
Cortland ~orkshop

Assembler Reference

Pre-Alpha Draft
June 20, 1986

Engineering Part Number: 030-3131
Marketing Part Number: A2L6001

Writer: Catherine Williamson
Apple User Education Department

Copyright © 1986 Apple Computer, Inc. All rights reserved.

Cortland Workshop Assembler Reference

Revision History

Changes From Prior Drafts

816 Assembler Delta Guide, Paul Black, January 9, 1986.

Document Design, Cortland Workshop Assembler, Catherine Williamson, March 17,
1986.

Alpha Draft, Cortland Workshop Assembler Reference, Catherine Williamson, June
20, 1986.

Pre-Aloha Draft iii 6/20/86

Changes From Prior Drafts

Current Software Version

Conland Workshop Assembler Reference

The interface documented in this manual conforms to Phase ill of the CPW software. With
one exception, the interface described is the Shell's command interpreter, since the graphics
interface will not be implemented until Phase IV. The exception is Chapter 2, where I
have written some realistic fiction, using the MAC as aD analog.

Pre-Aloha Draft iv 6/20/86

Cortland Workshop Assembler Reference

Contents

P-I About This Manual

P-l Intended Audience
P-l Roadmap
P-3 The Technical Introduction
P-3 The Machine Reference Manuals
P-3 The Toolbox Manuals
P-3 The Cortland Programming Languages
P-3 The Programmer's Workshop Manual
P-4 What About ProDOS?
P-4 All-Apple Manuals
P-4 What's In This Manual

. P-5 Other Materials You Will Need
P-5 Visual Cues
P-5 New Terms
P-5 Notes and Warnings
P-6 Language Notation

PART I: A PROGRAMMER'S GUIDE

I-I Chapter 1: Getting Started

1-1 The Cortland Programmer's Workshop
1-1 About the Cortland Workshop Editor
1-2 About the Cortland Workshop Assembler
1-3 Modes of Operation
1-3 Assembler Directives
1-3 Assembler Macros
1-3 Standard Apple Numeric Environment
1-3 Object Module Format
1-4 Cortland System Software
1-4 System Requirements
1-4 Hardware Requirements
1-4 Software Requirements

2-1 Chapter 2: Using The Cortland Workshop Assembler

2-1 Writing and Running A Sample Session
2-1 Entering The Program
2-2 Assembling, Linking and Executing the Program
2-3 The Cortland Workshop Assembler
2-3 The Assembly Process .
2-3 The Assembly Listing
2-4 Stopping The Assembly
2-4 Assembler Error Messages
2-4 The RESET Key
2-4 Printer Listings.

Contents

Pre-Aloha Draft Contents-v 6/20/86

Contents

2-5 Assembler Shell Commands
2-5 Editing Files
2-5 Assembling A Program
2-5 ASSEMBLE
2-6 ASML
2-6 ASMLG
2-6 Assembler Command Options
2-9 Partial Assemblies
2-9 The Linker
2-9 LINK
2-9 ALINK
2-10 The Debugger
2-10 Creating A Macro Library
2-10 MACGEN
2-11 Making A Cross-Reference Table
2-11 XREF
2-12 Making A Dictionary Segment
2-12 MAKELffi

~ortlandWorkshop Assembler Reference

PART II: LANGUAGE REFERENCE

3-1 Chapter 3: Programming the 65816

3-1 Features of the 65816
3-1 65816 Registers
3-2 The Accumulators A, B and C
3-2 The Index Registers X and Y
3-2 Data Bank Register (DBR)
3-2 Program Bank Register (PBR)
3-2 Direct Page Register (D)
3-2 Processor Status Register (P)
3-3 Program Counter (C)
3-3 Stack Pointer (S)
3-4 65816 Instruction Set
3-4 Instruction Set Summary
3-4 Data Movement Instructions
3-4 Load/Store Instructions:
3-4 Push Instructions:
3-4 Pull Instructions:
3-4 Transfer Instructions:
3-4 Exchange Instructions:
3-5 Store Zero to Memory:
3-5 Block Moves:
3-5 Flow Of Control Instructions
3-5 Arithmetic Instructions
3-5 Logic And Bit Manipulation Instructions
3-5 Logic Instructions:
3-5 Bit Manipulation Instructions:
3-6 Shift and Rotate Instructions:
3-6 System Control Instructions
3-6 Instruction Descriptions
3-6 ADC Add With Carry

Pre-Aloha Draft Contents - vi 6/20/86

Cortland Workshop Assembler Reference Contents

3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13

AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRA
BRK
BRL
BVC
BVS
CLC
CLD
CLI

. CLV
CMP
COP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSL
JSR
LDA
LDX
LDY
LSR
MVN
MVP
NOP
ORA
PEA
PEl
PER
PHA
PHB
PHD
PHK
PHP
PHX
PHY
PLA
PLB
PLD
PLP

And Accumulator With Memory
Shift Memory Or Accumulator Left
Branch If Carry Clear
Branch If Carry Set
Branch IfEqual
Test Memory Bits AgainstAccumulator
Branch If Minus
Branch IfNot Equal
Branch If Plus
Branch Always
Software Break
Branch Always Long
Branch If Overflow Clear
Branch If Overflow Set
Clear Carry Flag
Clear Decimal Mode Flag
Clear Interrupt Disable Flag
Clear Overflow Flag
Compare Accumulator With Memory
Co-Processor Enable
Compare Index Register X With Memory
Compare Index Register Y With Memory
Decrement
Decrement Index Register X
Decrement Index Register Y
Exclusive-OR Accumulator With Memory
Increment
Increment Index Register X
Increment Index Register Y
Jump
Jump To Subroutine Long (Inter-Bank)
Jump To Subroutine
Load Accumulator From Memory
Load Index Register X From Memory
Load Index Register Y From Memory
Logical Shift Memory Or Accumulator Right
Block Move Next
Block Move Previous
No Operation
OR Accumulator With Memory
Push Effective Absolute Address
Push Effective Indirect Address
Push Effective PC Relative Indirect Address
Push Accumulator
Push Data Bank Register
Push Direct Page Register
Push Program Bank Register
Push Processor Status Register
Push Index RegisterX
Push Index Register Y
Pull Accumulator
Pull Data Bank Register
Pull Direct Page Register
Pull Status Flags

Pre-Aloha Draft Contents - vii 6/20/86

Contents Cortland Workshop Assembler Reference

3-13 PLX Pull Index Register X From Stack
3-13 PLY Pull Index Register Y From Stack
3-13 REP . Reset Status Bits
3-13 ROL Rotate Memory or Accumulator Left
3-14 ROR Rotate Memory or Accumulator Right
3-14 RTI Return From Interrupt
3-14 RTL Return From Subroutine Long
3-14 RTS Return From Subroutine
3-14 SBC Subtract With Borrow From Accumulator
3-14 SEC Set Carry Flag
3-14 SED Set Decimal Mode Flag
3-14 SEI Set Interrupt Disable Flag
3-14 SEP Set Status Bits
3-15 STA Store Accumulator To Memory
3-15 STP Stop The Processor
3-15 STX Store Index Register X To Memory
3-15 STY Store Index Register Y To Memory
3-15 S1Z Store Zero To Memory
3-15 TAX Transfer Accumulator To Index Register X
3-15 TAY Transfer Accumulator To Index Register Y
3-15 TCD Transfer 16-Bit Accumulator To Direct Page Register
3-15 TCS Transfer Accumulator To Stack Pointer
3-16 IDC Transfer Direct Page Register To 16-Bit Accumulator
3-16 TRB Test And Reset Memory Bits Against Accumulator
3-16 TSB Test And Set Memory Bits Against Accumulator
3-16 TSC Transfer Stack Pointer To 16-Bit Accumulator
3-16 TSX Transfer Stack Pointer To Index Register X
3-16 TXA Transfer Index Register X To Accumulator
3-16 TXS Transfer Index Register X To Stack Pointer
3-16 TXY Transfer Index Registers X To Y
3-17 TYA Transfer Index Register Y To Accumulator
3-17 TYX Transfer Index Registers Y To X
3-17 WAI Wait For Interrupt
3-17 WDM Reserved For Future Expansion
3-17 XBA Exchange The B And A Accumulators
3-17 XCE Exchange Carry And Emulation Bits
3-17 Addressing Modes
3-18 Summary of Addressing Modes
3-18 Addressing Mode Descriptions
3-18 Implied
3-18 Accumulator
3-18 Immediate
3-19 Program Counter Relative
3-19 Program Counter Relative Long
3-19 Stack
3-19 Stack Relative
3-19 Stack Relative Indirect Indexed With Y
3-19 Block Move
3-20 Absolute
3-20 Absolute Indirect
3-20 Absolute Indexed With X
3-20 Absolute Indexed With Y
3-20 Absolute Indexed Indirect
3-21 Absolute Long

Pre-Aloha Draft Contents - viii 6/20/86

Cortland Workshop Assembler Reference

3-21 Absolute Long Indexed With X
3-21 Absolute Indirect Long
3-21 Direct Page
3-22 Direct Page Indirect
3-22 Direct Page Indexed With X
3-22 Direct Page Indexed With y
3-22 Direct Page Indirect Indexed with Y (Postindexed)
3-22 Direct Page Indexed Indirect With X (Preindexed)
3-22 Direct Page Indirect Long
3-22 Direct Page Indirect Long Indexed With Y

4-1 Chapter 4: Coding Conventions

4-1 Source Text Structure
4-1 Instructions
4-2 Directives
4-2 General Assembler Directives
4-2 Macro Directives
4-3 Macros
4-3 Source Statement Format
4-3 Source Statement Line Length
4-3 Labels
4-4 . Label Scope
4-4 Global Labels
4-5 Local Labels
4-6 Case-Sensitivity In Labels
4-6 Label Attributes
4-5 The Operation Code
4-6 Operands
4-8 Expressions
4-9 The Comment Field
4-9 The Blank Line
4-9 The Characters *, ; and !
4-9 The Period

5-1 Chapter 5: Directives

5-1 General Assembler Directives
5-2 Macro Directives
5-4 Directive Formats
5-4 Directive Descriptions
5-4 Program Control Directives
5-4 START
5-5 PRIVATE
5-5 DATA
5-5 PRIVDATA
5-6 USING
5-6 ENTRY
5-6 END
5-6· Data Definition Directives
5-6 DC

Contents

Pre-Aloha Draft Contents - ix 6/20/86

Contents

5-10 DS
5-10 Symbol Definition Directives
5-10 EQU
5-11 GEQU
5-11 RENAME
5-12 Memory Designation Directives
5-12 ALIGN
5-13 ORG
5-13 MEM
5-13 File Control Directives
5-14 APPEND
5-14 COpy
5-14 KEEP
5-14 Assembler Option Directives
5-15 IEEE
5-15 LONGA
5-15 LONGI
5-16 MSB
5-16 65C02
5-16 65816
5-16 ME~

5-16 CASE
5-16 OBJCASE
5-17 Listing Option Directives
5-17 ABSADDR
5-17 EJECf
5-18 ERR
5-18 EXPAND
5-18 INSTIME
5-18 LIST
5-18 PRINTER
5-19 SETCOM
5-19 SYMBOL
5-19 1111LE

6-6 Chapter 6: Macros

6-1 Using Macros
6-1 Writing the Source Program
6-1 Building A Macro Library
6-2 MCOPY
6-2 MDROP
6-3 MLOAD
6-3 Executing The Program
6-3 Listing Options
6-3 GEN
6-3 TRACE
6-4 Writing Macro Definitions
6-4 MACRO
6-5 MEND
6-5 MNOTE
6-5 MEXIT

Cortland Workshop Assembler. Reference

Pre-Aloha Draft Contents - x 6/20/86

tortland Workshop Assembler Reference

6-5 Macro Coding Conventions
6-6 Macro FonnatS
6-6 Macro Addressing Modes
6-6 Immediate Addressing
6-6 Absolute Addressing
6-6 Indirect Addressing
6-7 Stack Addressing
6-7 Macro Data Types
6-7 Two-byte Integers
6-7 Four-byte Integers
6-8 Eight-byte Integers
6-8 Characters
6-8 Strings
6-8 Boolean Variables
6-8 Using Macros in Conditional Assemblies
6-9 Defming Symbolic Parameters
6-9 Defming Parameters Implicitly
6-9 Positional Parameters'
6-11 Keyword Parameters
6-11 Defming Parameters Explicitly
6-11 Parameter Scope
6-11 Symbolic Parameter Defmition Statement
6-12 Defming Parameters with LCLx Directives
6-12 . LCLA
6-12 LCLB
6-12 LCLC
6-12 Defining Parameters with GBLx Directives
6-12 GBLA
6-12 GBLB
6-12 GBLC
6-13 Changing Parameter Values with Set Symbol Directives
6-13 SETA
6-13 SETB
6-14 SETC
6-14 Working With Strings
6-14 ASEARCH
6-14 PJVU[)
6-15 Defming Parameters Using Assembler Input
6-15 AINPUT
6-15 Setting Arrays Using Symbolic Parameters
6-17 Concatenating Symbolic Parameters
6-17 Attributes
6-18 Count Attribute
6-19 Length Attribute
6-19 Type Attribute
6-19 Settings Attribute
6-20 Modifying The Assembly
6-20 AGO
6-21 AIF
6-21 ACTR
6-22 ANOP

Contents

Pre-Aloha Draft Contents - xi 6120186

Contents Cortland Workshop Assembler Reference

7-I The Cortland Libraries
7-1 The Cortland Toolbox
7-2 Desk Manager
7-2 Event Manager
7-2 Event Manager Standard Housekeeping Routines
7-2 Toolbox Event Manager Routines
7-3 Mouse Reading Routines
7-3 Posting and Removing Events
7-3 Accessing Events Routiens
7-3 Miscellaneous Event Manager Routines
7-3 Integer Math
7-4 Integer Math Housekeeping Routines
7-4 Math Routines
7-5 Conversion Routines
7-5 Memory Manager
7-5 Memory Manager Housekeeping Routines
7-5 Memory Allocation Routines
7-6 Block Information and Free Space Routines
7-6 Locking and PurgeLevel Routines
7-6 Miscellaneous Memory Manager Routines
7-6 Menu Manager
7-9 Miscellaneous Tools
7-9 Miscellaneous Tools Housekeeping Routines
7-9 Battery RAM Routines
7-9 Clock Routines
7-10 Vector Initialization Routines
7-10 Heartbeat Routines
7-10 ill Tag Manager Routines
7-10 Mouse Routines
7-11 Absolute Clamp Routines
7-11 Additional Miscellaneous Tools
7-11 QuickDraw
7-11 QuickDraw Housekeeping Functions
7-12 QuickDraw Global Environment Calls
7-12 QuickDraw GrafPort Calls
7-14 Drawing Calls
7-14 Drawing Rectangles
7-15 Drawing Regions
7-15 Drawing Polygons
7-15 Drawing Ovals
7-15 Drawing RoundRects
7-16 Drawing Arcs
7-16 Transferring Pixels
7-16 Drawing and Measuring Text
7-16 QuickDraw Utility Routines
7-17 Customizing QuickDraw Operations
7-17 Handling Cursors
7-17 SANE Tools
7-17 Scheduler
7-18 Sound Manager
7-18 Sound Manager Housekeeping Routines

Pre-Aloha Draft Contents - xii 6/20/86

·Cortland Workshop Assembler Reference

7-18 Sound Manager Tools ,
7-18 Sound Manager Low-Level Routines
7-19 Text Tools
7-19 Text Tools Housekeeping Routines
7-20 Tool Locator
7-20 Tool Locator Housekeeping Routines
7-20 Tool Locator Routines
7-21 ProDDS Macros
7-21 Shell Macros
7-21 Utility Macros
7-22 System Macro Files

Contents

A-I Appendix A: 65816 Instruction Set Summary

B-1 Appendix B: Memory Management

C-l Appendix C: A Comparison of the Cortland' and ORCA/M Assemblers

D-l Appendix D: The ASCII Character Set

E-l Appendix E: Error Messages

Glossary

Bibliography

Index

Pre-Aloha Draft Contents - xiii 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

About This Manual

Intended Audience

About This Manual

This manual is intended for all programmers writing Cortland Assembly Language
programs. You should be familiar with assembly language programming and the Cortland
Development Environment before reading this manual.

This manual assumes that you are familiar with the architecture of 65816 processor, its
instruction set and its addressing modes. An excellent reference source for this information
is Programming the 65816 Including the 6502, 65C02 and 65802, by David Eyes and Ron
Lichty.

Roadmap to the Cortland Technical Manuals

The Cortland has many advanced features, making it more complex than earlier models of
the Apple n. To describe it fully, Apple has produced a whole suite of technical manuals.
The manuals are listed in the following table. The table is a diagram showing the
relationships among the different manuals. Depending oil the way you intend to use the
Cortland, you may need to refer to a select few of the manuals, or you may need to refer to
most of them.

The Cortland Technical Manuals

Title

Technical Introduction to the Cortland

Cortland Hardware Reference

Cortland Finnware Reference

Programmer's Introduction to the Cortland

Cortland Tools Reference: Part I

Cortland Tools Reference: Part IT

Cortland Function Summary

Cortland Programmer's Workshop

Cortland Workshop Assembler Reference*

Cortland Workshop C Reference*

Cortland Workshop Pascal Reference*

ProDOS/8 Technical Reference

Cortland Operating System Reference

Human Interface Guidelines

Apple Numerics Manual

*There is a Pocket Reference for each of these.

Subject

what the Cortland is

machine internals-hardware

machineinremal~fmmware

sample program using the toolbox

toolbox specifications

more toolbox specifications

toolbox pocket guide

the development environment

using assembly language

using C on the Cortland

using Pascal on the Cortland

ProDOS for Apple IT programs

ProDOS and loader for Cortland

for all Apple computers

numerics for all Apple computers

Pre-Aloha Draft Preface -1 6/20/86

About This Manual Conland Workshop Assembler Reference

Figure Preface-to Roadmap to the technical manuals

I

Cortland
Tools

Reference:

Part II

Part I

Cortland
Workshop
Assembly
Language
Reference

Pocket 1
Reference

To use
assembly
language...

Programmer's
Introduction

to the
Cortland

To start learning
to program the
Cortland...

-

Cortland
Programmer's

Workshop
Reference

Technical
Introduction

to the
Cortland

To use the
development
environment...

Pocket I
Reference

To use

p~;~~:p,)
Pascal

Reference

::::f:/:'

:;::::;:;::::.:....

To start finding ~----~'
out about
the Cortland...

S8
nce

Cortland
Workshop

C
Reference

Pocket I
Reference

To use C...

Cortland
Operating

System
Reference

...
"

Cortland :;

Corti Hardware

Firm~
Reference

Refer

I

To operate on
files...

To learn how
the Cortland
works

Pre-Aloha Draft Preface·2 6/20/86

Cortland Workshop Assembler Reference

The Technical Introduction

About This Manual

The Technical Introduction to the Cortland describes a little about a lot of things, but it
doesn't tell everything about anything. To fmd out all about anyone aspect of the
Cortland, you should read a specific technical manual. To find out which one, read on.

The Machine Reference Manuals
The Conland Hardware Reference and the Conland Firmware Reference contain
information about the machine itself. You don't need to read these manuals to be able to
develop applications for the Cortland, but they will give you a better understanding of the
machine's features. They will also provide the reasons why some of those features work
the way they do.

The Toolbox Manuals
Like the Macintosh, the Cortland has a built-in toolbox that can be called by applications.
The toolbox serves two purposes: it makes developing new applications easier, and it
supports the desktop user interface.

When you first start using the toolbox, the Introductionfor Programmers provides the
recommendations and guidelines you need. It is not a complete course in programming for
the Cortland; rather, it is a starting point. It explains the Cortland tools and describes an
event-driven program. It includes a simple example of such a program that uses the
Cortland tools, and demonstrates the way you use the Cortland Programmer's Workshop
to develop the program.

For detailed specifications of the tool calls, you'11 need the two volumes making up the
Cortland Tools Reference. The Cortland Function Summary is a pocket guide to the tools,
including the name and parameters for each tool call.

The Cortland Programming Languages
The Cortland does not restrict developers to a single programming language. Apple is
currently providing an assembler and compilers for C and Pascal. Other compilers can be
used with the workshop, provided that they observe the standards Apple has set up.

There is a separate reference manual for each programming language on the Cortland. The
manuals for the languages Apple provides are the Cortland Assembler Reference, the
Cortland C Compiler Reference, and the Cortland Pascal Compiler Reference.

The Programmer's Workshop Manual
The core of the development environment on the Cortland is the Cortland Programmer's
Workshop, also called CPW. CPW is a set of programs that enable developers to create
and debug application programs on the Cortland. The manual that describes CPW is the
Cortland Programmer's Workshop manual. It,includes information about the parts of the

Pre-Aloha Draft Preface -3 6/20/86

About This Manual Cortland Workshop Assembler Reference

workshop that all developers will use, regardless which programming language they use:
the shell, the editor, the linker, the debugger, and the utilities.

What About ProDOS?
There are two versions of ProDOS on the Cortland: one for compatibility with the models
of Apple II that use 8-bit CPUs, called ProDOS 8, and one that utilizes the full power of
the Cortland, ProDOS 16. Those two versions of ProDOS are described in their own
manuals, ProDOS 8 Technical Reference and ProDOS 16 Technical Reference

All ..Apple Manuals
In addition to the Cortland manuals mentioned above, there are two manuals that apply to
all Apple computers. Those are Human Interface Guidelines and Apple Numerics Manual.

What's In This Manual
This manual is divided into three major sections: Part I, " A Programmer's Guide", Part II,
"Language Reference", and Part III, "Appendixes".

Part I, "A Programmer's Reference", introduces you to the Cortland Workshop Assembler
and its programming environment

Chapter 1, "Getting Started", introduces the environment in which you'll use the
Assembler. It discusses the Cortland Programmer's Workshop, ProDOS 16, the Cortland
Tools, and lists the hardware and software requirements you'll need.

Chapter 2, "Using The Cortland Workshop Assembler", steps through a sample session
with the Assembler, describes the assembly process, lists the Shell commands you'll need
working with the Assembler, and discusses the Linker, the Debugger and other utilities.

Part II, "Language Reference", is a detailed description of the structure and components of
the Cortland Workshop Assembler.

Chapter 3, "Programming the 65816", is intended as a reference chapter to the 65816
registers, instruction set and the addressing modes.

Chapter 4," Coding Conventions", describes the syntax of Cortland Assembly Language.

Chapter 5, "Directives", summarizes the Cortland Assembler directives and provides a
summary of the macro directives cross-referenced to the pages in Chapter 6 where they are
described. The general Assembler directives are grouped by function, and each directive
includes a description, syntax and code example.

Chapter 6, "Macros", consists of two sections: "Using Macros" and "Writing Macros".
"Using Macros" takes you through a sample session with macros. It tells you how to
build a macro library and describes several assembler directives you will use when working
with macro libraries and listing the assembly. "Writing Macros" gives you infonnation on

Pre-Alohiz Draft Preface -4 6120186

Cortland Workshop Assembler Reference About This Manual

how to include macros in your source text, including macro fonnats, addressing modes,
and data types. .

Chapter 7, "The Cortland Libraries", discusses the macro libraries available with the
Cortland to access the Cortland Toolbox, make ProDOS 16 calls, make Shell calls, and
perfonn I/O.

Part III includes five appendixes:

Appendix A is a list of the 65816 instruction set, addressing modes, opcodes and
execution times.

Appendix B discusses how the Assembler uses memory and includes the Cortland Memory
Map.

Appendix C is a comparison of Cortland Assembler and the ORCA/M Assembler.

Appendix D is a chart of the ASCn character set

Appendix E is a summary of error messages generated by the Cortland Assembler.

Other Materials You Will Need
Anything else?

Visual Cues

Certain conventions in this manual give you information in a visual way, including the
introduction of a new tenn and importand messages such as notes and warnings. These are
described in this section. Conventions specific to the way Cortland Workshop Assembly.
Language is presented in this manual are described under Language Notation.

New terms

When a new tenn is introduced, it is printed in boldface the first time it is used. This lets
you know that the tenn has not been defined earlier and that there is an entry for it in the
glossary.

Notes and Warnings

Special messages of note are marked as such:

• Note: Text set off in this manner presents sidelights or interesting points of
infonnation.

• Important: Text set off in this way, with Important in boldface, presents
important infonnation or instructions.

Pre-Aloha Draft Preface -5 6/20/86

About This Manual Cortland Workshop Assembler Reference

• Warning! A message such as this lets you know of a potential problem or
disaster.

Language Notation

For ease of recognition, instruction, directive and macro mnemonics are presented
in upper case in this manual. Note, however, that the Cortland Assembler is case
insensitive.

In common with the Cortland Workshop high-level language manuals, this manual
uses different fonts to illustrate certain information:

• English-language text is in Times Roman, as shown:

Shall I compare thee to a summer's day

• Assembly-language code, both set-off from text and within text is in
Courier, as shown:

LDA MSG1, Y

Metasymbols used in syntax diagrams and text is in ***TBD***, as
shown:

Example TBD

Additionally, the following conventions are observed:

Convention

[]

Pre-Aloha Draft

Meaning

Square brackets indicate that the enclosed
item is optional.

A horizontal ellipsis indicates that the
preceding item(s) can be repeated as
necessary.

A vertical ellipsis indicates that not all of the
statement~ in an example or figure are
shown.

Preface - 6 6/20/86

Part I

A Programmer's Reference

Part I, "A Programmer's Reference", introduces you to the
Cortland Workshop Assembler and its programming
environment

Chapter 1, "Getting Started", introduces the environment in
which you1l use the Assembler. It discusses the Cortland
Programmer's Workshop, ProDOS 16, the Cortland Tools,
and lists the hardware and software requirements you'll
need.

Chapter 2, "Dsing The Cortland Workshop Assembler",
steps through a sample session with the Assembler,
describes the assembly process, lists the Shell commands
you'll need working with the Assembler, and discusses the
Linker, the Debugger and other utilities.

Cortland Workshop Assembler Reference

Chapter 1

Getting Started

The Cortland Programmers Workshop

Getting Staned

The Cortland Programmer's Workshop (CPW) consists of a suite of software designed to
assist developers in writing Cortland applications programs. This development
environment includes a command interpreter, known as the Shell; a text editor; a
linker; a debugger; and a set of utilities. Languages supported under CPW in addition
to the Assembler include C and Pascal compilers. Further support for developers is
provided by a comprehensive set of routines known as the Cortland Tools. These Tools
are accessed from, but are not considered part of, the Cortland Programmer's Workshop.
For a comprehensive description of CPW, refer to the Cortland Programmer's Workshop
manual. For more information on the Cortland Tools, refer to Chapter 7, "The Cortland
Libraries" and Conland Tools: Parts I and II.

About The Cortland Shell

The CPW Shell provides the interface that allows you to work with the Assembler and
perform tasks such as file, directory and disk management. The Shell operates in two
modalities: a keyboard environment implemented through a command interpreter, and a
mouse environment similar to the Macintosh Programmer's Workshop which includes a
mouse interface and pull-down menus. With the command interpreter, you type
commands in an edit window that allows you to scroll through previous commands and
responses. Most tasks can be executed either way, though you can access some of the
advanced features, such as programmable EXEC files, only through the command
interpreter.

The Shell also acts as an extension to ProDOS 16, providing several functions that can be
called by programs running under the Shell: The Assembler can call a set of Shell
primitives to perform the following functions:

• pass parameters and operations flags between the Shell and Programmer's
Workshop programs

• read the current language number
• set the current language number
• set the value of one of the system prefixes
• return the address of the command table

• set the charaeter to be used as the cursor
• get filenames using wildcards
• quit the system and pass control to the next system program

Pre-Aloha Draft 1, -1 6/20/86

Getting Started Cortland Workshop Assembler Reference

The Cortland Programmer's Workshop provides macros that expand to the Shell calls.
Shell macros are discussed in Chapter 7, "The Cortland Libraries".
*** will these macros exist? ***
Commands most often used while working with the Assembler are described in Chapter 2,
"Using the Cortland Workshop Assembler". For your convenience, Shell commands
you'll use often to work with mes, directories and disks are summarized at the end of
Chapter 2. For a comprehensive description of the Shell, refer to the Cortland
Programmer's Workshop.

About the Cortland Workshop Editor

The Cortland Workshop Editor is a full~screen text editor. It can be fully customized and
operates under both keyboard control and mouse-based menus.

From the Editor command windows, you can send commands to the Shell to perform tasks
such as:

• text manipulation

• text searches

• moving your position in the file

• scrolling the screen

• setting and clearing tab stops

• defining and using keyboard macros

The Cortland Workshop Editor is fully described in the Cortland Programmer's Workshop.

About Cortland Workshop Assembler

The Cortland Workshop Assembler is a powerful macro assembler based on the
ORCA/MTM Assembler. Features of the Cortland Assembler include:

• A 6502 emulation mode that provides software compatibility with existing
Apple II programs.

• An extensive group of assembler directives.

• A comprehensive set of macros to access the Cortland Toolbox, interface with
ProDOS and the Shell, and perform I/O.

• Support for user-defined libraries and macros.

• Full compatibility with the Standard Apple Numeric Environment (SANE).

• Conformity with the Cortland object module format, allowing you to link a
program segment written in assembly language with segments written in any
high-level language.

Modes Of Operation

The Cortland Assembler can operate in either native or emulation mode. In native mode,
the full instruction set of the 65816 processor is available. The 91 instructions combined

Pre-Aloha Draft 1-2 6/20/86

Cortland Workshop Assembler Reference Getting Staned

with 25 addressing modes make 256 opcodes available to the programmer. The register
set can be used for either eight- or sixteen-bit operations. The accumulator can be set to
either a sixteen-bit register or two eight-bit registers. The advantage of using a processor
with sixteen-bit registers as compared to eight-bit registers is the ability to write programs
that are from 25 to 50 percent shorter, and which run 25 to 50 percent faster due to the ease
with which sixteen-bit data is manipulated.

In 6502 emulation mode, the Cortland emulates the 6502 processor exactly, including the
configuration of the registers, stack location and instruction timing. Thus, the Cortland in
emulation mode provides full compatibility with existing Apple n software.

Assembler Directives

The Cortland includes a set of directives that instruct the Assembler to perform a variety of
functions. These include:

• Program control
• Data definition
• Symbol defmition

• Space allocation
• Assembler options
• ProDos control
• Conditional assembly

• Working with macros

The Assembler directives are described in Chapter 5, "Directives".

Assembler Macros

The Cortland Programmer's Workshop provides a comprehensive set of macros that
provide access to the Cortland Toolbox, interface with ProDGS 16 and the Shell, and
perform I/O. The Cortland Tools include routines to handle memory management, menu
management, QuickDraw routines, support for the Stand¥d Apple Numeric Environment
(SANE) and more. Cortland Toolbox macros are described in Chapter 7, "The Cortland
Libraries". Additionally, the Cortland Programmer's Workshop provides full support for
user-defmed libraries and macros.

Standard Apple Numeric Environment

The Cortland Assembler provides full support for the Standard Apple Numeric
EQvironment (SANE). SANE is based on the IEEE Standard 754 for Binary Floating
Point Arithmetic [10], which specifies data types, arithmetic and conversions, as well as
tools for handling exceptions such as overflow and division by zero. SANE supports all
requirements of the IEEE standard, and goes beyond the specifications of the Standard by
including a libary of high-quality scientific and financial functions. Thus SANE provides a
numeric environment sufficient for a wide range of applications.

Pre-Aloha Draft 1-3 6/20/86

Getting Started

Object Module Format

Cortland Workshop Assembler Reference

Object module format on the Cortland is the general format used in object files, library
files and load files. On the Apple IIc and IIe, there is only one loadable file format,
called the binary file format, which consists of one absolute memory image along with its
destination address. On the Cortland, object file format allows dynamic loading and
unloading of file segments while a program i~ running. Additionally, each Cortland
Workshop language outputs object code in object module format, allowing you to link
subroutines written in different languages together.

Cortland System Software
System tasks are handled by ProDOS 16, the System Loader, the Finder, and the
Memory Manager. ProDOS 16 is the core, or kernel, of the Cortland's operating
system; it provides file management, input/output capability, and control certain other
aspects of Cortland's operating system.

The System Loader works closely with ProDOS 16. It is responsible for loading all code
and data into the Cortland memory. It is capable of static and dynamic loading and
relocating of program segments, data segments, subroutines and libraries.

The Finder has two functions. First, it is a program selector: it lets you launch applications
and switch from one application to another without restarting the computer. Second, it is a
disk utility program, allowing you to copy, delete, move and rename files and disks.

The Memory Manager is responsible for allocating memory; it provides space for load
segments, tells the System Loader where to place them, and moves segments around within
memory when additional space is needed.

ProDOS 16, the Loader and the Finder are documented in the Cortland Operating System
Reference. The Memory Manager is documented in both the Cortland Operating System
Reference and the Cortland Tools: Parts I and II.

System Requ'irements

Hardware Requirements

Using the Cortland Assembler requires at least one megabyte of RAM, two 800K disk
drives or one 800K and a hard disk.

*** true? ***

Software Requirements

To use the Cortland Workshop Assembler, you need a System Disk and the Cortland
Programmer's Workshop.

The Cortland Workshop Assembler disk includes:

Pre-Alvha Draft 1-4 6/20/86

Cortland Workshop Assembler Reference

• *** to be supplied ***
The System Disk includes:

• ProDOS 16
• The Finder

• *** other? ***
The Cortland Programmer's Workshop disk includes:

• *** to be supplied ***

Getting Started

Pre-Aloha Draft 1-5 6/20/86

This page is left intentionally blank

C.ortland Workshop Assembler Reference

Chapter 2

Using The Assembler

Using The Cortland Workshop
Assembler

This chapter consists of three sections describing how to use the Cortland Workshop
Assembler. The fIrst section, "Writing and running a sample session", steps through a
sample session, giving you a fast way to become acquainted with assembling, linking and
executing a program. The second section, "The Cortland Workshop Assembler",
discusses the assembly process. The third section, "Assembler Shell commands",
describes the Shell commands you'll use when working with the Assembler, including
building a macro library, making a cross reference file, making a dictionary segment, and
command options you can use to assist you in doing partial assemblies.

***[writer's note: The original document design called for including this section in
Chapter 1. However, it now seems more logical to have Chapter 1 describe the main
features of the Assembler and its environment, including CPW, the Shell, the Editor,
system software, and Cortland Tools, and have Chapter 2 describe, as its title implies,
"Using the Assembler". So, I've put it here. Any comments?]***

Writing and Running A Sample Session
This section illustrates how to enter, assemble and link, then run a sample program.

Entering The Program

When you edit an existing program, the editor will already be set to the language in which
the file was originally written. When you open a new fIle, the editor will be set to th~ las~

language you used. If necessary, use the command window in the Shell menu to set the
editor to the language you wish.

The following session shows you how to edit an existing file, set the current language,
create a new flle, and save the file.

To edit an existing flle:

• Pull down the File menu
.' Choose Open from the menu
• Select the file you wish to edit

• Edit the flle

To set the current language:
Pull down the Shell menu

Pre-Aloha Draft 2-1 6/20/86

Using The Assembler Conland Workshop Assembler Reference

• In the command window, type ASM65816

• Press the Return key

To create a new file:

• Pull down the File menu
• Choose New from the menu
• Enter your program.

The following sample is a small program that prints a simple message.

MAIN

LBl

COUT

MSGl

MSG2

KEEP TEST
START
LDX #MSG2-MSGl
LDY #0
LOA MSG1,Y
JSR COUT
INY
DEX
BNE LBl
RTS

JMP ($36)

DC C'Hello, world. '
DC H'OD'
ANOP
END

Finally, to save your program:
• Choose SAVE from the File menu, and give it the filename "MyProg".

Assembling, Linking and Executing the Program

To assemble and link the program you have just entered:

• Pull down the Assemble menu •
• Select Assemble, Link and Run from the menu
• Select the file "MyProg"

• Click OK to start the assembly

The Shell checks the language type of your file, and invokes the Assembler. The
Assembler then produces an object fIle, which is in the same object fIle format as an object
file produced by aily high-level language. When the Assembler has completed the
assembly, it returns control to the Shell, which calls the Linker. The Linker resolves all
references, writes the load file, then again returns control to the Shell. The Shell then
executes the program, and the following message appears on the screen:

"Hello, world."

Pre-Aloha Draft 2-2 6/20/86

Cortland Workshpp Assembler Reference Using The Assembler

This concludes the sample session. The sections that follow gives you more detailed

information on Assembler options and commands.

The Cortland Workshop Assembler
This section discusses the Assembly process, passes one and two of the Assembler, listing
the assembly to the screen and to the printer, stopping the assembly and using t~e RESET
key.

The Assembly Process

The Assembler processes a source program one program segment, or subroutine, at a
time. Each subroutine goes through two passes. The fIrst pass resolves local labels.
When the Assembler encounters an END directive or the end of the source fIle, it passes
control to pass two. Lines which appear outside program segments do not contain labels,
so they can be completely resolved in pass one.

When pass two is called, it starts at the beginning of the program segment as defIned by the
START or DATA directives. Pass two then assembles each line for the last time. Local
labels have already been resolved in pass one, so pass two can produce both the object
code output and the assembly listing. External labels are resolved as $8000, possibly with
some offset value. External direct page labels, indicated in the source listing by a <
character before the expression, are resolved to $80.

Object code output is in object module format (aMP). Each Cortland Workshop language
outputs object code in object module format, allowing you to link subroutines written in
different languages together. Object module format is discussed in detail in Chapter 10,
"File Formats", of the Cortland Programmer's Workshop.

When pass two has fInished assembling the subroutine, it pririts the local symbol table.
It then passes control back to pass one to begin the next subroutine. If there are no more
subroutines to assemble, the Assembler returns control to the Shell. Depending on the
command you used to invoke the Assembler, the Shell passes control either to the Linker or
returns with the Shell prompt. If the Linker is called, it uses the object modules produced
by the Assembler as input. These are relocated and global labels are resolved, giving an
executable binary fIle as output

The Assembly Listing

The Assembler produces a listing on the screen during pass two unless you instruct it not to
list the output. Each segment begins with two messages announcing the subroutine name
and pass. The listing continues with the assembled code.. .
Each output line has four parts: a line number, the current relative address, the code that the
Assembler generated, printed in hexadecimal as a sequence of up to four bytes, each byte
separated by a space, and lastly the source statement that generated the code.

The fIrst line number is a four-digit decimal number, starting at 0001 on the fIrst line and
incrementing for each source line. The line number is incremented even if the output line is

Pre-Alvha Draft 2-3 6/20/86

Using The Assembler Conland Workshop Assembler Reference

not listed.. Thus, even if the listing is turned off for part of the assembly, you can still
detennine how many lines the Assembler has processed. Lines generated by a macro are
not considered source lines, so they do not have a line number.

The current relative address is the memory location at which the code would be if the
subroutine were placed at locati9n $0000 by the Link: Editor. Despite this offset, labels
defined relative to the program counter within the range zero to $FF are not direct page;
the origin of $0000 is simply for convenience in calculation. Internally, the actual origin in .
the relocatable object module is $1000. The Link: Editor outputs indicate where the
subroutine is actually located in a given binary file.

Stopping The Assembly

At any time during pass two, you can stop the assembly by pressing any keyboard
character. Note that the assembly will stop only if a line or symbol table is being printed,
and not for the pass headings which lists the subroutine name. This provides a quick way
to scan for errors; by turning off the listing and symbol table, only the output of error lines
can stop the listing. Pressing a key at the beginning of the assembly will then stop the
listing at the next error. Since the pass headings are still displayed for each subroutine, you
can detenmne which subroutine contains the error.

Assembler Error Messages

If the Assembler detects an error in the source statement, the error is printed on the next
line. All error messages are text messages accompanied by a severity level indicator. The
error messages are decribed in Appendix E.

If the Assembler encounters a terminal error, such as a symbol table overflow, it returns
control to the Shell. The Shell then enters the Editor automatically, and places the line that
caused the error at the top of the text edit window. This allows you to identify the line
containing the error, even if pass two has not started and no listing has been produced yet.

The RESET key

If the RESET key is pressed during an assembly, control is returned to the Shell. The
Shell enters the Editor as if it had encountered a terminal error. The Editor displays the
current line, showing where the assembly was interrupted. If this happens during a macro
resolution, the line displayed is the macro call statement. If you use the RESET key while
a disk write is in progress, you may lost information on the disk.

Printer Listings

Specifying the +L switch with the Shell command you used to assemble your program
sends a listing to the printer. Alternatively, you can code the PRINTER directive with the
ON option in your source file, in which case subsequent lines are sent to the printer. The .
Assembler expects an eighty-colunin printer with an interface card in slot one.

Pre-Alvha Draft 2-4 6/20/86

Cortland Workshop Assembler Reference Using The Assembler

Printed listings are generally the same as listings to the screen, except that the messages
announcing the start of various passes are not printed. The assembler assumes sixty-six
lines per page, and prints on sixty of those lines. Six lines are skipped after each block of
sixty lines to allow for page breaks. After printing the symbol tables for a subroutine, the
Assembler skips to the top of the next page.

Assembler Shell Commands
This section discusses the commands you'll use most often when working with the
Assembler. With these commands, you can perfonn the following tasks:

• Edit new and existing files

• Assemble, link and execute your program

• Build a macro library file

• Perfonn a partial assembly

• Make a cross reference symbol table

• Make a dictionary segment, allowing the Linker to scan your library file faster

• Debug your program

Editing Files

There are three Shell commands you will need when you edit a new or existing file. These
are:

ASM65816
EDIT
NEW

Change the default language to 65816 assembly language
Edit an existing file
Open a new edit window

When you edit an existing program, the editor will already be set to the language in which
the file was originally written. When you open a new file, the editor will be set to the last
language you used. If you need to set the language, use the ASM65816 command. To
edit an existing file, use the EDIT command. To open a new edit window, use the
command NEW. .

Assembling A Program

There are three commands you'll need when you are assembling, linking and running your
program. These are:

ASSEMBLE
ASML
ASMLG

Assembly a program
Assemble and link a program
Assemble, lirik and execute a program

ASSEMBLE

ASSEMBLE [+L1-L] [+SI-S] source/ile [KEEP=ouifile][NAMES=(segl[,seg2[, ...]])]
[languagel =(option...)[language2=(option...)...]]

Pre-Aloha Draft 2-5 6/20/86

Using The Assembler Conland Workshop Assembler Reference

This command assembles a source file. The command parameters are described in the
section "Assembler Command Options", below.

ASML

ASML [+L1-L] [+SI-S] sourcefile [KEEP=ouffile][NAMES=(segl[,seg2[, ...]])]'
[languagel=(option...)[language2=(option...)...]]

The command ASML assembles the source file. If the maximum error level found does
not exceed the maximum error level allowed, it then links the object module. The
command parameters are described below.

ASMLG

ASMLG [+L1-L] [+SI-S] sourcefile [KEEP=ouffile][NAMES=(segl[,seg2[, ...]])]
[languagel=(option...)[language2=(option...)...]]

The command ASMLG assembles the source file. If the maximum error level found does
not exceed the maximum error level allowed, it links the object module. If the error level
is still acceptable, the program is executed.

Assembler Command Options

+L1-L

+SI-S

of

sourcefile

KEEP=out/ile

If you specify +L, the Assembler generates a source listing. If
you specify -L, it produces no listing. The default is +L, unless you
place a LIST directive with the OFF option in the source file.

If you specify +S, the Assembler produces a symbol table; the
Linker, if it has been invoked, also produces an alphabetical listing
all global references in the object module. The Assembler produces
an alphabetic listing of all local symbols following each END •
directive. If you specify -S, these symbol tables are not produced.
The default is -S, unless you place a SYMBOL directive with the
OFF option in your source file.

The full pathname and filename of the source fIle.

This parameter specifies the name of the output fIle. For a one
segment program, the output module is named ouffile.root. If the
program contains more than one segment, the first segment is placed
in ouffile.root, then the next segment is placed in ouffile.a, the
following segment in ouffile.b, and so on, in ascending alphabetical
order. If you are performing a partial assembly, you can use
other fIlename extensions; refer to the section, "Partial Assemblies",
below. If the assembly is followed by a successful link edit, then
the load file is named ouffile.

Pre-Aloha Draft 2-6 6/20/86

Cortland Workshop Assembler Reference Using The Assembler

This parameter has the same effective as placing a KEEP directive in
your source file. If you have a KEEP directive in the source fIle and
you also use the KEEP parameter, the KEEP directive takes
precedence. In this case, two object modules are produced with the
extension .root; one corresponding to the parameter and one
corresponding to the directive. However, other fIles with .a or other
extensions are created with the fIlename used in the directive only,
and the Link Editor uses only the fllename given in the KEEP
directive.

Important: Keep the following points in mind regarding the
KEEP parameter:

• If you use neither the KEEP parameter nor the KEEP
directive, then the object modules are not saved at all. In this
case, the link edit cannot be performed, because there is no
object module to link.

• The fllename you specify as outfile must nQt be over 10
characters long. This is because the extension .root is
appended to the name, and ProDOS does not allow
fllenames of over 15 characters.

• If a flle named outfile already exists, if is overwritten
without a warning when this command is executed.

NAMES=(seg1,seg2 ,...)
This parameter instructs the Assembler to perform a partial
assembly. The operands segl, seg2 and so on specify the names of
the segments to be assembled. The Linker automatically selects the
latest version of each segment when the program is link edited.

You assign names to segments with START or DATA directives.
The object file created when you use the NAMES parameter contains
only the specified segments. When you link a program, the Linker
scans all the flles whose filenames are identical except for their
extensions, and takes the latest version of each segment. Therefore,
you must use the same output fIlename for every partial assembly of
a program. For example, if you specify the output fl1ename as
outfile for the original assembly of a program, then the Assembler
creates object modules named outfile.root and outfile.a. In this
case, you must also specify the output fl1ename as outfile for the
partial assembly. The new output file is named outfile.b, and
contains only the segments listed with the NAMES parameter.

Note: No blanks are permitted immediately before or after the
equal sign in this parameter.

Refer to the section "Partial Assemblies or Compiles" in Chapter 4
of the Cortland Programmer's Workshop manual for a complete
discussion of partial assemblies.

Assembler directives which are global in scope are resolved whether
or not they are in one of the subroutines assembled. These
directives are:

Pre-Aloha Draft 2-7 6/20/86

Using The Assembler

ABSADDR
APPEND
COpy
ERR
GEN
GEQU
IEEE
INSTIME
KEEP
LIST
MCOPY
MDROP
MERR
MLOAD
MSB
PRINTER
RENAME
SYMBOL
65816
65C02

Conland Workshop Assembler Reference

Allow absolute addresses
Append a source file
Copy a source file
Print errors
Generate macro ~xpansions

Define a global symbolic constant
Enable IEEE format numbers
Show instruction times
Keep an output file
List output
Copy a macro file
Drop a macro fIle
Maximum error level
Load a macro file
Set most significant bit
Send output to the printer
Rename an op code
Print symbol tables
Enable 65816 opcodes
Enable 65C02 opcodes

The operands of these directives cannot contain labels unless they appear inside a
program segment, and the segment that they appear in is assembled. If you don't follow
these rules, an invalid operand error will result.

[languagel=option...)[language2=option...)...]]
This parameter allows you to pass parameters directly to the
Cortland compilers. For each compiler, type the name of the
language, exactly as defined in the command syntax, an equal sign
(=), and the string of parameters enclosed in parentheses. The
contents and syntax of the parameter string is specified in the
appropriate compiler reference manual. The CPW Shell performs no
error checking on this string, but passes it through to the compiler.
You can include parameter strings in the command line for as many
languages as you wish. If that language compiler is not called, then
the string is ignored.

Note: No blanks are permitted immediately before or after the
equal sign in this parameter.

Listings and error messages are sent to the command window unless you include a
PRINTER directive with the ON option in your source fIle, or redirect output to another
window, disk file, or the printer in the command line.

Important: If you are using a LinkEdit file to take advantage of the advanced link edit
capabilities it provides, do not use the ASML command. Instead, use the ASSEMBLE
command. You can process the LinkEd fIle automatically by appending it to the end of
your program with an APPEND directive, or you can process it independently with the
ALINK command.

Pre-Aloha Draft 2-8 6/20/86

Cortland Workshop Assembler Reference

Partial Assemblies

Using The Assembler

If you are writing large programs, you may find that the development process is being
slowed down considerably by the amount of time it takes to assemble the program. You
can often speed this process up considerably by taking advantage or the CPW's ability to
perform partial assemblies using the NAMES option of the Shell commands ASSEMBLE,
ASML, or ASMLG. This option is described in the section "Assembler Command
Options", above. If you are using partial assemblies, note the availability of the Shell
command CRUNCH. CRUNCH combines all the object modules created by partial
assemblies into a single me.

The Linker

The Linker takes object fIles and file segments created by the Assembler and generates load
files. The Linker resolves external references and creates relocation dictionaries which
allow the system loader to relocate code at load time. The Linker supports data, code,.
dynamic and static segments, and library files.

Normally, the Linker is called by the Shell command LINK which proVides a limited
number of options. Additionally, you can control all functions of the Linker by using a
language-like set of commands called LinkEd. LinkEd is for advanced programmers who
require maximum flexibility from the system; for most purposes, the ordinary Link
commands are adequate.

LINK

LINK [+L1-L] [+SI-S] objectjile [KEEP=outjile]
LINK [+L-L] [+SI-S] (objectfilel,objectf1le2,...) [KEEP=outfile]

This command calls the Linker to link edit object modules created by the Assembler to
create a load fIle.

+L1-L

By default, the Linker generates a listing, called a link map, of the segments in the object
module, including the starting address, the length in bytes (hexadecimal) of each segment,
and the segment type. If you specify -L, the link map is not produced.

+SI-S

By default, the Linker produces an alphabetical listing of all global references in the object
module, called a symbol table. If you specify -S, the symbol table is not produced.

objectfile

The full pathname and fIlename, minus filename extensions, of the object modules to be
linked. All modules to be linked must have the same f1lename, except for extensions, and
must be in the same directory. For example, the program TEST might consist of object
modules named test.root, test.a and test. b, all located in my horne directory,
/CPW/ORSON. In this case, you would use /CPW/ORSON/TEST for objectfile.

Pre-Aloha Draft 2-9 6/20/86

Using The Assembler

(objectjilel ,objectjile2 ...)

Conland Workshop Assembler Reference

You can link several fIles into one load fIle with a single LINK. command. Enclose in
parentheses the full pathnames and fIlenames, minus fIlename extensions, of all the object
files to be included. Separate the fIlenames with blanks, tabs or commas. The first fIle
named, objectjilel, must ~ave a .root fIle; for the other object fIles, the .root file is
optional, but the .a fIle must be present. For example, the program TEST might consist of
object modules named TESTl.RROT, TESTl.A, TESTl.B, TEST2.A, TEST2.B, all in
directory /CPW/ORSON. In this case, you would use
(/CPW/ORSONtrESTIJCPW/ORSONtrESTI) for objectjile.

KEEP=outjile

Use this parameter to specify the name of the executable load fIle. Note that if you do not
use the KEEP parameter, then the link edit is performed, but the load fIle is not saved.

Important: If you do not include any parameters after the" LINK. command, you are
prompted for an input fIlename, as CPW prompts you for any required parameters.
However, since the output pathname and fIlename are not required parameters, you are not
prompted for them. Consequently, the link edit is performed, but the load file is not saved.
To save the results of a link edit, you must include the KEEP parameter in the command
line.

As an example of the first form of the LINK. command, suppose you want to link edit the
object fIle /CPWffEST1, consisting of fIles TESTl.ROOT, TEST1.A and TEST1.B. The
following command creates the load file /CPW/MYTEST, listing the link: map and symbol
table:

LINK. /CPWffESTl KEEP=/CPW/MYTEST

As an example of the second form of the LINK. command, suppose you want to link: edit
the object fIle /CPW/ORSONtrESTl consisting of fIles TESTl.ROOT, TEST1.A and
TEST1.B, and the object fIle /CPW/ORSONffESTI consisting of files TEST2.ROOT,
TESTI.A and TESTI.B, combining them into a single load file. The following command
creates the load fIle /CPW/MYTEST, printing the link map but suppressing the symbol
table:

LINK. -S (/CPWtrESTIJCPWffESTI) KEEP=MYTEST

To automatically link: edit a program after assembling it, use one of the commands ASML
or AMLG rather than the LINK command. Note that the commands ASML and ASMLG
cannot be used to combine object fIles with different root names into a single load file. To
automatically assemble and link: two or more 'object fIles, use the ASSEMBLE and LINK
commands in an EXEC fIle or with the pipeline operator. For more information on EXEC
files and pipelining, refer the Chapter 4, "The Shell", of the Cortland Programmer's
Workshop.

If you need to take advantage of the advanced link-edit capabilities provided by the
Cortland Workshop Linker, create a fIle of LinkEd commands and process it using the
ALINK command or by appending it to the last source fIle when you assemble your
program.

Pre-Aloha Draft 2 -10 6/20/86

Cortland Workshop Assembler Reference

ALINK

Using The Assembler

The ALINK command calls the Linker to process a fIle of Advanced Linker (LinkEd)
commands. LinkEd commands allow you to do such things as append or insert LinkEd
source fIles in other LinkEd fIles, place specific object segments in specific load segments,
create dynamic or static load segments, set load addresses for nonrelocatable code, search
libraries and control the output printed by the Linker. LinkEd commands can be appended
to the last fIle of the source code, or can be assembled and executed separately using the
Shell commands ASSEMBLE or ALINK. If you do not need to take advantage of the
advanced link-edit capabilities provided by LinkEd, do not create a LinkEd fIle, and do not
use the ALINK command. Instead, use either LINK, ASML or ASMLG to link your
program. The Linker is described in detail in Chapter 8 of the Cortland Programmer's
Workshop.

The Debugger

With the Cortland Workshop Debugger, you can trace the execution of your program,
stepping through the code one instruction at a time or executing at full speed. In either
case, the Debugger will display the contents of the registers, the stack, the direct page and
384 bytes of RAM at any breakpoint you have specified.

You can load the Debugger at any point in memory: it can execute code in any bank other
than the one in which it is resident. The Debugger displays in 80-column mode only, but
allows you to switch between its own display and the display of the program being tested.

The command DUMPOBJ is useful for debugging assembly language code and for
whenever you want to see the contents of an object module format (OMF) file.
DUMPOBJ dumps an object module to standard output. The default for the me dump is
OMF operation codes and records, but you can also list the file as a 65816 machine
language dissassembly ***true?*** or as hexadecimal codes.

Creating A Macro Library

You can search a Cortland macro library directly for the macros you reference in your
source code. This is not, however, time effective. Using the MACGEN command, you
can create a custom macro library file containing only those macros needed by your
program.

MACGEN

MACGEN [+C] [-C] infile outfile macrofilel [macrofile2 ...J

The command MACGEN creates a custom macro file by searching one or more macro
libraries for the macros referenced in the source code and placing the referenced macros in a
single file.

+CI-C If you specify +C, then all excess blanks are removed from the macro file to
save space. If you use the ON option with the GEN directive to include
expanded macros in your source file listing, or the ON option with the
TRACE directive to include conditional assembly directives in your source

Pre-Aloha Draft 2 -11 6/20/86

Using The Assembler Conland Workshop Assembler Reference

file listing, then use the -C parameter to improve the readability of the
listing. +C is the default.

infile The full pathname and filename of the source file. MACGEN scans infile
for references to macros.

outjile The full pathname and filename of the macro file to be created by
MACGEN.

macrofile1 [macrofile2 ...J
The full pathnames and filenames of the macro libraries to be searched for
the macros referenced in infile. At least one macro library must be
specified. Wildcards can be used in the filenames. If you specify more
than one filename, separate the names with blanks or commas.

MACGEN scans infile, including all files referenced with COpy and APPEND directives,
and builds a list of the macros referenced by the program. It then opens a temporary file
called SYSMAC on the work prefix, scans macrofilel for referenced macros, and writes
the macros it finds to SYSMAC. If there are still unresolved references to macros,
MACGEN scans macrofile2, and so on. If there are still unresolved references to macros
after all the macro files you specfied in the command line have been scanned, then
MACGEN lists the missing macros and prompts you for the name of another macro
library. Press RETURN without a filename to terminate the process before all macros have
been found. After all macros have been found, or you press RETURN to end the process,
SYSMAC is copied to outfile.

The following example scans the program /CPW/MYPROG, searches the macro libraries
/CPW/ROM.MACROS, and creates the macro library file /CPWtrEST.MACROS.

MACGEN /CPW/MYPROG /CPWtrEST.MACROS /CPW/ROM.MACROS

Since the macros are written to a temporary file instread of directly to outfile, you can
specify a previous version of outfile as one of the macro libraries to be searched. For
example, suppose the program MYPROG already has a custom macro file
/CPW/ROM.MACROS. In· this case, you could use the following command

MACGEN MYPROG TEST.MACROS TEST.MACROS /CPW/ROM.MACROS

Important: Before you assemble your program, make sure that the source code contains
the directive MCOPY outfile to instruct the Assembler to search outfile for the macros.

Chapter 6, "Macros", of this manual contains a sample session using macros and building a
macro library with the MACGEN command.

Making A Cross Reference Table

The XREF utility allows you to make a cross reference file of the symbols you have
defined and used in your source program. You can also use the XREF utility to count the

Pre-Aloha Draft 2 -12 6/20/86

Cortland Workshop Assembler Reference Using The Assembler

ocurrences of various operation codes. A language-dependent fIle must be available on the
utility prefIx for any language to be scanned. You can redirect output in the nOImal way.

XREF

XREF [+L1-L] [+XI-X] [+FI-F] [(subrangel,subrange5)]f11ename

+L1-L

+FI-F

Using the parameter +L lists the flIe. Each line of the source flIe is preceded
by a line number. These line numbers are referred to in the cross reference
listing. Include a -L to suppress the source listing. The default is +L.

Using the parameter +X lists a frequency count. A frequency count is
composed of two lists, each including all the programming language
keywords used. The fIrst is in alphabetic order; the second is in decreasing
order of the total number of times each keyword is used. The default is -F.

+XI-X Using the +X parameter generates a cross reference. The cross reference
lists each symbol in the source flIe that is defmed within the program; it
shows the line or lines on which the symbol is defIned, and every line in
which the symbol is used. The default is +X

(subrangel ,...subrange5)
XREF does not recognize symbols as local. That is to say, XREF cross
references symbols globally across all segments. To limit the size of a cross
reference produced for a large program, you can specify up to five
alphabetical subranges to be included in the listing. To specify a subrange,
type in a pair of uppercase letters indicating the starting and ending letters
with which the symbols can begin. Separate subranges with commas (,),
and enclose the set of subranges in parentheses.

The number of symbols that XREF can handle at one time depends on the
memory available. If you get a "Symbol Table Overflow" message when
you run XREF, try using subranges.

If you omit this parameter, then all symbols are included in the cross
reference.

filename The full pathname and flIename of the source flIe to be processed.

The following example show you how to generate a cross reference for the program
MYPROG, suppressing the source listing, including a frequency count, and including in
the cross reference only symbols that start with the letters A, B, Cor S.

Enter the following command line:

XREF -L+F (AC,SS) MYPROG

XREF can process an entire program, including flIes incorporated with COPY or APPEND
directives. It can recognize changes in source code from one flIe to the next and adjust
accordingly.

Pre-Aloha Draft 2 -13 6/20/86

Using The Assembler Cortland Workshop Assembler Reference

Important: To process your code with the utility XREF, there must be a me in the
/UTILITY subdirectory called XREF.?n ***.n? signifies assembly language***. This
me is provided with the Assembler: you must place it in the /Utility subdirectory when you
install the Asse~bler in your copy of CPW.

The following sample cross reference listing illustrates the output from XREF.

include sample

Making a dictionary segm~nt

***"Using the MAKELIB command to make a dictionary segment" - to be supplied;
the implementation and syntax of the MAKELIB command is changing as of the Byte
Works review*** .

Pre-Aloha Draft 2 -14 6/20/86

Cortland Workshop Assembler Reference

Chapter 3

Programming The 65816

Programming the 65816

This chapter discusses the Cortland 65816 processor. It includes a summary of the 65816
registers, the 65816 instruction set, and its addressing modes. At the end of the
chapter, an instruction list contains the the opcode and execution time for each instruction.

This chapter is included as reference material for your convenience. For a comprehensive
treatment of the topics summarized here, refer to one of the following publications:

• David Eyes and Ron Lichty, Programming the 65816, Simon and Schuster, 1986
• Michael Fisher, 65816/65802 Assembly Language Programming, Osborne

McGraw-Hill, 1896

• William Labiak, Programming the 65816, Sybex, 1986

Features of the 65816

The Cortland processor is based on Western Digital's W65SC816 operating together with a
custom Fast Processor Interface (FPI) chip. Features of the 65816 include:

• Nine registers, including a 16-bit accumulator, plus sixteen-bit X and Y registers
• Twenty-four-bit internal address bus
• Relocatable direct page
• Relocatable stack
• 25 addressing modes and ninety-one instructions, giving 256 opcodes
• Fast block-move instructions
• 6502 emulation, providing software compatibility with existing Apple II programs

65816 Registers
The 65816 processor includes the following registers:

• Accumulators A, B and C
• Index registers X and Y

• D~ta bank register
• Program bank register
• Direct page register

• Processor status register

• Stack pointer
• Program counter

Pre-Aloha Draft 3-1 6/20/86

Programming The 65816

Accumulators A, Band C

Cortland Workshop Assembler Reference

The accumulator is a general-purpose register which stores one of the operands, or the
result of most arithmetic or logical operations. In the native mode (e=O), when the
accumulator select bit m=O, the"accumulator is established as 16-bits wide (A+B=C).
When m=1, the accumulator is 8 bits wide (A). In this case, the upper 8 bits (B) may be
used for temporary storage in conjunction with the Exchange Accumulator (XBA)
instruction.

The Index Registers X and Y

The two index registers X and Y are used as general-purpose registers to provide an index
value for calculation of the effective address. When executing an instruction with indexed
addressing, the processor fetches the opcode and the base address, and then modifies the
address by adding the contents of the index register to the address prior to performing the
desired operation. Pre-indexing or post-indexing of indirect addresses may be selected. In
native mode (e=O), both index registers are 16-bits wide when the index select bit x=O.
When the index select bit x=1, both registers will be 8-bits wide, and the high byte is
forced to zero.

Data Bank Register (DBR)

During modes of operation, the 8-bit data bank register holds the default bank address for
memory transfers. The 24-bit address is composed of the 16-bit instruction effective
address and the 8-bit data bank address. The register value is multiplexed with the data
value and is present on the data/address lines during the first half of a data transfer memory
cycle. The data bank register is initialized to zero during reset.

Program Bank Register (PBR)

The 8-bit program bank register holds the bank address for all instruction fetches. The 24
bit address consists of the 16-bit instruction effective address and the 8-bit program bank
address. The register value is multiplexed with the data value and presented on the
data/address lines during the first half of a program memory read cycle. The program bank
register is initialized to zero during reset. The PHK instruction pushes the PBR register
onto the stack.

Direct Page Register (D)

The 16-bit register provides an address offset for all instructions using direct addressing.
The effective bank zero address is formed by adding the 8-bit instruction operand address
to the direct page register. The direct page register is initialized to zero during reset.

Processor Status Register (P)

The 8-bit processor status register contains status flags and mode select bits. The carry
(C), negative (N), overflow (0), and zero (Z) status flags serve to report the status of most

Pre-Aloha Draft 3-2 6/20/86

Cortland Workshop Assembler Reference Programming The 65816

ALU operations. These status flags are tested by use of conditional branch instructions.
The decimal CD), IRQ disable (I), memory/accumulator (M), and index (X) bits are used as
mode select flags. These flags are set by the program to change processor operations.

The emulation (E) select and break (B) flags are accessible only through the processor
status register. The emulation mode select flag is selected by the exchange carry and
emulation bits (XCE) instruction. The M and X flags are always equal to one in the
emulation mode. When an interrupt occurs during the emulation mode, the break flag is
written to stack memory as bit 4 of the processor status register.

illustration - tbd

Program Counter (C)

The 16-bit program counter provides the addresses which are used to step the processor
through sequential program instructions. The register is incremented each time an
instruction or operand is fetched from program memory.

Stack Pointer (S)

The stack pointer is a 16-bit register which is used to indicate the next available location in
the stack memory area. It seIVes as the effective address in stack addressing modes are
well as subroutine and interrupt processing. The stack pointer allows simple
implementation of nested subroutines and multiple-level interrupts. During emulation
mode, the stack pointer high-order byte (SH) is always equal to one. The bank address for
all stack operations is bank zero.

65816 Instruction Set

This section is divided into two parts. The fIrst, "Instruction Set Summary", groups each
instruction by function. The second, "Instruction Descriptions", includes a brief
description of each instruction, listed in alphabetical order.

Instruction Set Summary

The 65816 instruction set can be divided functionally into fIve groups:

• data movement instructions
• flow of control instructions
• arithmetic instructions
• logical and bit manipulation instructions
• system control instructions

Pre-Aloha Draft 3-3 6120186

Programming The 65816

Data Movement Instructions

Load/Store Instructions:

Cortland Workshop Assembler Reference

LDA
LDX
LDY
STA
STX
STY

Push Instructions:

PHA
PHP
PHX
PHY
PHB
PHK
PHD
PEA
PEl
PER

Pull Instructions:

PLA
PLP
PLX
PLY
PLB
PLD

Load accumulator from memory
Load the X index register
Load the Y index register
Store the accumulator
Store the X index register
Store the Y index register

Push the accumulator
Push status register (flags)
Push X index register
Push Y index register
Push data bank: register
Push program bank register
Push direct page register
Push effective absolute address
Push effective indirect address
Push effective relative address

Pull the accumulator
Pull status register (flags)
Pull X index register
Pull Y index register
Pull data bank: register
Pull direct page register

Transfer .Instructions:

TAX
TAY
TSX
TXS
TXA
TYA
TCD
IDC
TCS
TSC
TXY
TYX

Transfer A to X
Transfer A to Y
Transfer S to X
Transfer X to S
Transfer X to A
Transfer Y to A
Transfer C accumulator to D
Transfer D to C accumulator
Transfer C accumulator to S
Transfer S to C accumulator
Transfer X to Y
Transfer Y to X

Exchange Instructions:

XBA
XCE

Pre-Aloha Draft

Exchange B and A accumulators
Exchange carry and emulation bits

3-4 6/20/86

Cortland Workshop Assembler Reference

Store Zero to Memory:

Programming The 65816

STZ

Block Moves:

MVN
MVP

Store zero to memory

Move block in negative direction
Move block in positive direction

Flow Of Control Instructions

BCC
BCS
BEQ
BMI
BNE
BPL
BRA
BRL
BVC
BVS
JMP
JSR
JSL
RTS
RTL

Branch if carry clear
Branch if carry set
Branch if equal
Branch if minus
Branch if not equal
Branch if plus
Branch always
Branch always long
Branch if overflow clear
Branch if overflow set
Jump
Jump to subroutine
Jump to subroutine long
Return from subroutine
Return from subroutine long

Arithmetic Instructions

DEC
DEX
DEY
INC
INX
INY

Decrement
Decrement index register X
Decrement index register Y
Increment
Increment Index register X
Increment index register Y

Logic And Bit Manipulation Instructions

Logic Instructions:

AND
EOR
ORA

Logical AND
Logical exclusive-OR
Logical OR (inclusive OR)

Bit Manipulation Instructions:

BIT
TRB
TSB

Pre-Aloha Draft

Test bits
Test and reset bits
Test and set bits

3-5 6/20/86

Programming The 65816

Shift and Rotate Instructions:

Cortland Workshop Assembler Reference

ASL
LSR
ROL
ROR

Shift bits left
Shift bits left
Rotate bits left
Rotate bits right

System Control Instructions

BRK
RTI
NOP
SEC
CLC
SED
CLD
SEI
CLI
CLV
SEP
REP
COP
STP
WAI
WDM

Break (software interrupt)
Return from interrupt
No operation
Set carry flag
Clear carry flag
Set decimal mode
Clear decimal mode
Set interrupt disable flag
Clear overflow flag
Clear overflow flag
Set status register bits
Clear status register bits
Co-processor of software interrupt
Stop the clock
Wait for interrupt
Reserved for expansion

Instruction Descriptions

ADC Add With Carry

Add the data located at the effective address specified by the operand to the contents of the
accumulator; add one to the result if the carry flag is set, and store the fmal result in the
accumulator.

AND And Accumulator With Memory

Bitwise logical AND the data located at the effective address specified by the operand with
the contents of the accumulator. Each bit in the accumulator is ANDed with the
corresponding bit in memory, with the result being stored in the respective accumulator bit.

ASL Shift Memory Or Accumulator Left

Shift the contents of the location specified by the operand left one bit. That is, bit one takes
on the value originally found in bit zero, bit two takes the value originally in bit one, and so
on; the leftmost bit (bit 7 if m=1 or bit 15 if m=O) is transferred into the carry flag; the
righmost bit, bit zero, is cleared. The arithmetic result of the operation is an unsigned
multiplication by two.

Pre-Aloha Draft 3-6 6/20/86

Cortland Workshop Assembler Reference

Bce Branch If Carry Clear

Programming The 65816

The carry flag in the P status register is tested. If it is clear, a branch is taken; if it is set,
the instruction immediately following the two-byte BCC instruction is executed.

BCS Branch If Carry Set

The carry flag in the P status register is tested. If it is set, a branch is taken; if it is clear,
the instruction immediately following the two-byte BCS instruction is executed.

BEQ Branch IfEqual

The zero flag in the P status register is tested. If it is set, meaning that the last value tested
(which affected the zero flag) was zero, a branch is taken; if it is clear, meaning that the
value tested was non-zero, the instruction immediately following the two-byte BEQ
instruction is executed.

BIT Test Memory Bits Against Accumulator

BIT sets the P status register flags based on the result on two different operations, making
it a dual purpose instruction.
First, it sets or clears the n flag to reflect the value of the high bit of the data located at the
effective address specified by the operand, and sets or clears the v flag to reflect the
contents of the next-to-highest bit of the data addressed.
Second, it logically ANDs the data located at the effective address with the contents of the
accumulator; it changes neither value, but sets the z flag if the result is zero, or clears it if
the result is non-zero.

BMI Branch If Minus

The negative flag in the P status register is tested. If it is set, the high bit of the value
which most recently affected the n flag was set, and a branch is taken.

BNE Branch If Not Equal

The zero flag in the P status register is tested. If it is clear (meaning that the value just test
is non-zero), a branch is taken; if it is set (meaning the value tested is zero), the instruction
immediately following the two-byte BNE instruction is executed.

BPL Branch If Plus

The negative flag in the P status register is tested. If it is clear, meaning that the last value
which affected the zero flag had its high bit clear, a branch is taken. In the two's
complement system, values with their high bit clear are interpreted as positive numbers. If
the flag is set, meaning that the high bit of the last value was set, the branch is no taken; it
is a two's-complement negative number, and the instruction immediately following the
two-byte BPL instruction is executed.

Pre-Aloha Draft 3-7 6120186

Programming The 65816

BRA 13ranch Always

Cortland Workshop Assembler Reference

A branch is always taken, and no testing is done; in effect, a conditional JMP is executed,
but since signed displacements are used, the instruction is only two bytes, rather than the
three bytes of a JMP. Additionally, using displacements fron the program counter makes
the BRA instruction relocateable. Unlike a JMP instruction, the BRA is limited to targets
that lie within the range of the one-byte signed displacement of the conditional branches:
minus 128 to plus 128 bytes from the fIrst byte following the BRA instruction.

BRK Software Break

Force a software interrupt. BRK is unaffected by the i interrupt disable flag.

BRL Branch Always Long

A branch is always taken, similar to the BRA instruction. However, BRL is a three-byte
instruction; the two bytes immediately following the opcode from a sixteen-bit signed
displacement from the program counter. Once the branch address has been calculated, the
result is loaded into the program counter, transferring control to that location.

BVC Branch If Overflow Clear

The overflow flag in the P status register is tested. If it is clear, a branch is taken; if it is
set, the instruction immediately following the two-byte BVC instruction is executed.

BVS Branch If Overflow Set

The overflow flag in the P status register is tested. IF it is set, a branch is taken; if it is
clear, the instruction immediately following the two-byte BVS instruction is executed.

CLC Clear Carry Flag

Clear the carry flag in the status register.

CLD Clear Decimal Mode Flag

Clear the decimal mode flag in the status register.

CLI Clear Interrupt Disable Flag

Clear the interrupt disable flag in the status register.

CLV Clear Overflow Flag

Clear the overflow flag in the status register.

Pre-Aloha Draft 3-8 6/20/86

Cortland Workshop Assembler Reference Programming The 65816

CMP Compare Accumulator With Memory

Subtract the data located at the effective address specified by the operand from the contents
of the accumulator, setting the carry, zero and negative flags based on the result, but
without altering the contents of either the memory location or the accumulator. That is, the
result is not saved. The comparison is of unsigned binary value only.

COP Co-Processor Enable

Execution of COP causes a software interrupt, similarly to BRK, but through the separate
COP vector. Alternatively, COP may be trapped by a co-processor, such as a floating
point or graphics processor, to call a co-processor function. COP is unaffected by the i
interrupt disable flag.

CPX Compare Index Register X With Memory

Subtract the data located at the effective address specified by the operand from the contents
of the X register, setting the carry, aero and negative flags based on the result, but without
altering the contents of either the memory location or the register. The result is not saved.

.The comparison is of unsigned values only (except for signed comparison for equality).

Cpy Compare Index Register Y With Memory

Subtract the data located at the effective address specified by the operand from the contents
of the Y register, setting the carry, zero, and negative flags based on the result, but without
altering the contents of either the memory location or the register. The comparison is of
unsigned values only (except for signed comparison for equality).

DEC Decrement

Decrement by one the contents of the location specified by the operand (subtract one from
the value). .

DEX Decrement Index Register X

Decrement by one the contents of index register X (subtract one from the value). This is a
special purpose, implied addressing form of the DEC instruction.

DEY Decrement Index Register Y

Decrement by one the contents of index register Y (subtract one from the value). This is a
special purpose, implied addressing form of the DEC instruction.

Pre-Aloha Draft 3-9 6/20/86

Programming The 65816 Cortland Workshop Assembler Reference

EOR Exclusive-OR Accumulator With Memory

Bitwise logical Exclusive-OR the data located at the effective address specified by the
operand with the contents of the accumulator. Each bit in the accumulator is exclusive
ORed with the corresponding bits in memory, and the result is stored into the same
accumulator bit.

INC Increment

Increment by one the contents of the location specified by the operand (add one to the
value).

INX Increment Index Register X

Increment by one the contents of index register X (add one to the value). This is a special
purpose, implied addressing form of the INC instruction.

!NY Increment Index Register Y

Increment by one the contents of index register Y (add one to the value). This is a special
purpose, implied addressing form of the INC instruction.

JMP Jump

Transfer control to the address specified by the operand field.

JSL Jump To Subroutine Long (Inter-Bank)

Jump-to-subroutine with long(24-bit) addressing: transfer control to the subroutine at the
24-bit address which is the operand, after first pushing a 24-bit (long) return address onto
the stack. This return address is the address of the last instruction byte (the fourth
instruction byte, or the third operand byte), not the address of the next instruction. It is the
return address minus one.

JSR Jump To Subroutine

Transfer control to the subroutine at the location specified by the operand, after first
pushing onto the stack, as a return address, the current program counter value, that is, the
address of the last instruction byte (the third byte of a three-byte instruction, the fourth byte
of a four-byte instruction), not the address of the next instruction.

LDA Load Accumulator From Memory

Load the accumulator with the data located at the effective address specified by the operand.

Pre-Aloha Draft 3 -10 • 6/20/86

Cortland Workshop Assembler Reference Programming The 65816

LDX Load Index Register X From Memory

Load index register X with the data located at the effective address specified by the
operand.

LDY Load Index Register Y From Memory

Load index register Y with the data located at the effective address specified by the
operand.

LSR Logical Shift Memory Or Accumulator Right

Logical shift the contents of the location specified by the operand right one bit.

MVN Block Move Next

Moves (copies) a block of memory to a new location. The source, destination and length
operands of this instruction are taken from the X, Y and C (double accumulator) registers;
these should be loaded with the correct values before executing the MVN instruction.

MVP Block Move Previous

Moves (copies) a block of memory to a new location. The source, destination and length
operands of this instruction are taken from the X, Y and C (double accumulator) registers;
these should be loaded with the correct values before executing the MVP instruction.

NOP No Operation

Executing a NOP takes no action; it has no effect on any registers or memory, except the
program counter, which is incremented once to point to the next instruction.

ORA OR Accumulator With Memory

Bitwise logical OR the data located at the effective address specified by the operand with
the contents of the accumulator. Each bit in the accumulator is ORed with the
corresponding bit in memory. The result is stored into the same accumulator bit.

PEA Push Effective Absolute Address

Push the sixteen-bit operand (typically an absolute address) onto the stack. The stack
pointer IS decremented twice. This operation always pushes sixteen bits of data,
irrespective of the settings of the m and x mode select flags.

Pre-Aloha Draft 3 -11 6120186

Programming The 65816 Cortland Workshop Assembler Reference

PEl Push Effective Indirect Address

Push the sixteen-bit value located at the address fonned by adding the direct page offset
specified by the operand to the direct page register. The mnemonic implies that the sixteen
bit data pushed is considered an address, although it can be any sixteen-bit data. This
operation always pushes sixteen bits of data, irrespective of the settings of the m and x
mode select flags.

PER Push Effective PC Relative Indirect Address

Add the current value of the program counter to the sixteen-bit signed displacement in the
operand, and push the result onto the stack. This operation always pushes sixteen bits of
data, irrespective of the settings of the m and x mode select flags.

PHA Push Accumulator

Push the accumulator onto the stack. The accumulator itself is unchanged.

PHB Push Data Bank Register

Push the contents of the data bank register onto the stack.

PHD Push Direct Page Register

Push the contents of the direct page register onto the stack.

PHK Push Program Bank Register

Push the program bank register onto the stack.

PHP Push'Processor Status Register

Push the contents of the processor status register P onto the stack.

PHX Push Index Register X

Push the contents of the X index register onto the stack. The register itself is unchanged.

PHY Push Index Register Y

Push the contents of the Y index register onto the stack. The register itself is unchanged.

Pre-Aloha Draft 3 -12 6/20/86

Cortland Workshop Assembler Reference

PLA Pull Accumulator

Programming The 65816

Pull the value on the top of the stack into the accumulator. The previous contents of the
accumulator are destroyed.

PLB Pull Data Bank Register

Pull the eight-bit value on top of the stack into the data bank register B, switching the data
bank to that value. All instructions which reference data that specify only sixteen-bit
addresses will get their bank address from the value pulled into the data bank register. This
is the only instruction that can modify the data bank register.

PLD Pull Direct Page Register

Pull the sixteen-bit value on top of the stack into the direct page register D, switching the
direct page to that value.

PLP Pull Status Flags

Pull the eight-bit value on top of the stack into the processor status register P, switching the
status byte to that value.

PLX Pull Index Register X From Stack

Pull the value on the top of the stack into the X index register. The previous contents of the
register are destroyed.

PLY Pull Index Register Y From Stack

Pull the value on the top of the stack into the Y index register. The previous contents of the
register are destroyed.

REP Reset Status Bits

For each bit set to one in the operand byte, reset the corresponding bit in the status register
to zero. For example, if bit three is set in the operand byte, bit three in the status register
(the decimal flag) is reset to zero by this instruction. Zeroes in the operand byte cause no
change to their corresponding status register bits.

ROL Rotate ly1emory or Accumulator Left

Rotate the contents of the location specified by the operand left one bit. Bit one takes on
the value originally found in bit zero; bit two takes on the value originally in bit one, and so
on; the rightmost bit, bit zero, takes the value in the carry flag; the leftmost bit is
transferred into the carry flag.

Pre-Aloha Draft 3 -13 6/20/86

Programming The 65816 Cortland Workshop Assembler Reference

ROR Rotate Memory or Accumulator Right

Rotate the contents of the location specified by the operand right one bit. Bit zero takes on
the value originally found in bit one; bit one takes the value originally in bit two, and so on;
the leftmost bit takes the value in the carry flag; the rightmost bit, bit zero, is transferred
into the carry flag.

RTI Return From Interrupt

Pull the status register and the program counter from the stack. If the processor is set to
native mode (e=O), also pull the program bank register from the stack.

RTL Return From Subroutine Long

Pull the program counter (incrementing the stacked, sixteen-bit value by one before loading
the program counter with it), then the program bank register from the stack.

RTS Return From Subroutine

Pull the program counter, incrementing the stacked, sixteen-bit value by one before loading
the program counter with it.

SBC Subtract With Borrow From Accumulator

Subtract the data located at the effective address specified by the operand from the contents
of the accumulator; subtract one more if the carry flag is clear, and store the result in the
accumulator.

SEC Set Carry Flag

Set the carry flag in the status register.

SED Set Decimal Mode Flag

Set the decimal mode flag in the status register.

SEI Set Interrupt Disable Flag

Set the interrupt disable flag in the status register.

SEP Set Status Bits

For each one-bit in the operand byte, set the corresponding bit in the status register to one.
For example, if bit three is set in the operand byte, bit three in the status register (the
decimal flag) is set to one by this instruction. Zeroes iIi the operand byte cause no change
to their corresponding status register bits.

Pre-Aloha Draft 3 -14 6/20/86

Cortland Workshop Assembler Reference Programming The 65816

STA Store Accumulator To Memory

Store the value in the accumulator to the effective address specified by the operand.

S1P Stop The Processor

. During the processor's next phase 2 clock cycle, stop the processor's oscillator input; the
processor is effectively shut down until a reset occurs (until the RES pin is pulled low).

STX Store Index Register X To Memory

Store the value in index register X to the effective address specified by the operand.

STY Store Index Register Y To Memory

Store the value in index register Y to the effective address specified by the operand.

STZ Store Zero To Memory

Store zero to the effective address specified by the operand.

TAX Transfer Accumulator To Index Register X

Transfer the value in the accumulator to index register X. If the registers are different in
size, the nature of the transfer is determined by the destination register. The value in the
accumulator is not changed by the operation.

TAY Transfer Accumulator To Index Register Y

Transfer the value in the accumulator to index register Y. If the registers are different in
size, the nature of the transfer is determined by the destination register. The value in the
accumulator is not changed by the operation.

TCD Transfer 16-Bit Accumulator To Direct Page Register

Transfer the value in the sixteen-bit accumulator C to the direct page register D, regardless
of the setting of the accumulator/memory mode flag.

TCS Transfer Accumulator To Stack Pointer

Transfer the value in the accumulator to the stack pointer S. An alternate mnemonic is TAS
(transfer the value in the A accumulator to the stack pointer).

Pre-Aloha Draft 3 -15 6120186

Programming The 65816 Cortland Workshop Assembler Reference

IDe Transfer Direct Page Register To 16-Bit Accumulator

Transfer the value in the sixteen-bit direct page register D to the sixteen-bit accumulator C,
regardless of the setting of the accumulator/memory mode flag. An alternate mnemonic is
IDA (transfer the value in the direct page register to the A accumulator).

TRB Test And Reset Memory Bits Against Accumulator

Logically AND together the complement of the value in the accumulator with the data at the
effective address specified by the operand. Store the result at the memory location.

TSB Test And Set Memory Bits Against Accumulator

Logically OR together the value in the accumulator with the data at the effective address
specified by the operand. Store the result at the memory location.

TSC Transfer Stack Pointer To 16-Bit Accumulator

Transfer the value in the sixteen-bit stack pointer S to the sixteen-bit accumulator C,
regardless of the setting of the accumulator/memory mode flag.

TSX Transfer Stack Pointer To Index Register X

Transfer the value in the stack pointer S to index register X. The stack pointer's value is
not changed by the operation.

TXA Transfer Index Register X To Accumulator

Transfer the value in index register X to the accumulator. If the registers are of different
sizes, the nature of the transfer is determined by the destination (the accumulator). The
value in the index register is not changed by the operation.

TXS Transfer Index Register X To Stack Pointer

Transfer the value in index register X to the stack pointer S. The index register's value is
not changed by the operation.

TXY Transfer Index Registers X To Y

Transfer the value in index register X to index register Y. The value in index register X is
not changed by the operation. Note that the two registers are never different sizes.

Pre-Alvha Draft 3 -16 6/20/86

Cortland Workshop Assembler Reference

TYA Transfer Index Register Y To Accumulator

Programming The 65816

Transfer the value in index register Y to the accumulator. If the registers are different sizes,
the nature of the transfer is determined by the destination (the accumulator). The value in
the index register is not changed by the operation.

TYX Transfer Index Registers Y To X

Transfer the value in index register Y to index register X. The value in index register Y is
not changed by the operation. Note that the two registers are never different sizes.

WAI Wait For Interrupt

Pull the RDY pin low. Power consumption is reduced and RDY remains low until an
external hardware interrupt (NMI, IRQ, ABORT or RESET) is received.

WDM Reserved For Future Expansion

This opcode is reserved for future expansion.

XBA EfCchange The B And A Accumulators

XBA exchanges the contents of the low-order and high-order bytes of the sixteen-bit
accumulator C, where B represents the high-order byte and A represents the low-order byte
of the accumulator.

XCE Exchange Carry And Emulation Bits

This instruction allows you to shift between 6502 emulation mode and sixteen-bit native
mode. The emulation mode is used to provide software compatibility with programs
previously written for the Apple II family of processors.

Addressing Modes
Twenty· five addressing modes are available with the 65816 processor. These are
summarized below. Not all addressing modes are available for all instructions,
but each instruction provides a separate opcode for each of the addressing modes it
supports. In Appendix A, each instruction is listed by mnemonic with its opcode
and execution time.

Pre-Aloha Draft 3-17 6/20/86

Programming The 65816

Summary of Addressing Modes

Addressing Mode

Cortland Workshop Assembler Reference

Syntax Example
Opcode Operand

Implied
Accumulator
Immediate
Program Counter Relative
Program Counter Relative Long
Stack
Stack Relative
Stack Relative Indirect Indexed With y
BlockMove <

Absolute
Absolute Indirect
Absolute Indexed With X
Absolute Indexed With Y
Absolute Indexed Indirect
Absolute Long
Absolute Long Indexed With X
Absolute Indirect Long
Direct Page
Direct Page Indirect
Direct Page Indexed With X
Direct Page Indexed With Y
Direct Page Indirect Indexed with Y (Postindexed)
Direct Page Indexed Indirect With X (Preindexed)
Direct Page Indirect Long
Direct Page Indirect Long Indexed With Y

Addressing Mode Descriptions

Implied

DEX
ASL
LDA
BEQ
BRL
PHA
LDA
LDA
MVP
LDA
JMP
LDA
LDA
JMP
LDA
LDA
JMP
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA

A
#55
LABEL12
JMPLABEL

3,S
(5,S),Y
0,0
$2000
($1020)
$2000,X
$2000,Y
($2000,X)
$02FOOO
$12D080,X
($2000)
$81
($55)
$55,X
$55,Y
($55),Y
($55,X)
($55)
($55),Y

Implied addressing uses a single-byte instruction. The operand is'implicitly
defined by the instruction.

Accumulator

This form of addressing always uses a single-byte instruction. The operand is the
accumulator.

Immediate Addressing

The operand is the second byte (second and third bytes when in the 16-bit mode) of
the instruction.

Pre-Alvha Draft 3 -18 6120186

Cortland Workshop Assembler Reference Programming The 65816

Program Counter Relative

This addressing mode, referred to as relative addressing, is used only with branch
instructions. If the condition being tested is met, the second byte of the instruction
is added to the program counter, which has been updated to point to the opcode of
the next instruction. The offset is a signed 8-bit quantity in the range from minus
128 to plus 127. The program bank register is not affected.

Program Counter Relative Long

This addressing mode, referred to as relative long addressing, is used only with the
unconditional branch long instruction (BRL) and the push effective relative
instruction (PER). The second and third bytes of the instruction are added to the
program counter, which has been updated to point to the opcode of the next
instruction. With the branch instruction, the program counter is loaded with the
result. With the push effective relative instruction, the result is stored on the stack.
The offset is a signed 16-bit quantity in the range from minus 32768 to plus 32767.
The program bank register is not affected.

Stack

Stack addressing refers to all instructions that push or pull data from the stack, such
as Push, Pull, Jump to Subroutine, Return from Subroutine, Interrupts, and Return
from Interrupt. The bank address is always zero. Interrupt vectors are always
fetched from bank O.

Stack Relative

The low-order 16 bits of the effective address is formed from the sum of the second
byte of the instruction and the stack pointer. The high-order 8 bits of the effective
address is always zero. The relative offset is an unsigned 8-bit quantity in the range
from 0 to 255.

illustration tbs

Stack Relative Indirect Indexed With Y

The second byte of the instruction is added to the stack pointer to form a pointer to
the low-order 16-bit base address in bank O. The data bank register contains the
high-order 8 bits of the base address. The effective address is the sum of the 24-bit
base address and the Y index register.

illustration tbs

Block Move

This addressing mode is used by the block move instructions. The second byte of
the instruction contains the high-order 8 bits of the destination address. The Y
index register contains the low-order 16 bits of the destination address. The third

Pre-Aloha Draft 3 -19 6/20/86

Programming The 65816 Cortland Workslwp Assembler Reference

byte of the instruction contains the high-order 8 bits of the source address. The X
index register contains the low-order 16 bits of the source address. The C
accumulator contains one less than the number of bytes to move. The second byte
of the block move instructions is also loaded into the data bank register.

illustration tbs

Absolute

With absolute addressing, the second and third bytes of the instruction form the
low-order 16 bits of the effective address. The data bank register contains the high
order bits of the operand address~

illustration tbs

Absolute Indirect

The second and third bytes of the instruction form an address to a pointer in bank O.
The program counter is loaded with the fIrst and second bytes at this pointer. With
the Jump Long (JML) instruction, the program bank register is loaded with the third
byte of the pointer.

illustration tbs

Absolute Indexed With X

The second and third bytes of the instruction are added to the X index register to
form the low-order 16 bits of the effective address. The data bank register contains
the high-order 8 bits of the effective address.

illustration tbs

Absolute Indexed With Y

The second and third bytes of the instruction are added to the Y index register to
form the low-order 16 bits of the effective address. The data bank register contains
the high-order 8 bits of the effective address.

illustration tbs

Absolute Indexed Indirect

The second and third bytes of the instruction are added to the X index register to
form a 16-bit pointer in bank O. The contents of this pointer are loaded in the
program counter. The program bank register is not changed.

Illustration tbs

Pre-Alvha Draft 3 -20 6/20/86

Cortland Workshop Assembler Reference Programming The 65816

Absolute Long

The second, third and fourth byte of the instruction form the 24-bit effective
address.

illustration tbs

Absolute Long Indexed With X

The second, third and fourth bytes of the instruction form a 24-bit base address.
The effective address is the sum of this 24-bit address and the X index register.

Absolute Indirect Long

To be supplied

Direct Page

The second byte of the instruction is added to the direct page register (D) to form
the effective address. An additional cycle is required when the direct page register
is not page aligned (DL not equal to 0). The bank register is always zero.

illustration tbs

Direct Page Indirect

The second byte of the instruction is added to the direct page register to form a
pointer to the low-order 16 bits of the effective address. The data bank register
contains the high-order 8 bits of the effective address.

illustration tbs

Direct Page Indexed With X

The second byte of the instruction is added to the sum of the direct page register and
the X index register to form the 16-bit effective address. The operand is always in
bank O.

illustration tbs

Direct Page Indexed With Y

The second byte of the instruction is added to the sum of the direct page register and
the Y index register to form the 16-bit effective address. The operand is always in

. bank O.

illustration tbs .

Pre-Aloha Draft 3 -21 6/20/86

Programming The 65816 Cortland Workshop Assembler Reference

Direct Page Indirect Indexed with Y (Postindexed)

This addressing mode is often referred to as Indirect Y. The second byte of the
instruction is added to the direct page register (D). The 16-bit contents of this
memory location is then combined with the data bank register to form a 24-bit base
address. The Y index register is added to the base address·to form the effective
address. .

illustration tbs

Direct Page Indexed Indirect With X (Preindexed)

This addressing mode is often referred to as Indirect X. The second byte of the
instruction is added to the sum of the direct page register (D) and the X index
register. The result points to the low-order 16 bits of the effective address. The
data bank register contains the high-order 8 bits of the effective address.

illustration tbs

Direct Page Indirect Long

The second byte of this instruction is added to the direct page register to form a
pointer to the 24-bit effective address.

illustration tbs

Direct Page Indirect Long Indexed With Y

With this addressing mode, the 24-bit base address is pointed to by the sum of the
second byte of the inst:l1Iction and the direct page register. The effective address is
this 24-bit base address plus the Y index register.

illustration tbs

Pre-Aloha Draft 3 -22 6/20/86

Cortland Workshop Assembler Reference

Chapter 4

Coding Conve,ntions

Coding Conventions

This chapter describes the conventions and syntax. for coding Cortland Workshop assembly
language programs.

Source Text Structure
An executable assembly language program contains a number of segments containing either
code or data. Data segments represent static data, where the data space is defmed befOI:e
the program begins and the lifetime of the data is that of the entire execution of the
program. In contrast, code segments represent dynamic data. Dynamic segments can be
loaded and unloaded during execution as needed. In your source text, a code segment is
delimited by the directives START or PRIVATE and END. A data segment is delimited by
the directives DATA or PRIVDATA and END. The segment types PRIVATE and
PRIVDATA workjust like START and DATA, except that they are not noticed unless the
segment is placed in a library or separate compilation is used. In that case, the segment is
accessible from the segments in its own object module me, but not visible outside.
Segments in different mes can have the same names as long as all but one is private. For
programmers familiar with the C language, this mimics the C static function.

Used in a code segment, the USING directive designates a specific data segment that it
must access. The directives above are described in Chapter 5, "Directives".

Each segment consists of one or more source statements which the Assembler interprets
and processes, one at a time, generating object code or performing a specific assembly-time
process. Cortland Workshop Assembler source statements may be any of the following:

• 65816 instructions
• Assembler directives

• Macro calls '

Instructions
The 65816 instruction set can be divided functionally into five groups:

• data movement instructions
flow of control instructions
arithmetic instructions
logical and bit manipulation instructions

• system control instructions

This manual assumes that you are familiar with the instruction set of the 65816 processor.
For your reference, each 65816 instruction is described in Chapter 3, "Programming the

Pre-Aloha Draft 4 -1 6/20/86

Coding Conventions Cortland Workshop Assembler Reference

65816". Additionally, Appendix A lists the 65816 instructions and addressing modes with
the hex opcode and execution time for each.

The Cortland computer can also operate in 6502 emulation mode. In this mode, the
Cortland emulates the 6502 processor exactly, including the configurati0!l of the registers,
stack location and instruction timing.

Directives
Assembler directives guide the assembly process and provide tools for using the
instructions. There are two classes of assembler directives: general assembler directives
and macro directives. <

The format of an Assembler directive is similar to that of an assembly language instruction:
functionally, however, they are different. While an instruction corresponds to a machine
language instruction, and tells the computer to take some action in the fmished program, a
directive tells the assembler itself to do something. An example of this is the KEEP
directive which instructs the assembler to keep the object module created under the name
provided in the operand field.

General Assembler Directives

General assembler directives can be used to perform the following operations:

• Store data or reserve memory for data storage.

• Control the alignment of parts of the program in memory.

• Specify the methods of accessing the sections of memory in which the program will
be stored.

• Specify the entry point of the program or a part of the program.

• Specify the way in which symbols will be referenced.

• Specify that a part of the program is to be assembled only under certain conditions.

• Control the format and content of the lis.ting file.
• Display informational messages.

• Control the assembler options that are used to interpret the source program.

The general Assembler directives are described in detail in Chapter 5, "Directives",

Macro Directives

There are a number of directives that are perform certain functions in association with
macros:

• Macro language directives, used in macro definitions

• Macro library directives, used when working with macro libraries

• Conditional assembly directives, used to define symbolic parameters, assign
new values to them, and control code execution

• Directives used to set specific options in the assembly listing

Pre-Aloha Draft 4 -2 6/20/86

Cortland Workshop Assembler Reference Coding Conventions

Macro language directives are used in macro defmitions and are valid only within a macro
file. Macro library directives are used to include a macro library me in your source code,
and load or drop a macro library me. Conditional assembly directives are used to defme
symbolic parameters, assign new values to them, and to modify the order in which
statements are processed by the Assembler. A conditional assembly directive is valid in a
source me, but is included under Macro Directives since its main use is within a macro
definition. Finally, there are two directives, TRACE and GEN, which set certain options
in your listing. They are included under Macro Directives since their main use is with
macros. The macro directives are described in detail in Chapter 6, "Macros".

Macros
A macro is expanded by the assembler to produce one or more instructions or directives,
allowing you perform complex tasks with a single statement. Chapter 6, "Macros", tells
you about using a macro in an assembly language program, introduces a sample session,
includes a reference section describing the macro directives and contains a section on how
to write your own macros. Chapter 7, "The Cortland Libraries", describes the extensive
~et of macros that are available on the Cortland, including macros to access the Cortland
Tools, macros to interface with the Shell and ProDOS 16, and macros to perform I/O.

Source Statement Format
An assembly language statement can consist of up to four fields:

[label] operator operand [icomment]

The label field symbolically defmes a location in a program. The operator, or opcode field,
specifies the action to be performed by the statement. This field can be an instruction, an
assembler directive, or a macro call. The operand field'contains the instruction operand(s)
or the assembler directive argument(s) or the macro argument(s). The comment field
contains a comment that explains the meaning of the statement This field does not affect
program exection.

Source Statement Line Length

An assembler source file line can be up to eighty columns long, numbered from one to
eighty. Since most printers use eighty columns, it is advisable to restrict the source line to
fifty seven columns, as twenty three columns must be allowed for information printed by
the Assembler.' Otherwise, printed assembler output will wrap around to the next line.
This makes the listing difficult to read, and causes the Assembler to miscount the number
of lines of printed output, misplacing future page breaks.

Labels

Labels serve the same purpose as line numbers in BASIC, giving you a way of telling the
assembler what line you want to branch to or change. The label is optional. Each line may

Pre-Aloha Draft 4 -3 6/20/86

Coding Conventions Cortland Workshop Assembler Reference

begin with a label, which is required for a few directives. When the label is required, the
directive .description in Chapter 5 includes that infonnation. The label must begin in
column 1, and cannot contain imbedded blanks. Each label starts with an alphabetic
character (A to Z) or underscore CJ, and is followed by zero or more characters which can
be can be alphabetic (A through Z), numeric (0 through 9), the tilde character (-), or the
underscore character CJ. It is suggested that you reserve the underscore character (-) for
use in system labels, so that you can develop libraries whose names will not interfere with
names chosen by users of high-level languages.

Labels are significant up to 255 characters in length. If a label is used, there must be at
least one space between it and the op code. It is best not to use A as a label, since it can
cause confusion between absolute addressing using the label A and accumulator
addressing.

Label Scope

A label may be either global or local in scope. A global label can be referenced from any
segment in the program while a local label has validity only within the segment where it is
defmed. You can defIDe a local label with the same name as a glocallabel, but not in the
same segment. The Assembler will choose the local label in preference to the global label.

Global Labels

There are three directives which define global labels: the START directive, the GEQU
directive and the ENTRY directive.

A label defIDed by the GEQU directive can be seen at assembly time, while all other global
labels can be seen only at link time. This implies that you should always use a GEQU
directive to define a direct page or long address label that will be used in more than one
subroutine. That way, the Assembler can automatically decide which addressing mode is
more appropriate. .

The ENTRY directive has no operand and its label receives the value of the current location
counter. Its most common use is to define an alternate entry point into a subroutine, as
shown in the following example: .

ExampleTBS

Local Labels

Inside a code segment, all labels that are not defIDed using the GEQU or ENTRY directives
are local labels. This means that no other code segment can see the label. For example, the
following code example would produce an error in SEG1 because LAB 1 is not defined in
SEG1, but it is legal for both segments to use LAB2.

SEGl
LAB2

SEG2
LAB2

START
LDA
END

START
LDA

LAB 1

LAB2

Pre-Alvha Draft 4 -4 6120186

Cortland Workshop Assembler Reference Coding Conventions

LAB1 LDA
END

LAB1

The concept of local labels is powerful, and rare in other assemblers. Because a section of
code can be developed independently of all other cQCie in the program, you can build a
library of subroutines that can be moved from one program to another. And, unlike other
assemblers, you don't have to worry about whether you have used a particular label
elsewhere in the program. A label can be used in each segment in the program, but only
once.

Case-Sensitivity in Labels

You can make a label case-sensitive by specifying the ON option with the CASE directive.
CASE OFF reverses the effect. The directive OBJCASE ON causes labels sent to the
object module to be case-sensitive, whether or not they are treated as case-sensitive inside
the Assembler. Specifying the option OFF with the directive OBJCASE makes exported
labels'insensitive, whether or not they are treated as case-sensitive inside the Assembler.
The default is OBJCASE OFF. Setting CASE also sets OBJCASE, so if the exported
behaviour is to be different from the local behaviour, you must specify the OBJCASE
directive last. .

Label Attributes

The attribute of a label or symbolic parameter gives you certain information in
addition to its value. Attributes can be thought of as functions that return information about
a label or the symbolic parameter.

The form of an attribute is

X: Label or Parameter

where the attribute X can be represented by the characters C, L, Tor S, as follows:

C Count attribute
L Length attribute
T Type attribute
S Settings attribute

The count attribute gives the number of subscripts defined for a symbolic parameter. The
length attribute is the number of bytes generated by the line that defined the labeL The type
attribute indicates the type of operation in the line that defmed the label. The settings
attribute returns the current setting of one of the flags set using directives whose operand is
ON or OFF.

Using attributes is discussed in detail in Chapter 6, "Macros".

The Operation Code

The operation code, or opcode, is required on each Cortland Assembler source statement.
The opcode mnemonic signifies the function the statement performs, such as JSR for the
jump-to-subroutine instruction, or KEEP for the keep directive. Leave at least one space

Pre-Aloha Draft 4 -5 6/20/86

Coding Conventions Cortland Workshop Assembler Reference

between the label and the opcode. If there is no label, the op code can start in any column
from two to forty. Normally, the opcode starts in column ten. The editor has a tab stop set
to this column for convenient placement

Opcode mnemonics for machine-language instructions are always three-character alphabetic
strings. The opcodes for the 65816 instruction set are listed in both Chapters 3,
"Programming the 65816" and Appendix A, "65816 Instruction List".

If you are running in 6502 emulation mode, the Assembler allows substitutions for the
following standard 6502 opcodes:

Standard

BCC
BCS
CMP

Also Allowed

BLT
BGE
CPA

Asembler directives vary in length from two to seven characters. The opcodes for
Assembler directives are listed in Chapter 5, "Directives".

Operands

The operand is the information that the operator uses to perform its function. There must
be at least one space between the opcode and the operand. The operand normally starts in
column sixteen; the editor provides a tab stop there for convenient placement.

The following table shows all the legal operands of the 65816 processor. The labels DP,
ABS and LONG refer to constant expressions that resolve to one, two or three bytes
respectively. EXT is a relocatable expression.

Addressing Mode

Implied

Immediate

Direct Page

Absolute

Pre-Aloha Draft

Operand Format

none needed

#DP
#>ABS
#<ABS
#"ABS
#ABS
#>LONG
#<LONG
#"LONG
#LONG
lABS
/LONG

DP
<;:EXT

IDP
ABS
EXT

4 - 6 6/20/86

Cortland Workshop Assembler Reference Coding Conventions

Absolute Long >DP
>ABS
LONG
>EXT

Relative ABS
EXT

Direct Page Indexed DP,X
DP,Y
<EXT,X
<EXT,Y

Absolute Indexed IDP,X
IDP,Y
ABS,X
ABS,Y
EXT,. X
EXT,Y

Absolute Long >DP,X
Indexed >ABS,X

>EXT,X
LONG,X

Absolute Indirect (ABS)

Direct Page Indirect (DP)
«EXT)

Direct Page [DP]
Indirect Long [<DP]

Direct Page (DP),Y
Indirect Indexed «EXT),Y

Direct Page Indirect [DP],Y
Indexed Long [<EXT],Y

Direct Page (DP,X)
Indexed Indirect «EXT,X]

Absolute Indexed (DP,X)
Indirect (ABS,X)

(EXT,X)

Stack Relative DP,S
<EXT,S

Stack Relative (DP,S),Y
Indirect Indexed «EXT,S),Y

Accumulator A

Pre-Aloha Draft 4 -7 6/20/86

Coding Conventions

Block Move EXT,EXT
DP,DP
ABS,ABS
LONG,LONG

Cortland Workshop Assembler Reference

Expressions

Whenever a number is allowed in an operand field, whether in an instruction or a directive,
an expression may be used. In their most general form, expressions can resolve to an
integer in the range -2147483648 to 2147483647. The result of a logical operation is
always zero or one, corresponding to false and true. If an arithmetic value is used in an
Asembler directive which expects a boolean result, zero is treated as false and any other
value is treated as true.

If all the terms in an expression are constants, i.e., they are number or labels whose value
is set by the EQU or GEQU directives, then the Assembler can determine the [mal value of
the expression without the aid of the Link Editor. In that case, the expression is a constant
expression. If any term in the expression is a label that must be relocated, the expression
itself must also be relocated. This distinction is important, since the Assembler is able to
automatically select between addressing modes that offer one, two and three byte variations
only if the expression is a constant expression. In the case of a relocatable expression, the
Assembler will always opt for the two byte form of the address, unless it is explicity
overridden. The length of addressing used can be forced by using a < before the
expression to force direct page addressing, to force absolute addressing, and a > to force
long addressing. This is illustrated in the operand format table, above. Note that an
exclamation mark (1) can be used instread of the character I, if the keyboard does not
support I.

Operands for immediate addressing are resolved to one or two bytes. It is necessary to be
able to select which byte or bytes to use from an expression. Three operators are provided
to select the appropriate bytes from the value. These operators must appear immediately
after the # character, which indicates immediate addressing. If no operator is used, t.he
least significant byte or bytes is used. This also happens if the < operator is used. The >
operator has the effect of dividing the expression value by 256, selecting the next most
significant byte. FInally, the A operator divides the expression by 65536, moving the
bank byte into the least significant byte position.

Syntactically, an expression is a simple expression, or two simple expressions separated by
a logical comparison operator.

illustration of expression

Thus, logical comparisons have the lowest priority. A simple expression is the customary
arithmetic expression. Syntactically, this is expressed as an optional leading sign, a term,
and, optionally, a plus (+), minus (-), .OR., or .EOR., followed by another term.

illustration of simple expression

A term is a factor, optionally followed by one or the operators *, I, .AND., or the bit shift
operator (I) and another term. .AND is a logical operator, asking if the terms on either
side are true. If both are true, so is the result, otherwise the result is false. The vertical bar
(I), or, optionally, the exclamation mark (1), is a bit shift operator. The first operand is

Pre-Aloha Draft 4 - 8 6/20/86

Cortland Workshop Assembler Reference Coding Conventions

shifted the number of bits specified by the right operand, with positive shifts shifting left
and negative shifts shifting right. Thus, alb is the same as a*(2I\b).

illusttation of a tenn

A factor is a constant, label, expression enclosed in parentheses, or a factor preceded by
.NOT...NOT. is the boolean negation, producing true (one) if the following factor is
false, and false (zero) if it is true. Here, a label refers to a named symbol which cannot be
resolved at assembly time. Constants are named symbols defIned by a local EQU directive
or global GEQU directive, or a decimal, binary, octal or hexadecimal number, or a
character constant.

***illustrations of factor, constant, binary number, octal number, decimal number,
hexadecimal number, and character constant***

The Comment Field

There must be at least one space between the operand or op code, if there is no operand,
and the comment. Some assemblers require a semi-colon before the comment; the Cortland
Workshop Assembler does not. Comment usually start in column 41. The editor has a tab
stop there for convenient placement. Additionally, the Assembler recognizes certain lines
as comment lines, including a blank line, a line beginning with an asterisk, semicolon or
exclamation point, or a line beginning with a period.

The Blank Line

Any blank line is treated as a comment line. Blank lines are often used to logically separate
sections of code.

The Characters *, ;, and!

Any line with an asterisk (*), a semicolon (;), or an exclamation mark (!) in column one is
treated as a comment. Any text in the line is ignored by the Assembler, but is printed when
it generates the source listing.

The Period

Any line with a period (.) in column one is treated as a comment, and is known as a
sequence symbol. Sequence symbols are not printed in the source listing produced by the
assembler. They are intended for use as labels for conditional assembly branches. If you
decide to use this fonn of comment to get a line that shows up in the editor, but not later in
the listing, place a space after the period. "

Pre-Aloha Draft 4 - 9 6120186

This page is left intentionally blank

Cortland Workshop Assembler Reference

Chapter 5

Directives

Directives

A directive is a statement that tells the Cortland Workshop Assembler to take some action.
Here, directives are divided functionally into two groups: the general Assembler directives
and directives used in working with macros. The general Assembler directives are
summarized below and are described in detail in this chapter. The macro directives are
summarized below: they are described in detail in Chapter 6, "Macros".

General Assembler Directives
The general Assembler directives perform tasks such as:

• Program control

• DefIning data

• Defming symbols

• Allocating memory

• ProDOS control

• Setting Assembler options

These directives are summarized below.

Directive Action

Program Control Directives

START
PRIVATE
DATA
PRIVDATA
USING
ENTRY
END

Start subroutine
Defme private code segment
Defme data segment
Defme private data segment
Using data segment
Defme entry point
End program segment

Data Definition Directives

DC
DS

Declare constant
Declare storage

Symbol Definition Directives

Pre-Alvha Draft 5 -1 6/20/86

Directives

EQU
GEQU
RENAME

Equate
Global equate
Rename opcodes

Cortland Workshop Assembler Reference

Memory Designation Directives

ALIGN
ORG
MEM

Align to a boundary
Designate origin
Reserve memory

File Control Directives

APPEND
COpy
KEEP

Append a ftle
Copy a file
Keep object module

Assembler Option Directives

IEEE
LONGA
LONGI
MSB
65C502
65816
MERR
CASE
OBJCASE

Generate IEEE fonnat numbers
Select accumulator size
Select index register size
Set the most significant bit of characters
Enable 65C02 code
Enable 65816 code
Set the maximum error level
Specify case-sensitivity
Specify case-sensitivity in object module

Listing Option Directives

ERR
EXPAND
LIST
PRINTER
SYMBOL
EJECT
SETCOM
TITLE
ABSADDR
INSTIME

Macro Directives

Print errors
Expand DC statements
List output
Send output to printer
Print symbol tables
Eject the page
Set comment column
Print header
Allow absolute addresses
Show instruction times

This section summarizes the directives you'll use when working with macros.. You can use
macro directives to perfonn the following tasks:

• Write a macro defmition
• Use macro libraries

Pre-Aloha Draft 5-2 6/20/86

Cortland Workshop Assembler Reference

• Use macros in conditional assemblies

• Set listing options

Directives

The macro directives are described in Chapter 6, "Macros", in the sections where they are
used. This section is provided as a summary and cross reference to the page where the
directive is described.

Directive Action Page Cross
Reference

Macro Language Directives

MACRO
MNOTE
MEXIT
MEND

Start a macro defmition
Macro note
Exit macro
End a macro defmition

Page 6-4
Page 6-5
Page 6-5
Page 6-4

Macro Library Directives

MCOPY
MDROP
MLOAD

Copy Macro Library
Drop A Macro Library
Load A Macro Library

Page 6-2
Pl:tge 6-2
Page 6-3

Listing Directives

GEN
TRACE

Generate macro expansions
Trace macros

Page 6-3
Page 6-3

Conditional Assembly Directives

Defining Parameters

LCLA
LCLB
LCLC
GLBA
GLBB
GLBC
SETA
SETB

SETC

Define a local arithmetic symbolic parameter
Defme a local boolean symbolic parameter
Defme a local string symbolic parameter
Defme a global arithmetic symbolic parameter
Defme a global boolean symbolic parameter
Define a global string symbolic parameter
Assign a value to an arithmetic symbolic parameter
Assign avalue to a boolean string symbolic
parameter
Assign a value to a string symbolic parameter

Page 6-12
Page 6-12
Page 6-12
Page 6-12
Page 6-13
Page 6-13
Page 6-13

Page 6-13
Page 6-14

String Manipulation Directives

ASEARCH
AMID

Pre-Aloha Draft

Assembler String Search
Assembler Mid String

5-3

Page 6-14
Page 6-15

6/20/86

Directives Cortland Workshop Assembler Reference

Defining Parameters Using Assembler Input

AINPUT Assembler Input Page 6-15

Branching Directives

AGO
AIF

Unconditional Branch
Conditional Branch

Page 6-20
Page 6-21

Miscellaneous Directives

ACfR
ANOP

Assembly Counter
Assembler No Operation

Page 6-21
Page 6-22

Directive Formats
A directive is coded in the same way as an instruction, with four fields as shown:

[label] op code [operand] [comment]

The label, operand and comment may be required, absent or optional, depending on the
directive. The syntax for each directive is shown under the directive's description.
Complete infonnation on coding comments is given in Chapter 4, "Coding Conventions".

Directive Descriptions

Program Control Directives

The program control directives define code segments, data segments and alternate entry
points. They include:

START
PRIVATE
DATA
PRIVDATA
USING
ENTRY
END

START

Start subroutine
Defme private code segment
Define data segment
Define private data segment
Using data segment
Define entry point
End program segment

Start Subroutine

label START [comment]

The START directive indicates the start of a named code segment, including both main
programs and subroutines. It is not necessary to perfonn separate assemblies to assemble
each of the code. segments, nor is it necessary to put them in separate disk files.

Pre-Aloha Draft 5-4 6/20/86

Cortland Workshop Assembler Reference Directives

Each START directive requires a label, which becomes the subroutine name in the object
module produced by the assembler. The label is global in scope, thus the link editor can
inform other subroutines of its location at link edit time. This allows subroutines that are
assembled separately to be combined later by the link editor.

The START directive is required. If it is omitted, the Assembler generates an error
message. The code segment extends until the END directive.

PRIVATE

label PRIVATE

Define a private code segment

[comment]

The directive PRIVATE operates in a similar way to the directive START, except that it is
not accessible from outside the object module in which it was created. The effect is not
noticed unless the segment is placed in a library or separate compilation is used. In that
case, the segment is accessible from the segments in its own object module me, bqt not
visible outside. Segments in different mes can have the same names as long as all but one
is private. This mimics the C static function.

DATA

. label DATA

Defme Data Segment

[comment]

The DATA directive indicates the start of a data segment. Its purpose is to set up data
tables which several routines can access. The data segment continues until an END
directive is specified.

Each DATA directive requires a label, which functions as the data segment name. The label
is global in scope. No more than 127 data segments may be defmed in anyone program.

Labels used within a data segment become local labels for any subroutine issuing a USING
directive for the data segment Labels within data segments should not be duplicated in
other data segments.

PRIVDATA

label PRIVDATA

Defme a private data segment

[comment]

The directive PRIVDATA operates in a similar way to the directive DATA, except that it is
not accessible from outside the object module in which it was created. The effect is not
noticed unless the segment is placed in a library or separate compilation is used. In that
case, the segment is accessible from the segments in its own object module me, but not
visible outside. Segments in different mes can have the same names as long as all but one
is private. This mimics the C static function.

Pre-Aloha Draft 5-5 6/20/86

Directives

USING

Cortland Workshop Assembler Reference

Using Data Segment

[label] USING [comment]

The USING directive is used in a code segment to designate a specific data segment that it
must access. The operand field contains the name of the data segment. Labels defmed
within the subroutine take precedence over labels by the same name in data segments.

ENTRY

label ENTRY

Define Entry Point

[comment]

The ENTRY directive is used to enter a subroutine in a place other than at its start. Using
the ENTRY directive allows a global label to be defined for that purpose. The label is
required.

END

END

End Program Segment

[comment]

The END directive indicates the end of a code or data segment It directs the assembler to
print the local symbol table and delete the local labels from the symbol table. The END
directive has no operand, and usually no label. The END directive is required. If it is
omitted, the Assembler generates an error message.

Data Definition Directives

The data definition directives are used to defme constants, initialize memory, and reserve
storage areas in code and data segments. They include:

DC

DC
DS

Declare Constant
Declare Storage

Declare Constant

[label] DC

where:

constant definition [comment]

constant definition = [repeat_count 1identifier, 'value',
[constant_definition]

The DC directive is used to define a constant within a program. The operand begins with
an optional repeat count, which must be in the range 1 to 255 decimal, followed by an
identifier describing the value type. The variable being defined will be placed in the object
file as many times as specified by the repeat count. The identifier is followed by the value
itself, enclosed in quote marks"separated by a comma. Optionally, a second constant
definition follows the first, separated by a comma. For example,

Pre-Alvha Draft 5-6 6/20/86

Cortland Workshop Assembler Reference

LABEL DC 2I'2,3',Il'4'

Directives

places five integers into memory, four sixteen-bit and one eight-bit. The resulting
hexadecimal values would be

02 00 03 00 02 00 03 00 04

DC Value types

The DC directive value type identifiers are listed below:

Ix Integer
R Reference an address
S Soft reference
H Hexadecimal constant
B Binary constant
F Floating point
D Double precision floating point
E Extended floating point

Ix -Integer

The value type I specifies an integer. An integer length from one to eight bytes is indicated
by a digit from 1 to 8 following I. If the integer length is omitted, a two-byte integer is
generated. All integers are stored least-significant byte first. Integers from one to four
bytes in length can be expressed as expressions, including external references. Longer
integers can be expressed only as a signed decimal number.

The table below gives the valid range of signed integers that can be expressed with each
length of integer. The Cortland Toolbox contains subroutines to perform integer math
operations: refer to Chapter 7, "The Cortland Libraries", for more information.

Pre-Aloha Draft 5-7 6/20/86

Directives

Size

1
2
3
4
5
6
7
8

A -Address

Smallest

.-128
-32768

-8388608
.-2147483648

-549755813888
-14073748355328

-36028797018963968
-9223372036854775808

Conland Workslwp Assembler Reference

Largest

127
32767

8388607
2147483647

549755813887
'14073748355327

36028797018963967
9223372036854775807

The value type A is functionally equivalent to 12. It is intended for use in building tables of
addresses.

R - Reference an Address

The value type R generates a reference to an address in the object module without saving
the address in the final program. This allows a program to note that a subroutine will be
needed from the subroutine library without reserving storage for the subroutine address.
Using the value type R with the type S below allows for the development of a pseudo
system which loads and links only those parts of the pseudo system language needed by a
particular program. This option is then used by the pseudo code instructions to insure that
any library subroutines that will be needed to execute that instruction are linked. Note that
this directive does not take up space in the fmished program.

S - Soft Reference

The value type S generates two bytes of storage for each address in the operand, but does
not instruct the link editor to link the subroutines into the final program. If the subroutine
is not linked, the binary program produced by the link editor will have $aaaa as the two
byte address. This allows a table of addresses to be built, but only those subroutines
requested elsewhere in the program, usually by an R type reference, have their addresses
placed in the table. See the discussion of the value type R, above.

H - Hexadecimal Constant

The type H has a hexadecimal value. The string between the single quote marks may
contain any sequence of hexadecimal digits and blanks. Embedded blanks are removed,
and the hexadecimal value is stored unchanged. If there are an odd number of digits, the
last byte is padded on the right with a zero, as shown in the following example:

Code

DC
DC

H'01234ABCDEF'
H'llll 2222 3333'

Value

01 23 4A BC DE Fa
11 11 22 22 33 33

B - Binary Constant

Pre-Aloha Draft 5-8 6/20/86

Cortland Workshop Assembler Reference Directives

The value type B designates a binary constant The string between the quote marks can
contain any sequence of zeros, ones, and blanks. The blanks are removed, and the
resulting bit values are stored. If a byte is left partially filled, it is padded on the right with
zeros, as shown in the folowing example:

Code

DC
DC

B'Ol 01 01 10'
B' 11111111'

Value

56
FF 80

C - Character String

The value type C designates a character string. The string enclosed in quote marks may
contain any sequence of keyboard characters. If a quote mark is desired, enter it twice to
distinguish it from the end of the string:

Code Value

DC C'NOW IS THE TIME ... , 4E 4F 57 20 49 53 20 54
48 45 20 54 49 4D 45 20
2E 2E 2E

DC C'NOW'IS THE TIME' 4E 4F 57 27 53 20 54 48
45 20 54 49 4D 45

Normally, strings are stored with the high-order bit off, corresponding to the ASCII
character set. If characters are to be written directly to the Cortland screen, it is preferable
to have the high bit set. In that case, use the MSB directive to change the default.

F - Floating Point

The type F designates a value entered as a signed floating-point number, with an optional
signed exponent starting with E. Embedded blanks are allowed anywhere except within a
sequence of digits. The number is stored as a four-byte floating-point number. Bit one is
the sign bit, and is 1 for negative numbers. The next eight bits are the exponent, plus
$ 7E. The exponent is a power of two. The remaining 31 bits are the mantissa, with the
leading bit removed since it is always 1 in a nonnalized number. The mantissa is stored
most significant byte to least significant byte. This format is compatible with the IEEE
floating-point standard and with the Standard Apple Numeric Environment (SANE).

Numbers can range from approximately 1E-38 to 1E+38. The mantissa is accurate to over
seven decimal digits.

Code

DC F'3,-3, .35E1,6.25 E-2'

Value

40400000
<;0400000
40600000
3D800000

D - Double Precision Floating Point

The type D designates a double-precision floating-point value. This is identical to F, except

Pre-Aloha Draft 5-9 6/20/86

Directives Conland Workshop Assembler Reference

that an eight-byte number is generated with an eleven-bit exponent and a forty eight-bit
mantissa. Numbers can range from about lE-308 to lE+308. The mantissa is accurate to
slightly more than 15 decimal digits. The exponent is stored most significant byte fIrst.

The type D designates a value entered as a signed floating-point number, with an optional
signed exponent starting with E. Embedded blanks are allowed anywhere except within a
sequence of digits. The number is stored as a eight-byte floating-point nurpber. Bit one is
the sign bit, and is 1 for negative numbers. The next eleven bits are the exponent, plus
$7E. The exponent is a power of two. The remaining 48 bits are the mantissa, with the
leading bit removed since it is always 1 in a normalized number. The mantissa is stored
most signifIcant byte to least significant byte. This format is compatible with the IEEE
floating-point standard and with the Standard Apple Numeric Environment (SANE).

Code

DC D'3,-~, .35El,6.25 E-2'

Value

4008000000000000
C008000000000000
400COOOOOOOOOOOO
3FFOOOOOOOOOOOOO

DS

DS

Declare Storage

operand [comment]

The DS directive is used to reserve sections of memory for program use. The operand is
coded in the same way as an absolute address for an instruction. The operand is resolved
into a four-byte unsigned integer; that amount of memory is reserved.

Symbol Definition Directives

The symbol defInition directives let you assign values to individual name symbols. With
these directives you can name objects such as numeric constants, individual registers,
register lists, and opcodes, so that you can use the names instead of the original objects in
your source text The symbol defInition directives include:

EQU

EQU
GEQU
RENAME

Equate
Global equate
Rename opcodes

Equate

label EQU operand [comment]

The EQU directive is used to assign the value of the operand rather than the location
counter to the label. This allows you to assign a numeric value to a name, with the name to
be used instead of the number in further operands.

The operand may contain a label that already has a value. If the label does not have a value,
an error is generated since the resulting value may be a direct page address. During the fIrst
pass, the Assembler has no way of knowing this, since it could not resolve the equate.
Instructions are assumed to be absolute addresses on the fIrst pass, and two bytes are

Pre-Aloha Draft 5 -10 6/20/86

Cortland Workshop Assembler Reference Directives

reserved. On the second pass, the equate would be resolved as direct page. The addresses
would now occupy only one byte, and further addressing would be incorrect. For the same
reason, it is important that equates defining direct page addresses be defined before they are
used.

Some examples of equates follow:

ONE EQU 1
TWO EQU 1+1
FOUR EQU TWO*TWO

As shown, you can use expressions in the operand, and you can use constants defined by
earlier equates. Keep in mind that equates are used to define constants: each term in the
expression in the operand field must have a specific value when the EQU is encountered.
One of the most common problems that results from this fact is when the following
construct is used:

HERE EQU *

to set the label HERE to the address of the current location counter. The value of the current
location is not known at assembly time, and the operand is not a constant. If you need to
define a label without generating code, you can use the ANOP (Assembler no operation)
directive.

HERE ANOP

You must defme constants before they are used. It is customary to put all equates in a
segment following the START directive, although this is strict requirement only when the
constant is used later as a direct page or long address.

***Has the concept that EQU and GEQU no longer need to be constants or constant
expressions been implemented?? This paragraph is probably incorrect***

GEQU

label GEQU

Global Equate

operand [comment]

The GEQU directive is functionally equivalent to the EQU directive. Additionally, the label
is saved in the global symbol table. All program segments are then able to use the label.
Labels defmed by the GEQU directive are resolved at assembly time, not at link: edit time.
They are included in the object module, so library routines can use global equates to make
constants available to the main program.

RENAME

where

RENAME

Rename Op Codes

Jcomment]

new opcode is eight characters or less, and contains no spaces or the
& character.

Pre-Aloha Draft 5 -11 6/20/86

Directives Cortland WorksJuJp Assembler Reference

With the Cortland Workshop Assembler, it would be possible to develop a cross assembler
using macros. One problem though, is that other CPUs may have an opcode that conflicts
with a 65816 instruction or an existing Cortland Workshop directive. This can be resolved
by renaming the existing op code to prevent a conflict. The operand is the old op code
followed by the new one. In the following example, the fIrst time LDA is encountered, it is
a 65816 instruction. The second time, it is not found in Jhe op code table, so the assembler
tries to expand it as a macro.

INST

MACRO

START
LDA
END

RENAME
START
LOA
END

LDA,NEW

The RENAME directive cannot be used inside a segment, that is, it cannot come between
the directives START and END.

Memory Designation Directives

The memory designation directives include:

ALIGN
ORG
Ma1

ALIGN

ALIGN

Align to a boundary
Designate origin
Reserve memory

Align To a Boundary

operand [comment]

The ALIGN directive is used either prior to the start of a code or data segment, or within a
segment. Used before a START, PRNATE, DATA or PRNDATA directive, it directs the
link editor to align the segment to a byte boundary divisible by the absolute number in the
operand of the ALIGN directive. This number must be a power of 2. For example, to
align a segment to a page boundary, use the sequence

ALIGN 256
SEG START

END

Within a segment, ALIGN inserts enough zeroes to force the next byte to fail at the
indicated alignment. This is done at assembly time, so the zeros appear in the program
listing. If ALIGN is used in a subroutine, it must also have been used before the segment,
and the internal align must be to a smaller boundary than the external align.

Pre-Aloha Draft 5 -12 6/20/86

Cortland Workshop Assembler Reference Directives

ORG

ORG

Designate Origin

memory_location [comment)

The ORO directive is used to designate the memory location at which a program will begin
when it is assembled into machine language. This location is specified as an absolute
address in the operand field. The default location is at $010000. Note that the ORO
directive must appear prior to the first START, PRIVATE, DATA orPRIVDATA
directives.

The ORO directive can also be positioned before any subsequent START, PRIVATE,
DATA or PRIVDATA directives to force that segment to a particular fixed address. Again,
the operand is an absolute address, and must be a constant In this case, though, the actual
method of performing the ORO is to insert zeros until the desired location is realized. This
action is performed by the link editor as the final binary module is built.

The ORO directive can also be used inside a program segment, but in that case the operand
must be a ... ;indicating the current location counter, followed by a + or -, and a constant
expression. The location counter is moved forward or backward by the indicated amount.
Thus,

ORG *+2

is equivalent to

DS 2

while

ORG *-1

deletes the last byte generated. It is not possible to delete more bytes than have been
generated by th~ current segment .

MEM

MEM

Reserve Memory

address, address [comment)

The operand for this directive is two absolute addresses, separated by a comma. The
absolute addresses specify a range of memory that is to be reserved as a data area. The
Link Editor will ensure that subroutines are not placed in this range of memory. This is
done by checking the length of each subroutine to see if it will enter a reserved area. If it
does, it is started after the end of the reserved area. This directive is intended for use when
the high resolution graphics pages are needed.

File Control Directives

File control directives let you save an assembled object module on disk, and create and
access flies other than the current source text flies during assembly. These directives
include:

p're-Alvha Draft 5 -13

/

6/20/86

Directives

APPEND
COpy
KEEP

Append a file
Copy a file
Keep object module

Cortland Workshop Assembler Reference

All three file control directives specify a disk file name in the operand. Any valid CPW
pathname may be coded.

APPEND

APPEND

Append A File

pathname (comment]

The APPEND directive is used to tranfer processing to the beginning of the specified file.
Any lines following the APPEND directive in the original file are ignored.

The APPEND directive allows you to write large programs and divide them into sections.
Then, use the APPEND directive to instruct the Assembler to bring the appended fIle into
the program. The APPEND directive works like a GOTO, in that any line after the
APPEND directive is ignored. The directive can be used to append a file on a disk that is
not currently in the Cortland. When the Assembler encounters the APPEND directive, it
passes control to the Shell. The Shell checks for the disk, and the disk is not found, the
Shell returns a message prompting you to place the disk online. In this way, the APPEND
directive allows you to assembly any program on a one-drive system that you could
assembly on a two- or more-drive system, although you will need to swap disks. If you
have made an error, hit the ESC key.

COpy

COpy

Copy A File

filename (comment]

The COpy directive is used to transfer processing to the beginning of a specified fIle. After
the entire file is processed, assembly continues with the first line after the COpy directive
in the original file. A copied file can copy another file; the depth is limited by the available
memory, an is generally about three or four levels.

KEEP

KEEP

Keep Object Module

name (comment]

The KEEP directive is used to save the assembled code on disk as a relocatable object
module, using the specified name as the root name. The link editor may then be used to
generate an executable binary file. This directive may only be used one time, and must
appear before any code-generating statements.

Assembler Option Directives

The Assembler option directives control the assembly process. _For all except MERR, the
operand consists of either ON or OFF, choosing whether or not the option is in effect.

"Pre-Aloha Draft 5 -14 6/20/86

Cortland Workshop Assembler Reference Directives

A special attribute, S, is provided to let the assembler check the settings of these directives.
These attributes are described in Chapter 4, "Coding Conventions" and in Chapter 6,
"Macros". The Assembler option directives include:

IEEE
LONGA
LONGI
MSB
MERR
CASE
OBJCASE
65C502
65816

IEEE

Generate IEEE format numbers
Select accumulator size
Select index register size
Set the most significant bit of characters
Set the maximum error level
Specify case-sensitivity
Specify case-sensitivity in object module
Enable 65C02 code
Enable 65816 code

Generate IEEE Format Numbers

IEEE ONIOFF [comment]

In its default setting, DC directives with F and D operands generate numbers compatible
with the IEEE floating point standard. If IEEE is turned off, F type DC directives will
generate Applesoft compatible numbers. D type DC directives are not affected; they
always generate IEEE double-precision numbers.

LONGA

LONGA

Select Accumulator Size

ON IOFF [comment]

The 65816 processor can perform both sixteen-bit and eight-bit operations involving the
accumulator. The size of the accumulator and amount of memory affected by instructions
like LDA, STA and INC are controlled by a bit in the processor status register. At
assembly time, the assembler has no idea how that bit will be set at run time, thus it is the
responsibility of the programmer to tell the Assembler using this directive. LONGA ON
indicates 16-bit operations, while LONGA OFF indicates eight-bit operations. The default
is ON. The only difference this will make in the assembled program is to change the
number of bits placed in the code stream when an immediate load is performed. For
example,

LONGA
LDA
LONGA
LDA

ON
#2
OFF
#2

2 byte operand

1 byte operand

The status bit that the processor uses at run time must be set separately.

LONGI

LONGI

Index Register Size Selection

ONIOFF [comment]

This directive controls the number of bytes reserved for immediate loads to the X and Y
registers when using the 65816. The default is ON. See LONGA for a complete
discussion.

Pre-Aloha Draft 5 -15 6/20/86

Directives

MSB

Cortland Workshop Assembler Reference

Set the Most Significant Bit of Characters

MSB ONIOFF [comment]

Character constants and characters generated by DC statements have bit seven cleared,
corresponding to the ASCn character set. If MSB ON is coded, characters generated have
bit seven turned on, and appear normal on the Cortland CRT. The default is OFF.

65C502

65C502

Enable 65C02 Code

ONIOFF [comment]

The 65C02 is used in older models of the Apple n. The instructions and addressing modes
available on that processor can be enabled and disabled with this directive. The default is
OFF.

65816

65816

Enable 65816 Code

ON IOFF [comment]

When off, 65816 instructions and operands are identified as errors by the assembler,
allowing 65C02 or 6502 code to be generated without fear of accidentally using a feature
not available on the smaller processor. The default is OFF.

MERR

MERR

Set the maximum error level

operand [comment]

MERR sets the maximum error level that can be tolerated and still allow the Assembler to
link edit immediately after the assembly as would happen with an ASML or AMSLG
command from the Shell. The default value is zero. The operand is coded like an absolute
address and is evaluated to a one-byte positive integer.

CASE

CASE

Specify case-sensitivity

ONIOFF [comment]

Using the CASE directive with the option ON makes labels case-sensitive.
CASE OFF makes labels case-insensitive.

OBJCASE Specify case-sensitivity in object module

CASE ONIOFF [comment]

Using the directive OBJCASE with the option ON makes labels sent to the object module
case-sensitive, whether or not they are treated as case sensitive inside the Assembler.
Specifying OBJCASE OFF makes exported labels insensitive, whether or not they are

Pre-Aloha Drdt't 5 -16 6/20/86

Cortland Workshop Assembler Reference Directives

treated as case sensitive inside the Assembler. The default is OBJCASE OFF. Setting
CASE also sets OBJCASE, so if the exported behaviour is to be different from the local
behaviour, you must specify the OBJCASE directive last

Listing Option Directives

The listing option directives allow you to specify certain options when you are listing the
assembly to the screen or to the printer. The listing option directives are summarized
below.

ABSADDR
EJECT
ERR
EXPAND
INSTIME
LIST
PRINTER
SETCOM
SYMBOL
TITLE

ABSADDR

ABSADDR

Allow absolute addresses
Eject the page
Print errors
Expand DC statements
Show instruction times
List output .
Send output to printer
Set comment column
Print symbol tables
Print header

Allow Absolute Addresses

ONIOFF [comment]

The ABSADDR directive allows operands of ON or OFF. The default is OFF. If
ABSADDR ON is specified, a new column of six-byte addresses will be shown to the left
of the relative offsets that ORCA/M now places in the output listing. The relative offsets
will still appear in the output.

The value shown in this new column is a base number plus the number of bytes generated
by the assembler since the last change in the base number. The base number defaults to
$010000. An ORO directive will change the base number to the value specified by the
ORG's operand. The net effect is that this column will show the correct absolute memory
location of the line, assuming that the listing is from a full assembly, the default ORO has
not been overridden by the linker, and the loader loads the me to the default location of
$010000.

EJECT

EJECT

Eject The Page

[comment]

When a printer is in use, this directive causes the output to skip to the top of the next page.
This can be of help in structuring the output of long subroutines. The directive does not
affect the code sent to the output file in any way.

Pre-Aloha Draft 5 -17 6/20/86

Directives

ERR

ERR

Print Errors

ON IOFF

Cortland Workshop Assembler Reference

[comment]

If ERR ON has been specified, errors are always pnnted, regardless of this flag. If ERR
OFF has been specified, this flag allows error lines to still be printed. If turned off, errors
are no longer printed, but the number of errors found will still be listed at the end of the
assembly. The default is ON. .

EXPAND

EXPAND

Expand DC Statements

ON IOFF [comment]

If turned on, this option causes all bytes generated by DC directives to be shown in the
output listing, up to a maximum of sixty-four bytes. Only four bytes of a DC directive can
be displayed on a line, so the option defaults to OFF to save paper and patience. When the
option is turned off, only the first four bytes of the generated code are shown with the
output.

INSTIME

INS TIME

Show Instruction Times

ONIOFF [comment]

The INSTIME directive accepts operands of ON or OFF. The default is OFF. If
INSTIME OFF is specified, a new column of cycle times is inserted in the output listing
immediately before the text of the source line. This column is three characters wide. It
sh0Y's the number of machine cycles required to execute the assembly language instruction
appearing on that line. The characters are blanks for macros, directives and comments.
The first character indicates the number of cycles, while the other two characters can be any
of the following:

* Add one cycle if a page boundary is crossed
Add one cycle if the branch is taken and one more if a page boundary is crossed

+ Moves are 4 + 7 (number of bytes moved) cycles long

LIST

LIST ONIOFF

List Output

[comment]

A listing of the assembler output is sent to the current ouptut device. If the listing is turned
off, the assembly process speeds up by about 10%. The default is ON.

PRINTER

PRINTER ONIOFF

Send Output to Printer

[comment]

If PRINTER ON is specified, output is sent to the printer. A printer capable of printing at
least eighty columns is expected there. If a printer is not connected, the system will hang.
The slot number and printer characteristics may be changed by re-configuring the operating

Pre-Aloha Draft 5 -18 6/20/86

Cortland Workshop Assembler Reference Directives

system. If the option is turned off, output is sent to the video display. The default is
OFF.

SETCOM

SETCOM

Set Comment Column

comment column #- - [comment]

The SETCOM directive is used to set the start of the comment column. The assembler will
not search beyond this column for an op code, and will not search for an operand unless
there is exactly one space between the op code and operand. In this way, a comment is not
accidentally used as part of an operand. This column defaults to forty, but can be changed
to any number from one to eighty by specifying the number in the operand field.

The SETCOM directive is coded exactly like an absolute address.

SYMBOL

SYMBOL

Print Symbol Tables

ONloFF [comment]

An alphabetized listing of all local symbols is printed following each END directive. After
all processing is complete, global symbols are printed. If this option is turned off,
assemblies speed up slightly. The option can also be used to save paper. The default. is
ON.

TITLE

TITLE

Print Header

[string] [comment]

The TITLE directive is used to place page numbers at the top of each page sent to the
printer. If an operand is coded, the string used is printed at the top of each page,
immediately after the page number.

The operand string is optional. If it is coded, it must be a legal string, and must be
enclosed in single quote marks if it contains blanks or starts with a single quote mark. If
the string is longer than sixty characters, it is truncated to sixty characters.

Pre-Aloha Draft 5-.19 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

Chapter 6

Macros

Macros

\

This chapter consists of two sections: "Using Macros" and "Writing Macros". "Using
Macros" takes you through a sample session with macros. It tells you how to build a
macro library and describes several assembler directives you will use when working with
macro libraries and listing the assembly. "Writing Macros" gives you information on how
to include macros in your source text, including macro formats, addressing modes, and
data types.

Each of the macro directives are described in detail in the sections appropriate to their use.
These macros are summarized in Chapter 5, "Directives", with a cross reference to the page
in this chapter on which they are described.

Using Macros
A macro is a pre-defmed sequence of instructions and directives that acts as a template,
allowing you to code a single macro call in your source program which is then expanded by
the Assembler at assembly time. When the Assembler expands a macro call, it replaces the
macro call statement with the contents of the macro definit;ion, substituting actual values for
certain of its variables and parameters. In this way, you can create lengthy source text
sequences, by using the macro libraries available with the Cortland or by creating your own
macro defmitions.

The following sample session introduces you to using macros. It describes how to how to
build a macro library and make it available to the program with the directive MCOPY.

Writing the source program

For the purpose of this sample session, a program that includes a number of macros is
illustrated below. To write your own program, refer to the section "Macro Coding
Conventions".

sample program to be supplied

Building a macro library

When you assemble a program that uses macros, the Assembler accesses a macro library
file that you have created for that purpose. When the Assembler accesses the file, it
searches for the macro definitions that you have called, then places the expanded code in
your source program. The directive MCOPY in the sample program above instructs the

Pre-Aloha Draft 6-1 6/20/86

Macros Conland Workshop Assembler Reference

Assembler to search the macro library file test.macros. You can instruct the Assembler to
use the Cortland macro libraries directly, but it is not as time-effective as using a custom
built library file. You can build a custom macro file using the Shell command MACGEN.

MACGEN scans your program, opens a me called SYSMAC on the work prefix, and
writes the macros to this temporary file. When all the macros that you have referenced
have been resolved, MACGEN copies this temporary file to the output file you have
specified and deletes the working file. At the Shell prompt, type:

MACGEN myprog test.macros /CPW/ROM.MACROS/TOOLSETX.MACROS

where myprog is the name of the sample program you just entered, test.macros is the name
of the macro file you are creating, and /CPWIROM.MACROSrrOOLSETX.MACROS is
the full pathname of the macro library file you wish MACGEN to search. For this
example, the library me is one of the Cortland Tools, TOOLSETX.

You can also enter the command MACGEN without specifying any files, in which case the
Shell will prompt you for the appropriate filenames.

A complete description of the CPW directories that contain the Cortland macro libraries are
described in the section "System Macro Files" in Chapter 7, "The Cortland Libraries".

There are three macro library directives that you can use while running macros. In addition
to MCOPY, which you have already used, there are the directives MLOAD and MDROP.
MLOAD loads a specified library file into the macro library buffer. MDROP lets you drop
a macro library you no longer need. These directives are described below.

MCOPY

MCOPY

Copy Macro Library

The name of the file is placed in a list of available macro libraries. If an operation code
cannot be identified, all macro files in the list are loaded into the macro buffer in sequence,
and checked for a macro with the specified name. The search begins with the macro file in
memory, proceeds to the first file in the list of macro fIles, and continues through to the last
fIle in the list, in the order that the respective MCOPY directives were encountered
(skipping the one that was originally in memory). If no macro with a corresponding name
is found, an error is generated.

No more than four macro libraries can be active at anyone time. Macro libraries cannot
contain COpy or APPEND directives.

MDROP

MDROP

Drop A Macro Library

Removes the specified library from the list of macro libraries. This might be necessary if
more than four libraries are being used. It can also speed up processing·if a library is no
longer needed.

Pre-Alvha Draft 6-2 6/20/86

Cortland Workshop Assembler Reference Macros

If the macro library is active at the time the MDROP directive is encountered, it is left there
and searched for macros until a search is made which loads a different library, or until a
MLOAD directive is used.

MLOAD

MLOAD

Load A Macro Library

The list of macro libraries is checked. If the specified file is not in the list, it is placed
there. The file is then loaded into the macro library buffer.

This directive can be used to speed up assemblies by helping the macro processor to fmd
macros.

Executing the Program

Assemble, link and run the program as usual. You may notice that it takes a longer time to
assemble the program since the Assembler has to expand the macros. The lines generated
message tells you how many lines of code the Assembler created.

Listing Options

There are two directives you can use to set specific options for your listing. These are
TRACE and GEN. If you want to see the code generated by the macros, use the GEN
directive at the top of your program. The TRACE directive instructs the Assembler to print
all the lines that the Assembler processes. This can be useful when you are debugging
macros.

GEN

GEN

Generate Macro Expansions

ONIOFF

If GEN is turned on, all lines generated by macro expansions are shown on the output
listing. Each line generated by a macro has a + character to the left of the line. If GEN is
turned off, only the macro call is printed in the assembly listing. Errors within the macro
expansion are still printed, together with the line causing the error.

TRACE

TRACE

Trace Macros

ONIOFF

Most conditional assembly directives are not printed by the assembler. This is to avoid
printing lines of output that have no real effect on the finished program. Especially when
debugging macros, it is desirable to see all of the lines the assembler processes. To do
this, use TRACE ON. The default is OFF.

Pre-Aloha Draft 6-3 6/20/86

Macros Cortland Workshop Assembler Reference

Writing Macro Definitions
This section tells you how to write a macro definition, and discusses the macro language
directives MACRO, MEND, MNOTE and MEXIT.

The instruction in the source file that instructs the Assembler to expand a macro is called the
macro call statement, or macro call. A new macro is created by coding a macro
definition, which tells the Assembler which instructions to replace the macro call with.

A macro definition consists of four parts:

• The MACRO directive
• The macro definition statement

• Model statements
• The MEND directive

A macro definition starts with the directive MACRO. Immediately following the MACRO
directive is the macro definition statement In the macro definition statement, the name of
the macro being defined is placed in the operation code field. If the operation code that the
Assembler is trying to identify matches it, the Assembler uses the definition that follows to
replace the macro call in the source file within the instructions found in the body of the
macro itself. The macro definition opcode may be any sequence of keyboard characters
except blanks or the & character. It may contain from one to ten characters.

The following sample code illustrates a macro definition. This macro returns the version
number of Cortland Integer Math Tools you are using.

IntVer
Idx #$0408
$E10000

MACRO
&lab
&lab
jsl
MEND

The statements between the macro definition statement and the MEND directive are called
model statements since the macro processor uses them as models for the new instructions.

Optionally, the macro may contain the directives MNOTE and MEXIT. MNOTE is used to
code an error message into the macro. MEXIT is used as a return from a macro definition
in conditional assembly branches.

With the exception ofMNOTE, the macro language directives are valid only in a macro file;
if used inside a regular source file, they will create an error. These directives are described
below.

MACRO Begin A Macro Definition

Each macro defmition begins with a MACRO directive. This directive is coded like an
operation code. No operand of label is needed, and any present is ignored. Its sole
purpose is to set the macro defmition apart from others in the file.

Pre-Aloha Draft 6-4 6/20/86

Cortland Workshop Assembler Reference Macros

MEND End A Macro Definition

Each macro definition ends with a MEND directive. This directive is coded like an
operation code. No operand of label is needed, and any present is ignored. Its sole
purpose is to set the macro definition apart from others in the file.

MNOTE Macro Note

A macro definition may include a MNOTE directive. The operand of an MNOTE directive
contains a message, optionally followed by a comma and a number. The assembler prints
the message on the output device as a separate line. If the number is present, it is used as a
severity code for an error.

Assume that the following statements appear in a program:
Example:

Code

* MNOTE FOLLOWS
MNOTE 'ERROR! ',4

Output

0432 .. 10FE
ERROR!

* MNOTE FOLLOWS

Assuming that there were no other errors in the assembly, the maximum error level found
(printed at the end of the assembly) would be four.

MNOTE is designed for use when conditional assembly directives are used to scan
parameters passed via a macro call for correct (user defined) syntax. Although MNOTE
statements are intended for use inside macros, they are legal inside a source program.

MEXIT Exit Macro

An MEXIT directive indicates that a macro expansion is complete. Unlike MEND, it does
not indicate the end of a macro definition. A good way to conceptualize this directive is to
think of it as a return from a macro definition. The MEND is the end of the definition, but
the MEXIT can return from within the macro defmition. The MEXIT directive is designed
for use with conditional assembly branches. •

Macro Coding Conventions
This section discusses macro formats, macro addressing modes and macro data types.

Pre-Alvha Draft 6-5 6120186

Macros

Macro Formats

Cortland Workshop Assembler Reference

The format of a macro is similar to the format of an instruction or directive: it consists of a
label field, the macro name, the operand field and an optional comment field.

Macro Addressing Modes

Macros use a variety of addressing modes to increase the power and flexibility of each
macro. There are four addressing modes supported by the macros: immediate, absolute,
indirect and stack.

Immediate Addressing

Immediate addressing is available on most macros that require an input to perform their
function. An immediate operand is coded as a pound sign (#) followed by the value for the
operand All data types are supported.

For example,

PUTS #4500000000

writes the approximate population of the Earth to the screen.

Absolute Addressing

Absolute addresses are coded as a number, label, or expressiOIi, using the same rules as
absolute addresses o,n instructions. An absolute address designates the memory location to
use as a source or destination by the macro.

For example:

TBS

Indirect Addressing

Indirect addresses take the form of an address which points to the address of the data rather
than the data itself. Indirect addressing is indicated by enclosing the absolute address
where the effective address is stored in braces.

For example:

MUL {Pl},{P2}

multiplies the number pointed to by PI by the one pointed to by P2,placing the result
where PI points.

Pre-Aloha Draft 6-6 6/20/86

Cortland Workshop Assembler Reference

Stack Addressing

Macros

Stack addressing refers to taking a source value from the evaluation stack, or storing a
result there. The evaluation stack is the stack used by Cortland languages to pass
parameters and evaluate expressions. It is a software stack, distinct from the hardware
stack in page 1 for the 65816.

When discussing stack operations, it is customary to refer to values based on the top of the
stack (TOS). Thus, the value on the top of the stack is said to be at TOS, while the number
below the top one is at TOS minus one.

The ***?** macro can be used to set up this stack.

need example

Macro Data Types

The macros support several data types, including three lengths of integers, characters,
strings, and boolean variables. Typing is not enforced; it is possible to read a four-byte
integer into an area, then access it as a two-byte integer. The type of data in use is indicated
by a single character, as illustrated in the table below.

Type

Two-byte integer
Four-byte integer
Eight-byte integer
Character
String
Boolean variables

Character

2
4
8
C
S
B

The type character is used as a part of the macro name. For example, the ***?*** macro
can be used to write any of these variable types to an output device. The type is indicated
by replacing the x with one of the characters.

need example

Two-byte Integers

A two-byte integer requires two bytes of storage. It is represented in two's complement
notation, with the least significant byte stored first, followed by the most significant .
Two-byte integers range from minus 32768 to 32767.

Four-byte Integers

A four-byte integer requires four bytes of storage. It is represented in two's complement
notation, with the least significant byte stored first, proceeding sequentially to the most
significant byte, which is stored last. Four-byte integers range from minus 2147483548 to
2147483647 .

Pre-Aloha Draft 6-7 6/20/86

Macros Cortland Workshop Assembler Reference

Eight.byte Integers

An eight-byte integer requires eight bytes of storage. It is represented in two's complement
notation, with the least significant byte stored first, proceeding sequentially to the most
significant byte, which is stored last. Eight-byte integers range from minus
9223372036854775808 to 9223372036854775807.

Characters

A character requires one byte for storage. The ASCII character set is used to represent
characters; in general, it is not important whether the high bit is on or off. The system '
provides all inputs with the high bit off, and converts any outputs as needed; the only
conflict arises with comparisons. For that reason, it is recommended that character data
always be represented with the high bit off.

Depending on the output device, the effect of a control character may vary. If an output
device does not respond to a given control character because that character is not defined,
the control character is ignored. Refer to the appropriate reference manual for the hardware
device that you are using for more information.

Strings

A string is a sequence of characters of variable length. Each string consists of three parts.
The first byte contains the maximum number of characters in the string. This number
ranges from I to 254. The second byte contains the number of characters currently in the
string. This number ranges from zero to the value of the first byte. The third ,field contains
the characters in the string itself. One byte is reserved for each possible character in the
string. Unused bytes are not defined and have unreliable values. A string requires two
bytes more than the maximum number of characters in the string for storage.

Boolean Variables

A boolean variable requires one byte of storage. It has a value of either TRUE (non-zero)
or FALSE (zero). .

Using Macros in Conditional Assemblies
Using the Cortland macro directives, you can write structures that determine whether the
Assembler will process or ignore sections of source text. These structures can also assign
values to variables in your macro definitions. This facility is called conditional
assembly. It is a powerful tool for creating and controlling variants of your source text.

This section discusses both the conditional assembly directives that define symbolic
parameters and assign new values to them and the Assembler control directives which
modify the order in which statements are processed by the Assembler.

Pre-Aloha Draft 6-8 . 6/20/86

Cortland Workshop Assembler Reference

Defining Symbolic Parameters

Macros

A symbolic parameter is a special variable used by the Assembler. Symbolic parameters
are true variables in that they can be assigned a value that can later be changed. There are
three types of symbolic parameters: arithmetic (A), boolean (B) and character (C).

A symbolic parameter is coded as an & character followed by the symbolic parameter
name. The name itself has the same syntax conventions as a label.

When the Assembler encounters a symbolic parameter, it replaces it with a value before
assembling the line. Symbolic parameters whose values are set by passing their values
during a macro call are said to be implicity defined by appearing on the macro definition
line. Symbolic parameters whose values are set during the macro expansion using the
conditional assembly directives LCLx, GLBx and SETx are said to be explicity defmed.

Defining Parameters Implicitly

Implicitly defined symbolic parameters may be of the character type only. This type of
parameter may be positional or keyword. A positional parameter gets its value by being
matched with a character string in the source me by position. A keyword parameter gets
defmed by assigning a value to the symbolic parameter by means of an equals sign.

Positional Parameters

The following code is an example of assigning a value to a positional parameter.

&LAB
&LAB

MACRO
COUT
LDA
JSR
MEND

&CHAR
&CHAR
$FDED

This macro is called from a source program as follows:

Ll
L2

BEQ
COUT
JMP
COUT
RTS

Ll
#tA'
L2
#'B"

At assembly time, the following code is generated. Note again that the Assembler includes
the macro call statement only to show what generated the new line: there is no generated
code associated with the macro call line itself.

Pre-Aloha Draft 6-9 6/20/86

Macros

+
+

Ll
+Ll
+
L2

BEQ
COUT
LDA
JSR
JMP
COUT
LDA
JSR
RTS

Ll
#:'A'
#:'A'
$FDED
L2
#:'B'
#:'B'
$FDED

Cortland Workshop Assembler Reference

&CHAR is referred to as a positional parameter since it gets its value by being matched
with a character string in the source file by position. Note that the symbolic parameter
defined in the label field of the macro definition (&LAB) resulted in the label field of the
first line of the macro expansion receiving the value of Ll after the second macro call. The
symbolic parameter &LAB was also coded in the first line of the macro body, where the
value of the macro call label field was substituted for it during the macro expansion.

The following example, which is a macro to print two characters, illustrates again how
positional parameters are set during the macro call:

&LAB
MACRO
COUT2
LDA
JSR
LDA
JSR
MEND

&Cl,&C2
&Cl
$FDED
&C2
$FDED

Note that the two symbolic parameter declarations ,on the macro definition line are separated
by a comma, with no intervening spaces. The comma delimits the different positional
parameters; spaces are not allowed. When the macro is called, as shown below, the actual
parameters are coded identically, that is, with commas separating the fields, and no
intervening blanks.

+
+
+
+

COUT2
LDA
JSR
LDA
JSR

#:'A',#:'B'
#:'A'
$FDED
#:'B'
$FDED

The macro processor determines which actual parameters to substitute for the symbolic
parameters by matching their relative positions in the macro call statements with those in the
macro defmition.

Optionally, a positional parameter need not be coded. However, all commas must be
included, as if something had been coded. The macro keeps count of position using the
commas, so that later positional parameters appear in the right place.

Pre-Aloha Draft 6 -10 6/20/86

Cortland Workshop Assembler Reference

Keyword Parameters

Macros

A keyword parameter is coded by typing the name of the symbolic parameter followed by
an equal sign (=) and the value assigned to the parameter. For example, a call to the
COUT2 macro could be coded as:

+
+
+LDA
JSR

COUT2
LDA
JSR
*'B'
$FDED

C2=* 'B ' , Cl=*' A'
*'A'
$FDED

When keyword parameter substitution only is used, the order is not important. The rules
for commas and blanks apply in the same way as for positional parameters. Keyword and
positional parameters can be mixed. If they are mixed, keyword parameters take up a space
and are counted for detennining positions. The macro processor counts the number of
commas encountered when setting values for positional parameters.

Defining Parameter Values Explicitly

All symbolic parameter types, arithmetic, boolean and character, may be declared explicitly.
That is, their values may be set and reset during the macro expansion with the conditional
assembly directives, resulting in an extremely powerful conditional assembly capability.
All the conditional assembly directives described in this section are also valid in· source
files. They are included here since their main use is in macro definitions. The directives
used to define symbolic parameters explicitly include the directives LCLx, GBLx, SETx,
and the string search directives AMID, ASEARCH, and AINPUT.

Parameter Scope

Symbolic parameters may be defmed either for the current macro expansion or for the entire
subroutine. Defining symbolic parameters whose scope is the entire subroutine allows
macros to communicate with each other. Symbolic parameters which are only valid inside
a macro are called local symbolic parameters; those valid throughout the subroutine are
called global symbolic parameters. Using global parameters lets you create macros that
pass information to one another.

Symbolic Parameter Definition Statements

A symbolic parameter definition statement does not contain a label. The operand field
consists of the name of the symbolic parameter to be defined. If the symbolic parameter is
to be subscripted, the maximum allowable subscript must be specified in parentheses
immediately following the symbolic parameter name.

Pre-Aloha Draft 6 -11 6/20/86

Macros Conland Workshop Assembler Reference

Symbolic parameter defInition statements are not printed in the output listing unless they
contain errors.

Defining Parameters With LCLx Directives

The LCLx directives are:

LCLA
LCLB
LCLC

define a local arithmetic symbolic parameter
defIne a local boolean symbolic parameter
defIne a local character symbolic parameter

For example, the statements

LCLA
LCLB

&NUM
&LOGIC

defme an arithmetic symbolic parameter &NUM and a boolean symbolic parameter
&LOGIC. Both are initialized to zero. Arithmetic symbolic parameters can contain any
four-byte signed integer value, while boolean symbolic parameters can take on any value
from zero to 255. When used in a logical expression, zero is treated as false and any other
value as true.

When the Assembler encounters the line

LCLC &STRING

the symbolic parameter &STRlNG is defIned. Strings have a length as well as a value:
here, &STRlNG has an initial value of the null string, or a string with no characters, and a
length of zero. A string variable can hold up to 255 characters.

Defining Parameters With GBLx directives

The directives GBLx defIne symbolic parameters with global scope. These directives are:

GBLA
GBLB
GBLC

defIne a global arithmetic symbolic parameter
defIne a global boolean symbolic parameter
defIne global character symbolic parameter

For example, the statements

GBLA
GBLB
GBLC

&NUM
&LOGIC
&STRINGS

define arithmetic, boolean and character symbolic parameters of global scope.

One predefined, permanent global arithmetic-type symbolic parameter exists called
&SYSCNT. The value of &SYSCNT is set to one at the beginning of each subroutine and
is incremented at the beginning of each macro expansion. It is used to prevent labels
defined inside macros from being duplicated if the same macro is used more than once in

Pre-Aloha Draft 6 -12 6/20/86

Cortland Workshop Assembler Reference Macros

the same subroutine. This is done by concatenating &SYSCNT to any labels used within
the macro definition itself.

Changing Parameter Values with Set Symbol Directives

You can change and modify the values of symbolic parameters using set symbols. The set
symbol is a directive that is logically equivalent to the assignment operator in most
languages, but unlike most languages the operator itself is typed. This means that the
directive used to assign a value to an arithmetic symbolic parameter is different from the
one used to assign a value to a boolean symbolic parameter. The set symbol directives
are:

SETA
SETB
SETC

SETA

set an arithmetic symbolic parameter
set a boolean symbolic parameter
set a character symbolic parameter

Set Arithmetic

The SETA directive uses a constant expression in the operand field. The operand is
resolved as a four-byte signed hexadecimal number. The result is assigned directly to the
arithmetic symbolic parameter.

Examples:

&NUM SETA 4
&N(&NUM) SETA &NUM2+LABEL*4

SETB Set Boolean

The SETB directive uses a boolean expression in the operand field. The expression is
evaluated as true or false. If true, the symbolic parameter is assigned a value of one. If
false, or if the line contains an error, the symbolic parameter is assigned a value of zero.

The boolean expression in the operand field for a SETB directive is coded using the same
rules as an absolute address. It is referred to as a boolean phrase because it most generally
takes on a value of true or false (one or zero).

Boolean operators may be used in expressions. If they are used, the resulting expression
has a boolean value that appears as a zero or one used to indicate false and true boolean
results. Arithmetic results are also valid in a boolean expression, thus a boolean variable
can be used in the same way as arithmetic variables. Since only one byte is reserved for
each boolean value, the boolean variable selects the least significant byte of an arithmetic
result, using it as an unsigned arithmetic va!ue in the range 0 to 255. Use of such a result
in a boolean statement will result in the value being evaluated as true if the value is non
zero, and false if the value is zero.

Examples:

&FLAG
&LOGIC
&LOGIC

Pre-Aloha Draft

SETB
SETB
SETB

A<&NUM
&NUM>O
1

6 -13 6/20/86

Macros

SETC Set Character

Cortland Workshop Assembler Reference

The operand is evaluated as a character string and assigned to the symbolic parameter.
Several sub-strings may be concatenated to make up the final string; they are separated in
the operand field by plus characters (+). Embedded blanks are not allowed. Literal strings
containing blanks, commas, or plus signs must be enclosed in quote marks. Quote marks
inside quote marks must be doubled.

Examples:

&STRING(4)
&STR
&STRING

SETC
SETC
SETC

&STRING
&FKENAME+' . OBJ'
'Here"s a quoted string'

Working With Strings

Two directives, ASEARCH and AMID, assist you when manipulating strings.
ASEARCH lets you search one string for occurrences of another. AMID allows selection
of a small number of characters from a string.

ASEARCH Assembler String Search

This is a special form of arithmetic set symbol. It implements a string search function for
character type symbolic parameters.

The ASEARCH directive has three arguments. The first is of character type, and is the
target string to be searched. The second is also of character type, and is the string to search
for. The last is of arithmetic type, and is the position in the target string to begin the
search. The search can be conducted for any sequence of keyboard characters. The result
is a number, so the label field must contain an arithmetic symbolic parameter. The
arithmetic symbolic parameter is set to the character position in the target string where the
search string was frrst found. If the search string was not found, it receives the value zero.

Ex~ples:

Instructions

&NUM
&NUM
&NUM

AMID

ASRCH 'TARGET;, GE,l
ASRCH 'TARGET', GET,5
ASRCH 'TARGET', x, 1

Assembler Mid String

Resulting Value

4
o
o

This is a special kind of character type set symbol which provides a mid-string function. It
has three arguments in the operand field, separated by commas. Embedded blanks are not
allowed.

Pre-Aloha Draft 6 -]4 6/20/86

Cortland Workshop Assembler Reference Macros

The fIrst argument is the string to be operated on. It must be a simple string; no
concatenation is allowed. If the string contains embedded blanks or commas, it must be
enclosed in quote marks. Quote marks inside quote marks must be doubled.

The second and third arguments are of arithmetic type. The second argument specilles the
position within the target string of the fIrst character to be chosen. It must be greater than
zero. Characters from the target string are numbered sequentially, starting with one. The
third argument specilles the number of characters to be chosen.

If the combination of the last two arguments result in an attempt to select characters after the
last character of the target string, the selection is terminated. Characters already selected are
still valid.

The resulting string is assigned to the character type symbolic parameter specifIed in the
label fIeld.

Examples:

Instructions Resulting string

&CHAR
&CHAR
&CHAR

AMID
AMID
AMID

'TARGET',2,3
'TARGET',5,3
'TARGET',7,3

RGE
ET
null string

Defining Parameters Using Assembler Input

You can set the value of a symbolic parameter by assigning it a value from the keyboard
during the assembly using the directive AINPUT. This directive is described below.

AINPUT Assembler Input

The operand is optional and, if coded, consists of a literal string. If the operand is coded,
the string contained in the operand is printed on the screen during pass one as an input
prompt. The Assembler then waits for a line to be entered from the keyboard. The string
entered is assigned to the character type symbolic parameter specilled in the label fIeld.

During pass one, keyboard responses are saved by the Assembler. When an AINPUT
directive is encountered on pass two, the reponse given in pass one is again placed in the
symbolic parameter specilled in the label fIeld. Thus, keyboard response is only needed
one time for each input, but the symbolic parameter is set to the response on both pass one
and pass two. This means that it is safe to use the response for conditional branching.

Setting Arrays with Symbolic Parameters

You can use all types of symbolic parameter to specify an array subscript. The examples
below illustrated how arrays are set and used.

&ARR(4)
&ARR(&NUM)

Pre-Alvha Draft

SETA 16
SETA &ARR(4)

6 -15 6/20/86

Macros Conland Workshop Assembler Reference

Character type symbolic parameters defined in the macro definition statement are
subscripted by including the subscripted variables in parentheses on the macro call line.
For example, if a macro call statement contained the following phrase in the operand field,

SUB=(ALPHA"GAMMA)

the keyword parameter &SUB for the given expansion would have three subscripts
allowed. The initial value of each element would be

&SUB(l)
&SUB2
&SUB3

'ALPHA'
null string
'GAMMA'

To use subscripted actual parameters effectively, code the macro itself in such a way as to
detect the number of subscripts allowed and to take appropriate action via conditional
assembly directives.

Explicity defmed symbolic parameters may also be subscripted. The subscript must follow
the symbolic parameter name. Only a single subscript is allowed, which must be in the
range from 1 to 255. A symbolic parameter used as a subscript for another symbolic
parameter cannot be subscripted.

In the following example, assume that four symbolic parameters have been defined, as
listed below. The maximum allowable subscripts for the subscripted symbolic parameters
are shown with the symbolic parameter name. Next is the type, followed by the value.
Subscripted symbolic parameters have their values listed on successive lines.

Name Type Value

&ART A $FE
&BIN(2) B 1 (true)

0 (false)
&CHAR C 'LABEL'
&CHAR2(3) C 'STRING1', , (null string)

'A'

The sample code below shows instructions as entered in a macro file on the left. Following
it are the instructicms as expanded by the macro processor.

Macro file:

&CHAR LDA
STA
LDA
BEQ
LDA

L&BIN(l) STA
LD&CHAR2(3)

Expanded instructions:

&CHAR2(1)
&CHAR. &BIN (2)
#&ART
L&BIN
LB&CHAR2(2)
EQ&BIN(2)
U

LABEL LDA
STA

STRINGl
LABELO

Pre-Alvha Draft 6 -16 6/20/86

Cortland Workshop Assembler Reference Macros

Ll

LDA
BEQ
LDA
STA
LDA

#254
Ll
LB
EQO
#1

Note that a boolean symbolic parameter becomes zero if false and one if true. The null
string is valid; it is replaced by nothing.

Concatenating Symbolic Parameters

You can use the period C.), known as the dot operator, to concatenate symbolic parameters
as shown below:

STA &CHAR.&CHAR

The period itself does not appear in the final line. It can be used after any symbOlic
parameter, regardless of how that parameter was defmed. It must be used if a symbolic
parameter is followed by a character, or if a subscript is followed by a mathematical symbol
or expression.

Note that when you use the dot operator in a logical expression, you need to code the dot in
addition to the period in the expression. That is to say, the expression

&LOGIC.AND.&LOGIC2

returns a syntax error. The correct way to represent the expression is

&LOGIC .. AND.&LOGIC2

Attributes

Attributes provide a way of giving you infonnation about a symbolic parameter or label in
addition to their value. This infonnation is provided by means of attributes which may be
thought of as functions that return information about the label or symbolic parameter.

The fonn of an attribute is

X: Label or Parameter

where the attribute X can be represented by the characters C, L, Tor S, as follows:

C Count attribute
L Length attribute
T Type attribute
S Settings attribute

You can use attributes in operands in the same way as a constant.

Pre-Aloha Draft 6-17 6/20/86

Macros

Count attribute

Cortland Workshop Assembler Reference

The count attribute is used to tell whether or not a label has been defmed, and if so, how
many subscripts are available. It is normally used to fmd out if a multiple argument has
been assigned to a symbolic parameter by a macro call. The count attribute of an undefined
label or symbolic parameter is zero. The count attribute of a defined label, or a defmed
symbolic parameter that is not subscripted, is one. The count attribute of a subscripted
symbolic parameter is the number of subscripts available. The count attribute is used in the
following loop to initialize a numeric array for a symbolic parameter that mayor may not be
defined.

LCLA &N
&N SETA C:&ARRAY

AIF &N=O, .PAST
.TOP
&ARRAY (&N) SETA &N
&N SETA &N-l

AIF &N, .TOP
.PAST

While it seems like poor programming not to know if a symbolic parameter has been
defmed, there are two common uses for the count attribute. The first is when amacro will
defme a global symbolic parameter to communicate with any future versions of itself. In
that case, the macro can test to make sure that the parameter has not been defined already.
The following macro uses this to define a sequence of integers. You don't need to count
the macros; they count themselves.

MACRO
&LAB COUNT

AIF C:&N>O, .PAST
GBLA &N

.PAST
&N SETA &N+l
&LAB DC I'&N'

MEND

The second use is to check to make sure that a parameter was passed. The following
example illustrates this use.

&LAB

&NUM3
.PAST
&LAB

Pre-Aloha Draft

MACRO
ADD
AIF
LCLC
SETC

CLC
LDA
ADC
STA
LDA
ADC
STA
MEND

&NUM1,&NUM2,&NUM3
C:&NUM3, .PAST
&NUM3
&NUMl

&NUMl
&NUM2
&NUM3
&NUM1+1
&NUM2+1
&NUM3+1

6 -18 6/20/86

Cortland Workshop Assembler Reference Macros

Length attribute

The length attribute of a label is the number of bytes created by the line where the label was
defined. This makes counting characters very easy.

need example

The length attribute of an arithmetic symbolic parameter is four. The length attribute of a
boolean symbolic parameter is one. For a string symbolic parameter, the length attribute is
the number of characters of the string. If the symbolic parameter is subscripted, the
subscript of the desired element should be specified; otherwise, the first element is
assumed. .

Type attribute

The type attribute is used to determine the kind of statement that generated the label. For a
symbolic parameter, the type attribute is used to distinguish betweenA, Band C type
symbolic parameters. The character that is returned for each type is indicated in the table
below.

Character Meaning

A Address type DC statement
B Boolean type DC statement
C Character type DC statement
D Doube precision floating point type DC statement
F Floating point type DC statement
G EQU or GEQU directive
H Hexadecimal type DC statement
I Integer type DC statement
K Reference address type DC statement
L Soft reference type DC statement
M Instruction
N Assembler directive
o ORG statement
P ALIGN statement
S DS statement
X Arithmetic symbolic parameter
Y Boolean symbolic parameter
Z Character symbolic parameter

If a DC statement contains more than one type of variable, the last type in the line
determines the type attribute.

Settings attribute

The settings attribute is used to determine the current setting of the assembler flags. These
flags are set using directives whose operand is ON or OFF. IF the current seting is ON,
the result is one; if the setting is OFF, the result is zero. For example, if you want to write
a macro that expands to two different code sequences depending on whether the
accumulator is set to 8 or 16 bits, you could use S:LONGA to test the current setting of the

Pre-Aloha Draft 6 -19 6/20/86

Macros Cortland Workshop Assembler Reference

LONGA directive. The directives that accept operands of ON or OFF are summarized
below:

LIST
SYMBOL
ERR
GEN
EXPAND
CASE

LONGA
LONGI
65816
65C02
ABSADDR
OBJCASE

PRINTER
MSB
IEEE
TRACE
INSTIME

Modifying The Assembly

The power of the macro language depends primarily on its ability to loop and branch,
thereby letting you program the ways in which it expands your original source text. This
section discusses the following directives which perform assembly control tasks:

AGO
AIF
ACTR
ANOP

Unconditional Branch
Conditional Branch
Assembly Counter
Assembler No Operation

The branching directives AGO and AIF alter the flow of source statements to be processed
by the Assembler. This allows the same macro or source code to be assembled differently
based on a given condition. In conditional assembly branches, the destination of the
branch may be a sequence symbol. A sequence symbol is a line with a period in column
one, followed by a label. Comments may follow the label after at least one space.
Instructions contained in the line are treated as comments. The line is not printed in the
output listing.

AGO Unconditional Branch

The operand contains a sequence symbol. The macro definition (or subroutine, if not used
in a macro) is searched for a matching sequence symbol. Processing continues with the
instruction immediately following the sequence symbol.

The search range for a source file includes the etttire file, not just the subroutine containing
the AGO directive. Searching begins in the forward direction and continues until the
sequence symbol is found or the end of the file is reached. The search then begins with the
instruction before the AGO directive and continues toward the beginning of the file.

The search process in a macro defmition is similar, except that the search will not cross a
MEND or MACRO directive.

Searches for sequence symbols will not cross into a copied or appended file; they are
limited to the file in memory.

The AGO directive is not printed in the output listing unless it contains an error.

In the following example, the assembler encounters the initial AGO directive. Processing
continues at the sequence symbol. All lines between the AGO and sequence symbol are
ignored by the assembler.

Pre-Aloha Draft 6 -20 6/20/86

Cortland Workshop Assembler Reference

Example:

AGO . THERE
THESE LINES ARE IGNORED .

. THERE

Macros

AIF Conditional Branch

The operand contains a boolean expression followed by a comma and a sequence symbol.
The boolean phrase is evaluated. If true, processing continues with the first statement
following the sequence symbol; if false, processing continues with the first statement
follwing the AlP directive. As with the AGO directive, the period (.) in the sequence
symbol may be-replaced with a A character to speed up branches in the case where the
destination sequence symbol comes before the AlP directive.

The AlP directive is not printed in the output listing unless it contains an error.

As an example, consider a fIle which contains the following statements:

&LOOP
.TOP
&LOOP

LeLA
SETA
ASL
SETA
AIF

&LOOP
4
A
&LOOP-l
&LOOP>O, .TOP

The output listing will contain these lines:

ACTR

ASL
ASL
ASL
ASL

A
A
A
A

Assembly Counter

Each time a branch is made in a macro definition, a counter is decremented. If it reaches
zero, processing of the macro stops, to protect it from infinite loops.

The ACTR directive is coded with a number from 1 to 255 in the operand field. The
counter is then assigned this value. The ACTR directive is used to limit the number of
loops caused by conditional assembly branches. In loops with more than 255 iterations, it
must be reset within the bodu of the loop to prevent the counter from reaching zero.

The counter value is set to 255 automatically at the beginning of each macro.

The ACTR directive is not printed unless it contains an error.

Pre-Aloha Draft 6 -21 6/20/86

Macros

ANOP

Cortland Workshop Assembler Reference

Assembler No Operation

The ANOP directive does nothing. It is used to define labels without an instruction. The
label assumes the current value of the program counter.

Pre-Aloha Draft 6 -22 6/20/86

Chapter 7

The Cortland Libraries

The Cortland includes a comprehensive set of macros to make calls to the Cortland
Toolbox, ProDOS 16, and the Shell. Additionally, a group of utility macros are provided
as useful aids in writing Assembly code for the Cortland computer. This chapter contains
sections on each of these sets of macros. To help you generate you own custom macro
library fIles, a section at the end of the chapter tells you where on the Cortland sytem disk
the macros are located.

The Cortland Toolbox

The Cortland Toolbox provides a simple means of constructing application programs that
conform to the standard Cortland user interface. By offering a common set of routines that
every application program calls to implement the user interface, the Toolbox not only
ensures familiarity and consistency for the user but also helps reduce the application's code
size and development time. At the same time, it allows a great deal of flexibility: an
application can use its own code instead of a Toolbox call wherever appropriate, and can
define its own types of windows, menus, controls and desk accessories.

The Cortland Toolbox includes the following groups, organized according to the function
they perform:

Desk Manager
Event Manager
Integer Math
Memory Manager
Menu Manager
Miscellaneous Tools
QuickDraw
SANE
Sound Manager
Text Tools
Tool Locator
Scheduler

***Note: Some macros on the current CPW disk, VlOA3, April 29 1986, have names that
differ from the Tools as documented in the Cortland Tools. Steve Glass indicated that
eventually there would be little discrepancy. For now, I've given the macros the Tool
names as documented in the Cortland Tools. ***

Pre-Aloha Draft 7-1 6120186

Conland Tools Conland Workshop Assembler Reference

Desk Manager

The Desk Manager enables your application to support desk accessories, which are
mini-applications that can be run at the same time as a Cortland application. There are a
number of standard desk accessories, such as the Calculator and the Alann Clock. You can
also write your own desk accessories if you wish.

The Desk Accessories macros include:

Information not yet available

Event Manager

The Event Manager is the part of the Toolbox that allows your application to monitor the
user's actions, such as those involving the mouse, keyboard and keypad. The Event
Manager macros include:

Event Manager Standard Housekeeping Routines

_EMActive

_DOWindows

_EMVersion
_EMReset

_EMBootInit
_EMStartUp .
_EMShut Down

Initializes the Event Managerat boot time
Initializes the Event Manager when an application starts up
Shuts down the Event Manager and releases any workspace
allocated to it
Returns the version of the Event Manager
Returns an error if the Event Manager is active, but
otherwise does nothing
Returns status indicating whether the Event Manager is
active
Returns address of the Event Manager's zero page work area
to the Window Manager

Toolbox Event Manager Routines

These routines check events to see if they are of interest to the application. If the events
are of interest, and the Desk Manager doesn't want them, the routines return with the event.

_GetNextEvent

_EventAvail

Returns the next available event of a specified tYPe or types,
and if the event is in the event queue, removes it from the
queue.
Returns the next available event of a specified type or types,
but if the event is in the event queue, leaves it in the queue.

Pre-Aloha Draft 7-2 6/20/86

Cortland Workshop Assembler Reference

Mouse Reading Routines

These routines provide the ability to read the status of the mouse.

Conland Libraries

_GetMouse
_Button
_Sti1lDown
_WaitMouseUp

Returns the current location of the mouse.
Checks the status of a specified mouse button.
Checks a specified mouse button to see if it is still down.
Checks a specified mouse button to see if it is still down,
and, if not, removes preceding mouse-up event.

Posting and Removing Events

_PostEvent
_FlushEvents

Places an event in the event queue.
Removes all events of the type or types specified up to but
not including the first event of any type specified by a
mask.

Accessing Events Routines

These routines check events to see if they are of interest to the application. If the events are
of interest, the routines return with the event.

_GetOSEvent

_OSEventAvail

Returns the next available event of a specified type or types
and, if the event is in the event queue, removes it from the
queue.
Returns the next available event of a specified type or types,
but if the event is in the event queue, leaves it in the queue.

Miscellaneous Event Manager Routines

_TickCount

_GetDblTime

_GetCaretTime

_SetSwitch

_SetEventMask

Integer Math

Returns a count of the number of ticks since the system last
started up.
Returns suggested maximum difference of ticks which
determines a double mouse-click.
Returns the number of ticks between blinks of the caret
marking the insertion point.
Called by the Control Manager to inform the Event Manager
of a pending switch event. Should not be called by an
application.
Specifies the system event mask. Should not be called by an
application.

The Integer Math routines support multiplication and division of several types of numbers,
and also convert numbers from one type to another. The types of numbers dealt with are as
follows:

• Integers, which are single word signed integers
• Long integers, which are two-word signed integers

Pre-Aloha Draft 7-3 6/20/86

Cortland Tools Cortland Workshop Assembler Reference

• Fixed, which are two-word signed values with 16 bits of fraction
• Frac, which are two-word signed values with 30 bits of fraction

The Integer Math routines are summarized below:

Integer Math Housekeeping Routines

_IMVersion
_IMReset

Math Routines

Returns the version of the Integer Math Tools.
Clears the Heartbeat queue link pointer and sets Mouse flag
to "NOT FOUND".
Returns status indicating whether the Integer Math Tools are
active.

The Math routines support multiplication and division of integer, long integer, fIxed and
frac numbers.

_Multiply
_SDivide

_UDivide

_LongMul
_LongDivide

_FixRatio
_FixMul

_FracMul
_FixDiv
_FracDiv
_FixRound
_FracSqrt
_FracCos
_FracSin
_FixATan2

_HiWord
_LoWord
_Long2Fix
_Fix2Long
_Fix2Frac
_Frac2Fix
_Fix2X
_Frac2X
_X2Fix
_X2Frac

Multiplies two 16-bit inputs and produces a 32-bit result.
Divides two 16-bit signed inputs and produces a signed 16
bit quotient and a signed 16-bit remainder.
Divides two 16-bit unsigned inputs and produces an
unsigned 16-bit quotient and an unsigned 16-bit remainder.
Multiplies two 32-bit inputs and produces a 64-bit result.
Divides two 32-bit unsigned inputs and produces an
unsigned 32-bit quotient and an unsigned 32-bit remainder.
Finds.Fixed 32-bit ratio of two 16-bit signed inputs.
Multiplies two 32-bit Fixed inputs and produces a 32-bit
Fixed result
Multiplies two Frac inputs and produces a Frac result.
Divides two Fixed inputs and produces a Fixed result.
Divides two Frac inputs and produces a Frac result.
Takes a Fixed input and produces a rounded integer result.
Takes a Frac input and produces a Frac square root.
Takes a Frac input and returns its cosine.
Takes a Frac input and returns its sine.
Takes two inputs and returns a Fixed arc tangent of their
ratio.
Returns high word of input.
Returns low word of input.
Converts long integer to Fixed.
Converts Fixed to long integer.
Converts Fixed to Frac.
Converts Frac to Fixed.
Converts Fixed to extended.
Converts Frac to extended.
Converts extended to Fixed.
Converts extended to Frac.

Pre-Aloha Draft 7-4 6/20/86

Cortland Workshop Assembler Reference

Conversion Routines

Conland Libraries

These routines convert between a binary value and an ASCII character string representing
that value. The binary value can be either a two-byte integer or a four-byte integer. The
character string can be in either hexedecimal or decimal fonn.

_Int2Hex

_Long2Hex

_Hex2Int

_Hex2Long

_Int2Dec

_Long2Dec

_Dec2Int

_Dec2Long

_Hexlt

Takes a 2-byte unsigned integer and produces an ASCII
string representing the value in hexadecimal fonnat.
Takes a 4-byte unsigned integer and produces an ASCII
string representing the value in hexadecimal fonnat
Takes an ASCII string representing a hexadecimal value and
produces a 2-byte unsigned integer.
Takes an ASCII string representing a hexadecimal value and
produces a 4-byte unsigned integer.
Takes a 2-byte integer and produces an ASCII string
representing the value in decimal fonnat
Takes a 4-byte integer and produces an ASCII string
representing the value in decimal fonnat.
Takes an ASCII string representing a decimal value and
produces a 2-byte integer. .
Takes an ASCII string representing a decimal value and
produces a 4-byte integer.
Takes a 2-byte unsigned integer and returns a 4-byte ASCn
string representing the value in hexadecimal fonnat.

Memory Manager
The Memory Manager on the Cortland is responsible for allocating blocks of memory to
programs. The Manager does the bookkeeping of what memory is being used and keeps
track of who owns various blocks of memory. The Memory Manager routines are
summarized below: .

Memory Manager Housekeeping Routines

_MMBootInit

_MMAppInit
_MMAppQt,Iit
_MMGetVersion
_MMReset

Memory Allocation

_NewHandle
ReAllocHandle

=DisposHandle

_DisposAll

Initializes Memory Manager at boot time; must never be
made by an application.
Made by an application when it starts up.
Made by an application when it tenninates.
Returns the version of the Memory Manager.
Used by the system upon Reset. Should not be used by an
application.
Returns status indicating whether the Memory Manager is
active. The Memory Manager is always active.

Routines

Creates anew block and returns the handle to the block.
Reallocates a block that was purged.
Purges a specified unlocked block and deallocates the
handle.
Discards all of the handles belonging to userID.

Pre-Aloha Draft 7-5 6/20/86

Cortland Tools

_PurgeHandle

_PurgeAlI

Cortland Workshop Assembler Reference

Purges a specified unlocked block, but does not deallocate
the handle.
Purges all of the purgeable blocks for a specified owner.

Block Information and Fress Space Routines

_GetHandleSize
_SetHandleSize
_CompactMem
_FreeMem
_MaxBlock

Returns the size of a block.
Changes the size of a specified block.
Compacts memory space.
Returns the total number of free bytes in memory.
Returns the size ofthe largest free block in memory, not
counting memory that can be freed by purging or
compacting.
Returns the size of all memory, including the main 256K.

Locking and PurgeLevel Routines

_BLock
_HLockAll
_HUnLock
_HUnLockAll
_SetPurge
_SetPurgeAll

Locks a block specified by a handle.
Locks all of the blocks owned by an owner.
Unlocks a block specified by a handle
Unlocks all of the blocks owned by an owner.
Sets the purge level of a specified block.
Sets the purge level of all blocks owned by a specified
owner.

Miscellaneous Memory Manager Routines

_BlockMove

_PtrToHand
_HandToPtr
_HandToHand

Menu Manager

Copies a specified number of bytes from a source to a
destination. '
Not yet implemented.
Not' yet implemented.
Not yet implemented.

The Menu Manager supports the use of menus which can be part of the Cortland user
interface. Menus allow users to examine all choices available to them at any time without
being forced to choose one of them, and without having to remember command words or
special keys. The Cortland user simply positions the cursor in the menu bar and presses
the mouse button over a menu title. The application then calls the Menu Manager, which
highlights selected title (by redrawing it with its InvertColor) and "pulls down" the menu
below it. As long as the mouse button is held down, the menu is displayed. Dragging
through the menu causes each of the menu items (commands) in it to be highlighted in turn.
If the mouse button is released over an item, that item is "chosen". The item blinks briefly
to confirm the choice, and the menu disappears.

When the user chooses an item, the Menu Manager tells the application which item was
chosen, and the application performs the corresponding action. When the application
completes the action, it removes the highlighting from the menu title, indicating to the user
that the operation is complete. '

Pre-Alvha Draft 7-6 , 6/20/86

Cortland Workshop Assembler Reference Conland Libraries

If the user moves the cursor out of the menu with the mouse button held down, the menu
remains visible, though no menu items are highlighted. If the mouse button is released
outside the menu, no choice is made: The menu just disappears and the application takes
no action. The user can always look at a menu without causing any changes in the
document or on the screen.

The Menu Manager routines are summarized below:

_BootMmgr
_InitMenus
_TermMenus

_MMgrVersion
_M,MgrStatus

_MMgrSpare
_GetMenuPt
_SetTitleWidth

_GetTitleWidth

_SetMenuFlag
_GetMenuFlag

SetMenuTitle
=:SetMenuTitle
_GetMenuTitle
_SetMenuID
_GetItemPtr
_SetItem
_GetItem
_EnableItem

_DisableItem

_CheckItem

_SetItemMark

_GetItemMark

_SetItemStyle
_GetItemStyIe
_SetItemFlag

_GetItemFlag

_SetItemID
SetItemBlink

_MNewRes

Initializes Menu Manager at boot time.
Initalizes the Menu Manager at application start-up
Closes the Menu Manager's port and frees any allocated
menus.
Returns the version of the Menu Manager.
Returns status indicating whether the Menu Manager is
active.
Reserved for future use.
Returns a pointer to a menu record.
Sets the width of a title. The title width defines the area
where the user can select the menu, and defmes the area that
is inverted when the title is highlighted. .
Returns the width of a menu title. The width defmes the area
where the user can select the menu, and defmes the area that
is inverted when the title is highlighted.
Sets the menu to a specified state.
Returns the menu flag for a specified menu(see MENU
RECORDS for defmition).
Specifies the title for a menu.
Specifies the title for a menu.
Returns a pointer to the title of a menu
Specifies a new menu number.
Returns a pointer to an item record.
Specifies the name for an item.
Returns a pointer to the name of an item.
Sets a specified item to display normally and allows it to be
selected.
Sets a specified item to display in dimmed characters and
does not allow it to be selected.
Sets a menu item to display or not display a check mark to
the left of the item.
Sets a specified character to display or not display to the left
of the item.
Returns the current character which displays to the left of a
specified menu item.
Sets the text style for a specified menu item.
Returns the text style for a specified menu item.
Sets a specified item number to be underlined or not
underlined, and sets the style of highlighting.
Returns whether or not a specified item is underlined and
highlighted.
Specifies the ID number of a menu item.
Determines how many times all menu items should blink
when selected.
Adjust for a new screen resolution and redraws the current
system menu bar in the new resolution.

Pre-Aloha Draft 7-7 6/20/86

Conland Tools

BootMmgr
=InitMenus

TermMenus

_MMgrVersion
MmgrReset

InitPalette

NewMenu
=DisposeMenu

FixMenuBar
-CalcMenuSize
-MenuSelect

_MenuKey

CheckFallDown

MenuRefresh
-DrawMenuBar

HiliteMenu
-FlashMenuBar

InsertMenu

DeleteMenu
-InsertItem

DeleteItem
-SetSysBar
=GetSysBar
_SetMenuBar
_GetMenuBar

CountMItems

_SetFallArea
_GetFallArea
_SetBarColors

_GetBarColors
_SetTitleStart

GetTitleStart

Conland Workshop Assembler Reference

Called at boot time.
Initializes the Menu Manager at application startup.
Closes the Menu Manager's port and frees any allocated
menus.
Returns the version of the Menu Manager.
This call does nothing~ but is one of the standard
housekeeping calls of the'toolbox. If a program makes the
call, the call will return without an error.
Reinitializes the palettes needed for the color Apple logo in
the system menu bar.
Allocates space for a menu list and its item.
Frees the memory allocated by NewMenu. The menu list
will no longer be usable.
Computes standard sizes for the menu bar and menus.
Sets menu dimensions, either manually or automatically.
Draws highlighted titles, pulls down menus, and handles
user interaction when a mouse button is clicked on a menu
bar.
Maps a character to the associated menu and item for that
character.
Checks if the current cursor position is inside the menu bar's
fall down area.
Refreshes the screen under the menu
Draws the current menu bar, along with any menu titles on
the bar.
Draws a menu's title using the menu bar's BarColor
Flashes the entire current menu bar by fIrst redrawing it
using user-specilled colors then redrawing it again using
normal colors.
Inserts a specifIed menu into the menu list after a specifIed
menu item, or at the front of the list if InsertAfter is zero.
Removes a specifIed menu from the menu list.
Inserts a menu item into a menu after a specilled menu item,
or at the front of the list if insert afteritem is zero.
Removes a specilled item from a specifIed menu.
Sets a new system bar.
Returns a pointer to the current system menu bar.
Sets the current menu bar.
Returns a pointer to the current menu bar.
Returns the number of items, including any dividing lines, in
a specilled menu.
Specilles the height in pixels of the FallDown area.
Returns the height of the FallDown area.
Sets the norrilal, inverse, and outline colors of the current
menu bar.
Returns the colors for the current menu bar.
Sets the starting position for the leftmost title within the
current menu bar.
Returns the starting position for the leftmost title within the
current menu bar.

Pre-Alvha Draft 7-8 6/20/86

Cortland Workshop Assembler Reference

Miscellaneous Tools

Cortland Libraries

There are a number of tools that do not fall easily into one logical category. They ar~.

grouped here under "Miscellaneous Tools". .

Miscellaneous Tools Housekeeping Routines

The Miscellaneous Tools housekeeping routines, summarized below, provide the standard
housekeeping routines of the tool sets. The routines allow the Miscellaneous Tools to be
initialized and handled as a Cortland Tool Set.

_MTVersion
_MTReset

_MTStatus

Initializes Heartbeat interrupt chain link pointer, clears TickCounter
, and Heartbeat task link pointer, and sets Mouse flag to"NOT

FOUND".
Returns the version of the Miscellaneous Tools.
Clears the Heartbeat queue link pointer and sets Mouse flag to"NOT
FOUND".
Returns status indicating whether the Miscellaneous Tools are
active.

Battery RAM Routines

The Battery Ram routines, summarized below, allow the Battery RAM, which is RAM
powered by battery and thus non-volatile, to be read or written.

_WriteBRAM
_ReadBRAM
_WriteBParam
_ReadBParam

Clock Routines

Writes data from memory to the Battery RAM.
Reads data from the Battery RAM into memory.
Writes data to a specified parameter in the Battery RAM.
Reads data from a specif!.ed parameter in the Battery RAM.

The clock routines summarized below allow the clock to be set or read. Setting the clock
requires that the time be passed as an input parameter in a hex format. Two tools are
provided for reading the clock. One returns time in a hex format; the other returns time in
an ASCn format.

_ReadTimeHex
_WriteTimeHex
_ReadAsciiTime

Pre-Alvha Draft

Returns current time in Hex format.
Sets the current time.
Returns current time in ASCn format.

7-9 6/20/86

Conland Tools

Vector Initialization Routines

Conland Workshop Assembler Reference

The vector initialization routines summarized below allow an application to set or get the
current vector for the interrupt handlers.

_SetVector

_GetVector

HeartBeat Routines

Sets the vector address for a specified interrupt manager or
handler.
Returns with the vector address for a specified interrupt
manager or handler.

The heartbeat routines summarized below allow a vector to be installed or removed from
the HeartBeat Interrupt service queue. These routines are summarized below:

_SetHeartBeat

_DelHeartBeat

_ClrHeartBeat

Installs a specified task into the HeartBeat Interrupt Service
queue.
Deletes a specified task from the HeartBeat Interrupt Service
queue.
Removes all tasks from the HeartBeat Interrupt Service
queue.

ID Tag Manager Routines

The ID Tag Manager tools summarized below are used to create and delete ID tags, and
inquire about the status of an ID Tag. The ID Tag marks memory segments as belonging to
a specific application or desk accessory.

_GetNewID
_DeleteID
_StatusID

Mouse Routines

Creates a new ID tag.
Deletes all references to a specified ID tag.
Removes all tasks from the HeartBeat Interrupt Service
queue.

The Mouse routines summarized below interface with the mouse firmware. They can be
used to set mouse mode, inquire about mouse status, read the clamp and position values,
and set the clamp values.

_ReadMouse
_InitMouse

_SetMouse
_HomeMouse
_ClearMouse

_ClampMouse

_GetMouseClamp
_PosMouse

Returns mouse position, status, and mode.
Initializes mouse clamp values and clears mouse mode and
status.
Sets the mode for the mouse.
Positions the mouse at the minimum clamp position.
Sets the X and Y axis to $0000 if the minimum clamp values
are negative, or to the minimum clamp position if the clamps
are positive.
Sets the clamp values to new values, and then sets the mouse
position to the minimum clamp value~. .
Returns the current values of the mouse clamps.
Positions the mouse to specified coordinates.

Pre-Aloha Draft 7 -10 6/20/86

Cortland WorksJwp Assembler Reference Cortland Libraries

_ServeMouse Returns mouse interrupt status.

Absolute Clamp Routines

The absolute clamp routines, Set AbsClamp and GetAbsClamp, provide support for
absolute devices such as graphics tablets.

SetAbsClamp
GetAbsClamp

Sets the clamp values to new values.
Returns the current values of the absolute device clamps.

Additional Miscellaneous Tools

_IntSource
_FWentry

_Tick Counter
_PackBytes

_UnPackBytes
_Munger
_GetIRQenbl

QuickDraw

Returlls an address of a byte, word, or long parameter
referenced by the fIrmware.
Enables or disables certain interrupts.
Allows certain Cortland emulation mode entry points to be
supported from full native mode.
Returns the current value of the tick counter.
Packs bytes into a special format which uses less storage
space.
Unpacks data from the packed format used by PackBytes.
Manipulates bytes in a string of bytes.
Returns the hardware interrupt enable states for interrupt
sources that can be controlled by the Miscellaneous Tool set.

QuickDraw is the part of the Toolbox that allows Cortland programmers to perform highly
complex graphic operations very easily and very quickly. QuickDraw helps you draw
many different things on the Cortland screen, including text, lines, rectangles, ovals,
roundrects, wedges, polygons and regions. QuickDraw also has some other abilities you
won't fInd in many other graphics packages. These abilities take care of most of the
housekeeping; the trivial but time-consuming overhead that's necessary to keep things in
order, including the ability to defme manu distinct ports on the screen, full and complete
clipping to arbitrary areas, and offscreen drawing. The QuickDraw Tools are described
below.

QuickDraw Housekeeping Functions

_QDBootInit

_QDStartup

_QDShutDown

Initializes QuickDraw II at boot time. The function puts the
address of the cursor update routine into the bank El
vectors. An application should never make this call.
Initializes Quickdraw II, sets the current port to the standard
port, and clears the screen.
Frees up any buffers that yvere allocated. This call can fail if
QuickDraw is not active when the call waS made.

Pre-Alvha Draft 7 -11 6/20/86

Cortland Tools

_QDVersion
_QDStatus

Cortland Workshop Assembler Reference

Returns the version of QuickDraw II.
Returns whether or not QuickDraw is active.

QuickDraw Global Environment Calls

_GetStandardSCB

_SetMasterSCB

_GetMasterSCB

_InitColorTable

_SetColorTable
_GetColorTable
_SetColorEntry
_GetColorEntty
_SetSCB
_GetSCB

_SetAllSCBs
_SetSysFont
_GetSysFont
_SetMaxWidth

_GetMaxWidth
_SetTBSize

_ForceTBSize

_SaveTBDims
_RestoreTBDims
_ClearScreen
_GrafOn
_GrafOff

Returns a copy of the standard SCB in the low byte of'the
word.
Sets the master SCB to the specified value (only the low byte
is used).
Returns a copy of the master SCB (only the low byte is
valid).
Returns a copy of the standard color table for the current
mode.
Sets a color table to specified values.
Fills a color table with the contents of another color table.
Sets the value of a color in a specified color table.
Returns the value of a color in a specified color table .
Sets the scan line control byte (SCB) to a specified value.
Returns the value of a specified scan line control byte
(SCB).
Sets all scan line control bytes (SCBs) to a specified value.
Tells QuickDraw to use the font passed as a system font.
Returns a handle to the current system font.
Tells QuickDraw to resize its internal buffers based on this
new MaxWidth.
Returns the current MaxWidth.
Tells QuickDraw to resize the text buffer based on the values
passed.
Tells QuickDraw to resize the text buffer based on the values
passed.
Returns a code for the current dimensions of the text buffer.
Resizes the text buffer based on the TBDimCode.
Sets the words in the screen memory to the value passed.
Turns on the super hi-res graphics mode.
Turns off the super hi-res graphics mode.

QuickDraw GrafPort Calls

_OpenPort

_InitPort
_ClosePort
_SetPort
_GetPort
_SetPortLoc

_GetPortLoc

_SetPortRect

_GetPortRect
_SetPortSize

Initializes specified memory locations as a standard port and
allocates new VisRgn and ClipRgn.
Initializes specified memory locations as a standard port.
Deallocates the memory associated with a port.
Mak~s the specified port the current port.
Returns the handle to the current port.
Sets the current port's map information structure to the
specified location information.
Gets the current port's map information structure and puts it
at the address indicated.
Sets the current port's port rectangle to the specified
rectangle.
Returns the current port's map port rectangle.
Changes the size of the current GrafPort's PortRect.

Pre-Aloha Draft 7 -12 6/20/86

Cortland Workshop Assembler Reference Cortland Libraries

_MovePortTo
_SetOrigin

_SetClip
_GetClip

_ClipRect

_HidePen
_ShowPen
_GetPen
_SetPenState
_GetPenState
_SetPenSize
._GetPenSize
_SetPenMode
_GetPenMode
_SetPenPat
_GetPenPat
_SetSolidPenPat

_SetPenMask
_GetPenMask
_SetBackPat
_GetBackPat
_SetSolidBackPat

_SolidPattern

_PenNormal

_SetFont
_GetFont
_SetFontID
_GetFontID
_GetFontInfo

_GetFGSize
_GetFontGlobals

_SetFontFlags
_GetFontFlags
_SetTextFace
_GetTextFace
_SetTextMode
_GetTextMode
_SetSpaceExtra

_GetSpaceExtra
_SetCharExtra

Changes the location of the current GrafPort's PortRect.
Adjusts the contents of PortRect and BoundsRect so that the
upper left comer of PortRect is set to the specified point
Sets the clip region to the region passed by using CopyRgn.
Copies the Clip Region to the region passed. The region
must have been created earlier with a new rgn call.
Changes the clip region of the current GrafPort to a rectangle
equivalent to a given rectangle.
Decrements the pen level.
Increments the pen level.
Returns the pen location.
Sets the pen state in the GrafPort to the values passed.
Returns the pen state from the GrafPort.
Sets the current pen ~ize to the specified pen size.
Returns the current pen size at the place indicated.
Sets the current pen mode to the specified pen mode.
Sets the current pen mode to the specified pen mode.
Sets the current pen pattern to the specified pen pattern.
Returns the current pen pattern at the specified location.
Sets the pen pattern to a solid pattern using the specified
color.
Sets the pen mask to the specified mask.
Returns the pen mask at the specified location.
Sets the background pattern to the specified pattern.
Returns the background pattern at the specified location.
Sets the background pattern to a solid pattern using the
specified color.
Sets the specified pattern to a solid pattern using the
specified color.
Sets the pen state to the standard state (penSize = 1,1;
PenMode =copy; PenPat =Black; PenMask =l's). The
pen location is not changed. .
Moves the current pen location to the specified point
Moves the current pen location by the specified horizontal
and vertical displacements.
Sets the current font to the specified font
Returns a handle to the current font
Sets the fontID field in the GrafPort.
Returns the FontID field in the GrafPort.
Returns information about the current font in the specified
record.
Returns the size of the font globals record.
Returns information about the current font in the specified
record.
Sets the font flags to the specified value.
Returns the current font flags.
Sets the text face to the specified value.
Returns the current text face.
Sets the text mode to the specified value.
Returns the current text mode.
Sets the space extra field in the grafport to the specified
value.
Returns the space extra field from the grafport.
Sets the char extra field in the grafport to the specified value.

Pre-Aloha Draft 7 -13 6/20/86

Cortland Tools

_GetSpaceExtra
_SetForeColor

_GetForeColor
_SetBackColor

_GetBackColor
_GetFGSize
_GetFontGlobals
_SetClipHandle

_GetClipHandle
_SetVisRgn
_GetVisRgn
_SetVisHandle

_GetVisHandle
_SetPicSave

_GetPicSave
_SetRgnSave

_GetRgnSave
_SetPolySave

_GetPolySave
_SetGrafProcs
_GetGrafProcs

_SetUserField
_GetUserField
_SetSysField

_GetSysField..

Drawing Calls

_LineTo

Drawing Rectangles

_FrameRect

Cortland Workshop Assembler Reference

Returns the space extra field from the grafport.
Sets the foreground color field in the grafport to the specified
value.
Returns the current foreground color from the grafport.
Sets the background color field in the grafport to the
specified value.
Returns background color field from the grafport.
Returns the size of the font globals record
Fills the font globals record with the appropriate info.
Sets the clip region handle field in the grafport to the value
passed.
Returns a copy of the handle to the ClipRgn.
Sets the vis region to the region passed by using CopyRgn.
Copies the'contents of the VisRgn into the region passed.
Sets the clip region handle field in the graf port to the value
passed.
Returns a copy of the handle to the VisRgn.
Sets the picsave field to the value passed. This is an internal
routine that should not be used by application programs.
Returns the contents of the PicSave field in the GrafPort.
Sets the RgnSave field to the value passed. This is an
internal routine that should not be used by application
programs.
Returns the contents of the RgnSave field in the GrafPort.
Sets the PolySave field to the value passed. This is an
internal routine that should not be used by application
programs.
Returns the contents of the PicSave field in the GrafPort.
Sets the GrafProcs field to the value passed.
Returns the contents of the Pointer to the GrafProcs record
associated with the GrafPort.
Sets the UserField field in the GrafPort to the value passed.
Returns the contents of the UserField field in the GrafPort.
Sets the SysField field to the value passed. This is an
internal routine that should not be used by application
programs.
Returns the contents of the SysField field in the GrafPort.

Draws a line from the current pen location to the specified
point.
Draws 'a line from the current pen location to a new point
specified

Draws the boundary of the specified rectangle with the
current pattern and pen size.
Paints (fills) the interior of the specified rectangle with the
current pen pattern.

Pre-Alvha Draft 7 -14 6/20/86

Cortland Workshop Assembler Reference Conland Libraries

_EraseRect

_InvertRect
_FillRect

Drawing Regions

_FrameRgn

_PaintRgn

_EraseRgn

Drawing Polygons

_FramePoly
_PaintPoly
_ErasePoly
_InvertPoly
_FillPoly

Drawing Ovals

_FrameOval

_PaintOval

_EraseOval

_InvertOval

Drawing RoundRects

_FrameRRects

_EraseRRect

_InvertRRect

Erases the interior of the specified rectangle with the
background pattern.
Inverts the pixels in the interior of the specified rectangle.
Paints (fills) the interior of the specified rectangle with the
specified pattern.

Draws the boundary of the specified region with the current
pattern and current pen size.
Paints (fIlls) the interior of the specified region with the
current pen pattern.
Fills the interior of the specified region with the background
pattern.
Inverts the pixels in the interior of the specified region.
Fills the interior of the specified region with the specfied
pattern.

Frames the specified polygon.
Paints the specified polygon.
Erases the specified polygon.
Inverts the specified polygon.
Paints the specified polygon.

Draws the boundary of the oval enscribed in the specified
rectangle with the current pattern and pen size.
Paints (fIlls) the interior of the oval enscribed in the specified
rectangle with the current pen pattern.
Erases the interior of the oval enscribed in the specified
rectangle with the background pattern.
Inverts the pixels in the interior of the oval enscribed in the
specified rectangle.
Paints (fIlls) the interior of the oval enscribed in the specified
rectangle with the specified pattern.

Draws the boundary of the roundrect enscribed in the
specified rectangle with the current pattern and pen size.
Paints (fIlls) the interior of the roundrect enscribed in the
specified rectangle with the current pen pattern.
Erases the interior of the roundrect enscribed in the specified
rectangle with the background pattern.
Inverts the pixels in the interior of the roundrect enscribed in
the specified rectangle.

Pre-Aloha Draft 7 -15 6/20/86

Cortland Tools

Drawing Arcs

_FrameArc

_PaintArc

Transferring Pixels

_ScrollRect

_PaintPixels

Conland Workshop Assembler Reference

Paints (fIlls) the interior of the roundrect enscribed in the
specified rectangle with the specified pattern.

Draws the boundary of the arc enscribed in the specified
rectangle with the current pattern and pen size.
Paints (fIlls) the interior of the arc enscribed in the specified
rectangle with the current pen pattern.
Erases the interior of the arc enscribed in the specified
rectangle with the background pattern.
Inverts the pixels in the interior of the arc enscribed in the
specified rectangle.
Paints (fIlls) the interior of the arc enscribed in the specified
rectangle with the specified pattern.

Shifts the pixels inside the intersection of the specified
rectangle, VisRgn, ClipRgn, PortRect, and BoundsRect.
Transfers a region of pixels.

Drawing and Measuring Text

_DrawChar
_DrawText
_DrawString
_DrawCString
_CharWidth
_TextWidth
_StringWidth
_CStringWidth
_CharBounds
_TextBounds
_S tringBounds
_CS tringBounds

Draws the specified character.
Draws the spedified text
Draws the spedified string.
Draws the spedified C-String.
Returns the width of the specified character.
Returns the width of the specified text
Returns the width of the specified string.
Returns the width of the specified C-String.
Fills in the specified rectangle with bounds of character.
Fills in the specified rectangle with bounds of text.
Fills in the specified rectangle with bounds of string.
Fills in the specified rectangle with bounds of CString.

QuickDraw Utility Routines

Calculations With Rectangles
Calculations With Points
Calculations With Regions
Calculations with Polygons
Mapping and Scaling Utilities
Miscellaneous Utilities

Pre-Aloha Draft 7 -16 6/20/86

Cortland WdrkshOp Assembler Reference

Customizing QuickDraw Operations

Conland Libraries

_SetStdProcs
_StdText
_StdLine
_StdRect
_StdRRect
_StdOval
_StdArc
_StdPoly
_StdRgn
_StdPixels
_StdComment
_StdTxMeas
_StdGetPic
_StdPutPic
_SetIntUse

_GetAddress

Handling Cursors

_SetCursor
_GetCursorAdr
_HideCursor

_ShowCursor

_ObscureCursor

_InitCursor

SANE Tools

To be supplied

Scheduler

Sets up the specified record of pointers.
Draws standard text.
Draws standard lines.
Draws standard reets.
Draws standard round rects.
Draws standard ovals.
Draws standard arcs.
Draws standard polys.
Draws standard regions.
Draws standard pixels.
Does standard comments for pictures.
Does standard text measuring. .
Does standard retieval from picture record.
Does standard storage into picture record.
Tells QuickDraw's cursor drawing code whether or
not it should use scan line interrupts.
Returns the address of the specified table.

Sets the cursor to the image passed in the cursor record.
Returns a pointer to the current cursor record.
Decrements the cursor level. A cursor level of zero indicates
the cursor is visible; a cursor level less than zero indicates
the cursor is not visible.
Increments the cursor level unless it is already zero. A
cursor level of zero indicates the cursor is visible; a cursor
level less than zero indicates the cursor is not visible.
Hides the cursor until the mouse moves. This tool is used to
get the cursor out of the way of typing.
Reinitializes the cursor.

Information not yet available

Pre-Aloha Draft 7-17 6/20/86

Conland Tools Cortland Workshop Assembler Reference

Sound Manager
The Sound Manager gives developers the ability to access the Sound hardware without
having to know specific hardware I/O addresses.

Sound Manager calls (other than the standard housekeeping routines) can be broken down
into two groups. The first group of calls is made through the normal tool call mechanism,
with parameters being passed to and from the called routines on the stack. The second
~oup of routines are low-level routines which, unlike. most tool calls, pass their parameters
m registers. The Sound Manager routines are summarized below:

Sound Manager Housekeeping Routines

_SoundBootInit

_SoundStartup
_SoundShutdown
_SoundVersion
_SoundReset

_SoundToolStatus

Sound Manager Tools

_WriteRamBlock

_ReadRamBlock

_CJetTableJ\ddress
_CJetSoundVolume
_SetSoundVolume

_FFS tartSound

_FFStopSound
_FFSoundS tatus
_FFCJeneratorS tatus

_SetSoundMIRQV
_SetUserSoundIRQV

_FFSoundDoneStatus

Initializes the Sound Manager. Must not be made by an
application.
Initializes a work area to be used by the sound routines.
Shuts down the Sound Manager.
Returns the version of the Sound Manager.
Stops sound from all generators. Must not be made by an
application.
Returns status indicating whether the Sound Manager is
active.

Writes a specified number of bytes from system RJ\M into
DOCRJ\M.
Reads any number of locations from the 64K DOC ram area
into a user-specified buffer.
Returns the jump table address for the low-level routines
Reads the volume setting for a generator.
Changes the volume setting for the volume registers in the
DOC, or changes the system volume.
Enables the DOC to start generating sound on a particular
generator.
Stops sound from specified generators.
Returns the status of all fifteen sound generators.
Reads the first two bytes of the CJenerator Control Block
corresponding to a specified generator.
Sets up the entry point into the sound interrupt handler.
Sets up the entry point for a user synthesizer interrupt
handler.
Returns the current Free Form synthesizer sound-playing
status.

Sound Manager Low-Level Routines

_Read Register
_Write Register
_ReadRJ\M
_WriteRJ\M

_Read Next

Reads any register within the DOC.
Writes a onebyte parameter to any register in the DOC chip.
Reads a specified Ensoniq RJ\M location.
Writes a one-byte value to any specified Ensoniq RAM
location.
Reads the next location pointed to by the Sound CJLU
address register.

Pre-Aloha Draft 7 -18 6/20/86

Cortland Workshop Assembler Reference Cortland Libraries

_Write Next

Text Tools

Writes one byte of data to the next DOC register or RAM
location, depending on the setting of the Sound GLU control
register.

The Text Tool Set provides an interface between Cortland character device drivers, which
must be executed in emulation mode, and new applications running in native mode. It also
provides a means of redirection of I/O through RAM-based drivers. The Text Tools make
It possible to deal with the text screen without switching modes and moving to bank zero.
DIspatches to RAM-based drivers will occur in full native mode.

Text Tools Housekeeping Routines

The Text Tools housekeeping routines summarized below provide the standard
housekeeping routines of the tool sets. The routines allow the Text Tools to be initialized
and dealt with as a Cortland Tool Set.

_MTBootInit

_MTVersion
_MTReset

_MTStatus

_TextBootInit

_TextReset
_SetInGlobals
_SetOutGlobals
_SetErrGlobals
_GetinGlobals

_GetOutGlobals

_GetErrGlobals

_SetlnputDevice
_SetOutputDevice
_SetErrorDevice

_GetlnputDevice
_GetErrorDevice

_InitTextDev
_CtrlTextDev

_StatusTDev
_WriteChar

Initializes Heartbeat interrupt chain link pointer, clears Tick
Counter and Heartbeat task link pointer, and sets Mouse flag
to"NOT FOUND".
Returns the version of the Miscellaneous Tools.
Clears the Heartbeat queue link pointer and sets Mouse flag
to "NOT FOUND".
Returns status indicating whether the Miscellaneous Tools
are active.
Called at boot time. This routine sets up the default device
parameters as follows:
Resets the device parameters to the defaults
Sets the global parameters for the input device.
Sets the global parameters for the output device.
Sets the global parameters for the error output device.
Returns with the current values for the input device global
parameters.
Returns with the current values for the Output device global
parameters.
Returns with the current values for the Error Output device
global parameters.
Sets the input device to the specified devicetype.
Sets the output device to the specified devicetype.
Sets the error output device to the specified devicetype. The
routine returns an
Returns the type of driver installed as the input device.
Returns the type of driver installed as the error output
device.
Initializes the specified text device.
Passes the control code to the specified text device. The
control codes passed
Executes a status call to the specified text device.
Combines specified character with the output global AND
mask and global OR mask, and writes character to the output
text device.

Pre-Aloha Draft 7 -19 6/20/86

Conland Tools

_ErrWriteChar

_ErrWriteLine

_ErrWriteString

_WriteBlock

_ErrWriteBlock

_WriteCString

_ReadLine

Tool Locator

Conland Workshop Assembler Reference

Combines specified character with the output global AND
mask and global OR mask, and writes character to the error
output text device.
Combines a pointed-to character string (first byte of string
specifies length) with the output global masks, and then
writes the string to the output text device.
Combines a pointed-to character string (first byte of string
specifies length) with the output global masks, and then
writes the string to the error output text device.
Combines a pointed-to character string (first byte of string
specifies length) with the output global masks, and then
writes the string to the output text device.
Combines a pointed-to character string (first byte of string
specifies length) with the output global masks, and then
writes the string to the error output text device.
Combines a character string at textptr +offset (with a length
specified by count) with the output global masks, and then
writes the string to the output text device.
Combines a character string at textptr +offset (with a length
specified by count) with the output global masks, and then
writes the string to the error output text device.
Combines a pointed-to character string (string terminates
with $00) with the output global masks, and then writes the
string to the output text device.
Reads a character string from the input text device, combines
it with the input global masks, and writes the string to the
memory location starting at bufferpointer.

The Tool Locator is the tool that allows tools and applications to communicate. As such, it
represents a special case among the tool sets; you need to know about it if you are
considering writing your own tool set. You don't need to know about the Tool Locator if
you are simply using the other Cortland tools that Apple provides. The Tool Locator
routines are summarized below:

Tool Locator Houskeeping Routines

_TLVersion
_TLReset

Tool Locator Routines

_GetTsPtr

_SetTSPtr

_GetFuncPtr

Initializes the Tool Locator and all other ROM-based Tool
Sets.
Returns the version of the Tool Locator.
Calls the reset routine of every tool set in the system.

Returns pointer to the Function Pointer Table of the specified
tool set.
Installs the pointer to a Function Pointer Table in the
appropriate Tool Pointer Table.
Returns pointer to the specified function in the specified Tool
Set.

Pre-Aloha Draft 7 -20 6/20/86

Cortland Workshop Assembler Reference· Conland Libraries

_GetWAP
_SetWAP

_AppInit
_AppEnd

ProDOS Macros

Gets the pointer to the work area for the specified module.
Sets the pointer to the work area for the specified module.

Initializes the Tool Locator and all other ROM-based Tool
Sets.
Does nothing.
Does nothing

Information not :yet available

Cortland Shell Macros
***Will these exist?*"'*

Utility Macros
The Utility macros are provided in addition to the Cortland Toolbox as useful aids in
writing Assembly code for the Cortland computer. The Utility macros include:

pullword
pu1110ng
pu111
pull3
pullxy
pullay
pullx
pushword
pushlong
pushl
push3
pushxy
pushay
lday
stay
add
add4
sub
sub4
str
dp
movel
moveword
move3
movelong
zero
asl4
Isr4

Pre-Aloha Draft

Pull 2 bytes from stack
Pull long (4 bytes) from stack
Pull 1 byte from the stack
Pull 3 bytes from the stack
Pull long (4 bytes) from the stack using X and Y
Pull long (4 bytes) from the stack into A and Y
Pull from stack using X
Push 2 bytes onto the stack
Push long (4 bytes) onto the stack
Push 1 byte onto the stack
Push 3 bytes onto the stack
Push long (4 bytes) onto the stack from X and Y
Push long (4 bytes) onto the stack from A and Y
Load A and Y (4 bytes)
Store A and Y (4 bytes)
Add 2 byte integers
Add 4 byte integers
Subtract 2 byte integers
Subtract 4 byte integers
Generate a Pascal-type string
Defme a pointer
Move 1 byte
Move 2 bytes
Move 3 bytes
Move 4 bytes
Zero block
Left shift 4 bytes
Right shift 4 bytes

7-21 6/20/86

Cortland Tools

native
emulation
long
short
Check_Error
writech
writestr
writeln

Cortland Workshop Assembler Reference

Enable native mode
Enable emulation mode
Set memory and registers for 16 bits
Set memory and registers for 8 bits
Error check
Write a character
Write a string
Write aline

System Macro Files
The following information is valid as for CPW Vl.OA3, April 29, 1986.

The Cortland macros reside in the following directories:

/CPW/ROM.MACROS
CPW/UTILITY.MACROS
/CPW/SANE.MACROS
/CPW/CPW.MACROS

Tool calls and ProDOS calls
Utility macros
SANE tool calls
Byte-works macros

The macros that make tool calls and ProDOS calls are located in the directory
/CPW/ROM.MACROS. This directory contains the following files:

Tool locator
Memory Manager
Miscellaneous Tools
QuickDraw II macros
Desk Manager
Event Manager
Scheduler
FDB
Sound Manager
Integer Math
Text Tools
ProDOS macros

TL.MACROS
MM.MACROS
MT.MACROS
QD.MACROS
DESK.MACROS
EM.MACROS
"'''''''not available yet"'''''''
"'''''''not available yet"""'"
"'''''''not available yet"'''''''
INT.MACROS
TEXT.MACROS
PRODOS.MACROS

Additionally, this directory contains the files HANDY.STUFF and the exec file
MAKE.ALL. The file HANDY.STUFF contains a number of routines handy in making
tool calls. The exec me MAKE.ALL joins all the files in this directory into a single file
called MAKE.ALL. MAKE.ALL is the file you use as the source for the MACGEN utility.

The directory /CPW/SANE.MACROS contains the current release note and information on
where you can obtain the SANE.MACROS.

The directory /CPW/CPW.MACROS contains the Byte Works macros. "'**I'm assuming
these will eventually go away. Right?"''''*

Pre-Aloha Draft 7 -22 6/20/86

Part III

Appendixes

This section includes five appendixes, followed by a
glossary, bibliography, and index.

Appendix A is a list of the 65816 instruction set, addressing
modes, opcodes and execution times.

Appendix B discusses how the Assembler uses memory and
includes the Cortland Memory Map.

Appendix C is a comparison of Cortland Assembler and the
ORCNM Assembler.

Appendix D is a chart of the ASCII character set

Appendix E is a summary of error messages generated by
the Cortland Assembler.

This page is left intentionally blank

Cortland Workshop Assembler Reference . AppendixA

Appendix A

Instruction Set Summary
Opcode
Hex Mnemonic Adressing Mode # Of Bytes # Of Cycles

00 BRK Stack/Interrupt 2 ** 79

01 ORA DP Indexed Indirect.X 2 61,2

02 COP Stack/Interrupt 2 ** 79

03 ORA Stack Relative (also SR) 2 ** 41

04 TSB Direct Page 2 52,S

05 ORA Direct Page (also DP) 2 31,2

06 ~ I'\SL Direct Page (DP) 2 52,s

07 ORA DP Indirect Long 2 61,2

08 PHP Stack (Push) 1 3

09 ORA Immediate 2* 21

OA ASL Accumulator 1 2

OB PHD Stack (Push) 1 4

OC TSB Absolute 3 65

OD ORA Absolute 3 41

OE ASL Absolute 3 65

OF ORA Absolute Long 4 51

10 BPL Program Counter Relative 2 27,8

11 ORA DP Indirect Indexed, Y 2 51,2,3

12 ORA DP Indirect 2 51,2

13 ORA SR Indirect Indexed, Y 2 71

14 TRB Direct Page 2 52,S

15 ORA DP Indexed, X 2 41,2

16 ASL DP Indexed, X 2 62,S

17 ORA DP Indirect Long, Indexed 2 61,2

Pre-Aloha Draft A -1 6/20/86

Appendix A Cortland Workshop Assembler Reference

18 CLC Implied 1 2

19 ORA Absolute Indexed, Y 3 41,3

lA INC Accumulator 1 2

IB TCS Implied 1 2

lC TRB Absolute 3 6 5

ID ORA Absolute Indexed, X 3 41,3

IE ASL Absolute Indexed, X 3 75,6

IF ORA Abso!ute Long Indexed, X 4 51

20 JSR Absolute 3 6

21 AND DP Indexed Indirect, X 2 61,2

22 JSR Absolute Long 4 8

23 AND Stack Relative (SR) 2 41

24 BIT Direct Page (DP) 2 31,2

25 AND Direct Page (DP) 2 31,2

26" ROL Direct Page (also DP) 2 52,5

27 AND DP Indirect Long 2 61,2

28 PLP Stack (Pull) 1 4

29 AND Immediate 2* 21

2A ROL Accumulator 1 2

2B PLD Stack (Pull) 1 5

2C BIT Absolute 3 41

2D AND Absolute 3 41

2E ROL Absolute 3 65

2F AND Absolute Long 4 51

30 BMI Program Counter Relative 2 27,8

31 AND DP Indirect Indexed, Y 2 51,2,3

32 AND DP Indirect 2 51,2

33 AND SR Indirect Indexed, Y 2 7 1

34 BIT DP Indexed, X 2 41,2

35 AND DP Indexed, X 2 41,2

36 ROL DP Indexed, X 2 62,5

37 AND DP Indirect Long Indexed, Y 2 61,2

Pre-Aloha Draft A-2 6/20/86

Cortland Workshop Assembler Reference AppendixA'

38 SEC Implied 1 2

39 AND Absolute Indexed, Y 3 41,3

3A DEC Accumulator 1 2

3B TSC Implied 1 2

3D AND Absolute Indexed, X 3 41,3

3E ROL Absolute Indexed, X 3 75,6

3F AND Absolute Long Indexed, X 4 51

40 RTI Stack/RTI 1 . 69

41 EOR DP Indexed Indirect, X 2 61,2

*42 WDM reserved 2 21,6

43 EOR Stack Relative (also SR) 2 41

*44 MVP Block Move 3 13

45 EOR Direct Page (also DP) 2 31,2

46 LSR Direct Page (also DP) 2 52,S

47 EOR DP Indirect Long 2 61,2

48 PHA Stack (push) 1 31

49 EOR Irrunediate 2* 21

4A LSR Accumulator 1 2

4B PHK Stack (push) 1 3

4C JMP Absolute 3 3

4D EOR Absolute 3 41

4E LSR Absolute 3 65

4F EOR Absolute Long 4 51

50 BVC Program Counter Relative 2 27,8

51 EOR DP Indirect Indexed, Y 2 51,2,3

52 EOR DP Indirect 2 51,2

53 EOR SR Indirect Indexed, Y 2 71

*54 MVN Block Move 3 13

55 EOR DP Indexed, X 2 41,2

56 LSR DP Indexed, X 2 62,S

57 EOR DP Indirect Long Indexed Y 2 61,2

58 CLI Implied 1 2

Pre-Aloha Draft A-3 6/20/86

Appendix A Cortland Workshop Assembler Reference

59 EOR Absolute Indexed, Y 3 41,3

5A PHY Stack (Push) 1 310

5B TCD Implied 1 2

5C JMP Absolute Long 4 4

5D EOR Absolute Indexed, X 3 41,3

5E LSR Absolute Indexed, X 3 75,6

5F EOR Absolute Long Indexed, X 4 51

60 RTS Stack (RTS) 1 6

61 ADC DP Indexed Indirect, X 2 61,2,4

62 PER Stack (pC Relative Long) 3 6

63 ADC Stack Relative (SR) 2 41,4

64 S'IZ Direct Page 2 31,2

65 ADC Direct Page (DP) 2 31,2,4

66 ROR Direct Page (also DP) 2 52,5

67 ADC DP Indirect Long 2 61,2,4

68 PLA Stack (Pull) 1 41

69 ADC Immediate 2~ 21,4

6A ROR Accumulator 1 2

6B RTL Stack (RTL) 1 6

6C JMP Absolute Indirect 3 511 ,12

6D ADC Absolute 3 41,4

6E ROR Absolute 3 65

6F ADC Absolute Long 4 51,4

70 BVS Program Counter Relative 2 27,8

71 ADC DP Indirect Indexed, Y 2 51,2,3,4

72 ADC DP Indirect 2 51,2,4

73 ADC SR Indirect Indexed, Y 2 71,4

74 S'IZ Direct Page Indexed, X 2 41,2

75 ADC DP Indexed, X 2 41,2,4

76 ROR DP Indexed, X 2 62,5

77 ADC DP Indirect Long Indexed, Y 2 61,2,4

78 SEI Implied 1 2

Pre-Aloha Draft A-4 6/20/86

Cortland Workshop Assembler Reference Appendix A

79 ADC Absolute Indexed, Y 3 41,3,4

7A PLY Stack/Pull 1 410

7B IDC Implied 1 2

7C JMP Absolute Indexed Indirect 3 6

7D ADC Absolute Indexed, X 3 41,3,4

7E ROR Absolute Indexed, X 3 75,6

7F ADC Absolute Long Indexed, X 4 51,4

80 BRA Program Counter Relative 2 36

81 STA DP Indexed Indirect, X 2 61,2

82 BRL Program Counter Relative Long 3 4

83 STA Stack Relative (also SR) 2 41

84 STY Direct Page 2 32,10

85 STA Direct Page (also DP) 2 31,2

86 STX Direct Page 2 32,10

87 STA DP Indirect Long 2 61,2

88 DEY Implied 1 2

89 BIT Immediate 2* 21

8A TXA Implied 1 2

8B PHB Stack (Push) 1 3

8C STY Absolute 3 410

8D STA Absolute 3 41

8E STX Absolute 3 410

8F STA Absolute Long 4 51

90 BCC Program Counter Relative 2 27,8

91 STA DP Indirect Indexed, Y 2 61,2

92 STA DP Indirect 2 51,2

93 STA SR Indirect Indexed, Y 2 71

94 STY Direct Page Indexed, X 2 42,10

95 STA DP Indexed, X 2 41,2

96 STX Direct Page Indexed, Y 2 42,10

97 STA DP Indirect Long Indexed, Y 2 61,2

98 TYA Implied 1 2

Pre-Aloha Draft A-5 6/20/86

Appendix A Cortland Workshop Assembler Reference

99 STA Absolute Indexed, Y 3 51

9A TXS Implied I 2

9B TXY Implied 1 2

9C STZ Absolute 3 41

9D STA Absolute Indexed, X 3 51

9E STZ Absolute Indexed, X 3 51

9F STA Absolute Long Indexed, X 4 51

AO LOY Immediate 2+ 210

Al LOA DP Indexed Indirect, X 2 61,2

A2 LDX Immediate 2+ 210

A3 LOA Stack Relative (alsoSR) 2 41

A4 LOY Direct Page (also DP) 2 32,10

A5 LOA Direct Page (also DP) 2 31,2

A6 LDX Direct Page (also DP) 2 32,10

A7 LOA DP Indirect Long 2 61,2

AS TAY Implied I 2

A9 LOA Immediate 2* 21

AA TAX Implied I 2

AB PLB Stack (Pull) I 4

AC LOY Absolute 3 410

AD LOA Absolute 3 41

AE LDX Absolute 3 410

AF LOA Absolute Long 4 51

BO BCS Program Counter Relative 2 27,8

BI LOA DP Indirect Indexed, Y 2 51,2,3

B2 LOA DP Indirect 2 51,2

B3 DLA SR Indirect Indexed, Y 2 71

B4 LOY DP Indexed, X 2 42,10

BS LOA DP Indexed, X 2 41,2

B6 LDX DP Indexed, Y 2 42,10

B7 LOA DP Indirect Long Indexed, Y 2 61,2

B8 CLV Implied 1 2

Pre-Aloha Draft A-6 6/20/86

Cortland Workshop Assembler Reference Appendix A

B9 LD Absolute Indexed, Y 3 41,3

BA TSX Implied 1 2

BB TYX Implied 1 2

BC LDY Absolute Indexed, X 3 41,10

BD LDA Absolute Indexed, X 3 41,3

BE LDX Absolute Indexed, Y 3 43,10

BF LDA Absolute Long Indexed, X 4 51

CO CPY Immediate 2+ 210

Cl CMP DP Indexed Indirect, X 2 61,2

C2 REP Immediate 2 3

C3 CMP Stack Relative (also SR) 2 41

C4 CPY Direct Page (also DP) 2 32,10

C5 CMP Direct Page (also DP) 2 31,2

C6 DEC Direct Page (also DP) 2 52,5

C7 CMP DP Indirect Long 2 61,2

C8 INY Implied 1 2

C9 CMP Immediate 2* 21

CA DEX Implied 1 2

CB WAr Implied 1 315

CC CPY Absolute 3 410

CD CMP Absolute 3 41

CE DEC Absolute 3 65

CF CMP Absolute Long 4 51

DO BNE Program Counter Relative 2 27,8

Dl CMP DP Indirect Indexed, Y 2 51,2,3

D2 CMP DP Indirect 2 51,2

D3 CMP SR Indirect Indexed, Y 2 71

D4 PEl Stack (Direct Page Indirect) 2 62

D5 CMP DP Indexed, X 2 41,2

D6 DEC DP Indexed, X 2 62,5

D7 CMP DP Indirect Long Indexed, Y 2 61,2

D8 STP Implied 1 2

Pre-Aloha Draft A-7 6/20/86

..

AppendixA. Cortland Workshop Assembler Reference

D9 CMF Absolute Indexed, Y 3 41,3

DA PHX Stack (push) I 31,10

DB STP Implied I 314

DC JMP Absolute Indirect Long 3 6

DD CMP Absolute Indexed, X 3 41,3

DE DEC Absolute Indexed, X 3 75,6

DF CMP Absolute Long Indexed, X 4 51

EO CPX Immediate 2+ 210 •

EI SBC DP Indexed Indirect, X 2 61,2,4

E2 SEP Immediate 2 3

E3 SBC Stack Relative (also SR) 2 41,4

E4 CPX Direct Page (also DP) 2 32,10

E5 SBC Direct Page (also DP) 2 31,2,4

E6 INC Direct Page (also DP) 2 52,5

E7 SBC DP Indirect Long 2 61,2,4

E8 INX Implied I 2

E9 SBC Immediate 2* 21,4

EA NOP Implied I 2

EB XBA Implied I 3

EC CPX Absolute 3 410

ED SBC Absolute 3 41,4

EE INC Absolute 3 65

EF SBC Absolute Long 4 51,4

FO BEQ Program Counter Relative 2 27,8

FI SBC DP Indirect Indexed, Y 2 51,2,3,4

F2 SBC DP Indirect 2 51,2,4

F3 SBC SR Indirect Indexed, Y 2 71,4

F4 PEA Stack (Absolute) 3 5

F5 SBC DP Indexed, X 2 41,2,4

F6 INC DP Indexed, X 2 62,5

F7 SBC DP Indirect Long Indexed, Y 2 61,2,4

F8 SED Implied 1 2

Pre-Aloha Draft A-8 6/20/86

Cortland Workshop Assembler Reference Appendix A

F9 SBC Absolute Indexed, Y 3 41,3,4

FA PLX Stack/Pull 1 410

FB XCE Implied 1 2

FC JSR Absolute Indexed Indirect 3 8

FD SBC Absolute Indexed, X 3 41,3,4

FE INC Absolute Indexed, X 3 75,6

FF SBC Absolute Long Indexed, X 4 51,4

* Add 1 byte if m=O (16-bit memory/accumulator)

** Opcode is 1 byte, but program counter value pushed onto stack is incremented by two,
allowing for optional signature byte

+ Add 1 byte if x=O (16-bit index registers)

1 Add 1 cycle if m=O (16-bit memory/accumulator)

2 Add 1 cycle if low byte of Direct Page register is other than zero (DL<>O)

3 Add 1 cycle if adding index crosses a page boundary

4 Add 1 cycle if 65C02 and d=1 (decimal mode, 65C02) ~

5 . Add 2 cycles if m=O (l6-bit memory/accumulator)

6 Subtract 1 cycle if 65C02 and no page boundary crossed

7 Add 1 cycle if branch taken

8 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or
65816/65802's emulation mode (e=l)

9 Add 1 cycle for 65802/65816 native mode (e=O)

10 Add 1 cycle if x=O (16-bit index registers)

11 Add 1 cycle if 65C02

12 6502: If low byte of addr is $FF (i.e., addr is $xxFF): yields incorrect result

13 7 cycles per byte moved

14 Uses 3 cycles to shut the processor down; additional cycles are required by reset to
restart it

15 Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to
restart it .

16 Byte and cycle counts subject to change in future processors which expand WDM into
2-byte opcode portions of instructions of varying lengths

Pre-Aloha Draft A-9 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

Appendix B

Memory Management

Using Memory
The Assembler appropriates 4K of memory for each of the following:

o global symbol table

o local symbol table
o AINPUT string buffer

• symbolic parameter table

AppendixB

Macro buffers and source fIle buffers are allocated from remaining memory; each buffer is
as large as the macro or source fIle.

The global and local sYmbol tables and symbolic parameter table are extensible in 4K
increments, and are extended as needed for as long as memory is available.

Note that there must be enough physical memory to load a given source or macro fIle.
With this the case, processing is considerably faster than with a system using virtual
memory techniques to allow fIles as large as a disk will hold.

The Cortland Memory Map
To be supplied

Pre-Aloha Draft B-1 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference Appendix C

Appendix C

Comparison of Cortland and
ORCA/M Assemblers

This appendix presents a comparison of the Cortland Assembler and the Assembler on
which it was based, ORCA/M Version 4.0. For a comparison of the Shell, Editor, Linker
and Debugger, refer to the Cortland Programmers Workshop. For a comparison of
ProDOS and ProDOS 16, refer to the Cortland Operating System Reference.

Labels

The underline character

The ORCA/M Assembler ignores the underline character <..J in labels. For the Cortland
Assembler, the underline character is significant. Thus, THISLABEL and TIllS_LABEL
are not synonymous. In addition, the underline character can be used anywhere that an
alphabetic character can be used, including the first character in a label.

The tilde character

The tilde (-) character is allowed in labels, and can be used anywhere that an alphabetic
character can be used. It is suggested that you reserve the underscore character (-) for use
in system labels, so that you can develop libraries whose names will not interfere with
names chosen by users of high-level languages. Use of the tilde replaces the ORCA/M
convention of starting all system-level labels with SYS, and requiring that the user not start
a label with those characters. -

Label Length

Labels are now significant up to 255 characters. Previously, labels could be of any length,
but only the first ten characters were significant.

Case Sensitivity

To specify case sensitivity, use the directive

CASEONIOFF

The default is CASE OFF.

Pre-Aloha Draft C-l 6120186

AppendixC

The directive

OBJCASEON

Cortland Workshop Assembler Reference

causes a label sent to the object module to be case-sensitive, whether or not it is treated as
case-sensitive inside the assembler. Specifying

OBJCASEOFF

makes exported labels case-insensitive, whether or not they are treated as case-sensitive
inside the assembler. The default is OBJCASE OFF. Setting case also sets OBJCASE, so
if the exported behaviour is to be different from the local behaviour, specify the OBJCASE
directive last

Directives

New Directives

Six new directives have been added:

INSTIME
ABSADDR
PRIVA1E
PRIVDATA
CASE
OBJCASE

Refer to Chapter 5, "Directives", for a description of these directives.

The Directives EQU and GEQU

For the Cortland Workshop Ass~mbler, operands of the EQU and GEQU directives do not
need to be constants or constant expressions.

The Directive DC

A new value type, E, has been added to the DC directive. The type E stands for extended
floating point, and results in a SANE format 80-bit number.

MACROS

ORCA/M macros have been completely replaced by Cortland macros. The graphics,
integer math, floating point and miscellaneous macros have been replaced by Cortland
Tools macros, including the SANE macros, and utility macros. ProDOS macros have been
updated to support the 65816.

Pre-Aloha Draft C-2 6/20/86

Cortland Workshop Assembler Reference

The Shell

AppendixC

This section describes the changes that have been made to the Shell commands associated
with using the Assembler. These commands are discusssed in Chapter 2, "Using the
Assembler", and in Chapter 4, "The Shell", of the Cortland Programmer's Workshop.

Command Line Structure

The command line input for the Shell commands ASSEMBLE, ASML, AMSLG, LINK
and ALINK has been restructured. The input filename, KEEP parameter, and NAMES
parameter are unchanged. The parameters SYMBOL and LIST that were followed by the
options ON or OFF are now replaced by the switches +SI-S and +L1-L. +L lists the
symbol table, if any, and +S lists the source fIle. Specifying the minus option suppresses
the listing. If no switch option is specified, the Assembler selects the defaults +S and +L
unless you specify the OFF options with the directives SYMBOL and LIST in your source
code.

DISASM

The disassembly command, DISASM, has been del~ted.

DUMPOBJ

A new command, DUMPOBJ, has been added to allow you to view the contents of an
object module format fIle. For a complete description of DUMPOBJ, refer to Chapter 4,
"The Shell", of the Cortland Programmer's Workshop.

LINK

Link now allows you to link several fIles with a single command. To do this, enclose the
multiple input fIlenames in parentheses. Like the initial filename, they should appear as the
first parameter, excepting switches. Filenames can be separated by spaces, tabs or
commas. The .ROOT file must exist for the first file. It is optional for all others.

MACGEN

MACGEN now accepts all parameters on the command line, although it can prompt for
them if they are not provided. The first parameter is the name of the assembly language file
to scan. Next comes the name of the macro file to create. Finally, one or more macro files
to search can be specified. The old switches and wildcard options still apply.

In addition, MACGEN now works differently. Instead of opening the output file right
away, MACGEN opens a file called SYSMAC on the work preflx, and writes the macros
there. After all macros have been resolved, this work fIle is copied to the correct
destination and the work file is deleted. This allows an old fIle to be scanned for macros
first. For example, if a program called MYPROG already has a macro file called

Pre-Aloha Draft C-3 6120186

AppendixC Cortland Workshop Assembler Reference

MYPROG.MACROS, but one new macro is needed from the me LIB.MACROS, you can
now do the macro file generation like this:

MACGEN MYPROG MYPROG.MACROS MYPROG.MACROS LIB.MACROS

MAKELIB

MAKELIB is a new utility which has been added to make searching libraries faster.

***This section is to be supplied; the implementation and syntax of the MAKELIB
command is changing as of the Byte Works review***

Object Module Format

The Cortland Workshop Assembler generates files that conform to the object module
format.

The Assembler Listing

Machine code generated by a source line in ORCNM assembly language appeared as an
unbroken string of characters. In Cortland Workshop assembly language, a space is
inserted between each byte of code. .

Memory Management

The Cortland Workshop Assembler allocates 4K each for the global symbol table, local
symbol table, AINPUT string buffer, and symbolic parameter table.. Macro buffers and
source file buffers are allocated from remaining memory, with each buffer being as large as
the file. Tables are extensible in blocks of 4K and are extended, as needed, for as long as
memory is available.

Note that there must be sufficient physical memory to load a given source or macro file.
Compare this to the ORCNM Assembler, which uses virtual memory techniques to allow
files as large as a disk would hold. The change speeds up processing considerable.

Pre-Alvha Draft C-4 6/20/86

Cortland Workshop Assembler Reference

Appendix D

The ASCII Character Set

AppendixD

CharDec Oct HexChar Dec Oct HexChar Dec Oct HexChar Dec Oct Hex
nul 0 0 0 sp 32 40 20 @ 64 100 40 ,

96 140 60
soh 1 1 1 ! 33 41 21 A 65 101 41 a 97 141 61
stx 2 2 2 " 34 42 22 B 66 102 42 b 98 142 62
etx 3 3 3 # 35 43 23 C 67 103 43 e 99 143 63
eot 4 4 4 $ 36 44 24 D 68 104 44 d 100 144 64
enq 5 5 5 % 37 45 25 E 69 105 45 e 101 145 65
aek 6 6 6 & 38 46 26 F 70 106 46 f 102 146 66
bel 7 7 7 39 47 27 G 71 107 47 g 103 147 67
bs 8 10 ·8 (40 50 28 H 72 110 48 h 104 150 68
ht 9 11 9) 41 51 29 I 73 111 49 105 151 69
If 10 12 A ... 42 52 2A J 74 112 4A j 106 152 6A
vt ·11 13 B + 43 53 2B K 75 113 4B k 107 153 6B
ff 12 14 C 44 54 2C L 76 114 4C I 108 154 6C
cr 13 15 D 45 55 2D M 77 115 4D m 109 155 6D
so 14 16 E 46 56 2E N 78 116 4E n 110 156 6E
si 15 17 F / 47 57 2F 0 79 117 4F 0 111 157 6F

dIe 16 20 10 0 48 60 30 P 80 120 50 p 112 160 70
del 17 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
de2 18 22 12 2 50 62 32 R 82 122 52 r 114 162 72
dc3 19 23 13 3 51 63 33 S 83 123 53 s 115 163 73
dc4 20 24 14 4 52 64 34 T 84 124 54 t 116 164 74
nak 21 25 15 5 53 65 35 U 85 125 55 u 117 165 75
syn 22 26 16 6 54 66 36 V 86 126 56 v 118 166 76
etb 23 27 17 7 55 67 37 W 87 127 57 w 119 167 77
can 24 30 18 8 56 70 38 X 88 130 58 x 120 170 78
em 25 31 19 9 57 71 39 y 89 131 59 y 121 171 79
sub 26 32 1A 58 72 3A Z 90 132 5A z 122 172 7A
esc 27 33 1B 59 73 3B [91 133 5B { 123 173 7B

fs 28 34 1C < 60 74 3C \ 92 134 5C I 124 174 7C
gs 29 35 10 61' 75 3D] 93 135 5D } 125 175 7D
rs 30 36 IE > 62 76 3E II 94 136 5E 126 176 7E
us 31 37 IF ? 63 77 3F 95 137 5F del 127 177 7F

Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex

Pre-Aloha Draft D -1 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

Appendix E

Error Messages

AppendixE

When the Assembler assembles a program, it finds and identifies errors in the source
program. These errors fall into two broad categories: those that are recoverable and those
that are terminal.

Recoverable Assembler Errors

When the assembler finds an error that it can recover from, it prints the error on the line
after the source line that contained the error. Only one error per line is flagged, even if
there is more than one error in the line. The error severity level follows the error message.

The error message is a brief description of the error. In the sections that follow, each of the
error messages is listed, ill alphabetical order. With each error message description, every
possible cause for an error is explained, and ways to correct the problem are outlined.

An error message's severity level tells you how severe an error is. The Assembler can
report four possible error levels: these are described in the table below. After each
assembly containing errors, the Assembler prints out the highest error level found.

Severity Meaning

2 Warning - things may be ok

4 Error - an error was made, but the Assembler thinks it
knows the intent and has corrected the mistake. Check the
result carefully!

8 Error - no correction is possible, but the Assembler knew
how much space to leave. You can use the Debugger can be
to fix the problem without reassembly.

16 Error - it was not even possible to tell how much
space to leave. You will need to reassemble to fix
the problem.

ACTR Count Exceeded [16]

More than the allowed number of AIF or AGO directives were encountered during a macro
expansion. Unless changed by the ACTR directive, only 255 AIF or AGO branches are
allowed in a single macro expansion. This is a safeguard to prevent infinite loops during
macro expansions. If more than 255 branches are needed, use the ACTR directive inside
the loop to keep the count sufficiently high.

Pre-Alvha Draft E -1 6/20/86

AppendixE

Address Length Not Valid [2]

Cortland Workshop Assembler Reference

An attempt was made to force the Assembler to use an operand length that is not valid for
the given instruction. For example, indirect indexed adressing requires a one-byte
operand, so forcing an absolute address by coding

LDA (I 2), Y,

would result in this error.

Addressing Errors [16]

The program counter when pass 1 defined a label was different from the progam counter
when pass 2 encountered the label. There are three likely reasons for this to happen. The
first is if, for some reason, the result of a conditional assembly test was different on the
two passes; this is actually caused by one of the remaining errors. The second is if a label
is defmed using an EQU to be a long or direct page address, then the label is used before
the EQU directive is encountered. The last reason is if a label has been defined as direct
page or long using a GEQU directive, then redefmed as a local label. On the first pass in
both these cases, the Assembler assumes a length for the instruction which is then
overridden before pass 2 starts.

Duplicate Label [4]

1. Two or more local labels were defined using the same name. The first such
label gets flagged as a duplicate label; subsequent redefmitions are flagged as
addressing errors. Any use of the label will result in the first definition being
used.

2. Two or more symbolic parameters were defined using the same name. Subsequent
definitions are ignored.

Duplicate Ref In MACRO Operand [2]

A parameter in a macro call was assigned a value two or more times. This usually happens
when both a keyword and positional parameter set the same symbolic parameter. For the
macro

MACRO
EXAMPLE
MEND

The call

EXAMPLE

&P,&P2

A,Pl=B

would produce this error, since PI is set to A as a positional parameter, then to B as
a keyword parameter.

Pre-Aloha Draft E -2 6/20/86

Cortland Workshop Assembler Reference

Error In Expression [8]

AppendixE

Either the expression contains an error, such as mismatched parentheses, or the expression
had too many terms for the Assembler to handle. There is no fixed limit to the number of
terms or level of parenthesis in an expression, but generally the Assembler will handle as
many terms as will fit on a line, and about five or six levels of parenthesis. Check for any
kind of syntax error in the expression itself.

Invalid Operand [8]

An operand was used on an instruction that does not support the addressing mode.

Label Syntax [16]
.

1. A symbolic parameter was expected in the label field, but one was not found.
Symbolic parameters must begin with the & character, and are followed by an
alphabetic character and one or more alphanumeric characters. Directives
which require a symbolic parameter in the label field are:

SETA
SETB
SETC
AMID
ASEARCH
AINPUT

2. A directive that requires a label was used without one. The directives which
must have a label in the label field are:

START
DATA

3. The label field of a statement contained a string which does not conform to the standard
la~el syntax. The label must begin in column 1, and cannot contain imbedded blanks.
Each label starts with an alphabetic character (A to Z) or underscore C), and is
followed by zero or more characters which can be can be alphabetic (A through Z),
numeric (0 through 9), the tilde character (....), or the underscore character l)' Labels
are significant up to 255 characters in length. There must be at least one space between
it and the op code.

4. A macro model statement had something in the label field, but it was not a symbolic
parameter. If anything occupies the label field of the statement immediately following a
MACRO directive, it must be a symbolic parameter.

Length Exceeded [4]

1. An expression was used in an operand that requires a direct page result, and the
expression was not in the range 0 to 255. If extemallabels are used in the expression,

Pre-Aloha Draft E-3 6/20/86

AppendixE Cortland Workshop Assembler Reference

and the result will resolve to zero page when the linker resolves the references, force
zero page addressing by preceding the expression with a character, such as

LDA «LABEL) ,Y

If the expression is a constant expression, correct it so that it is the range 0 to
255.

2. A directive which requires a number in a specific range received a number outside that
range in the directive. See specific directive descriptions for allowed parameter ranges.

MACRO Operand Syntax Error [4]

The operand of the macro model statement contained something other than a sequence of
undefined symbolic parameters separated by commas. The macro model statement is the
line immediately following a MACRO directive. If it has an operand at all, the operand
must consist of a list of symbolic parameters separated by commas, with no imbedded
spaces.

Missing Operand [16]

The operation code was one that required an operand, but no operand was found. Make
sure that the comment column has not been set to too Iowa value; see the description of the
SETCOM directive. Remember that the Assembler requires the A as an operand for the
accumulator addressing mode.

Missing Operation [16]

There was no operation code on a line that was not a comment. Make sure that the
comment column has not been set to too small a value; see the SETCOM directive. Keep
in mind that the operation codes cannot start in column 1.

Misplaced Statement [16].
1. A statement was used outside a code segment which must appear inside a code

segment. Only the following directives can be used outside a code segment:

AIF AGO ORG GEQU
MERR SETCOM EJECT ERR
GEN MSB LIST STIv1BOL
PRINTER 65C02 65816 LONGA
LONGI IEEE TRACE EXPAND
ALIGN TITLE RENAME KEEP
COPY APPEND MCOPY MDROP
MLOAD

The way to remember this list is that any directive or instruction that generates code or
places information in the object module must appear inside a code segment.

Pre-Aloha Draft E-4 6/20/86

Cortland Workshop Assembler Reference AppendixE

2. A KEEP directive was used after the fIrst START or DATA directive, or two KEEP
directives were used for a single assembly. Only one KEEP directive is allowed, and
it must come before any code is generated.

3. The RENAME directive, which must appear outside a program segment, was used
inside a program segment.

4. An ORG directive with a constant operand was used inside a program segment, or an
ORG that was not a displacement off of the location counter was used outside a
program segment, or two ORGs were used before the same code segment. See the
description of the ORG directive for details on its use.

5. More than one ALIGN directive was used for the same program segment.

Nest Level Exceeded [8]

Macros were nested more than four levels deep. A macro may use another macro,
including itself, provided that the macro used resides in the same macro fIle as the macro
that is using it, and provided that the calls are not nested more than four levels deep.

No END [23]

A START or DATA directive was encountered before the previous code segment was
ended with an END directive. Each code segment must end with an END directive.

Numeric Error In Operand [8]

1. An overflow or underflow occurred during the conversion of a floating point or double
precision number from the string form in the source fIle to the IEEE representation for
the number. Floating point numbers are limited to about IE-38 to IE38, while double
precision numbers are limited to about IE-308 to IE308. If this error occurs, the
Assembler will insert the IEEE format representation for aon an underflow, and
infInity for an overflow.

2. A decimal number was found in the operand fIeld which was not in the range minus
2147483647 to plus 2147483647. Since all integers are represented as four-byte
signed numbers, decimal numbers must be in the above range.

.
3. A binary, octal or hexadecimal constant was found which requires more than 32

bits to represent. All numbers must be represented by no more than four bytes.

Operand Syntax [16]

This error covers a wide range of possible problems in the wayan operand is written.
Generally, a quick look at the operand fIeld will reveal the problem. If this does not help,
read the section of the reference manual that deals with operand formats for the specifIc
instruction or directive in question.

Pre-Alvha Draft E-5 6/20/86

AppendixE Cortland Workshop Assembler Reference

Operand Value Not Allowed [8]

1. An ALIGN directive was used with an operand that was not a power of two.

2. An ALIGN directive was used in a program segment that was either not aligned
itself, or was not aligned to a byte value greater than or equal to the ALIGN directive
used in the progam segment. For example,

ALIGN 4
T START

ALIGN 4
END

is acceptable, but

ALIGN 4
T START

ALIGN 8
END

will cause an error.

Rei Branch Out Of Range [8]

A relative branch has been made to a label that is too far away. For all instructions except
BRL, relative branches are limited to a one-byte signed displacement from the end of the
instruction, giving a range of minus 32765 to 32770 from the beginning of the instruction.

Sequence Symbol Not Found [4]

An AIF or AGO directive attempted to branch, but could not find the sequence symbol
named in the operand field. A sequence symbol serves as the destination for a conditional
assembly branch. It consists of a period in column one, followed by the sequence symbol
name in column 2. The sequence symbol name follows the same conventions as a label,
except that symbolic parameters may not be used.

Set Symbol Type Mismatch [4]

The set symbol type does not match the type of the symbolic parameter being set.
Symbolic parameters come in one of three types: A (arithmetic), B (boolean), and C
(character). All symbolic parameters defined in the parameter list of a macro call are
character type. SETA and ASEARCH directives must have an arithmetic symbolic
parameter; SETB directives must have a boolean symbolic parameter; and SETC, AMID
and AINPUT directives must have a character symbolic parameter in the label field.

Pre-Aloha Draft £-6 6/20/86

Cortland Workshop Assembler Reference AppendixE

Subscript Exceeded [8]

A symbolic parameter subscript was larger than the number of subscripts defmed for it.
For example,

&NUM(5)
LDA
SETA

&NUM(4)
1

would cause this error. A subscript of 0 will also cause this ernor.

Too Many MACRO Libs [2]

An MCOPY or MLOAD directive was encountered, and four macro libraries were already
in use. The best solution is to combine all the macros needed during an assembly into a
single file. Not only does this get rid of the problem, it makes assemblies much faster.
Another remedy is to use the MDROP directive to get rid of macro libraries that are no
longer needed. .

Too Many Positional Parameters [4]

The macro call statement used more parameters in the operand that the macro model
statement had defmitions for. Keep in mind that keyword parameters take up a position.
For example, the following macro calls must all be to a macro defmition with.at least three
parameters defmed in the macro model statement operand.

CALL

CALL

CALL

CALL

Ll,L2,LL3

, ,

Ll"L3

, Ll=A,L3

Undefined Directive In Attribute [8]

The S attribute was requested for an undefined operation code, or for an operation code that
does not use ON or OFF as its operand. The S attribute is only defined for these directives:

ERR
MSB
GEN
LIST
SYMBOL

PRINTER •
65C02
65816
LONGA
LONGI

EXPAND
IEEE
TRACE
CASE
OBJCASE

Unidentified Operation [16]

1. An operation code was encountered which was not a valid insruction or directive, nor
was it a defined macro. If you are using 65C02 or 65816 instructions, make sure that
they are enabled using the 65C02 and 65816 directives. Make sure MCOPY directives
have been used to make all needed macros available at assembly time.

Pre-Alvha Draft £-7 6120186

AppendixE Conland Workshop Assembler Reference

2. The fIrst operation code in a RENAME directive's operand could not be found in the
current list of instructions and directives.

3. A MACRO, MEND or MEXIT directive was encountered in a source fIle.

Undefined Symbolic Parameter [8]

An & character followed by an alphabetic character was found in the source line. The
assembler tried to find a symbolic parameter by the given name, and none was defmed.

Unresolved Label Not Allowed [2]

1. The operand of a directive contains an expression that must be explicitly evaluated to
perform the assembly, but a label whose value could not be determined was used in the
expression. In most cases, local labels cannot be used in place of a constant. Even
though the Assembler knows that the local label exists, it does now know the fInal
location that will be assigned by the Link Editor.

2. The length or type attribute of an undefmed symbolic parameter was requested. Only
the count attribute is allowed for an undefined symbolic parameter.

Terminal Errors
Some errors are so severe that the Assembler cannot keep going; these are called terminal
errors. When the Assembler encounters a terminal error, it prints the error message and
then waits for you to press a key. When you have pressed a key, the Assembler passes
control to the Editor, which loads the fIle that the Assembler was working on and places the
line that caused the terminal error at the top of the display screen.

File Could Not Be Opened

A ProDOS error occurrred during an attempt to open a source or macro file.

This is generally caused by a bad fIle of some type, or a fIle that is missing entirely. Begin
by carefully checking the spelling in the offending statement. Make sure that the fIle can be
loaded with the listed fIle name using the editor. It is important to specify the pathname the
same way as it is listed in the assembler command when doing this check. If the error
occurrrs in a strange place where no fIles are asked for, keep in mind that a maCf0 fIle is not
loaded into memory until a macro is found. In other words, the problem is one of the
MCOPY or MLOAD directives.

Keep File Could Not Be Opened

Either there was not enough memory to open the output fIle or a ProDOS error was
encountered during an attempt to open the output fIle. Check the file name used in the
KEEP directive for errors. This error will occur if the file name of the keep file exceeds ten

Pre-Aloha Draft E-8 6/20/86

Cortland Workshop Assembler Reference AppendixE

characters, since the assembler must be able to append ".ROOT" to the keep file name, and
ProDOS restricts file names to fifteen characters.

Symbol Table Overflow

The list that follows outlines the uses made of the symbol table. One or more of the uses
will have to be reduced to avoid this error.

1. Each macro in the macro file that is currently open requires twelve bytes. Since only
one macro file is open at a time, splitting a macro file into shorter files can help. It is
not the length of a macro or the macro file that is a problem, but rather the actual
number of macros in a file.

2. Each symbol defined using the GEQU directive requires seventeen bytes of symbol
table space. This space is not released at the end of each subroutine. The GEQU
directive is only needed for specifying flxed zero page or long addresses; using the
EQU directive in a data area and issuing a USING directive for the data area in the
subroutine will do just as well for other purposes, and the used symbol table space is
released as soon as the data area has been assembled.

3. Each local label in a segment requires seventeen bytes of space. This space is
released as soon as the segment has been assembled. Using shorter subroutines will
reduce the total number of local symbols in each.

4. Symbolic parameters require a variable amount of symbol table space. Reducing the
total number or cutting down on the depth of macro calls can help.

5. The AINPUT directive saves the answers typed from the keyboard in the symbol table.
These answers are removed when the segment where the AINPUT directive·appears
has been assembled. Two ways exist to reduce this kind of use: either split the
segment so that fewer AINPUT directives are in anyone segment, or answer the
questions posed by the directive more briefly.

Unable To Write To Object Module

A ProDOS error was encountered while writing to the object module. This error is usually
caused by a full disk, but could also be caused by a disk drive error of some sort.

Pre-Aloha Draft £-9 ·6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

Bibliography

Bibliography

The sources for the alpha draft of the Cortland Workshop Assembler Reference include:

• ORCAIM User's Manual,' The Byte Works, 1984

• Cortland Development Core and ORCAIM Macro Assembler (ERS) Version
00.5, 25 March 1986.

• David Eyes and Ron Lichty, Programming the 65816, Simon and Schuster, 1986

• Michael Fisher, 65816165802 Assembly Language Programming, Osborne
McGraw-Hill, 1896

• William Labiak, Programming the 65816, Sybex, 1986

Pre-Aloha Draft Bibliof!raohv - 1 6120186

This page is left intentionally blank

Cortland Workshop Assembler Reference

GLOSSARY

Glossary

absolute segment: A segment that can be loaded only at one specific location in
memory. Compare with relocatable segment.

accumulator: The register in the 65816 microprocessor where most computations are
performed.

addressing mode:

AND: A logical operator that produces a true result if both its operands are true, and a
false result if either or both its operands are false. Compare OR, exclusive OR, NOT.

argument: •

arithmetic operator

array: An ordered collection of information of a given, defmed type. Each element of
the array can be referred to by a numerical subscript.

assembly: The process of translating source code into object code.

atttribute: returns information about a label or symbolic parameter.

base address: In indexed addressing, the fixed component of an address.

boolean operator: An operator, such as AND, that combines logical values to produce
a logical result, such as true or false; named for English mathematician and logician George
Boole. Also known as a logical operator. Compare arithmetic operator,
relational operator.

binary file format: The ProDGS loadable file format, consisting of one absolute
memory image along with its destination address.

branch: (v) To pass program control to a line or statement other than the next in
sequence. (n) A statement that performs a branch. See conditional branch,
unconditional branch.

case sensitivity: Ability to distinguish between uppercase characters and lowercase
characters. Programming languages are case sensitive if they require all-uppercase letters,
all-lowercase letters, or proper use of uppercase and lowercase. With the Cortland
Assembler, you can use the directives CASE and OBJCASE to set case sensitivity..
code segment: A segment that contains program code as compared with data or variable
definitions. See data segment.

command file: A program that runs other programs. See EXEC file.

command interpreter:

comment: Source text intented for the user, ignored during assembly.

comment line: The area of a source text line reserved for comments.

concatenate: Literally, "to chain together." To combine two or more strings into a
single, longer string by joining the beginning of one to the end of the other. Also, to
combine two or more files.

Pre-Aloha Draft Glossary -1 6/20/86

Glossary Cortland Workshop Assembler Reference

conditional assembly: The process of programming the occurrence and characteristics
of macro expansions.

conditional branch: A branch whose execution depends on the truth of a condition or
the value of an expression. Compare unconditional branch.

constant: In a program, a symbol that represents a fixed, unchanging value. Compare
variable.

cortland toolbox:

cross reference table:

data segment: A segment that contains program data.

debug: A colloquial term that means to locate and correct an error or the cause of a
problem or malfunction in a computer program.

debugger:

delimiter: A character that is used for punctuation to mark the beginning or end of a
sequence of characters, and which therefore is not considered part of the sequence itself.
For example, Cortland assembly language uses the single quotation mark (') as a delimiter
for string constants: the string 'DOG' consists of the three characters D, 0, and G, and
does not include the quotation marks.

denormalized number: A number represented in floating-point format, in which
the first bit of the significand is zero. Compare normalized number.

destination: An address into which an instruction places data.

dictionary segment:

dimension: The maximum size of one of the sJ.lbscripts of an array.

direct page:

directive: A source text instruction to the Assembler.

dot operator: Used to concatenate symbolic parameters, indicated by a period C.).
dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

editor:

effective address: In assembly-language programming, the address of the memory
location on which a particular instruction oPerates, which may be arrived at by indexed
addressing or some other addressing method.

element: A member of a set or collection; specifically, one of the individual variables
making up an array.

embedded: Contained within. For example, the string 'BE HERE NOW' is said to
contain two embedded spaces.

emulation mode:

equate:

error severity code:

error message: A message displayed or printed to tell you of an error or problem in
your assembly. Error messages are accompanied by a severity level code.

Pre-Aloha Draft Glossary - 2 6/20/86

Cortland Workshop Assembler Reference Glossary

exclusive OR: A logical operator that produces a true result if one of its operands is
true and the other false, and a false result if its operands are both true or both false.
Compare OR, AND, and NOT.

EXEC file:

expression:

fixed-point: A method of representing numbers in which the decimal point (more
correctly, the binary point) is considered to occur at a fixed position within the number.
Typically, the point is considered to lie at the right end of the number so that the number is
interpreted as an integer. Compare floating-point.

floating-point: A method of representing numbers in which the decimal point (more
correctly, the binary point) is permitted to "float" to different positions within the number.
Some of the bits within the number itself are used to keep track of the point's position.
Compare fixed-point.

global label:

global symbol table:

high-order byte:

index: The variable component of an indexed address, contained in an index register and
added to the base address to form the effective address.

index register: A register that holds an index for use in indexed addressing. The
65816 microprocessor has two index registers: the X register and the Y register.

instruction: A unit of a machine-language or an assembly-language program
corresponding to a single action for the processor to perform.

keyword parameter:

label:

label scope:

library file: A file containing program segments, each of which can be used in any
number of programs. The Linker can search through the library file for segments that have
been referenced in the program source fIle.

library segment dictionary: An optional first segment of a libary file that contains the
names and locations of all the segments in the fIle. The Linker uses the library segment
dictionary to fmd segments in library files as a faster alternative to searching through the
entire file.

linker: The program that processes object files generated by compilers and assemblers to
produce load files. The Linker can combine several object files into one load file, combine
several object segments into one load segment, and search libraries. It resolves all
symbolic references, and generates a file that can be loaded into memory and executed.

link editor:

loader: See System Loader

load file: The output of the Linker. Load files can be loaded into memory and executed
without further processing.

load segment: A segment in a load file. Load segments contain memory images that the
system loader can load directly into memory, followed by a relocation dictionary that
provides relocation to the system loader. Load segments can be static code, static data,
dynamic code, or dynamic data.

Pre-Aloha Draft Glossarv - 3 6/20/86

Glossary Conland Workshop Assembler Reference

label: A name that identifies a place in a source text. See also local label, global
label, label scope, attributes

label scope:

local label:

local symbol table: A symbol table that contains symbols with local scope.

logical operator: An operator, such as AND, that combines logical values to produce a
logical result, such as true or false; sometimes called a Boolean operator. Compare
arithmetic operator, relational operator. .

loop: A section of a program that is executed repeatedly until a limit or condition is met,
such as an index variable's reaching a specified ending value.

low-order byte:

macro:

macro call: a request to execute a subroutine or macro.

macro definition:

macro expansion:

macro header: In a macro definition, the directive MACRO.

macro library:

memory manager: The part of the operating system that allocates blocks of memory as
needed, and keeps track of which blocks of memory are available. All applications should
request blocks of memory from the memory manager rather than loading data directly into a
preselected memory location.

mnemonic: A sequence of characters that designate an instruction or directive.

model statement:

native mode:

NOT: A unary logical operator that produces a true result if its operand is false, and a
false result if its operand is true. Compare AND, OR, exclusive OR.

null: An undefined value. Null is different from zero; zero is a value just like other
numbers, whereas null means no value at all (of the expected type). A null string does not
contain anything. For example, ' , is not a null string because it contains a space character;
" represents a null string.

object file: The output from the Assembler and input to the Linker. An object file
conforms to the Cortland object module format: it contains 65816 instructions plus the
information the Linker needs to resolve symbolic references. Any number of object files
can be combined into a single load fIle. An object fIle must be processed by the Linker to
create a load fIle: it cannot be executed directly.

object module format: The general format used in object files, library files, and load
files. .

object segment: A segment in an object file.

OMF file: Any file in object module format.

opcode: See operation code.

operand: A value to which an operator is applied. The value on which an operation
code operates. Compare argument.

Pre-Aloha Draft Glossary - 4 6/20/86

Cortland Workshop Assembler Reference Glossary

operation code: The part of a machine-language instruction that specifies the operation
to be performed. Often called opcode.

operator: A symbol or sequence of characters, such as + or AND, specifying an
operation to be performed on one or more values (the operands) to produce a result. See
arithmetic operator, relational operator, logical operator, unary operator,
binary operator.

OR: A logical operator that produces a true result if either or both of its operands are
true, and a false result if both of its operands are false. Compare exclusive OR, AND,
NOT.

page:

parameter:

partial assembly:

pass one:

pass two:

pathname: The full name by which an operating system identifies a me. A pathname is
a sequence of menames, each preceded by a slash, that specifies the path-from volume
directory to me-the operating system takes to locate that me. Compare filename.

pop: To remove the top entry from a stack, moving the stack pointer to the entry below
it. Synonymous with pull. Compare push.

positional parameter:

precedence: The order in which operators are applied in evaluating an expression.
Precedence varies from language to language, but usually resembles the precedence rules of
algebra.

ProDOS 16:

program counter:

program segment:

push: To add an entry to the top of a stack, moving the stack pointer to point to it.
Compare pop.

quickDraw:

real number: In computer usage, a number that may include a fractional part;
represented inside the computer in floating-point form. Because a real number is of
infinite precision, this representation is usually approximate. Compare integer.

relational operator: An operator, such as >, that operates on numeric values to
produce a logical result. Compare arithmetic operator, logical operator.

relocate: The process of modifying a file or segment at load time so that it will execute
correctly at the location in memory fit which it is loaded. The Linker resolves symbolic
references and prepares relocation dictionaries that the Loader uses to relocate a program
after loading it into memory. See also relocatable segment.

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image immediately preceding it. When the segment is
loaded into memory, the relocation dictionary is used to patch location-dependent addresses
into the code.

Pre-Aloha Draft Glossary -5 6/20/86

Glossary Cortland Workshop Assembler Reference

return address: The point in a program to which control returns on completion of a
subroutine or function.

SANE: See Standard Apple Numeric Environment.

scope:

segment: An individual component of an OMF file. Each fIle contains one or more
segments. The header of an object segment has both an object-segment name and a load
segment name. The Linker normally places all object segments that have the same load
segment name into a single load segment. You can also use a LinkEd fIle to assign specific
object segments to specific load segments at link time. Load segments can be static code,
static data, dynamic code, or dynamic data. The object module format also defmes several
special segment types to support the loader, library files and so forth.

segment jump table: A segment in a load file, created by the Linker, that provides the
information the loader needs to locate dynamic segments as they are needed during program
execution.

sequence symbol: The destination of a conditional assembly branch, indicated by a
period (.) followed by a label.

set symbol:

shell:

source program:

stack: A list in which entries are added (pushed) or removed (popped) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order.

step value: The amount by which the index variable changes on each pass through a
loop.

standard apple numeric environment:

static segment: A static segment is loaded at program boot time, and is not unloaded or
moved during execution. Compare with dynamic segment.

string: An item of information consisting of a sequence of text characters.

subdirectory: A directory within a directory. A file containing the names and locations
of other files.

subscript: A numeric expression whose value is the index of an element in a sublist or
array.

substring: A string that is part of another string.

symbol table: .

symbolic parameter:

system loader: The part of the operating system that reads the files generated by the
Linker, relocates them (if necessary), and loads them into memory.

unconditional branch: A branch that does not depend on the truth of any condition.
Compare conditional branch.

variable: The symbol used in a program to represent a memory location where a value
can be stored. Compare constant.

wildcard character: The asterisk character (*) that can be used as shorthand to represent
a sequence of characters in a pathname. For example, if you request a listing of *.TEXT

Pre-Aloha Draft Glossary - 6 6/20/86

Conland Workshop Assembler Reference Glossary

files in a particular application, you would see a list of all files ending with the suffix
.TEXT.

X register: One of the two index registers in the 65816 microprocessor.

Y register: One of the two index registers in the 65816 microprocessor.

Pre-Aloha Draft Glossary -7 6/20/86

This page is left intentionally blank

Cortland Workshop Assembler Reference

Index
To be supplied.

Index

Pre-Alvha Draft Index -1 6/20/86

This page is left intentionally blank

ANY COMMENTS?

We would like to know your feelings about this manual.

• What did you like or dislike about it?

• Were you able to fmd all the information you need?

• Was the information complete and accurate?

• Was it organized in a helpful way?

• Do you have any suggestions for improvement?

Please send your comments and suggestions to

J. Chapman, Technical Publications
Apple Computer, Inc.
20'525 Mariani Avenue, MS 22K
Cupertino, CA 95014

You may write you comments separately or on a marked-up copy of the manual (we'll
return your marked-up copy if you like).

Thanks for your help!

Quick Reference Guide

for

Cortland Workshop Assembler

Pre-Alpha Draft
June 20, 1986

Engineering Part Number: 030-3131
Marketing Part Number: A2L6001

Writer: Catherine Williamson
Apple User Education Department

Copyright © 1986 Apple Computer, Inc. All rights reserved.

Revision History

Document Design, Quick Reference Guide for Conland Workshop Assembler I

Catherine Williamson, March 17, 1986.

Pre-Alpha Draft, Quick Reference Guide for Conland Workshop Assembler I

Catherine Williamson, June 20, 1986.

Pre-Aloha Draft 3 6/20/86

Quick Reference Guide

Pre-Aloha Draft 4

Cortland Workshop Assembler

6/20/86

Cortland Workshop Assembler

About This Pocket Guide

Quick Reference Guide

The purpose of the Quick Reference Guide to the Cortland Workshop Assembler is to give
Assembly Language programmers a handy summary of the information they are most likely
to use most often. The sections in this Guide include:

• Using The Assembler

• 65816 Instruction Set

• 65816 Instruction List

• General Assembler Directives

• Macro Directives

• ASCII Character Set

The Cortland Tools will be summarized in the Cortland Tools: Parts I and II.*
Are there any other topics people would like to see covered here?

Pre-Aloha Draft 5 6/20/86

Quick Reference Guide

Pre-Aloha Draft 6

Cortland Workshop Assembler

6i20/86

Cortland Workshop Assembler

Using The Assembler

Quick Reference Guide

ASM65816
EDIT
NEW
ASSEMBLE
ASML
ASMLG
LINK
ALINK
MACGEN
DEBUG
XREF
MAKELIB

ASM65816

EDIT filename

NEW filename

Change the default language to 65816 assembly language
Edit an existing fIle
Open a new edit window
Assembly a program
Assemble and link a program
Assemble, link and execute a program
Link an object module
Process an Advanced Linker fIle
Build a macro Library
Debug a File
Create a cross reference table
Make a dictionary segment

ASSEMBLE [+L1-L] [+SI-S] sourcefile [KEEP=ou(file][NAMES=(seg1[,seg2[, ...]])]
[languagel=(option...)[language2=(option...)...]]

ASML [+L1-L] [+SI-S] sourcefile [KEEP=ou(file][NAMES=(segl[,seg2[, ...]])]
[languagel=(option...)[language2=(option...)...]]

ASMLG [+L1-L] [+SI-S] sourcefile [KEEP=ou(file][NAMES=(segl[,seg2[, ...]])]
[languagel=(option...)[language2=(option...)...]]

LINK [+L1-L] [+SI-S] sourcefile [KEEP=ou(file][NAMES=(segl[,seg2[, ...]])]
[languagel =(option...)[language2=(option...)...]]

ALINK [+L1-L] [+SI-S] sourcefile [KEEP=ou(file]

Assembler Command Options

+L1-L

+SI-S

sourcefile

KEEP=outfile

Pre-Aloha Draft

+L generates a source listing. Defaults to +L.

+S produces a symbol table. Defaults to +S.

The full pathname and fIlename of the source file.

The name of the output file.

7 6/20/86

Quick Reference Guide Cortland Workshop Assembler

NAMES=(seg1,seg2 ,...)
Specifies the names of the segments to be assembled.

[languagel=option...)[language2=option...)...]]
Passes parameters directly to the Cortland compilers.

MACGEN [+C] [-C] infile outfile macrofilel [macrofile2...]

+CI-C

infile

outjile

,.C removes all excess blanks from a macro file. +C is the default.

The full pathname and fl1ename of the source fl1e.

The full pathname and fl1ename of the macro fl1e to be created by
MACGEN.

macrojilel [macrojile2 ...J
The full pathnames and fl1enames of the macro libraries to be searched for
the macros referenced in injile. .

DEBUG filename

XREF [+L1-L] [+XI-X] [+FI-F] [(subrangel,... ,subrange5)]filename

+LI-L

+FI-F

+XI-X

+L lists the file. The default is +L.

+X lists a frequency count. The default is -F.

+X parameter generates a cross reference. The default is +X

(subrangel, ...subrange5)
specify a subrange in a cross reference table

filename The full pathn~e and fl1ename of the source fIle to be processed.

MAKELIB filename

Pre-Aloha Draft 8 6/20/86

Cortland Workshop Assembler Quick Reference Guide

65816 Instruction Set Summary

Data Movement Instructions

Load/Store Instructions:

LDA
LDX
LDY
STA
STX
STY

Push Instructions:

PHA
PHP
PHX
PHY
PHB
PHK
PHD
PEA
PEl
PER

Pull Instructions:

PLA
PLP
PLX
PLY
PLB
PLD

Load accumulator from memory
Load the X index register
Load the Y index register
Store the accumulator
Store the X index register
Store the Y index register

Push the accumulator
Push status register (flags)
Push X index register
Push Y index register
Push data bank register
Push program bank register
Push direct page register
Push effective absolute address
Push effective indirect address
Push effective relative address

Pull the accumulator
Pull status register (flags)
Pull X index register
Pull Y index register
Pull data bank register
Pull direct page register

Transfer Instructions:

TAX
TAY
TSX

. TXS
TXA
TYA
TCD
IDC
TCS
TSC
TXY'
TYX

Pre-Aloha Draft

Transfer A to X
Transfer A to Y
Transfer S to X
Transfer X to S
Transfer X to A
Transfer Y to A
Transfer C accumulator to D
Transfer D to C accumulator
Transfer C accumulator to S
Transfer S to C accumulator
Transfer X to Y
Transfer Y to X

9 6/20/86

Quick Reference Guide

Exchange Instructions:

Cortland Workshop Assembler

XBA
XCE'

Exchange B and A accumulators
Exehange carry and emulation bits

. Store Zero to Memory:

STZ

Block Moves:

MVN
MVP

Store zero to memory

Move block in negative direction
Move block in positive direction

Flow Of Control Instructions

BCC
BCS
BEQ
BMI
BNE
BPL
BRA
BRL
BVC
BVS
lMP
JSR
JSL
RTS
RTL

Branch if carry clear
Branch if carry set
Branch if equal
Branch if minus
Branch if not equal
Branch if plus
Branch always
Branch always long
Branch if overflow clear
Branch if overflow set
Jump
Jump to subroutine
Jump to subroutine long
Return from subroutine
Return from subroutine long

Arithmetic Instructions

DEC
DEX
DEY
INC
INX
INY

Decrement
Decrement index register X
Decrement index register Y
Increment
Increment Index register X
Increment index register Y

Logic And Bit Manipulation Instructions

Logic Instructions:

AND
EOR
ORA

Pre-Alvha Draft

Logical AND
Logical exclusive-OR
Logical OR (inclusive OR)

10 6/20/86

Cortland Workshop Assembler

Bit Manipulation Instructions:

Quick Reference Guide

BIT
TRB
TSB

Test bits
Test and reset bits
Test and set bits

Shift and Rotate Instructions:

ASL
LSR
ROL
ROR

Shift bits left
Shift bits left
Rotate bits left
Rotate bits right

System Control Instructions

BRK
RTI
NOP
SEC
CLC
SED
CLD
SEI
eLI
CLV
SEP
REP
COP
STP
WAr
WDM

Pre-Aloha Draft

Break (software interrupt)
Return from interrupt
No operation
Set carry flag
Clear carry flag
Set decimal mode
Clear decimal mode
Set interrupt disable flag
Clear overflow flag
Clear overflow flag
Set status register bits
Clear status register bits
Co-processor of software interrupt
Stop the clock
Wait for interrupt
Reserved for expansion

11 6120186

Quick Reference Guide

Pre-Aloha Draft 12

Cortland Workshop Assembler

6/20/86

Cortland Workshop Assembler , Quick Reference Guide

Directive

General Assembler Directives

Action

Program Control Directives

START
PRIVATE
DATA
PRIVDATA
USING
ENTRY
END

Start subroutine
Define private code segment
Defme data segment
Defme private data segment
Using data segment
Defme entry point
End program segment

Data Definition Directives

DC
DS

Declare constant
Declare storage

Symbol Definition Directives

EQU
GEQU
RENAME

Equate
Global equate
Rename opcodes

Memory Designation Directives

ALIGN
ORG
MEM

Align to a boundary
Designate origin
,Reserve memory

File Control Directives

APPEND
COPY
KEEP

Append a fIle
Copy a file
Keep object module

Assembler Option Directives

IEEE
LONGA
LONGI
MSB
65C502

Pre-Aloha Draft

Generate IEEE fonnat numbers
Select accumulator size
Select index register size
Set the most significant bit of characters
Enable 65C02 code

13 6/20/86

Quick Reference Guide

65816
MERR
CASE
OBJCASE

Cortland Workshop Assembler

Enable 65816 code
Set the maximum error level
Specify case-sensitivity
Specify case-sensitivity in object module

Listing Option Directives

ERR
EXPAND
LIST
PRINTER
SYMBOL
EJECT
SETCOM
TITLE
ABSADDR
INSTIME

Pre-Aloha Draft

Print errors
Expand DC statements
List output
Send output to printer
Print symbol tables
Eject the page
Set comment column
Print header
Allow absolute addresses
Show instruction times

14 6/20/86

Cortland Workshop Assembler

Macro Directives

Directive Action

Macro Language Directives

Quick Reference Guide

MACRO
MNOTE
MEXIT
MEND

Start a macro definition
Macro note
Exit macro
End a macro deftnition

Macro Library Directives

MCOPY
:MDROP
MLOAD

Copy Macro Library
Drop A Macro Library
Load A Macro Library

Listing Directives

GEN
TRACE

Generate macro expansions
Trace macros

Conditional Assembly Directives

Defining Parameters

LCLA
LCLB
LCLC
GLBA
GLBB
GLBC
SETA
SETB

SETC

Define a local arithmetic symbolic parameter
Defme a local boolean symbolic parameter
Deftne a local string symbolic parameter
Defme a global arithmetic symbolic parameter
Defme a global boolean symbolic parameter
Defme a global string symbolic parameter
Assign a value to an arithmetic symbolic parameter
Assign a value to a boolean string symbolic
parameter
Assign a value to a string symbolic parameter

String Manipulation Directives

ASEARCH
AMID

Assembler String Search
Assembler Mid String

Defining Parameters Using Assembler Input

Pre-Aloha Draft 15 6/20/86·

Quick Reference Guide Cortland Workshop Assembler

AINPUT Assembler Input

Branching Directives

AGO
AIF

Unconditional Branch
Conditional Branch

Miscellaneous Directives

ACTR
ANOP

Pre-Aloha Draft

Assembly Counter
Assembler No Operation

16 6/20/86

Cortland Workshop Assembler Quick Reference Guide

Instruction Set Summary

Opcode
Hex Mnemonic Adressing Mode # Of Bytes # Of Cycles

00 BRK Stack/Interrupt 2 ** 79

01 ORA DP Indexed IndirectX 2 61,2

02 COP Stack/Interrupt 2 ** 79

03 ORA Stack Relative (also SR) 2 ** 41

04 TSB Direct Page 2 52,5

05 ORA Direct Page (also DP) 2 31,2

06 ASL Direct Page (DP) 2 52,5

07 ORA DP Indirect Long 2 61,2

08 PHP Stack (push) 1 3

09 ORA Irrnnediate 2* 21

OA ASL Accumulator 1 2

OB PHD Stack (Push) 1 4

OC TSB Absolute 3 65

OD ORA Absolute 3 41

OE ASL Absolute 3 65

OF ORA Absolute Long 4 51

10 BPL Program Counter Relative 2 27,8

11 ORA DP Indirect Indexed, Y 2 51,2,3

12 ORA DP Indirect 2 51,2

13 ORA SR Indirect Indexed, Y 2 71

14 TRB Direct Page 2 52,5

15 ORA DP Indexed, X 2 41,2

16 ASL DP Indexed, X 2 62,5

17 ORA DP Indirect Long, Indexed 2 61,2

18 CLC Implied 1 2

19 ORA Absolute Indexed, Y 3 41,3

lA INC Accumulator 1 2

Pre-Aloha Draft 17 6/20/86

Quick Reference Guide Cortland Workshop Assembler

IB TCS Implied 1 2

IC TRB Absolute 3 6 5

ID ORA Absolute Indexed, X 3 41,3

IE ASL Absolute Indexed, X 3 75,6

IF ORA Absolute Long Indexed, X 4 51

20 JSR Absolute 3 6

21 AND DP Indexed Indirect, X 2 61,2

22 JSR Absolute Long 4 8

23 AND Stack Relative (SR) 2 41

24 BIT Direct Page (DP) 2 31,2

25 AND Direct Page (DP) 2 31,2

26 ROL Direct Page (also DP) 2 52,5

27 AND DP Indirect Long 2 61,2

28 PLP Stack (Pull) 1 4

29 AND Immediate 2* 21

2A ROL Accumulator I 2

2B PLO Stack (Pull) I 5

2C BIT Absolute 3 41

2D AND Absolute 3 41

2E ROL Absolute 3 65

2F AND Absolute Long 4 51

30 BMI Program Counter Relative 2 27,8

31 AND DP Indirect Indexed, Y 2 51,2,3

32 AND DP Indirect 2 51,2

33 AND SR Indirect Indexed, Y 2 71

34 BIT DP Indexed, X 2 41,2

35 AND DP Indexed, X 2 41,2

36 ROL DP Indexed, X 2 62,5

37 AND DP Indirect Long Indexed, Y 2 61,2

38 SEC Implied 1 2

39 AND Absolute Indexed, Y 3 41,3

3A DEC Accumulator 1 2

Pre-Aloha Draft 18 6/20/86

Cortland Workshop Assembler Quick Reference Guide

3B TSC Implied 1 2

3D AND Absolute Indexed, X 3 41,3

3E ROL Absolute Indexed, X 3 75,6

3F AND Absolute Long Indexed, X 4 51

40 RTI StacklRTI 1 69

41 EOR DP Indexed Indirect, X 2 61,2

*42 WDM reserved 2 21,6

43 EOR Stack Relative (also SR) 2 41

*44 MVP Block Move 3 13

45 EOR Direct Page (also DP) 2 31,2

46 LSR Direct Page (also DP) 2 52,5

47 EOR DP Indirect Long 2 61,2

48 PHA Stack (push) 1 31

49 EOR Immediate 2* 21

4A LSR Accumulator 1 2

4B PHK Stack (Push) 1 3

4C lMP Absolute 3 3

4D EOR Absolute 3 41

4E LSR Absolute 3 65

4F EOR Absolute Long 4 51

50 BVC Program Counter Relative 2 27,8

51 EOR DP Indirect Indexed, Y 2 51,2,3

52 EOR DP Indirect 2 51,2

53 EOR SR Indirect Indexed, Y 2 71

*54 MVN Block Move 3 13

55 EOR DP Indexed, X 2 41,2

56 LSR DP Indexed, X 2 62,5

57 EOR DP Indirect Long Indexed Y 2 61,2

58 CLI Implied 1 2

59 EOR Absolute Indexed, Y 3 41,3

5A PHY Stack (Push) 1 310

5B TCD Implied 1 2

Pre-Aloha Draft 19 6/20/86

Quick Reference Guide Cortland Workshop Assembler

5C JMP Absolute Long 4 4

5D EOR Absolute Indexed, X 3 "41,3

5E LSR Absolute Indexed, X 3 75,6

5F EOR Absolute Long Indexed, X 4 51

60 RTS Stack (RTS) 1 6

61 ADC DP Indexed Indirect, X 2 61,2,4

62 PER Stack (pC Relative Long) 3 6

63 ADC Stack Relative (SR) 2 41,4

64 S1'2 Direct Page 2 31,2

65 ADC Direct Page (DP) 2 31,2,4

66 ROR Direct Page (also DP) 2 52,5

67 ADC DP Indirect Long 2 61,2,4

68 PLA Stack (Pull) 1 41

69 ADC hnmediate 2* 21,4

6A ROR Accumulator 1 2

6B RTL Stack (RTL) 1 6

6C IMP Absolute Indirect 3 511 ,12

6D ADC Absolute 3 41,4

6E ROR Absolute 3 65

6F ADC Absolute Long 4 51,4

70 BVS Program Counter Relative 2 27,8

71 ADC DP Indirect Indexed, Y 2 51,2,3,4

72 ADC DP Indirect 2 51,2,4

73 ADC SR Indirect Indexed, Y 2 71,4

74 S1'2 Direct Page Indexed, X 2 41,2

75 ADC DP Indexed, X . 2 41,2,4

76 ROR DP Indexed, X 2 62,5

77 ADC DP Indirect Long Indexed, Y 2 61,2,4

78 SEI Implied 1 2

79 ADC Absolute Indexed, Y 3 41,3,4

7A PLY Stack/Pull 1 410

7B IDC Implied 1 2

Pre-Aloha Draft 20 6120186

Cortland Workshop Assembler Quick Reference Guide

7C JMP Absolute Indexed Indirect 3 6

7D ADC Absolute Indexed, X 3 41,3,4

7E ROR Absolute Indexed, X 3 75,6

7F ADC Absolute Long Indexed, X 4 51,4

80 BRA Program Counter Relative 2 36

81 STA DP Indexed Indirect, X 2 61,2

82 BRL Program Counter Relative Long 3 4

83 STA Stack Relative (also SR) 2 41

84 STY DirectP~ge 2 32,10

85 STA ,Direct Page (also DP) 2 31,2

86 STX Direct Page 2 32,10

87 STA DP Indirect Long 2 61,2

88 DEY Implied 1 2

89 BIT Immediate 2* 21

8A TXA Implied 1 2

8B PHB Stack (push) 1 3

8C STY Absolute 3 410

8D STA Absolute 3 41

8E STX Absolute 3 410

8F STA Absolute Long 4 51

90 BCC Program Counter Relative 2 27,8

91 STA DP Indirect Indexed, Y 2 61,2

92 STA DP Indirect 2 51,2

93 STA SR Indirect Indexed, Y 2, 71

94 STY Direct Page Indexed, X 2 42,10

95 STA DP Indexed, X 2 41,2

96 STX Direct Page Indexed, Y 2 42,10

97 STA DP Indirect Long Indexed, Y 2 61,2

98 TYA Implied' 1 2

99 STA Absolute Indexed, Y ,3 51

9A TXS Implied 1 2

9B TXY Implied 1 2

Pre-Aloha Draft 21 6/20/86

Quick Reference Guide Cortland Workshop Assembler

9C S1'2 Absolute 3 41

9D STA Absolute Indexed, X 3 51

9E S1'2 Absolute Indexed, X 3 51

9F STA Absolute Long Indexed, X 4 51

AO illY Immediate 2+ 210

Al illA DP Indexed Indirect, X 2 61,2

A2 LDX Immediate 2+ 210

A3 illA Stack Relative (alsoSR) 2 41

A4 illY Direct Page (also DP) 2 32,10

A5 illA Direct Page (also DP) 2 31,2

A6 LDX Direct Page (also DP) 2 32,10

A7 illA DP Indirect Long 2 61.2

A8 TAY Implied 1 2

A9 illA Immediate 2* 21

AA TAX Implied 1 2

AB PLB Stack (Pull) 1 4

AC illY Absolute 3 410

AD illA Absolute 3 41

AE LDX Absolute 3 410

AF illA Absolute Long 4 51

BO BCS Program Counter Relative 2 27,8

BI illA DP Indirect Indexed, Y 2 51,2,3

B2 illA DP Indirect 2 51,2

B3 DLA SR Indirect Indexed, Y 2 71

B4 illY DP Indexed, X 2 42,10

B5 illA DP Indexed, X 2 41,2

B6 LDX DP Indexed, Y 2 42,10

B7 illA DP Indirect Long Indexed, Y 2 61,2

B8 CLV Implied 1 2

B9 ill Absolute Indexed, Y 3 41,3

BA TSX Implied 1 2

BB TYX Implied 1 2

Pre-Aloha Draft 22 6/20/86

Cortland Workshop Assembler Quick Reference Guide

BC LDY Absolute Indexed, X 3 41,10

BD LDA Absolute Indexed, X 3 41,3

BE LDX Absolute Indexed, Y 3 43,10

BF LDA Absolute Long Indexed, X 4 51

CO CPY Immediate 2+ 210

Cl CMP DP Indexed Indirect, X 2 61,2

C2 REP Immediate 2 3

C3 CMP Stack Relative (also SR) 2 41

C4 CPY Direct Page (also DP) 2 32,10

C5 CMP Direct Page (also DP) 2 31,2

C6 DEC Direct Page (also DP) 2 52,5

C7 CMP DP Indirect Long 2 61,2

C8 !NY Implied 1 2

C9 CMP Immediate 2* 21

CA DEX Implied 1 2

CB WAI Implied 1 315

CC CPY Absolute 3 410

CD CMP Absolute 3 41

CE DEC Absolute 3 65

CF CMP Absolute Long 4 51

DO BNE Program Counter Relative 2 27,8

D1 CMP DP Indirect Indexed, Y 2 51,2,3

D2 CMP DP Indirect 2 51,2

D3 CMP SR Indirect Indexed, Y 2 71

D4 PEl Stack (Direct Page Indirect) 2 62

D5 CMP DP Indexed, X 2 41,2

D6 DEC DP Indexed, X 2 62,5

D7 CMP DP Indirect Long Indexed, Y 2 61,2

D8 STP Implied 1 2

D9 CMP Absolute Indexed, Y 3 41,3

DA PHX Stack (Push) 1 31,10

Pre-Aloha Draft 23 6/20/86

Quick Reference Guide Cortland Workshop Assembler

DB STP Implied 1 314

DC JMP Absolute Indirect Long 3 6

DD CMP Absolute Indexed, X 3 41,3

DE DEC Absolute Indexed, X 3 75,6

DF CMP Absolute Long Indexed, X 4 51

EO CPX Immediate 2+ 210

EI SBC DP Indexed Indirect, X 2 61,2,4

E2 SEP Immediate 2 3

E3 SBC Stack Relative (also SR) 2 41,4

E4 CPX Direct Page (also DP) 2 32,10

E5 SBC Direct Page (also DP) 2 31,2,4

E6 INC Direct Page (also DP) 2 52,5

E7 SBC DP Indirect Long 2 61,2,4

E8 INX Implied 1 2

E9 SBC Immediate 2* 21,4

EA NOP Implied 1 2

EB XBA Implied 1 3

EC CPX Absolute 3 410

ED SBC Absolute 3 41,4

EE INC Absolute 3 65

EF SBC Absolute Long 4 51,4

FO BEQ Program Counter Relative 2 27,8

FI SBC DP Indirect Indexed, Y 2 51,2,3,4

F2 SBC DP Indirect 2 51,2,4

F3 SBC SR Indirect Indexed, Y 2 7 1,4

F4 PEA Stack (Absolute) 3 5

F5 SBC OP Indexed, X 2 41,2,4

F6 INC OP Indexed, X 2 62,5

F7 SBC OP Indirect Long Indexed, Y 2 61,2,4

F8 SED Implied 1 2

F9 SBC Absolute Indexed, y. 3 41,3,4

FA PLX Stack/Pull 1 4 10

Pre-Alvha Draft 24 6/20/86

Cortland Workshop Assembler Quick Reference Guide

FB

FC

FD

FE

FF

XCE

JSR

SBC

INC

SBC

hnplioo 1

Absolute Indexoo Indirect 3

Absolute Indexoo, X 3

Absolute Indexoo, X 3

Absolute Long Indexed, X 4

2

8

41,3,4

75,6

51,4

* Add 1 byte if m=O (l6-bit memory/accumulator)

** Opcode is 1 byte, but program counter value pushed onto stack is incremented by two,
allowing for optional signature byte

+ Add 1 byte if x=O (16-bit index registers)

1 Add 1 cycle ifm=O (l6-bit memory/accumulator)

2 Add 1 cycle if low byte of Direct Page register is other than zero (DL<>O)

3 Add 1 cycle if adding index crosses a page boundary

4 Add 1 cycle if 65C02 and d=l (decimal mode, 65C02)

5 Add 2 cycles ifm=O (16-bit memory/accumulator)

6 Subtract 1 cycle if 65C02 and no page boundary crossed

7 Add 1 cycle if branch taken

8 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or
65816/65802's emulation mode (e=l)

9 Add 1 cycle for 65802/65816 native mode (e=O)

10 Add 1 cycle ifx=O (16-bit index registers)

11 Add 1 cycle if 65C02

12 6502: If low byte of addr is $FF (Le., addr is $xxFF): yields incorrect result

13 7 cycles per byte movoo

14 Uses 3 cycles to shut the processor down; additional cycles are required by reset to
restart it

15 Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to
restart it

16 Byte and cycle counts subject to change in future processors which expand WDM into
2-byte opcode portions of instructions of varying lengths .

Pre-Aloha Draft 25 6/20/86

Quick Reference Guide

Pre-Aloha Draft 26

Cortland Workshop Assembler

6120186

Cortland Workshop'Assembler

The ASCII Character Set

Quick Reference Guide

CharDec Oct HexChar Dec Oct HexChar Dec Oct HexChar Dec Oct Hex
nul 0 0 0 sp 32 40 20 @ 64 100 40 96 140 60
soh 1 1 1 ! 33 41 21 A 65 101 41 a 97 141 61
stx 2 2 2 34 42 22 B 66 102 42 b 98 142 62
etx 3 3 3 # 35 43 23 C 67 103 43 c 99 143 63
eot 4 4 4 $ 36 44 24 D 68 104 44 d 100 144 64
enq 5 5 5 % 37 45 25 E 69 105 45 e 101 145 65
ack 6 6 6 & 38 46 26 F 70 106 46 f 102 146 66
bel 7 7 7 39 47 27 G 71 107 47 g 103 147 67
bs 8 10 8 (40 50 28 H 72 110 48 h 104 150 68
ht 9 11 9) 41 51 29 I 73 111 49 105 151 69
If 10 12 A ... 42 52 2A J 74 112 4A j 106 152 6A
vt 11 13 B + 43 53 2B K 75 113 4B 'k 107 153 6B
ff 12 14 C 44 54 2C L 76 114 4C 1 108 154 6C
cr 13 15 D 45 55 2D M 77 115 4D m 109 155 6D
so 14 16 E 46 56 2E N 78 116 4E n 110 IS6 6E
si 15 17 F / 47 57 2F 0 79 117 4F 0 111 157 6F

dIe 16 20 10 0 48 60 30 P 80 120 50 p 112 160 70
del 17 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
dc2 18 22 12 2 50 62 32 R 82 122 52 r 114 162 72
dc3 19 23 13 3 51 63 33 S 83 123 53 s 115 163 73
dc4 20 24 14 4 52 64 34 T 84 124 54 t 116 164 74
nak 21 25 15 5 53 65 35 U 85 125 55 u 117 165 75
syn 22 26 16 6 54 66 36 V 86 126 56 v 118 166 76
etb 23 27 17 7 55 67 37 W 87 127 57 w 119 167 77
can 24 30 18 8 56 70 38 X 88 130 58 x 120 170 78
em 25 31 19 9 57 71 39 Y 89 131 59 y 121 171 79
sub 26 32 1A 58 72 3A Z 90 132 5A z 122 172 7A
esc 27 33 1B 59 73 3B [91 133 5B 123 173 7B

fs 28 34 1C < 60 74 3C \ 92 134 5C 124 174 7C
gs 29 35 10 = 61 75 3D] 93 135 5D 125 175 7D
rs 30 36 IE > 62 76 3E A 94 136 5E 126 176 7E
us 31 37 1F ? 63 77 3F 95 137 5F 'del 127 177 7F

Char Dec Oct Hex Char Dec Oct Hex . Char Dec Oct Hex Char Dec Oct Hex

Pre-Aloha Draft 27 6/20/86

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

