Apple Macintosh Early Technical Information < Inside Macintosh

g

EARLY MACINTOSH TECHNICAL INFORMATION

INSIDE MACINTOSH
PUTTING TOGETHER
A MACINTOSH APPLICATION

COMMENT

MACINTOSH PROGRAM DEVELOPMENT INSTRUCTIONS
FOR MACINTOSH PROGRAMMERS USING THE APPLE
LISA WORKSHOP DEVELOPMENT SYSTEM

AUTHOR
APPLE COMPUTER

DATE
05 MAY 1985

SOURCE
DAVID T CRAIG ¢ JANUARY 2004

| Putting Together a Macintosh Application < 05 May 1985 Page 0001 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

MACINTOSH USER EDUCATION

Putting Together a Macintosh Application /PUTTING/TOGETHER
Modification History: First Draft (ROM 2.45) Caroline Rose 6/9/83
Second Draft (ROM 4.4) Caroline Rose 7/14/83

Third Draft (ROM 7) Caroline Rose 1/13/84

Fourth Draft Caroline Rose 4/9/84

Fifth Draft Caroline Rose 7/19/84

Sixth Draft Caroline Rose 5/5/85

ABSTRACT

This manual discusses the fundamentals of preparing, compiling or
assembling, and linking a Macintosh application program on the Lisa
Workshop development system.

Summary of significant changes and additions since last draft:

- This manual now documents Lisa Workshop version 3.¢ and the May
1985 Macintosh Software Supplement. Some of the information may
not apply to Workshop version 2.0.

- Changes have been made to the interface files and the files you
link with or include in your assembly-language source.

- The sections describing the Macintosh utility programs RMover and
Set File have been removed. These programs have been superseded
by other tools in the Macintosh Software Supplement.

| Putting Together a Macintosh Application < 05 May 1985 Page 0002 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

2 Putting Together a Macintosh Application

TABLE OF CONTENTS

3 About This Manual

3 Conventions

4 Getting Started

6 The Source File

7 The Resource Compiler Input File

13 Defining Your Own Resource Types

14 The Exec File

19 Dividing Your Application Into Segments

20 Notes for Assembly-Language Programmers

23 Summary of Putting Together an Application

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

| Putting Together a Macintosh Application < 05 May 1985 Page 0003 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual discusses the fundamentals of preparing, compiling or
assembling, and linking a Macintosh application program on the Lisa
Workshop development system. It assumes the following:

= You know how to write a Macintosh application in Pascal or
assembly language. Details on this may be found in Inside
Macintosh.

= You're familiar with the Macintosh Finder, which is described in
Macintosh, the owner's guide.

You need to have a Lisa 2/5 or 2/1# with at least 1 megabyte of memory,
a Workshop development system (version 2.@ or greater), and the
Macintosh Software Supplement.

(note)
This manual applies to version 3.0 of the Workshop and
the May 1985 Software Supplement.

After explaining some conventions it uses, the manual begins by
presenting the first steps you should take once your Lisa has been set
up for Macintosh application development under the Workshop. It then
discusses each of the three files you'll create to develop your
application: the source file, the Resource Compiler input file, and an
exec file.

The next section discusses how to divide an application into segments.
This is followed by important information for programmers who want to
write all or part of an application in assembly language.

Finally, there's a summary of the steps to take to put together a
Macintosh application.

(note)
This manual presents a recommended scenario, not by any
means the only possible one. Details, such as what you
name your files, may vary.

Conventions

Sometimes this manual shows you what to do in a two-column table, the
first one labeled "Prompt" and the second "Response'. The first column
shows what appears on the Lisa to "prompt" you; it might be a request
for a file name, or just the Workshop command line. This column will
not show all the output you'll get from a program, only the line that
prompts you. (There may have been a lot of output before that line.)
The second column shows what you type as a response. The following
notation 1is used:

5/5/85 Rose /PUTTING/TOGETHER. 2

Putting Together a Macintosh Application ¢« 05 May 1985 Page 0004 of 0025 |
\

Apple Macintosh Early Technical Information < Inside Macintosh

4 Putting Together a Macintosh Application

Notation Meaning
{ret> Press the RETURN key.
[] Explanatory comments are enclosed in [};

you don't type them.

A space preceding <{ret> is not to be typed. It's there only for
readability.

[] in the "Prompt" column actually appear in the prompt; they enclose
defaults.

Except where indicated otherwise, you may type letters in any
combination of uppercase and lowercase, regardless of how they're shown
in this manual.

GETTING STARTED

Once your Lisa has been set up for Macintosh application development,
it's a good idea to orient yourself to the files installed on it. You
can use the List command in the File Manager to list all the file
names. Certain subsets of related files begin with the same few
letters followed by a slash; some typical naming conventions are as

follows:

Beginning

of file name Description

Intrfc/ Text files containing the Pascal interfaces

T1lAsm/ Text files to include when using assembly language

obj/ Object files

Work/ Your current working files

Back/ Backup copies of your working files

Example/ Examples provided by Macintosh Technical Support
(note)

This manual assumes that your files observe the above
naming conventions.

You'll write your application to a Macintosh system disk, which means a
Macintosh disk that contains the system files needed for running an
application. The necessary system files are on the Mac Build disk that
you received as part of the Macintosh Software Supplement. Use that
disk only to create other system disks. Here's how:

l. Insert the Mac Build disk into the Macintosh and open it.
2. Copy the System Folder to a new Macintosh disk; the exact method

you use depends on whether you have an external drive. See the
Macintosh owner's guide for more information.

(note)
One of the files in the System Folder, Imagewriter, is
needed only if you're going to print to an Imagewriter
5/5/85 Rose /PUTTING/TOGETHER. 2

| Putting Together a Macintosh Application < 05 May 1985 Page 0005 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

GETTING STARTED 5

printer; to save space, you might not want to copy it if
you don't need it.

If you also need or want any of the files on the MacStuff disks
included in the Macintosh Software Supplement, copy them as well.

As described in detail in the following sections, you'll create a
source file, Resource Compiler input file, and exec file for your
application, insert your Macintosh system disk into the Lisa, and run
the exec file. The exec file will compile the source file, link the
resulting object file with other required object files, run the
Resource Compiler to create the application's resource file, and run a
program called MacCom to write the application to the Macintosh disk.
When MacCom is done, it will eject the disk; to try out your
application, you'll insert the ejected disk into the Macintosh and just
open the application's icon.

5/5/85 Rose /PUTTING/TOGETHER. 2

| Putting Together a Macintosh Application < 05 May 1985 Page 0006 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

6 Putting Together a Macintosh Application

THE SOURCE FILE

Your working files will of course include the source file for your
application. Suppose, for example, that you have an application named
Samp. The source file would be Work/Samp.Text and would have the
structure shown below.

(note)
"Samp" is used as the application name in all examples in
this manual. You don't have to use the exact name of
your application; any abbreviation will do.

PROGRAM Samp;

{ Samp -~ A sample application written in Pascal }
{ by Macintosh User Education 5/1/85 }

[List the following in the order shown.]}

USES {$U Obj/MemTypes } MemTypes,
{$U Obj/QuickDraw } QuickDraw,
{SU Obj/0SIntf } 0SIntf,
{$U Obj/ToolIntf } ToollIntf,
{$U Obj/MacPrint } MacPrint, [OPTIONAL]
{$U Obj/SANELib } SANELib, [OPTIONAL }
}

{$U Obj/PackIntf PackIntf; [OPTIONAL]
[Your LABEL, CONST, TYPE, and VAR declarations will be here.]
[Your application's procedures and functions will be here.]

BEGIN

{ The main program will be here. }

END.

Each line in the USES clause specifies first a file name and then a
unit name (which happen to be the same in all cases here). The file
contains the compiled Pascal interface for that unit; the corresponding
text file name begins with "Intrfc/" rather than "Obj/". The Pascal
interface includes the declarations of all the routines in the unit.

It also contains any data types, predefined constants, and, in the case
of QuickDraw, Pascal global variables.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0007 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE SOURCE FILE 7

File name Interface it contains
Intrfc?MemTypes.Text Basic Memory Manager data types
Intrfc/QuickDraw. Text QuickDraw
Intrfc/0SIntf.Text Operating System
Intrfc/ToolIntf.Text Toolbox, except QuickDraw
Intrfc/MacPrint.Text Printing Manager
Intrfc/SANELib.Text Floating-Point Arithmetic and
Transcendental Functions Packages
Intrfc/PackIntf.Text Other packages

You only have to include the files for the units your application uses.
It doesn't do any harm to include them all, but it will take somewhat
longer for your program to compile. If you're using any units of your

own, just add their Pascal interface files at the end of the USES
clause.

You can divide the code of an application into several segments and
have only some of them in memory at a time. The section "Dividing Your
Application Into Segments" tells how to specify segments in your source

file. If you don't specify any, your program will consist of a single,
blank-named segment.

THE RESOURCE COMPILER INPUT FILE

You'll need to create a resource file for your application. This is
done with the Resource Compiler, and you'll have among your working
files an input file to the Resource Compiler. One convention for
naming this input file is to give it the name of your source file
followed by "R" (such as Work/SampR.Text).

The first entry in the input file specifies the name to be given to the
output file from the Resource Compiler, the resource file itself;
you'll enter '"Work/" followed by the application name and ".Rsrc".
Another entry tells which file the application code segments are to be
read from. (The code segments are actually resources of the
application.) You'll enter the name of the Linker output file
specified in the exec file for building your application, as described
in the next section.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0008 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

8 Putting Together a Macintosh Application

If you don't want to include any resources other than the code
segments, you can have a simple input file like this:

* SampR -- Resource input for sample application
* Written by Macintosh User Education 5/1/85
Work/Samp.Rsrc

Type SAMP = STR
’
Samp Version 1.1 —— May 1, 1985

Type CODE
Work/SampL,®

This tells the Resource Compiler to write the resulting resource file
to Work/Samp.Rsrc and to read the application code segments from
Work/SampL.Obj. It also specifies the file's signature and version
data, which the Finder needs.

It's a good idea to begin the input file with a comment that describes
its contents and shows its author, creation date, and other such
information. Any line beginning with an asterisk (*) is treated as a
comment and ignored. (You cannot have comments embedded within lines.)
The Resource Compiler also ignores the following:

- leading spaces (except before the text of a string resource)

- embedded spaces (except in file names, titles, or other text
strings)

- blank lines (except for those indicated as required)

The first line that isn't ignored specifies the name to be given to the
resulting resource file. Then, for each type of resource to be
defined, there are one or more "Type statements". A Type statement
consists of the word "Type" followed by the resource type (without
quotes) and, below that, an entry of following format for each
resource:

file name!resource name,resource ID (resource attributes)
type—-specific data

The punctuation shown here in the first line is typed as part of the
format. Don't enter spaces where none are shown, such as after the
comma. You must always provide a resource ID. Specifications other
than the resource ID may or may not be required, depending on the
resource type:

- Either there will be some type-specific data defining the resource
or you'll give a file name indicating where the resource will be
read from. Even in the absence of a file name, you must include
the comma before the resource ID.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0009 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE RESOURCE COMPILER INPUT FILE 9

- You specify a resource name along with the file name for fonts and
drivers. The Menu Manager procedures AddResMenu and InsertResMenu
will put these resource names in menus. Enter the names in the

combination of uppercase and lowercase that you want to appear in
the menus.

- Resource attributes in parentheses are optional for all types.
They're given as a number equal to the value of the resource
attributes byte, and @ 1s assumed if none is specified. For
example, for a resource that's purgeable but has no other
attributes set, the input will be "(32)".

If you want to enter a nonprinting or other unusual character in your
input file, either by itself or embedded within text, just type a back
slash (\) followed by the ASCII code of the character in hexadecimal.
For example, the Resource Compiler interprets \@D as a Return character
and \14 as the apple symbol.

The formats for the different types of resources are best explained by
example. Some examples are given below along with remarks that provide
further explanation. Here are some points to remember:

- Most examples list only one resource per Type statement, but you
can include as many resources as you like in a single statement.

- In every case, resource attributes in parentheses may be specified
after the resource ID.

= All numbers are base 1§ except where hexadecimal is indicated.

- The Type statements may appear in any order in the input file.

Type WIND Window template
,128 (»2) Resource ID
Status Report Window title
49 89 120 399 BoundsRect (top left bottom right)
Visible GoAway For FALSE, use Invisible or NoGoAway
¢ ProcID (window definition ID)
0 RefCon (reference value)
Type MENU Menu, standard type
,128 (1) Resource ID (becomes the menu ID)
* menu for desk accessories
\14 Menu title (apple symbol)
About Samp... Menu item
Blank line required at end of menu
, 129 Resource ID
Edit Menu title
Cut/X Menu items, one per line, with meta-
Paste/Z characters, ! alone for check mark
(- You cannot specify a blank item; use (-
Word Wrap! for a disabled continuous line.

Blank line required at end of menu

5/5/85 Rose /PUTTING/TOGETHER. 3

Putting Together a Macintosh Application ¢« 05 May 1985 Page 0010 of 0025 |
\

Apple Macintosh Early Technical Information < Inside Macintosh

10 Putting Together a Macintosh Application

Type MENU
»200
201
Patterns

Type CNTL
,128
Help
55 2 75 99
Visible
9

1
poo
Type ALRT
,128
129 199 199 259

309
F721

Type DLOG
,128

* modal dialog
109 199 199 25¢
Visible 1 NoGoAway @
209

,129

* modeless dialog
106 190 199 250
Visible @ GoAway @
309
Find and Replace

Type DITL
» 200
5
Btnltem Enabled
60 10 8¢ 79

Start

ResCItem Enabled
60 30 89 199
128

StatText Disabled
16 93 26 139
Seed

Iconltem Disabled
10 24 42 S6
128

Menu, nonstandard type
Resource ID [SEE NOTE 1 BELOW]

Resource ID of menu definition procedure
Menu title (may be followed by items)

Blank line required at end of menu
Control template

Resource ID

Control title

BoundsRect

For FALSE, use Invisible

ProcID (control definition ID)
RefCon (reference value)

Value minimum maximum

Alert template

Resource ID

BoundsRect

Resource ID of item list
Stages word in hexadecimal

Dialog template
Resource ID

BoundsRect

1 is procID, @ is refCon
Resource ID of item list
Title (none in this case)

BoundsRect

prociD, @ refCon
Resource ID of item list
Title

Item list in dialog or alert
Resource ID

Number of items

Also: ChkItem, RadioItem

Display rectangle

Title

Blank line required between items
Control defined in control template
Display rectangle

Resource ID of control template

Also: EditText
Display rectangle
The text (may be blank if EditText)

Also: Picltem
Display rectangle
Resource ID of icon

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985

Page 0011 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE RESOURCE COMPILER INPUT FILE 11

UserItem Disabled Application-defined item
20 5¢ 69 85 Display rectangle
Type ICON Icon
,128 Resource ID
9380 9P00 The icon in hexadecimal (32 such lines
.« o . altogether)
1ECP 318¢
Type ICN# Icon list
,128 Resource ID
2 Number of icons
9001 90P0 The icons in hexadecimal (32 such lines
.« o o altogether for each icon)
ppp2 8900
Type CURS Cursor
, 300 Resource ID
7FFC . . . 287F The data: 64 hex digits on one line
¢FCO . . . 1FF8 The mask: 64 hex digits on one line
pPp8 PPe8 The hotSpot in hexadecimal (v h)
Type PAT Pattern
, 200 Resource ID
AADDAA66AADDAAGS The pattern in hexadecimal
Type PAT# Pattern list
,136 Resource ID
2 Number of patterns
5522552255225522 The patterns in hexadecimal, one per
FFEEDDCCFFEEDDCC line
Type STR String
,128 Resource ID
This is your string The string on one line (leading spaces
not ignored)
Type STR# String list
,129 Resource ID
First string The strings

Second string
* note Return in next string
Third string\@Dcontinued
Blank line required after last string
Type DRVR Desk accessory or other device driver
Obj/Monkey !Monkey,17 (32) File name!resource name,resource ID
[SEE NOTE 2 BELOW]

Type FREF File reference
,128 Resource 1D
APPL @ TgFil File type 1local ID of icon file name

(omit file name if none)

5/5/85 Rose /PUTTING/TOGETHER. 3

Putting Together a Macintosh Application ¢« 05 May 1985 Page 0012 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

12 Putting Together a Macintosh Application

Type BNDL Bundle
,128 Resource ID
SAMP @ Bundle owner
2 Number of types in bundle
ICN# 1 Type and number of resources
® 128 Local ID @ maps to resource ID 128
FREF 1 Type and number of resources
9 128 Local ID § maps to resource ID 128
Type FONT Font (or FWID for font widths)
Obj/Griffin!Griffin,4@P@P File name!resource name,resource ID
Obj/Griffinl@,49pe10 File name,resource ID [SEE NOTE 3]
Obj/Griffinl2,4pP@12 File name,resource ID [BELOW]
Type CODE Application code segments
Obj/SampL,@ Linker output file name,resource ID

{ SEE NOTE 4 BELOW]

Notes:

1. Notice that the input for a nonstandard menu has one extra line in
it: the resource ID of the menu definition procedure, just
following the resource ID of the menu. If that line is omitted
(that is, if the menu's resource ID is followed by a line
containing text rather than a number), the resource ID of the
standard menu definition procedure (@) is assumed.

2. The Resource Compiler adds a NUL character (ASCII code) at the
beginning of the name you specify for a 'DRVR' type of resource.
This inclusion of a nonprinting character avoids conflict with
file names that are the same as the names of desk accessories.

3. The resource ID for a font resource has a special format:

font number @ size

The actual resource ID that the Resource Compiler assigns to the
font is

(128 * font number) + size

Three font resources are listed in the example above. Size @ is
used to provide only the name of the font (Griffin in this case);
a file name must also be specified but is ignored. The two
remaining font resources define the Griffin font in two sizes, 19
and 12.

4. For a 'CODE' type of resource, ".0bj" is appended to the given
file name, and the resource ID you specify is ignored. The
Resource Compiler always creates two resources of this type, with
ID numbers @ and 1, and will create additional ones numbered
sequentially from 2 if your program is divided into segments.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0013 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE RESOURCE COMPILER INPUT FILE 13

The Type statement for a resource of type 'WDEF', 'MDEF', 'CDEF',
'FKEY', 'KEYC', 'PACK', or 'PICT' has the same format as for 'CODE':
Only a file name and a resource ID are specified. For the 'PICT' type,
the file contains the picture; for the other types, it contains the
compiled code of the resource, and the Resource Compiler appends ".0bj"
to the file name.

(note)

The 'MBAR' resource type is not recognized by the
Resource Compiler.

If your application is going to write to the resulting resource file as
well as read it, you should place the Type statement for the code
segments at the end of the input file. In general, any resources that
the application might change and write out to the resource file should
be listed first in the input file, and any resources that won't be
changed (like the code segments) should be listed last. The reason for
this is that the Resource Compiler stores resources in the reverse of
the order that they're listed, and it's more efficient for the Resource
Manager to do file compaction if the changed resources are at the end
of the resource file.

Defining Your Own Resource Types

You can use one of the three types GNRL, HEXA, and ANYB to define your
own types of resources in the Resource Compiler input file. GNRL
allows you to specify your resource data in the manner best suited to
your particular data format; you specify the data as you want it to
appear in the resource. A code (beginning with a period) tells the
Resource Compiler how to interpret what you enter on the next line or
lines (up to the next code or the end of the Type statement). The
following illustrates all the codes:

Type GNRL General type

, 128 Resource ID

.P Pascal strings (with length byte), one
A Pascal string per line
Another Pascal string

.S Strings without length byte, one per
A string line

.1 Integers (decimal), one per line

9

1

.L Long integers (decimal), one per line

5438

.H Bytes in hexadecimal, any number

526FEEC942E78EA4 total, any number per lime

@F4C

.B Bytes from a file

MyData 36 256 File name number of bytes offset

Blank line required at end of statement

You can use an equal sign (=) along with the GNRL type to define a

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0014 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

14 Putting Together a Macintosh Application

resource of any desired format and with any four-character resource
type; for example, to define a resource of type 'MINE' consisting of
the integer 57 followed by the Pascal string 'Finance charges', you
could enter this:

Type MINE = GNRL
i} Amo
.1
57
P
Finance charges

The Resource Manager call GetResource('MINE',4Bf) would return a handle
to this resource.

The types HEXA and ANYB simply offer alternatives to the .H and .B
options (respectively) of the GNRL type, as shown below.

Type HEXA Bytes in hexadecimal
,201 Resource ID
S26FEEC942E78EA4 The bytes (any number total, any
@F4C number per line)
Blank line required at end
Type ANYB Bytes from a file
MyData, 26@ File name,resource ID
36 256 Number of bytes offset in file

You can also define a new resource type that inherits the properties of
a standard type. For example,

Type XDEF = WDEF

defines the new type 'XDEF', which the Resource Compiler treats exactly
like 'WDEF'. The next line would contain a file name and resource 1D
just as for a 'WDEF' resource.

THE EXEC FILE

It's useful for each application to have an exec file that does
everything necessary to build the application, including compiling,
linking, creating the resource file, and writing to a Macintosh disk.
The name of the exec file might, for example, be the source file name
followed by "X" (for "eXec"). Work/SampX.Text, the exec file for the
Samp application, is shown below.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0015 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

$EXEC
P{ascal}$M+
Work/Samp

{no list file}
{default output file}
L{ink}?

+X

{no more options}
Work/Samp
0bj/QuickDraw
0bj/0STraps
0bj/ToolTraps

Obj/PrLink [OPTIONAL)
Obj/SANELibAsm [OPTIONAL]
Obj/PackTraps [OPTIONAL]

Obj/PasInit
Obj/PasLib
Obj/PasLibAsm
Obj/RTLib

{end of input files}
{l1isting to console}
Work/SampL
R{un}RMaker
Work/SampR
R{un}MacCom

THE EXEC FILE 15

F{inder info}Y{es}L{isa-DMac}Work/Samp.Rsrc

Samp

APPL

SAMP

{no bundle bit}
E{ject}Q{uit}
$SENDEXEC

The file begins with $EXEC and ends with $ENDEXEC. Everything in
between (except for comments in braces) is exactly what you would type
on your Lisa if you were not using an exec file. To show what the
various entries in this file accomplish, the table below indicates what
each of them is a response to, and shows your response as it is in the
exec file or as it would be if you were using the keyboard. The
numbers on the left are given for reference in the explanation that

follows the table.

Prompt
{1} Workshop command line

Input file - [.TEXT]
List file - [.TEXT]

Output file - [Work/Samp]}[.0BJ]

5/5/85 Rose

Response
P [for Pascall

Work/Samp <ret>
<ret> [for nomne]
<ret> [for Work/Samp.Obj]

/PUTTING/TOGETHER.3

| Putting Together a Macintosh Application < 05 May 1985

Page 0016 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

16

[2)

(3]

(4]

Putting Together a Macintosh Application

Workshop command line

Input file [.OBJ] ?

Options ?

Options ?

Input file [.OBJ] ?

Input file [.OBJ] ?

Input file [.OBJ] ?

Input file [.OBJ] ?

Input file [.OBJ] ?

Listing file [-CONSOLE]} / [.TEXT]

Output file ? [OBJ.]

Workshop command line

Run what program?

Input file [sysResDef][.TEXT] -

Workshop command line

Run what program?

MacCom command line

Always prompt for the Finder info
when writing to a Mac file?
(Y or N) [No]

MacCom command line

Lisa files to write to Mac disk?

Copy to what Mac file?

Type? [?7777]

Creator? [??77?]

Set the Bundle Bit? (Y or N) [No]

MacCom command line

MacCom command line

L [for Link]

? <ret> [for options]
+X <ret>

<ret> [no more options]
Work/Samp <retd>
0bj/QuickDraw <ret>
Obj/0STraps <retd>

[other input files]
Obj/RTLib <ret>

<ret> [end of input files]
<{ret> [for -CONSOLE]
Work/SampL <ret>

R [for Run]

RMaker <ret>

Work/SampR <ret>

R [for Run]

MacCom <ret>

F [for Finder info)

Y [for Yes]

L [for Lisa->Mac]
Work/Samp.Rsrc <ret>
Samp <ret>

APPL, <ret>

SAMP <ret>

<ret> [for Nol

E [for Eject]

Q [for Quit]

Here's what you accomplish at each of the steps:

1.

2.

You compile the Pascal source code (Work/Samp.Text), resulting in

an object file (Work/Samp.Obj).

You link the application's object file with other object files
(resulting in the output file Work/SampL.Obj).

You run the Resource Compiler to create the application's resource
file (Work/Samp.Rsrc, as specified in Work/SampR.Text, the input

file to the Resource Compiler).

Included in the resources are the

application's code segments, which are read from the Linker output

file.

You use the MacCom program to write the resource file to the
Macintosh disk, giving the file the exact name you want your

application to have.

You set its file type to 'APPL' and its
creator to the signature specified in the resource file.

Since

there's no bundle in Samp's resource file, you don't set the

bundle bit.

Finally, you ask MacCom to eject the disk.

The files linked with the application's object file in step 3 are

described below.

Most of them contain a trap interface, which is a set

of small assembly-language routines that make it possible to call the

5/5/85 Rose

/PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985

Page 0017 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

THE EXEC FILE 17

corresponding unit or units from Pascal. The files should be listed in
the order shown. Specify the optional files only if your application
uses the routines they apply to.

File name Description
0bj7MemTypes.0bj Basic Memory Manager data types
0bj/QuickDraw.Obj Pascal interface to QuickDraw, needed so

the Linker will know how many QuickDraw
globals there are

0bj/0STraps.0b]j Trap interface for the Operating System
0bj/ToolTraps.Obj Trap interface for the Toolbox (except
QuickDraw)
0bj/PrLink.Obj The Printing Manager (except low-level)
Obj/PrScreen.Obj The low-level Printing Manager routines;
can be specified instead of PrlLink
Obj/SANELibAsm.Obj The Floating-Point Arithmetic and
Transcendental Functions Packages
0bj/PackTraps.Obj Trap interface for other packages
0bj/PasInit.Obj
Obj/PasLib.Obj Predefined Pascal routines,
0bj/PasLibAsm.Ob]j such as POINTER and ORD4
0bj/RTLib.0Ob]

Before running the Exec file, insert a Macintosh system disk into the
Lisa. Run the exec file as follows:

Prompt Response
Workshop command line R [for Rum]
Run what program? {Work/SampX <ret)>

When the disk is ejected, remove it and insert it into the Macintosh.
To try out your application, just open its icon.

(warning)
If you don't set your application's file type and
creator, either you won't be able to open its icon in the

usual way, or a different application may start up when
you do open it!

Notice that if you change the application's signature or the setting of
its bundle bit, step 4 of the above exec file will have to be edited
accordingly. Furthermore, if you create an icon for your application
(or modify it), you'll have to delete the invisible Desktop file,
otherwise the Finder won't know about the new icon. You can delete the
Desktop file by using the Delete command in MacCom on the Lisa, just
before copying the application to the disk with MacCom, or by holding
down the Option and Command keys when you start up the system disk on
the Macintosh.

(note)
Deleting the Desktop file can also affect the folder
structure on the disk.
5/5/85 Rose /PUTTING/TOGETHER. 3

Putting Together a Macintosh Application ¢« 05 May 1985 Page 0018 of 0025 |
\

Apple Macintosh Early Technical Information < Inside Macintosh

18 Putting Together a Macintosh Application

Before making major changes to your application, it's a good idea to
back it up. You can use the Backup command in the File Manager to back
up all files beginning with "Work/" to files beginning with "Back/"
(Work/=,Back/=). Also, you might want to periodically back up your
working files onto 3 1/2-inch disks.

There are several ways you could refine the exec file illustrated here;
exactly what you do will depend on your particular situation. Some
possibilities are listed below.

- You can set up the exec file to compile or link only if actually
necessary. For more information, see your Workshop documentation
or the sample general-purpose exec file (Example/Exec.Text)
provided in the Macintosh Software Supplement.

- To save disk space, you can add commands to the exec file to make
it delete the two intermediate files: the object file for the
application and the Linker output file.

- If you want to keep the intermediate files around but are working
on more than one application, you can save disk space by giving
the intermediate files the same name for all applications (say,
"Work/Temp"').

- You can embed the exec file in your program's source file. To do
this, you must use "(*" and "*)" around the exec part of the file
and use the I invocation option. See your Workshop documentation
for details.

5/5/85 Rose /PUTTING/TOGETHER. 3

| Putting Together a Macintosh Application < 05 May 1985 Page 0019 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

DIVIDING YOUR APPLICATION INTO SEGMENTS 19

DIVIDING YOUR APPLICATION INTQO SEGMENTS

You can specify the beginning of a segment in your application's source
file as follows:

{$S segname}
where segname is the segment name, a sequence of up to eight
characters. Normally you should give the main segment a blank name.
For example, you might structure your program as follows:

PROGRAM Samp;

[The USES clause and your LABEL, CONST, and VAR declarations
will be here.]

{$S Segl}
[The procedures and functions in Segl will be here.]
{$s Seg2}
[The procedures and functions in Seg2 will be here.]
{$s }
BEGIN

[The main program will be here.]

END.

You can specify the same segment name more than once; the routines will
just be accumulated into that segment. To avoid problems when moving
routines around in the source file, some programmers follow the
practice of putting a segment name specification before every routine.

(warning)
Uppercase and lowercase letters are distinguished in
segment names. For example, "Segl" and "SEG1" are not
equivalent names.

If you don't specify a segment name before the first routine in your
file, the blank segment name will be assumed there.

5/1/85 Rose /PUTTING/TOGETHER. 4

| Putting Together a Macintosh Application < 05 May 1985 Page 0020 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

20 Putting Together a Macintosh Application

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

You can write all or part of your Macintosh application in assembly
language. Suppose, for example, that you write most of it in Pascal
but have some utility routines written in assembly language. Your
working files will include a source file and object file for the
assembly-language routines (say, Work/SampA.Text and Work/SampA.Obj).
The source file will have the structure shown below.

3 SampA -- Assembly-language routines for Samp
; Written by Macintosh User Education 5/1/85

[List the following in the order shown.]

+INCLUDE TlAsm/SysEqu.Text
+INCLUDE TlAsm/SysTraps.Text
+INCLUDE TlAsm/SysErr.Text

. INCLUDE TlAsm/QuickEqu.Text

. INCLUDE TlAsm/QuickTraps.Text
.INCLUDE TlAsm/ToolTraps.Text
« INCLUDE TlAsm/ToolEqu.Text

. INCLUDE T1lAsm/PrEqu.Text [OPTIONAL]
«INCLUDE T1lAsm/SANEMacs.Text [OPTIONAL]
.INCLUDE TlAsm/PackMacs.Text [OPTIONAL]
«INCLUDE T1lAsm/FSEqu.Text [OPTIONAL]

[Here there will be a .PROC or .FUNC directive for each routine,]
[followed by the routine itself. Two examples follow.]

; PROCEDURE MyRoutine (count: INTEGER);
«PROC MyRoutine

MyRoutine
[the code of MyRoutine]

; FUNCTION MyOtherRoutine : Longlnt;
-FUNC MyOtherRoutine

MyOtherRoutine
{ the code of MyOtherRoutine]

-END

(note)
The .PROC or .FUNC directive clears the symbol table, so
symbols defined in one routine can't be referred to in
another (without an explicit reference using .REF). If
you want to share code between routines, you can instead
have a single .PROC directive for SampA followed by a
«DEF directive for each routine name.

5/1/85 Rose /PUTTING/TOGETHER. 4

| Putting Together a Macintosh Application < 05 May 1985 Page 0021 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

may not be required.

File name
T1Asm/SysEqu.Text
TlAsm/SysTraps.Text
TlAsm/SysErr.Text
TlAsm/QuickEqu.Text
T1lAsm/QuickTraps.Text
TlAsm/ToolTraps.Text
TlAsm/ToolEqu.Text
TlAsm/PrEqu.Text
T1Asm/SANEMacs.Text

TlAsm/PackMacs.Text
TlAsm/FSEqu.Text

above.

the directive

.SEG 'segname'

characters.

For example:

Prompt
Workshop command line

Input file - [.TEXT]

(note)

5/1/85 Rose

Listing file (<CR> for none) - [.TEXT]
Output file - [Work/SampA] [.OBJ]

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 21

Including unneeded files with .INCLUDE directives will do no harm
except make your program take longer to assemble.
optional above are the least commonly needed; even some of the others
Here's what the files contain:

The files marked as

Description

System equates

System traps

System error equates

QuickDraw equates

QuickDraw traps

Toolbox traps, except QuickDraw
Toolbox equates, except QuickDraw
Equates for Printing Manager

Macros and equates for Floating-Point
Arithmetic and Transcendental Functions
Packages

Macros and equates for other packages
File system equates

If you've created any similar files for units of your own, just add
. INCLUDE directives for them after the last .INCLUDE directive shown

To specify the beginning of a segment in assembly language, you can use

where segname is the segment name, a sequence of up to eight

For each assembly-language routine invoked from Pascal, the Pascal
source file for your application will include an external declaration.

PROCEDURE MyRoutine (count: INTEGER); EXTERNAL;

FUNCTION MyOtherRoutine : LongInt; EXTERNAL;
If the routines form a unit that may be used by other applications, you
should instead prepare a Pascal interface file for the unit and include

it in the USES clause in the application's source file.

You'll assemble the Work/SampA.Text file as shown below.

Response
A [for Assemble]

Work/SampA <{ret>
<ret> [for none]
<ret> [for Work/SampA.Obj]

If you do want a listing file, you may want to put a
«NOLIST directive before your first .INCLUDE and a .LIST

/PUTTING/TOGETHER. 4

| Putting Together a Macintosh Application < 05 May 1985

Page 0022 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

22 Putting Together a Macintosh Application

after your last one, so the contents of all the included
files won't appear in the listing.

You can assemble the code manually and then, after you've created or
changed the Pascal source file, use the exec file for the application
as illustrated earlier (adding the name of the assembly-language object
file to the 1list of Linker input files). You may also want to set up
an exec file that just assembles the assembly-language routines and
links the resulting object file with everything else, for when you've
changed only those routines and not the Pascal program. This exec file
would begin with the responses listed above and then continue with step
2 of the exec file illustrated earlier.

If the entire application is written in assembly language, the source
file will have the same structure as the one shown above, but at the

beginning of the main program you'll have a .MAIN directive:

+MAIN SampA

Even if you have nothing to link your program with, link it by itself;
the Linker will put it into a format that RMaker can accept.

5/1/85 Rose /PUTTING/TOGETHER. 4

| Putting Together a Macintosh Application < 05 May 1985 Page 0023 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

SUMMARY OF PUTTING TOGETHER AN APPLICATION 23

SUMMARY OF PUTTING TOGETHER AN APPLICATION

This summary assumes the file-naming conventions presented in the
"Getting Started" section. Page numbers indicate where details may be
f Ound .

ONE TIME ONLY:

- Prepare a Macintosh system disk by copying the System Folder from
the Mac Build disk to a new Macintosh disk (page 4).

- On the Lisa, use the Editor (via the Edit command) to create the
exec file (page 14).

ONCE PER VERSION OF YOUR APPLICATION'S SOURCE/RESOURCES:

- On the Lisa, use the Editor to create or edit the application
source file (page 6) or the Resource Compiler input file for your
application's resources (page 7).

- Insert the Macintosh system disk into the Lisa.

= On the Lisa, run the exec file (page 17). It will eject the
Macintosh disk when done.

— To try out your application, remove the disk from the Lisa, insert
it into the Macintosh, and open the application's icon.

- When appropriate, back up your working files by using the Backup
command in the File Manager to copy Work/= to Back/=, or onto a
3 1/2-inch disk (with, for example, Backup Work/= to -lower-=).

(note)
If you create an icon for your application (or modify
it), you must delete the invisible desktop file (page
17).

5/5/85 Rose /PUTTING/TOGETHER. S

| Putting Together a Macintosh Application < 05 May 1985 Page 0024 of 0025 |

Apple Macintosh Early Technical Information < Inside Macintosh

END OF DOCUMENT

| Putting Together a Macintosh Application < 05 May 1985 Page 0025 of 0025 |

