in which the user can enter and edit text. }

USES {SU Obj/MenTypes } MenTypes, {basic Memory Manager data types}
{SU Obj/QuickDraw} QuickDraw, {interface to QuickDraw}
{SU 0bj/0SIntf } OSIntf, {interface to the Operating Systen}
{SU Obj/ToolIntf } Toollntf; {interface to the Toolbox}

CONST applelD = 128; {resource IDs/menu IDs for Apple, File, and Edit menus}
filelD = 129;
editID = 130;
appleMd = 1; {index for each menu in array of menu handles}
fileM = 2;
editM = 3;
nenuCount = 3
windowlID = 12
undoConnand =
cutComnand =
copyComnand
pasteComnand
clearConnand

; {total number of menus}
; {resource ID for application's window}
{menu item numbers identifying commands in Edit menu}

e

s

’

N

o onw o
o ms

.

VAR myMenus: ARRAY [1..menuCount] OF MenuHandle;
dragRect, txRect: Rect;
extended, doneFlag: BOOLEAN;
nyEvent: EventRecord;
wRecord: WindowRecord;
nyWindow, whichWindow: WindowPtr;
textH: TEHandle;

PROCEDURE SetUpMenus;
{ Set up menus and menu bar }

VAR i: INTEGER;
BEGIN

nyMenus [appleM] := GetMenu(appleID); {read Apple menu from resource file}
fAddResMenu(nyMenus [appleM], 'DRVR'); {add desk accessory names to fipple menu}

nyMenus [fileM] := GetMenu(fileID); {read File menu from resource file}
nyMenus [editM] := GetMenu(editID); {read Edit menu from resource file}
FOR i:=1 TO menuCount DO InsertMenu(myMenus[i],0); {install menus in menu bar }
DrawMenuBar; { and drow menu bar}

END; {of SetUpMenus}

PROCEDURE DoCommond (mResult: LONGINT);
{ Execute comnand specified by mResult, the result of MenuSelect }

VAR theltem, temp: INTEGER;
nane: Str255;

BEGIN
thelten := LoWord(nResult); {call Toolbox Utility routine to get }
{ menu iten number from low-order word}
Figure 4. Example Program
9/10/84 Rose /ROAD.MAP/ROAD. 3

| Road Map + 10 September 1984 Page 0016 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

16 Inside Macintosh Road Map

CASE HiWord(mResult) OF {case on nmenu ID in high-order word}
applelD:
BEGIN {cdll Menu Manager to get desk accessory }
GetItenm(myMenus[appleM], thelten, name); { name, ond call Desk Manager to open }
temp := OpenDeskAcc(name); { accessory (OpenDeckAcc result not used)}
SetPort(myWindow); {call QuickDraw to restore application }
END; {of applelD} { window as grafPort to draw in (may have }
{ been changed during OpenDeskficc)}
filelD:
doneFlag := TRUE; {quit (nain loop repeats until doneFlag is TRUE)}
editID:
BEGIN {call Desk Manager to handle editing command if }

IF NOT SystemEdit(theltem-1) { desk accessory window is the active window}
THEN Eapplication window is the active window}
CASE thelten OF case on menu item (command) number}
cutConnand: TECut (textH); {call TextEdit to handle command}
copyComnand: TECopy(textH),
pasteCommand: TEPaste(textH);
clearComnand: TEDelete(textH);

END; {of iten case}
END; {of editID}

END; {of menu case} {to indicate completion of command, call }
HiliteMenu(0); % Menu Manager to unhighlight menu title }

(highlighted by MenuSelect)}
END; {of DoCommand} ,

BEGIN { nain progran }

InitGraf (athePort); finitiulize QuickDraw}

InitFonts; initialize Font Manager}

FlushEvents(everyEvent, 0); {cdll 0S Event Manager to discard any previous events}

InitWindows; {initialize Window Manager}

InitMenus; {initialize Menu Manager}

TEInit; {initialize TextEdit}

InitDialogs(NIL); {initialize Dialog Manager}

InitCursor; {call QuickDraw to make cursor (pointer) an arrow}
SetUpMenus; Eset up nenus and menu bar}

WITH screenBits.bounds DO call QuickDraw to set dragging boundaries; ensure at }

SetRect(dragRect, 4, 24, right-4,botton-4); { least 4 by 4 pixels will remgin visible}

doneFlag := FALSE: {flag to detect when Quit command is chosen}

nyWindow : = GetNewWindow(windowlD, awRecord, POINTER(-1)); {put up application window}
SetPort(myWindow), %call QuickDraw to set current grafPort to this window}
txRect := thePort”.portRect; {rectangle for text in window; call QuickDraw to bring }
InsetRect(txRect, 4, 0); { it in 4 pixels from left and right edges of windowi
textH : = TENew(txRect, txRect); {call TextEdit to prepare for receiving text

{ Main event loop }

REPEAT call Desk Manager to perform any periodic }
SystenTask; actions defined for desk accessories}
TEIdle(textH); call TextEdit to moke vertical bar blink}

Figure 4. Example Program (continued)

9/10/84 Rose /ROAD.MAP/ROAD. 3

| Road Map + 10 September 1984 Page 0017 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

A SIMPLE EXAMPLE PROGRAM 17

IF GetNextEvent(everyEvent, myEvent) {call Toolbox Event Manager to get the next }
THEN { event that the application should handle}

CASE nyEvent.what OF {case on event type}

nouseDown: {mouse button down: call Window Manager to learn where}
CASE FindWindow(myEvent.where, whichWindow) OF

inMenuBar: {menu bar: call Menu Manager to learn which command; }
DoConnand(MenuSelect(nyEvent. where)); { then execute it}

inSysWindow: {desk accessory window: call Desk Manager to handle it}
SystenClick(myEvent, whichWindow);

inDrag: {title bar: call Window Manager to drag}
DragWindow(whichWindow, nyEvent. where, dragRect);

inContent: {body of application window: }
BEGIN { call Window Manager to check whether }
IF whichWindow <> FrontWindow { it's the active window and make it }
THEN SelectWindow(whichWindow) { active if not }
ELSE
BEGIN {it's already active: call QuickDraw to }
GlobalToLocal (nmyEvent. where); { convert to window coordinates for }

{ TEClick, use Toolbox Utility BitfAnd to }
extended := BitAnd(myEvent.nmodifiers, shiftKey) <> 0; { test for Shift }
TEClick(myEvent. where, extended, textd); { key down, and call TextEdit }
END; { to process the event}

END; {of inContent}

END; {of nouseDown}

keyDown, autoKey: {key pressed: pass character to TextEdit}
TEKey (CHR(BitAnd(nyEvent. message, charCodeMask)), textH);
activateEvt:
BEGIN
IF BitfAnd(myEvent.nodifiers, activeFlag) <> 0
THEN {application window is becoming active: }
BEGIN { call TextEdit to highlight selection }
TEActivate(textH),; { or display blinking vertical bar, and call }
Disableltemn(myMenus[editM], undoCommand); { Menu Manager to disable }
END { Undo (since application doesn't support Undo)}
ELSE
BEGIN {opplication window is becoming inactive: }

TEDeactivate(textH); { unhighlight selection or remove blinking }

Enablelten(nyMenus[editl], undoCommand); { vertical bar, and enable }

END; { Undo (since desk accessory may support it)}
END: {of activateEvt}

UP§§é§§Vt: {window appearance needs updating}
BeginUpdate(WindowPtr (nyEvent. message)); {call Window Manager to begin update}
EraseRect(thePort”. portRect); {call QuickDraw to erase text area}
TEUpdate(thePort”. portRect, textH); {call TextEdit to update the text}

EndUpdate(WindowPtr (myEvent.message)); {call Window Manager to end update}
END; {of updateEvt}

END; {of event case}

UNTIL doneFlag;
END.

Figure 4. Example Program (continued)

9/10/84 Rose /ROAD.MAP/ROAD.3

Road Map ¢ 10 September 1984 Page 0018 of 0024

Apple Macintosh Early Technical Information < Inside Macintosh

18 Inside Macintosh Road Map

WHERE TO GO FROM HERE

**% This section refers to "manuals' for the time being; when the
individual manuals become chapters of Inside Macintosh, this will be
changed to "chapters'". It also refers to the "order" of the manuals;
this means the order of the documentation when it's combined into a
single manual. For a list of what's been distributed so far and how it
will be ordered, see the cover page of this manual. Anything not
listed there hasn't been distributed yet by Macintosh User Education,
but programmer's notes or other preliminary documentation may be
available. *%*

This section contains important directions for every reader of Inside
Macintosh. It will help you figure out which manuals to read next.

The Inside Macintosh documentation is ordered in such a way that you
can follow it if you read through it sequentially. Forward references
are given wherever necessary to any additional information that you'll
need in order to understand what's being discussed. Special-purpose
information that can possibly be skipped is indicated as such. Most
likely you won't need to read everything in each manual and can even
skip entire manuals.

You should begin by reading the following:

1. Macintosh User Interface Guidelines. All Macintosh applications
should follow these guidelines to ensure that the end user is
presented with a consistent, familiar interface.

2. Macintosh Memory Management: An Introduction.

3. Programming Macintosh Applications in Assembly Language, if you're
using assembly language. Depending on the debugging tools
available on the development system you're using, it may also be
helpful or necessary for Pascal programmers to read this manual.
You'll also have to read it if you're creating your own
development system and want to know how to write interfaces to the
routines.

4. The documentation of the parts of the Toolbox that deal with the
fundamental aspects of the user interface: the Resource Manager,
QuickDraw, the Toolbox Event Manager, the Window Manager, and the
Menu Manager.

Read the other manuals if you're interested in what they discuss, which
you should be able to tell from the overviews in this "road map" and
from the introductions to the manuals themselves. Each manual's
introduction will also tell you what you should already know before
reading that manual.

When you're ready to try something out, refer to the appropriate
documentation for the development system you'll be using. *** (Lisa
Workshop users, see Putting Together a Macintosh Application.) ***

9/10/84 Rose /ROAD.MAP/ROAD.3

| Road Map + 10 September 1984 Page 0019 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM 19

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM

For Lisa Workshop users, this appendix shows the Resource Compiler
input file used with the example program presented earlier. For more
information on the format of the file, see Putting Together a Macintosh

Application.

(note)
This entire appendix is temporary; it will not be part of
the final Inside Macintosh manual, because all the
information in that manual will be independent of the
development system being used. Authors of the
documentation for a particular development system may
choose to show how the resource file for Samp would be
created on that system.
* SampR —— Resource Compiler input file for Samp application
* written by Macintosh User Education
Work/Samp.Rsrc
Type MENU
,128 (4)
* the apple symbol
\14
,129 (4)
File
Quit
130 (4)
Edit
(Undo
(-
Cut
Copy
Paste
Clear
Type WIND
,128 (36)
A Sample

5¢ 49 308 459
Visible NoGoAway
4

¢

Type SAMP = STR
N
Samp Version 1.§ —— September &4, 1984

Type CODE
Work/SampL,®

9/10/84 Rose /ROAD.MAP/ROAD.3

| Road Map + 10 September 1984 Page 0020 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

20 Inside Macintosh Road Map

GLOSSARY

AppleBus Manager: An interface to a pair of RAM drivers that enable
programs to send and receive information via an AppleBus network.

Binary-Decimal Conversion Package: A Macintosh package for converting
integers to decimal strings and vice versa.

Control Manager: The part of the Toolbox that provides routines for
creating and manipulating controls (such as buttons, check boxes, and
scroll bars).

Desk Manager: The part of the Toolbox that supports the use of desk
accessories from an application.

device driver: A piece of software that controls a peripheral device
and makes it present a standard interface to the application.

Device Manager: The part of the Operating System that supports device
1/0.

Dialog Manager: The part of the Toolbox that provides routines for
implementing dialogs and alerts.

Disk Driver: The device driver that controls data storage and
retrieval on 3 1/2-inch disks.

Disk Initialization Package: A Macintosh package for initializing and
naming new disks; called by the Standard File Package.

Event Manager: See Toolbox Event Manager or Operating System Event
Manager.

File Manager: The part of the Operating System that supports file 1/0.

Font Manager: The part of the Toolbox that supports the use of various
character fonts for QuickDraw when it draws text.

heap: An area of memory in which space can be allocated and released
on demand, using the Memory Manager.

International Utilities Package: A Macintosh package that gives you
access to country-dependent information such as the formats for
numbers, currency, dates, and times.

main event loop: In a standard Macintosh application program, a loop
that repeatedly calls the Toolbox Event Manager to get events and then

responds to them as appropriate.

Memory Manager: The part of the Operating System that dynamically
allocates and releases memory space in the heap.

9/10/84 Rose /ROAD .MAP/ROAD.G

| Road Map + 10 September 1984 Page 0021 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

GLOSSARY 21

Menu Manager: The part of the Toolbox that deals with setting up menus
and letting the user choose from them.

Operating System: The lowest-level software in the Macintosh. It does
basic tasks such as I/0, memory management, and interrupt handling.

Operating System Event Manager: The part of the Operating System that
reports hardware-related events such as mouse-button presses and
keystrokes.

Operating System Utilities: Operating System routines that perform
miscellaneous tasks such as getting the date and time, finding out the
user's preferred speaker volume and other preferences, and doing simple
string comparison.

package: A set of routines and data types that's stored as a resource
and brought into memory only when needed.

Package Manager: The part of the Toolbox that lets you access
Macintosh RAM-based packages.

Printer Driver: The device driver for the currently installed printer.

Printing Manager: The routines and data types that enable applications
to communicate with the Printer Driver to print on any variety of
printer via the same interface.

QuickDraw: The part of the Toolbox that performs all graphic
operations on the Macintosh screen.

resource: Data used by an application (such as menus, fonts, and
icons), and also the application code itself.

Resource Manager: The part of the Toolbox that reads and writes
resources.

Scrap Manager: The part of the Toolbox that enables cutting and
pasting between applications, desk accessories, or an application and a
desk accessory.

Segment Loader: The part of the Operating System that loads the code
of an application into memory, either as a single unit or divided into

dynamically loaded segments.

Serial Driver: The device driver that controls communication, via
serial ports, between applications and serial peripheral devices.

Sound Driver: The device driver that controls sound generation in an
application.

Standard File Package: A Macintosh package for presenting the standard
user interface when a file is to be saved or opened.

9/10/84 Rose /ROAD.MAP/ROAD.G

| Road Map + 10 September 1984 Page 0022 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

22 Inside Macintosh Road Map

System Error Handler: The part of the Operating System that assumes
control when a fatal error (such as running out of memory) occurs.

TextEdit: The part of the Toolbox that supports the basic text entry
and editing capabilities of a standard Macintosh application.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: The part of the Toolbox that allows your
application program to monitor the user's actions with the mouse,
keyboard, and keypad.

Toolbox Utilities: The part of the Toolbox that performs generally
useful operations such as fixed-point arithmetic, string manipulation,
and logical operations on bits.

User Interface Toolbox: The software in the Macintosh ROM that helps
you implement the standard Macintosh user interface in your
application.

vertical retrace interrupt: An interrupt generated 6@ times a second
by the Macintosh video circuitry while the beam of the display tube
returns from the bottom of the screen to the top.

Vertical Retrace Manager: The part of the Operating System that
schedules and executes tasks during the vertical retrace interrupt.

Window Manager: The part of the Toolbox that provides routines for
creating and manipulating windows.

9/10/84 Rose /ROAD.MAP/ROAD.G

| Road Map + 10 September 1984 Page 0023 of 0024 |

Apple Macintosh Early Technical Information < Inside Macintosh

END OF DOCUMENT

| Road Map + 10 September 1984 Page 0024 of 0024 |

