User Guide for the

1

APM-08

Keithley MetraByte Corporation

-

•

.

* * * * *

- *ii* -

-

The APM-08 AD/DA Converter for Apple II Plus & Ile

.....

Revision A, • 1985 Copyright [©] Keithley MetraByte Corp. 1985 Part Number: 24850

.

KEITHLEY METRABYTE CORPORATION

440 MYLES STANDISH BLVD., Taunton, MA 02780 TEL. 508/880-3000, FAX 508/880-0179 .

Warranty Information

All products manufactured by Keithley MetraByte are warranted against defective materials and worksmanship for a period of one year from the date of delivery to the original purchaser. Any product that is found to be defective within the warranty period will, at the option of Keithley MetraByte, be repaired or replaced. This warranty does not apply to products damaged by improper use.

Warning

Keithley MetraByte assumes no liability for damages consequent to the use of this product. This product is not designed with components of a level of reliability suitable for use in life support or critical applications.

Disclaimer

Information furnished by Keithley MetraByte is believed to be accurate and reliable. However, the Keithley MetraByte Corporation assumes no responsibility for the use of such information nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of Keithley MetraByte Corporation.

Notes

Keithley MetraByte/Asyst/DAC is also referred to here-in as Keithley MetraByte.

Basic[™] is a trademark of Dartmouth College.

IBM® is a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture[®] (MCA) are trademarks of International Business Machines Corporation.

Microsoft[®] is a registered trademark of Microsoft Corporation.

Turbo C[®] is a registered trademark of Borland International.

.

Table of Contents

.

Chapter 1 INTRODUCTION	1
1.1 SUMMARY OF APM-08 FUNCTIONS.	1
Chapter 2 INSTALLATION	4
2.1 HARDWARE INSTALLATION	4
Chapter 3 PROGRAMMING	5
 3.1 PROGRAMMING APM-08 3.2 MEMORY ADDRESS MAP OF APM-08 3.3 STARTING THE A/D CONVERTER 3.4 READING THE A/D DATA 3.5 THE APM-08 STATUS REGISTER 3.6 THE APM-08 CONTROL REGISTER 3.7 THE COUNTER TIMER REGISTERS 3.8 D/A DATA FORMAT 3.9 USING THE ROM BASED DRIVER WITH APPLESOFT 	5 6 7 8 9 10 12 13
Chapter 4 COUNTER/TIMER	16
4.1 THE 8253 PROGRAMMABLE INTERVAL TIMER 4.2 EVENT COUNTING OR COUNTING A NUMBER OF INPUT PULSES 4.3 GENERATING SQUARE WAVES OF PROGRAMMED FREQUENCY 4.4 MEASURING FREQUENCY AND PERIOD 4.5 GENERATING TIME DELAYS 4.6 TRIGGERING THE A/D PERIODICALLY	16 20 21 22 22 24
Chapter 5 APPLICATIONS	25
 5.1 CHANNEL INPUTS 5.2 MEASURING VOLTAGE 5.3 4-20mA CURRENT LOOPS 5.4 THE REFERENCE 5.5 D/A CONVERTERES 5.6 USING DIGITAL INPUT/OUTPUT 5.7 PROGRAMMABLE INTERVAL TIMER 5.8 ADDING MORE ANALOG INPUTS 5.9 INTERFACE TO TRANSDUCERS, THERMOCOUPLES ETC. 5.10 POWER OUTPUT FROM THE APM-08 CONNECTOR 5.11 PRECAUTIONS IN USE - NOISE, GROUNDLOOPS AND OVERLOADS 	25 25 28 29 30 30 31 31 32 32
Appendix A CONNECTIONS	34
A.1 MAIN I/O CONNECTOR A.2 REAR VIEW OF APM-08 CONNECTOR	34 36

--

(

		Con 1
Appendix B SPECIFICATIONS	37	
B.1 POWER CONSUMPTION	37	
B.2 A/D SPECIFICATION	37	
B.3 SAMPLE HOLD AMPLIFIER	38	
B.4 REFERENCE VOLTAGE OUTPUT	38	
B.5 D/A CONVERTERS	38	
B.6 DIGITAL I/O	39	
B.7 INTERRUPT INPUTS	39	
B.8 COUNTER/TIMER	40	
B.9 POWER OUTPUTS	40	
B.10 GENERAL ENVIRONMENTAL	41	
Appendix C STORAGE OF INTEGER VARIABLES	42	
Appendix D CALIBRATION AND TEST	44	
D.1 CALIBRATION AND TEST	44	
5.1 CALIBRATING THE A/D	44	
D.2 CALIBRATING THE D/A's	45	
D.3 BASIC CALIBRATION PROGRAM LISTING	47	
Appendix E APM-08 ROM LISTING	50	(

-

.

Chapter 1

INTRODUCTION

1.1 SUMMARY OF APM-08 FUNCTIONS.

MetraByte's APM-08 is an 8 channel 12 bit high speed A/D converter, timer/counter, digital I/O, and 2 channel 12 bit D/A board for the Apple II Plus and IIe computers. The APM-08 board is a full length board and can be plugged into any of the Apple expansion slots. All connections are made through a 40 pin header and flat cable assembly through the rear of the computer. An optional screw connector board (STA-AP) facilitates making connections outside the computer. The following functions are implemented on the APM-08:-

- An 8 channel, 12 bit successive approximation A/D converter with sample/hold. The full scale input of each channel is +/-5 volts with a resolution of 0.00244 volts (2.44 millivolts). Inputs are single ended with a common ground and can withstand a continuous overload of +/-30 volts and brief transients of several hundred volts. All inputs are fail safe i.e. open circuit when the computer power is off. A/D conversion time is typically 25 microseconds (35 microseconds max.) and depending on the speed of the software driver, throughputs of up to 30,000 channels/sec are attainable.
- 2. 2 channels of 12 bit multiplying D/A converters are provided. These may be used with an on-board fixed -10v precision reference voltage for an output of 0 - +10v or with an external positive or negative reference voltage up to +/-10v or with an A.C. reference e.g. 400Hz for synchro/resolvers. The output is the product of the input reference and the digital input. The digital input data is double buffered for single step update. Output settling time is typically 30 microseconds to 0.01% for a full scale step.
- 3. An 8254 programmable counter timer provides periodic interrupts for the A/D converter and can additionally be used for event counting, pulse and waveform generation, frequency and period measurement etc. There are three separate 16 bit down counters in the 8254. One of these (Counter 2) is connected to the system clock, and all I/O functions of the remaining two are accessible to the user. Input frequencies up to 8MHz can be handled by the 8254.

- 1 -

ĺ

.:

- 4. 7 bits of TTL digital I/O are provided composed of one output port of 4 bits and one input port of 3 bits.
- 5. 1 precision -10.00v (+/-0.1v) reference voltage output is derived from the A/D converter reference. This output can source/sink 2mA.
- 6. An external interrupt input is provided to allow user programmed interrupt service routines to provide background data acquisition or interrupt driven control. The APM-08 includes status and control registers that make interrupt handshaking a simple procedure. The interrupt input may be externally connected to the timer/counter or any other trigger source.
- 7. Apple buss power (+5, +12 & -12v) is provided along with all other I/O connections on the rear connector. This makes for simple addition of user designed interfaces, input signal conditioning circuits, expansion multiplexers etc.

The APM-08 is easily programmed as a memory mapped peripheral using assembly language or PEEKS and POKES in BASIC. An on-board 2K EPROM (2732) provides a high level Applesoft interface PR#2:PRINT"C4" will perform a conversion on Channel 4 (see e.q. Chapter 4). The ROM provides access to all board functions with the exception of interrupt driven processes which are not supported by Applesoft BASIC. Using state of the art data conversion components, the APM-08 has been designed to provide a powerful and inexpensive analog/digital interface on a single board. It is ideally suited to any application requiring high speed 12 bit data acquisition at low cost. The freedom from complexity and the individual memory function make programming locations of each straightforward. Applications include data logging, process control, signal analysis, robotics, energy management, product testing, digitizers and touch screens, laboratory and medical instrumentation etc. A system block diagram appears in Fig. 1.1.

An optional screw terminal board (MetraByte STA-AP) housed in a plastic instrument case can be mounted outside the computer and greatly simplifies connection of the APM-08 to your application. All I/O lines from the APM-08 are connected to miniature screw terminal connectors. The digital I/O port lines are monitored by L.E.D.'s and a small breadboard area with +/-12v & +5v power is available for amplifiers, filters, and other user supplied circuits. (

INTRODUCTION

Fig. 1.1 Block Diagram of APM-08

()

Chapter 2

INSTALLATION

2.1 HARDWARE INSTALLATION

The APM-08 may be plugged into any of the expansion slots inside your Apple II Plus or IIe except slot 0 which is reserved for system use. There are no switches or jumpers on the board that need setting before installation.

Turn off the power on your computer, and remove the top cover of your computer. Before you touch or handle any of the computer electronics or the APM-08 board make sure you have discharged any static charge that your body may have acquired. The easiest way to do this is to momentarily touch the case of the Apple power supply or backplate on the computer (assuming it is grounded). Next, remove the xAPM-08 from its protective electrostatic packaging and place it in a vacant slot (except 0). If you are connecting the flat cable, plug the header into the rear of the board and lead the cable out through one of the larger slots of the rear panel. Both ends of the cable are polarized and interchangeable. If the strain relief on the plug interferes with an adjacent board then snap it off, it is not essential but simply improves the mechanical integrity of the cable.

When you have finished installation, replace the top cover of your computer and check that it boots up normally.

Remember, TURN OFF THE POWER whenever installing or removing any peripheral board including the APM-08. Failing to observe this precaution can cause costly damage to the electronics of your computer and/or the APM-08 board.

If for any reason you later remove the APM-08 board, MetraByte recommends that you retain the special electrostatically shielded packaging and use it for storage.

- 4 -

and the found of the second second

Chapter 3

PROGRAMMING

3.1 PROGRAMMING APM-08

At the lowest level, APM-08 is programmed using memory 1/0 In BASIC these are the POKE X, Y and instructions. PEEK(X) functions. Assembly language and most other high level languages have equivalent instructions. Use of these functions usually involves pre-formatting data and dealing with absolute memory addresses. Although not demanding, this can require many lines of code and necessitates an understanding of the devices, data format and architecture of the APM-08. To simplify programming for many applications an on-board ROM driver is supplied that operates with Applesoft BASIC using simple commands. These commands are described in Section 3.8. The tradeoff involved in using the on-board ROM is a loss in speed due to the execution time of interpreted BASIC and an interrupt driven functions (background data inability to use acquisition) interrupts are not supported by BASIC. The as compensating simplicity of programming may in many cases be more important than obtaining the ultimate in performance through assembly language routines. The hardware supports both approaches.

3.2 MEMORY ADDRESS MAP OF APM-08

First of all let's take a look at the memory address map of the APM-08:-

ADDRESS	READ	WRITE
Slot I/O base + 0	A/D Lo byte	Start 8 bit A/D conversion
+ 1	A/D Hi byte	Start 12 bit A/D conversion
+ 2	APM-08 status	APM-08 control register
+ 3	-	-
+ 4	Read Counter 0	Load Counter 0

- 5 -

Second Sec

+ 5	Read Counter 1	Load Counter 1
+ 6	Read Counter 2	Load Counter 2
+ 7	-	Counter control reg.
+ 8	-	D/A #0 Low byte
+ 9	-	D/A #0 High byte + Load
+ 10	-	D/A #1 Low byte
+ 11	-	D/A #1 High byte + Load

The various device addresses use the peripheral card I/O space (see Apple Technical Reference Manual). The reserved locations for peripheral I/O are as follows:-

SLOT NUMBER	SLOT (Hex)	<pre>I/O BASE ADDRESS (Decimal integer)</pre>
0	\$C080	-16256
1	\$C090	-16240
2	\$COA0	-16224
3	\$C0B0	-16208
4	\$C0C0	-16192
5	\$C0D0	-16176
6	\$C0E0	-16160
7	\$C0F0	-16144

The following example shows how to read the status register of a board in slot # 4:-

xxx10 X% = PEEK(-16190) :REM -16190 = Base + 2

To perform similar operations for the A/D, D/A's and timer-counter, we need to know more about the format of the data for these devices. This is discussed in the following sections.

3.3 STARTING THE A/D CONVERTER

An A/D conversion is initiated by writing to location SLOT BASE ADDRESS + 0 or SLOT BASE ADDRESS + 1. To simplify further explanations the variable BASE will be used as the value of the SLOT BASE ADDRESS. If you write to BASE + 1, a full 12 bit A/D conversion is performed. Writing to BASE initiates a short cycle 8 bit conversion. A 12 bit conversion takes no more than 35 microseconds to complete, a short cycle 8 bit conversion takes less time and will

- 6 -

PROGRAMMING

not exceed 25 microseconds. (These times are dependent on the type and manufacturer of AD574 A/D converter used in your APM-08 and may be less, but will not exceed the durations specified).

Starting an A/D conversion:-

12 bits xxx10 POKE BASE + 1, 0

8 bits xxx10 POKE BASE, 0

The value of the data written to these locations is irrelevant and is lost. It is only needed to satisfy the syntax of BASIC. The decoded address write pulse is in fact what starts the A/D.

3.4 READING THE A/D DATA

After the end of conversion the data from the A/D may be read from locations BASE and BASE + 1. Data follows a low byte/high byte sequence which corresponds to the way the 6502 handles 16 bit word data. The data is left justified, so that BASE + 1 contains the most significant 8 bits from the conversion:-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
(BASE + 1)	B1 (MSB)	B2	B3	B4	B5	B6	В7	B8

The remaining 4 least significant bits followed by 4 zeroes are read from BASE:-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
(BASE + 0)	B9	B10	B11	B12 (LSB)	0	0	0	0

The left justification allows you to read 8 or 12 bit data to 8 bits of resolution by simply accessing one byte.

The A/D data bits B1-B12 correspond to an offset binary code:-

BINARY	HEX	ANALOG INPUT VOLTAGE
		-5.0000 v (-Full scale) -4.9976 v
• •	• •	•
• •	• •	•

and the second sec

(

0100 0000 0000	400	-2.5000 v (-1/2 scale)
• • •	•	•
• • •	•	•
1000 0000 0000	800	+/-0 v (zero)
1000 0000 0001	. 801	+0.0024 v
• • •	•	•
• • •	•	•
1100 0000 0000	C00	+2.5000 v (+1/2 scale)
. • • •	•	•
• • •	•	•
1111 1111 1111	FFF	+4.9976 v (+Full scale)

A sequence of BASIC PEEK() instructions to read the data would be:-

xxx10 XL% = PEEK(BASE) :REM read low byte xxx20 XH% = PEEK(BASE + 1) :REM read high byte xxx30 X% = XH%*16 + XL%/16 :REM combine bytes, X% = data

Note the use of integer variables throughout. BASE can be integer as well as all the data which is always in the range 0 - 4095. From this point you can turn the data in bits into volts or other engineering units (start using real variables!):-

xxx40	V = X * 10/4096	:REM	output * span/resolution
xxx50	$\mathbf{V} = \mathbf{V} - 5$:REM	subtract zero offset, -5.0000 y

If we were using an input amplifier or attenuator with gain G, we could add another line to provide scaling etc.:-

xxx60 V = V * G

3.5 THE APM-08 STATUS REGISTER

The status register provides information on the operation of APM-08. It is a read only register at I/O location BASE + 2 and has the following format:-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
(BASE + 2)	EOC	IP3	IP2	IP1	IRQ	MA2	MA1	MAO
The bits have the fol	lowin	g sig	nific	ance:	-			

EOC: End of Conversion. If EOC is high (Logic 1) the A/D is busy performing a conversion. Data should not be read in this condition as it will be invalid. Wait for the EOC to return to logic 0 signifying valid data available.

PROGRAMMING

- IP3 IP1: These bits correspond to the three digital input port lines IP3, IP2 and IP1. They may be used for any digital data input.
- IRQ: After generation of an interrupt to the processor IRQ is set to logic high (1). It is reset to logic low (0) by a write to the control register. This provides a means of acknowledging or "handshaking" APM-08 interrupts.
- MA2-MA0: These bits provide the current analog multiplexer channel address as follows:-

MA2	MA1	MA0	CHANNEL
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	б
1	1	1	7

3.6 THE APM-08 CONTROL REGISTER

The control register sets the multiplexer (channel) address, enables and disables interrupts and provides output data to the 4 general purpose digital outputs OP1-OP4. The control register is a write only register located at I/O address BASE + 2 (same location as status register). The data format of the control register is:-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
(BASE + 2)	OP4	OP3	OP2	OP1	INTE	MA2	MA1	MAO

The bits have the following significance:-

OP4-OP1: These bits correspond to the four general purpose digital output lines OP1 thru OP4. These lines can be used for external control functions e.g. driving an input sub-multiplexer to increase the number of analog input channels. A 16 channel mux. on each of APM-08's 8 analog channels can expand the system to 128 channels.

INTE: APM-08 generated interrupts are enabled onto the

()

ĺ

ì

common Apple interrupt bus. This bus uses a wire "OR" structure so that any peripheral board generating an interrupt will pull it active low. there is more than one device generating If interrupts, the user's interrupt service routine should first establish which device generated the interrupt. On the APM-08 the IRQ bit in the status register provides this information. It is cleared by writing to the control register. The interrupt service routine can be set up to perform many different functions e.g. background data acquisition, D/A waveform generation etc. but these capabilities are only available to the assembly language programmer. То disable interrupts, set INTE = 0.

MA2-MA0: These bits select the current analog multiplexer channel address as follows:-

MA2	MA1	MAO	CHANNEL
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The multiplexer channel address can be determined at any time by reading the status register.

One further note about the control register. During power up of the Apple II when the RESET line is asserted, the APM-08 control register is cleared. This insures that APM-08 interrupts are disabled, sets digital outputs OP1-4 to zero and sets the multiplexer channel address to zero.

3.7 THE COUNTER TIMER REGISTERS

5

An 8254 programmable interval timer is used on APM-08. This is a very flexible device consisting of 3 separately programmable 16 bit down counters that may be operated in a variety of modes. A fuller description of the capabilities is in Chapter 4 (Counter Timer Operation).For additional technical information on

PROGRAMMING

this device, consult the "Intel Component Data Catalog"¹ or equivalent manufacturer's data sheet.

From a programming standpoint addressing counter timer functions is straightforward. The counter registers themselves are read write and located at addresses:-

BASE	+	4	:	Counter	0
BASE	+	5	:	Counter	1
BASE	+	6	:	Counter	2

Before reading or writing to the counter registers, you should write to the counter timer control register to define the operating mode of each counter and the type of data transfer that you intend to make. The counter timer control register is write only and located at BASE + 7. It has the following format:-

BASE + 7 : 8254 Control (Write only)

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
(BASE + 7)	SC1	SC0	RL1	RL0	M2	M1	M0	BCD

SC1-0: These are the "select counter" bits that control which counter the following configuration bits will operate on. The format for the SC1-0 bits is:-

SC1	SC0	Addressed Counter
0	0	Counter 0
0	1	Counter 1
1	0	Counter 2
1	1	Read back command

RL1-0: These are the "read/load" configuration bits that control the form of the data transfer to the selected counter. The format for the RL1-0 bits is:-

RL1	RL0	Data Xfer Operation
0	0	Counter latching operation
0	1	Read/load high byte
1	0	Read/load low byte
1	1	Read/load low then high byte
		(2 byte transfer)
OL 4		- Anustan Minan Operation for a

See Chapter 4 on Counter Timer Operation for a fuller description of these data transfer modes.

 And an a second provide state of the second sec second sec

1. Available from Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA. 95051. Phone [408]-987-8080

(

	1
M2-0:	These are the selected counter operating mode
	control bits. Their format is:-
	M2 M1 M0 Counter Mode
	0 0 0 0 - Change on terminal count
	0 0 1 1 - Programmable one-shot
	0011 - Programmable one-shot0102 - Rate generator
	0 1 1 3 - Square wave generator
	0 1 1 3 - Square wave generator 1 0 0 4 - Software triggered strobe
	1 0 1 5 - Hardware triggered strobe
	See Chapter 4 on Counter Timer Operation for a
	fuller description of these operating modes.
BCD:	This bit controls whether the selected counter
	will count in binary or binary coded decimal
	(8,4,2,1 BCD) code.
	BCD Counting Code
	0 16 bit binary (65,535 max.count)
	1 4 decade BCD (9,999 max. count)

3.8 D/A DATA FORMAT

Data for the two D/A channels is left justified as follows:-

Most significant byte (hi byte):-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
D/A 0: (BASE + 9) D/A 1: (BASE + 11)	B1 (MSB)	B2	В3	В4	в5	в6	в7	B8

Less significant nybble (lo byte):-

BIT POSITION	<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>
D/A 0: (BASE + 8) D/A 1: (BASE + 10)	в9	B10	·B11	B12 (LSB)	х		x don't	+ -

The D/A converters are double buffered. This means that data written to the less significant byte is temporarily held in a special register in the D/A and combined with the high byte when it is written. The effect is to present the full 12 bits of data to the D/A at the same instant, and in this way avoid a two step change in the analog output. For some applications e.g. driving a plotter, a single step change is an important requirement. The only programming tradeoff is that it is impossible to change the 4 least significant

bits of the D/A without writing to the 8 most significant bits. Usually this presents no difficulty.

Data for the D/A's is true binary. Digital zero input corresponds to zero output and digital full scale (12 bits = 4095) corresponds to full scale. When used with the fixed -10v reference input the scaling is as follows:-

BII	NARY		HEX	DECIMAL	ANALOG OUTPUT VOLTAGE
	0000		000 001	0	0.0000 v (zero) 0.0024 v (1 bit)
•	•	•	•	•	•
0100	0000	0000	400		2.5000 v (1/4 scale)
•	•	•	•	•	•
: 1000	0000	0000	800	2048	5.0000 v (1/2 scale)
•	•	•	•	•	•
1100	0000	0000	coo	3072	
•	•	•	•	•	•
			FFF	4095	9.9976 v (Full scale)

An example procedure in BASIC to format and write data to D/A #1 from variable Y% (range 0-4095) is as follows:-

xxx10 YH% = INT(Y%/16)	:REM separate high byte
xxx20 YL% = 16*(Y%-16*YH%)	:REM separate low byte
XXX30 POKE BASE + 10, YL%	:REM write low byte
xxx40 POKE BASE + 11, YH%	:REM write high byte & load

3.9 USING THE ROM BASED DRIVER WITH APPLESOFT

The on-board driver ROM contains software for high level interface with Applesoft using the PR# & IN# functions. This saves a lot of PEEKing and POKEing to absolute addresses, data formatting etc. A typical example to perform an A/D conversion on channel 6 on an APM-08 in slot 3 and return the data to variable A% would be as follows:-

xxx10 PR#3 : IN#3	:REM I/O to slot 3
xxx20 PRINT "C6"	:REM Send convert command
XXX30 INPUT A%	:REM Return data
xxx40 PRINT "Q"	:REM Return control to DOS

If you are not using DOS 3.3, then instead of line xxx40

()

(

substitute:-

xxx40 PR#0 : IN#0

:REM Return control to screen & keyboard.

The price paid for this simplicity is a loss in speed due to the relatively slow execution of interpreted BASIC and the loss of some of the hardware capabilities e.g. no interrupt capabilities supported by BASIC. However, for many less speed conscious applications using the ROM driver saves a lot of programming time and complexity. A source listing for the driver ROM is contained in Appendix E.

The command set for the ROM driver is as follows:-

COMMAND +	DATA	FUNCTION
С	0 - 7	Performs A/D conversion on channel 0 - 7.
DO	0 - 4095	Output data to D/A #0
D1	0 - 4095	Output data to D/A #1
S0	0 - 5	Set counter 0 configuration
S1	0 - 5	Set counter 1 configuration
S2	0 - 5	Set counter 2 configuration
LO	-	Latch counter 0
L1	-	Latch counter 1
L2	-	Latch counter 2
0	0 - 15	Write to 4 bit output port.
WO	0 - 65535	Load counter 0.
W1	0 - 65535	Load counter 1.
W2	0 - 65535	Load counter 2.
I	-	Read 3 bit input port.
RO	—	Read counter 0.
R1	-	Read counter 1.
R2	-	Read counter 2.
Q	-	Quit to DOS (last command)

- 14 -

Remember that the PRINT function always outputs data as an ASCII string to the peripheral board. Several constructions are possible e.g.:-

1:	xxx10	PRINT "C4"
2:	ууу10 ууу20	1% = 4 PRINT "C";1%
3:	zzz10 zzz20 zzz30	A\$ = "C" 1% = 4 PRINT A\$;1%

These are all equivalent. Using a variable in the PRINT opens up several possibilities. As an example, consider the following routine for scanning all channels into an array:-

xxx10	DIM D%(7)	:REM data array
xxx20	PR#3 : IN#3	:REM I/O to slot 3
xxx30	FOR I: $= 0$ TO 7	
xxx40	PRINT "C";I%	
xxx50	INPUT D%(I%)	
	NEXT I%	
xxx70	PRINT "Q"	:REM return control

Note that commands must be output as a continuous string. Spaces are ignored, but tabs and returns are not, so that statements such as the following are illegal:-

zzz10 PRINT "C",A%
yyy10 PRINT "D" : PRINT "0"

.

n se se se par se conservante en la con

Chapter 4

COUNTER/TIMER

4.1 THE 8253 PROGRAMMABLE INTERVAL TIMER

The Intel 8254 programmable interval timer is used in the APM-08. This is a flexible but somewhat complex device consisting of three independent 16 bit pre-settable down counters. The main uses of the 8254 are:-

- 1. A programmable timer for generating interrupts and triggering periodic A/D conversions.
- A variable frequency square wave generator for testing and frequency synthesis.
- 3. An event counter for external pulse inputs.
- 4. A time delay generator.

In addition, it is possible to accurately measure frequency and period by interconnecting some of the counters. For those interested in detailed information, a full description of the 8254 programmable interval timer can be found in the Intel data sheet (or equivalent manufacturer's literature).

Each counter has a clock input, a gate input that controls counting and triggering and an output. The maximum clock input frequency on any counter is 8MHz with minimum clock duty cycles of 60 nS high and 60nS low. A block diagram of the 8254 configuration in APM-08 is detailed in Fig. 4.1. There are 5 possible operating configurations for each counter:-

Configuration

Description

0

PULSE ON TERMINAL COUNT. The output is initially low after setting this configuration. After the count is loaded, the output remains low until the counter decrements thru zero, when it goes

1

high and remains high until the counter is reloaded. The counter will continue to decrement after passing thru zero and counting can be inhibited by a low gate input. This mode produces a single positive going output transition such as may be required in a time delay initiated by the program.

PROGRAMMABLE ONE SHOT. The output goes low after a rising edge of the gate input and goes high when the counter passes thru zero. The period that the output is low is set by the loaded count. If the gate input goes high again before the one shot has timed out, a new timing cycle is initiated i.e. the one shot is re-triggerable and if a new count is loaded, it will not become effective until any cycle in progress has terminated. This provides a hardware triggered delay or one-shot.

- 17 -

APM-08 MANUAL

2

3

4

5

- RATE GENERATOR (or divide by N counter). The output goes low for one input clock period every N counts, where N is the count loaded. The gate input when low, forces the output high, and on going high, reloads the counter. Thus the gate input can be used to synchronize the counter. This configuration is useful for generating periodic interrupts to trigger A/D conversions.
- SQUARE WAVE GENERATOR. This is similar to configuration 2 except that the output is high for half of the count and low for the other half. If N is even, a symmetrical square wave output is obtained. If N is odd, the output is high for (N+1)/2 counts and low for (N-1)/2 counts i.e. has a 1 count assymmetry. This configuration can be used in the same way as configuration 2 for periodic triggering or for frequency synthesis.
- SOFTWARE TRIGGERED STROBE. After the mode is set the output is high. When a count of N is loaded the counter begins counting, and the the output will go low for one input clock period as it passes thru zero. The cycle is repeated on loading another count. The gate input may be used to inhibit counting.
 - HARDWARE TRIGGERED STROBE. This is essentially the same as configuration 1, except that the output will go low for one clock period at the end of the cycle and return high again. The start of the cycle is triggered by the rising edge of the gate input, and as in configuration 1, is retriggerable.

The 8254 programmable interval counter uses 4 memory address locations:-

Address	<u>Register</u> type	Description
BASE + 4	Read/write	Counter 0
BASE + 5	Read/write	Counter 1
BASE + 6	Read/write	Counter 2
BASE + 7	Write only	Control

Before loading or reading any of the individual counters, the control register must be loaded with data setting the counter operating configuration as above, the type of read or write operation that will be performed (see following) and the modulus, binary (0 -

65,535) control 1			ry co	ded d	lecima	al 0	- 9,9	99).	The	format	of	the
		<u>D7</u>	<u>D6</u>	<u>D5</u>	<u>D4</u>	<u>D3</u>	<u>D2</u>	<u>D1</u>	<u>D0</u>			
		SC1	SC0	RL1	RL0	M2	M1	м0	BC	D		
SCI	L0 ·	- C	ontro SC1 0 0 1 1	l whi SC0 0 1 0 1		Count 0 1 2 Statu	er is rea	dback sheet				
RLJ	0 -	- C	ontro: RL1 0 0 1 1	l the RLO 0 1 0 1		Opera Count Read/ Read/ Read/	tion er la load load load foll	most least least	see sign sig sig	tion. followi ificant nificar nificar ost sig	: byto nt by nt	te
M2-	•0	- C(41 M(0 (0 (1 (0 (Con 0 - 1 - 2 - 3 - 4 -	• Puls • Puls • Prog • Rate • Squa • Soft	ramma gene re wa ware	term ble rato ve ge trige	inal co one sho	ot or strob	
BCD)	- (Contro BCI 0 1)	Č - B	ounte inary	r typ 16 b	-				

For each counter you are required to specify in advance the type of read or load operation that you intend to perform. You have a choice of loading/reading the high byte of the count or the low byte of the count, or the low byte followed by the high byte. This last mode is of the most general use and is selected for each counter by setting the RL 1/0 bits to "1 1". Subsequent read/load operations must be performed in pairs in this sequence, otherwise the internal sequencing flip-flop of the 8254 will get out of step. With RLO & RL1 will both be set to 1 to perform lo byte/high byte reads or loads, the following example shows how data is loaded in the correct sequence e.g. to load 30,000 into counter 0:-

- 19 -

)

ĺ

xxx10 XH% = INT(30000/256)	:REM Calculate hi byte
xxx20 XL% = 30000 - XH%*256	:REM Calcualate low byte
xxx30 POKE BASE + 4, XL%	:REM Load low byte
xxx40 POKE BASE + 4, XH%	:REM Load hi byte

Note how both bytes are loaded sequentially into the same address to load the full 16 bits of data.

If you attempt to read the counters on the fly with a high input frequency, you will most likely obtain erroneous data. This is partly caused by the rippling of the counter during the read and also by the fact that the low and high bytes are read sequentially rather than simultaneously, making it highly probable that carries will be propagated from the low to high byte during the read cycle. To circumvent these problems, you can perform a counter latch operation in advance of the read cycle. To do this you load the RL 1/0 bits of the control byte with "0 0" which instantaneously latches the count of the selected counter in a 16 bit latch register. A subsequent read operation on the selected counter returns the contents of the This is the only satisfactory way of reading a counter on the latch. fly without discontinuing the counting process.

The counters may be programmed to count in binary (modulus 2) or binary coded decimal (modulus 10) modes by the BCD bit. The binary mode with a full count of 65,535 has the obvious advantage of providing a larger count range than the BCD mode which has a 9,999 full scale.

4.2 EVENT COUNTING OR COUNTING A NUMBER OF INPUT PULSES

One of the common applications for the 8254 is counting pulses or events. Pulses should be clean TTL signals or de-bounced signals from contact closures and should be connected to the clock input of the selected counter. The corresponding gate input can be used to enable and disable counting operations. Only Counters 0 and 1 have external clock inputs on APM-08, so these should be used for pulse counting. Counter 2 clock input is internally connected to the computer bus clock and this counter is limited to time interval generation and frequency synthesis.

Configuration 0 is a good choice for plain counting. Assuming the use of counter 0, first set the control register to select configuration 0 with a lo byte/hi byte load sequence. This corresponds to a control word of 30 Hex (or 48 decimal):-

xxx10 POKE BASE + 7,48 :REM Set control byte

Next, since the counter will always count down, it should initially be loaded with a full scale count (65,535) or at least a value that will exceedd the anticipated count

total. Loading with 65,535 corresponds to a low byte of 255 and a high byte of 255:-

xxx20 POKE BASE + 4,255 :REM Lo byte xxx30 POKE BASE + 4,255 :REM Hi byte

Now the counter is initialized, the gate input can be taken high to commence counting. The gate could be controlled externally or connected to one of the APM-08 digital outputs and controlled by software or simply left open circuit to continuously enable the counter.

The counter can be read in 2 ways. If pulses are no applied or the gate input taken low to disable the counter, then an ordinary non-latched read can be performed:-

xxx40 XL% = PEEK(BASE + 4) :REM Read low byte xxx50 XH% = PEEK(BASE + 4) :REM Read high byte xxx60 COUNT = 65535 - 256*XH% - XL%

Note line xxx60 where the change in count is calculated. This is a necessary step for a down counter. If we wished to read the counter "on the fly" without disabling it or altering the count, then a counter latch operation should be performed before reading:-

xxx40 POKE BASE + 7,0 :REM Latch counter 0
xxx50 XL% = PEEK(BASE + 4) :REM Read low byte
xxx60 XH% = PEEK(BASE + 4) :REM Read high byte
xxx70 COUNT = 65535 - 256*XH% - XL%

4.3 GENERATING SQUARE WAVES OF PROGRAMMED FREQUENCY

Counter 2 clock input is connected internally on the APM-08 board to a 1.0 Mhz. input signal derived from the main computer clock. Counter 2 can be operated in configuration 3 (square wave generator) with a maximum divisor of 65,535. The lowest output frequency obtainable from Counter 2 directly will be 15.3 Hz (1000000 / 65535). The minimum divisor can be 2 to obtain a maximum output frequency of 500 Khz. Frequencies lower than 15.3 Hz are easily obtained by cascading the output of Counter 2 into the clock input of Counter 0 or 1. Obviously a further division by 65,535 would yield a very low frequency (1 cycle per hour).

In practice, to obtain a symmetrical square wave, the divisor loaded into the counter should be an even number. If it is an odd number, one half of the square wave will be 1 clock pulse (1.0 microsec) longer than the other half.

- 21 -

in the second part of the second s

Calculating the divisor is straightforward. Assume you desire an output frequency of 1 KHz. The input frequency to the counter is 1 Mhz so you must divide this by 1000 to obtain 1 Khz. Counter 2 should be set in configuration 3 and loaded with 1000 as follows:-

xxx10 POKE BASE + 7, 182 :REM Hex B6 control byte xxx20 XH% = INT(1000/256) :REM Calculate hi byte xxx30 XL% = 1000 - 256*XH% :REM Calculate lo byte xxx40 POKE BASE + 6, XL% :REM Load lo byte xxx50 POKE BASE + 6, XH% :REM Load hi byte

Counter 2 output will now be a 1KHz square waves

4.4 MEASURING FREQUENCY AND PERIOD

The two previous sections show how to count pulses and output frequencies. It is possible to use the 8254 to measure frequency by raising the gate input of a counter for some known interval of time, say 10, 100 or 1000mS and counting the number of pulses clocked into the counter for that interval. The gating signal can be derived from counter 2 and a second cascaded counter both operating in square wave mode. Also the computer has to be informed about the start and finish of the measurement cycle, so one of the APM-08 digital inputs can be used to monitor the gate input to achieve this requirement.

Counter 2 can be used to measure pulse width or half period of a periodic signal. The signal should be applied to the gate input of Counter 2. During the interval when the gate input is low, Counter 2 is loaded with a full count, 65,535. The gate input then goes high at the beginning of the measurement, and the counter decrements until the gate input goes low at the end of the measurement. The counter is then read and the change in the count is the duration of the gate input signal. Since Counter 2 input is fed with 1 microsecond duration clock pulses (1 MHz), the maximum pulse duration that can be measured using Counter 2 alone is 65.5 milliseconds. Longer pulse durations can be measured using another counter and driving its input from a known frequency derived from the output of Counter 2.

US. C MS

4.5 GENERATING TIME DELAYS

Another use for the programmable interval timer is generating accurate time delays. There are several "one shot" modes that the counters can be configured in. The counter configurations have the following characteristics when used for time delay generation:-

Configuration 0 - After loading the counter the output goes low. Pulse on terminal count. After loading the counter the output goes low. Counting is enabled when the gate input is high and continues until the count reaches zero when the output goes high. The output will remain high until the counter is reloaded by a programmed command. Taking the gate input low during the count down will disable counting as long as it is low.

- Configuration 1 The counter need only be loaded once. The ----Programmable timing delay is initiated by the gate input going high. At this point the output goes low. one shot. If the gate input goes low, counting continues but a new cycle will be initiated if the gate input goes high again before the time out delay has expired i.e. is re-triggerable. At the end of the time out, as the counter reaches zero, the output goes high and will remain high until re-triggered by the gate input. This is the programmable equivalent of a "one shot" or monostable, hence the name.
- Configuration 4 This is similar to configuration 0, except Software that after loading the output goes high and only goes low for one clock period on timing out. This produces a negative strobe pulse a programmed duration after loading the counter.

Configuration 5 - This is similar to configuration 1, except Hardware Triggered Strobe. That the time out is triggered by the gate input going high and the output is normally high, going low for one clock period on time out and producing a negative going strobe pulse. Like configuration 1, the time out is re-triggerable i.e. a new cycle will commence if the gate input is taken high before a current cycle has timed out.

Counter 2 is good for directly producing delays up to 65.5mS. For longer delays, Counter 2 should be operated in the square wave mode to output a suitable frequency to feed into one of the other counters set up in one of the programmable delay configurations. In theory, using all the counters, a delay as long as 65,535 * 65,535 * 65,535 microseconds, or about 9 years, can be produced this way, although obviously this is of academic interest only!

4.6 TRIGGERING THE A/D PERIODICALLY

Another of the key uses for the 8254 programmable interval timer is in providing trigger pulses for an interrupt service routine that performs periodic A/D conversions. Actually the APM-08 hardware can be used to trigger any interrupt service routine from the counter or an external input and is not limited to servicing the A/D. The output of counter 2 should be connected to the interrupt input (pin 19) to generate timer interrupts. It is also necessary to set the INTE enable bit in the APM-08 control register and for your interrupt service routine to write to the control register each time to clear the IRQ flip flop.

(

Chapter 5

APPLICATIONS

5.1 CHANNEL INPUTS

There are 8 analog input channels on APM-08. Each has an input range of -5.000v to +4.9976v and are single ended i.e. they share a common low level ground. Input voltages should be applied between the channel Hi and any L.L. Gnd. Do not return inputs to the digital common (DIG.COM.) as this is intended as a heavy current return for power supplies and digital logic signals and may differ from the low level ground by many millivolts. Correct use of the is very important to obtain consistent noise free grounds measurements as it is easy to introduce inadvertent ground loops when using single ended connections. The low level grounds are used for all analog signal returns and when used correctly should only carry signal currents less than a few milliamps. The seven identical low level ground inputs have been positioned in the connector so that they lie between the analog channel inputs in the flat connecting cable, this helps to prevent crosstalk. The input current of each channel is about 100 nanoamps at 25 deg. C. thus presenting a high input impedance to the signal. Also the 508A solid state channel multiplexer used on the APM-08 is designed to withstand continuous overloads of +/- 32v on each channel and transient overloads of several hundred volts. This multiplexer has two other desirable characteristics, a "break before make" action to prevent shorts between channels while switching, and all channel switches turn off when the power is off thus preventing signal to signal shorts when your computer is off.

5.2 MEASURING VOLTAGE

· · · - · · · · · · ·

Voltages in the range +/-5v may be directly applied to the analog inputs. Higher voltages should be attenuated, a simple resistive divider should be adequate as shown in Fig. 5.1.

Single ended inputs have a common ground return which is connected to the ground (case) of the computer. If you are measuring a signal which is floating i.e. has no connection to ground, there

and the second second

Ĺ

1

will be no problem but if your signal source is also connected to ground, then there is the potential for a ground loop which may cause an error or noise in your readings. There are several ways to avoid this complication, some of the solutions are shown in Figs. 5.2, 5.3 & 5.4. All of these methods provide you with a differential input

Attenuation ratio	RY	R _X
x 2	10K	10K
x 10	90K	10K
x 100	99K	1 K
x 1000	999K	1 K

Fig. 5.1 SIMPLE ATTENUATOR FOR VOLTAGES GREATER THAN +/-5v.

which allows you to reject any small differences in ground potential between your computer and signal source.

The circuit of Fig. 5.2 is the least expensive, but has the draw back of having an input resistance set by the input resistors. This may be quite large, in the 10Kohm to 100Kohm region, but may be too low for some applications. As an added benefit, the resistors may be chosen to provide gain or attenuation. This circuit is the classic differential connection for an operational amplifier and a full description can be found in any book on Operational Amplifiers².

2. See for instance "Operational Amplifiers - Design and Applications" by Tobey, Graeme & Huelsman. McGraw-Hill 1971.

(

Fig 5.3 is a variant of the circuit of Fig 5.2 and adds two voltage followers to this circuit to provide a very high input impedance for sensitive signals. Finally if you want to buy a ready made differential amplifier, this part is available from integrated circuit manufacturers as a single component. In this form it is called an instrumentation amplifier, some types include gain setting resistors and others require external resistors. Instrumentation amplifiers are usually optimised for operation at high gains with small signals and usually have zero drifts of less than a few millionths (microvolts) per degree C.. Although more costly than simple operational amplifiers, operation under high gain conditions usually demands the extra stability and common mode rejection that instrumentation amplifiers provide.

These various methods provide a variety of different interfacing solutions of different costs and complexities. Almost certainly, one of these will be appropriate for your requirements.

All of these circuits can be conveniently mounted on the breadboard area of the STA-AP screw connector board. This area is provided with +/-12v power from the computer which in most cases will be adequate to power any interface circuitry.

5.3 4-20mA CURRENT LOOPS

Process control current loop transducers are easily interfaced to APM-08 by adding a suitable shunt resistor across the input. Since the maximum current will be 20mA and the maximum input range is +5v, a 250 ohm precision shunt resistor will be required. This should be of low temperature coefficient metal film or wirewound construction for stability with time and temperature.

Using this interface, the 4-20mA working range of the current loop corresponds to 1638 bits of input, a resolution of about 0.06%.

5.4 THE REFERENCE

A -10v stable voltage reference (-Vref) derived from the A/D reference is brought out for users. It may be used for offsetting signals etc. but should not be heavily loaded. The maximum available output current is 2mA. Since this reference may be used by the D/A's, any overload or shorting of the reference will affect their operation.

- 28 -

APPLICATIONS

5.5 D/A CONVERTERES

The equivalent circuit of the D/A converters is shown below:-

Fig. 5.5 Equivalent Circuit of D/A Channel

The D/A's are of the R/2R CMOS multiplying type. The transfer equation is:-

Vout = -Vref * (Digital data)/4096

The reference voltage Vref may range from -10 to +10v. To operate as a normal fixed range output D/A with a scaling of 0 to +10v a D.C. reference input of -10v is required. This is supplied on pin 16 of the APM-08 output connector and should be jumpered across to either or both of the selected D/A inputs (pins 22 or 23). Other scalings can be obtained with different reference voltages e.g. -5v reference would give 0 to +5v output, +2v reference would give 0 to -2v output etc.

It is also possible to use an A.C. reference and in this case the customary terminology of operation is somewhat different. 2 quadrant multiplication is obtained since the reference which may be positive or negative is multiplied with a positive only digital signal.

Two other parameters are of interest in A.C. operation. The first is feedthrough, the amount of residual signal at digital zero. The feedthrough which is mainly a function of stray capacitance rises with frequency. At 10KHz it is typically 5mV peak

- 29 -

- peak with a +/-5v reference. The second parameter that is a limit at a lower frequency, is the accuracy/frequency characteristic. Due to distributed capacitance in the R-2R ladder network, the full 12 bit performance of the D/A falls off as the frequency rises. Above about 1KHz the dynamic performance of the D/A will be less than 12 bit accurate.

The APM-08 D/A's will perform well in synchro-digital and resolver applications for sine/cosine generation with 400 Hz reference.

5.6 USING DIGITAL INPUT/OUTPUT

APM-08 provides 4 TTL/DTL compatible digital outputs (OP1-4) and 3 TTL/DTL compatible digital inputs.

The digital outputs correspond to bits 4 - 7 of the control register and are accessed by writing to the control register. When you write to the control register you will often need to maintain the state of bits 0 - 3 that control the multiplexer address and interrupt enable. For this reason, it is a good practice to store the control register byte in a variable e.g. C% so that digital I/O can be OR'ed with C% before loading the control register. This avoids disturbing the the other bits in the register during a digital output operation.

Digital outputs can sink 8mA (5 standard TTL loads or 20 LSTTL loads). If you wish to interface to CMOS, 1Kohm pull-up resistors connected to +5v should be attached to the outputs. This will raise the logic high output level from its minimum TTL level of 2.4v to +5v suitable for CMOS interface.

Digital inputs are available through bits 4 - 6 of the status register. The digital data is readily obtained by masking out these bits using a logical AND operation. The inputs present, a -0.4mA loading corresponding to 1 LSTTL load.

5.7 PROGRAMMABLE INTERVAL TIMER

The 8254 interval timer provides. time delays, counting, frequency synthesis and in compound configurations, frequency and period measurement. Since there are 3 independent counters, many ingenious applications and configurations are possible for this device. A full discussion of the capabilities is in Chapter 4. 5.8 ADDING MORE ANALOG INPUTS

You may add sub-multiplexers to any or all of the 8 analog inputs. MetraByte's EXP-16 provides 16 channels per input. Up to 8 EXP 16's can be added to one APM-08 providing a total of 128 channels. The sub-multiplexer address can be set by digital outputs OP1-4. The EXP-16 cards are designed to cascade with flat cable and insulation displacement connectors. All analog channel connections are made by screw connectors, and each EXP-16 (group of 16 channels) can be operated at a different gain. In this way a system can be configured with a variety of different channel functions and gains, single ended and differential.

5.9 INTERFACE TO TRANSDUCERS, THERMOCOUPLES ETC.

Low level transducers such as thermocouples and strain gage bridges (load cells, pressure & force transducers) require amplification before applying to the high level APM-08 inputs. The EXP-16 expansion multiplexer incorporates an instrumentation amplifier that can provide stable amplification and also includes circuitry that allows cold junction compensation of thermocouples. EXP-16 will handle most interfacing requirements to D.C. output transducers and also includes spaces for filters, shunts and attenuators.

For inexpensive temperature measurement in the -50 to +125 deg. C. temperature range, semiconductor temperature transducers are a good choice. The most popular types are the AD590 (Analog Devices) which behaves like a constant current source with an output of 273uA at 0 deg.C. and a scaling of 1uA/deg.C. and the LM335 (National Semiconductor) that has an output of 2.73 volts at 0 deg.C. and and a temperature coefficient of 10mV/deg.C.. Both of these devices can be powered from the +12v available from the computer and directly interfaced to APM-08.

For measuring high temperatures, up to 1800 deg.C. or more, thermocouples are the most satisfactory solution. The base metal thermocouples, types J,K,T & E, have outputs around 40 microvolts/deg.C., while the platinum and tungsten types used for the highest temperature measurement, types S,B,& R, tend to have lower outputs in the 6-12 microvolt/deg. C. range. A further complication encountered in the use of thermocouples is the "cold-junction" compensation. Where the thermocouple wire is terminated to the copper APM-08 connections, an unwanted thermocouple junction is formed. As the connector temperature varies, this introduces an

Ć

(

٤...

7.

error. The error can be bucked out by sensing the connector temperature using a semiconductor sensor on another channel, and correcting the thermocouple readings in software. This is only required at the highest levels of accuracy, since in most cases connector temperature (usually room temperature) varies little.

5.10 POWER OUTPUT FROM THE APM-08 CONNECTOR

The +5v and +/-12v Apple power supplies are available on These are provided as a convenience to the APM-08 rear connector. users who wish to add external signal conditioning and logic The +/-12v can be used for analog circuits, operational circuits. amplifiers, comparators, indicators relays etc. and the +5v will power logic circuits, TTL, CMOS etc. Careful use of these supplies can often avoid the expense and bulk of external supplies to power your signal sources and the nuisance of multiple power sources and switches. If you intend to use these supplies observe the loading limits. The amount of power available is limited and depends to a considerable extent on what other peripheral boards are plugged into your Apple. In most cases there will usually be adequate power for analog circuits which consume a few tens of milliamps and a few 74LS TTL or many CMOS logic circuits.

If the power outputs are subjected to an overcurrent (overload) or overvoltage condition, the power supply is designed to shut down and the computer may have to be turned off and turned on again to restore normal operation after removing the fault. Although protective devices are built into your computer supply, use your computer power with care and consideration. This convenience is not to be abused, so if there is any possibility of frequent short circuits or shorts to high voltages and signal sources, then it is advisable to provide an external (and more easily repaired) power supply for your user circuits.

5.11 PRECAUTIONS IN USE - NOISE, GROUNDLOOPS AND OVERLOADS

Unavoidably, data acquisition systems give users access to inputs to the computer. Do NOT, whatever else you do, get these inputs mixed up with the A.C. line. An inadvertent short can in an instant can cause extensive and costly damage to your computer. MetraByte can accept no liability for this type of accident. As an aid to avoiding this problem:-

1. - Avoid direct connections to the A.C. line.

2. - Make sure that all connections are tight and sound

so that signal wires are not likely to come loose and short to high voltages.

3. - Use isolation amplifiers and transformers where necessary.

There are two ground connections on the rear connector called DIG. COM. and L.L. GND. Digital common is the noisy or "dirty" ground that is meant to carry all digital signal and heavy current (power supply) currents. Low level ground is the signal ground for all analog input functions. It is only meant to carry signal currents (less than a few mA) and is the ground reference for the A/D channels. Due to connector contact resistance and cable resistance there may be many millivolts difference between the two grounds although they are connected to each other and the computer and power line grounds on the APM-08 board.

Appendix A

CONNECTIONS

A.1 MAIN I/O CONNECTOR

The main analog and digital I/O is via a 40 pin header type connector at the rear of the board. The pin functions are as follows (see Fig A.1 for locations):-

PIN	NAME	FUNCTION
1	IN 7	Channel 7 analog input
2	L.L.GND.	Low level ground
3	IN 6	Channel 6 analog input
4 .	L.L.GND.	Low level ground
5	IN 5	[·] Channel 5 analog input
6	L.L.GND.	Low level ground
7	IN 4	Channel 4 analog input
8	L.L.GND.	Low level ground
9	IN 3	Channel 3 analog input
10	L.L.GND.	Low level ground
11	IN 2	Channel 2 analog input
12	L.L.GND.	Low level ground
13	· IN 1	Channel 1 analog input
14	L.L.GND.	Low level ground
15	IN O	Channel 0 analog input
16	-Vref	-10 v reference voltage

17	D/A 1	D/A #1 analog output
18	D/A 0	D/A #0 analog output
19	INT.IN	Interrupt input. Positive edge triggered.
20	+12v	+12v power supply from Apple II.
21	+5v	+5v power supply from Apple II.
22	REF.IN#0	Reference input for D/A #0
23	REF.IN#1	Reference input for D/A #1
24	CTR.1 OUT	8253 Counter 1 output
2,5	GATE 1	8253 Counter 1 gate
26	CLK. 1	8253 Counter 1 clock input
27	GATE 2	8253 Counter 2 gate
28	CTR.2 OUT	8253 Counter 2 output
29	OP2	Digital output #2
30	OP3	Digital output #3
31	GATE 0	8253 Counter 0 gate
32	-12v	-12v power supply from Apple computer
33	CTR.0 OUT	8253 Counter 0 output
34	CLK 0	8253 Counter 0 clock input
35	OP1	Digital output #1
36	DIG. COM.	Digital common. Return for all logic signals and power supply currents. Connected to frame & line ground.
37	OP0	Digital output #0
38	IPO	Digital input #0
39	IP1	Digital input #1
40	IP2	Digital input #2

(²²)

The insulation displacement (flat cable) mating connector for the 40 pin header is 3M part number 3595 - 6002. Similar types are available from several other manufacturers. For users not intending to make flat cable connector to connector interconnects, use of the STA-AP screw connector board is recommended.

A.2 REAR VIEW OF APM-08 CONNECTOR

IN 7	1	2	L.L. GND.
IN 6	3	4	L.L. GND.
IN 5	5	6	L.L. GND.
IN 4	7	8	L.L. GND.
IN 3	9	10	L.L. GND.
IN 2	111	12	L.L. GND.
IN 1	13	14	L.L. GND.
IN O	15	16	-Vref (-10v)
D/A #1 OUT	17	18	D/A #0 OUT
INT. IN	19	20	+12v power
+5v power	21	22	REF. IN# 0
REF. IN# 1	23	24	CTR. 1 OUT
GATE 1	25	26	CLK. 1
GATE 2	27	28	CTR. 2 OUT
OP2	29	30	OP3
GATE 0	31	32	-12v power
CTR. 0 OUT	33	34	CLK. Ö
OP1	35	36	DIG. COM.
OP0	37	38	IPO
IP1	39	40	IP2
	L		

- 36 -

President of the second se

4

Appendix B

SPECIFICATIONS

B.1 POWER CONSUMPTION

+5v supply		295mA	typ.	1	320mA max.
+12v supply	-	25mA	typ.	1	35mA max.
-12v supply	-	23mA	typ.	1	30mA max.

B.2 A/D SPECIFICATION

Туре	-	Successive approximation with sample/hold.								
Conversion time.	-	25 microseconds typ. 35 microseconds max.								
Monotonicity	-	Guaranteed over operating temperature range.								
Linearity		+/-1 bit.								
Resolution	-	12 bits. (2.4mV/bit)								
Accuracy	-	0.01% of reading +/-1 bit.								
Full scale	-	+/-5 volts								
Coding	-	Offset binary								
Overvoltage	-	Continuous single channel to +/-35v								
Configuration	-	Single ended.								
Input current	-	100nA max at 25 deg.C.								
Zero drift	-	10ppm/deg. C. max.								

Gain drift - 50 ppm/deg. C max. (30 ppm/deg C. available to special order)

B.3 SAMPLE HOLD AMPLIFIER

Acquisition-15 microsecs to 0.01% typ.timefor full scale step inputDynamic-1 bit (2.44mV) @ 2000v/sec.sampling error-

B.4 REFERENCE VOLTAGE OUTPUT

Reference voltage	-	-10.0v + - 0.1v
Temperature coefficient	-	50 ppm/deg.C max. (30 ppm/deg.C available to special ordwer)
Load current	-	+/-2mA max.

B.5 D/A CONVERTERS

Channels	-	2
Resolution	-	12 bits (1 part in 4095)
Relative accuracy	-	+/-1/2 LSB (0.01%) max.
Differential linearity		1/2 LSB max.
Fixed reference output range (using -10v ref.)	-	0 to +10v
Variable reference output range	-	+/-10v
Reference input	-	7Kohm min., 10 Kohm typ., 20Kohm max.

APM-08 MANUAL

ſ

٠,

resistance

Voltage output - < 0.1 ohm max. resistance Output drive - +/-5mA min. current Settling time - 35 microsecs max. to 0.01% for F.S. step.

```
Gain temperature - +/-10ppM/deg.C. max
coefficient (excluding reference)
```

B.6 DIGITAL I/O

OP1-4 output low voltage	-	0.5v max at Isink = 8.0mA
OP1-4 output high voltage	-	2.7v min at Isource = -0.4mA
IP1-3 input low voltage	-	0.8v max
IP1-3 input low current		-0.4mA max
IP1-3 input high voltage	-	2.0v min
IP1-3 input current	-	20uA max. @ 2.7v

B.7 INTERRUPT INPUTS

Туре	· -	Positive edge triggered
Enable	-	Via INTE of CONTROL register
		-t-d in an internal flip-flop

Interrupts are latched in an internal flip-flop on the APM-08 board. The state of this flip-flop corresponds to the IRQ bit in the STATUS register.

مسجود والمراجع الموالي المراجع

(

(

٠.

Flip-flop is cleared by a write to the CONTROL register. Service routines should acknowledge and re-enable interrupt flop.

÷

B.8 COUNTER/TIMER

Туре	-	8254 programmable interval timer
Counters	- .	3 down counters, 16 bit.
Output drive capability	-	2.2mA @ 0.45v (5 LSTTL loads)
Input, gate & clock load	-	TTL/DTL/CMOS compatible +/-10 uA current
Max. input clock freq.	-	Not less than 8 MHz (may vary with manufacturer)
Active count edge	-	Negative
Minimum clock pulse widths	- .	60nS high / 60nS low
For additional see Chapter 4.		rmation on programming

B.9 POWER OUTPUTS

Apple buss supplies	-	+5v & +/-12v
Tolerance	-	+5v +/-5% +12v +/-5% -12v +/-10%
Loading	-	Dependent on other peripherals (see Apple Tech. Ref. Manual)

APM-08 MANUAL

B.10 GENERAL ENVIRONMENTAL

Operating - 0 to 50 deg. C. temperature range. Storage - -20 to +70 deg.C. temperature range Humidity - 0 to 90% non-condensing. Weight - 4 oz. (120 gm.)

والمتحديث المراجع ويتجرب والمتحوصي والمتحوصي والم

Appendix C

STORAGE OF INTEGER VARIABLES

Data is stored in integer variables (% type) in 2's complement form. Each integer variable uses 16 bits or 2 bytes of memory. 16 bits of data is equivalent to values from 0 to 65,535 decimal, but the 2's complement convention interprets the most significant bit as a sign bit so the actual range becomes -32,768 to +32,767 (a span of 65,535). Numbers are represented as follows:-

	High byte								Low byte							
	D7	D6	D5	D4	D3	D2	D1	D0	- D7	D6	D5	D4	D3	D2	D1	D0
+32,767	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
+10,000	0	0	1	0	•0	1	1	1	0	0	0	1	0	0	0	0
+1	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	1
0 -1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1
-10,000	1	1	• 0	1	• 1	0	0	0	1	1	1	1	• 0	0	0	0
-32,768	1	0	0	0	-0	0	0	0	0	0	0	0	. 0	0	0	0
	Si	lgn	bit	-												

1 if negative, 0 if positive

Integer variables are the most compact form of storage for the 12 bit data from the A/D converter and 16 bit data of the 8253 interval timer and so to conserve memory and disk space and optimise execution speed, all data exchange with the APM-08 is through integer type variables. This poses a programming problem when handling unsigned numbers in the range 32,768 to 65,535.

If you wish to input or output an unsigned integer greater than 32,767 then it is necessary to work out what its 2's compliment signed equivalent is. As an example, assume we want to load a 16 bit counter with 50,000 decimal.

50,000 (Hex C350) Binary 1100 0011 0101 0000

Since the most significant bit is 1 this would be stored as a negative integer and in fact the correct integer variable value would

be 50,000 - 65,536 = -15,536. The programming steps for switching between integer and real variables for representation of unsigned numbers between 0 and 65,535 is therefore:-

From real variable N (0 \leq = N \leq = 65,535) to integer variable N%:-

xxx10 IF N<=32767 THEN N% = N ELSE N% = N - 65536

From integer variable N% to real variable N:-

XXX20 IF N% >= 0 THEN N=N% ELSE N = N% + 65536

transla ha contra da contra de la contra de la

ĺ

Appendix D

CALIBRATION AND TEST

D.1 CALIBRATION AND TEST

Periodic recalibration of APM-08 is recommended to retain full accuracy. The recalibration interval depends to a large extent on the type of service that the board is subjected to. For an environment with frequent large changes of temperature and/or vibration, a 3 month recalibration interval is recommended. For laboratory or office conditions, 6 months to 1 year is acceptable.

A 4 1/2 digit digital multimeter is required as a minimum equipment to perform a satisfactory calibration. In addition, a voltage calibrator or a stable noise free D.C. voltage source that can be used in conjunction with the digital multimeter is required.

The BASIC listing that appears at the end of this section is useful for calibrating both the A/D and D/A's. and the locations of the calibration adjustments are shown in Fig. D.1

5.1 CALIBRATING THE A/D

The A/D adjustments on APM-08 are 2 trimmer potentiometers that control the A/D - and + Full Scale. The A/D output should be observed while applying a known calibration voltage to any or all analog input channels. Briefly the adjustment sequence is:-

- Apply an analog input of -4.9988v and adjust the -F.S. pot so that the output flickers between 0 & 1. This pot is marked R4 on the APM-08 board and the lefthand one.
- 2. Apply an analog input of +4.9963v and adjust the +F.S. pot so that the output flickers between 4094 and 4095. This pot is marked R5 and is the righthand.

Adjustments are done on "half" bit intervals to obtain a reading flickering about 50/50 between two adjacent values. This is more precise than applying center bit values such as -5.0000v,

+4.9988v etc. and performs a better calibration.

D.2 CALIBRATING THE D/A's

The procedure for adjusting the D/A's is as follows:-

- 1. Connect the -10v reference to the D/A Ref. Inputs.
- Output digital zero to the selected D/A and connect the D.V.M to the D/A output and L.L. GND. Adjusting the D/A zero trimpot for a reading of +/-0.0000 v on the D.V.M.
- 3. Output digital full scale (4095) to the D/A and adjust the D/A full scale adjust trimpot for a reading of +9.9976 v on the D.V.M.
- 4. You can now output any intermediate code e.g. 2048 for 1/2 scale and check the linearity of the output on the D.V.M. It should be within +/-1.2mV of the theoretical ideal, if not the D/A is probably faulty.
- 5. Repeat steps 2 thru 4 for the other D/A.

APM-08 MANUAL

C

Ċ

()

D.3 BASIC CALIBRATION PROGRAM LISTING

5 HOME 10 INPUT "ENTER SLOT NUMBER-- ";S% 20 $BASADR_{=} - 16256 + (S_{=} * 16)$ 25 HOME 30 PRINT 40 PRINT "CHOOSE FUNCTION TO TEST/CALIBRATE." 45 PRINT 50 PRINT "1 -- A/D CONVERSION" 60 PRINT " " 70 PRINT "2 -- D/A CONVERSION" 80 PRINT PRINT "3 -- COUNTER/TIMER" 90 100 PRINT 110 PRINT "4 -- DIGITAL INPUT" 120 PRINT 130 PRINT "5 -- DIGITAL OUTPUT" 133 PRINT 134 PRINT "6 -- EXIT ROUTINE" 135 PRINT INPUT "ENTER CHOICE-- ";C 140 150 IF C = 2 THEN GOTO 500 152 IF C = 6 THEN GOTO 1500 160 IF C = 3 THEN GOTO 800 IF C = 4 THEN 170 GOTO 1100 180 IF C = 5 THEN GOTO 1400 183 HOME START OF A/D CONVERSION ROUTINES. 185 REM 186 PRINT 190 INPUT "NUMBER OF CHANNELS TO SCAN-- ";NCH% 193 PRINT INPUT "FIRST CHANNEL TO SCAN -- "; LOWCH% 200 202 PRINT 205 PRINT "HIT ANY KEY TO CONTINUE" IF (PEEK (- 16384)) < = 127 THEN GOTO 206 206 207 HOME : POKE (-16368), 0208 PRINT 210 $HICH_{\$} = LOWCH_{\$} + NCH_{\$}$ 223 HOME 224 HTAB 1 PRINT "CHANNEL", "READING" 227 228 PRINT 230 FOR $CH \approx LOWCH$ TO (HICH ≈ 1) 240 POKE (BASADR% + 2),CH 250 POKE (BASADR+ 1),0

. .

- 47 -

neneme na Recención e el compositor e el compo

APM-08 MANUAL

(

```
~ 260
        XL = PEEK (BASADR%)
  270
        XH = PEEK (BASADR + 1)
  280
        X = XH * 16 + XL * / 16
  290
        PRINT " "
  300
        PRINT CH,X%
  320
        NEXT CH
  340
        PRINT
        PRINT "HIT ANY KEY TO END SCAN"
  345
        IF ( PEEK ( -16384)) > = 127 THEN POKE ( -16368), 0: GOTO 25
  347
        FOR Q = 1 TO 200: NEXT Q
  348
        GOTO 223
  350
  360
        GOTO 25
  500
        HOME
        VTAB 1: HTAB 1
  505
        PRINT "0 -- ZERO VOLTS"
 510
 · 515
        PRINT
 520
        PRINT "1 -- HALF SCALE"
 525
        PRINT
 530
        PRINT "2 -- FULL SCALE"
 535
        PRINT
        PRINT "3 -- EXIT ROUTINE"
 540
 550
       PRINT
       INPUT "ENTER CHOICE";C
 560
       PRINT : PRINT
 565
 570
        IF C = 0 THEN LOWS = 0:HIGHS = 0: PRINT "ZERO VOLTS OUT"
        : GOTO 650
        IF C = 1 THEN LOWS = 0:HIGHS = 128: PRINT "HALF SCALE OUT"
 580
        : GOTO 650
       IF C = 2 THEN LOWS = 255: HIGHS = 255: PRINT "FULL SCALE OUTPUT"
 590
        : GOTO 650
       IF C = 3 THEN GOTO 25
 600
       GOTO 500
 610
 650
       POKE (BASADR% + 8), LOW%
 660
       POKE (BASADR% + 10), LOW%
       POKE (BASADR% + 9),HIGH%
 670
 680
       POKE (BASADR% + 11), HIGH%
 690
       GOTO 505
 800
       HOME
 805
       VTAB 1: HTAB 1
 810
       PRINT "COUNTER TIMER TEST SECTION"
       INPUT "COUNTER TO TEST 0, 1, OR 2--
 820
                                              ";CTR%
 825
       IF CTR = 0 THEN CNTL = 0: GOTO 850
 830
       IF CTR = 1 THEN CNTL = 64: GOTO 850
 840
       IF CTR = 2 THEN CNTL = 128: GOTO 850
 845
       GOTO 800
 850
       PRINT "COUNTER BEING TESTED IS COUNTER # ",CTR%
 855
       REM SET 2 BYTE XFER
 860
       CNTL = CNTL + 48
       INPUT "COUNTER MODE"; MD%
 870
 880
       CNTL = CNTL + MD * 2
       INPUT "DIVISOR FOR COUNTER "; DIV
 890
 900
       HIGH = INT (DIV / 256)
 910
       LOW_{ = DIV - HIGH_{ * 256
 920
       POKE (BASADR% + 7), CNTL%
```

```
930
      POKE (BASADR% + 4 + CTR%),LOW%
940
      POKE (BASADR% + 4 + CTR%), HIGH%
941
      L = PEEK (BASADR + 4 + CTR )
942
      H = PEEK (BASADR + 4 + CTR + )
      PRINT "READ DATA = ";L + H * 256
943
950
      INPUT "CONFIGURE ANOTHER COUNTER? 1-YES, 2-NO "; A
960
      IF A = 1 THEN GOTO 800
970
      GOTO 25
     HOME
1100
     PRINT "INPUT PORT TEST"
1110
     INP% = PEEK (BASADR% + 2)
1120
     IF INP > 128 THEN INP = INP - 128
1130
1140
     INP = INT (INP / 16)
1150
     PRINT INP&
1160
     INPUT "ANOTHER READING 1-YES, 2-NO ";A
     IF A = 1 THEN GOTO 1100
1170
1180
     GOTO 25
1400
     HOME
1410
     PRINT "OUTPUT PORT TEST"
1420 INPUT "ENTER AN OUTPUT # (0 - 15) OR A NEGATIVE # TO EXIT ";N%
1430
     IF N  < 0 THEN GOTO 25
1440 IF N% > 15 THEN GOTO 1400
1445 POKE (BASADR% + 2),N% * 16
1450
     GOTO 1400
1500
     END
```

(

(

(

Appendix E

APM-08 ROM LISTING

AVOCET SYSTEMS 6502 CROSS-ASSEMBLER - VERSION 2.02M

SOURCE FILE NAME: APM08.ASM

0000	**************************************
0000	*********
0000	****locations \$0700 through \$0FF are the **********
0000	****256 bytes of relocatable I/O ROM space. ********
0000	****************
C700	ORG \$C700
C700	******SET UP BASE ADRESS LOCATIONS*****************
C080	BASEO EQU \$C080
C081	BASE1 EQU \$C081
C082	BASE2 EQU \$C082
C083	BASE3 EQU \$C083
C084	BASE4 EQU \$C084
C085	BASE5 EQU \$C085
C086	BASE6 EQU \$C086
C0 87	BASE7 EQU \$C087
C088	BASE8 EQU \$C088
C089	BASE9 EQU \$C089
C08A	BASEA EQU \$C08A
C08B	BASEB EQU \$C08B
C08C	BASEC EQU \$C08C
C08D	BASED EQU \$C08D
C08E	BASEE EQU \$C08E
C08F	BASEF EQU \$C08F
CVUL	DUDI PKO ŚCOOL

C700

0478	RAMO EQU	0478H
04F8	RAM1 EQU	04F8H
0578	RAM2 EQU	0578H
05F8		
	RAM3 EQU	05F8H
0678	RAM4 EQU	0678H
06F8	RAM5 EQU	06F8H
	RAM6 EQU	0778H
07F8	RAM7 EQU	07F8H
C700	******* SAV	VE OLD 6502 REGISTER CONTENTS*******
C700 48	PHA	
C701 8A	TXA	
C702 48	PHA	
C703 98	TYA	
C704 48	PHA	
C705 08	PHP	
C706	********DETE	RMINE THE BOARD'S SLOT ADRESS******
C706 78	SEI	; DISABLE THE INTERUPTS
C707 2058FF	JSR	\$FF58
С70А ВА	TSX	
C70B BD0001	LDA	\$0100,X
C70E 8DF807	STA	\$07F8
C711 290F	AND	#\$0F
C713 A8	TAY	; Y CONTAINS ON (N = SLOT $\#$)
C714 58	CLI	; I CONTRINS ON (N = Shor #) ;RE-ENABLE INTERUPTS
0/14 58	CT11	;RE-ENABLE INTEROFIS
C715	*******TURN	OFF ALL EXPANSION CARDS***********
C715 2CFFCF	BIT	\$CFFF
C718	;CLEA	R THIS CARDS RAM SCRATCHPAD
C718		
C718 A900	LDA	#\$00
C71A 997804	STA	RAMO,Y
C71D 99F804	STA	RAM1,Y
C720 997805	STA	RAM2,Y
C723 99F805	STA	RAM3,Y
C726 997806	STA	RAM4, Y
C729 99F806	STA	RAM5,Y
C72C 997807	STA	RAM6, Y
C72F 99F807	STA	RAM7,Y
	, Din	
C732	***** DETERM	INE IF INPUT OR OUTPUT*********
C732		
C732 98	ТҮА	
C733 09C0	ORA	#\$C0
' C735 C537	CMP	\$0037
C737 F012	BEQ	ENDOUT ;****JUMP TO OUTPUT ROUTINE
	DDX	

APM-08 ROM LISTING

.

APM-08 MANUAL

(

Ċ

(

C739			;CSW	KSW	DECO	ODE	AN	INPUT
C73C	98 09C0 8539 A9A0		TYA ORA STA LDA		•			;SET KSWH TO \$CN
	8538		STA		\$38			;SET KSWL TO \$A0
C742			; RESE	T 6	502 1	TO I	PRE	ROUTINE CONDITION
C742 C743			PLP PLA					
C744			TAY					
C745			PLA					
C745			TAX					
C747			PLA					
C748			CLC					
C749	9055		BCC]	RELIN	NP		;GOTO KSW LOCATION
C74B			;OUTP	UT 1	ROUTI	INE		
C74B	98	ENDOUT:	түа					
	0900		ORA	;	#\$CO			
	8537		STA		577			;STORE CSWH
	A9D0		LDA		#\$D0			
	8536		STA		π <i>ψ</i> μυ ¢ τ <i>ι</i>			;STORE CSWL
C752	8230		SIN		\$36			JSTOKE CSWE
C754			*****	TES	т т О	SEF	E TE	INPUT VECTOR NEEDS
C754								TO CNAO
			,					
C754	98		түа					
C755			ORA		#\$C0			
C757			TAX					
C758			CPX		\$39			
						~		NOU MO NOTHD YE THAN
C75A	D004		BNE	1	NOINI			NCH TO NOINP IF IN# N
° C7 5C						;	HAS	NOT SELECTED THIS SLOT
C75C	A9A0		LDA		#\$A0			
C75E			STA		\$38			;STORE KSWL
0.55	0000				-			
C760		******	**RESE	т 69	502 1	ro f	PRE-	ROUTINE STATE********
C760	28	NOINP:	$\mathbf{P}\mathbf{L}\mathbf{P}$					
C761			PLA					
C762			TAY					
C763			PLA					
C764			TAX					-
C765	68		PLA					
C766								
0766	10		01.0					
C766			CLC					
C767	3001		BCC	I	RELOU	1. 1 .		;BRANCH TO \$CnD0 _

C769 ******************** C769 ******\$07A0 IS THE NEW LOCATION OF THE CSWH AND CSWL****** C769 ******POINTERS. THIS SECTION MUST BE IN THE ***** C769 ******RELOCATABLE ROM SECTION IN ORDER TO TURN ON THE**** C769 ******CORRECT EXPANSION ROM. **** C769 ******************* C7A0 ORG \$C7A0 C7A0 48 RELINP: PHA C7A1 8A TXA :STORE 6502 STATUS C7A2 48 PHA C7A3 98 TYA C7A4 48 PHA C7A5 08 PHP C7A6 4C00C8 JMP INPUT ; JUMP TO ABSOLUTELY ADRESSED \$C800 C7A9 ;WHICH IS THE INPUT ROUTINE. C7A9 C7A9 *******\$07D0 IS THE NEW LOCATION OF THE KSWL AND KSWH***** C7A9 ****** POINTERS. THIS SECTION MUST BE IN THE **** *******RELOCATABLE ROM SECTION IN ORDER TO TURN ON THE**** C7A9 C7A9 ********CORRECT EXPANSION ROM **** C7A9 C7D0 ORG \$C7D0 C7D0 48 **RELOUT: PHA** ;STORE 6502 STATUS C7D1 8A TXA C7D2 48 PHA C7D3 98 TYA C7D4 48 PHA C7D5 08 PHP C7D6 4C87C8 PRINT ;** GO TO OUTPUT (PRINT) ROUTINE JMP C7D9 **;** IN EXPANSION ROM ADRESS SPACE** C7D9 ********* C7D9 ******* C7D9 ***** ;****** C7D9 EXPANSION MEMORY ROUTINES (C800 - CEFF) C7D9 ******* C7D9 C7D9 C800 ORG \$C800 C800 A537 INPUT: LDA \$37 :PICK OFF SLOT # C802 290F AND #\$0F C804 A8 TAY C805 B9F807 RAM7,Y ;CLEAR RAM7 IF AN ILLEGAL ENTRY LDA C808 C907 #\$07 ;HAS BEEN PICKED UP CMP C80A 9005 BCC GOINP C80C A900 LDA #\$00

C80E 99F807		STA	RAM7,Y	($C \in$
C811 B97806 C814	GOINP:	LDA	RAM4,Y	;SEE IF A MINUS SIGN TO BE ;INPUTED	
C814 29F0		AND	#\$F0		
C816 C9F0		CMP	#\$F0		
C818 D014		BNE	GOINP1		
C81A A9FF		LDA	#\$FF	;USE THE 4 MSB'S OF RAM4 TO SEE	
C81C 99F807		STA	RAM7,Y	; IF A MINUS SIGN NEEDS BE SENT	
C81F B97806		LDA	RAM4,Y	;IF MSB'S = \$B THEN NO MINUS SIGN	
C822 290F		AND	#\$0F	•	
C824 09B0		ORA	#\$B0		
C826 997806		STA	RAM4,Y	· ·	
C829 A9AD		LDA	#\$AD		
C82B 4C71C8		JMP	LOAD		
C82E B9F807	GOINP1:	LDA	RAM7,Y	;BEGIN SENDING ASCII BYTES IN RAM4	
C831 C900		CMP	#\$00	;THORUGH RAMO, KEEPING TRACK OF	
C833 D006		BNE	ONE	;WHICH BYTE TO SEND NEXT BY	
C835 B97806		LDA	RAM4,Y	; INCREMENTING RAM7	
C838 4C71C8	·	JMP	LOAD		
C83B B9F807	ONE:	LDA	RAM7,Y		
C83E C901		CMP	#\$01		
C840 D006		BNE	TWO		Ć
C842 B9F805		LDA	RAM3,Y		
C845 4C71C8		JMP	LOAD		
C848 B9F807	TWO:	LDA	RAM7,Y		
C84B C902		CMP	#\$02		
C84D D006		BNE	THREE		
C84F B97805		LDA	RAM2,Y		
C852 4C71C8		JMP	LOAD	х.	
C855 B9F807	THREE:	LDA	RAM7,Y		
C858 C903		CMP	#\$03		
C85A D006		BNE	FOUR		
C85C B9F804		LDA	RAM1,Y		
C85F 4C71C8		JMP	LOAD		
C862 B9F807	FOUR:	LDA	RAM7,Y		
C865 C904		CMP	#\$04		
C867 D006		BNE	CR		
C869 B97804		LDA	RAMO,Y		
C86C 4C71C8		JMP	LOAD		
	_			-	
C86F A98D	CR:	LDΛ	#\$8D		
C871 BA	LOAD:	TSX	; MOVE SI	ACK POINTER AND STUFF	<i></i> .
C872 E8		INX	-) BE INPUTED INTO WHAT WILL BE	()
C873 E8		INX		UMULATOR AT THE END OR THE	*
C874 E8		INX	;6502 RE	STORE FUNCTION EXIT.	

ŀ

Ļ

!

C875 E8 C876 9A C877 48 C878 68 C879 CA C87A CA C87A CA C87B CA C87C CA C87D 9A	INX TXS PHA PLA DEX DEX DEX DEX TXS		
C87E 18 C87F B9F807 C882 6901 C884 99F807	CLC LDA ADC STA	RAM7,Y #\$01 RAM7,Y	;INCREMENT RAM7 TO KEEP TRACK OF ;WHICH BYTE .TO INPUT NEXT
C887 ****** PRI	NT ROUTINE		**************************************
C887	;** PI	CK OFF PR	INTED ASCII BYTE**
C887 ****STATUS	ITEMS ARE CUMULATOR A	PUSHED ON T THE TIM	OUTINE ALL CURRENT PROCESSOR**** TO THE STACK THUS TO HAVE**** E OF THE PRINT AVAILABLE YOU**** FOM OF THE STACK ****
C887 BA PRI C888 E8 C889 E8 C88A E8	NT: TSX INX INX INX INX	;LOAD S	FACK POINTER
C88B 9A	TXS	; POINT ?	TO DATA BYTE
C88C 68	PLA	;POP DAT	FA
C88D 48 C88E CA C88F CA C890 CA C891 9A C892	PHA DEX DEX DEX TXS	;RESET §	STACK POINTER
C892 *********	BEGIN ACTUAI	L DECODE O	PERATION
C892 *****THE IN C892 *****TAKEN	PUT FUNCTION TO ASSURE TH	N. CERTAI IESE PRINI	CERTAIN ITEMS WHEN IN**** N PRECAUTIONS MUST BE**** NED BYTES ARE NOT ***********************************
C892 AA C893 EOBF C895 F024	TAX CPX BEQ		II BYTE IN X NORE THE ? SENT BY THE INPUT

APM-08 MANUAL

C89	7 E089		СРХ	#\$89	; IGNORE TABS	(° •
	9 F020		BEQ	EXIT2	, IGHORE IRDS	•••
	B EOAO		CPX	#\$A0	; IGNORE SPACES	
	D F01C			EXIT2	, IGNORE SPACES	
Cost	DEOIC		BEQ	CX112		
	F A537		LDA	\$37	;STORE SLOT # IN Y	
	l 290F		AND	#\$0F		
C8A3	3 A8		TAY			
C8A4	4 B9F807		LDA	RAM7,Y		
C8A7	7 C906		CMP	#\$06 ;I	F THIS IS THE LAST TERM INPUTED	
C8A9	F013		BEQ	CLR7	;CLR RAM7 AND EXIT	
C8AB	C900		Смр	# \$00	; IF THIS IS NOT A NEW COMMAND	
	D015		BNE	FNSCAN	-	
C8AF			DITE			
C8AF			ТХА			
C8B0	C98D		CMP	#\$8D	; IGNORE FIRST CR AFTER INPUT	
C8B2	F007		BEQ	EXIT2	; COMMAND	
C8B4	C9AD		СМР	#\$AD	; IGNORE MINUS SIGN AS A COMMAND	
C8B6	F003		BEQ	EXIT2		
C8B8	99F807		STA	RAM7,Y		(
C8BB	4CA5C9	EXIT2:	JMP	EXIT	;SIMPLE BRANCH TO ALLOW EXIT	(
C8BE	201BCB	CLR7:	JSR	RESET	CLEAR ALL RAM LOCATIONS IF	
	4CA5C9		JMP	EXIT	; INPUT IS OVER	
C8C4	B9F807	FNSCAN:	LDA	RAM7,Y		
	C9C3		CMP	#\$C3	; IF NOT PERFORMING AN A TO D	
-C8C9			BNE	NOTC	CONVERSION GO TO NOTC	
C8CB	4C09C9		JMP	ATOD	•	
C8CE	C9C4	NOTC:	Смр	#\$C4	; IF NOT A D TO A CONVERSION	
C8D0			BNE	NOTD	GO TO NOTD	
	4C70CA		JMP	DTOA		
C8D5	CACE	NOTD:	CHD	#000		
C8D5		NOTD:	CMP BNE	#\$CF NOTO		
	4C33CB			DIGOUT	;DIGITAL OUTPUTS?	
CODy	ACTOCD		JMP	DIGOUI		
C8DC	C9C9	NOTO:	СМР	#\$C9	; DIGITAL INPUTS?	
C8DE	D003		BNE	NOTI		
C8E0	4C77CB		JMP	DIGIN		
C8E3	C9D2	NOTI:	Смр	#\$D2	;COUNTER READ?	
C8E5			BNE	NOTR		{
	4CACCB		JMP	RDCTR		Υ.
C8EA	C9D7	NOTR:	Смр	#\$D7	;COUNTER LOAD?	
	/		SHE	11 4 12 1	ACOULTER DOND.	

, ·

	D003 4C16CC		BNE JMP	NOTW LDCTR	
C8F3	C9CC D003 4CA0CC	NOTW:	CMP BNE JMP	#\$CC NOTL CTRLT	;COUNTER LATCH?
C8FA	C9D3 D003 4CD3CC	NOTL:	CMP BNE JMP	#\$D3 Nots Ctrmd	;SET COUNTER MODE?
C901	C9D1 D003 4C19CD	NOTS:	CMP BNE JMP	#\$D1 NOTQ QUIT	;EXIT TO DOS ROUTINE?
C906	4CA5C9	NOTQ:	JMP	EXIT ;NO	OT A VALID COMMAND AND SO IGNORED
	E08D F00E	ATOD:	CPX BEQ	#\$8D CONV	; IF "CR" GO PERFORM CONVERSION
C910	B97807 C900 D004		LDA CMP BNE	RAM6,Y #\$00 EXIT1	; IF THIS IS THE SECOND CHANNEL ; NUMBER SELECTED THEN IGNORE IT.
C914			TXA		;STORE CHANNEL # IN
	997807 4CA5C9	EXIT1:	STA JMP	RAM6,Y EXIT	;RAM6
			JMP	EXIT	;RAM6 EON ROUTINE*************
C918 C91B			JMP	EXIT	
C918 C91B	4CA5C9 B97807 2907	******	JMP ***START	EXIT CONVERSI RAM6,Y	
C918 C91B C91B C91E C920 C921 C924 C926 C929	4CA5C9 B97807 2907 AA B9F806 29F8 99F806 8A	******	JMP ***START LDA AND TAX LDA AND STA TXA	EXIT CONVERSI RAM6,Y #\$07 ;PI RAM5,Y #\$F8 RAM5,Y	ION ROUTINE************************************
C918 C91B C91B C91E C920 C921 C924 C926 C929 C92A C92D C930	4CA5C9 B97807 2907 AA B9F806 29F8 99F806 8A 19F806 99F806	******	JMP ***START LDA AND TAX LDA AND STA	EXIT CONVERSI RAM6,Y #\$07 ;PI RAM5,Y #\$F8	ION ROUTINE************************************
C918 C91B C91B C91E C920 C921 C924 C926 C929 C92A C92D	4CA5C9 B97807 2907 AA B9F806 29F8 99F806 8A 19F806 99F806 99F806 48 98 2A 2A	******	JMP ***START LDA AND TAX LDA AND STA TXA ORA	EXIT CONVERSI RAM6,Y #\$07 ;PI RAM5,Y #\$F8 RAM5,Y RAM5,Y	ION ROUTINE************************************
C918 C91B C91B C91E C920 C921 C924 C926 C929 C92A C920 C920 C930 C930 C931 C932 C933	4CA5C9 B97807 2907 AA B9F806 29F8 99F806 8A 19F806 99F806 99F806 48 99F806 48 98 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A	******	JMP ***START LDA AND TAX LDA AND STA TXA ORA STA STA STA PHA TYA ROL ROL	EXIT CONVERSI RAM6,Y #\$07;PI RAM5,Y #\$F8 RAM5,Y RAM5,Y RAM5,Y	ION ROUTINE************************************

- 57 -

and the second second

10

C93D	A900		LDA	#\$00 (
C93F	EA	STALL:	NOP	;ALLOW S+H SOME TIME TO ACQUIRE
C940	6901		ADC	#\$01
C942	C904		CMP	#\$04
C944	DOF9		BNE	STALL
C946	9981C0		STA	BASE1,Y ;START A/D CONVERSION
C949	98		түа	
C94A	48		PHA	
C94B				
C94B	4 A		LSR	А
C94C	4A		LSR	Α
C94D	4 X		LSR	Α
C94E	4A		LSR	Α
C94F	290F		AND	#\$0F
C951	A8		TAY	
C952	A900		LDA	#\$00
C954	997804		STA	RAMO,Y
C957	99F804		STA	RAM1,Y
C95A	997805		STA	RAM2,Y
C95D	99F805		STA	RAM3,Y
C960	997806		STA	RAM4,Y
C963	997807		STA	RAM6,Y
C966	99F807		STA	RAM7,Y
C969	68		PLA	
C96A	АА		TAX	;STORE NO IN REGISTER X

C96B C96B ******THE TOBCD ROUTINE TAKES BINARY DATA FROM********* C96B *******RAM6, AND RAM7 AND CONVERTS IT INTO ASCII******** C96B C96B *******WHERE RAMO IS THE LSD AND RAM4 IS THE MSD******** C96B *******IF THE NUMBER IS > THAN 32767 THEN THE MSB'S***** C96B *******OF RAM4 ARE SET TO ONES TO TELL THE INPUT COMMAND* C96B ********TO SEND A MINUS SIGN BEFORE THE 5 DIGIT NUMBER**** C96B *******THE ROUTINE THEN SUBTRACTS 32768 FROM THE INPUT*** C96B *******SO WE CAN MAINTAIN COMPATABILITY WITH THE BINARY** C96B

C96B	BD80C0	LDA	BASE0,X	; PICK OF LSB'S
C96E	4A	LSR	A	
C96F	4A	LSR	Α	
C970	4A	LSR	А	
C971	4 A	LSR	А	
C972	997807	STA	RAM6,Y	
	``			
C975	BD81C0	LDA	BASE1,X	;PICK OFF MSB'S
C978	4A	LSR	A	
C979	4 A	LSR	А	
0071				
C97A	4A	LSR	A	
C97A C97B	•••	LSR LSR		
	4A		A	

Ser Children Contraction Contraction

C984 C985 C986 C987 C988 C988	2A 2A		LDA ROL ROL ROL AND ORA STA	BASE1,X A A A #\$F0 RAM6,Y RAM6,Y				
C995 C997 C999 C99A C99C	AA 20ADC9 A537 290F		TYA TAX JSR LDA AND TAY LDA STA STA	TOBCD \$37 #\$0F #\$00 RAM7,Y RAM6,Y	;RESET Y TO THE BOARD #			
C9A2 C9A5	4CA5C9		JMP	EXIT				
C9A5 C9A6 C9A7 C9A8 C9A9 C9AA C9AB C9AC	28 68 A8 68 AA 68	EXIT:	CLC PLP PLA TAY PLA TAX PLA RTS		;RESTORE 6502			
C9AD C9AD C9AD C9AD C9AD	C9AD *****THIS ROUTINE TAKES BCD NUMBERS IN RAM6 (LSD) THROUGH C9AD *****RAM7 (MSD) AND CONVERTS THEM INTO ASCII CHARACTERS C9AD *****IN THE SAME MEMORY LOCATIONS REGISTER X MUST CONTAIN							
C9AD C9B0 C9B2 C9B4	C900	TOBCD:	LDA AND CMP BEQ	RAM7,Y #\$80 #\$00 TENTHO	;GOTO TENTHO IF THE # IS POSITIVE			
C9B9	B9F807 297F 99F807 A9FF	*NEGATIVI	E NUMBER* LDA AND STA LDA TAY	RAM7,Y #\$7F RAM7,Y	**************************************			
C9C1 C9C1	38	TENTHO:	SEC		;COUNT HOW MANY TIMES			

(a) the state of the state of the sequence of the state of the stat

.

	BD7807 E910		LDA SBC	RAM6,X #\$10	;10,000 CAN BE SUBTRACTED (;FROM THE NUMBER TO FIND
C9C7	48		PHA		;THE TEN THOUSANDS
	BDF807		LDA	RAM7,X	
	E927		SBC	# \$27	
C9CD			PHA		
C9CE			* ****		
	900E		BCC	THOUSA	; IF NEGATIVE THEN STORE TENTHOUSANDS
	FE7806		INC	RAM4,X	AND GOTO SUBTRACTION ROUTINE
C9D3			PLA		FOR THOUSANDS
	9DF807		STA	RAM7,X	
C9D7			PLA		
	9D7807		STA	RAM6,X	
	4CC1C9		JMP	TENTHO	; IF NOT NEGATIVE GOT BACK AND DO
	400109		UNF	IBNINO	ANOTHER SUBTRACTION
C9DE					ANOTHER SUBTRACTION
C9DE	68	THOUSA:	PLA		COUNT HOW MANY THOUSANDS CAN BE
C9DF		11000111	PLA		SUBTRACTED FORM THE RESULT
C9E0		THOUS:	SEC		
	BD7807	11005.	LDA	RAM6,X	
			SBC	#\$E8	
	E9E8			#200	
C9E6			PHA	האאס v	
	BDF807		LDA	RAM7,X	
	E903		SBC	#\$03	
C9EC			PHA		C
	900E		BCC	HUNSA	(
	FEF805		INC	RAM3,X	Υ.
C9F2			PLA		
	9DF807		STA	RAM7,X	
C9F6			PLA		
	9D7807		STA	RAM6,X	
C9FA	4CE0C9		JMP	THOUS	
C9FD	68	HUNSA:	PLA		COUNT HOW MANY HUNDREDS
C9FE		nousr.	PLA		/cooki how mail howbabbo
C9FE C9FF		HUNS:	SEC		
	BD7807	HUNS:	LDA	RAM6,X	
				#\$64	
CA03			SBC	#204	•
CA05			PHA	D1117 V	
	BDF807		LDA	RAM7,X	
CA09			SBC	#\$00	
CAOB			PHA	MENTO 2	
CAOC			BCC	TENSA	
	FE7805		INC	RAM2,X	
CA11			PLA		
	9DF807		STA	RAM7,X	
CA15		•	PLA		
	9D7807		STA	RAM6,X	•
CA19	4CFFC9		JMP	HUNS	
CALC	69	₩₽₩₽ ₩	PLA		;COUNT THE # OF TENS
CA1C		TENSA:			COORT THE # OF TENS
CA1D		TENC -	PLA		
CAIE		TENS:	SEC	DANG	
CAIF	BD7807		LDA	RAM6,X	

and an an an article state of the state of the

CA22 E90A CA24 48 CA25 900A CA27 FEF804 CA2A 68	SBC PHA BCC INC PLA	#\$0A ONESA RAM1,X	
CA2B 9D7807 CA2E 4C1ECA	STA JMP	RAM6,X TENS	
	NESA: PLA NES: LDA STA	RAM6,X RAM0,X	;HOW MANY ONES
CA38 98 CA39 C9FF CA3B D008 CA3D BD7806 CA40 09F0 CA42 9D7806	TYA CMP BNE LDA ORA STA	#\$FF GONES RAM4,X #\$F0 RAM4,X	
CA46 A8 CA47 B97806 CA4A 09B0 CA4C 997806 CA4F B9F805 CA52 09B0 CA54 99F805 CA57 B97805 CA57 B97805 CA57 09B0 CA5C 997805 CA5F B9F804 CA62 09B0 CA64 99F804 CA67 B97804 CA6A 09B0 CA6C 997804	ONES: TXA TAY LDA ORA STA LDA ORA STA LDA ORA STA LDA ORA STA LDA ORA STA LDA ORA STA	RAM4,Y #\$B0 RAM4,Y RAM3,Y #\$B0 RAM3,Y RAM2,Y #\$B0 RAM2,Y RAM1,Y #\$B0 RAM1,Y RAM0,Y #\$B0 RAM1,Y	;OR A \$B ONTO THE MSB'S OF THE ASCII ;TO GET TRUE APPLE ASCII
CA6F 60 CA70 E08D D CA72 F02E	RTS TOA: CPX BEQ	#\$8D LDDAC	;GO TO LLDAC IF "CR"
CA74 B97807 CA77 C900 CA79 D00E CA7B 8A CA7C 290F CA7E 997806 CA81 A901 CA83 997807	LDA CMP BNE TXA AND STA LDA STA	RAM6,Y #\$00 DAC1 #\$0F RAM4,Y #\$01 RAM6,Y	; IF 1ST NUMBER STORE IN RAM4 ;ELSE GOTO DAC1 ;THIS NUMBER WILL BE THE DAC ;CHANNEL NUMBER
CA86 4CA5C9 CA89 *********	JMP *LOAD NEW BYTE	EXIT IN MEMOR	Y AND INCREMENT LOLD BYTES

(

(

Ć

CA89				; MOVES EVERYTHING UP ONE
CA89				BYTE. THIS MEANS ONLY THE
CA89 B97805	DAC1:	LDA	RAM2.Y	LAST 5 BYTES INPUTED
CA8C 99F805		STA	RAM3,Y	
CA8F B9F804		LDA	RAM1,Y	• • • • • • • • • • • • • • • • • • • •
CA92 997805		STA	RAM2,Y	
CA95 B97805		LDA	RAM2,1 RAM0,Y	
CA98 99F804		STA	RAM1,Y	
CA9B 8A		TXA		
CA9C 997804		STA	RAMO,Y	
CA9F 4CA5C9		JMP	EXIT	
CAA2 B97806	LDDAC:	LDA	RAM4,Y	;BEGIN LOADING THE DAC ROUTINES
CAA5 ΑΑ		TAX		; PUT DAC NUMBER IN X
САА6 А900		LDA	#\$00	
CAA8 997806		STA	RAM4,Y	
CAAB 2089CD		JSR	BCDBIN	; GO TO THE ASCII/BINARY CONVERT
CAAD 2009CD		USK	DCDDIN	; GO IO INE ASCII/BINARI CONVERI
CAAE B97807 Cabi		LDA	RAM6,Y	;SHIFT RAM6 AND 7 TO PROPER ;CONFIGURATION
		NCT		CONFIGURATION
CAB1 0A		ASL	A	
CAB2 997807		STA	RAM6,Y	
CAB5 B9F807		LDA	RAM7,Y	
CAB8 2A		ROL	A	
CAB9 99F807		STA	RAM7,Y	
CABC B97807		LDA ·	RAM6,Y	;SECOND TWO BYTE SHIFT
CABF OA		ASL	A	
CAC0 997807		STA	RAM6,Y	
CAC3 B9F807		LDA	RAM7,Y	
CAC6 2A		ROL	A	
CAC7 99F807		STA	RAM7,Y	
CACA B97807		LDA	RAM6,Y	;THIRD TWO BYTE SHIFT
CACD OA		ASL	A	
CACE 997807		STA	RAM6,Y	
CAD1 B9F807		LDA	RAM7,Y	
CAD4 2A		ROL	A	
CAD5 99F807		STA	RAM7,Y	
CAD8 B97807		LDA	RAM6,Y	;FOURTH SHIFT
CADB 0A		ASL	A	
CADC 997807		STA	RAM6,Y	
CADE B9F807		LDA	RAM7,Y	
CAE2 2A		ROL	A	
CAE3 99F807		STA	RAM7,Y	
CAE6	******	*** SET	UP FOR A	CTAUL DAC LOAD*********
CAE6 8A		тха		;STORE CHANNEL #
CAE7 997804		STA	RAM0,Y	
CAEA 98		ТҮА	· · · · · · · · -	
CAEB OA		ASL	А	

CAEC CAED CAEE CAEF	0A 0A		ASL ASL ASL TAX	A A A	; MOVE	NO INT	ох	
CAF3 CAF5	B97804 C900 D012 B97807		LDA CMP BNE LDA	RAM0,Y #\$00 LDDAC1 RAM6,Y	; BRANCH	IF WR	ITTING	TO DAC1
CAFA	9D88C0 B9F807		STA LDA	BASE8,X RAM7,Y	;WRITE	LSB'S	OF DAC	D
CB00	9D89C0 201BCB		STA JSR	BASE9,X RESET	;WRITE	MSB'S (OF DAC	0
CB06	4CA5C9		JMP	EXIT				
CB0C CB0F	B97807 9D8AC0 B9F807	LDDAC1:	STA LDA	RAM6,Y BASEA,X RAM7,Y		·	DAC1 I	
	9D8BC0 201BCB		STA JSR	BASEB,X RESET		; LOAD	DAC1 I	1000
CB18	4CA5C9		JMP	EXIT				
CB1D CB20 CB23 CB26 CB29 CB2C	A900 997804 99F804 997805 99F805 99F805 997806 997807	RESET:	LDA STA STA STA STA STA STA STA	#\$00 RAM0,Y RAM1,Y RAM2,Y RAM3,Y RAM4,Y RAM4,Y RAM6,Y RAM7,Y				
CB32 CB33 CB33	60	******	*START C	DF DIGITA	L OUT R	OUTINE	*****	*****
CB33 CB33 CB34 CB36	C98D	DIGOUT:		#\$8D LDDOUT	;IF 'CR			
CB3B CB3E CB3F	B97804 99F804 8A 997804 4CA5C9		LDA STA TXA STA JMP	RAMO,Y RAM1,Y RAM0,Y EXIT	ŗ			
CB45 CB47 CB4A		LDDOUT:		#\$00 RAM2,Y RAM3,Y RAM4,Y				

APM-08 MANUAL

CB50	2089CD		JSR	BCDBIN	;GOSUB ASCII/BINARY CONVERTE	R (
CB53	98		туа		;SET UP FOR WRITE TO BOARD	
CB55			ASL	А	, SET OF FOR WRITE TO BOARD	
CB55			ASL	A		
CB56			ASL	A		
CB57			ASL	A		
CB58			TAX			
CB59	*****	** SET	UP CON	TROL REGIS	TER FOR WRITE TO APM08****	
CB59	B97807		LDA	RAM6,Y		
CB5C	0A		ASL	А		
CB5D			ASL	A		
CB5E			ASL	A		
CB5F			ASL	A		
	99F805		STA	RAM3,Y		
	B9F806		LDA	RAM5,Y		
	290F	•	AND	#\$0F		REGISTER
	19F805		ORA		;OR IN NEW OUTPUT WORD	
	99F806		STA	RAM5,Y		
	9D82C0		STA		;WRITE TO CONTROL REGISTER	
	201BCB 4CA5C9		JSR	RESET		
CB/4	4CADC9		JMP	EXIT		
						(
CB77					*********	(
CB77					L INPUT ROUTINE**********	
CB77		*****	*****	********	******	
СВ77	8A	DIGIN:	тха			
	C98D	DECENT	CMP	#\$8D	; IF CR THEN READ PORT	
	F003		BEQ	INPRD	; IF NOT EXIT	
CB7C	4CA5C9		JMP	EXIT	•	
00.74	0.0					
CB7F		INPRD:	TYA	•	;SET UP FOR READ	
CB80			ASL	A	•	
CB81 CB82			ASL ·	A		
CB82 CB83			ASL	A		
CB83			ASL Tax	A		
	BD82C0		LDA	BASE2,X		
CB88			LSR	A A		
CB89			LSR	A		
CB8A			LSR	A		
CB8B			LSR	A		
CB8C			AND	#\$07		
CB8E			ORA	#\$B0	_	
	997804		STA	RAMO,Y		
CB93			LDA	#\$B0		
	99F804		STA	RAM1,Y		
	997805		STA	RAM2,Y		(
	99F805		STA	RAM3,Y		
CB9E	997806		STA	RAM4,Y		

CBA1 A900 CBA3 997807 CBA6 99F807 CBA9 4CA5C9		LDA STA STA JMP	#\$00 RAM6,Y RAM7,Y EXIT	
CBAC CBAC CBAC	******	**START	COUNTER	**************************************
CBAC E08D	RDCTR:	CPX	#\$8D	
CBAE FOOE		BEQ	READ	
CBB0 B97807 CBB3 C900 CBB5 D004 CBB7 8A		LDA CMP BNE TXA	-	; IF SECOND DIGIT OF COUNTER TO ; READ IGNORE
CBB8 997807		STA	RAM6,Y	;STORE COUNTER TO READ IN RAM6
CBBB 4CA5C9	EXIT3:	JMP EXI	T	
CBBE B97807	READ:	LDA		STORE COUNTER TO READ IN RAMO
CBC1 2903 CBC3 997804		AND STA	#\$03 RAM0,Y	;PICK OFF COUNTER #
CBC6 98		түа	-	
CBC7 0A CBC8 0A		ASL ASL	A A	
CBC9 0A		ASL	A	
CBCA OA		ASL	A	
CBCB AA		TAX		
CBCC B97804		LDA	RAMO,Y	;GET COUNTER #
CBCF C902		CMP	#\$02	
CBD1 F022		BEQ	RDCTR2	
CBD3 C901 CBD5 F00F		CMP BEQ	#\$01 RDCTR1	
CBD7	******			0****
CBD7 BD84C0		LDA	-	;GET LSB'S OF COUNTER 0
CBDA 997807		STA	RAM6,Y	
CBDD BD84C0 CBE0 99F807		LDA	•	;GET MSB'S OF COUNTER 0
CBE0 331801		STA	RAM7,Y	
CBE3 4C01CC		JMP	RDCONV	
CBE6	*****	*READ CO	DUNTER 1	****
CBE6 BD85C0	RDCTR1:		BASE5,X	
CBE9 997807		STA	RAM6,Y	
CBEC BD85C0		LDA	BASE5,X	
CBEF 99F807		STA	RAM7,Y	
CBF2 4C01CC		JMP	RDCONV	

						6
CBF5	i	******	**READ C	OUNTER 2	****	ς.
	BD86C0	RDCTR2:		BASE6,X		
	997807		STA	RAM6,Y		
	BD86C0		LDA	BASE6,X		
CBFE	99F807		STA	RAM7,Y		
CC01		RDCONV:				
CC02			TAX	MORCO	CO TO DINADY ACCIL CONVERTER	
	20ADC9 A537		JSR LDA	TOBCD \$37	;GO TO BINARY/ASCII CONVERTER ;ROUTINE	
	290F		AND	\$37 #\$0F	, ROUTINE	
CCOA			TAY	# V V I		
	A900		LDA	#\$00		
CCOD	99F807		STA	RAM7,Y		
CC10	997807		STA	RAM6,Y		
CC13	4CA5C9		JMP	EXIT		
CC16					*****	
CC16					R LOAD ROUTINE************************************	
CC16			******	******	************************	
0010	8000	T D.000 -	0.0.1	# ¢ 0 D		
	E08D F02D	LDCTR:	CPX BEQ	#\$8D LDCNTR	;GO TO LDCNTR IF "CR"	(
CC10	FUZD		δeų	LDCNIK	GO TO EDENTR IF CR	
CC1A	B97807		LDA	RAM6,Y	; IF COUNTER NUMBER STORE IN RAM4	
CC1D	C900		CMP	#\$00	;ELSE GOTO LD1	
	D007		BNE	LD1	;THIS NUMBER WILL BE THE CNTR	
CC21			TXA		;CHANNEL NUMBER	
CC22	997807		STA	RAM6,Y		
CC25	4CA5C9		JMP	EXIT		
CC28					*****	
CC28					DRY AND INCREMENT LOLD BYTES	
CC28 CC28					VERSION OF THE COUNTER #**	
CC28			ED IN RAN		******	
CC28					; MOVES EVERYTHING UP ONE	
CC28					;BYTE. THIS MEANS ONLY THE	
		LD1:	LDA	RAM3,Y	;LAST 5 DIGITS INPUTTED WILL	
	997806	,	STA	RAM4,Y	;BE RECOGNIZED AS INPUT	
	B97805 99F805		LDA	RAM2,Y	-	
	B9F805		STA LDA	RAM3,Y RAM1,Y		
	997805		STA	RAM1,1 RAM2,Y		
	B97804		LDA	RAMO,Y		Ć
	99F804		STA	RAM1,Y		V.
CC 4 0	8A		TXA	•		

	997804 4CA5C9		STA JMP	RAMO,Y Exit	
CC 4 7	B97807	LDCNTR:	1.03	RAM6,Y	
CC4A		BOCNIK.	TAX	KAMO,I	;STORE CNTR # IN X
CC4B CC4E	2089CD		JSR	BCDBIN	;GO TO ASCII/BINARY CONVERTER ;ROUTINE
	A537		LDA	\$37	,
	290F		AND	#\$0F	
CC52	A8		TAY		
CC53	8A		TXA		
CC54 CC57	997804		STA	RAM0,Y	;STORE COUNTER # IN RAMO
CC57	98		түа		;SET UP INDEX FOR WRITE TO APM08
CC58	0A		ASL	А	
CC59	0A		ASL	А	
CC5A	0A		ASL	А	
CC5B	0A		ASL	А	
CC5C			TAX		
CC5D	B97804		LDA	RAM0,Y	
CC60			AND	#\$03	
CC 6 2			CMP	#\$02	
CC64			BEQ	CTR2LD	; IF LOADING TO CTR 2 GOTO CTR2LD
CC 66			CMP	#\$01	
CC68			BEQ	CTR1LD	; IF LOADING TO CTR 1 GOTO CTR1LD
0000			DDQ	CINIDO	
CC6A		******	***LOAD C	CTR # 0**	*****
CC6A	B97807		LDA	RAM6,Y	;GET LSB'S
CC6D	9D84C0		STA	BASE4,X	WRITE LSB'S TO CTR 0
CC70	B9F807		LDA	RAM7,Y	;GET MSB'S
CC73	9D84C0		STA	BASE4,X	WRITE MSB'S TO CTR 0
CC76	201BCB		JSR	RESET	
CC 79	4CA5C9		JMP	EXIT	
	· .				
CC7C					******
	B97807	CTR1LD:			;GET LSB'S
	9D85C0		STA		;WRITE LSB'S TO CTR 0
	B9F807		LDA	•	;GET MSB'S
	9D85C0		STA	•	;WRITE MSB'S TO CTR 0
	201BCB		JSR	RESET	
CC8B	4CA5C9		JMP	EXIT	
CC8E		******	ሲሰልኩ ሮሞ፤	2 # 0★★★★	*****
	B97807	CTR2LD:			;GET LSB'S
	9D86C0		STA		WRITE LSB'S TO CTR 0
	B9F807		LDA	•	;GET MSB'S
	9D86C0		STA		WRITE MSB'S TO CTR 0
	201BCB		JSR	RESET	1
	4CA5C9		JMP	EXIT	

- 67 -

والرابي والمرور والمرجع المجرور والمعرو والمعرور والمحاور والمحاور والمحاور والمحاور والمرور والمرور

APM-08 MANUAL

į.

						6
CCAO	I	*****	****	*****	*****	Ľ.
CCAO		*****	TART	OF COUNTER	LATCH ROUTINE***********	
CCAO					****	
			anv	* 6 9 5	CO INTOLI ON CD	
	E08D	CTRLT:	CPX	#\$8D	; GO LATCH ON CR	
	FOOE		BEQ	LATCH		
	B97807		LDA	RAM6,Y		
	C900		CMP	#\$00		
	D004		BNE	EXIT4		
CCAB			TXA	.		
	997807		STA	RAM6,Y	STORE COUNTER NUMBER IN RAM6	
CCAF	4CA5C9	EXIT4:	JMP	EXIT		
CCB2	B97807	LATCH:	LDA	RAM6,Y	; PICK OFF COUNTER NUMBER AND	
CCB5			ASL	A	STORE IN RAMO	
CCB6			ASL	A	•	
CCB7			ASL	A		
CCB8			ASL	А	•	
CCB9			ASL	A		
CCBA			ASL	Α		
	2900		AND	#\$C0		
	997807		STA	RAM6,Y		
CCC0			TYA	•		
CCC1			ASL	А	;SET UP INDEX FOR WRITE TO APM08	
CCC2			ASL	А	•	6
CCC3			ASL	А		(
CCC4	0A		ASL	A		
CCC5	AA		TAX			
CCC6	B97807		LDA	RAM6,Y		
CCC9	EA		NOP			
CCCA	9D87C0		STA	BASE7,X		
CCCD	201BCB		JSR	RESET		
CCD0	4CA5C9		JMP	EXIT		
CCD3	E08D	CTRMD:	СРХ	#\$8D		
	F01C		BEQ	SETMD	;GO TO SETMD IF "CR"	
CCD7	B97807		LDA	RAM6.Y	; IF 1ST NUMBER STORE IN RAM4	
	C900		CMP	#\$00		
	DOOE		BNE	GETMD	THIS NUMBER WILL BE THE COUNTER	
CCDE			TXA	Garria ,	;NUMBER	
	290F		AND	#\$0F		
	997806		STA	RAM4,Y		
CCE4			LDA	#\$01		
	997807		STA	RAM6,Y		
	4CA5C9		JMP	EXIT	-	
CCEC	88	GETMD:	ТХА			
	997804	GEIRD.	STA	RAWU V	;STORE COUNTER MODE IN RAMO	
	4CA5C9		JMP	EXIT	JOIGHE COULTER HOLL IN RAHO	(
CCF3	*****	*****	****	*****	******	

.

•

CCF3 98	SETMD:	түа		;SET UP FOR WRITE TO BOARD
CCF4 0A CCF5 0A		ASL ASL	A	
CCF6 0A		ASL	A N	
CCF7 0A			A A	
CCF8 AA		ASL	A	
CCF9 B97806		TAX LDA	DBMA V	
CCFC 0A		ASL		SHIFT COUNTER NUMBER INTO
CCFD 0A		ASL	A A	;MOST SIGNIFICANT TWO BITS
CCFE OA		ASL	A	
CCFF 0A		ASL	A	
CD00 0A		ASL	A	
CD01 0A		ASL	A	
CD02 997806		STA	RAM4,Y	
CD05 B97804		LDA		;SHIFT MODE NUMBER ONE BIT TO
CD08 2907		AND	#\$07	
CDOA OA		ASL	#307 A	ATTE DELI
CD0B 197806		ORA		;MERGE CNTR # AND MODE #
			·	; IN CNTRL REG
CD0E 0930		ORA	#\$30	;SET COUNTER FO 2 BYTE TRANSFER
CD10 9D87C0		STA	BASE7,X	;WRITE COUNTER CONTROL WORD
CD13 201BCB		JSR	RESET	CLEAR RAM
		OOK	RECEI	Jenbar Kan
CD16 4CA5C9		JMP EXI	т	
CD19 ******	*****			******
		*****	****	
CD19 *****	QUIT ROUT	******* INE TO S	******** ET UP DOS	* * * * * * * * * * * * * * * * * * *
CD19 *****	QUIT ROUT	******* INE TO S	******** ET UP DOS	5 ****
CD19 *****	QUIT ROUT	******* INE TO S	******** ET UP DOS	5 *************************************
CD19 ****** CD19 ******	QUIT ROUT	******* INE TO S ******	******** ET UP DOS	5 ****
CD19 ****** CD19 ******* CD19 8A	QUIT ROUT	******** INE TO S: ********	******** ET UP DOS *******	RESET EXPANSION CARD SPACE SO
CD19 ****** CD19 ****** CD19 8A CD19 8A CD1A C98D	QUIT ROUT	******* INE TO S ******** TXA CMP	******** ET UP DOS *********	RESET EXPANSION CARD SPACE SO
CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003	QUIT ROUT:	******* INE TO S ******** TXA CMP BEQ	******** ET UP DOS ********* #\$8D SETBIT EXIT	RESET EXPANSION CARD SPACE SO
CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9	QUIT ROUT:	******* INE TO S: ******** TXA CMP BEQ JMP	******** ET UP DOS ********* #\$8D SETBIT EXIT	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED
CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB	QUIT ROUT:	******* INE TO S ******** TXA CMP BEQ JMP JSR	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ****** CD19 ****** CD19 ******* CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E	QUIT ROUT:	******* INE TO S ******** TXA CMP BEQ JMP JSR LDA	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ****** CD19 ****** CD19 ******* CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537	QUIT ROUT:	******* INE TO S ********* TXA CMP BEQ JMP JSR LDA STA	******** ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37 \$39	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ****** CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539	QUIT ROUT:	******* INE TO S ******** CMP BEQ JMP JSR LDA STA STA	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ****** CD19 ****** CD19 ******* CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD	QUIT ROUT:	******* INE TO S ******** CMP BEQ JMP JSR LDA STA STA LDA	******** ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ***** CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536	QUIT ROUT:	******* INE TO S ******** TXA CMP BEQ JMP JSR LDA STA STA LDA STA STA	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD \$36	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ***** CD19 ****** CD19 ****** CD19 8A CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536 CD2E A981	QUIT ROUT:	******* INE TO S ******** CMP BEQ JMP JSR LDA STA LDA STA LDA STA LDA	********* ET UP DOS ********* \$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD \$36 #\$81	;RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR
CD19 ****** CD19 ****** CD19 ****** CD19 ******* CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536 CD2E A981 CD30 8538 CD32 4CA5C9	QUIT ROUT: ********** QUIT: SETBIT:	******* INE TO S ******** TXA CMP BEQ JMP JSR LDA STA LDA STA LDA STA LDA STA LDA STA JMP	********* ET UP DOS ********* \$ SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD \$36 #\$81 \$38 EXIT	RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR ;DOS INPUTS AND OUTPUTS
CD19 ****** CD19 ****** CD19 ****** CD19 ******* CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536 CD2E A981 CD30 8538 CD32 4CA5C9 CD35 18	QUIT ROUT:	******* INE TO S ******** CMP BEQ JMP JSR LDA STA STA LDA STA LDA STA LDA STA LDA STA LDA STA LDA STA	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$8D \$36 #\$81 \$38 EXIT \$38 EXIT	RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR ;DOS INPUTS AND OUTPUTS
CD19 ***** CD19 ****** CD19 ****** CD19 ****** CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536 CD2E A981 CD30 8538 CD32 4CA5C9 CD35 18 CD36 B9F805	QUIT ROUT: ********** QUIT: SETBIT:	******* INE TO S ******** TXA CMP BEQ JMP JSR LDA STA LDA STA LDA STA LDA STA LDA STA LDA STA LDA STA LDA	********* ET UP DOS ********** #\$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD \$36 #\$81 \$38 EXIT \$38 EXIT ;SIM RAM3,Y	RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR ;DOS INPUTS AND OUTPUTS
CD19 ****** CD19 ****** CD19 ****** CD19 ******* CD1A C98D CD1C F003 CD1E 4CA5C9 CD21 201BCB CD24 A99E CD26 8537 CD28 8539 CD2A A9BD CD2C 8536 CD2E A981 CD30 8538 CD32 4CA5C9 CD35 18	QUIT ROUT: ********** QUIT: SETBIT:	******* INE TO S ******** CMP BEQ JMP JSR LDA STA STA LDA STA LDA STA LDA STA LDA STA LDA STA LDA STA	********* ET UP DOS ********* #\$8D SETBIT EXIT RESET #\$9E \$37 \$39 #\$BD \$36 #\$81 \$38 EXIT \$38 EXIT ;SIM RAM3,Y A	RESET EXPANSION CARD SPACE SO ;DOS CAN BE ACTIVATED ;REINITIALIZE THE SETTINGS FOR ;DOS INPUTS AND OUTPUTS

المراجع المرجع والمرجع المرجع المرجع المرجع المرجع

÷

CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4	5 68 7 79F805 A 99F805	LDA RAI ROL STA PHA LDA PHA LDA ASL STA LDA ROL STA LDA ROL STA CLC PLA ADC STA PLA ADC STA	M4, Y A RAM4,Y RAM3,Y RAM3,Y RAM3,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y RAM4,Y		
CD79 CD70 CD7E CD82		LDA ADC STA LDA ADC	RAM3,Y RAM6,Y RAM6,Y RAM4,Y RAM4,Y	TWO BYTE ADDITION ROUTINE	(
CD88 CD89 CD89 CD89 CD89 CD89 CD89	60 *****START O *****THIS RO *****RAMO (L *****AND RAM	************** UTINE TAKES SD) AND CONV 7	******** ASCII DA 'ERTS IT	ERTER ROUTINE************************************	
CD8C CD8E	B97804 BCDI 290F 997804 B9F804 OA OA	**************************************	RAMO,Y #\$OF RAMO,Y		in (

Automatic more services and exercise

CD97 0A	ъст		
	ASL	A DDMO V	
CD98 197804	ORA	RAMO,Y	
CD9B 997804	STA	RAMO,Y	
CD9E B97805	LDA	RAM2,Y	
CDA1 290F	AND	#\$0F	
CDA3 99F804	STA	RAM1,Y	
CDA6 B9F805	LDA	RAM3,Y	
CDA9 OA	ASL	A	
CDAA OA	ASL	A	
CDAB OA	ASL	A	
CDAC OA	ASL	A	
CDAD 19F804	ORA	RAM1,Y	
CDB0 99F804	STA	RAM1,Y	
CDB3 B97806	LDA	RAM4,Y	
CDB6 290F	AND	#\$0F	
CDB8 997805	STA	RAM2,Y	
0000 1000		* * * * *	
CDBB A900	LDA	#\$00	
CDBD 99F807	STA	RAM7,Y	
CDC0 997806	STA	RAM4,Y	
CDC3 B97804	LDA	RAMO,Y	
CDC6 290F	AND	#\$0F	
CDC8 997807	STA	RAM6,Y	STORE ONES IN RAM6
CDCB B97804	LDA	RAMO,Y	
CDCE 4A	LSR	A	
CDCF 4A	LSR	A	
CDD0 4A	LSR	A	
CDD1 4A	LSR	A	
CDD2 99F805	STA	RAM3,Y	STORE TENS IN RAM3
CDD5 2035CD	JSR	MULT	;MULTIPLY BY TEN AND ADD
0000 007C00			; TO THE ONES
CDD8 2075CD	JSR	ADD	
CDDB B9F804	LDA	RAM1,Y	
CDDE 290F	AND	#\$0F	
CDE0 99F805	STA	RAM3,Y	
CDE3 A900	LDA	#\$00	
CDE5 997806	STA	RAM4,Y	;MULTIPLY THE 100'S BYTE BY 100
CDE8 2035CD	JSR	MULT	
CDEB 2035CD	JSR	MULT	
CDEE 2075CD	JSR	ADD	; ADD THE RESULT TO THE PREVIOUS DATA
CDF1 B9F804	LDA	RAM1,Y	
CDF4 4A	LSR	A	
CDF5 4A	LSR	Α	
CDF6 4A	LSR	A	
CDF7 4A	LSR	A ·	
CDF8 99F805	STA	RAM3,Y	
CDFB A900	LDA	#\$00	
CDFD 997806	STA	RAM4,Y	
CE00 2035CD	JSR	MULT	;MULTIPLYT THE THOUSANDS BYTE BY
CE03 2035CD	JSR	MULT	;1000
CE06 2035CD	JSR	MULT	
CE09 2075CD	JSR	ADD	;ADD THIS TO OUR SUM
CE0C B97805	LDA	RAM2,Y	

Second Ford States and States and

(

(

					C
CEOF	99F805	STA	RAM3,Y		- (°
CE12	A900	LDA	#\$00		
CE14	997806	STA	RAM4,Y		
CE17	2035CD	JSR	MULT	;MULT THE 10,000'S	
CE1A	2035CD	JSR	MULT		
CE1D	2035CD	JSR	MULT		
CE20	2035CD	JSR	MULT		
CE23	2075CD	JSR	ADD	;ADD IT TO OUR SUM	
CE26				FOR THE COMPLETE BINARY RESULT	
CE26	60	RTS			

0000

END

***** NO ERRORS DETECTED *****

- 72 -

THE REPORT OF A DESCRIPTION OF A DESCRIP

Index

A/D - Calibration 44 A/D - channel inputs 25 A/D - data format 7 A/D - Periodic triggering 24 A/D - reading data 7 A/D - specification 1, 37 A/D - starting conversion 6 Adding analog inputs 31 Address map - 5 Amplifiers & attenuators 25 Analog input channels 25 Applications 2, 25 Calibration 44 Calibration Program 47 Channel inputs 25 Connector assignments 34 Control register: 8254 counter-timer 18 Control register: APM-08 9 Counter timer: Event or pulse counting 20 Counter timer: Square wave generation 21 Counter-timer 1, 16, 30, 40 Counter-timer: Configurations 16 Counter-timer: Control register 18 Counter-timer: Frequency measurement 22 Counter-timer: Pulse width or period measurement 22 Counter-timer: Registers 10, 18 Counter-timer: Time delays 22 Counter-timer: Triggering A/D 24 Current loops 4-20mA 28 D/A converters 1 D/A data format 12 Differential inputs 25 Digital Common 32 Digital I/O 1, 30, 39 Environmental specification 41 Expansion multiplexer 31 Frequency measurement 22 Frequency synthesis 21 Groundloops 32 Grounds 33 Installation 4 Instrumentation amplifier 28 Integer variables -2's complement storage 42 Interrupt input 2, 39 L.L. Ground 32 Low-level signals 28 Measuring voltage 25

塑

Multiplexer control 10 Period measurement 22 Power consumption 37 Power outputs 2, 32, 40 Precautions in use 32 Process control current loops 28 Programmable interval timer 30 Programming 5 Pulse width measurement 22 Reference Voltage 2, 38 ROM listing 50 Sample-hold 38 Screw terminal board 2 Semiconductor temperature sensors 31 Setup 4 Single ended inputs 25 Specifications 37 Square wave generation 21 Status register 8 Storage 4 Temperature measurement 31 Temperature sensors - solid state 31 Thermocouples 31 Time delay generation 22 Timer 16 Voltage reference 28

See Succession 222

بالمراجها والمراجعة