
Figure 1: Meowwrrr, the author’s PostScript puss de resistance. These grays have
been adjusted here to show what they should look like on a 300 DPI printer. Most
current PostScript applications and most users instead use the seventeenth worst
of all the available 300 DPI grays.

HANDS ON

SOME ASSEMBLY REQUIRED . Don Lancaster

381MAY 1990 • B Y T E

In which the guru
expounds upon his
favorite subject

POSTSCRIPT
INSIDER SECRETS

I t does seem a bit strange for me
to be appearing inside someone
else’s column as their visiting

editorializer. But, outside of those ugly
mauve curtains and not being able to
find the switch for their hot tub, the
opportunity is most welcome.

PostScript by Adobe Systems.
Please do not call PostScript a page

description language. To do so is a
gross and demeaning insult, and is
roughly comparable to referring to
UNIX as a "checkbook balancer".

Instead, PostScript is an incredibly
powerful general purpose computer
language which can do far more than
hold its own against any other modern
contender.

Yes, PostScript does excel at putting
marks on pages. Those features that
make PostScript rather good at this
include its device independence, which
means that virtually any editor or most
any old word processor on any host
computer can be used.

The same device independence lets
you make use of phototypesetters,
laser printers, display screens, high
resolution fax substitutes, signmakers,
printed circuit prototypers, plotters,
CAD/CAM production systems, slide
imagers, and photolithography e 3-D
"Santa Claus" machines.

Another big plus of PostScript lies
in its powerful graphic transformation
capabilities. Fonts and graphics can be
freely intermixed in any combination
in any scale along any direction.

The font machinery in PostScript is
especially impressive, by use of single
outline descriptions to create any font
size or shape from a single master font

dictionary. Hinting and weight-vs-size
adjustments are often included in the
font descriptions. Hints can optimize
your results on lower resolution output
devices, as well as preserving balance
in larger headline typography.

Since the font descriptions are really
procedures, it is easy to post process
your final characters for outline,
shading, 3-D, pattern, distortion, and
numerous other special effects.

A near infinite variety of PostScript
fonts are available today. These range
from several dozen standards built into
PostScript printers up to thousands of
fully professional downloadable fonts,
down on through countless shareware

and freeware offerings of lower cost
and quality. You can also easily create
your own new PostScript fonts or
customize existing ones.

Another power feature of PostScript
involves its extensive use of Bezier
cubic splines to create smooth and
graceful curves whose resolution
improves with increasing size and
better output devices.

PostScript is somewhat related to
Forth. An interpreted, stack-oriented,
postfix entry (reverse Polish), and
heavily into the use of dictionaries.
PostScript is both reentrant and
extensible, meaning that you can add

continued

2

3

5

6

9

10

11

14

19

17 18

26 26

27 30

3537

21

33

39* 42* 42*50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

175

210

300

S
cr

ee
n

d

en
si

ty

in

sp
o

ts

p
er

in

ch

number of gray
levels, including
black and white,
for each region

0 5 10 15 20 25 30 35 40 45

Screen angle in degrees

Figure 2: This secret gray map shows you many of the "hidden" 300 DPI PostScript
grays found on the LaserWriter. The best all-around gray is the 106 spot, 45 degree
one, while a good reprogray for reducing camera-ready originals is available at 85
spots and 35 degrees. The 135 spot, 25 degree screen gives india ink wash effects.

HANDS ON

SOME ASSEMBLY REQUIRED

382 B Y T E • MAY 1990

or redefine any portion of the language
in any manner.

PostScript is also one extremely fun
language to apply, easily becoming
downright addictive. Since you could
create useful output after learning only
a very few PostScript commands, you
don’t have to swallow everything at
once. I have often seen off-the-street
beginning students routinely creating
award-winning graphics after a single
class session.

In short, those PostScript vibes feel
right. Which, in my opinion, will blow
everything else away.

Usually, you do not run out and buy
a copy of PostScript. Instead, their

language is built into your output
device, such as a laser printer or a
phototypesetter. Typical laser printers
which use PostScript include the Apple
LaserWriter NT and NTX and the
LC-890 by NEC. One example of a
PostScript phototypesetter is the
Linotron 200-P.

Yes, PostScript can be run on older
dot matrix and ink-jet printers. This
can be done with low cost PostScript
clone software emulators. GoScript,
Freedom of the Press, and UltraScript
are typical.

You communicate with PostScript
by using a series of instructions in any
old word processor file; downloading

emulators that accept nearly all earlier
graphics and text formats; or when
running illustration and pagemaking
applications programs.

As an advanced and future-oriented
general purpose language, PostScript
is both richly and loosely typed. For
lots of data structures that you can
redefine at will.

PostScript is polymorphic, giving
you a wide range of operators which
accept multiple data types as inputs.
Most importantly, PostScript allows
redefinable primitives. This lets you
rearrange the scenery to suit yourself.

PostScript automatically does all its
matrix transformations on the fly,
maintaining both a user space and a
device space. Its key-value dictionary
structures are extremely powerful. One
little known yet mind-blowing feature
of these dictionaries lets you link any
two data types as a key-value pair.

While I’d be most happy to discuss
PostScript programming fundamentals
with you all day long, this would best
be left for another place and another
time. What I’d like to do instead is
introduce to you a dozen disgustingly
sneaky and little-known PostScript
insider secrets.

Should you want more on PostScript
fundamentals, check into Adobe’s
"blue" book, otherwise known as the
PostScript Language Tutorial and
Cookbook, and the "red" book, that is
also called the PostScript Reference
Manual. Or you might call or bingo
me for more info.

On to our sneaky stuff…

Those Secret Grays
For some totally unfathomable reason,
most PostScript applications packages
and most users often end up using the
seventeenth most putrid group of grays
available on their 300 DPI PostScript
printers. Yet with a few keystrokes,
absolutely outstanding grays could get
substituted. Some can even simulate
an India ink wash.

Most 300 DPI PostScript printers are
only capable of putting or not putting
dots in specific locations on the page.
To create a gray, you use combinations
of dots which we might call a spot. For
instance, a 3 x 3 spot could give you
ten gray levels (including black and
white) with a resolution of 100 spots
per inch.

Because the spots have to perfectly
replicate themselves over the entire
page, integer math is involved that
decides which spot combinations are

continued

% Creates uniform and ultra-fine gray grids without any dropouts or rattiness.
% The code shown is device specific and is intended for 300 dpi printers.

% To create a grid, use -hpos- -vpos- -gridsize- setgrid. Until restored, all further
% images will be "locked" to the grid, expanding and contracting with it. Note that
% optimum linewidths and font sizes will often be less than 1.0 after locking.

% To show a grid, use -#hlines- -#vlines- showgrid.

% The seegrid command displays the grid when true.
% The fat5 command emphasizes every fifth line when true.
% the fatter10 command emphasizes every tenth line when true.

/quadpixel {transform 4 div round 4 mul itransform} def

/setgrid {save /rubbersnap exch def quadpixel /size exch def quadpixel exch quadpixel
exch translate size dup scale} def

/drawlines {72 300 div lw mul size div setlinewidth /hposs 0 def #hlines gs div 1 add cvi
{hposs 0 moveto 0 #vlines rlineto stroke /hposs hposs gs add def} repeat /vposs 0 def
#vlines gs div 1 add cvi {0 vposs moveto #hlines 0 rlineto stroke /vposs vposs gs add
def} repeat} def

/showgrid{ seegrid {gsave /#vlines exch def /#hlines exch def 106 45 {pop pop 0}
setscreen 0.9 setgray /gs 1 def /lw 1 def drawlines fat5 {/gs 5 def /lw 3 def drawlines} if
fatter10 {/gs 10 def /lw 5 def drawlines} if grestore}if} def

/fat5 true def /fatter10 true def /seegrid true def

% use examples: -xpos- -ypos- -gridsize- setgrid -#hlines- -#vlines- showgrid
% {anything you want locked to the grid} rubbersnap restore

% /// demo - remove before use ////

100 200 10 setgrid 20 20 showgrid showpage quit

Figure 3: Uniform and dropout free 300 DPI gray grids can be done at 1:1 scale by
first locking to exact four-pixel multiples and then using the special halftone screen
function as shown here. Note that each crossing consists of a single and uniform dot.
PostScript stays "locked" to the grid until the next occurence of a grestore.

HANDS ON

SOME ASSEMBLY REQUIRED

383MAY 1990 • B Y T E

or are not allowed. A parameter called
the screen angle decides how the spots
should orient on your page. Typically,
screen angles near 45 degrees are
preferred for lower visual artifacts.

Figure one shows the quality level
you should be expecting from 300 DPI,
while figure two shows you the secret
gray map of the denser grays.

Because of that integer tiling, your
request for a screen angle and density
will automatically get converted into
one of those shown on the secret map.

Your overall "best" gray is a 106
spot, 45 degree one, while the 85, 35
option is best for camera-ready copy
that is to be reduced. The 135, 25 can
give you India ink wash effects, but
limits paper and toner choices.

The default screen is clear on down
at 53 spots and 45 degrees, which
explains the "Sunday Funnies" results
of most poorly done PostScript.

There is, of course, one tradeoff.
The denser screens permit you fewer
gray levels. But one decent and dense
light gray is all you’ll need to really
spruce up line art.

To change a halftone screen, simply
enter this sequence…

106 45 {dup mul exch dup mul
add 1.0 exch sub} setscreen

That sequence inside those curly
braces is called the spot function.
Other spot functions are available for
other uses. Most spot functions do
behave similarly when imaging their
lightest gray. You can use PostScript’s
currentscreen operator to preserve the
existing spot function.

Dropout-free Gray Grids
There are other sneaky tricks you can
pull if you thoroughly understand your
PostScript grays.

Figure three shows you a fine gray
rubbergrid that is both uniform and
dropout-free. Your tricks here use a
special spot function and lock to exact
multiples of four pixels. Note that the
lines are all uniform and that each
crossing has precisely one pixel dot at
its precise center.

The nice thing about a rubbergrid is
that you can easily expand or contract
it to fit your available space. Once
created, further graphics and text are
locked to the rubbergrid until your
next restore.

Your grid could be used only for
layout, or else can be a part of your
final image. Engineering graphs do
look good on the rubbergrid.

There are several minor gotchas.

The rubbergrid must be done at 1:1
scale, and any scaling or repositioning
at all gets rather involved. Because of
the exact quad pixel locking (which
seems crucial for preventing 300 DPI
dropouts), your final graph may not
end up exactly the size you wanted,
and may not be exactly positioned.

If you just want a rubbergrid and do
not care how it looks, do a…

/quadpixel {} def

to prevent the locking. If you don’t
lock, you will get the exact size and
position you want, but may have
dropouts and lineweight variations.

Note that the grid extends infinitely
in all directions, but only the values
passed to showgrid determine what
you see on the page. You can turn off
the visible portion of the grid by
adding a "%" comment to the start of
your showgrid line.

Opaque Icons
Many popular PostScript images can
get thought of as blobs sitting on
strings. Obvious examples include
electronic schematics, flowcharts,
printed circuit boards, organizational
charts, and work schedules.

continued

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

B1 NF1 B2 NF2 B3 NF3 B4 NF4

GND BIS VCC OUT NF IN NF5 B5

KA2223

100K x 5

INPUT

4.7 K 3.3 µF

+

+9 VDC

1000

3.3 µF
4.7 K

+

+
47 µF

OUTPUT

+22 µF

.039µ

0.68µ

.012µ

0.22µ

3900

.068µ

1200

.022µ

390

6800

Figure 4: Opaque icons greatly simplify drawing PostScript electronic schematics,
flowcharts, and other "blobs on strings" illustrations. All of the background wires are
continuous, and get "slid under" the icons simply by placing them earlier in your text
file. Line breaks are first printed an opaque fat white, then a thin black.

HANDS ON

SOME ASSEMBLY REQUIRED

384 B Y T E • MAY 1990

A nearly unknown concept called an
opaque icon can come to the rescue
here. One example appears in the
electronic schematic of figure four.
The rules are that all the symbol icons
are stored in dictionaries; that all the
icons are opaque and will thus erase
anything they are sitting on; and that
each icon has an obvious action point
which determines where they sit.

Erasure gets done by writing white
over your underlining wire or string
before creating the rest of the icon.

The nice thing about opaque icons is
that you can first position them and
then later slide all of your continuous
wires underneath them. To do this, you
simply place your continuous wires
earlier in your textfile.

Your icons are thus repositionable
at any time, without ever worrying
about making and breaking any of the
actual connections.

A related technique is called the fat
white, thin black ploy. Those wire
breaks you see are done by drawing a
thick white line, followed by a thin
black one. The same idea also works
for piping and braiding, for unusual
borders, isometric depth illusions, and
for fonts can that automatically break
an underline.

Not-so-secret eexec
PostScript has a very enigmatic eexec
operator that appears to be of major
ongoing helpline interest. eexec was a
failed early attempt at making
PostScript textfiles somewhat harder
to read at the triple penalties of longer
files, slower execution times, and that
red flag waving "I’ve got a secret"
attention calling to its own use.

You can easily sight read any eexec
file by using a stack dumping error
trapper, followed by selectively
inserting extra characters into your
data stream or else truncating your file
with a [control]-d end of file. From
your return error messages, your
plaintext file is readily reconstructed.
All of the needed tools appear in
Adobe’s red, blue, and green books.

For a faster and easier method,
listing one shows you how to employ
eexec to encrypt your own PostScript
textfile, while Listing two shows you
how to convert your previously eexec
encrypted file back into plaintext.

So how does eexec work? The key is
a sixteen bit pseudorandom sequence.
To encrypt, the upper eight bits of the
current pseudorandom mask integer
gets exclusive-OR’d against an
original ASCII value, creating a new

character that gets saved as a hex pair.
Since the exclusive-OR function is

reversible, a similar process repeated
again will get you from the encrypted
form back to plaintext.

A new pseudorandom value can be
calculated by adding the existing value
to the current encrypted character, then
multiplying by one 16-bit constant and
adding a second one. You can find
these constants by eexecing a bunch of
$00 values so as to reconstruct the
unshifted pseudorandom sequence.

The first four hex pair characters are
ignored in the eexec interpreter.
Presumably, these let you add a user
key to your coding process.

The short code segment I’ve chosen
for these eexec examples is called a
blackflasher. You can use this to eject
a solid black page immediately before
printing. Blackflashing preconditions a
laser printer drum and can greatly
improve solid blacks and uniform
grays whenever superb quality or a
camera-ready original is needed.

Curve Tracing
PostScript includes a pair of strong
Bezier cubic spline curve generators in
its curveto and rcurveto operators.
These let you draw the smooth and
continuous curves needed for higher
quality typography, signatures, cartoon
animation, borders, and anywhere else
you may need flowing curves.

A third order spline curve can have
at most a single cusp, a single loop, or
two inflection points. To do anything
fancier, you’ll have to use multiple
splines arranged end-to-end. And this
is where things can get tricky. To look
good on the page, adjacent splines
must align, have continuous slope,
and, ideally, a continuous rate of
change of slope where they meet. They
also, of course, should accurately
approximate the desired curve.

A curvetracing routine can be used
to align splines to get a smooth result.
While there are lots of options here,
the curvetracing routine I use seems to
give me lots of control and appears to
do the job.

Curve tracing is based on entering
an array of three data values for each
and every spline end. The composite
curve is then built up spline by spline.

These data values do include the x
position, the y position, and the desired
slope angle at each spline end. Since
you are specifying the end slope, you
end up guaranteeing the continuous
slope match at spline ends.

 continued

/mask 16#D971 def /mult1 16#6000 def /mult2 16#6E6D def /adder 16#58BF def
/strrx (X) def /trunc 16#FFFF def /char 32 def /hexvalues (0123456789ABCDEF) def

/printashex {cvi /vall exch def vall 16 div cvi hexvalues exch 1 getinterval print vall 15 and
hexvalues exch 1 getinterval print flush 20 {37 sin pop} repeat formatcount 1 add 32 eq
{(n) print flush 100 {37 sin pop} repeat} if /formatcount formatcount 1 add cvi 31 and def}
def

/makeeexecfile {/formatcount 0 def 4 {char mask -8 bitshift or char mask -8 bitshift and not
and /echar exch def echar printashex flush 15 {37 sin pop} repeat mask echar add dup
mult1 mul trunc and exch mult2 mul trunc and add trunc and adder add trunc and /mask
exch def} repeat {currentfile strrx readstring {0 get /char exch def char mask -8 bitshift or
char mask -8 bitshift and not and /echar exch def echar printashex flush 15 {37 sin pop}
repeat mask echar add dup mult1 mul trunc and exch mult2 mul trunc and add trunc and
adder add trunc and /mask exch def} {pop exit} ifelse} loop} def

% //// demo - remove before use. ////

1500 {37 sin pop} repeat

% Here is the expected host-returned blackflashing result ...

% F983EF00C334F148421509DC30FA053D6DD4273E416E6A2EA64F917B5D20E111
% 9F220AF8FC50D545AB51A0D18B6DD7543D27A21CD55887C1C7D51608F6A316EE
% 8891D92A6E0D09D1D039159DA3A0781E1380B1228C

makeeexecfile
0 0 moveto 1000 0 rlineto 0 1000 rlineto -1000 0 rlineto closepath fill showpage

Listing 1: Creating your own PostScript eexec file.

/mask 16#D971 def /mult1 16#6000 def /mult2 16#6E6D def /adder 16#58BF def
/trunc 16#FFFF def /strrx (X) def /skip4 -4 def

/readeexecfile {{currentfile strrx readhexstring{0 get /echar exch def echar mask -8 bitshift
or echar mask -8 bitshift and not and /char exch def skip4 0 ge {strrx 0 char put strrx print
flush 15 {37 sin pop} repeat /skip4 skip4 1 add def}{/skip4 skip4 1 add def} ifelse mask
echar add dup mult1 mul trunc and exch mult2 mul trunc and add trunc and adder add
trunc and /mask exch def}{pop exit} ifelse} loop} def

% //// demo - remove before use. ////

1500 {37 sin pop} repeat

% Here is the expected host-returned result for this demo . . .

% 0 0 moveto 1000 0 rlineto 0 1000 rlineto -1000 0 rlineto closepath fill showpage

readeexecfile
F983EF00C334F148421509DC30FA053D6DD4273E416E6A2EA64F917B5D20E111
9F220AF8FC50D545AB51A0D18B6DD7543D27A21CD55887C1C7D51608F6A316EE
8891D92A6E0D09D1D039159DA3A0781E1380B1228C

Listing 2: Reading the PostScript eexec file of Listing 1.

HANDS ON

SOME ASSEMBLY REQUIRED

385MAY 1990 • B Y T E

As a simple example, the single
curve of figure three is coded…

[5 5 80 15 15 25] curvetrace

We thus start at 5,5 with an angle of
+80 degrees and end up at 15,15 at an
exit angle of 25 degrees. As a more
detailed example, the cat of figure one
uses extensive curvetracing.

Curvetracing can either generate a
new path or append an existing one.
The convention I use is that initial data
values of 0,0 will append an existing
curve. This lets you mix curves and
straight lines in the same path.

Cusps are created by repeating a
data point pair with a different entry
and exit angle. Variable curve widths
are handled by curvetracing up one
side and down the other.

To draw a pictorial wire, you first
curvetrace the wire path. Next, set a 1
setlinecap for rounded ends. Then
stroke fat white to break anything the
wire is running over. Then stroke
black to set the wire outline. Then
stroke gray to color the wire…

A complete listing of my PostScript
curvetracing routine is included on
BIX as part of the meowwrrr listing.
More examples, including engineering
graphs, appear in my Ask the Guru,
volume II.

Fractal Art
If the dire predictions in the red book
are taken seriously, any attempt
whatsoever at doing fractal art with
PostScript will result in the immediate
vaporization of all small furry animals
within an eight block radius of your
PostScript printer. In reality, PS is
nearly ideal for many fractal uses.

To prove this, I’ve taken the fern
routine that first appeared in A Better
Way to Compress Images. (BYTE, Jan.
1988) I was struck by how ungainly all
the translate-rotate-scale ops were
done in either of the BASIC or C
example listings.

Uh, matrix image transformations
between device and user space are
inherent to the very core of PostScript.

The code works by first creating a
table of 128 different transformations
based on the probabilities needed. That
table is then selectively used to build
up your final fern. As before, the first
twenty dots are thrown out to give the

strange attractor time to start strange
attracting. Note that a mere 28 data
values completely define the image.

What utterly amazes me about this
fern fractal image is that you do not
really draw it. Instead, you simply let
it out, and it leaps at you.

Gonzo Justification
I overwhelmingly prefer to work in
"raw" PostScript in a non-WYSIWYG
standard ASCII textfile environment. I
find this gives me far more control and
lets me do my PostScript-as-language
apps which might not be at all obvious
in a screen-oriented or a pagemaking
environment.

One of my ongoing projects around
here is my gonzo justify routine where
I’ve attempted to produce the highest
possible 300 DPI text justification.

These let you fill justify a line with

any number of chosen regular, italic,
bold, superscripted, subscripted, or
custom font selections. As many as six
stages of microjustification get used.
First, all characters are spaced out by a
minimum and selectable fixed kerning,
eliminating the "collisions" common at
very small point sizes. Second, spaces
get stretched out from their maximum
compressible limit up to their normal
value. Third, up to one additional pixel
is added to each character to further
improve 300 DPI readability. Fourth,
the spaces get stretched out to an upper
aesthetic limit. Fifth, the characters are
stretched out to an upper pleasing
limit. Sixth, and finally, if all else
fails, spaces are stretched as far as is
necessary to complete the fill.

Other gonzo features are individual
selectable character kerning, tabbing,

continued

/problistcreate {mark /counter 0 def probabilities {128 mul round cvi {transforms counter
get} repeat /counter counter 1 add def} forall counttomark 128 sub neg dup 0 gt { [1 0 0
1 0 0] repeat} {pop} ifelse] /problist exch def} bind def

/doit {problistcreate 1 1 20 {problist rand -24 bitshift get transform 2 copy moveto 0.001
10 rlineto} repeat newpath numdots {problist rand -24 bitshift get transform 2 copy
moveto 0.001 0 rlineto stroke} repeat} bind def

% /// demo - remove before use. ///

/numdots 6000 def % increase for denser image; decrease to print faster

/transforms [[0 0 0 .16 0 0] [.2 .23 -.26 .22 0 1.6] [-.15 .26 .28 .24 0 .44]
[.85 -.04 .04 .85 0 1.6]] def

/probabilities [.01 .07 .07 .85] def

1 setlinecap 0 setlinewidth 200 300 translate 30 dup scale doit showpage quit

Figure 5: A PostScript fractal fern. PostScript’s ability to do continuous translate-
rotate-scale matrix transformations on the fly make it particularly attractive for many
fractal uses. The code shown here first creates a probability table. It then repeatedly
uses the transforms in that table to generate the final image.

HANDS ON

SOME ASSEMBLY REQUIRED

386 B Y T E • MAY 1990

programmable preset keystoning, fully
automatic drop caps, last paragraph
line stretch, and hanging punctuation.

In hanging punctuation, dashes,
periods, and commas lean out into
your right intercolumn spacing. While
seldom seen, hanging punctuation can
greatly improve 300 DPI text.

Those same gonzo routines are fully
programmable, which can let them
emulate just about anything.

You can call me for a free printed
listing of my gonzo justify routines.

Post-Justification Editing
Communication takes place between
author and reader when your desired
message is presented at the correct
level in the most pleasing manner. In
the final analysis, the medium is the
message. The way the words are
shown on the page is just as important
as the words themselves.

In fact, slightly jarring and slightly
wordy text presented as tightly and as
uniformly as possible will almost
always be understood better.

For this reason, I feel that there is
no point whatsoever in doing any
editing before typesetting to the final
page image standards. All of your
typesetting should be treated as rough
drafts, because the aesthetics of the
final image are so important.

The closer the original author comes
to showing the exact final page image,
the better the communication process
will become. And remain.

I call this heresy post-justification
editing, and boy is it ever. You always
typeset and then edit, not vice versa.

PostScript makes post-justification
editing so fast, so cheap, and so trivial
that it is inexcusable not to use it.

Another area for post justification
editing involves the last manual pass
over the final page layouts. No matter
how good your machine justification
routines, every twentieth line or so
could end up ungainly or spacey to
some extent or another. Use of a
hand-patched fix at this point can give
you outstanding final results. And no,
this final manual pass is not all that
expensive or time consuming.

As you might gather, the use of
post-justification editing is somewhat
controversial, since it can give the
original author unprecedented control
over what they say and how they say
it. It also gives you a much more
tightly controlled linking of the text,
figures, and art. Naturally, this is being
fought tooth and nail by old-line
editors who should know better.

IBM and Clone Interface
Far and away the number one topic on
my PostScript helpline involves IBM
and clone interface hassles. Since
PostScript is device independent, it
can easily work with most any host
computer at all, including, of course,
all of the pc clones. Yes, the Apple
LaserWriter works beautifully with
any of these machines. It even includes
a free secret and automatic two-host
network that does not need AppleTalk
or any fancy cables.

Virtually all of the clone problems
are due to end user misinformation.

First and foremost: Don’t ever,
under any circumstances, use a clone
parallel printer port to interface a
PostScript printer!

To do so deprives you of receiving
crucial return error messages; denies
you interactive operation; prevents any
host recording; outright eliminates
around 90 percent of the more useful
features of PostScript as a general
purpose language; while making your
printer drivers unbearably klutzy and
primitive.

Instead, you save all your PostScript

routines as standard ASCII textfiles to
disk. You then pick up those textfiles
with a suitable comm program such as
Crosstalk, and use them in a two-way
interactive COM-1 environment. A
good baseline environment is 9600
baud, 8 data bits 1 stop bit, no parity,
full duplex, and software XON/XOFF
handshaking activated.

Note that a simple copy to the
COM-1 port also will not give you any
of the essential return error messages.

There are at least six cable options
between clones and LaserWriters. The
baseline one I recommend for DB-25
to DB-25 interface to RS232 is…

1 to 1
2 to 3
3 to 2

short left 4 & 5
short right 4 & 5

6 to 20
20 to 6
7 to 7
8 to 8

When using RS423, note that your
RS232 data out goes to RXD- and that

continued

1

2

A "flat" pixelproc image gets
scanned one vertical pixel line
at a time. Each vertical pixel
line is then individually rotated
and translated and scaled
as needed to…

… get pasted when and where
required on the final image by
the use of a mappingproc. In
this case, we are doing a true
two point perspective letter.

Non-linear transformations
such as these are far more
powerful than ordinary linear
translate, rotate, or scaling
operations. But much slower.

R
scan line one pixel wide

Figure 6: Pixel line remapping gives you two powerful non-linear transformation
tools that let you map any image onto many complex surfaces. The "flat" image gets
broken down into one horizontal or vertical pixel line at a time. Each line will then
selectively be translated, rotated, and scaled to complete the transformation.

HANDS ON

SOME ASSEMBLY REQUIRED

387MAY 1990 • B Y T E

RXD+ gets grounded. Failure to
ground RXD+ is far and away the most
common mistake made here. Similarly,
TXD- drives the RS232 data-in line,
and TXD+ is unconnected.

Well after you are reliably receiving
your return error messages, you might
want to install a persistent printing
error trapper. Details on this are in the
green book and on most PostScript
bulletin boards. You can also get one
directly from Adobe Systems.

Getting your PostScript comm up
and running for the first time can be
extremely frustrating. Note that many
comm programs will not change their
parameters in real time. If something
does not work during your initial
setup, always do a cold reboot, and
make sure your PostScript printer is a
solid green or idle before you try to
talk to it.

Do give me a call if you need any
additional pc or clone interface help.

Pixel Line Remapping
The PostScript transformation matrix
that gets you from user space to device
space is a six-element linear one. This

lets you do all of the usual translation,
rotation, and scaling operations. As an
example, any square can be converted
into another square of any size, to a
rectangle, a parallelogram, a point, or
a line, at any rotation angle anywhere
on (or off) your page.

There are times and places when
you want to go beyond linear and
make the more complex non-linear
transformations on the fly. Obvious
examples include perspective and star
wars lettering, or mapping images onto
apparently non-flat services. Note that
a perspective letter is trapezoidal, and
thus cannot normally be done with a
linear transformation.

I’ve come up with a sneaky and
slow pixel line remapping scheme that
lets you map most anything onto any
strange or unusual surfaces. Figure six
shows us how pixel line remapping
works, while two additional examples
are in figures seven and eight.

With pixel line remapping, you first
create a flat proc that you wish to
nonlinearly transform. It can be an
ordinary PostScript proc, so you do not
need access to anything special such as

any protected font paths.
You then scan this flat image a

single pixel line at a time. Each line
then gets picked up and then gets
translated, scaled, and/or rotated as
desired before final placement.

There are two mapping routines, one
for vertical scanning and another for
horizontal scanning. In figure six, we
vertical scan for perspective lettering.
Each successive scan line is shown
shorter, higher, and left of original. In
figure seven, we use horizontal
scanning to produce a "star wars" logo.
Each new line is shown shorter and
below its position in the original.

Finally, in figure eight, we wrap a
label around an isometric or other 3-D
can. Lines left of center are shown
above and to the right of the original,
while lines right of center are shown
above and to the left of their original
positions on the flat label.

Processing speed varies with image
size and pixel resolution, being fastest
for graphics, intermediate on one
single font sizes, and rather slow when
font sizes change on the fly.

The parameter resolutionadjust in
figure seven lets you handle scaling or
do rough drafts much faster. If this
value is too high, you get dropouts.
Too low, and you are wasting your
time and get rattier final results.

For the ultimate in any non-linear
transformations, you can also do pixel
point remapping, but this can take
forever on larger images. Until you
factor in that good old "Uh – compared
to what?" factor. Point remapping lets
you map anything onto any surface,
however complex.

Pseudo Compiling
PostScript is wrongly accused of being
a slow language. Most often the speed
measurements are done by using a
non-PostScript applications program
running on a non-PostScript host,
creating non-optimized mechanical
code and communicating over a
glacially slow comm channel.

PostScript is ridiculously faster than
most people assume.

To set the record straight, I am very
big on the book-on-demand publishing
where a single title gets produced for
each and every customer order. Long
page makeup times are intolerable
here, because each book self-collates
on a page-by-page basis. My 6000 text
character, three column, gonzo
justified text with headers, footers, and
one or two fairly complex figures may

continued

Figure 8: This vertical pixel line remapping example prints in 70 seconds on a NTX.
By proc cacheing, or pre-converting the image into two characters in a custom font,
the repeat imaging time drops to 14 milliseconds, a 5000:1 speed improvement. The
first character prints the white label background; the second the label itself.

/resolutionadjust 1 def % raise to debug; lower to eliminate any stripes

/hpixellineremap {0 1 resolutionadjust mul pixelprocht 300 mul 72 div cvi
{/slinenum exch def save /snap1 exch def mark mappingproc newpath 0 slinenum 72
mul 300 div moveto pixelprocwidth 0 rlineto 0 72 300 div rlineto pixelprocwidth neg 0
rlineto closepath clip newpath pixelproc cleartomark snap1 restore} for } def

/pixelproc {5 5 moveto 0 134 rlineto 222 0 rlineto 0 -134 rlineto closepath stroke 20 15
moveto (FREE FONT) show 20 57 moveto (FREE FONT) show 20 99 moveto
(FREE FONT) show} def

/mappingproc {pixelprocwidth 2 div 0 translate tiltfactor pixelprocht mul dup slinenum
add div dup scale pixelprocwidth 2 div neg 0 translate} def

% /// demo - remove before use. ///

/AvantGarde-Demi findfont [40 0 0 40 0 0] makefont setfont

/pixelprocht 140 def % total scanned height
/pixelprocwidth 230 def % total scanned width
/tiltfactor 8 def % the smaller the flatter

gsave 150 300 translate hpixellineremap grestore showpage quit

Figure 7: "Star Wars" lettering is one of the most popular uses for horizontal pixel
line remapping. Each pixel line is shown somewhat lower and progressively shorter
than the flat original. Since pixel remapping applies to any image, you do not need
any access to the actual font paths.

HANDS ON

SOME ASSEMBLY REQUIRED

388 B Y T E • MAY 1990

need a page makeup time of between
zero and four seconds. Using an Apple
IIe as a host. Thus, I consider all of the
speed tests made in PostScript printer
reviews to be totally ludicrous.

One crucial speedup secret involves
getting your communications up to a
decent rate. Note that AppleTalk is not
significantly faster than an honest 9600
baud serial channel for typical users
most of the time, and that most comm
setups involve excessive "Hi -How’s
the wife and kids?" handshaking. I use
a custom crafted and honest 57,600
baud serial channel going out the game
paddle port of my IIe. My handshaking
overhead is zero, since new characters
are gotten during interbit delay.

Two ultimate comm speedups are to
use a local SCSI hard disk or else to
directly download all your PostScript
code over a SCSI channel.

The real secret to speeding up any
interpreted language is to compile it
instead. Outside of PostScript ’s rather
restrictive bind command which can
sometimes give you a fifteen percent
or so speedup, a true compiling of your
PostScript code can get rather tricky
for most users. But there are all sorts
of pseudo-compiling games you can
play which can give you some really
dramatic speed improvements.

Pseudo-compiling works only on the
procs that you are going to want to
reuse at least once in the future. The
trick here is to do all your calculations
only once, save only the results from
those calculations, and return them to
your host for recording and later reuse.
The key rule is to save and reuse only
genuinely needed information. Your
pseudo-compiling can be done either
manually or under program control.

Another pseudo-compiling stunt is
to never change a font more than once
per page. Since it usually does not
matter in which order things go down
onto your reprinted PostScript page,
you put all of your regular text down
first, then all your italic text, then all
the bold, then the headlines.

To do this, you use a custom routine
that saves all your strings with their
font, position, and message info into a
bunch of dictionaries. After your first
pseudo-compiling run, you then dump
these dictionaries back to your host for
recording and later reuse.

Pseudo-compiled code can also get
modestly compacted. Tricks such as a
simple formatting operator, dropping
leading zeros and dropping the number
of significant bits to those actually
required can further shorten (and thus

speed up) your run time files.
Adobe’s Distillery is one example

of an automated pseudo-compiling
program. A pseudo-compiler of mine
that includes font ordering has been
placed on BIX, while additional info
on my book-on-demand publishing
appeared in the January 1990 issue of
Midnight Engineering.

Proc Cacheing
We’ll wrap things up here with a very
little known PostScript speedup trick
that applies to any proc you want to
reuse at least once at the same size.
The trick is called proc cacheing and it
can give you a 12:1 up to a 7,000,000:1
speedup of all your PostScript run

continued

HANDS ON

SOME ASSEMBLY REQUIRED

389MAY 1990 • B Y T E

times. The amazing thing is that proc
cacheing is more or less free. All you
have to do is make some minor
changes in your programming style.

Proc caching can also capture entire
page bitmaps and can let you save fast
results for later use.

Proc cacheing is quite well suited
for smaller images that involve long
makeready times due to your use of
irregular clipping outlines, repeated
randomizing, pixel remapping, curve
tracing, multi-layer effect buildups,
extensive oddball math calculations,
non-linear transforms, or other slower
or intricate operations.

PostScript includes a powerful font
cache that converts font characters
into a bitmap the first time they are
used. Thus, the initial "s" of a given
size in your document is done as a
descriptive outline procedure. Those
results are transferred to the font cache
as a bitmap and saved. Repeat use of
the "s" character in the same size
comes from the bitmap and is typically
several thousand times or more faster.

Figure eight shows us an example of
a vertically pixel line remapped
"wrap-around" font which lets you
place a label on an isometric or other
circular surface. In this example, proc
cacheing gives you a 5000:1 speedup
on any same-sized future reuse.

All you have to do to proc cache is
convert any complex or slow routine
into one or more characters in a
custom font. Then you simply let the
font cacheing mechanism do its thing.

There are at least four ways to use
font cacheing. Should you define your
custom font on the fly, the cache will
go away with your current job. This is
handy for 12-up business cards on
older machines with limited memory.

If you persistently download your
custom font, your speedup will remain
so long as printer power is applied. If
you have a hard disk attached to your
NTX or other PostScript laser printer,
the fast image will remain until the
next time the disk blows up.

Finally, you can easily read the font
cache on your hard disk and return it to
your host for recording, giving you a
permanent fast bitmap.

Newer PostScript printers control
their font cache with this line…

mark M N setcacheparams

The N value here is the maximum
number of bytes allowed in the bitmap
of a single character. Multiply this by
eight to get the number of bits allowed
per character. Your M value decides

which of two cacheing strategies will
be used. Bitmaps of less than M bytes
will get cached as a real bitmap; those
greater than M but less than N will get
run length encoded. Run length
encoding needs less memory than a
full bitmap, but typically executes six
times slower.

To guarantee a real bitmap, simply
define M as larger than N. Characters
needing a bitmap larger than N bytes
will not get cached at all.

The allowable size of M depends
upon your printer and how much
memory is in it. The simplest method
to find your maximum is to increase M
until you get a limitcheck error.

Naturally, you will want to open up
M as wide as you can to let you proc
cache your larger images. A three
megabyte NTX lets you proc cache
images up to four square inches, while
a full twelve megabyte NTX handles
images up to sixteen square inches.

These size restrictions might seem
somewhat limiting, but note that the
slow portions of many images are
often small, and that you can use as
many characters in your custom font
side-by-side to build up any size image
at all. As few as six characters can
capture your entire page bitmap on a
full NTX.

There’s several gotchas involved in
proc cacheing. Your routine has to be
well enough behaved to allow its
definition as a custom font character.
Each character in a font is only
allowed to be a single color or a single
shade of gray. Thus, you’ll need an
additional custom character for each
color change in your original image.

For instance, in figure eight, only
the label itself gets proc cached. One
proc cached character gets used as a
white background mask, erasing the
can color, while a second proc cached
character puts the actual label on top
of the erasing white mask.

Figure eight is available on BIX so
you can start exploring proc cacheing
on your own. For additional info on
proc caching, you can contact me for a
free reprint of this exciting new
PostScript speedup technique.

Microcomputer pioneer and guru
Don Lancaster is the author of 26
books and countless articles. Don does
maintain a no-charge PostScript help
line found at (928) 428-4073. The best
calling times are 8-5 weekdays MST.
Or circle Reader Service Card 725 for
a free brochure full of more PostScript
secrets.

