
Ultra Rom Board/Editor
APB-102 Owner's Manual

APPLE COMPUTER, INC. makes no warranties,

either express or implied, regarding the enclosed

computer software package, its merchantability or

its fitness for any particular purpose. The exclu-

sion of implied warranties is not permitted by some

states. The above exclusion may not apply to you.

This warranty provides you with specific legal

rights. There may be other rights that you may

have which vary from state to state.

This manual is copyrighted. All rights are reserved.

This document may not, in whole or part, be

copied, photocopied, reproduced, translated, or

reduced to any electronic medium or machine

readable form without prior consent, in writing,

from Hollywood Hardware, Inc.

©1983 by Hollywood Hardware, Inc.
6842 Valjean Avenue

Van Nuys, California 91406

(213) 989-1204

Downloaded from wwwApple2Online.com

WARRANTY INFORMATION

Hollywood Hardware Inc. warrants the products it manufactures

against defects in material and workmanship for a period of one

hundred twenty (120) days from the date of purchase. During the

warranty period Hollywood Hardware Inc. will repair or replace at

no charge any product which becomes defective. The defective

product must be returned to Hollywood Hardware Inc., or an

authorized repair center, with a description of the problem and

dated proof of purchase, such as a Bill of Sale, cancelled check,

etc.

This warranty does not apply if in the decision of Hollywood

Hardware Inc. the product was damaged as a result of accident,

misuse, or misapplication, or by unauthorized service or

modification of the product.

No other warranties are expressed or implied, including, but not

limited to, the implied warranties of merchantablility or fitness

for a particular purpose. Hollywood Hardware Inc. is not

responsible for incidental and/or consequential damages incurred

by the use or misuse of any product. The determinaton of

applicability of this product for any particular purpose is solely

the responsibility of the purchaser. 	This warranty gives you

specific legal rights which vary from state to state. Some states

do not allow the exclusion or limitation of incidental or

consequential damages. so the above limitation or exclusion may

not apply to you.

COPYRIGHT INFORMATION

Global Program Line Editor (GPLE) is copyrighted 1983 by Neil

Konzen and is sold under license from Synergistic Software, acting

as his agent.

All other programs in the Ultra Rom Board, including but not

limited to the Operating System of the Ultra Rom Board and the

Ampersand Programming Utilities are copyrighted 1983 by Hollywood

Hardware Inc.

"Apple" and "Applesoft" are registered trademarks of Apple

Computer Inc.

APB-102 ULTRA ROM BOARD OWNER'S MANUAL

TABLE OF CONTENTS 	 Page

General Description 	 3

Notes About Syntax 	 6

Installing the Ultra Rom Board 	 8

First Session 	 9

Using the Macro Tables 	 16

Editing With GPLE 	 22

Notes About Editing Basic Program Lines 	 26

Editing the Macro Table 	 28

The Editing Keys 	 30

The Ampersand Programming Utilities (APU) 	 33

The Ampersand Commands 	 35

Operation of the Ultra Rom Board 	 44

Compatability With Other Programs 	 46

Appendix A - Advanced Topics 	 48

Appendix B - Writing Your Own Programs For Rom 	 52

Appendix C - Memory Map 	 59

Appendix D - Source Listings 	 63

Appendix E - quick Reference Guide 	 71

(c) 1983 - Hollywood Hardware

HOLLYWOOD HARDWARE

ULTRA ROM BOARD

General Description:

The Ultra Rom Board provides 32K bytes of additional memory

space for the Apple][and Apple He computer systems. It

will accept up to eight 2716 or 2732 EPROMs (Erasable,

Programmable Read Only Memories), without hardware

modification. By itself this would be of value only to

experienced programmers, but it comes with a complete Global

Program Line Editor and a variety of Ampersand (&) Utilities

which make it a powerful Program Development System for

beginners right up through the most experienced high-level

and machine-language programmers. 	With GPLE and the

Ampersand Extensions, Applesoft Basic becomes a serious

programming language, and program development time can be

reduced by a substantial factor. And since only BK bytes of

the rom board are currently used, 24K bytes remain for

future expansion. This provides space for a number of

additional programming aids currently in the works at

Hollywood Hardware, as well as room for your own utilities,

if you have assembly language knowledge and the ability to

program EPROMs.

Who the heck is HOLLYWOOD HARDWARE?

Hollywood Hardware was formed by a group of technical people

who have been providing special effects to the film industry

for years. 	Among our credits are "STAR WARS", "STAR TREK,

THE MOTION PICTURE", "FIREFOX", "BATTLESTAR GALACTICA",

"CHINA SYNDROME", and many more. In creating our special

effects we use Apple][computers extensively. Among other

things, we have designed, built, and programmed a

multichannel motion control system using an Apple for model

photography. The Apple controls up to 16 axes of movement

page 3

HOLLYWOOD HARDWARE

of the camera, models, and puppets, and all in real time in
sync with the frame rate. In the process of doing this, we
have developed many unique peripheral boards for the Apple
which we are now providing to the general public. Since we
built these products for ourselves first, we designed them
to be durable. These systems have done service all over the
world, from the Arctic wastes of Greenland to the dry heat
of the Arizona desert, and they have to work right all the
time.

We feel that we design a better product because we're not
just producers of Apple peripherals, we're users of Apple
peripherals as well.

What is GPLE?

GPLE is a powerful Global Program Line Editor. In Rom it
becomes a part of your Apple][or Apple][e computer system
just like Applesoft itself. GPLE provides an extremely
powerful set of editing functions, like the most powerful
word processors, for editing your Basic programs. It
includes INSERT, DELETE, ZAP, RESTORE, FIND, and more. The
word "Global" means that GPLE can be told to change a
variable or phrase everywhere it occurs in a program.

In addition it includes a variety of built-in Macros. The
word "Macro" is computer jargon for the process of
redefining a single key to output a series of keystrokes to
take the drudgery out of commonly executed commands. The
Macros on the Ultra Rom Board are initiated by hitting the
ESC key, followed by the key for the Macro you desire. In
addition to the many built-in Macros, you have the ability
to define your own Macros which can be kept on disk, so that

page 4

HOLLYWOOD HARDWARE

you can customize GPLE to suit your own needs.

Why GPLE on rom?

The original GPLE, as written by Neil Konzen, resided in

high memory, thereby reducing the available memory space by

about 4K bytes. 	The powerful features of this editor made

this sacrifice worthwhile, but some very large programs

would not run with it in the Apple. This required reloading

GPLE every time one wanted to re-edit the program under

construction.

Later versions of GPLE were moved to the 16K ram card (if

one was available) and this solved the problem for many

applications, but still not all. Here at Hollywood Hardware

we had just such a problem. We had written and were using

an extremely large program consisting of Basic and

machine-language modules for realtime control of robotics,

and we were constantly rebooting GPLE to work on our

program. 	In order to avoid the time and hassle of this

constant disk access, we conceived of the Ultra Rom Board.

Now these editing features are never more than 4 keystrokes

away, and if GPLE does conflict with the way a program

functions (an infrequent occurrence) it can go away just as

quickly.

page 5

NOTES ABOUT SYNTAX

To avoid confusion we will use the following symbols and
their meanings throughout this Manual.

1) Control characters will be enclosed in square

brackets. For example, [A] = Control A and [SHIFT

M] = Control Shift M. Control characters are

typed by holding the CTRL key down WHILE typing

the key in brackets. In the case of [SHIFT M] and

[@], the CTRL key AND the SHIFT key must be held

down while the appropriate key is pressed. PLEASE

NOTE: on the][e the [SHIFT M] is actually [1].

2) One special Control key is [M]. This is the

character produced by the key marked RETURN on

your keyboard. To make the function of this

Control character clearer, we will use the symbol

<cr> (short for Carriage Return) to stand for this

key.

3) In general, whenever we are describing somthing you

would type at the keyboard, we will enclose it in

slashes. For example: /YOU TYPE THIS/. Do not
type the slashes, just what's inside.

4) Escape keys differ from Control keys in that you

type the ESC key FOLLOWED by the Macro key. The

words "Escape functions" and "Macros" will be used

interchangably in this Manual.

5) In examples of Escape sequences (e.g. /ESC H/), the

space between the "ESC" and the "H" are for

page 6

NOTES ABOUT SYNTAX

clarity only. In this example the "H" should be

the first key typed after the "ESC" key is hit.

page 7

INSTALLING THE ULTRA RDM BOARD

The Ultra Rom Board can be installed in any slot except slot
0. Normally, slot 1 is reserved for a printer (Pascal, for
example, will accept a printer only here), slot 3 is an 80
column card, and slot 6 is the disk controller. Slots 2 or
7 are good choices, but any free slot will work fine. In
order to install the Ultra Rom Board you MUST first turn off
the Apple][. In fact, if you forget to turn off the Apple
before plugging in any peripheral card, you probably won't
be playing with your Apple again until it gets back from the
repair shop. So to be on the safe side, why not unplug the
Apple while you are working on it?

Once the Apple is off, remove the top cover. This is done
by grasping the rear edge to the cover and pulling up firmly
until the fastners separate (or come off altogether in many
older Apples). The slots in the Apple][are numbered from
0 to 7 from left to right as seen from the front. The slots
in the Apple][e are numbered from 1 to 7. In both cases,
the slot numbers are printed on the circuit board above the
connectors. Carefully line up the edge connector on the
Ultra Rom Board with the peripheral connector of your choice
(it will go in only one way), and firmly push down until it
seats.

That's all there is to it! Now replace the cover, put the
Hollywood Hardware Demonstration disk in drive 1, and turn
the Apple back on. In the next section we will guide you
through your first session with the powerful features of
your new Ultra Rom Board.

page 8

FIRST SESSION

This section is for people who are unfamiliar with GPLE. If

you feel that you do not need this tutorial, jump ahead to

the section, "USING THE MACRO TABLES".

NOTE:

While going through this tutorial, if you find

that you do not understand something, or you do

not get the results that you expect, take a minute

and review "NOTES ABOUT SYNTAX" on page 4.

Whenever we want you to type something, we will

enclose it in slashes like this: /you type this/.

Do not type the slashes, just what's inside.

Also, so that you won't confuse the key marked

"RETURN" with the Basic command of the same name,
whenever we are refering to the key, we will use

the symbol "<cr>" (short for CARRIAGE RETURN).

Now, enter the following frivolous program into the Apple

without using GPLE.

10 REM STAR WEAVER

20 HOME : VTAB 24

30 FOR X = 1 TO RND (1) * 40 : H = INT (RND (1)

* 39) + 1 : HTAB H : PRINT "*"; : NEXT :
PRINT

40 IF PEEK (-16384) < 128 THEN 30

50 POKE -16368,0

60 HW = 0 : VT = 12.1 : VB = 12 : FOR HL = 19 TO

0 STEP -1 : HW = HW + 2 : VT = VT - .6 : VB =

VB + .6 : POKE 32,HL : POKE 33,HW : POKE

34,VT : POKE 35,VB : HOME : NEXT

page 9

FIRST SESSION

This is a simple program which weaves a random pattern of

stars on the screen and then erases it when any key is

pressed. Make sure that the program is correct by running

it and fixing any mistakes the old way. Now it is time to

invoke GPLE. Simply type /PR#n/, where "n" is the number of

the slot the Ultra Rom Board is in. You should see "(C)

1983 HOLLYWOOD HARDWARE" at the top of the screen and the

flashing cursor at the bottom of the screen. The screen may

or may not have been cleared (we'll explain this later).

This tells you that GPLE is now active and that the

Ampersand (&) functions have been hooked up. That's all

there is to it.

Now type /ESC 0/. You have just used your first Macro.

It's a bit faster than typing "HOME" and it will work in

Integer basic too. Next type /ESC L/. You have to hit

"<cr>" after this one because it's waiting for you to add

the line number(s) you want to LIST, if any. Just hit

/<cr>/ and you'll see that your program is still there.

GPLE can be connected and disconnected as often as you like

with the Ultra Rom Board, without affecting the program in

memory. 	Now try typing /[Q]/. 	That's how easy it is to

disconnect GPLE. Your Apple is now just like it was before

GPLE was hooked up, except that the Ampersand utilities are

still available. 	Go ahead and turn GPLE back on (remember:

/PR#n/).

Now let's try to edit the program using GPLE. Let's say

that we wanted to make line 60 a subroutine, so that we

could use it instead of "HOME" to clear the screen in a more

interesting way. 	Without GPLE it would be necessary to

retype the whole line just to add a RETURN at the end. Try

the following instead. First, type /[E]/. As soon as you

page 10

FIRST SESSION

hit the "[E]" the word "EDIT" should appear on the screen.

If not, hit /<cr>/, and then hit /[E]/ again. The "[E]"

must be the first character typed after a "<cr>" to enter
the EDIT mode.

Now that the word EDIT is on the screen, GPLE is waiting for

you to tell it what to edit. In the section titled,

"EDITING WITH GPLE", all of the ways to use the editor are

fully described, but right now we just want to edit line 60.

So type /60/ and hit /<cr>/. Just like that, line 60

appears on the screen with the cursor positioned at the

first character of the line. Try typing /[N]/. The cursor

has moved to the eNd of the line. Now type /[B]/ and you'll
find ,yourself back at the Beginning of the line. Next type

/[F]/. If you have an Apple][, the cursor will stop

blinking. This means that GPLE is waiting for something to

Find. Type /:/ and see what happens. Notice that the

cursor is still not blinking. Type /:/ again. You can move

through a line very quickly this way, Finding characters of

interest. Any key other than ":" now will get you out of

the Find mode, and WILL BE ENTERED INTO YOUR TEXT. This is

so that you can Find characters and easily change them. To
avoid changing your line, hit the right arrow key /-->/.

So far, we've seen some ways to move around in the edit

mode, let's examine some ways of changing the line. Type a

/[0]/. You have just Deleted one character at the cursor.

Now type a /[D]/ and hold down the /REPT/ key at the same

time (or just wait a second if you have an Apple][e). This

is an easy way to Delete a bunch of characters. There is a

more convenient way to Delete a lot of characters, however,

and it's called Zap. Get back to the Beginning of the line

(/[B]/) and then hit /[Z]/. 	The cursor stopped blinking

again, didn't it? It's waiting for the character you want

page 11

FIRST SESSION

to Zap to. Type some character contained in what's left of

your line and see what happens. Zap stays in the Zap mode

just like Find stays in the Find mode. So hit the space bar

(/ /), and we'll go on.

Well, your line 60 must be pretty messed up by now. You

certainly wouldn't want to change it to this! Not to worry.

Type /[R]/. 	You have just Restored your line 60. You can

now continue to edit it without fear, because you can always

Restore it. You could also have typed "PT which would

have eXited the edit mode without changing line 60.

Back to our goal of changing this line to a subroutine.

Type ANY to get to the eNd of the line and add /:RETURN/.

Now, just to make a point, type /[B]/ to get back to the

Beginning and then type /<cr>/. Notice that you do not have

to move the cursor to the end of the line to enter it using

GPLE, a considerable time savings. Type /ESC L 60 <cr>/ to

see that line 60 has been changed to a subroutine.

Now a couple more changes are necessary to make our program

work with a subroutine. Using what you have learned, edit

line 10 to read:

10 GOSUB 60 : VTAB 24 : REM STAR WEAVER

and add lines 45 and 50 as shown:

45 GET 1$: IF 1$ = "E" THEN GOSUB 60 : END

50 GOTO 20

page 12

FIRST SESSION

Try running this program. Notice how easily we were able to

add these features to the program. Before we leave this

tutorial and turn you loose on your own programs, let's try
using a couple of Macros.

There are two different Macro tables available when the

Ultra Rom Board is connected. They are called the Rom Macro

table and the Ram Macro table. You have already used Rom

Macros when you used /ESC L/ to LIST a program and /ESC 0/

to clear the screen. The Rom Macro table is on the Rom

board itself, and cannot be changed (except by "blowing"

another EPROM). The Ram Macro table, however, is available

for you to create, edit, and save to disk. In this way you

can build custom Macro libraries of functions YOU find most

useful. If you redefine a key that's already in the Rom

Macro table, your definition will have priority until you

reinitialize the Ran board, or turn the computer off.

Let's try making a new Ram Macro. First, type /[E]/, and

when the "EDIT" prompt appears type /ESC G/. Notice that

the letter "G" has appeared on the screen, with the cursor

to the right of it. GPLE is ready to add the Macro "G" to

the Ram Macro table. If "G" had already been defined, the

whole Macro would now be displayed for editing, unless it

was a Rom Macro. Remember that Rom Macros cannot be edited,

so GPLE does not even try.

After the letter "G" type /GOSUB 60/. Hit /<cr>/ and then

try typing /ESC G/. As you can see, the command "GOSUB 60"

has appeared on the screen just as if you had typed it at

the keyboard. Now hit <cr>, and you get your result. So

page 13

FIRST SESSION

let's edit this Macro. Type /[E] ESC G/. Then type /[I]/.

You are now in the Insert mode, so insert a /1/ (single

quote). Go to the end of the line (remember: [N]) where we

want to add a <cr>, but wait! If you hit the <cr> right

now, you will just enter Macro as it is. This is where [0]

(for Overide) comes in. Type /[0]/. Now the next Control

key you type will be inserted into the text. So now hit the

/<cr>/. The inverse "M" is the symbol for [M], which is the

character that the <cr> key produces. Whenever you are

editing, Control characters will show as inverse.

Now, type /<cr>/ again to enter your new Macro. Before we

try it out, type /[E]/ again and this time type a /7/ after

"EDIT ". Hit /<cr>/ and you will see the first page of the

Macro table. Any key will make it continue listing, and the

space bar will stop and single step through the list. Try

it! When you get to the end of the list you will see your

new Ram Macro, separated by a blank line from the Rom

Macros. This is how to list the Macro tables.

It's time to try the changes to your Macro, so type /ESC G/.

This time the screen is cleared without ever seeing the

command that did it (this is what the tick PI did) and
without having to hit <cr> (because it was embedded in the

Macro itself). There is one more interesting Macro to try

before we leave, so let's edit line 10 once more.

Hit /[E] 10 <cr>/. Then move the cursor just past "VTAB 24"

and delete the rest of the line with [D]'s. Now hit /ESC

[X]/. You are in the insert mode, so just type /STAR WEAVER

<cr>/. List your program again. Notice how nicely your

REMark stands out this way? The "ESC [X]" can be typed from

anywhere in the line because it always goes to the end of

page 14

FIRST SESSION

the line.

There is much more to learn about the capabilities of GPLE

and the Ampersand functions, but the best way to become

familiar with them is to play with a simple program such as

this. 	The next sections go into more detail about the

operation of the Ultra Rom Board, GPLE, and the Ampersand

Utilities. Try everything you read about and your speed at

writing programs will soon be many times faster than it is

now.

page 15

USING THE MACRO TABLES

All Macros (also called Escape Functions) begin by hitting

the ESC key. The Macro corresponding to the next key typed

is then executed. A Macro is simply a series of keystrokes

which have been assigned to one key. When you use a Macro,

it is as if you were typing the entire sequence from the

keyboard. 	Macros can be used when you are entering

informaton at the keyboard or while editing. For example,

instead of typing "CATALOG,D1", just type /ESC 1/. Instead

of typing /LIST/, just hit /ESC L/. And instead of typing

"LOAD MYPROGRAM, D1", just type /ESC 1/, use /I/ to move the

cursor to the line with MYPROGRAM on it, and hit /[L]/. Not

only is it faster, but you won't misspell MYPOGRAM either.

There are actually two Macro tables active whenever the

Ultra Rom Board is hooked up. The Rom Macro table is on the

Rom Board, and cannot be changed. If you type the sequence

/[E] ? <cr>/ you will see a listing of the available Rom

Macros. 	There is also a Ram Macro table which can be

changed by the user at will. This Macro table is initially

located in Page 3 of Ram memory (see "MEMORY MAP"). It can

be moved by the user to anywhere in Ram Memory, to create

really enormous Macro tables. It can also be saved to disk

for later use. This is covered in greater detail later.

Macros can also be nested. This means that one Macro can

call another. 	Whenever GPLE encounters a [SHIFT M] ([]] on

the][e) in a Macro definition, it executes the next

character as a Macro. 	Some Macros are repetitive, which

means that they remain in the ESCAPE mode after they have

finished doing whatever it is they do. An example of this

is the cursor control cluster, I,J,K and M. After moving

the cursor, the next key struck is also interpreted as a

Macro. 	If the last character in a Macro definiton is the

[SHIFT M] then it is repetitive. On Apple]['s, the cursor

page 16

USING THE MACRO TABLES

will stop blinking whenever you are in the ESCAPE mode. The

Apple][e has a different cursor style.

As we said before, when you use a Macro, it is as if you

were typing the characters at the keyboard. For example,

look at the following Escape definition:

MPRINT"I AM A NICE COMPUTER"<cr>

In this definition, M is the Macro key and PRINT"I AM A NICE

COMPUTER"<cr> is the sequence of characters which would be

issued when ESC M is typed. The <cr> at the end of this

Macro is used to symbolize a [M], or RETURN, embedded in the

definition. 	When you put a <cr> in a Macro, it will

execute as soon as you hit the Macro key. Otherwise it will

wait for you to hit the RETURN key. When executed, this

Macro would print out:

PRINT"I AM A NICE COMPUTER"

JI AM A NICE COMPUTER

It looks just like it would if you had typed it in from the

keyboard, doesn't it? If you wanted this Macro to execute

without printing the instruction that caused it, you could

use the symbol ('), which is called the tick. Whenever a

tick is encountered in a Macro definition, the remainder of

the Macro will not be printed to the screen, but will be

executed. This means that if the Macro above was changed to

read:

page 17

USING THE MACRO TABLES

M1PRINT"I AM A NICE COMPUTER"<cr>

it would print out:

]I AN A NICE COMPUTER

whenever "ESC M" was typed. Exactly what is going to happen

when you start nesting Escape functions that include ticks

can get a little tricky. The best approach is to experiment

with different combinations until you feel comfortable with
this very powerful feature.

Several utilities have been provided to help you develop and

use your own Macros. Macros can be added to the table or

edited using GPLE (see "Editing the Macro table"). A small

amount of space is available all the time for short Macros

in Page 3. For example, if you were working on a program

which changed Zero Page address $6, and you wanted to see

the value of that address at a certain point in your

program, you might create the following Macro:

HPRINT PEEK(6)<cr>

page 18

USING THE MACRO TABLES

In this way you could run your program, stop it at some

point, and just type "ESC H" to see the value of 6. This is

the sort of Macro that you create once and get rid of as

soon as you find the bug in your program.

You can create much more space for Macros, however, if you

want to build more extensive Macro tables. One simple way

to get more space is to use one of the Ampersand utilities

called &MOVMAC. This utility when typed at the keyboard

will create a new Macro area 256 bytes below HIMEM, and

reset HIMEM to protect it. In this way you can have really
extensive Macros.

For example, you might have a Macro that you use to

initialize your printer which looks like this: PPR#1 <cr>

[I]80N [1160P [III [I]M [I]F [X]. When you typed /ESC P/

this Macro would turn on a printer in slot 1, initialize it

to print 80 columns, skip over perforations, keep the screen

on, maintain these parameters after the printer is

deselected, and format the Basic listing (if you have the

same printer card that I do).

To save the entire Ram Macro table to disk all you have to

do is to LET M$ = a short, descriptive name and then type

/ESC [SHIFT M]/. Your Macro table will be saved to the

currently active disk with the names "MACROTBL.YOURNAME" and

"MACROPTR.YOURNAME". For example, if you LET M$="PRINTER",

your Macro table would be saved to disk as

"MACROTBL.PRINTER" and "MACROPTR.PRINTER". To reload a

Macro table, just BLOAD both files back into memory.

Another special Macro will tell you where your Ram Macro

page 19

USING THE MACRO TABLES

table currently is. Type /ESC ./ to see the address and

space allotted to your Macro table. When you BLOAD a Macro

table from disk, it is a good idea to use this Macro to find

out where it is and then set HIMEM: to protect it. There is

a program on the Demonstration Disk which shows how to do

this in a program.

If you run out of space in a Macro table you will hear a

beep when you try to enter a Macrb, and if you look at it

again you will find that you have lost some characters at

the end. You can make a file bigger by using the following

procedure.

1) Save your Macro table to disk using the

technique described above.

2) Type /&MOVMAC/ to create a larger area for

Macros.

3) Type /ESC =1. This will tell you the current

address of the Macro table area.

4) Type /BLOAD MACROTBL.yourname,A<address from
step 3>/

You can now continue to add to this Macro table until you

fill it up again. To see a complete list of available

Macros type /[E] ? <cr>/. This listing can be stopped and

started using the normal listing control keys.‘ If you want

more information about how the Macro tables are arranged,

see "APPENDIX A - ADVANCED TOPICS."

There are too many Macros for us to go into detail about

page 20

USING THE MACRO TABLES

each of them here, but one set of Macros is particularly

useful, and perhaps not obvious, so we should give an

example its usage. These are the DOS Macros. We mentioned

that whenever you are in the ESCape mode, the cursor stops

blinking. Try the following example on your computer.

First, hit /ESC 1/ and <cr>'s as necessary to get to the end

of the catalog of disk 1. Now, type /ESC/, and the cursor

stops blinking (unless you have a][e). Now, use the /I/

key to get up to an Applesoft program you would like to load

into the Apple. When the cursor is on the same line as the

program (the cursor is still not blinking, right?), type
/[L]/. Suddenly, the word "LOAD" appears, and the cursor is

all the way at the right of he screen, waiting for you to

hit <cr>. If you do not want to load this program, simply

type /[X]/ to cancel the instruction. You can LOAD, SAVE,

RUN, BLOAD, BSAVE, BRUN, LOCK, UNLOCK, and DELETE disk files

using built-in Macros, and never misspell a program name

again. If you want to BLOAD, you use the same sequence,

except that you type /[B]/ then /[1]/.

page 21

EDITING WITH GPLE

There are three categories of text which can be edited using
GPLE:

1) Basic program lines
2) Macro table definitions
3) Commands being typed at the keyboard

The Editor can be entered in one of two ways. If you wish
to edit Basic program lines or Macro table definitions,
simply type a [E] as the first character after a <cr>. When
the prompt "EDIT " appears on the screen the line number or
Macro to be edited can be entered. The legal syntax for the
editing command is described below. Entering the editor
while typing commands at the keyboard is initiated in a
different manner. At any time while entering text from the
keyboard (e.g. typing a DOS command, adding a line to a
Basic program, etc.), you can type a [W] and everything that
you have typed up to the cursor will be displayed on the
screen and can be edited using the normal editing keys. In
other words, if you routinely type [W] before adding lines
to a Basic program, you will effectively always be in the
edit mode.

Editing Basic lines:

Type [E] and then the line or range of lines you wish to
edit. Some examples:

EDIT 60 	 edit line 60

EDIT ,60
	

edit all lines from the
beginning of the program

page 22

EDITING WITH GPLE

through line 60

EDIT 60, 	 edit all lines from 60 through

the end of the program

EDIT 60,90 	edit all lines from 60 through

90

You can also edit only program lines which contain a certain

string. Some examples:

EDIT "ABC" 	edit all lines containing the

string "ABC"

EDIT "AB?" edit all lines containing a

three character string starting

with "AB". In other words, the

"?" can be used as a wild card

character

EDIT "ABC","DEF" edit all lines containing "ABC"

and change all occurrences of

"ABC" to "DEF". GPLE stops at

each line to allow you to

accept the change.

When you are using this mode to search and replace, GPLE

stops at each line where a match is found. You can either

accept the change by hitting /<cr>/, restore the line and

page 23

EDITING WITH GPLE

continue searching by hitting /[R] <cr>/, or abort the
processs by hitting /[X]/. You can also make any other
changes to each line before continuing. If you do not want-
GPLE to stop at each line you can add a "IF" (for Fast
search) to the end of the edit command, as shown:

EDIT "ABC","DEF"/F

It should be noted that GPLE does not parse the search
string, so the spacing of the commands must be exactly as
they appear in the listing for the string to be found. GPLE
will also Pack a long line (to remove spaces) if necessary
in order to edit it, and this could cause it not to find a
search string.

It should also be noted that GPLE will not find a string
embedded in a longer string. It expects the string it is
looking for to be delimited by a space, quote, parenthesis,
colon, semicoln, Basic command or some other character which
is clearly not part of the string. If you want to find
strings embedded in other strings you must append "/R" (for
Raw search) to the end of the edit command. The Raw search
is somewhat slower because all possible matches must be
checked. Here is an example of the syntax for a Raw search:

EDIT "ABC","DEF"/R

The various editing parameters can be used in any
combination as long as the commas are in the right location.
The only exception is that you cannot have a Raw search and
a Fast search active at the same time. The following is a

page 24

EDITING WITH GPLE

perfectly legal edit search command:

EDIT 60,,"ab?DE","FGHn/R

There is one other form the editing command can take where
Basic lines are concerned, and that is:

EDIT . 	 This will re-edit the last
edited line.

page 25

NOTES ABOUT EDITING BASIC PROGRAM LINES

1) GPLE will automatically Pack long lines to remove
spaces if necessary in order to edit it. This can
affect Global searches. In addition, it may be
unable to edit some very long lines at all. For
this reason, if you are going to Crunch a program
for code effeciency, you should do all of your
editing on the unCrunched version.

2) Escape functions can be used while editing. In
fact, editing keys can be embedded in a Macro very
effectively to enhance editing. For example, a
Macro which reads, "H[I]FOR W = 1 TO 50: NEXT :"
could be used to insert a short delay into a line
with only two keystrokes. If you wanted to add
this instruction to several lines, this Macro
would be very handy indeed. You have to be
careful, however, not to use a Macro which has a
<or> in it, as this will change your line and exit
the edit mode, making the change official.

3) Whatever your line looks like on the screen when
you hit <cr> will be entered to the Apple. This
means that if you are editing line 10 and you
change the line number to 66, when you hit <cr>
you will have a new line 66 which is exactly like
line 10. This is an easy way to move lines around
in your program. (Don't forget that this is not a
true renumbering scheme because it doesn't change
any other line that might reference the line you
move, although you could use the global search and
replace to fix all such occurrences)

4) The technique described in note 3 can also be used

page 26

NOTES ABOUT EDITING BASIC PROGRAM LINES

to test how a line will work. If you edit line
10, and delete the line number altogether, the
line will execute when you hit <cr> just as if you
had typed the whole thing in. A simple Macro to
do this for you might be: /T[B][Z]<space><cr>/.

5) When the "EDIT " prompt is on the screen, you are
already in the EDIT mode, so you can search for
control characters and edit your parameter line
using the normal editing keys.

page 27

EDITING THE MACRO TABLE

The Ram Macro table can be edited by typing /[E] ESC/

followed by the character to be edited or added to the Ram

Macro table. Because the built-in Macro table is in ROM

(Read Only Memory) it cannot be edited, and so GPLE does not

even try. Any key that you define overides the built-in

function, so you must be careful not to redefine keys (like

[F] and +) which are used by other important Macros. If you

start getting funny results from old familiar Macros, this

is probably what happened.

Ram Macros are edited exactly like Basic program lines with

the exception that the [R] key does not work. It is a good

idea to pack each Macro definition ([P]) to remove

unnecessary spaces before entering it into the table. This

conserves Ram memory space. Macros can be removed from the

macro table either by typing [C, which totally clears the

Macro table, or by editing the Macro and typing [Q]

immediately.

There are a few items of special importance which should be

noted about editing Macros:

1) Control characters, which can be embedded in Macro

definitions by using [0], will be displayed as

inverse characters.

2) If the last character in an Escape function is a

[SHIFT M] (which shows up as an inverse 9" and is

in fact a []] on the Apple][e) then the Macro

will be repetitive. The next key typed after this

Macro executes will also be interpreted as a

Macro.

page 28

EDITING THE MACRO TABLE

3) If a [SHIFT M] is inserted into a Macro, then the
next character in the line will be interpreted as
a Macro. In other words, one Macro can call
another.

4) If a tick (') is included in a Macro, the rest of
the line will not be printed (unless a printer is
turned on) and only the output or the effect of
the Macro will be seen.

page 29

THE EDITING KEYS

Moves the cursor the beginning of the line.

Converts the character at the cursor to the
opposite case and advances the cursor. This key
and the repeat key is one way to convert print
statements to lower case for Apples without that
capability. If your Apple does not have lower
case display then these characters will look like
gibberish, but a printer will display them
properly.

[D] 	Deletes the character at the cursor and moves the
rest of the line in.

[F]
	

Finds the first occurrence of the next letter
typed. This command is repetitive, and will stay
in the Find mode until you type a different
character or until it cannot find another match.
The first character you type to exit the Find mode
is entered into the text, to allow you to easily
find and replace characters. If this is
undesirable you should leave the Find mode with
one of the arrow keys.

[I]
	

Inserts characters at the cursor. Remains in
effect until one of the arrow keys, an edit key,
or other control key is hit.

[m]
	

This is the same as a Carriage Return. It exits
the Edit mode and accepts the whole line as it
looks on the screen.

page 30

THE EDITING KEYS

Moves the cursor to the eNd of the line.

Overides normal input, inserts a control character
at the cursor, and enters the insert mode. The
[0] must preceed each control character to be
inserted. This is a very useful function which
allows you to put Carriage Returns, and left and
right arrows into PRINT and REM statements for
much more control of your printing and listing
format. One Macro (ESC [x]), for example, uses
this approach to add a REM statement and four
Carriage Returns to the end of a program line.
This allows you to insert nicely spaced remark
statements into a Basic program without a lot of
hassle.

[P]
	

Packs the text. This removes all spaces from the
text, which may be necessary in very long lines to
keep from exceeding Apple's limit of 239
characters on a line. If you start getting
inverse "G"'s while adding to a line you are
editing, these are the beeps you would be getting
if you were typing in a long line normally. GPLE
will automatically pack a long line if it is
necessary in order to edit it. Be careful with
long lines as you may lose some of the end of your
line, even if you Pack it.

Quits the editing mode and accepts everything up
to the cursor. This is what you are used to on
the Apple when you hit return; you lose everything

page 31

THE EDITING KEYS

after the cursor.

[R]
	

Restores the line to its condition before you
started editing it. You can use this command as

many times as you like if you make mistakes.

NOTE: this command does NOT work while editing

Macros or if you entered the editor with a [W].

[x]
	

EXits the editor, but leaves the line unchanged.
A RESET while in the edit mode will have the same
effect.

[Z]
	

Zaps all characters up to the next key pressed.
In other words if the first key pressed after the

[Z] is a ":", then all characters up to the first

colon will be deleted, just as if that many [D]'s

had been typed. Zap is repetitive, like Find. To

exit the Zap mode type any key other than the key

you are Zapping to.

page 32

THE AMPERSAND PROGRAMMING UTILITIES (APU)

An Overview:

The second Rom on the Ultra Rom Board is the APU. This Rom

contains a collection of utility programs and Applesoft

extensions as well as the operating system necessary to

coexist with other Ampersand utilities in Ram or other Roms

on the Ultra Rom Board. These programs are intended to

extend the capabilities of Applesoft and/or to help the

Basic programmer use hidden features of the Apple more

easily and to interface to machine language programs.

Before we take a detailed look at the various Ampersand

functions available, a brief description of what the

Ampersand command is and how it works is in order.

The Ampersand is the "&" symbol found above the "6" on Apple
]['s and above the "7" on the Apple][e. This symbol is

actually an Applesoft command, just like RUN, PRINT or GOTO.

When Applesoft encounters this symbol from the keyboard or

in a program line it immediately jumps to a certain location

in Ram memory (see: "Memory Map"). By changing this

location in memory to point to the Ultra Rom Board, it is

possible for us to take control of the computer temporarily

to perform some useful function. And because Applesoft

jumps to this program before even checking to see what comes

after the "&", we can create whole new commands that would

ordinarily cause SYNTAX ERRORs. 	This is how all Ampersand
routines work.

This simple Applesoft command has proven surprisingly useful

and has been used in a wide range of imaginative utilities.

We have written a collection of routines of our own, some of

which duplicate functions found in published listings or

software offerings, and have included them in our APU Rom.

page 33

THE AMPERSAND PROGRAMMING UTILITIES (APU)

Each utility is used like any other Applesoft command. For

example, to find the current setting of HIMEM, you simply

need to type AHINcr>/ and the answer will be displayed.

Or if you want to turn on the high resolution graphics page

1, but without erasing what you had previously drawn, you

could type /&HGR/ to do just that.

Not all Ampersand functions can be used in programs. Many

are intended to help you while you are writing a program,

and have no relevance in a running program. If you try to

include such a command in a program, you will get an ILLEGAL

RUNTIME ERROR when the program encounters it. This error

will always halt program execution, whether or not an ONERR

statement has been issued. The legal runtime commands, of

course, can be used at any time.

The APU is hooked up every time the Ultra Rom Board is

selected by a PR#n. It is not, however, disconnected when

the board is turned off with a [Q]. This is to allow you to

continue to use the Ampersand utilities even if GPLE has a

conflict with your program. It should be noted that the "&"

is an Applesoft command. There is no equivalent command in

Integer Basic, and the use of the Ampersand in Integer Basic

will only cause a SYNTAX ERROR.

page 34

THE AMPERSAND COMMANDS

The following is a description of all of the Ampersand

Utilities in the APU rom:

Mode: Immediate

The Ampersand with no parameters will display a

catalog of utilities currently available in the

Ultra Rom Board. If the proper protocol is

followed, user written utilities can also be

included in the catalog (see "Putting your own

programs on the Ultra Rom Board"). To exit the

catalog at any point, use ESC or E.

&[P]xxxxx

Mode: Runtime

The ampersand followed by [P] will pass the

command "xxxxx" to whatever utility was connected

at $3F5.$3F7 (1013.1016) when the Ultra Rom Board

was first hooked up. This allows other Ampersand

utilities to be used with no conflict with APU.

Note: to change all of the Ampersand commands in

a program to this format, use the edit line:

EDIT "&","&[P]"/F.

&ASC

Mode: Runtime

Prompts for a keypress and then prints the ASCII

equivalent of that key, with the hi bit set and

cleared. This can be useful when you are reading

page 35

THE AMPERSAND COMMANDS

the keyboard directly (using PEEK(-16384)), and

you want to look for a specific key, or when you

need the value of a specific control character for

a CHR$(n) declaration.

Mode: Immediate

Prints the address and length of the most recently

BLOADed file. **ASSUMES APPLE STANDARD DOS**.

Mode: Runtime

Clear to end of line. This duplicates CALL -868,

but is easier to remember.

Mode: Runtime

Clear to end of page. This duplicates CALL -958,

but is easier to remember.

&DISCHR

Mode: Immediate

Displays all Control characters as inverse. This

is useful for examining disk files, program lines,

or program output for embedded Control characters.

This command remains active until you EDIT

something, reinitialize the Ultra Rom Card, hook

up a printer, or hit RESET.

&BIN

&CEOL

&CEOP

page 36

THE AMPERSAND COMMANDS

Note: This is a short routine that lives in the

input buffer, so a very long input line will

destroy part of this code and may cause the system

to hang. If so, a RESET will rehook everything.

&FINDLINE<decimal number>

Mode: Immediate

Find the absolute memory address of any line in an

Applesoft program. Can be used to find the end of

a program by adding a temporary line at the end

and then finding the address of it.

&FRESEC

Mode: Immediate

Prints the number of free sectors remaining on the

last disk accessed. This utility assumes a
standard DOS.

Mode: Immediate

Prints the current setting of HIMEM.

Mode: Runtime

Identical to Applesoft command HGR, except that it

does not clear the screen. This is useful if you

want to go to the TEXT mode for instructions or

&HIM

&HGR

page 37

THE AMPERSAND COMMANDS

user input and be able to return to graphing

without erasing what has been done.

Mode: Runtime

Displays the full high resolution graphics screen,

like &HGR2, but using page 1. Does not clear the

screen.

Mode: Runtime

Identical to HGR2, but without clearing the

screen. If used with &HGR1, this can be useful

for quickly switching between two graphics pages

for special effects.

&IF <exp> THEN <instruction(s)> : &ELSE <instruction(s)>

Mode: Runtime

This is an extenstion of the IF <exp> THEN

<instruction(s)> command in Applesoft. If the
expression after &IF is true (non zero) then the

instruction(s) following the THEN but before the

&ELSE will be executed. If the expression is not

true (zero), then the instruction(s) after the

&ELSE will be executed. &IF/THEN/&ELSE statements

can be nested, and other Ampersand commands can be

used within them, but the statements must be

completed on a single line.

&HGR1

&HGR2

page 38

THE AMPERSAND COMMANDS

&LOM

Mode: Immediate

Prints the current setting of LOMEM.

&MOVMAC

Mode: Immediate

Moves, or rather reinitializes, the Ram Macro

table from GPLE to a location 256 bytes below

HIMEM, and moves HIMEM down to protect it. If the
Ram Macro table

has already been moved, it is moved down another

256 bytes. This can be done repeatedly to create

very large Macro tables. If you have a Macro

table on disk that you would like to move into
this space, simply type /ESC 	and then /BLOAD

MACROTBL.yourname,A address given/. You can then

build on to your Macro table in this way.

Note: because of some housekeeping space

required, you actually get only 253 bytes for your

first Macro table.

&NOTNEW

Mode: Immediate

Restores a program in memory which has been lost

through an accidental NEW, FP, or INT. 	&NOTNEW

should be used immediately after the old program

was erased. If any variables have been defined or
a SYNTAX ERROR has occured since the program was

lost, then this utility will attempt to salvage

page 39

THE AMPERSAND COMMANDS

the program, and will warn you with the message

"PROGRAM DAMAGED" that all is not well.

Typically, some of the bytes in the first line (or

lines, if very short lines are used) will have

been overwritten with zeros, and this utility will

replace those bytes with question marks, and set

that line number to O. If you have a lot of work

invested in this version of the program, it may be

worth it to save this damaged copy in a TEMPORARY

file, and use an earlier version to reconstruct

the first line(s). Programs shorter than 3 lines

cannot be found.

&PRCMD<expression>

Mode: Runtime

Prints the character or Applesoft command

equivalent to the value of <expression>. This

utility is a subroutine for a future formatted

lister program, but can be useful for examining

memory, or perhaps writing you own formatted

lister. An example program which uses this

command is included on the Demonstration Disk.

&PRINT USNG:<string>;<variable(,variable)>

Mode: Runtime

Uses the string after the colon as a template for

printing the variable after the semicolon. The string

can be a literal (e.g. "Cost = 	$.00"), variable

(e.g. STRINGS), or an array variable (e.g.

STRING$(1,5)). The variable can be a literal (e.g.

123.456), real (e.g. COST), integer (e.g. COST%), or

real or integer array. If a decimal point is present,

page 40

THE AMPERSAND COMMANDS

then the output will be rounded to the number of

decimal places designated in the string. The number is

always RIGHT justfied in the string, and "0"ts, "*"ts,

"$"ts and spaces are always replaced by a number, if

there is one for that position. Any other character in

the string will not be replaced. If there are too many

decimal places in the number to fit in the string, only
"els will be printed to indicate an overflow (rather

than risk printing an incorrectly truncated value).

The dollar sign, if present, will "float" to the left

of the number if possible. There is a program on the

Demonstration Disk which has examples of &PRINT USNG
statements.

&RESMAC

Mode: Immediate

Resets the Ram Macro table to its default Page 3

location. Assumes that the Macro table has been

moved using &MOVMAC. Unlike &MOVMAC, this command

cannot be used more than once in succession. In

order to protect DOS, this routine will not change

HIMEM if the Macro table is already in Page 3.

&SM"<string>",Rr,Ss

Mode: Immediate

Searches all memory for the string in quotes. The

high bit is ignored for this search. This is

useful for finding the absolute address of a

particular string in a program, or to find a

command in DOS or Applesoft, etc. The search

starts at $D000 (53248) and wraps around through

zero to end at $BFFF (49151). The R and S

page 41

THE AMPERSAND COMMANDS

designations are optional, but if they are

specified then Bank r of the ramcard in Slot s is

searched in the $D000 - $FFFF memory space. If S

is not specified then the ramcard is assumed to be

in slot O. The values for r must be in the range

0 - $F. Only hexadecimal numbers are allowed and

the $ is optional. The values for s must be in

the range 0 - 7. See "Memory Map" for an

explanation of the Bank designaions for 64K and

128K Ram cards.

Note: do not specify R or S if you are using

Applesoft in the Ram card, as the search will

naturally take place there. If you are using the

Big Mac Assembler or a similar program which uses

the language card, and your Ram card is larger

than 16K, then this search might leave the wrong

bank selected, and your next attempt to use the

program might fail. If so, search again using RO.

&SM"$<hexadecimal string>",Rr,Ss

Mode: Immediate

This is similar to the above, except that it

searches for a match for a hexadecimal string.
Spaces between numbers are allowed, but are not

required. If an odd number of bytes are listed,

then the last byte is assumed to be single. The R

and S parameters function exactly as described

above. This utility is useful for finding

subroutines and data in machine language programs

(e.g. &SM"$20 ED FD" would find all of the

locations in memory where a JSR $FDED was used).

page 42

THE AMPERSAND COMMANDS

&SP<string>

Mode: Immediate

This utility searches the Applesoft program for a

match to <string> and prints the line numbers

where a match occured. Applesoft commands can be

included in the string, and spaces do not matter,

except within quotes, because the line is parsed

exactly like an Applesoft line before the search

begins. This search is basically equivalent to

GPLEts Raw search (e.g. EDIT "ABC"/R), with four

differences:

1) As stated above, spaces do not matter

unless they are between quotes.

2) Only line numbers are printed.

3) This search is much faster, which can be

substantial in long programs.

4) The output of this search (as with all

Ampersand functons) can be sent to a

printer.

&SP"<string>

Mode: Immediate

This functions exactly like the above except that

the string is not parsed before the search begins.

This is required if you are searching for a string

which may contain an Applesoft command, such as

"friENDly". 	No trailing quote is allowed, unless

it is to be included in the search.

page 43

OPERATION OF THE ULTRA ROM BOARD

The Ultra Rom Board is turned on by typing /PR#n/ where "n"

is the number of the slot the rom board is in. Once the

board is invoked, it is not affected by RESET or commands

such as INT, FP, MAXFILES, NEW, CLEAR, etc. When the rom

board is turned on it hooks itself into the stream of

characters coming from the keyboard, and going to the

screen. 	In this way it can check for command characters and

it can control the output of listings and Macros, etc. In

addition, it saves the address that the Ampersand vector

($3F6,$3F7) is pointing to and hooks itself up instead.

When Ampersand commands are issued that arentt in the

Ampersand rom, they are sent on to this address. This is

explained in more detail in the section entitled, "THE

AMPERSAND PROGRAMMING UTILITIES (APU)".

The Ultra Rom Board can be disconnected by typing /[Q]/ as

the first character after a <cr>. When disconnected the

reset vector is returned to its normal warmstart condition,

and the input and output hooks are restored to normal. In

all ways except one, the computer is exactly like it was

before the rom board was hooked up. The one exception is

the Ampersand hook. Because many of the Ampersand functions

are designed to be used in running programs, the Ampersand

utilities are left active when the board is turned off, and

will remain active until some other utility claims the

Ampersand vector. 	Even then, many utility programs will

also pass on Ampersand commands which are not intended for

them, and so our Ampersand utilities would still be active.

Some experimentation is necessary to find out which is the

case for any particular application.

page 44

OPERATION OF THE ULTRA ROM BOARD

The Ultra Rom Board does claim some ram memory space. The

area from $300 to $3CF is used by the Operating System for

the Rom board, as well as by GPLE and the APU.

Historically, this Page 3 area has been used for short

machine language programs, but since many of the programs

which would have used this space are either already in the

Ampersand rom, or can be put in rom or elsewhere in memory,

this was seen as a reasonable compromise. If memory

conflicts do occur in this area, the Ultra Rom Board will

disconnect itself with an announcement to that effect. (An

example is a program which tries to use CHAIN from Applesoft

with GPLE active.) Some memory conflicts can cause the rom

board to hang, in which case a RESET will cause the Ultra

Rom Board to reinitialize the page 3 area.

When the Ultra Rom Board is active RESET and PR#n do not

effect the page 3 area unless certain bytes have been

disturbed. 	To completely reinitialize page 3 use [@] as the

first key typed after a <cr>.

page 45

COMPATIBILITY WITH OTHER PROGRAMS

When it is first hooked up, the APU saves the address at the

Ampersand vector (normally simply a jump to a return) in a

safe area in Page 3. If the APU cannot find a command in

its library, it will pass it on to the Ampersand routine

that was in the system first. If no Ampersand routine was

in the system, or if the command is not intended for that

routine either, then you will get a SYNTAX ERROR.

If the Ampersand utility that you are using has commands

that are the same as commands in the APU, then simply insert

a [P] after the "&", and the APU will pass the command on

without checking it further. The [P] will be removed (more

specifically, the text pointer is advanced past it) so that

the next routine will see the command as normal.

The APU uses the Zero Page addresses from $6 to $9 (6 to 9)

and from $F9 to $FF (249 to 255), but it saves these

addresses on entry, and restores them on exit, so that as

far as any other program is concerned, no Zero Page

addresses are disturbed (see "MEMORY MAP"). The one

exception to this statement is when errors are encountered

by Applesoft while an Ampersand utility is working (typing

[C] is an error, by the way). For example, if you are using

&PRINT USNG: and you get a SYNTAX ERROR, Applesoft itself

stops the program and issues the error message, so the APU

never has a chance to restore Zero Page. Most programs are

not that sensitive about Zero Page, but you should be aware

of this detail in case you start getting problems with

another utility.

If Macros are not being used, or the Macro table has been

moved to another location, it is possible to use the Macro

table area from $35B through $378 (859 through 888) for

page 46

COMPATIBILITY WITH OTHER PROGRAMS

(very) short machine language programs or variable storage.

If GPLE causes a memory conflict with a running program

(e.g. an attempt to use CHAIN, which overwrites Page 3), you

can turn the Rom board off by issuing /PR#0/ and /IN#0/

before executing the offending statement. The Rom board can

be turned back on with the normal /PR#n/. You should follow

this statement with a /PRINT/ statement if you are using it

in a program. The GREETINGS program on the Demonstration

Disk has an example of a program which will find and turn on

the Ultra Rom Board if it is in the system.

page 47

APPENDIX A - ADVANCED TOPICS

This section is intended primarily for Assembly Language

programmers who wish to develop their own EPROMS, or

programs which will interface with the software on the Ultra

Rom Board. Appendix C contains a map of the memory usage of

GPLE and the APU, and Appendix D contains a source listing

for the Driver portion of the Rom Board plus some example

subroutines.

Provision has been made in the Operating System of the Ultra

Rom board to allow routines in one Rom to access subroutines

in another Rom, returning cleanly with only an RTS. The

protocol necessary to connect to the Ampersand routines and

the Ampersand catalog is described in full below. Examples

of Assembly Language Macro's (based on the "Big Mac"

assembler) are provided which allow two banks of a 2732

EPROM to appear ALMOST contiguous.

MEMORY USAGE

It may be helpful to refer to the Memory Map in Appendix C

while reading this section.

The I/O space

All of the Roms on the Rom Board share the Memory space from

$C800 through $CFFF. 	Indeed, they share this space with

Roms on other peripheral boards as well, buffered printer

interface cards being an obvious example. The Rom board can

be viewed as two banks of eight 2K Roms. The "low" banks

are numbered 0 - 7 (high bit cleared) and the "high" banks

are numbered $8 - $F (high bit set). GPLE occupies banks 0

page 48

APPENDIX A - ADVANCED TOPICS

& B and APU occupies banks 1 & 9. The Driver firmware is

actually the first 256 bytes of bank O.

NOTE:

In order for a 2716 EPROM to appear to be the low

bank of a 2732, the high and low banks of the 2732

are actually swapped. When blasting a 2732 you

must arrange the banks opposite of the way you

wish to access them (i.e. bank 0 is in the high

half of the 2732 and bank B is in the low half)

Zero Page

The Rom board uses several Zero Page addresses, but all of

the free Zero Page addresses are saved and restored upon

exit; therefore, memory conflicts with other programs are

unlikely. 	Several other Zero Page addresses are used as

pointers, but they have been chosen to avoid conflicts with

the routines that share them.

Page Three

The Operating System on the Ultra Rom Board requires the

unrestricted use of the Page 3 space from $300 (768) to $3CF

(975). The Operating System continually checks several

bytes in this area to see if the space has been overwritten

by another program, and will either disconnect or reassert

itself if these bytes are altered (depending on what it is

doing at the time).

page 49

APPENDIX A - ADVANCED TOPICS

Scratch Pad Ram

None of the I/O scratch pad Ram addresses in the screen

buffer have been used (see "APPLE][REFERENCE MANUAL", Page

82, or "APPLE][e REFERENCE MANUAL", Page 125). The user

may use this space by getting the number from SLOT1, ANDing

it with $7, and using this number as an index into the
scratch pad Ram space

THE OPERATING SYSTEM

From a hardware standpoint, a given Rom is selected by

reading the address $COsn, where s = the slot the Rom board

is in + 8, and n = the number of the bank to be selected.

Under normal circumstances, however, the Operating System

takes responsibility for selecting Rom banks and passing

control between subroutines.

The Ultra Rom Board is initialized by the use of PR#n, IN#n,

or JSR $Cn00, where "n" is the number of the slot the Rom

board is in. 	This routine ends with an RTS, so it can be

called by a running program, although it will print the

"HOLLYWOOD HARDWARE" header and beep the speaker whether you

like it or not. If you do not want it to clear the screen,

you can VTAB 24 from Basic, or set CV to $17 before calling

the Rom Board. If you are initializing the Board from

Basic, you should follow the command with a PRINT statement,

or your next printed character will be lost.

page 50

APPENDIX A - ADVANCED TOPICS

The byte at $300 is called AMPTEST. If this byte is $A5

then the Ampersand vector has already been set up by the

Operating System, and the pointer to the Ampersand Utility

which was in the system when GPLE was connected has been

saved at AMPSAV ($3CA.3CB). 	If you want the Rom Board to

reconnect the Ampersand vector, place a zero at AMPTEST, and

do a /PR#n/, RESET, [R], /JSR $Cn00/, etc.

The byte at $301 is called MACTEST. 	It functions like

AMPTEST, but as a test for the Ram Macro table. If this

byte is NOT $A5 then the Ram Macro table is assumed to be

garbage and is established at $35B (859). The pointer to

the beginning-1 of the Macro table is located at $379.37A
(889.890). 	The pointer to the end-2 of the Macro table is

located at $376.37C (891.892). 	You may establish a Ram

Macro table anywhere in memory by setting up the beginning

and ending pointers and placing a 0 in the first byte of the
Macro table.

page 51

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

The Ampersand Programming Utility Rom (APU) is set up to

recognize another Rom in bank 2. For a Rom to be

recognized, it must have an $A5 at $CFFE. If the characters

following an "&" do not match the commands in the APU

library, it will pass control to the Rom in bank 2 at $C800.

Similarly, the Ampersand catalog will pass control to the

Ram in bank 2 at $C803. Future Hollywood Hardware Roms will

follow the same protocol of passing control to the next

higher Rom bank.

Intercepting an Ampersand Command

Address $C800 in your Rom should be a JMP to the routine

that evaluates the characters after the Ampersand to see if

they are intended for you. 	On entry, TXTPTR ($138.69) is

pointing at the first character after the "&", and the A

register contains this character. 	The Ampersand command

will always be terminated by a zero or a ":".

If the command is intended for you then, of course, you

should take whatever action is appropriate. You should exit

with a RTS with the A register set to 0 to notify the APU

that action was taken. The APU will take care of cleaning

up the TXTPTR to satisfy Applesoft.

If the command is not yours, you should restore the

registers to their entry values, restore TXTPTR, if

necessary, and exit with the following code (See Appendix C

for the values of these labels).

PASSAMP LDA #<ROMBADR

page 52

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

STA 	ROMJMP+1

LDA 	#>ROMBADR

STA 	ROMJMP+2

LDA 	SLOT1 	;$Cn

PHA

LDA 	#<GPINPUT-1 ;$3C

PHA

LDA ROMBNK

STA NXTROM

INC 	NXTROM 	;Get next higher Rom

JMP 	$87 	;CHRGOT - Restores ACC

This routine will pass control to the next Rom, if there is

one, and/or to an Ampersand utility in Ram if there was one

in the system when the Rom board was hooked up.

NOTE:

The free Zero Page addresses are not saved before

passing control to your Rom, and the decision as

to whether or not to save and restore them is up

to you. However, if you wish to use them, there

are two routines in bank 1 called SAVZ and RESZ

which may be called using the techniques described

below in "Calling Subroutines in Another Rom"

Intercepting the & Catalog

Address SC803 should contain a JMP to your subroutine to

print a catalog of choices to the screen. This routine

page 53

APPENDIX 8 - WRITING YOUR OWN PROGRAMS FOR ROM

should end with the following code (See Appendix C for the

values of these labels).

	

CATALOG LDA 	#<CATBADR ;Not necessary if no one

	

STA 	ROMJMP+1 	; has changed ROMJMP

	

LDA 	#>CATBADR ; since coming from

STA ROMJMP+2 ;APU

	

LDA 	SLOT1 	;$Cn

PHA

	

LDA 	#<GPINPUT-1 ;$3C

PHA

LDA ROMBNK

STA NXTROM

	

INC 	NXTROM 	;Get next higher Rom

	

RTS 	 ;To GPINPUT

This code will pass the Ampersand catalog on to the next

higher Rom or return to Basic it is in the last Rom in the

chain.

Calling Subroutines in Another Rom

It is possible to use subroutines in other Roms, even though

they reside in the same memory space as your Rom, by using

GPINPUT. GPINPUT saves the number of the currently active

Rom bank on the Rom Stack. It then turns on the Rom

specified by NXTROM, makes it the active Rom and JSR's to it

via ROMJMP (which has been set up by the calling routine).

On return it pops the last Rom bank number off the stack,

turns it back on and RTS's to the calling routine. The Rom

stack can be used up to 15 levels deep.

page 54

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

The following routine will demonstrate this technique. See

Appendix C for the values of these labels.

JSRIND 	STA 	PTRO 	 ;Save ACC

LDA 	#<SUBROUTINE 	;Low byte

STA ROMJMP+1

LDA 	#>SUBROUTINE 	;High byte

STA ROMJMP+2

LDA 	SLOT1

PHA

LDA 	#<GPINPUT-1

PHA

LDA 	#ROMNUM 	 ;# of the Rom that

STA 	NXTROM 	 ; SUBROUTINE is in.

LDA 	PTRO 	 ;Restore ACC

RTS

You must JSR to this routine as if it were the subroutine

you were calling. 	For example, if SUBROUTINE above was

COUT, then you might label JSRIND "COUTIND". To use COUT,

you would simply JSR COUTIND and control would return to you

when COUT in the other Rom executed an RTS. Status register

flags cannot be passed in this manner, but all registers

will be intact. The Macros entitled "ROMCALL" and "ROMCONT"

in Appendix D give an example of two routines which work

together with an address table to minimize the code required

to use this technique with many subroutines.

Because many printer cards contain EPROMS which might

conflict with the APU, whenever a routine is called which

can output a character, APU treats it as a ROMCALL. In this

page 55

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

way, even if a printer card turns off the APU, it will be

turned on again as it returns through GPINPUT.

Bank Switching Techniques

It is possible to execute JSR's and JMP's between banks of a

Rom in such a way as to create the appearence on continuity

between the two banks. 	For this purpose we have created

three Macros (using the "BIG MAC" assembler) which are

called "BANKSW","JSRBS" and "JMPBS", and are listed in

Appendix D. 	The subroutine BANKSW must be present in both

banks of the Rom at $CFE3. A JSRBS then looks like this:

JSRBS 	PHA 	 ;Save ACC

LDA 	#<SUBROUTINE 	;Low byte

STA 	SUBADRL

LDA 	#>SUBROUTINE 	;High byte

STA 	SUBADRH

PLA 	 ;Restore ACC

JSR SUBSW

A JMPBS is identical except that the last instruction is JMP

SUBSW. 	This routine vectors to the subroutine in such a way

that when an RTS is encountered in the other bank, control

automatically returns to the next instruction in this bank.

As in ROMCALL's, status flags cannot be passed in this

manner, but registers are undisturbed.

Using an assembler with Macro capability such as Big Mac,

using this routine becomes a simple matter of entering:

page 56

) 1

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

>>> 	JSRBS.SUBROUTINE

Though these routines are not trivial, once their function

is understood they can become the basis for creating much

more powerful programs than could normally exist in only 2K

of memory. 	Indeed, both GPLE and APU make extensive use of

all of these techniques. Of course it is desirable to keep

the amount of bank switching and Rom switching to a minimum,

both from the standpoint of speed and code effeciency.

Therefore, an approach which organizes your program in

logical blocks is desirable.

To summarize, in order for a Rom to be compatible with the

APU it should meet the following criteria.

The instruction at $C800 in the "low" bank should

be a JMP to the routine handling Ampersand input.

This routine should exit in the manner described

under "Intercepting an Ampersand Command" above.

2) The instruction at $C803 in the "low" bank should

be a JMP to the routine which prints a catalog of

utilities available in the Rom. This routine

should exit in the manner described under

"Intercepting the & Catalog" above.

3) The byte at $CFFE must be $A5 in both banks of the

Rom.

page 57

APPENDIX B - WRITING YOUR OWN PROGRAMS FOR ROM

The Bankswitching subroutine described above

should be at $CFE3 in both banks of the Rom. This

is not necessary if no bank switching is required

or 2716's are being used.

5) The protocol described above for bankswitching and

executing JSRs between Roms should be followed for

maximum effectiveness, although this is not

necessary if no bank switching is required.

page 58

APPENDIX C - MEMORY MAP

Zero Page

$6 - 9 SAVED AND RESTORED AFTER USE

$F9 - FF SAVED AND RESTORED AFTER USE

$26 - 27 PTRO - used by bank switching

subroutines

$2A - 2B PTR1 - used by GPLE EDIT mode

$46 AAPU - temporary storage of A register

(APU)

$47 XAPU - temporary storage of X register

(APU)

$4A - 4C CPTR - used by Ampersand catalog

page 59

APPENDIX C - MEMORY MAP

Page Three

$300 	AMPTEST - $A5 if Ampersand vector has

been set up

$301 	MACTEST - $A5 if Macro table has been

set up

$302 	ROM STACK POINTER

$303 - 311 ROM STACK

$312 - 35A GPLE VARIABLE SPACE & PARAMETER

STORAGE

$35B - 378 RAM MACRO TABLE - DEFAULT

$379 - 37A MACLO - pointer to beginning of Macro

table - 1

$37B - 37C MACHI - pointer to end of Macro table

-2

$37D - 37F ROMJMP - used for subroutine calls

between Roms

$380 - 3B0 SUBSW - used for bank switching by

subroutine calls

$3AC 	SUBADRL - set up by calling program

$3AD 	SUGADRH - set up by calling program

$3B1 - 3C6 GPLE VARIABLE SPACE & PARAMETER

STORAGE

page 60

APPENDIX C - MEMORY MAP

$3C7 - 3C9 RESAVE - old RESET vector

$3CA - 3CB AMPSAV - old Ampersand vector

$3CC 	SLOT2 - $n0 where n = slot of Rom

board

$3CD 	SLOT1 - $Cn where n = slot of Rom

board

$3CE 	NXTROM - used by ROMCALL to select

next Rom

$3CF 	ROMBNK - the currently active Rom

Driver Addresses

$CnOO 	DRIVER - Initialize the Ultra Rom

Board

$Cn03 	RESIN - RESET vector points here

$Cn3D 	GPINPUT - General purpose input vector

$Cn42 	AMPVEC - Ampersand vector points here

$CnE4 	CONNECT - Reconnect GPLE without

initializing

I/O Space

$C800 	ROMBADR - input to Ampersand Rom(s)

page 61

APPENDIX C - MEMORY MAP

$C803 	CATBADR - input to Ampersand

Catalog(s)

SCC98-CFE2 ROM MACRO TABLE (bank 0)

$CC88 	SAVZ - Save free Zero Page addresses

(bank 1)

$CC9F 	RESZ - Restore free Zero Page

addresses (bank 1)

$CFE3 	BANKSWITCH - bank switching subroutine

(al/ banks)

$CFFE 	CHKBYT - must be $A5 (all banks)

page 62

APPENDIX D - SOURCE LISTINGS

**

DRIVER CODE FOR ULTRA ROM BOARD

(C) 1983 - HOLLYWOOD HARDWARE

WRITTEN BY:

PAUL JOHNSON

**

ORG 	ROMBADR

C800: 38 80 DRIVER SEC ;Main entry point
C801: BO 06 81 BCS DR1

C803: A9 03 83 RESIN LDA #>DOSWARM-1 	;Reset entry point
C805: 48 84 PHA
C806: A9 CF 85 LDA #<DOSWARM-1
C808: 48 86 PHA

C809: 20 58 FF 88 DR1 JSR RETURN ;Find out which slot
C80C: BA 89 TSX ;Wetre in
CBOD: BD 00 01 90 LDA STACK,X
C810: 8D CD 03 91 STA SLOT1 ;$Cn
CB13: OA 92 ASL
C814: OA 93 ASL
C815: OA 94 ASL
C816: OA 95 ASL
C817: 09 80 96 ORA #%10000000
C819: 80 CC 03 97 STA SLOT2 ;$nO: n=slot+8
C81C: 85 26 98 STA PTRO ;Used to turn rom on

C81E: A9 00 100 LDA #0
C820: 8D CE 03 101 STA NXTROM ;Next rom to turn on

page 63

APPENDIX D - SOURCE LISTINGS

C823: 80 CF 03

C826: AO 10

C828: 8C 02 03

102

104

105

STA

LDY

STY

ROMBNK

#$10

RONSTK

;Rom currently active

;Rom stack pointer

C82B: 99 B4 03 107 DRVLP 	STA HADRTBL-1,Y ;Clear page 3

C82E: 88 108 DEY ;Address table

C82F: DO FA 109 BNE DRVLP

C831: A9 CO 111 LDA #$CO

C833: 85 27 112 STA PTRO+1

C835: AD FF CF 113 LDA ROMOFF ;Turn off all roms

C838: 81 26 114 LDA (PTRO),Y ;Turn on rom 0

C83A: 4C 7F C9 115 JMP GPLEIN ;Jump to init routines

C830: F8 117 GPINPUT 	SED ;General purpose input

C83E: 18 118 CLC ;vector. Assumes that

C83F: 48 119 PHA ;NXTROII and ROMJMP have

C840: 90 14 120 BCC COMMON ;been set up by calling

;program

C842: 48 122 AMPVEC 	PHA ;Ampersand input vector

C843: A9 01 123 LDA #AMPROML ;$3F5.3F7 Point here

C845: 80 CE 03 124 STA NXTROII

C848: F8 125 SED

C849: 38 126 SEC

C84A: BO OA 127 BCS COMMON

C84C: 18 129 CSWLGPLE CLC ;Character output vector

C840: 24 130 DFB BITCODZ

C84E: 38 131 KSWLGPLE SEC ;Character input vector

C84F: D8 132 CLD

C850: 48 133 PHA

C851: A9 00 134 LDA #0

C853: 80 CE 03 135 STA NXTROM

C856: 98 137 COMMON 	TYA ;All routines come

page 64

APPENDIX D - SOURCE LISTINGS

C857: 48 138 PHA ;this way

C858: 08 139 PHP

C859: AC 02 03 140 LDY RONSTK ;Check rom stack

C85C: 	CO 11 141 CPY #$11 ;for tampering.

C85E: BO 03 142 BGE REHKGPO ;Rehook if so

C860: 88 143 DEY ;Check also for overflow

C861: DO 10 144 BNE STKOK ;Branch if ok

C863: 68 145 REHKGPO PLA ;Rehook the rom card

C864: A9 00 146 REHKGP1 LDA #0

C866: 85 25 147 STA CV ;Force screen clear

C868: 80 01 03 148 STA MACTEST ;Reinit macros

C868: 8D 00 03 149 STA AMPTEST ;Reinit ampersand

C86E: 68 150 REHKGP2 PLA

C86F: 68 151 PLA

C670: BC F2 03 152 JMP (RESET)

C873: 8C 02 03 154 STKOK STY ROMSTK ;Dec rom stack

C876: AD CF 03 155 LDA ROMBNK ;Get current rom

C879: 99 02 03 156 STA ROMSTK,Y ;Save on stack

C87C: AD CE 03 157 LDA NXTROM ;Get next rom

C87F: BD CF 03 158 STA ROMBNK ;Make it current

C882: A8 159 TAY ;Index by next rom

C883: AD CC 03 160 LDA SLOT2 ;$n0

C886: 85 26 161 STA PTRO

C888: A9 CO 162 LDA #$C0

C88A: 85 27 163 STA PTRO+1

C88C: AD FF CF 164 LDA ROMOFF ;Turn off all roms

C88F: 81 26 165 LDA (PTRO),Y ;Turn on next rom

C891: 68 166 PLA ;Processer status

C892: AC FE CF 168 LDY CHKBYT ;Check to see if there

C895: CO A5 169 CPY #ROMBYT ;is a rom in that slot

C897: DO 2C 170 BNE DREXIT ;If not, exit

C899: 48 172 PHA ;and vector to the

C89A: 28 173 PLP ;appropriate location

page 65

APPENDIX D - SOURCE LISTINGS

C89B: 29 08 174 AND 000001000

C890: DO 11 175 BNE DECMODE

C89F: 68 177 PLA ;Restore registers

C8A0: A8 178 TAY

C8A1: 68 179 PLA

C8A2: BO 06 180 BCS KSW1

C8A4: 20 FA C9 182 JSR CSWLIN ;Output

CBA7: 38 183 SEC

C8A8: BO 15 184 BCS COMRTN

C8AA: 20 18 CA 186 KSW1 JSR KSWLIN ;Input

CBAD: 38 187 SEC

C8AE: BO OF 188 BCS CONRTN

CBBO: D8 190 DECMODE CLD

C8B1: 68 191 PLA ;Restore registers

C8B2: A8 192 TAY

C8B3: 68 193 PLA

CBB4: 90 06 194 BCC GP1

CBB6: 20 00 C8 196 JSR RONBADR ;Beginning of & rom

C8B9: 38 197 SEC

C8BA: BO 03 198 BCS COMRTN

C8BC: 20 7D 03 200 GP1 JSR ROMJMP ;General purpose

CBBF: 2C FF CF 202 CONRTN BIT ROMOFF ;All routines come

C8C2: 48 203 PHA ;back this way

C8C3: 98 204 TYA

C8C4: 48 205 PHA

C8C5: 08 206 DREXIT CLD

CBC6: AC 02 03 207 LDY RONSTK ;Restore rom stack

CBC9: B9 02 03 208 LDA RONSTK,Y ;Turn last rom

C8CC: 8D CF 03 209 STA ROMBNK ;back on

page 66

APPENDIX D - SOURCE LISTINGS

C8CF: 30 OC

C8D1: A8

C8D2: AD CC 03

C8D5: 85 26

C8D7: A9 CO

C8D9: 85 27

C8DB: 81 26

C8DD: EE 02 03

210

211

212

213

214

215

216

217 DREX2

BMI

TAY

LDA

STA

LDA

STA

LDA

INC

DREX2

SLOT2

PTRO

#$C0

PTRO+1

(PTRO),Y

ROMSTK

C8E0: 68 218 PLA

C8E1: A8 219 TAY

C8E2: 68 220 PLA

C8E3: 60 221 RTS ;Return to caller

C8E4: 4E 1D 03 223 CONNECT LSR IOFLG ;Intercept I/O hooks
C8E7: AO 4E 224 LDY #<KSWLGPLE
C8E9: 84 38 225 STY KSWL

C8EB: AO 4C 226 LDY #<CSWLGPLE

C8ED: 84 36 227 STY CSWL

C8EF: AC CD 03 229 LDY SLOT1
C8F2: 84 39 230 STY KSWH

C8F4: 84 37 231 STY CSWH

C8F6: AO 00 233 LDY #$00

C8F8: 8C 15 03 234 STY CSWINDX ;Set-up flags

C8FB: 8C 14 03 235 STY KSWFLG

C8FE: 60 236 RTS

CBFF: 4C 00 C8 238 ROMJMP1 JMP ROMBADR ;Image of subroutines

C902: 20 E3 CF 239 SUBSW1 JSR BANKSWE ;to be moved to $37D
C905: 08 240 PHP

C906: 85 26 241 STA PTRO
C908: 86 27 242 STX PTRO+1

C90A: BA 243 TSX

C908: BD 02 01 244 LDA STACK+2,X

C90E: C9 AD 245 CEP #<SUBADRH

page 67

APPENDIX D - SOURCE LISTINGS

C910: DO 11 246 BNE 	DOJSR
C912: BD 03 01 247 LDA 	STACK+3,X
C915: C9 03 248 CMP 	#>SUBADRH
C917: DO OA 249 BNE 	DOJSR
C919: 68 250 PLA
C91A: AA 251 TAX
C916: 68 252 PLA
C91C: 68 253 PLA
C91D: BA 254 TXA
C91E: 48 255 PHA
C91F: A9 4C 256 LDA 	#JMPCODE
C921: DO 02 257 BNE 	SUBOVER

C923: A9 20 259 DOJSR LDA# JSRCODE
C925: 8D AB 03 260 SUBOVER STA 	SUBJSR
C928: A6 27 261 LDX 	PTRO+1
C92A: AS 26 262 LDA 	PTRO
C92C: 28 263 PLP
C92D: 20 FF CF 264 SUBJSR1 JSR 	ROMOFF

265 SUBADRL1 EQU 	*-2
266 SUBADRH1 EQU 	*-1

C930: 4C E3 CF 267 JMP 	BANKSWE

C933: AD 98 CC 269 ESCPNT1 LDA 	ESCTBL ;Used by macro
C936: 60 270 RTS
C937: 00 271 ENDRIV DFB 	0

**
* *

* THESE ARE THE MACROS USED FOR BANK *
* SWITCHING AND INDIRECT JUMPS, ETC. 	*
* *
#########*#####################*##########

page 68

APPENDIX D - SOURCE LISTINGS

DO 	0 	 ;Required by assembler

BANKSW MAC 	 ;This routine is at $CFE3

PHA 	 ;in both bank of all rams

TYA 	 ;It is used by JSRBS &

PHA 	 ;JMPBS to do the actual

LDA ROMBNK 	;bankswitching.

FOR #TOGBYT 	;Use #$80 to

STA ROMBNK 	;toggle high bit.

TAY 	 ;The fact that it's in

LDA #$C0 	;the same place in both

STA PTRO+1 	;banks means that

LDA SLOT2 	;when the actual

STA PTRO 	;bank switch takes place

LDA (PTRO),Y ;<--HERE

PLA 	 ;the next instruction is

TAY 	 ;the same in both banks.

PLA

RTS

DEB ROMBYT 	;Test if rom is installed

<<<

JMPBS 	MAC 	 ;JMP, BANK SWITCHING

PHA 	 ;Save A

LDA #<11 	;]1 = The subroutine

STA SUBADRL 	;to be called

LDA #>]1

STA SUBADRH

PLA
JMP SUBSW 	;Uses SUBSW lb $380

<<<

JSRBS 	MAC 	 ;JSR, BANK SWITCHING

PHA 	 ;Variable 11 is address

LDA #<]1 	;of subroutine.

STA SUBADRL

page 69

APPENDIX D - SOURCE LISTINGS

LDA 	 ;Also uses subsw @ $380

STA SUBADRH 	;so that an RTS at the

PLA 	 ;end of subroutine will
JSR SUBSW 	;return to this bank.
<<<

ROMCALL MAC 	 ;Call subroutine in rom
STA PTRO 	;Save A

STY PTRO+1 	;Save Y
LDY 	 ;Index to address table

LDA #]2 	;Rom number (0 - $F)

JMP ROMCON 	;Address of ROMCONT
<<<

ROMCONT MAC 	 ;Common to all ROMCALLS

STA NXTROM 	;Set up next rom

LDA ADRL-1,Y 	;Pick up address

STA ROMJMP+1 	;from address table

LDA ADRH-1,Y 	;and store in ROMJMP

STA ROMJMP+2 	;($37D JMP $XXXX)

LDA SLOT1 	;Push address of GPINPUT

PHA 	 ;on to the stack
LDA #<GPINPUT-1 ;which will handle

PHA 	 ;the actual rom switching

LDY PTRO+1 	;Restore Y

LDA PTRO 	;Restore A

RTS 	 ;to GPINPUT

<<<

FIN

page 70

HOLLYWOOD HARDWARE

APB-102 QUICK REFERENCE GUIDE

GENERAL NOTES:

1) Escape functions are produced by hitting the "ESC" key

and THEN the command key shown below. No RETURN is

required, as the action takes place as soon as the

command key is pressed.

2) Characters enclosed in square brackets are control

characters (e.g. [A] = CTRL A). They are produced by
holding the CTRL key down WHILE pressing the key in the

brackets.

3) Commands marked with an asterisk (*) are repetitive,

which means that after they execute they remain in the

same mode. Examples are Escape functions like the

cursor control keys "I,J,K,11" which can be used

repetitively without having to hit ESC before each one.

4) The symbol "<cr>" is used to indicate a Carriage Return

(N), either typed at the keyboard or embedded in the

text.

Page 71

APB-102 QUICK REFERENCE GUIDE

ESCAPE FUNCTIONS (ROM MACROS)

COMMAND

KEY 	FUNCTION

[B] * B (prefix to LOAD, SAVE, RUN, as in BLOAD)
[C] CATALOG
[0] 	Prints GPLE version number

[E] Duplicates [E] (Edit)

[F] PEEK(A) + PEEK(A+1) * 256 (used by other MACROS)

[V] 	VTAB PEEK (37) <cr> - moves up one line

[x] 	Add a formatted REM statement to Basic program

line (leaves you in insert mode.)

Print left bracket ([)

Print backslash (±)

Print underscore (_)

Print Ctrl left bracket ([[])

Print Ctrl backslash (1±])

Print Ctrl underscore ([_])

PRINT

Enter the monitor (CALL -151)

* L<cr> (list in MONITOR)

30 foreward spaces (used by RUN, SAVE, etc)

POKE -16368,0 (clear keyboard strobe)

PEEK (-16384) (check for key press)
0 	Call -936 <cr> (HOME in Integer Basic)
1 	Catalog,D1

2 	Catalog,D2

4 	Catalog,S4

5 	Catalog,S5
6 	Catalog,S6

7 	CHR$(n) where you supply the n
8 	CALL -868 (clear to end of line)
9 	CALL -958 (clear to end of page)
L 	LIST

Page 72

APB-102 QUICK REFERENCE GUIDE

P 	PRINT PEEK(n) where you supply the n

Q 	Print value of the two byte number at the address

pointed to by variable A

R 	RUN <cr>
S 	Print free sectors on last disk accessed

(**ASSUMES A STANDARD DOS**)

TEXT:POKE -16300,0 (text page 1)

V 	VTAB 1 <cr> (without clearing screen)

Display the Address and Length of the current RAM

MACRO table

[SHIFT-M] 	Save current RAM MACRO table to disk with the

suffix = M$

[L] 	LOAD <filename> on current screen line

[S] 	SAVE <filename> on current screen line

[R] 	RUN <filename> on current screen line

[Z] 	DELETE <filename> on current screen line

X 	LOCK <filename> on current screen line
Z 	UNLOCK <filename> on current screen line

Clear screen and home cursor

A,B,C,D Cursor moves, as per Apple manual

E,F 	Clear keys, as per Apple manual

I,J,K,M * Cursor moves, as per Apple manual (Autostart Rom)

* 40 left arrows (affects data)

* 40 right arrows (affects data)

ARROW KEYS:

LEFT 	* Eight back spaces (affects data)

RIGHT 	* Eight foreward spaces (affects data)
UP 	* Same as I (Apple][e only)

DOWN 	* Same as M (Apple][e only)

Page 73

APB-102 QUICK REFERENCE GUIDE

SYSTEM COMMANDS

All system commands except [W], [A], and RESET must be the

first key typed after a <cr>.

COMMAND

KEY 	FUNCTION

[E] 	Edit BASIC program line(s)

[R] 	Reset Rom board, Warm Start. Easy way to turn off

a printer or exit from monitor

[@] 	Reset Rom board, Cold. Resets Macro table and

rehooks Ampersand rom.

[W] 	Edit line being typed. This can be used at any

time if you are not already in the EDIT mode

[A] 	Switch between upper and lower case entry. (If

you start getting funny characters when you type,

try hitting [A] twice.)

[C] 	Returns to BASIC from the Monitor

[Q] 	Quit GPLE and restore Apple to normal function

RESET 	Reconnect GPLE (if active) and return to BASIC

Page 74

NOTE:

APB-102 QUICK REFERENCE GUIDE

LIST CONTROL COMMANDS

COMMAND

KEY 	FUNCTION

[S] 	Starts and stops any listing

SPACE 	Single steps any listing

[P] 	Lists next page (20 lines) of any listing

[C] 	Cancels current listing and return to BASIC.

(Works with CATALOG's also!)

THE EDIT MODE

NOTE:

Editing is invoked by typing [E] as the first key after a

<cr>. The EDIT prompt will appear and you can enter the

line numbers or parameters you wish to edit. 	The EDIT

command can have the following forms:

1) EDIT n1 Edits the line represented by n1

2) EDIT n1,n2 Edits the range of lines from n1 to n2

3) EDIT "ABC" Edits all lines containing ABC

4) EDIT "AB?" Edits all lines containing a 3 character

word starting with "AB"

Page 75

APB-102 QUICK REFERENCE GUIDE

5) EDIT "ABC","DEF"

6) EDIT "ABC","DEF"/F

7) EDIT "ABC","DEF"/R

8) EDIT n1„"AB?","DEF"

9) EDIT .

10) EDIT ESC n

11) EDIT ?

Edits all lines containing ABC and

replaces with DEF. Stops at each line

so that you may accept the change or

restore the line.

Fast search. Editor does not stop at

each line.

Raw search. Editor will find ABC even

if it is embedded in a longer string.

Any combination of parameters may be

used so long as commas are included in

the correct locations.

Re-edits the most recently edited Basic

line.

Edits or creates a Macro for the first

key typed after the ESC key.

Lists the complete Macro table.

EDIT MODE COMMANDS

COMMAND

KEY
	

FUNCTION

[I] 	# Inserts character(s) at cursor position

[D] 	Deletes character(s) at cursor position

Page 76

APB-102 QUICK REFERENCE GUIDE

[0] 	Inserts next control character into text

[B] 	Moves cursor to Beginning of line

[N] 	Moves cursor to eNd of line

[F] 	* Finds the next character typed

[Z] 	* Zaps (deletes) all characters up to the next

character typed

[R] Restores Basic line to its condition before

Editing began

[P] 	Packs line, removing all spaces

[C] 	Converts character at the cursor to the opposite

case and advances the cursor

[Q] Accepts the line up to the cursor and exits the

Edit mode (This means you lose everything after

the cursor)

[m]
	

Same as a carriage return or <cr>. Enters the

entire line, regardless of the position of the

cursor, and exits the Edit mode

[X] 	Cancels any changes to the line and exits the Edit
mode

Page 77

APB-102 QUICK REFERENCE GUIDE

AMPERSAND (&) FUNCTIONS

NOTE:

All Ampersand functions can be used in the Immediate mode

(no program running). Several Ampersand functions can be

used in Applesoft Basic programs, just like any other Basic

command. An "ILLEGAL RUNTIME ERROR" will occur if you

attempt to use an Immediate mode utility in a program.

COMMAND

&[P]xxx

&ASC

&BIN

&HIM

&LOM

FUNCTION

Catalogs the available ampersand

functions. Immediate.

Passes the command "xxx" on to an

Ampersand utility that was active

when Rom Board was connected.

Runtime.

Returns the ASCII value of the next

key pressed. Runtime.

Prints the address and length of the

last BLOADed or BRUN binary file.

(**ASSUMES A STANDARD DOS**).

Immediate.

Prints the current value of HIMEM:.

Immediate.

Prints the current value of LOMEM:.

Immediate.

Page 78

APB-102 QUICK REFERENCE GUIDE

&NOTNEW

&SM"string",Rr,Ss

&SM4hexadecimal",Rr,Ss

&SPstring

Recovers from accidental use of NEW,

FP, or INT. Program will have been

damaged if a variable has been

defined or a SYNTAX ERROR has

occured. Immediate.

Searches all memory except $C000 to

$CFFF (I/O space) for a match to
"string." The high bit is ignored.

If Rn is specified then bank "r" of

the ram card in slot "s" is searched

in the $0000 - $FFFF memory space.

If no slot is specified then slot 0

is assumed. Immediate.

Same as above, except that it

searchs for a list of hexadecimal

numbers (e.g. &SM"$20 ED FD" would

find all occurances of "JSR $FDED"

in memory"). Spaces between numbers

are not required if all numbers are

two bytes long. Immediate.

Searches the program in memory for a

match to string. Similar to the Raw

search in GPLE. If you are looking

for a word which may contain an

Applesoft command (e.g. strONg)

then the first character of the

search string should be a quote.

The quote will not be included in

the search. Immediate.

Page 79

APB-102 QUICK REFERENCE GUIDE

&#
	

Returns the Hexadecimal and Binary
equivalent of Decimal #.

Immediate.

& $ #
	

Returns the Decimal and Binary
equivalent of Hexidecimal #.

Immediate.

&%/1 	 Returns the Decimal and Hexadecimal

equivalent of Binary #. Immediate.

&MOVMAC

&RESMAC

&DISCHR

&FRESEC

Moves the Macro Table to a location

256 bytes below the current HIMEM

and relocates HIMEM to protect it.

Immediate.

Resets the Macro Table to Page 3 and

moves HIMEM up 256 bytes. If the

Macro table is already in Page 3

then no action will be taken. To be

safe, this command should be used

only if &MOVMAC has been used first.
Immediate.

Displays control characters as

inverse characters. If GPLE is

active, turn off with [R]. If not,

use RESET. This is useful for

finding control characters embedded

in file names, programs, etc.

Immediate.

Prints the number of free sectors

remaining on the most recently

accessed disk. Assumes a standard

DOS. Runtime.

Page 80

APB-102 QUICK REFERENCE GUIDE

&CEOL 	 Clears to end of line. Same as

"CALL -868" Runtime.

&CEOP 	 Clears to end of page. Same as

"CALL -958" Runtime.

&HGR 	 Same as HGR without clearing the
screen Runtime.

&HGR1 	 Allows the selection of HGR page 1,

but without text at the bottom.

This is useful for switching back

and forth between two full screens

of graphics Runtime.

&HGR2 	 Same as HGR2 without clearing the

screen Runtime.

&IF exp THEN exp : &ELSE exp 	If the expression after the &IF is

true then the expression(s) between

THEN and &ELSE will be executed.

Otherwise the expression(s) after

the &ELSE will be executed. &IF /

THEN / &ELSE structures can be

nested but they must all be on one

line. Runtime.

&PRINT USNG:string;variable(s) Prints the Integer, Real, or Array

variable(s) following the semicolon

using the format of the string or

string variable as a template.
Runtime.

Page 81

HOLLYWOOD HARDWARE, INC.
6842 Valjean Avenue t \

Van Nuys, California 91406

(213) 989-1204
\\\

	Hollywood Hardware Ultra ROM Board Editor
	Warranty & Copyright Information
	Table of Contents
	General Description
	Notes About Syntax
	Installing the Ultra ROM Board
	First Session
	Using the Macro Tables
	Editing with GPLE
	Editing BASIC Program Lines
	Editing the Macro Table
	The Editing Keys
	The Ampersand Programming Utilities (APU)
	The Ampersand Commands
	Operation of the Ultra ROM Board
	Compatibility with Other Programs
	Appendix A: Advanced Topics
	Appendix B: Writing Your Own Programs for ROM
	Appendix C: Memory Map
	Appendix D: Source Listings
	Hollywood Hardware APB-102 Quick Reference Guide
	General Notes
	Escape Functions (ROM Macros)
	System Commands
	List Control Commands
	The Edit Mode
	Edit Mode Commands
	Ampersand Functions

	Back Cover

