MERLIN PRO

The Macro Assembler
For The Appie ile & lic

By Glen Bredon

(2.,

¥

’;fwﬂﬁﬁ’ If -~

MERLIN
PRO

The Macro Assembler
For The Apple lle & lic

By Glen Bredon

INSTRUCTION
MANUAL

Copyright © 1984 by RogerWagner
Publishing, Inc. All rights reserved.
This document, or the software
supplied with it, may not be
reproduced in any form or by any
means in whole or in part without
prior written consent of the copy-
right owner.

ISBN 0-927796~-04-X

PRODUCED BY:

R 5 PUISLISHIH(.'.,E INC. m

10761 Woodside Avenue e Suite E e Santee, California 92071
Customer Service & Technical Support: 619/562-3670

OUR GUARANTEE

This product carries the unconditional
guarantee of satisfaction or your
money back. Any product may be
returned to place of purchase for
complete refund or replacement
within thirty (30) days of purchase if
accompanied by the sales receipt or
other proof of purchase.

PRODUCT REFERENCE :MERPRC 2MO485LC

First, the stuff our lawyers make us say . . .

ROGER WAGNER PUBLISHING, INC.
CUSTOMER LICENSE AGREEMENT

IMPORTANT: The Roger Wagner Publishing, Inc. software product
that you have just received from Roger Wagner Publishing, Imc.
or one of its authorized dealers, is provided to you subject to
the Terms and Conditions of this Software Customer License
Agreement. Should you decide that you cannot accept these
Terms and Conditions, then you must return your product with
all documentation and this License marked "REFUSED" within the
30 day examination period following the receipt of the product.

1. License. Roger Wagner Publishing, Inc. hereby grants upon
your receipt of this product, a nonexclusive license to use
the enclosed Roger Wagner Publishing, Inc. product subject to
the terms and restrictions set forth 1in this License
Agreement.

2. Copyright. This software product, and its documentation, 1Iis
copyrighted by Roger Wagner Publishing, Inc. You may not copy
or otherwise reproduce the product or any part of it except as
expressly permitted in this License.

3. Restrictions on Use and Transfer. The original and any
backup copies of this product are intended for you personal
use in connection with a single computer. You may not
distribute copies of, or any part of, this product without the
express written permission of Roger Wagner Publishing, Inc.

LIMITATION ON WARRANTIES AND LIABILITY

ROGER WAGNER PUBLISHING, INC. AND THE PROGRAM AUTHOR SHALL
HAVE NO LIABILITY OR RESPONSIBILITY TO PURCHASER OR ANY OTHER
PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE
CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY THIS
SOFTWARE, INCLUDING, BUT NOT LIMITED TO ANY INTERUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF
THIS SOFTWARE. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION
MAY NOT APPLY TO YOU.

Then Apple”s...

DOS 3.3 Standard, ProDOS, BASIC.SYSTEM are copyrighted
programs of Apple Computer, Inc. licensed to Roger Wagner
Publishing, Inc. to distribute for use only in combination
with Merlin Pro. Apple Software shall not be copied onto
another diskette (except for archive purposes) or into memory
unless as part of the execution of Merlin Pro. When Merlin Pro
has coampleted execution Apple Software shall not be used by any
other program. '

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, REGARDING THE ENCLOSED SOFIWARE PAKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME
STATES. THE ABOVE EXCLUSION MAY NOT 'APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE
OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

And now, on with our program!

ABOUT THE AUTHOR

Glen Bredon is a professor at Rutgers University in New
Jersey where he has taught mathematics for over fifteen years.
He purchased his first computer in 1979 and began exploring its
internal operations because "I wanted to know more than my
students.” The result of this study was the best selling
Merlin Macro Assembler and other programming aids. A native
Californian and concerned environmentalist, Glen spends his
summers away from mathematics and computing, preferring the
solitude of the Sierra Nevada mountains where he has helped
establish wilderness reserves.

Downloaded from www.Apple20Online.com

MERLIN PRO Users Manual PREFACE

MERLIN PRO

Merlin Pro is an extremely powerful, comprehensive Macro
Agsembler system for the Apple //e or Apple //c computers. It
consists of four main modules and numerous auxiliary and
utility programs which comprise one of the most complete
assembler systems available for ANY personal computer! Merlin“s
four main modules are:

- EXECUTIVE system, for disk I/0, file management, ProDOS
interpreter, etec.,

- EDITOR system, for writing and editing programs with
word-processor—like power,

~ ASSEMBLER system, with such advanced features as Macros,
Macro libraries, conditional assembly, linked files, etc.,

- LINKER system, for generating relocatable code modules,
_library routines, run—time packages, etc.

But Merlin Pro is more than just the sum of these four parts.
Here are some of the other features offered by Merlin Pro:

- Assembles programs written for the 6502, 65C02 and 65802
microprocessors. (The 6502 for the Apple //e, the 65C02 for
the Apple //c, and the 65802 for who knows?),

~ Merlin Pro comes with TWO assemblers, one for each Apple //
operating system: DOS 3.3 and ProDOS,

~ Merlin Pro recognizes over 50 Pseudo Opcodes for extreme
programming flexibility,

~ Merlin Pro has over 40 editing commands for ultimate
editing power equaled omly by word processors,

- Merlin Pro comes with a complete, commented, disassembled
source listing of Applesoft BASIC,

- Merlin Pro comes with a powerful symbolic disassembler to
generate Merlin source code from raw bimary programs,

= Merlin Pro comes with many sample programs, libraries and
other aids to get you going with assembly language fast,

= Merlin Pro is UNLOCKED and COPYABLE for your benefit!

MERLIN PRO Users Manual TABLE OF CONTENTS

I. INTRODUCTION

Asgembly Language Whys and Wherefores .¢eeesve. seseesal
System Requirements ceenaaas csesesssssancns tescaas 2
Suggested Reading «veceevvvnnansn B T Tt

II. BEGINNERS GUIDE TO USING MERLIN

1II.

Introduction ceevaee tesscens cesecveasteseassennarshh
Input +seeveevennreeescnnctacncans P S teeesad
Steps From the Very Beginning ececeseserecasescncsencaasd
System Control and Text Entry Commands ..sescceceseeeasa8
ASSembly cccecoccctsrccncsonsana eesecscse coessn eseesall
Saving and Running Programs ...eseeessees tieesanns essel3
Making Back-up Coples of Merlin ..eeve... P

EXECUTIVE MODE

Executive Mode t.vevvecenvcaccnes Caecsacs cesececcssnssld
C:Catalog (DOS 3.3) +..... O PP I
C:Catalog (ProD0S) .ecev.. cessanse teseareen cessen sessslb
L:Load Source ..cceeecanee % 556 4.0 %6 s 0 snsie 0 b bince mn o seeaslb
5:SaVe SOULCE ssesvsecosencassscsssssssesssnsssaressselb
A:Append File .vvcvvennnss secancesssssens essecnse seesolb
D:Drive Change (DOS 3.3) .cvveecceorcnans T ¥ 4
D:Disk Commands (ProDOS) ...ecoess O RN versal?
E:Enter Ed/ASm seveurenecscronensons S
O:Save Object Code seevevrscnnesossancens etteeseansesal8
Q:Quit (DOS 3.3) ceevecenne - B & |
Q:Quit (ProDOS) seesesssessneassosesssssnsssassssnssssl
R:Read Text File (DOS 3.3) secvvcccsosossnassarancnesesl?
W:Write Text File (DOS 3.3) cececennoccccecncnncesessa20
@:Set Date (PToDOS) seececassrscsassenanaa cereenaeseas20

IV. THE EDITOR

About the Editor Documentation sccessecccesssccecsssssll
Command MOde ecssvecesooccccsoonoscssocnnas [§
Line Numbers in Command Mode .:veeecevcsonccaes eesa2l
Delimited Strings «.cecevecess cesecace sevassenssasll
Wild Cards in Delimited Strings «sccocecesceaes ceees22
Upper and Lower Case Control «ceeeccacassesanss cese22
The Command Mode Commands .seeevececscccccssssonas vess23
Hex~Dec CONVErSiOn eseeessssccesossancscsssssncssesel
NEW ceecessscosacssnscsasesasonasocncssascerscncnsssoell
PR# +cssecasesnscnnnssnsncascncsansansnnsssssnenssassdd
USER s ceesocsncosssassanssssssasnansssasssesssssceslhh

TABS ceceeencsecassnsoncanscansassnasoacsnsasnsessaldt

EENGER .« o o% ot s o5 &8s e 1o 0%n ok 15 0.6, 510 518 & 510 558 1 5iacs 70 204

—i-

MERLIN PRO Users Manual TABLE OF CONTENTS

Where seeeecsscccscsns eresssssarecacsessssrssanssssseld
MONLIEOY scessssseccssesceasosnsansoconsacscvrencsssneeld
TRUNCON ¢ccececoaccan essscseevecnaccnsos cesesacvensld
TRUNCOFE +eveeccccccssoscoorvncancna cescecsssccsranssll
QUIL socservscecsasncccsassncovacsnnannae esvcessaseealb
ASM ssevceseccccscccacassvssnnnnce vesesseensnsensessll
Delete vececeescnsacsnssvsscsssssnosncasnasesssesssll
REPlACE .evvvnvcvrncassssvsnsnscvnnsens cesesseacens 28
LiSt sevececccencecs X
. (period) A

P X]
Print ceceecceccccsscocccccconccasosnsercsonssccesssld

PRINTER cscesvcconcsscccccncaccncessncssesocancansesdl

MOVE voeveccoossnanassasunecoansosccanansssccenasssl
FW (Find Word) .ceecccscecsssssacsces cssesenccscnns 33
CW (Change WOTd) ecesocccececccosccscsnsasnnsaonessldld
EW (Edit Word) ceicecscessscsssncs . 34
Edit «cceeveeeee seseesessacecsseanssacs vecssssmansnn . .34
TELL scovncssnensssnnscunnnsnssensnsnysenntanssesns 35
FIX cccecccaceces serersrescnsensecn secssessensannns 35

VIDEO secsscavnnnnasscosvrovsoranssasncssssscnccansesldd

VAL cesean cesssarcssssanes D 1

SWAP .ccoveacons sessevssesessscenes eresseenssenane 37
Add/Insert Modes ceoeesesceccncsreocconsscssssascesssssdB
Add cesecccencoarssncscnsocnnns seseccsansnsenesseses3B
INBert veecoescosssesscscsss T 38
Add/Insert Mode Editing Commands cec:csceeecsccccccsse38
Edit Mode «cceceeee B Ssccssesessssesesencs 39
Edit Mode Commands ceceoveccncss . 1
Control~I (insert) ececvesceosecaes tesseccenvreenanan 39
Control-D (delete) cecevecesccase B sees39
Delete K@Y ceoeeesrssscsecoccesssccssssssssennaecnsssldd
Control=F (find) eecececsoccavesencessnsnovenvesessidl
Control-0 (insert special) eeccesesssessccacccnss «+40
Control-P (do ***“g)ccu00 tesssesnenssenassnn 40
Control—-C or Control-X (cancel) scecescecssnssocsssdd
Control-B (go to line begin) c-cceecovececncaccaass 40
Control-N (go to line end) .ecceescesccccscsccnescssd
Control-R (restore 1ine) ..ecccecescocccccsacecss .40
Control—Q (accept line to CUFSOL) ecsvseessravcacsaddl
Return (RETURN key) Y /3 1
The Editor”s Handling of Strings and Comments.........4l

ii

MERLIN PRO Users Manual TABLE OF CONTENTS

V. THE ASSEMBLER

The AsSembler «cvesevcecescesennsossscnsossescsncnssased
About the Assembler Documentation seeesecrssesesannessé
Preliminary Definitions .s.eeesececccrovencescscsroenssd3
EXPressions «ccceeeesorecascsscnassosoossnssscosssnssh3
Delimited Strings ceeececseescrecasoncarssecnessessdtl
DAEA coevnrssenensescsocsssesnssacssaannassaseessssdl
Filenames (DOS 3.3) sevecevnvasossosascossnanssaesshils
Pathnames (ProDOS) ...ceeviercrncesosncnnansnnnsesstth
Assembler Syntax Conventions c.eeecececececscncsscncssa45
Source Code FOrmMAL «eevecesecsovsscsoncnsancaserssnssh
Source Code Label Conventions ..eeeveecsceessssad5
Opcode and Pseudo Opcode Conventions ...esee....46
Operand and Comment Length Conventions «........46
Number Format «eeveeecieeveneencnecscscesnccsonnnsnasd/
Immediate Data Vs. Addresses «eeceesseccceceseesh?
Expressions Allowed by the Assemblercee.e....49
Primitive EXpressions ..eeeesesneseccssovsnssseddd
Arithmetic and Logical Expressions «cesvececeessd9
Building EXpressions ..eceececeecencseccoaneseassdd
Parentheses and Precedence in Expressions49
Example of Use of Assembler Expressions «.......51
Immediate Data SyntaX ecoeceeeesccssscessosonsossnsssdl
6502 Addressing ModesS «oceeceeeccscoonsesonsseneeeadl
Special Forced Non-Zero Page Addressing -..........52
Sweet 16 OpcOdes seseeseasecsaveosoassaancsnnsossasdld
Assembler Pseudo Opcode Descriptions ...eeciaicecesess54
Directives ceeeevecercecssaasecnoacncsccnsanssscssedld
EQU () toveceesececencasocarssencnsassssnessenssdh

EXT scossinavsssonsonnsisosssessssonssssioassssessdi

ENT cevevennocencacsnnonassncssscncsassaseonnsesedd

ORG caveovnrscnssssovosssnsssesoassscosnosasssssdd

REL tecncoeeseoccccsscncrcosasanonscsssncnasssnsedbd

OBJ teetsecereeancovsoscecsoacosonnoscsasscnncsaosadl

o S N Y 4

USE cieevnecssncasesesnsssansaannacsasssaonscnsed8

VAR cveesosnrsoeososnoncssonsssasorccnssesnsesesdd

SAV coeeioesevtnssssssncnssssccnsssessonnsnssnesd9

TYP (ProDOS Only) ccecescccccsccocssosonnassasedd

1 Y 11]

END coveocncseecossanasnsosssasssonscasonnssosesabdl

DUM civvvevsnsnccnsossenesasssanscsssnsocsnsesasbl

DEND cccerecseccnssonsacscnasnssscncsssccncasssebl
Formatting Pseudo 0PpS ceceeccenrccrosoncsnncssanessb2
LST ON/OFF seveecevenscossnssncocsnsesscsosasnasseeb2

-iii-

MERLIN PRO Users Manual TABLE OF CONTENTS

EXP ON/OFF/ONLY «evevvcenccaasancaccsanasnonseaab2
LSTDO OF LSTDO OFF «ueeenceccecocasnsanncannenea3
- P
PAG «tvenssonsoncnneseascannesaaanssessensnannasb3
AST +revvesnctnrennsoseanansassacsnansessannsnasb3

SKP cevracssveccsncnnocervooccnosnsrsasrserssnsessblh

TR ONJOFF ceeccesscecccncenscacssosssancsennnsssb
DAT (ProDOS ONly) ceccecccsscccsarscsccscssssensabdl
CYC eeceeveesnnenacessoccssosssssncsssssnnanesssblh
String Data Pseudo OpPS -cececcsacssccccccccccnannssbb
General Notes on String Delimiters cccecececccccss.06
6y oYY
DCIL soossoescnccscncscsvonscessnsnsoscsosanscsnasessb/
INV ceetteveoaceasonscasensasssssssesasossscosasb?
FLS svessvucrcncenosvscacecossncsnsnsassossescceseb?
REV coveovnnocevenacsansesoncnnncnassssassnsansssd’

S N 1 -1
Data and Storage Allocation Pseudo Ops ¢.ecoveeses.69
DA teteeevesnccosccccanccasosssssasssecssnceneesbd
DDB ¢evevesnccccnccscscassnsessoscossasnsoncenscasbd
DFB OF DB cccceccncencecccssccsessccsacsnncnsessby
HEX tccetccecccccacecececcesecssasuasnasssnnneeael0

DS covecececonncncoeccccscssserosnosnsnnsonnnseell
Notes for REL Files and the Linker71
Miscellaneous PSeudo ODPS eesecsscneseascascvracsessl2
KBD tevevcavececconsansonncsnssosscanansasensansll
LUP sveecenssnnesoasonasnanvecenasasnsonncnonsonsll
CHK vvvevsnrccccanmunsancocossossasocssucsscannsasl3
ERR ttevecesnsossnnsonsasssnssosearsesasnssannesnell
Notes for REL Files & ERR Pseudo Op «........74

SW tteevnsenssessocossesssscssssnncassansonsaessllh

XC tiievenrenencecanconsrsoscsscscsnssanassaoensld
MX veeseesnnonsocoacnonrssesossonnscsesenssnsonald
L1 £ g P | -
Conditional Pseudo OpS ccvsvevrscscccccccossvacasaseld
DO tvvcecranoasncncacssosocossncancssnncaasnseseld
ELSE -cveecvnnccacnracvescsscocoscnccnsannocensss80

IF ceeeceecnsccsaacnsessosssvncssnscocsosacsnaeed0
FIN ceeecsncncennncassassossscccscsssasecanaanse80
Example of Conditional Assemblyeev....81

Macro PsSeudo OpS .ceeencssesoevscssscssacossossnas 82
7 o S - ¥4
EOM Or K€€ vevvneossossesuvocesccnsssnssnsanaens82
PMC OF 22> tciiieerensonnossannscasasasannsnennsB2
Variables cececesceccosssssasevrcacnecsssascnnensone83

1v

MERLIN PRO Users Manual TABLE OF CONTENTS

Local LabelsS ceeseccscsosccnnccsnssnssnssrosscsessss84
Some Restrictions on Local Labels siecececseeses .84
Local Labels, Global Labels & Variables84

VI. MACROS
MACTOS sesecocnsacnsosssssssncacocssscssossssccnsansessdb
Why Macros? ...ceceeressscsccecsccccssssosencsaansss86
How Does a Macro Work? .ceeiececececcecnesceccaenesa86
Defining a MACrO «cevoeeeeescscecncnncscsossoaaesseesB8
Nested MACITOS ceeececesoocsccascsssnsssnsnssonansee89
Special Variables +cseeesscssccscencccstsssanscaesss90
Macro Libraries and the USES Pseudo Op ¢sesvecsccsss93

VII. THE LINKER

The LINKEr «ecvrecacrsesososrscsansosscscsassossnscncnsssdd
Why a Linker? ..ociesesscccncecccescesescssnsanneeasds
About the Linker Documentation ...cecciecccecocceesd?
Pseudo Opcodes for Relocatable Code Files98
REL seoceeosoosncsvasvsocsossncsassessssssssessed8

EXT ceceecceacccassennsssncancassnssassanesassrl00

ENT voceerecacnsncconscssocconansasssasansesesslO0

DS evovuencsccennsaassasscsssscsasssssanesnsaseslOl

ERR cvvecnecencoacansanansesaccansssnsnnsasanaaslOl

LinK ecescececcssccasssnssssacsssccassassscnnssansal02
Linker File Names (DOS 3.3) .ceceesecrcecsesecssal02
Linker File Names (ProDOS) «cecececrcescsccesesss.103

The Linking Process (DOS 3.3 and ProDOS)l04

VIII. TECHNICAL INFORMATION
Technical Information ceveeceesesscescoscsscascsneasseeslOB
General Information (DOS 3.3 only)eee0aee...106
General Information (ProDOS and DOS 3.3) seesess..107
Symbol Table eceesesrssesoasssanacesssnsessssensensl07
Ultraterm Information sessesecececaccescessoosesssl08
Memory Allocation with Merlin .c.cceeececeveevesssl108
Configuration (ProDOS version) cecececececcessssass.109
Configuration (DOS 3.3 version) ..c.cccevesvsess..109
64k Merlin and Merlin Pro Source Files seeessersssllO
ProDOS Merlin Pro NOtesS essesssescssacscsssssossnnaslll
Transferring Source Files to ProDOSveeeveesall2

-y

MERLIN PRO Users Manual TABLE OF CONTENTS

IX. ERROR MESSAGES

Error MessSages seceeccesstocscesesossnssansssssccseassllld
BAD OPCODE «occcescacocenossnccsssasonsnnnessnselld
BAD ADDRESS MODE «ccccvnscecencnsanssannesssnenalld
BAD BRANCH ...cosvvcccccsoossacanccssccnsnnssaslld
DUPLICATE SYMBOL ceeveececeoeorecscasaocsasanssssll3
MEMORY FULL +cvoveesoccconnssconasosscsussonecsesssll3
UNKNOWN LABEL «ivoveccosscetccccnrcosnssssasessll3
NOT MACRO +cevevoecnacecancsncoconssscnnanaenasallld
NESTING ERROR cevesccccconoscsncarvsnveansssssalld
BAD "PUT"™ «ienvnsesesessssssssnssnsssscscanssselld
BAD "SAV™ ieiecenvecccorsssscnerovssssensccsscsslll
BAD INPUT ececseconcccccocscncssasosnassnssessalld
BREAK stveseocannsoswsccassscoscacsessoscnsscseelld
BAD LABEL +vevosseacsasesascssasasssssscenasessslld
BAD ORG svssesecaonncccvnosssssoassssvesccnssseslld
BAD OBJ ceceveeveccacerascsnnnssanssnnsasnneesslld
BAD REL svccescsosvassccsvssancensacsnssasacoassslld
BAD EXTERNAL +cecevvecccscessvoansccncenanassesall’
BAD VARIABLE ..eveeencevsoncsonocnssaonsannsnssalls
ILLEGAL FORWARD REFERENCE ¢vevcecsssancevcssesslld
TWO EXTERNALS .c.cceccnccoencccacrosnnnsasscesslld
DICTIONARY FULL coveccccssssnacncsssoesesnaseessllD
256 EXTERNALS csssccessssscsescansssscessansseseclld
ILLEGAL RELATIVE ADRS .cisvvevcccoroncccscssseslld
ILLEGAL CHAR IN OPERAND +evcceceasssavcaccssenellb
ILLEGAL FILE TYPE (ProDOS only) <scccceccessessllb
General NOLES eeectrsscaccsnsscsancasconnncncsseeslld
Special Note-Memory Full Errors eceecseescsessaneeallbd
Memory Full in Line: ..cieeveccccsccncnenenessallh
Err:Memory Full ...cc.ccvecessccnsccnscnsesnsssllbd
Error MESSAZe seseecessscsesvacccccccnnnsansseaslld

X. SOURCEROR
INtrodUCLION «eecavecnsonnonrsossoccacossssnosccssnanall?
Using SOUTCErOT .ccesessencscarssassecsscssnccesssansell?
Commands Used in Disassembly ceveecnccceccnnscaceesssllB
(1iSt) seevensacnesoansssassncnssesssosssassassall8
(SWEEL) teeeeessasnsnnnsssnsscnsvannssannsssnesoalld
(NOYMAL) cecenvavesennnocsssosneasovssnnnanonnsaslld
(HEX) ceeveevensosonnscansssacnasnsssncnanacsssasktld
(TeXE) soeevensensssoncssccsvsnacassssnncosnsasealld
(WOTA) sesveeevosesncnsscosssannoonnsencnnsanssesl20
Housekeeping Commands «evececteseccccncossacascssrssal20
/ (Cancel) seecsesvecssnscscsssonnnsesssencsassssssel20

zEHHxm=z2und

—vi_

MERLIN PRO Users Manual TABLE OF CONTENTS

R (Re@d) «eeeveensccennsccccannossasoenvsoanasessslll
Q (QUIL) ceevesocseocascnreancasasssasennsnnanessslll
Final Processing eeceeoesscosceccccsscsasasssensseseassl2l
Dealing with Finished Source seeeescesvecsosessscesssl22
The Memory Full MeSSage esecescesconcascssosasasssassl2d
Changing Sourceror”s Label Table ..eccvvicesesccnesasl23

XI. SOURCEROR.FP
Applesoft Listing Information ..ececevecsosssccnasaeel2b
SOUrCEeTOT«FP cvuveveecssecsnnsconuscsesansnnseoeesl2h
Steps to Print the Applesoft Disassembly esesee...125
Applesoft Source Cross Reference Listing «ceecesesess126
Steps to print an Applesoft XREF «..cccececscassa.126

XII. GLOSSARY
GlOSSATY seeovcnscoveassancossoossssassassssnnsssnnsalll

XIII.UTILITIES

UtilitieS eecesesscccacocrsossscssoscaonearsscsnssnscsesl3d
FOrMALLEY csseacascesosssssoceccnnssossssscnansoselld2
XREF, XREFA +evvevecsccacssccososvssososansansnsessl3l
XREF INStructions sscscsceccscsssacscncsssssassel3l
XREFA soveveovooasosssonnonccessasssoscensscasnssssl3b
PRINTFILER +cceceovccocsnvsorsccnsscseaoscnoscnnssesl3b
ApplicationS eceececsencscsscsssescoscssnssnsealld?

How to Use Printfiler from DOS 3.3137

How to Use Printfiler from ProDOScee0s0..138
Changing Printfiler”s Options .eceseecenccesss.138

65802 Microprocessor documentation ...oeeeeessesesl40

IX. MEMORY MAPS

Merlin Pro DOS 3.3 Memory Map cecesesesocscvanceasecsaldd
Merlin Pro ProDOS Memory Map «eseessecssccscesassesesl50

-vii-

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

INTRODUCTION

Assembly Language Whys and Wherefores

Some of you may ask "What is Assembly Language?” or "Why do I
need to use Assembly Language; BASIC suits me fine.” While
we do not have the space here to do a treatise on the sub-
ject, we will attempt to briefly answer the above questions.

Computer languages are often referred to as "high level”™ or
"low level” languages. BASIC, COBOL, FORTRAN and PASCAL are
all high level languages. A high level language is one that
usually uses English-like words (commands) and may go through
several stages of interpretation or compilation before final-
ly being placed in memory. The time this processing takes is
the reason BASIC and other high level 1languages run far
slower than an equivalent Assembly Language program. In
addition, it mnormally consumes a great deal more of available
memory.

From the ground up, your computer understands only two
things, on and off. All of its calculations are handled as
addition or subtraction, but at tremendously high speeds. The
only number system it comprehends is Base 2 (the Binary System)
where a 1, for example, is represented by 00000001 and a 2 is
represented by 00000010.

The 6502 microprocessor has five 8-bit registers and one 16
bit register. All data 1is ultimately handled through these
registers by a machine language program. But even this lowest
of low-level code requires a program to function correctly.
This “program” is hard wired within the 6502 itself. The
microprocessor program functions in three cycles: It fetches an
instruction from computer memory, decodes it and executes it.

-1-

MERLIN PRO Users Manual BEGINNER™S GUIDE TO USING MERLIN

These instructions exist in memory as one-, two— or three-byte
groups. A byte contains 8 binary bits of data and is wusually
notated in hexadecimal (base 16) form. Some early microcom-—
puters allowed data entry only through 8 front panel switches,
each of which when set on or off would combine to produce one
binary byte. This required an additional program in the
computer to monitor the switches and store the byte in memory
so that the 6502 could interpret it.

At the next level up, the user could enter his/her data in
the form of a three character mnemonic (the "m" is silent), a
type of code whose characters form an association with the
microprocessor operation. For example: LDA is a wmnemonic
which represents "LoaD the Accumulator". The older Apple II
has a built-in mini-assembler that permitted simple Assembly

Language programming.

But even this is not sufficient to create a long and compre-
hensive program. In addition to the use of a three character
mnemonic, a full-fledged assembler allows the programmer to
use labels, which represent an as yet undefined area of
memory where a particular part of the program will be stored.
In addition, an assembler will have a provision for line
numbers, similar to those in a BASIC program, which in turn
permits the programmer to insert lines into the program and
perform other editing operations. This is what Merlin is all
about.

Before using this or any other assembler, the user 1is expect-
ed to be somewhat familiar with the 6502 architecture, modes of
addressing, &c. This manual is not intended to teach Assembly
Language programming. Many good books on 6502 Assembly
programming are available at your local dealer; some are
referenced here.

SYSTEM REQUIREMENTS

* APPLE //C or
% 128K APPLE //E with EXTENDED 80 COLUMN BOARD
* VIDEX ULTRATERM (optional)

MERLIN PRO Users Manual BEGINNER"S GUIDE -TO USING MERLIN

Suggested Reading:

SYSTEM MONITOR - Apple Computer, Inc. Peeking at Call-
Apple, Vol I.

APPLE II MINI-ASSEMBLER - Apple Computer Inc. Peeking at
Call-Apple Synertek Programming Manual., Synertek 6500-20.

PROGRAMMING THE 6502 Rodnay Zaks, Sybex C-202.

THE APPLE MONITORS PEELED - WM. E. Dougherty, Apple Computer,
Inc.

A HEX ON THEE - Val J. Golding, Peeking at Call-Apple, Vol.
II.

APPLE II REFERENCE MANUAL - Apple Computer, Inc.

EVERYONE“S GUIDE TO ASSEMBLY LANGUAGE - by Jock Root
A continuing series of tutorial articles in SOFTALK magazine.
An excellent introduction, easy-to—follow for the beginning
assembly language programmer.,

ASSEMBLY LINES: THE BOOK - by Roger Wagner

A compilation of the first 18 issues of the Assembly Lines
series. In addition, the text has been extensively edited
and a unique encyclopedia-like appendix added. This appendix
shows not only the bdbasic details of each 6502 command, but
also a brief discussion of its most common uses along with
concise, illustrative listings.

HOW TO ENTER CALL - APPLE ASSEMBLY - LANGUAGE LISTINGS
Call-APPLE, Volume IV, No.l, January 8l.

MACHINE TOOLS
Call-APPLE in Depth, No. 1

MERLIN PRO Users Manual BEGINNER™S GUIDE TO USING MERLIN

BEGINNER”S GUIDE TO USING Merlin

By T. Petersen

Notes and demonstrations for the beginning Merlin programmer.

Introduction

The purpose of this section 1is not to provide instruction in
assembly language programming. It is to introduce Merlin to
programmers new to assembly language programming in general,
and Merlin in particular.

Many of the Merlin commands and functions are very similar in
operation. This section does not attempt to present demon~—
strations of each and every command option. The objective is
to clarify and present examples of the more common opera-
tions, sufficient to provide a basis for further independent
study on the part of the programmer.

A note of clarification:

Throughout the Merlin manual, various uses are made of the
terms "mode™ and “module”.

In this section, "module” refers to a distinct computer
program component of the Merlin system. There are four
MODULES in the DOS 3.3 Merlin, five in the ProDOS Merlin:

1. The EXECUTIVE

2. The EDITOR

3. The ASSEMBLER

4. The LINKER

5. The COMMAND INTERPRETER (ProDOS version only)

Each . module 1is grouped under one of the two CONTROL MODES:

1) The EXECUTIVE, abbreviated EXEC and indicated by the
"%~ prompt.

2) The EDITOR, indicated by the “:” prompt.

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

EXECUTIVE CONTROL MODE
Executive Module
Command Interpreter (ProDOS version only)

EDITOR CONTROL MODE
Editor Module
Assembler Module
Linking Loader

The term "mode” may be used to indicate either the current
control mode (as indicated by the prompt) or alternatively,
while in control mode and subsequent to the issuance of an
entry command, the system is said to be “in [entry command]
mode” . For example, while typing in a program after issuing
the ADD command, the system is said to be “in ADD mode”.

Input

Programmers familiar with some assembly and higher-level
languages will recall the necessity of formatting the input,
i.e. labels, opcodes, operands and comments must be typed in
specific fields or they will not be recognized by the
assembler program.

In Merlin, the TABS operator provides a semi-automatic
formatting feature.

When entering programs, remember that during assembly each
space in the source code causes a tab to the next tab field.
As a demonstration, let”s enter the following short routine.
Steps from the very beginning:

1. Boot the Merlin disk.

2. When the “%” prompt appears at the bottom of the EXEC

mode menu, type "E”. This instantly places the system in
EDITOR control mode.

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

3. Since we are entering an entirely new program, type “A”
at the “:” prompt and press RETURN (A = ADD). A 717
appears ore line down and the cursor is automatically
tabbed one space to the right of the line number. The
“1” and all subsequent line numbers which appear ‘after
the RETURN key is pressed serve roughly the same. purpose
as line numbers in BASIC except that in assembly source
code, line numbers are not referenced for jumps to sub-
routines or in GOTO-like statements.

4., On line 1, enter an “*” (asterisk). An asterisk as the
first character in any line is similar to a REM statement
in BASIC - it tells the assembler that this is a remark
line and anything after the asterisk is to be ignored.
To confirm this, type the title “DEMO PROGRAM 1~ after
the asterisk and hit the RETURN key.

5. After return, the cursor once again drops down one line,
a "2 appears and the cursor skips a space.

6. Now, hit the space bar once and type “ORG”, space again,
type “$80007, and hit RETURN.

The above step instruct the assembler to place the following
program logically (with ORG) at $8000.

7. On line 3, do not space once after the line number. Type
“BELL”, space, “EQU”, space, “$FBDD”, RETURN.

This defines the label BELL to be equal to hex FBDD. This
type (use) of a label is known as a constant. Wherever BELL
appears in an expression, it will be replaced with $FBDD.
Why don"t we just use “$FBDD”? For one thing, “BELL" is
easier to remember than “$FBDD” (making “BELL”. in effect a
mnemonic). Also, if the location of BELL were to change, all
that needs changing is the “EQU” statement, and all the other
“$FBDD”s throughout the listing.

8. Line 4 - Type "“START”, space “JSR”, space “BELL", space,
“;” (semicolon), “RING THE BELL”, RETURN. Semicolons are
a convention often used within command lines to mark the
start of comments.

9. Line 5 “DONE”, space, “RTS”, RETURN.

MERLIN PRO Users Manual BEGINNER™S GUIDE TO USING MERLIN

10. The program has been completely entered, but the system

is still in ADD mode. To exit ADD, Jjust press RETURN.
The “:” prompt reappears at the left of the screen,
indicating that the system has returned to control mode.

11. The screen should now appear like this:

1 *DEMO PROGRAM 1

2 ORG $8000

3 BELL EQU S$FBDD

4 START JSR BELL sRING THE BELL

5 DONE RTS
Note that each string of characters has been moved to a
specific field. There are four such fields, not including

the line numbers on the left.

Field Number...

It

One is reserved for labels. BELL, START and DONE are
examples of labels.

Two is reserved for opcodes, such as the Merlin pseudo-
opcodes ORG and EQU, and the 6502 opcodes JSR and RTS.

Three is for operands, such as $8000, $FBDD and, in this
case, BELL.

Four will contain comments (preceded by ";").

should be apparent from this exercise that it is not

necessary to input extra spaces in the source file for
formatting purposes.

In summary, after the line numbers:

1) Do not space for a label. Space once after a
label (or if there is mno label, once after the line
number) for the opcode.

2) Space once after the opcode for the operand. Space
once after the operand for the comment. If there
is no operand, type a space and a semicolon for a
comment .

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

System Control and Text Entry Commands

Merlin has a powerful and complex built-in editor. Complex
in the vrange of operations possible but, after a little
practice, remarkably easy to use.

The following paragraphs contain brief demonstrations for
both system control and line editing.

All System and Entry commands are wused in EDITOR Control Mode

immediately after the “:” prompt.

CTRL-X, CTIRL-C or a RETURN as the first character of a line
exits the current [entry command] mode and returns the system
to control mode when ADDing -or INSERTing lines. CTRL-X or
CTRL-C exits edit mode and returns the system to control mode
after Editing lines.

The other System and Entry Commands are terminated either
automatically or by pressing RETURN.

Inserting and deleting lines 1in the source code are both

simple operations. The following example will INSERT three

new lines between the existing lines 4 and 5.

1. After the “:” prompt, type “I” for (INSERT), the number
57, and press RETURN. All inserted lines will precede
(numerically) the line number specified in the command.

2. Type an asterisk, and press RETURN. Note that INSERT
mode has not been exited.

3. Repeat step 2.
4. Enter one space, type "TYA”, and press RETURN.
On the screen is the foliowing:

:I5

TYA

W~
* *

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

5. Hit RETURN and the system reverts to CONTROL mode (”:~
prompt).

6. LIST the source code.

:L

1 *DEMO PROGRAM 1

2 %

3 ORG $8000

4 BELL EQU $FBDD

5 %

6 *

7 TYA

8 START JSR BELL sRING THE BELL
9 END RTS

The three new lines (5,6, and 7) have been inserted, and the
subsequent original source lines (now lines 8 and 9) have
been renumbered.

Using DELETE is equally easy.

1. In control mode, input “D7°, and RETURN. Nothing new
appears on the screen.

2. LIST the source code. The source listing is one line
shorter. You“ve just deleted the "TYA” 1line, and the
subsequent lines have been renumbered.

It is possible to delete a range of lines in one step.

1. In control mode, input “D5,6” and RETURN.

2. LIST the source.

Lines 5 and 6 from the previous example, which contained the
inserted asterisk comments, have been deleted, and the sub
sequent lines renumbered. The 1listing appears the same as in
the subsection on INPUT, Step 12.

MERLIN PRO Users Manual BEGINNER™S GUIDE TO USING MERLIN

This automatic renumbering feature makes it IMPERATIVE that
when successively deleting lines you remember to begin with
the highest line number and work back to the lowest.

The Add, Insert, or Edit commands have several sub—commands
comprised of CTRL-characters. To demonstrate using our BELL
routine:

1. After the “:” prompt, enter “E” (the EDIT command) and a
line number (use “6° for this demonstration), and hit
RETURN. One line down the specified line appears in its
formatted state:

6 DONE RTS
and the cursor is over the “D” in “DONE~.

2. Type CTRL-D. The character under the cursor disappears.
Type CTRL-D again and yet a third and fourth time. “DONE~
has been deleted, and the cursor is positioned to the
left of the opcode.

3. Hit RETURN and LIST the program. In line 6 of the source
code, only the line number and opcode remain.

4. Repeat step 1 (above).

5. This time, type CTRL-I. Don”t move the cursor with the
space bar or arrow keys. Type the word “DONE”, and
RETURN.

6. LIST the program. Line 6 has been restored.

If you are editing a single 1line, hitting RETURN alone
returns you to the control mode prompt. In step 1 (above),
if you had specified a range of lines (example: “E3,6”) while
issuing the EDIT command, RETURN would have called up the
next sequential line number within the specified range. As
the lines appear, you have the options of editing wusing the
various sub-commands, pressing RETURN which will call up the
next line, or exiting the EDIT mode using CTRL-C. NOTE:
hitting RETURN will enter the entire line in memory, exactly
as it appears on the screen, regardless of the current cursor
position.

-10-

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

The octher sub-commands (CTRL-characters) wused under the EDIT
command function similarly. Read the definitions 1in Section
3 and practice a few operations.

Assembly

The next step in using MERLIN is to assemble the source code
into object code.

-

After the “:” prompt, type the edit module system command ASM
and hit return. On your screen is the following:

UPDATE SOURCE (Y/N)?

Type N, and you will see:

ASSEMBLING

1 *DEMO PROGRAM 1

2

3 ORG $8000

4 BELL EQU $FBDD
8000 20 DD FB 5 START JSR BELL sRING THE BELL
8003 60 6 DONE RTS

—-END ASSEMBLY, 4 BYTES, ERRORS: O

SYMBOL TABLE - ALPHABETICAL ORDER

BELL =$FBDD ? DONE =$8003
? START =$8000

SYMBOL TABLE — NUMERICAL ORDER

? START =$8000 ? DONE =$8003
BELL =$FBDD

~11-

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

If instead of completing the above listing, the system beeps
and . displays an error message, note the line number refer-
enced in the message, and press RETURN until the "-—-END
ASSEMBLY..." message appears. Then refer back to the sub-
section on INPUT and compare the listing with step 12. Look
especially for elements in incorrect fields. Using the edit-
ing functions you“ve learned, change any lines in your 1list-
ing which do not look like those in the listing in step 12 to
what they should, then re—assemble.

If all went well, to the right of the column of line numbers
down the middle of the screen is the now familiar, formatted
source code.

To the left of the line numbers, beginning on line 5, is a
series of numeric and alphabetic characters. This is the
object code the opcodes and operands assembled to their machine
language hexadecimal equivalents.

Left to right, the first group of characters is the routine’s
starting address in memory (see the definition of ORG in the
section entitled "Pseudo Opcodes Directives”). After the colon
is the number “20”. This is the one-byte hexadecimal code for
the opcode JSR.

NOTE: the label “START” is not assembled into object code;
neither are commeunts, remarks, or pseudo—~ops such as ORG.
Such elements are only for the convenience and utility of the
programmer and the use of the assembler program.

The next two bytes (each pair of hexadecimal digits is one
byte) on . line 5 bear a curious resemblance to the last group
of characters on line 4; have a look. In line 4 of the
gsource code we told the assembler that the label “BELL”
EQUated with address $FBDD. In line 5, when the . assembler
encountered “BELL” as the operand, it substituted the speci-
fied address. The sequence of the high- and low-order bytes
was reversed, turning $FBDD into DD FB, a 6502 microprocessor
convention.

The rest of the information presented should explain itself.
The total errors encountered in the source code was zero, and
four bytes of object code (count the bytes following the
addresses) was generated.

-12—-

MERLIN PRO Users Manual BEGINNER”S GUIDE TO USING MERLIN

Saving and Running Programs

The final step in using MERLIN is running the program. Before
that, it is always a good idea to save the source code. Use
the SAVE SOURCE command. Follow that with an OBJECT CODE SAVE.
Note that OBJECT CODE SAVE must be preceded by a successful
assembly.

1. Return to control mode if necessary, and type “Q” RETURN.
The system has quit EDITOR mode and reverted to EXECUTIVE
(EXEC) mode. If the MERLIN system disk is still in the
drive, remove it and insert an initialized work disk.

After the “%” prompt, type “S” (the EXEC mode SAVE SOURCE
FILE command). The system is now waiting for a filename.
Type “DEMO1”, RETURN. After the program has been saved,
the prompt returns.

2. Type °~C” (CATALOG) and look at the disk catalog. The
source code has been saved as a binary file titled
“"DEMO1.S". The suffix ".S" is a file—-labeling convention
which indicates the subject file is source code. This
suffix is automatically appended to the name by the SAVE
SOURCE command .

3. Hit RETURN to return to EXEC mode and input 707, for
OBJECT CODE SAVE. The object file should be saved under
the same name as was earlier specified for the source
file, so press "Y" to accept “DEMOl” as the object name.
There is no danger of overwriting the source file because
no suffix is appended to object code file names.

While writing either file to disk, MERLIN also displays the
address parameter, and calculates and displays the length
parameter. It”s a good practice to take note of these.
Viewing the catalog will show that although the optional A$
and L$ parameters were displayed on the EXEC mode menu, they
were not saved as part of the file names. If you”d prefer to
have this information in the disk catalog, use the DOS RENAME
command . Make sure no commas are included in the new file
name.

-13~

MERLIN PRO Users Manual BEGINNER™S GUIDE TO USING MERLIN

Return to EDITOR mode (press “E”). Next type “GET $8000”. This
command will tell Merlin to take the program you've just
assembled and transfer it to the Apple”s main memory. Next,
type “MON”, RETURN and the monitor prompt “*” appears. Enter
“8000G”, RETURN. A beep 1is heard. The demonstration program
was responsible for it. It works!

Now you can return to the EXEC by typing CTRL-Y and hitting
RETURN.

Making Back-up Copies of MERLIN

The MERLIN diskette is unprotected and copies may be made
using any copy utility. It is highly recommended that you
use ONLY the BACK-UP copy of MERLIN in your daily work, and
keep the original in a safe place. All files and also the
side containing SOURCEROR.FP can be moved:

1) to any DOS 3.3 diskette using the FID utility program from
Apple”s System Master Diskette;

2) to any ProDOS diskette wusing the FILER utility program
from the ProDOS User”s Disk.

-14-

MERLIN PRO Users Manual EXECUTIVE MODE

EXECUTIVE MODE

The EXECUTIVE mode is the program level provided for file
maintenance operations such as loading or saving code or
cataloging the disk. The following sections summarize each
command available in this mode.

C:CATALOG (DOS 3.3)

When you press "C", the CATALOG of the current diskette will
be shown. The word "COMMAND:"” is then printed and MERLIN
will 1let you enter a DOS command. This facility is provided
primarily for locking and unlocking files. Unlike the LOAD
SOURCE, SAVE SOURCE, and APPEND FILE commands, you must type
the ".8" suffix when referencing a source file. Do not use
it to load or save files. If you do not want to give a disk
command, just hit RETURN. Use CTRL-X to cancel a partially
typed command. If you type CTRL-C RETURN after "COMMAND:",
you will be presented with the EXEC mode prompt "%". You can
then issue any EXEC command such as "L" for LOAD SOURCE.
This permits you to give an EXEC mode command while the
catalog is still on the screen. In addition, if CTRL-C is
typed at the "CATALOG pause” point, printing of the remainder
of the catalog is aborted.

C:CATALOG (ProDOS)

When you press "C", you will be asked for the Pathname of the
Directory you wish to catalog. Enter a pathname or press
RETURN for the current directory and the CATALOG of the
current directory will be shown. The EXEC mode prompt "%" is
displayed after the catalog is shown. You can then issue any
EXEC command such as "L" for LOAD SOURCE. This permits you to
give an EXEC mode command while the catalog is still on the
screen. In addition, if ANY key is typed during the CATALOG
printing, the ProDOS catalog will pause until any other key is
pressed.

If you enter a "1" as the first character of a pathname (or

just 1<RETURN>) then the catalog will be sent to the printer
in slot 1.

-15~

MERLIN PRO Users Manual EXECUTIVE MODE

L:LOAD SOURCE

This 1is wused to load a binary source file from disk. You
will be prompted for the name of the file. You should not
append ".S8" since MERLIN does this automatically. If you
have hit "L" by mistake, just hit RETURN twice and the command
will be cancelled without affecting any file that may be in
memory.

After .a LOAD. SOURCE (or APPEND SOURCE) command, you are
automatically placed in the editor mode, just as if you had hit
"E"« The source will automatically be loaded to the correct
address. Subsequent LOAD. SOURCE or SAVE SOURCE com mands will
display the last used filename, followed by a flashing "?". If
you hit the "Y" key, the current file name will be used for the
command. -If you hit any other key (such as RETURN) the cursor
will be placed on the first character of the filename, and you
may type in the desired name. RETURN alone without typing a
file name you will cancel the command.

S:SAVE SOURCE

Use this to save a binary source file to.disk. As in the
load command, you do not include the suffix ".S" and you can
hit RETURN to cancel the command. NOTE: the address and
length of the source file are shown on the MENU, and are for
information only. You should not use .these for saving; the
assembler remembers them better than you can and sends them
to DOS automatically. As in the LOAD SOURCE command above,
the last loaded or saved filename will be displayed and you
may type "Y" to save the same filename, or any key for a new
file name.

A:APPEND FILE

This , loads 1in a specified source file and places it at the
end of the file currently in memory. It operates in the same
way as the LOAD SOURCE command, and does not affect the
default file name. It does not save the appended file; you
are free to do that if you wish.

-16-

MERLIN PRO Users Manual EXECUTIVE MODE

D:DRIVE CHANGE (DOS 3.3)

When you hit "D", the drive used for saving and loading will
change from one to two or two to one. The currently selected
drive is shown on the menu. When MERLIN is first booted, the
selected drive will be the one used by the boot:. There is no
command to specify slot number, but this can be accomplished
by typing "C" for CATALOG which will display the current
disks directory. Then give the disk command "CATALOG,Sn",
where n is the slot number. This action will catalog the
newly specified drive.

D:DISK COMMAND (ProDOS)

This allows yo to issue disk related commands. The following
commands are available with the Merlin Interpreter:

PREFIX pathname (sets the prefix to pathname)

PFX pathname (shorthand for PREFIX)

BLOAD pathname [,A$....] (only hex addresses allowed)

BRUN pathname [,A$....] (only hex addresses allowed)

- pathname [,A$....] (only hex addresses allowed)

BSAVE pathname,A$adrs,L$len

DELETE pathname

LOCK pathname

UNLOCK pathname

RENAME old_pathname,new_pathname

ONLINE (shows the drives currently on line and
their names)

A disk command returns to the disk command mode. You can then
issue another disk command or just hit RETURN to go back to
the menu.

When PREFIX, or PFX, is entered without a pathname, the PREFIX
command sets the prefix to the "volume"” part of the current
prefix. For example, if the current prefix is /MERLIN/LIB and
you type PFX <return> at the disk command prompt, the the
prefix will revert to /MERLIN.

-17-

MERLIN PRO Users Manual EXECUTIVE MODE

BLOAD, BRUN and "-" accept both BIN and SYS files. The
difference between BRUN and "-" is in the state of the soft
switches when control is passed to the program. BRUN leaves
Merlin up; that is, auxiliary zero page and language card RAM
are selected. The "-" command switches in the main zero page
and the $DOO0~$FFFF roms. An RTS from such a program will
return to Merlin. Most of the utility programs supplied with
Melin (SOURCEROR, XREF, etc.) can be run by either method. You
can use "-" (but NOT BRUN) to run programs such as the ProDOS
FILER. However, such programs do not return to Merlin and the
/RAM/ volume is left disconnected by this procedure.

E:ENTER ED/ASM

This command places you in the EDITOR/ASSEMBLER mode. It
automatically sets the default tabs for the editor to those
appropriate for source files. If you wish to use the editor
to edit an ordinary text file, you can type TABS<KRETURN> to
zero all tabs.

0:SAVE OBJECT CODE

This command is valid only after the successful assembly of a
source file. In this case you will see the address and
length of the object code on the menu. As with the source
address, this is given for information only.

NOTE: the object address shown 1is - that of the program”s ORG
(or $8000 by default) and not that of the actual current
location of the assembled code (which is ordinarily $8000 in
auxiliary memory). When using this command, you are asked for a
name for the object file. Unlike the source file case, no
suffix will be appended to this name.

Thus you can safely use the same name as that of the source
file (without the ".S" of course). When this object code is
saved to the disk its address will be the.correct one, the
one shown on the menu. When later you BLOAD or BRUN it, it
will load at that address, which can be anything ($300,$8000,
&c).

-18-

MERLIN PRO Users Manual EXECUTIVE MODE

Q:QUIT (DOS 3.3)

This exits to BASIC. You may re-enter MERLIN by issuing the
"ASSEM" command. This re-entry will be a warm start, which
means it will not destroy the source file currently in memory.
This exit can be used to give disk ‘commands, test machine
language programs, run BASIC programs, etc.

Q:QUIT (ProDOS)

This exits the Merlin Interpreter. You must specify the PREFIX
for the next interpreter and then the pathname of the next
interpreter, i.e. the one you are quitting to. In most cases
this will be the /BASIC.SYSTEM interpreter.

R:READ TEXT FILE (DOS 3.3)

This reads text files into MERLIN. They are always appended
to the current buffer. To clear the buffer and start fresh,
type "NEW” in the editor. If no file is in memory, the name
given will become the default filename. Appended reads will
not do this.

When the read is complete, you are placed in the editor. If
the file contains lines longer than 255 characters, these
will be divided into two or more lines by the READ command.
The file will be read only until it reaches HIMEM, and
will produce a memory error if it goes beyond. Only the data
read to that point will remain.

The READ TEXT FILE and WRITE TEXT FILE commands will include
a "T." at the beginning of the filename you specify UNLESS
you precede the filename with a space or any other character
in the ASCII range of $20 to $40. Thiis character will be
ignored and not used by DOS in the actual filename.

The READ TEXT FILE and WRITE TEXT FILE commands are used to
LOAD or CREATE "PUT" files, or to access files from other
assemblers or text editors.

-19-

MERLIN PRO Users Manual EXECUTIVE MODE

W:WRITE TEXT FILE (DOS 3.3)

This writes a MERLIN file into a text file instead of a
binary file. The speed of the READ TEXT FILE and WRITE TEXT
FILE commands 1s approximately that of a standard DOS BLOAD
or BSAVE. The WRITE TEXT FILE routine does a VERIFY after
the write.

€:SET DATE (ProD0S)

This allow you to set the curreat date for ProD0S. Note that
this- option does not set the date om.a clock card. If you have
a clock, the date stamping 18 automatic (provided you hdve a
Thunderclock or have installed the requisite clock driver).
The SET DATE provision-is intended for people who do not have
a clock. In that case, you msy use this to sét the currnet
date and this date will then be used for date stamping. You
may also just use this to check on the current date. Type
RETURN alone to exit the SET DAIE routine.

-20-

MERLIN PRO Users Manual THE EDITOR

THE EDITOR

Basically there are three modes in the editor: the COMMAND
mode, the ADD or INSERT mode, and the EDIT mode. The main
one is the COMMAND mode, which has a colon (":") as prompt.

ABOUT THE EDITOR DOCUMENTATION

The editor documentation, as a whole, is broken into three
major sections:

1) The Command Mode Commands
2) The Add/Insert Mode Commands
3) The Edit Mode Commands

For each of the commands, the documentation consists of three
basic parts:

1) the name and syntax of the command,
2) examples of the use of each available syntax,
3) a description of the function of each command.

When the syntax for each command is given:

PARENTHESES () indicate a required value,

ANGLE BRACKETS <> indicate an optional value or character.
SQUARE BRACKETS [] are used to enclose comments about the
commmand .

COMMAND MODE

For many of the COMMAND mode commands, only the first letter
of the command is required, the rest being optional. This
manual will show the required command characters in UPPER
case and the optional ones in lower case.

Line Numbers in Command Mode

With some commands, you must specify a line number, a range of
line numbers or a range list. A line number is just a number.
A range is a pair of 1line numbers separated by a comma. A
range list consists of several ranges separated by a slash

1.

-21-

MERLIN PRO Users Manual THE EDITOR

Line Number examples:

10 LINE # [a single line number]
10,30 RANGE [the range of lines 10 to 30 |}
10,30/50,60 RANGE LIST [ranges 10 to 30 AND 50 to 601

If a line number in a range exceeds the number of the last
line 1in the source, the editor automatically adjusts the
specified line to the last line number.

Delimited Strings (or d-strings)

Several commands allow specification of a string. The string
must be "delimited” by a non—numeric character other than the
slash or comma. Such a delimited string is called a d-string.
The usual delimiter is single or double quote marks (” or ").

Delimited string examples:
“this is a delimited string”
"this is a delimited string”
@this is another d-string@

Note that the slash "/” cannot be used as a delimiter since it
is the character that delimits range lists in the editor.
Wild Card Characters in Delimited Strings

For all of the commands that use delimited strings (d-strings),
the "°" character acts as a wild card character. Therefore,

the d-string "Jon"s" is equivalent to the d-string "Jones" as
well as “"Jonas".

Upper and Lower Case Control

The Apple //e or Apple //c shift and caps lock keys work as
you would expect in the control mode.

-22~-

MERLIN PRO Users Manual THE EDITOR

THE COMMAND MODE COMMANDS

Hex-Dec Conversion

128 = $0080
$80 = 128

If you type a decimal number (positive or negative) " in
the command mode, the hex equivalent is returned. If
you type a hex number, prefixed by “$", the decimal
equivalent = is returned. All commands accept hex num—
bers.

NEW
NEW { only option for this cmd |}
Deletes the present source file in memory.
PR#
PR#(0-7)

PR#1 [can be used to send output to printer |
PR#3 [note: do-not use for 80 col card)

Same function as in BASIC. Mainly used for sending an
editor or ‘assembly listing to a primter. DO NOT use
this to select an 80 - ¢olumn card. NOTE: that PR# 1is
automatically turned off after an ASM command, but not
after a LIST or PRINT command.

Note that the PR# command can be used to send an assembly
listing to the printer unformatted and without page
breaks. If formatting and page breaks are desired use the
PRTR command.

-23~

MERLIN PRO Users Manual THE EDITOR

USER

TABS

TABS

USER
USER 1 [example for use with XREF]
USER "SOURCE" [example for use with PRINTFILER]

This does a JSR $3F5. (That is the Applesoft ampersand
vector location, which normally points to an RTS.) The
designed purpose of this command is for the connection
of .the various utilities supplied with Merlin and for user
defined printer drivers. (You must be careful that your
printer driver does not wuse =zero page addresses, except
the I/0 pointers and $60 ~$6F, because this is 1likely to
interfere with MERLIN"s heavy zero page usage). Several
supplied utilities operate through the USER command.

<number><, number><,...> <"tab character">
TABS [clear all tabs |
TABS 10,20 [set tabs to 10 & 20]
TABS 10,20 " * [as above,space is tab char]

This sets the tabs for the editor, and has no effect on
the assembler listing. Up to nine tabs are possible.
The . default tab character is a space, .but any may be
specified. The assembler regards the space as the only
acceptable * tab character for the separation of labels,
opcodes, and operands. . If you don”t specify the tab
character, then ' the 1last one used remains. Entering
TABS and a RETURN will set all tabs to zero.

LENgth

LEN [only option for this cmd]

This gives the length in bytes of the source file, and
the number of bytes free.

-24=

MERLIN PRO Users Manual THE EDITOR

Where

Where (line number)
W 50 [where is line 50 in memory)
Wo [where is end of source file]

This prints in hex the location in'memory of the - start
of the specified line. "Where 0" (or "WO") will give
the location of the end of source.

MONitor
MON [only option with this cmd]

This exits to the monitor. You may re-enter MERLIN at
the executive level by either CTRL-C, CTRL-B or CTRL-Y.
These re—establish the important zero page pointers from
a save area Inside MERLIN itself. Thus CTRL-Y will give
a correct entry, even if you have messed up the zero
page pointers while in the monitor. DOS is not con-
nected when using this entry to the monitor.

You may also re-enter the editor directly with a 0G.
This re-entry, unlike the others, will use the zero page
pointers at $0A - $OF instead of the ones saved upon
exit. Therefore, you must be sure that they have not
been altered. For normal usage, however, one of the
three CTRL"s is to be used to re—enter MERLIN.

Note that when you exit to the monitor with this command,
the RAM-based $D000-$FFFF memory is enabled, i.e. Merlin
and it”"s symbol table (if any). If you want to examine
the ROM memory that would ordinarily correspond to
Applesoft and the F8 Monitor, you should quit Merlin using
the normal QUIT command, and then enter the Monitor with
the usual CALL-151 statement. Note: .under ProDOS, this
procedure will necessitate loading the BASIC.SYSTEM and
Merlin Pro will be removed from memory.

TRuncON
TRON [only option for this cmd]

When wused as an immediate command, sets a flag which,
during LIST or PRINT, will terminate printing of a 1line
upon finding a space followed by a semicolon. It makes
reading of source files easier on the Apple 40 column
screen.

-25—

MERLIN PRO Users Manual THE EDITOR

TRuncOFf
TROF [only option for this cmd]

When wused as an immediate command, returns to the de-
fault condition of the truncation flag (which also hap-
pens automatically wupon entry to the editor from the
EXEC mode or. from the assembler). All source lines when
listed or printed will appear normal.

Quit
Q [only option for this cmd]

Exits to EXEC mode.

—26~—

MERLIN Users Manual THE EDITOR

ASM

ASM [only option for this cmd]

This passes control to the assembler, which attempts to
assemble the source file. First, however, you are asked
if you wish to "update the source”. This is to remind
you to change the date or identification number in your
source file. If you answer "N" then the assembly will
proceed. If you answer “"Y", you will be presented with
the first line in the source containing a "/" and are
placed in EDIT mode. When you finish editing this 1line
and hit RETURN, assembly will begin. If you use the
CTRL-C edit abort command, however, you will return to
the EDITOR command mode, and any I/0 hooks you have
established by PR# or whatever will be disconnected.
This will also happen if there is no line with a "/".
You may configure Merlin to bypass this question if you
wish.

NOTE: During the second pass of assembly, typing a
CTRL-D will toggle the 1list flag, so that listing will
either stop or resume. This will be defeated if a LST
opcode occurs in the source, but another CTRL-D will
override it. Assembly times are significantly faster
with the listing turned off.

Delete

Delete (line number)
Delete (range)
Delete (range list)

D 10 [deletes line number 10]
D 10,32 [deletes lines 10 through 32]
D 20,30/10,12 [deletes ranges of lines 10

through 12 and 20 through 30]

This deletes the specified lines. Since, wunlike BASIC,
the 1line numbers are fictitious, they change with any
insertion or deletion. Therefore, you MUST specify the
higher range first for the correct lines to be deleted!

-27-

MERLIN Users Manual THE EDITOR

Replace

Replace (line number)
Replace (range)

List

List
List
List
List

R 30 [Delete 30 then goto Insert]
R 30,40 [Delete 30 to 40, then Insert]

This deletes the line number or range, then places you
into INSERT mode at that location.

(line number)

(range)
(range list)
L [list entire file]
L 20 [list line 20 only]
L 20,30 [list 20 through 30)
{

L 20,30/40,42 1list 20 through 30 and then

list lines 40 through 42]

Lists the -source file with line numbers. Control char-
acters in source are shown in inverse, unless the list-
ing is Dbeing sent to a printer or other nonstandard
output device.

The 1listing can be aborted by CTRL-C or with "/" key.
You may stop the listing by hitting the space bar and
then advance a line at a time by hitting the space bar
again. By holding down the space bar, the auto repeat
feature of the Apple will result in a slow listing. Any
other key will restart it. This space bar pause also
works during assembly and the symbol table print out.

-28-

MERLIN Users Manual THE EDITOR

[period]
{ only option for this cmd |}

Lists starting from the beginning of the last specified
range. For example, if you type "L10,100",lines 10 to
100 will be listed. If you then use ".", 1listing will
start again at 10 and continue until stopped (the end of
the range is not remembered).

/

/ <line number>
[start to list at last line
listed]
/50 [start listing at line 50]

This continues listing from the 1last line number listed,
or, when a line number is specified, from that line. This
listing continues to the end of the file or until it is
stopped as in LIST.

Print

Print

Print (line aumber)
Print (range)

Print (range list)

P [print entire file]
P50 [print line 50 onmnly]}
P50,100 [print 1ines 50 through 100]
P1,10/20,30 [print 1 through 10 and then

print lines 20 through 30]

This 1is the same as LIST except that line numbers are
not added.

-29-

MERLIN Users Manual THE EDITOR

PRinTeR

PRinTeR (command)
PRTR 1 "" [activate printer in slot 1 with
no printer string]
PRTR 1 "<ctr>I80n" [as above, but add control I8ON
to initalize the printer]
PRTR 1 "" Page Title [printer in slot 1, no control
string, “"Page Title" is the
page header }

PRTR 3 [send formatted listing to 80
column screen]

PRTIR 8 [send output through the vector
at $3F5 }

This command is for sending a 1listing to a printer with
page headers and provision for page boundary skips. (See
the section on configuration for details on setting up
default parameters.) The entire syntax of this command is:

PRTR slot# "(string)" <page header>

If the slot number used is more than seven, a JSR $3F5
(ampersand vector) is done and it is expected that the
routine there will connect a printer driver by putting
its address in locations $36-$37.

If the page header is omitted, the header will consist
of page numbers only.

THE INITIALIZATION STRING MAY NOT BE OMITTED IF A PAGE
HEADER IS TO BE USED. If no special string is required by
the printer, use a null string (in which case a carriage
return will be used). Examples of initialization strings
are CTRL-Q for IDS - printers, CTRL-I80N for most Apple
printer cards or ESC 1 to place an Okidata printer in
correspondence mode. Note that you must use CTRL-0 prior
to typing ESC so that you don”t go into escape mode.

PRTR 0 (no strings required here) will allow you to see
where the page breaks occur. If the 80 column card is in
use in slot 3, then use PRTR 3 for this.

No output is sent to the printer until a LIST, PRINT, or
ASM command is issued.

-30~

MERLIN Users Manual THE EDITOR

Find

Find
Find
Find
Find

(d-string)
(line number) <d-string>
(range) <d-string>

(range list) <d-string>
F "A String” [£inds lines with "A String”]
F 10 "STRING" [finds "STRING” if in line 10]
F 10,20 "HI" [finds lines in range of 10
through 20 that contain "HI"]
F 10,20/50,99 "HI" [finds lines that contain "HI"

in range of 10 through 20 and
50 through 99 |}

This 1lists those lines containing the specified string.
It may be aborted with CTRL-C or "/" key.

Change

Change (d-string d-string)

Change (line number) <d-string d-string>
Change (range) <d-string d-string>

Change (range list) <d-string d-string>

C "hello"goodbye [finds "hello”™ and if told to do
so will change it to "goodbye"]

C 50 "hello"bye [changes in line 50 only]

C 50,100 "Hello"BYE [changes lines 50 through 100]

C 50,60/65,66 "AND"OR [changes in lines 50 through 60
and lines 65 and 66]

This changes occurrences of the first d-string to the
second d-string. The d-strings must have the same de—
limiters. For example, to change occurrences of "speling”
to "spelling” throughout the range 20,100, you would type
C€20,100 "speling”spelling. If no range is specified the
entire source file is used.

Before the change operation begins, you are asked
whether you want to change "all” or ‘“some”. If you
select “some" by hitting the "S" key, the editor stops
whenever the first string is found and displays the line
as it would appear with the change.

-31-

MERLIN Users Manual THE EDITOR

(Change continued)

COPY

COPY
COPY

MOVE

MOVE
MOVE

If you then hit the "Y" key the change will be made. If
you press the "RETURN" key the change will not be made.
In reality, typing any control character such as ESCAPE,
RETURN or any others will result in the change not being
made. Any other key, such as "Y' (or: even "N") will
accept . the change. CTRL-C or “/" key will Abort the
change process.

(line number) TO (line number)
(range) TO (line number)
COPY 10 TO 20 [copies line 10 to just before
line 20]

COPY 10,20 TO 30 [copies lines 10 through 20 to
just before line 30]

This copies the line number or range to just “above”
the specified number. It does not delete anything.

(line number) TO (line number)
(range) TO (line number)
MOVE -10 TO 20 [Move line .10 to just before 20]
MOVE 10,20 TO 30 [Move lines 10 through 20 to
just before line 30 |}

This is the same as COPY but after copying, automatical-

ly deletes the original range. You always end up with
the same lines as before, but in a different order.

-32-

MERLIN PRO Users Manual THE EDITOR

FW (Find Word)

FW (d-string)

FW (line number) <d-string>
FW (range) <d-string>

FW (range list) <d-string>

FW "LABEL" [find all lines with "LABEL"]
FW20 "LABEL" [try to find "LABEL" in 20]
FW20,30 "PTR" [find all lines between 20 and

30 that contain "PTR" |}
FW20,30/50,99 "PTR" [find all lines between 20 and
30 and between 50 and 99 that

contain the word "PTR"]

This 1is an alternative to the FIND command. It will

find the specified word only if it is surrounded,
source, by non—-alphanumeric characters.

Therefore, FW"CAT" will find:

CAT
CAT-1
(CAT,X)

but will not find CATALOG or SCAT.

CW (Change word)

Change (d-string d-string)
Change (line numbers) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>
CW "PTR"PRT [change all "PTR"s to "PRT"s]

CW 20 "PTR"PRT [as above but only in line 20 }

CW 20,30 "PTR"PRT [do the same as the above but
for lines 20 through 30]
CW 1,9/20,30 "PTR"PRT

in

[same as above but include lines

1 through 9 in the range]

This works similar to the CHANGE command with the added

features as described under FW.

-33-

MERLIN PRO Users Manual THE EDITOR

EW (Edit word)

EW (d-string)

EW (line number) <d-string>
EW (range) <d-string>

EW (range list) <d-string>

Edit

Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit

EW "PIR [edit lines with "PTR"]

EW 10 "PTR [edit 10 if "PTR" is there]

EW 10,20 "PTR [as above, but 10 through 20]
EW 1,5/10,20 "PTR [as above, but include 1 to 5]

This is to EDIT as FW is to FIND.

(line number)
(range)
(range list)
(d-string)
(line number) <d-string>
(range) <d-string>
(range list) <d-string>
Edit [edit ALL lines]
Edit 10 [edit line 10 }
Edit 10,20 [edit lines 10 through 20]
Edit 1,5/9,20 [edit lines 1 through 5 and
lines 9 through 20]

Edit "START" { edit all lines that contain the
d-string "START"]

Edit 10 "START" [edit line 10 IF "START" is
is in the line |

Edit 10,20 "END" [edit all lines in- range of 10

through 20 that contain "END"]
Edit 10,20/50,100 “"LABEL"
[edit all lines in range of 10
through 20 and 50 through 100
that contain the d-string
"LABEL"]

This presents each line of the line number, range, range
list, &c, specified and puts you into the EDIT mode. If
a d-string is appended, only those lines containing the
d-string are presented. See the discussion later in this
chapter concerning the EDIT mode commands.

-34~-

MERLI

TEXT

FIX

VIDeo

VIDeo

N PRO Users Manual THE EDITOR

TEXT [only option for this cmd]

This converts ALL spaces in a source file to inverse
spaces. The purpose of this 1is for use omn word
processing type "text" files so that it is not necessary
to remember to zero the tabs before printing such a file.
This conversion has no effect on anything except the
editor”s tabulation.

FIX [only option for this cmd]

This undoes the effect of TEXT. It also does a number
of technical housekeeping chores-. it is recommended
that the command FIX be used on all source files from
external sources that are being converted to Merlin source
files, after which the file should be saved.

NOTE: The TEXT and FIX routines are written in SWEET 16
and are somewhat slow. Several minutes may be needed
for their execution on large files. FIX will truncate
any lines longer than 255 characters.

ProDOS NOTE: Fix MUST be use and the “fixed” file
resaved, for text files transported from DOS 3.3 to ProDOS
using CONVERT.

(slot)
VID 3 [select video in slot 3]

This command is designed to select or deselect an 80
column board. The default condition can be selected
using the configure program included on the Merlin disk-
ette. This is similar to the wuse of PR# in BASIC. DO
NOT use PR# to select an 80 column board! PR# is desig-
ned for selection of a printer ONLY. An 80 column board
in slot 3 for example, should be selected by typing,
from the editor: VIDEO 3.

It is deselected by ESC CTRL-Q for the Apple //e 80
column board or by ESC O for the Videx Ultra Term.

-35-

MERLIN PRO Users Manual THE EDITOR

VAL

VAL "expression”
VAL "PTR [return value of label "PTR"]
VAL "LABEL" [Gives the address (or value) of

LABEL for the last assembly

done or "unknown label” if not
found.]

VAL "$1000/2" [returns $0800]

VAL "7%1000" [returns $0008]

This will return the value of the expression as the
assembler would compute it. All forms of label and
literal expressions valid for the assembler are valid
for this command. Note that 1labels while have the value
given them in the most recent assembly.

GET

GET (obj adrs)

GET [put object in main memory at
the. address specified in the
sources ORG]

GET $4000 [put object at location $4000
in main memory]

This moves the object code from its location in auxiliary
memory to main memory at the specified address. The address
must be above the existing source file, if any, and it will
not be allowed to clobber DOS. You can do a NEW if you want to
load it lower in memory than allowed, but remember to save
your source first. You cannot wuse this to put the object code
at memory locations lower than $901 but you can go to the
monitor afterwords and use it to move it to any desired
location. Any such move using the monitor may, however,
destroy you source = or other data valuable to Merlins
operation. Caution should be used!

The GET command does not check if a valid object code has been
assembled.

-36-

MERLIN PRO Users Manual THE EDITOR

SWAP

SWAP
SWAP [only option for this cmd]

This swaps the source file in main memory with one in
auxiliary memory. It can be used before GET to hide the source
while testing a program. SWAP is very useful with the DOS 3.3
version of Merlin, since you can work on your assembly
language program with Merlin in the aux bank of memory. When
you have a sucessful assembly, you can use SWAP to hide your
source in the aux bank, Quit Merlin to return to Applesoft and
then run or test your assembly program. You end up with two
complete computers, a "Merlin computer” and an “Applesoft
computer.”

NOTE: The GET and SWAP commands could be dangerous and may
result in loss of source. If you use this and GET to test a
program from the monitor you MUST either protect ALL zero page
locations, or return to the EXEC mode by using by “Y, “C or “B.
Returning to the editor first by using OG will NOT protect zero
page locations.

Protecting zero page locations is best done by saving and
restoring any such locations used. Particularly important are
the pointers at locations $0A through $0F. Another method would
be to switch zero pages and switch back before returning to
Merlin. Merlin uses the AUX zero page. Disaster may result if
zero pages are switched and fail to be switched back.

The SWAP command will overwrite the object code if the source
extends to $8000 or beyond. Type "WO" to check this before
using SWAP. SWAP will also overwrite the XREF program, or
other USER programs. Conversely, loading some USER progams or
other utilities may destroy the swapped source file or the main
one.

Issuing the ASM command automatically deletes any file SWAPped
into auxiliary memory.

-37-

MERLIN PRO Users Manual THE EDITOR

ADD/INSERT MODES

Add
A [only option for this cmd]

The Add command places you in the ADD mode, and acts
much like entering additional BASIC lines with auto line
numbering. To exit from ADD mode, hit RETURN as the FIRST
character of a line. You may also exit the ADD mode by
CTRL-X or CTRL-C which also cancels the current line.
You may enter an EMPTY line by typing a space and then
RETURN. This will not enter the space into text, it only
bypasses the exit. The editor automatically removes extra
spaces at the end of lines.

Insert

Insert (line number)
120 [inserts lines "above™ line 20]

This allows you to enter text just above the specified
line. Otherwise, it functions the same as the ADD command
(above).

Add/Insert Mode Editing Commands

All of the commands described in the "Edit Mode Commands”
section of this manual will work in the ADD mode as well as
the INSERT mode. The only exception is CTRL-R, which during a
"real” edit restores the line being edited to its original
condition. Since any line being Added or Inserted did not
previously exist it cannot be restored. Hence, CTRL-R does
nothing.

-38-

MERLIN PRO Users Manual THE EDITOR

EDIT MODE

After typing E and a line number, range or string in the
editor, you are placed in EDIT mode. The first line of the
range you have specified is placed on the screen with the
cursor on its first character. The line is tabbed as it is in
listing, and the cursor will jump across the tabs as you move
it with the arrow keys. When you are through editing, hit
RETURN. The line will be accepted as it appears on the screen,
no matter where the cursor is when you hit RETURN.

The EDIT commands and functions are very similar, but not

identical to those in Neil Konzen”s GPLE and RWPI“s A.C.E. All
commands except CTRL-R are available in ADD and INSERT modes.

Edit Mode Commands

Control-1 (insert)
Begins insertion of characters. This is terminated by any
control character, except the CTRL-L case toggle, such as
the arrows or RETURN.

Note that the keyboard”s TAB key issues a control-I and
therefore will issue an Insert command to Merlin.

Control-D (delete)

Deletes the character under the cursor.
Delete Key

This is a backwards delete. It deletes the character
preceding the cursor.

.39

MERLIN PRO Users Manual THE EDITOR

Control-F (find)
Finds the next occurrence of the character typed after
the CTRL-F. To move the cursor to the next occurrence
on the line, press the character key again.

Control-0 (insert special)
Functions as CTRL-I, except it inserts any control char-
acter (including the command characters such as CTRL-Q).

Control-P (do *%*%*7g)
If entered as the first character of a 1line gives
32 *“g. If entered as any other character of the 1line,
gives 30 spaces bordered by *“s. Note that these aster-—
isks replace any characters on the line you are editing
when you press CTRL-P.

Control-C or Control—-X (cancel)
Aborts EDIT mode and returns to the editor”s command
mode. The current line being edited will retain its
original form.

Control-B (go to line begin)

Places the cursor at the beginning of the line.

Control-N (go to line end)

Places the cursor one space past the end of the line.
Control-R (restore line)

Returns the line to its original form (not available in
ADD and INSERT modes).

40~

MERLIN PRO Users Manual THE EDITOR

Control-Q (accept line to cursor position)

Deletes the part of the line following the cursor and
terminates editing.

Return (RETURN key)

Accepts the complete line as it appears on the screen and
fetches the next line to be edited, or goes to the command
mode.

The Editor”s Handling of Strings and Comments with Spaces

When entering strings or comments in the Add/Insert or Edit
modes, you will sometimes find the editor imserting additional
spaces. The editor will, however, remove the added spaces
when the line is terminated with a RETURN.

The editor automatically replaces spaces in comments and ASCII
strings with inverse spaces. When 1listing, it converts them
back, so you never mnotice this. Its purpose is to avoid
inappropriate tabbing of comments and ASCII strings.

In the case of ASCII strings, this 1is only done when the
delimiter is a quote (") or a single quote (7). You can,
however, accomplish the same thing by editing the line,
replacing the first delimiter with a quote, hitting RETURN,
then editing again and changing the delimiter back to the
desired one.

In a line such as LDA #° 7, you can prevent the extra tabbing
by entering the 1line with a space before the first quote
(LDA # ~), then use the cursor control keys to move back and
delete the extra space.

41~

MERLIN PRO Users Manual THE ASSEMBLER

THE ASSEMBLER

This . section of the documentation will not attempt to teach
you assembly language. It will only explain the syntax you
are expected to use in your source files, and document the
features that are available to you in the assembler.

ABOUT THE ASSEMBLER DOCUMENTATION

The assembler documentation is broken into three main sections:

1) Preliminary Definitions,
2) Assembler Syntax Conventiouns,
3) Assembler Pseudo Opcode Descriptions.

The last two sections are each further broken down into the
following:

Asssembler Syntax Conventions:
1) Number Format
2)- Source Code Format
3) Expressions Allowed by the Assembler
4) Immediate Data Syntax
5) 6502 and 65C02 Addressing Modes
6) Sweet 16 Opcodes

Assembler Pseudo Opcode Descriptions:
1) Assembler Directives
2) Formatting Pseudo Ops
3) String Data Pseudo Ops
4) Data and Storage Allocation Pseudo Ops
5) Miscelaneous Pseudo Ops
6) Conditional Pseudo Ops
7) Pseudo Ops for Macros
8) Variables

-492-

MERLIN PRO Users Manual THE ASSEMBLER

The Assembler Syntax Conventions illustrate the syntax of a
line of assembly code, the proper method to specify numbers
and data, how to construct assembler expressions and the
proper syntax to use to specify the different addressing modes
allowed by the 6502 or 65C02 microprocessors. This section
should be understood prior to using the assembler, otherwise
it is will be difficult to determine the acceptable methods
to, for instance, construct a proper expression.

The Assembler Pseudo Opcode Descriptions illustrate the

functions of the many Merlin Pseudo Ops, the correct syntax to
use and examples of each Pseudo Ops use.

Preliminary Definitions

The type of operand for almost all of Merlin”s pseudo ops and
the 6502 and 65C02 microprocessors can be grouped into one of
four categories:

1) Expressions

2) Delimited Strings (d-strings)
3) Data

4) Filenames or Pathnames

EXPRESSIONS

Expressions are defined in the Assembler Syntax Conventions
section of the manual.

DELIMITED STRINGS

Delimited Strings are defined in the EDITOR section of the
manual, but that definition is repeated here for continuity.

Several of the Pseudo Opcodes, and some of the 6502 and
65C02 opcodes allow their operand to be a string. Any
such string must be delimited by a non—numeric character
other that the slash (/) or comma (,). Such a string is
called a "d-string”. The usual delimiter 1s a single or
double quote mark (" or 7).

43~

MERLIN PRO Users Manual THE ASSEMBLER

(Delimited Strings continued)

Examples:
“this is a d-string”
“this is another d-string”
@another one@
Zthis is one delimited by an upper case 22
"y
-A-

Note that delimited strings used as the object of . ANY
6502 or 65C02 opcode MUST be enclosed in single or double
quotes. If not, the assembler will interpret the d-string
to be a label, expression or data instead.

Take special note that some of the pseudo ops as well as
the 6502 and 65C02 opcodes use the delimiter to determine
the hi-bit condition of the resultant string. In such
cases the delimiter should be restricted to the single or
double quote.

DATA

Data is defined as raw hexadecimal data composed of the digits
0..9 and the letters A..F.

FILENAMES (DOS 3.3 only)

Filenames are defined as the name of a DOS 3.3 file without
any delimiters, e.g. no quotes surrounding the name. Source
file names are suffixed with ".S". Text files, USES files and
PUT files are prefixed with “T."”. The applicable suffix or
prefix should not be used as part of the filename.

PATHNAMES (ProD0S only)

Pathnames are defined as ProDOS pathnames and as such are
restricted to the definition of pathnames as described in the
ProDOS USER’S MANUAL. Pathnames as used by Merlin do not have
delimiters, e.g. no quotes surrounding the pathname. Source,
USES, and PUT pathnames are suffixed with ".S". This suffix
should not be used as part of the pathname.

By

MERLIN PRO Users Manual THE ASSEMBLER

ASSEMBLER SYNTAX CONVENTIONS

Source Code Format

Syntax of a Source Code Line

A line of source code typically looks like:
LABEL OPCODE OPERAND ; COMMENT

and a few real examples:

1 START LDA #50 sTHIS IS A COMMENT
2 % THIS IS A COMMENT ONLY LINE
3 sTABBED BY EDITOR

A 1line containing only a comment can begin with "*” as in line
2 above. Comment lines starting with ";", however, are
accepted and tabbed to the comment field as in 3 above. . The
assembler will accept an empty line in the source code and will
treat it just as a SKP 1 instruction (see the section on pseudo

opcodes), except that the line number will be printed.

The number of spaces separating the fields is not important,
except for the editor”s listing, which expects just one
space.

Source Code Label Conventions

The maximum allowable LABEL length is 13 characters, but more
than 8 will produce messy assembly listings. A label wust
begin with a character at least as large, in ASCII value, as
the colon, and may not contain any characters less, in ASCII
value, than the number zero. Note that periods (.) are not
allowed in 1labels since the period is used to specify the
logical OR in expressions.

A line may contain a label by itself. This is equivalent to

equating the 1label to the current value of the address
counter.

—45-

MERLIN PRO Users Manual THE ASSEMBLER

Source Opcode and Pseudo Opcode Conventions

The assembler examines only the first 3 characters of the
OPCODE (with certain exceptions such as macro calls and the
Sweet 16 POPD). For example, you can use PAGE instead of PAG
(because of the exception, the fourth letter should not be a D,
however). The assembler 1listing will not look well with an
opcode longer than five characters unless there is no operand.

Operand and Comment Length Conventions
The maximum allowable combined OPERAND + COMMENT length is 64
characters. You will get an OPERAND TOO LONG error if you wuse

more than this. A comment line by itself is also limited to 64
characters.

-46-

MERLIN PRO Users Manual THE ASSEMBLER

NUMBER FORMAT

The assembler accepts decimal, hexadecimal, and binary
numerical data. Hex numbers must be preceded by "$" and
binary numbers by "%", thus the following four numbers are
all equivalent:

100 $64 %1100100 %01100100
As indicated by the 1last binary number, leading zeros are
ignored.
Immediate Data vs. Addresses
In order to imstruct the assembler to interpret a number as
immediate data as opposed to an address, the number should be
prefixed with a "#". The "#” here stands for "number" or
“"data". For example: .

LDA #100 LDA #564 LDA #%1100100

These three instructions will all LOAD the Accumulator with
the number 100, decimal.

A number not preceded by "#" is interpreted as an address.
Therefore:

LDA 1000 LDA $3E8 LDA %1111101000

are equivalent ways of loading the accumulator with the byte
that resides in memory location $3ES8.

47—

MERLIN PRO Users Manual

THE ASSEMBLER

Use of Decimal, Hexadecimal or Binary Numbers

Use the number format that is appropriate

example, the data table:

DA
DA
DA
DA
DA

$1

SA
$64
$3E8
$2710

for clarity. For

is a good deal more mysterious than its decimal equivalent:

DA 1

DA 10

DA 100

DA 1000

DA 10000
Similarly,

ORA #3580

is less informative than

ORA #%10000000

which sets the hi-bit of the number in the accumulator.

—-4.8—

MERLIN PRO Users Manual THE ASSEMBLER

EXPRESSIONS ALLOWED BY THE ASSEMBLER

To make the syntax accepted and/or required by the assembler
clear, we must define what is meant by an "expression”.

Primitive Expressions

Expressions are built up from "primitive expressions” by use of
arithmetic and logical operations. The primitive expressions
are:

1. A label.

2. A number (either decimal, $hex, or Zbinary).

3. Any ASCILI character preceded or enclosed by quotes
or single quotes.

4. The character * (standing for the present address).

All number formats accept 16-bit data and leading zeros are
never required. In case 3, the "value” of the primitive
expression 1is just the ASCII value of the character. The
high-bit will be on if a quote (") is used, and off if a
single quote (7) is used.

Arithmetic and Logical Operations in Expressions

The assembler supports the four arithmetic operations: +, -,
/ (integer division), and * (multiplication). It also sup-
ports the three logical operations: ! (Exclusive OR), . (OR),
and & (AND).

Building Expressions

Expressions are built using the primitive expressions defined
above, either with or without arithmetic and/or logical
operations. This means that expressions can take the form of
primitives or primitives operated on by other primitives using
the arithmetic and logical operators.

-49-

MERLIN PRO Users Manual THE ASSEMBLER

Some examplés of legal expressions are:

#01 (primitive expression = 1)

#$20 (primitive expression = 32 dec)
LABEL (primitive consisting of a label)
#raA” (primitive consisting of letter "A")
* (primitive = curreat value of PC)

The following are examples of more complex expressions

LABEL1-LABEL2 (LABEL]l minus LABEL2)

2*LABEL+$231 (2 times LABEL plus hex 231)
1234+7%10111 (1234 plus binary 10111)

"K"-"A"+1 (ASCII "K" minus ASCII "A" plus 1)
"0"{LABEL (ASCII "0" EOR LABEL)

LABEL&ST7F (LABEL AND hex 7F)

*=2 (present address minus 2)
LABEL.%10000000 (LABEL OR binary 10000000)

Parentheses and Precedence in Expressions

Parentheses are not normally allowed in expressions. They are
not used to modify the precedence of expression evaluation.
All arithmetic and logical operations are evaluated left to
right (2+3*5 would assemble as 25 and not 17).

Parentheses are used to retrieve a value from the memory
location specified by the value of the ' expression within the
parentheses, much like indirect addressing. This wuse is
restricted to certain pseudo ops, however. For example:

DO ($300)

will instruct the assembler to generate code if the value of
memory location $300, at the time of assembly, is non—zero.

-50—

MERLIN PRO Users Manual THE ASSEMBLER

Example of Use of Assembler Expressions

The ability of the assembler to evaluate expressions such as
LAB2-LAB1-1 is very useful for the following type of code:

COMPARE LDX #EODATA-DATA-1
LOOP CMP DATA,X
BEQ FOUND ;s found
DEX
BPL LOOP
JMP REJECT s;not found
DATA HEX CACFC5D9
EODATA EQU *

With this type of code, you can add or delete some of the
DATA and the value which is loaded into the X index for the
comparison loop will be automatically adjusted.

IMMEDIATE DATA SYNTAX

For those opcodes such as LDA, CMP, &c., whith accept im-
mediate data (numbers as opposed to addresses) the immediate
mode 1is signalled by preceding the expression with "#". An
example is LDX #3. 1In addition:

#<expression produces the low byte of the expression
#>expression produces the high byte of the expression
#expression also gives the low byte (the 6502 does

not accept 2-byte DATA)
#/expression is optional syntax for the high byte
of the expression

6502 ADDRESSING MODES

The assembler accepts all the 6502 and 65C02 opcodes with
standard mnemonics. It also accepts BLT (Branch if Less Than)
and BGE (Branch if Greater or Equal) as pseudonyms for BCC and
BCS, respectively.

-51-

MERLIN PRO Users Manual THE ASSEMBLER

There are 12 addressing modes available. The appropriate
MERLIN syntax for these are:

Syntax Example
Implied OPCODE CLC
Accumulator OPCODE ROR
Immediate (data) OPCODE #expr ADC #$F8
CMP #"M"
LDX #>LABEL1-LABEL2-1
Zero page (address) OPCODE expr ROL 6
Indexed X OPCODE expr,X LDA $EO,X
Indexed Y OPCODE expr,Y STX LAB,Y
Absolute (address) OPCODE expr BIT $300
Indexed X OPCODE expr,X STA $4000,X
Indexed Y OPCODE expr,y SBC LABEL-1,Y
Indirect JMP (expr) JMP ($3F2)

Preindexed X OPCODE (expr,X) LDA (6,X)
Postindexed Y OPCODE (expr),Y STA ($FE),Y

Special Forced Non-Zero Page Addressing

There is no difference in syntax for zero page and absolute
modes. The assembler automatically uses zero page mode when
appropriate. MERLIN provides the ability to FORCE non-zero
page addressing. The way to do this is to add anything (except
"D") to the end of the opcode. Example:

LDA $10 assembles as zero page (2 bytes) while,
LDA: $10 assembles as non-zero page (3 bytes).

Also, in the indexed indirect modes, only a zero page expres—
sion is allowed, and the assembler will give an error message
if the "expr" does not evaluate to a zero page.address.

NOTE: The "accumulator mode” does not require an operand (the
letter "A"). Some assemblers perversely require you to put
an "A" in the operand for this mode.

The assembler will decide the legality of the addressing mode
for any given opcode.

-52-

MERLIN PRO Users Manual THE ASSEMBLER

Sweet 16 Opcodes

The assembler accepts all Sweet 16 opcodes with the standard
mnemonics. The usual Sweet 16 registers RO to R15 do not
have to be "equated” and the "R" is optional. For the SET
opcode, either a space or a comma may be used between the
register and the data part of the operands; that is, SET
R3,LABEL is equivalent to SET R3LABEL. It should be noted that
the NUL opcode is assembled as a one-byte opcode (the same as
HEX OD) and not a two byte skip as this would be interpreted by
ROM Sweet 16. This is intentional, and is done for internal
reasouns.

Note: The Sweet 16 opcodes will not be recognized by the
assembler unless the SW pseudo opcode has been previously
assembled. This pseudo op will enable assembly of Sweet 16.
65C02 and 65802 Opcodes

The assembler will assemble 65C02 source code as well as 65802
source code. The XC pseudo opcode activates these features.

This opcode is discussed in the following section on Pseudo
ops.

Downloaded from www.Apple2Online.com

-53-

MERLIN PRO Users Manual THE: ASSEMBLER

ASSEMBLER PSEUDO OPCODE DESCRIPTIONS

Directives

EQU (=) (EQUate)

Label EQU expression

Label = expression (alternate syntax)
START EQU $1000 [equate START to $1000]
CHAR EQU "A" [equate CHAR to ascii val of A]
PTR = % [PTR equals present PC]

Used to define the value of a LABEL, usually an exterior
address or an often used constant for which a meaningful
name is desired. It is recommended that these all be
located at the beginning of the program. The assembler
will not permit an "equate” to a zero page number after
the label equated has been used, since bad code could
result from such a situation (also see "Variables™).

Note that Labels are CASE SENSITIVE. Therefore, the
assembler will consider the following labels as different

labels:
START [upper case label]
Start [mixed case label]
start [lower case label]
EXT (EXTernal label)
label EXT [label is external labels name]
PRINT EXT [define PRINT as external]

This pseudo op defines a label as an external label for
use by the Linker. The value of the label, at assembly
time, is set to $8000, but the final value is resolved by
the linker. The symbol table will 1list the 1label as
having the value of §$8000 plus its external reference
number (0-$FE). See the LINKER section of the manual for
more information on this opcode.

—5im

MERLIN PRO Users Manual THE ASSEMBLER

ENT

(ENTry label)

label ENT

ORG

ORG
ORG

PRINT ENT [define PRINT as entry label]

This pseudo op will define the label in the label column
as an ENTRY label. An entry label is a label that may be
refered to as an EXTernal label by another REL code
module. The true address of an entry label will be
resolved by the LINKER.

The REL code module being written, or assembled, may
refer to the ENT 1label just as if it were an ordinary
label. It can be EQU”d, jumped to, branched to, etc.

The symbol table listing will print the relative address
of the label and will flag it as an "E".

See the LINKER section of the manual for more information
on this opcode.

(set ORiGin)
expression
ORG $1000 [start code at $1000]
ORG START+HEND [start at value of expression]
ORG [re~ORG]

Establishes the address at which the program is designed
to rumn. It defaults to $8000. Ordinarily there will be
only one ORG and it will be at the start of the program.
If more than one ORG is used, the first one establishes
the BLOAD address, while the second actually establishes
the origin. This can be used to create an object file
that would load to one address though it may be designed
to run at another address.

You cannot use ORG*-1 to back up the object pointers as

is done in some assemblers. This must be done instead
by DS-1.

—55—

MERLIN PRO Users Manual THE ASSEMBLER

(ORG continued)

REL

ORG without an operand 1is accepted and is treated as a
"REORG" type command. It is intended to be wused to
reestablish the correct address pointer after a segment
of code which as a different ORG. (When used in a REL
file, all labels in a section between an "ORG address”
and an "ORG noaddress” = are regarded = as absolute
addresses. This 1is meant ONLY to be used in a section to
be moved to an explicit address.)

Example of ORG without an operand:

1 ORG $1000
1000: AO 00 2 LDY #0
1002: 20 21 10 3 JSR MOVE ; "MOVE" 1S
1005: 4C 12 10 4 JMP CONTINUE. ;NOT LISTED.
5 ORG $300 sROUTINE TO
0300: 8D 08 CO 6. PAGE3 STA MAINZP s BE MOVED
0303: 20 ED FD 7 JSR COUT
0306: 8D 09 CO 8 STA AUXZP
0309: 60 9 RTS
10 ORG ;s REORG
1012: A9 C1 11 CONTINUE LDA #"A"
1014: 20 00 03 12 JSR PAGE3
(RELocatable code module)
REL [only option for this opcode]

This opcode instructs the assembler to generate code
files compatable with the relocating linker. This opcode
must occur prior to the use or definition of any labels.
See the LINKER section of this manual for more
information on this opcode.

-56—

MERLIN PRO Users Manual THE ASSEMBLER

0BJ

0BJ

PUT

PUT

(set OBJect)

expression
0BJ $4000 [use of hex address]
OBJ START [use with a label]

The OBJ opcode is accepted only prior to the start of the
code and it only sets the division line between the
symbol table -and object code -areas in memory (which
defaults to $8000). The OBJ address is accepted only if
it 1lies between $4000 and $BFEO. Most people should never
have to use this opcode. If ‘the REL opcode is used then
OBJ is disregarded. If DSK is wused then you can, but
should not have to, set OBJ: to $BFE0 to maximize the
space for the symbol table.

(PUT a text file in assembly)

filename
DOS 3.3 EXAMPLES

PUT SOURCEFILE [PUT"s file T.SOURCEFILE]

PUT !SOURCE [PUT"s file SOURCE]

PUT !SOURCE,D2 [PUT"s file SOURCE from drive 2]
ProDOS EXAMPLES

PUT SOURCEFILE [PUT”s file SOURCEFILE]

PUT /PRE/SOURCE [PUT"s file SOURCE from DIR PRE]

"PUT filename"” reads the named file and "inserts” it at
the location of the opcode.

DOS 3.3 NOTE: Drive and slot parameters are - accepted in
the standard DOS syntax. The "filename"” specified must be
a text file with the "T."” prefix. If it doesn”t have the
“T." prefix in the disk catalog, the "filename” specified
must start with a character less than "@'. This tells
MERLIN to look for a file without the "T." prefix. The
"1" character can be used for this purpose. For example:

Disk file name = T.SOURCE CODE [name in catalog]

PUT file name SOURCE CODE [name in PUT opcode]
Disk file name = SOURCE CODE [name in catalog]
PUT file name = !SOURCE CODE [name in PUT opcode]

-57-

MERLIN PRO Users Manual THE ASSEMBLER

(PUT continued)

USE

USE

ProDOS NOTE: Drive and slot parameters are not .accepted,
pathnames must be used. Note that the above name
conventions do not apply to ProDOS, since all source
files under ProDOS are text files.

NOTE: "Insert” refers to the-effect on assembly and not
to -the location of the source. The file itself is
actually placed just following the main source. These
files are in memory only one at a time, so a very large
program can be assembled using the PUT facility.

There are two restrictions on a PUT file. First, there
cannot be MACRO definitions inside a file which is
PUT; they must be in the main source or in a USE
file. Second, a PUT file may not call another PUT file
with the PUT opcode. Of course, linking can be simulated
by having the "main program” just contain the macro
definitions and call, in turn, all the others with the PUT
opcode.

Any variables = (such as]LABEL) may be used as “local”
variables. The usual local variables)1 through]8 may
be set up for this purpose using the VAR opcode.

The PUT facility provides a simple way to incorporate

much used subroutines, such as SENDMSG or PRDEC, in a
program.

(USE a text file as a macro library)

filename
USE T.MACRO LIBRARY -[DOS 3.3 example]
USE !MACROS [DOS 3.3, no "T." prefix]
USE T.MACROS,S5,D1 [DOS 3.3 with slot/drive]
USE /LIB/MACROS [ProDOS pathname]

This works as does a PUT but the file is kept in memory.
It is intended for loading a macro library that is USEd
by the source file. ‘

-58-

MERLIN PRO Users Manual THE ASSEMBLER

VAR

(setup VARiables)

VAR expr;expr;expr...

SAV

SAV

TYP

TYP

VAR 1;$3;LABEL [set up VAR"s 1,2 and 3 |

This 1is Jjust a convenient way to equate the variables]l
-]8. "VAR 3;$42;LABEL" will set]1 =3,]2 = $42, and
}]3 = LABEL. This is designed for use just prior to a
PUT. If a PUT file uses]1 -]8, except in PMC (or >>>)
lines for calling macros, there MUST be a previous
declaration of these.

(SAVe object code)

filename
SAV FILE [ProDOS or DOS 3.3 syntax]
SAV /OBJ/PROG [ProDOS pathname syntax]

"SAVE filename"” will save the current object code under
the specified name. This acts exactly as does the EXEC
mode object saving command, but it can be done several
times during assembly.

This pseudo—opcode provides a means of saving portions
of a program having more than one ORG. It also enables
the assembly of extremely large files. After a save,
the object address is reset to the last specification of
OBJ or to $8000 by default.

Files saved with the SAVe command will be saved to BLOAD
to the correct address.

Together, the PUT and SAV (or DSK) opcodes make it
possible to assemble extremely large files.

(set ProDOS file type for DSK and SAV) (ProDOS only)

expression
TYP $00 [no file type]
TYP $06 [binary file type]

This sets the file type to be used by the DSK or SAV
opcodes. The default is the BIN type. Valid file types
are 0,6,$F0-$F7, and $FF (no type, BIN, CMD, user defined,
SYS).

~59—

MERLIN PRO Users Manual THE ASSEMBLER

DSK

DSK

END

END

DUM

DUM

(assemble directly to DiSK)

filename (or pathname for ProDOS)
DSK PROG [DOS 3.3 or ProDOS]
DSK /OBJ/PROG [ProDOS pathname example]

"DSK filename" will direct the assembler to assemble the
following code directly to disk. If DSK is already in
effect, the 0ld file will be closed and the mnew one
begun. This 1is wuseful primarily for extremely large
files.

NOTE: Files intended for use with the linking loader MUST
be saved with the DSK pseudo op, see the REL opcode.

(END of source file)

END [only option for this opcode]
This rarely wused or needed pseudo opcode instructs the

assembler to ignore the rest of the source. Labels
occurring after END will not be recognized.

(DUMmy section)

expression
DUM -$1000 [start DUMmmy code at $1000]
DUM LABEL [start code at value of LABEL]
DUM END-START [start at val of END-START]

This starts a section of code that will be examined for
value of labels but will produce no object code. The
expression must give the desired ORG of this section.
It is possible to re-ORG such a section wusing another
DUMMY opcode or using ORG. Note that although no object
code is produced from a dummy section, the text output of
the assembler will appear as if code is being produced.

-60-

MERLIN PRO Users Manual THE ASSEMBLER

DEND

DEND

This

(Dummy END)

DEND

address
section.

Sample

Co~NOTUnSwWwN e

ends

to

usage of DUM

IOBADRS

IOBTYPE
IOBSLOT
IOBDRV
IOBVOL
IOBTRCK
IOBSECT

IOBBUF
I0BCMD
IOBERR
ACTVOL
PREVSL
PREVDR
START

* And

ORG

DUM
DFB
DFB
DFB
DFB
DFB
DFB
DS

DA

DA

DFB
DFB
DFB
DFB
" DFB
DEND

LDA
STA
so on

[only option for this opcode]

a dummy section and re—establishes the ORG

the value it had upon entry to the dummy

and DEND:
$1000
$B7EB

IOBADRS
1

<
(=]
[

;pointer to DCT

COO0OOHOONODOOH

#SLOT
I0BSLOT

—-61-

MERLIN PRO Users Manual THE ASSEMBLER

FORMATTING PSEUDO OPS

LST ON/OFF (LiSTing control)

LST ON or OFF

LST ON [turn listing on]
LST OFF [turn listing off]
LST [turn listing on, optional]

This controls whether the assembly listing is to be sent
to the Apple screen (or other output device) or not .
You may, for example, use this to send only a portion of
the assembly listing to your printer. Any number of LST
instructions may be in the source. If the LST condition
is OFF at the end of assembly, the symbol table
will not be printed.

The assembler actually only checks the third character
of the operand to see whether or not it is a space.
Therefore, LST will have the same effect as LST ON.The
LST directive will have no effect on the actual generation
of object code. If the LST condition is OFF, the object
code will be generated much faster, but this is
recommended only for debugged programs.

NOTE: CONTROL-D from the keyboard toggles - this flag
during the second pass.
EXP ON/OFF/ONLY (macro EXPand control)

EXP ON or OFF or ONLY

EXP ON [macro exapand on]
EXP OFF [print only macro call]
EXP ONLY [print only generated code]}

EXP ON will print an entire macro during the assembly.
The OFF condition will print only the PMC pseudo—op.
EXP defaults to ON. This has no effect on the object
coded generated. EXP ONLY will cause expansion of the
macro to the listing omitting the call 1line and end of
macro line. (if the macro call line is labeled, however,
it is printed.) This mode will print out just as if the
macro lines were writtem out in the source.

-62~

MERLIN PRO Users Manual THE ASSEMBLER

LSTDO or LSTDO OFF (LiST DO OFF areas of code)

LSTDO

LSTDO OFF
LSTDO [1list the DO OFF areas]
LSTDC OFF [don”t list DO OFF areas]

PAU

PAU

PAG

PAG

AST

AST

This opcode causes the listing of DO OFF areas of code to
be printed in listings or not to be printed.

(PAUse)

PAU [only option for this opcode]
On the second pass this causes assembly to pause until

a key is hit. This can also be done from the keyboard
by hitting the space bar. This is handy for debugging.

(new PAGe)

PAG [only option for this opcode]
This sends a formfeed ($8C) to the printer. It has no

effect on the screen listing even when using an 80-
column card.

(send a line of ASTerisks)

expression
AST 30 [send 30 asterisks to listing]
AST NUM [send NUM asterisks]

This sends a number of asterisks (*¥) to the 1listing
equal to the value of the operand. The number format is
the usual one, &0 that AST10 will send (decimal) 10
asterisks, for example. The number is treated modulo
256 with 0 being 256 asterisks!

-63-

MERLIN PRO Users Manual THE ASSEMBLER

SKP

SKP

(SKiP lines)

expression
SKP 5 { skip 5 lines in listing]
SKP LINES [skip "LINES" lines in listing]

This sends "expression” number of carriage returns to
the listing. The number format is the same-as in AST.

TR ON/OFF (TRuncate control)

TR ON or OFF

DAT

DAT

CYC

CYC
CYC
CYC

TR ON [limit object code printing]
TR OFF [don”t limit object code print]

TR ON or TR (alone) limits object code printout to three

bytes per source line, even if the line generates more
than three. TR OFF resets it to print all object bytes.

(DATe stamp assembly listing) (ProDOS only)
DAT [only option for this opcode]
This prints the current date and time on the second pass

of the assembler. Available only in ProDOS Merlin.

(calculate and print CYCle times for code)

OFF

AVE
CYC [print opcode cycles & total]
CYC OFF [stop cycle time printing]
CYC AVE [print cycles & average |}

This opcode will cause a program cycle count to be printed
during assembly. A second CYC opcode will cause the
accumulated total to go to =zero. CYC OFF causes it to
stop printing cycles. CYC AVE will average in the cycles
that are underterminable due to branches, indexed and
indirect addressing.

64—~

MERLI

(CYC

N PRO Users Manual THE ASSEMBLER

continued)

The cycle times will be printed (or displayed) to the
right of the comment field and will appear similar to any
one of the following:

5 ,0326 or 57 ,0326 or 57,0326

The first number displayed (the 5 in the example above) is
the cycle count for the current instruction. The second
number displayed is' the accumulated total of cycles in
decimal.

A single quote after the cycle count indicates a possible
added cycle, depending on certain conditions the
assembler cannot forsee. If this appears on a branch
instruction then it indicates that one cycle should be
added if the branch occurs. For non-branch instructions,
the single quote indicates that omne cycle should be added
if a page boundary is crossed.

A double quote after the cycle count indicates that the
assembler has determined that a branch would be taken and
that the branch would cross a page boundary. In this case
the extra cycle is displayed and added to the total.

The CYC opcode will also work for the extra 65C02 opcodes
in Merlin. It will not work for the additional 65C02
opcodes present in the Rockwell 65C02 (i.e. RMB#, SMB#,
BBR# and BSS#). These opcodes are not supported by
Merlin, except when USEing the ROCKWELL macro library.
All of these unsupported opcodes are 5-cycle instructions
with the usual possible one or two extra cycles for the
branch instructions BBS and BBR.

The CYC opcode will also work for the 65802 opcodes, but

it will NOT add the extra cycles required when M=0 or
when X=0.

-65—

MERLIN PRO Users Manual THE ASSEMBLER

STRING DATA PSEUDO OPS

General notes on String Data and String Delimiters

Different delimiters have different effects. Any delimiter
less than (in ASCII value) the single quote (°) will produce a
string with the high-bits on, otherwise the high-bits will be
off. For example, the delimiters !"#$%& will produce a string
in "negative"” ASCII, and the delimiters “()+? will produce one
in “positive"” ASCII. Usually the quote (") and single quote
(°) are the delimiters of choice, but other delimiters provide
the means of inserting a string containing the quote or single
quote as part of the string. Example delimiter effects:

negative ascii, hi bit set

“ENTER "HELLO"~

“HELLO" [1
{HELLO! [negative ascii, hi bit set]
#HELLO# | negative ascii, hi bit set]
&HELLO& [negative ascii, hi bit set]
{ENTER "HELLO™! [string with embedded quotes]
“HELLO” [positive ascii, hi bit clr]
(HELLO([positive ascii, hi bit clr]
[

string with embedded quotes]

All of the opcodes in this section, except REV, also accept hex
data after the string. Any of the following syntaxes are
acceptable:

ASC "string"878D00
FLS “string”,878D00
DCI "string”,87,8D,00
STR "STRING",878D00
INV "string”,878D00

ASC (define ASCii text)

ASC d-string
ASC "STRING" [negative ascii string]
ASC “STRING” [positive ascii string]
ASC "Bye,Bye",8D [negative with added hex bytes]

This puts a delimfted ASCII string into the object
code. The only restriction on the delimiter is that it
does not occur in the string itself.

-66—

MERLIN PRO Users Manual THE ASSEMBLER

DCI (Dextral Character Inverted)
DCI d-string
DCI "STRING" [neg ascii, except for the "G"]
DCI ~STRING” [pos ascii, except for the "G"]
DCI “Hello”,878D [pos with two added hex bytes |
This is the same as ASC except that the string ' is put
into memory with the 1last character having the opposite
high bit to the others.
INV (define INVerse text)
INV d-string
INV "STOP!" [neg ascii, inverse on printing]

INV “END”,878D [positive, added bytes }

This puts a delimited string in memory in inverse format.

FLS (define FLaShing text)

FLS d-string
FLS "The End" [neg ascii, flash on printing]
FLS “The End”,8D00 [pos,flash with added bytes]

This puts a delimited string in memory in flashing format.

REV (REVerse)
REV d-string
REV "Insert” [neg ascii, reversed in mem]
REV “Insert” [same as above but positive]
This puts the d-string in memory backwards. Example:

REV "DISK VOLUME™

gives EMULOV KSID (delimiter choice as in ASC). HEX data
may NOT be added after the string terminator.

-67=

MERLIN PRO Users Manual THE ASSEMBLER

STR (define a STRing with a leading length byte)

STR d-string
STR " /PATH/" [pos ascii, (ProDOS pathname?)]
STR "HI" [result= 02 C8 C9]
STR “HI",8D [result= 02 48 49 8D]

This puts a delimited string into memory with a leading
length byte. Otherwise it works the same as the ASC
opcode. Note that following HEX bytes, if any, are NOT
counted in the length. This facility is mainly intended
for use with ProDOS which uses this type of data
extensively.

-68-

MERLIN PRO Users Manual THE ASSEMBLER

DATA AND STORAGE ALLOCATION PSEUDO OPS

DA or DW (Define Address or Define Word)

DA expression or DW expression

DA $FDFO [results: FO FD in mem]
DA 10,8300 [results: OA 00 00 03]
DW LABl,LAB2 [example of use with labels]

This stores the two-byte value of the operand, usually
an address, in the object code, low-byte first.

These two pseudo ops also accept multiple data separated
by commas (such as DA 1,10,100).

DDB (Define Double-Byte)

DDB expression
DDB $FDED+1 [results: FD EE in memory]}
DDB 10,$300 [results: 00 OA 03 00)
As above with DA, but places high-byte first. DDB also
accepts multiple data (such as DDB 1,10,100).
DFB or DB (DeFine Byte or Define Byte)

DFB expression or DB expression

DFB 10 [results: OA in memory]
DFB $10 [results: 10 in memory]
DB >$FDED+2 [results: FD in memory]
DB LAB [example of use with label]

This puts the byte specified by the operand into the
object code. It accepts several bytes of data, which
must be separated by commas and contain no spaces. The
standard number format is used and arithmetic is done as
usual.

-69-

MERLIN PRO Users Manual THE ASSEMBLER

DFB

HEX

HEX

continued

The "#" symbol is acceptable but ignored, as is <",
The ">" symbol may be used to specify the high-byte of
an expression, otherwise the low-byte is always taken.
The ">" symbol should appear as the first character only
of an expression or immediately after #. That is, the
instruction DFB >LAB1-LAB2 will produce the high-byte of
the value of LABL-LAB2.

For example:
DFB $34,100,LAB1-LAB2,%1011,>LAB1-LAB2

is a properly formatted DFB statement which will gen—
erate the object code (hex)

34 64 DE 0B 09

assuming that LAB1=$81A2 and LAB2=$77C4.

(define HEX data)

hex—data
HEX 0102030F [results: 01 02 03 OF in mem]
HEX FD,ED,CO [results: FD ED CO in memory]

This is an alternative to DFB which allows convenient
insertion of hex data. Unlike all other cases, the "$§"
is not required or accepted here. The operand should
consist of hex numbers having two hex digits (for
example, use OF, not F). They may be separated by
commas or may be adjacent. An error message will be
generated if the operand contains an odd number of
digits or ends in a comma, or as in all cases, contains
more than 64 characters.

-70~

MERLIN PRO Users Manual THE ASSEMBLER

DS

(Define Storage)

DS expression
DS expressionl, expression2

DS \
DS \

,expression2
DS 10 [zero out 10 bytes of mem]
DS 10,$80 [put $80 in 10 bytes of mem]
DS \ { zero mem to next memory page]
DS \,$80 [put $80 in mem to next page]
This reserves space for string storage data. It zeros

out this space if the expression is positive. DS 10,
for example, will set aside 10 bytes for storage.

Because DS adjusts the object code pointer, an instruc-
tion 1like DS-1 can be used to back up the object and
address pointers one byte.

The first alternate form of DS, with two expressions, will
f£ill expressionl bytes with the value of (the low byte of)
expression2, provided expression2 is positive. 1f
expression2 is missing O is used for the fill.

The second alternate form, "DS "y will £ill memory
(with 0°s) until the next memory page. The "DS
\,expression2” form does the same but fills using the low
byte of expression2.

Notes for REL files and the Linker

The "\" options are intended for use mainly with REL files
and work slightly differently with these files. Any "DS
\" opcode occurring in a REL file will cause the linker
to load the next file at the first available page
boundary, and to £fill with O07s or the indicated byte.
Note that, for REL files, the 1location of this code has
NO EFFECT on its action. To avoid confusion, you should
put this code at the end of a file.

-71-

MERLIN PRO Users Manual THE ASSEMBLER

MISCELANEOUS PSEUDO OPS

KBD (define label from KeyBoarD)

label KBD
label KBD d-string
- OUTPUT KBD [get value of OUTPUT from kbd]
OUTPUT KBD "send to printer”
[promt with the d-string for
the value of OUTPUT]

This allows a 1label to be equated from the keyboard
during assembly. Any expression may .be input, including
expressions referencing previously defined labels, however
a BAD INPUT error will occur -if the input cannot be
evaluated.

The optional delimited string will be printed on the
screen instead of the standard "Give = value for LABEL:"
message. A colon is appended to the string.

LUP

LUP expression (Loop)
- (end of LUP)

The LUP pseudo-opcode is used to repeat portions of
source Dbetween the LUP and the —-" "expression” number
of times. An example of this is:

LUP &
ASL

which will assemble as:

ASL
ASL
ASL
ASL

and will show that way in the assembly 1listing, with
repeated line numbers.

-72-

MERLIN PRO Users Manual THE ASSEMBLER

(LUP continued)

CHK

CHK

ERR

ERR
ERR

Perhaps the major use of this is for table building. As
an example:

JA = 0
LUP $FF

JA =]AH
DFB]A

will assemble the table 1, 2, 3, ...,$FF.

The maximum LUP value 1is $8000 and the LUP opcode will
simply be ignored if you try to use more than this.

NOTE: the above use of incrementing variables in order to
build a table WILL NOT work 1if wused within a macro.
Program structures such as this must be included as part
of the main program source.

(place CHecKsum in object code)

CHK [only option for this opcode]

This places a checksum byte into object code at the
location of the CHK opcode. This is usually placed at
the end of the program and can be used by your program
at runtime to verify the existence of an accurate image of
the program in memory.

(force ERRor)

expression

\expression
ERR $80-($300) [error if $80 not in $300 j
ERR *-1/$4100 [error if PC > $4100)
ERR \$5000 [error if REL code address

exceeds $5000]
"ERR expression” will force an error if the expression
has a non-zero value and the message "BREAK IN LINE ??2?"
will be printed.

~-73~

MERLIN PRO Users Manual THE ASSEMBLER

(' ERR continued)

SW

SW

This méy be used to ensure your program does not exceed,
for example, $95FF by adding the final line:

ERR *-1/59600

NOTE: The above example would only -alert you that the
program 1s too long, and will not prevent writing above
$9600 during assembly, but there can be no harm in this,
since the assembler will cease generating object code in
such an instance. The error occurs only on the second
pass of the assembly and does not abort the assembly.

Another available syntax is: ERR ($300)-$4C

which will produce an error on the first pass and abort
assembly -if location $300 does. not contain the -value

$4cC.
Notes for REL Files and the ERR Pseudo Op

The "ERR \expression” syntax gives an error on the second
pass if the address pointer reaches expression or beyond.
This is equivalent to "ERR *-1/expr”, but it when used
with REL files, it instructs the linker to check that the
last byte of the current module does not extend to
expression or beyond (expression must. be absolute). If
the linker finds that :the. current module DOES extend
beyond expression, linking will abort with a message
"Constraint -error:” followed by the value of expression
in the ERR opcode. You can see how this works by trying
to link the PI file to an address over $81C. Note that
the position of this opcode in a REL file has no bearing
on its action, so that it is best to put it at the end.

(SWeet 16 opcodes)

SW [only option for this opcode]

This enables Sweet 16 opcodes. If SW (similarly for XC)
is not selected then those opcode names can be used for
macros. Thus, if you are not using Sweet 16, you can use
macros named ADD, SUB, etc.

T4

MERLIN PRO Users Manual THE - ASSEMBLER

XC

XC

(eXtended 65C02 and 65802 opCodes)

XC [enable the 65C02 option]
XC (twice in a row) [enable the 65802 option]

This enables the extra 65C02 opcodes. If used twice, the
65802 codes can also be assembled. Note that some of the

"long" 65802 addressing codes are not enabled since they
do nothing useful on the 65802.

Note that the XC pseudo op will not enable the extended
BIT opcodes used on the Rockwell ' 65C02 chip. There is,
however, a macro library file included on the Merlin disk
that can be USEd to implement these additional codes.

MX (long status Mode of 65802)

MX

expression

MX . %00 [M& X 16 bit modes are on]
MX %10 [M mode on, X mode off]

MX %01 [X mode on, M mode off]

MX 3 [M&X 16 bit modes are off]

This pseudo op is used to inform Merlin of the intended
status of the "long” status of the 65802 processor. It
functions only when the assembler is in the 65802 mode,
i.e. when two consectutive XC opcodes have been given.
The assembler cannot determine if the processor is in 16
bit memory mode (M status bit=0) or 16 bit index register
mode (X status bit=0). The purpose of the MX opcode is to
inform the assembler of the current status of these bits.

Three of the above examples wuse binary expressions as the
operand of the MX opcode. Note that any valid expression
may be used as long as it is within the range of 0-3.

This opcode MUST be used when wusing Merlin“s 65802
capabilities to inform the assembler of the proper mode
to use in order to insure proper assembly of immediate
mode commands (such as LDA #expression, etc.).

-75=

MERLIN PRO Users Manual THE ASSEMBLER

USR (USeR definable op-code)

USR optional expressions)
USR - expression [examples depend on definition]

This 1is a user definable pseudo—~opcode. It does a JSR
$B6DA. This location will contain an RTS after a boot,
a BRUN MERLIN or BRUN BOOT ASM. - To set up your routine
you should BRUN it from the EXEC command after CATALOG.
This should just set up a JMP at $B6DA to the main
routine and then RTS.

The following flags and entry points may be ﬁsed by your

routine: .
USRADS = $B6DA ;must have a JMP to your routine
PUTBYTE = S$E5F6 ;see below
EVAL = SE5F9 ;see below
PASSNUM = $2 ;contains assembly pass number
ERRCNT = $1D ;error count
VALUE = §55 ;value returned by EVAL
OPNDLEN: = $BB ;contains combined length of

soperand and comment

NOTFOUND = S$FD ;see discussion of EVAL
WORKSP = $280 ;contains the operand and

;comment in positive ASCIL

Your routine will be called by the USR opcode with A=O0,
Y=0 and carry set. To direct the assembler to put a
byte in the object code, you should JSR PUTBYTE with the
byte in A. . .

-76-

MERLIN PRO Users Manual THE ASSEMBLER

(USR continued)

PUTBYTE will preserve Y but " will scramble A and X. It
returns with the zero flag clear (so that BNE always
branches). On the first pass PUTBYTE ONLY adjusts the
object and address pointers, so that the contents of the
registers are not important. You MUST call PUTBYTE the
SAME NUMBER OF TIMES on each pass or the pointers will not
be kept correctly and the assembly of other parts of the
program will be incorrect!

If your routine needs to evaluate the operand, or part
of it, " you can do this by a JSR EVAL. The X register
must point to the first character of the portion of the
operand you wish to evaluate (set' X=0 to evaluate the
expression at the start of the operand). On return from
EVAL, X will point to the character following the eval-
uated expression. The Y register will be O, 1, or 2
depending on whether this character is a right paren-
thesis, a space, or a comma or end of operand.

Any character not allowed in an expression will cause
assembly to abort with a BAD OPERAND or other error. If
some - label in the expression 1s not recognized then
location NOTFOUND will be non—-zero. On the second pass,
however, you will get an UNKNOWN LABEL error and the rest
of your routine will be ignored. On return from EVAL, the
computed value of the expression will be in location VALUE
and VALUE+l, lowbyte first. On the first pass this value
will be insignificant if NOTFOUND is nonzero.

Appropriate locations for your routine are $300-$3CF and
$8A0-$8FF. You must not write to $900.

You may use zero page locations $60-$6F, but should not
alter other locations. Also, you must not change aay
thing from $226 to $27F, or anything from $2C4 to $2FF.
Upon return from your routine (RTS), the USR line will be
printed (on the second pass).

MERLIN: PRO Users Manual THE ASSEMBLER

(USR continued)

When you use the USR opcode in a source file, it is wise
to include some sort of check (in .source) that the
required routine is in memory. 1f, for example, your
routine contains an RTS at location $310 then:

ERR ($310)-$60

will test that byte and abort assembly if the RTS is not
there. Similarly, if you know that the required routine
should assemble exactly two bytes of data, then you cam
(roughly) check for it with the following code:

LABEL USR OPERAND
ERR *-LABEL-2

This will force an error on the second pass if USR does
not produce exactly two object bytes.

It is possible to use USR for several different routines
in the same source. For example, your routine could
check -the first operand expression for an index to the
desired routine and act accordingly. Thus "USR 1,
whatever” = would branch to the first routine, "USR
2,stuff” to the second, etc.

-78-

MERLIN PRO Users Manual THE ASSEMBLER

CONDITIONAL PSEUDO OPS

DO (DO if true)

DO expression

DO O turn assembly off]
DO 1 turn it on]
DO LABEL if LABELL>0 then on]

DO LABL/LAB2
DO LABl1-LAB2

if LABL<LAB2 then off]
if LAB1=LAB2 then off]

ey Py p— ey gy

This together with ELSE and FIN are the conditional
assembly PSEUDO-OPS. If the operand evaluates to ZERO,
then - the assembler ‘will stop generating object code
(until it sees another .conditional). Except for macro
names, it will not recognize any labels in such an area
of - code. If the operand evaluates to a non—zero number,
then assembly will proceed . as usual. This is very
useful for MACROS.

It is also useful for sources designed ' to generate
-slightly different code for different situations. For
example, if you are designing a program to go on a ROM
chip, you would want one version for the ROM and another
with small differences as a RAM version for debugging
purposes. Conditionals can be used to create these
different object codes without requiring two sources.

Similarly, in a program with text, you may wish to have
one version for Apples with lower case adapters and one
for those without. By wusing conditional assembly,
modification of such programs becomes much simpler,
since you do not have to make the modification in two
separate versions of the source code.

Every DO should be terminated somewhere later by a FIN
and each FIN should be preceded by a DO. An ELSE should
occur only inside such a DO/FIN structure. DO/FIN
structures may be nested up to eight deep (possibly with
some ELSE"s between). . If the DO condition is off (value
0), then assembly will- not resume until its corresponding
FIN is encountered, or an ELSE at this level occurs.
Nested DO/FIN structures are valuable for putting
conditionals in MACROS.

-79-

MERLIN PRO Users Manual THE ASSEMBLER

ELSE

ELSE

IF

(ELSE do this)
ELSE [only option for this opcode]
This inverts the assembly condition (ON becomes OFF and

OFF becomes ON) for the last DO.

(IF so then do)

IF char,]var (IF char is the first character of]var)

FIN

FIN

IF (,]1 [1f first char of |1 is "("

then assemble following code]
‘IF ",]TEMP [if first char is ", assem]
IF "=]1 [alternate use with "="]

This checks to see if char is the leading character of
the replacement string for]var. Position is important:
the assembler checks the first and third characters of
the operand for a match. If a match is found then the
following code 'will be assembled. As with DO, this must
be terminated with a FIN, with optional ELSEs between.
The comma is pot examined, so any character may be used
there. For example:

IF "=j1
could be used to test if the first .character of the
variable]l is a double quote (") or not, perhaps needed

in a macro which could be given either an ASCII or a hex
parameter.

(FINish conditional)

FIN [only option for this opcode]
This cahcels the last DO or IF and continues - assembly

with the next highest 1level of conditional assembly, or
ON if the FIN concluded the last (outer) DO or IF.

-80~

MERLIN PRO Users Manual THE ASSEMBLER

EXAMPLE OF THE USE OF CONDITIONAL ASSEMBLY:

* Macro "MOV", moves data from]l to]2
MOV MAC
LDA]l
STA]2
L

* Macro "MOVD", moves data from]1 to]2 with many available
* syntaxes

MOVD MAC
MOV]1;]2
IF (]J1 ;Syntax MOVD (ADR1),Y;????
INY
IF ;]2 ; MOVD (ADR1),Y;(ADR2),Y
MOV]1;]2
ELSE ; MOVD (ADR1),Y;ADR2
MOV]1;]2+1
FIN
ELSE
IF (,]2 ;Syntax MOVD ???7?;(ADR2),Y
INY
IF #,]1 s MOVD #ADR1;(ADR2),Y
MOV]1/$100;]
ELSE ; MOVD ADR1;(ADR2),Y
MOV]1+1;]2
FIN
ELSE sSyntax MOVD ????;ADR2
IF #,11 s MOVD #ADRI1;ADR2
MOV ﬂ/$100;]2+1
ELSE 3 MOVD ADR1;ADR2
MOV]1+1;]2+1
FIN sMUST close ALL
FIN ;conditionals, Count DOs
FIN ;& IFs, deduct FINs. Must
<KL ;yield zero at end.

* Call syntaxes supported by MOVD:

MOVD ADRI ;ADR2

MOVD (ADR1),Y;ADR2
MOVD ADR1;(ADR2),Y
MOVD (ADR1),Y;(ADR2),Y
MOVD #ADR1;ADR2

MOVD #ADR1;(ADR2),Y

-81-

MERLIN PRO Users Manual THE ASSEMBLER

MACRO PSEUDO OPS

MAC (begin MACro definition)

Label MAC
This signals the start of a MACRO definition. It nmust
be labeled with the macro name. The name you use is
then reserved and cannot be referenced by things = other
than the PMC pseudo-op (things like DA NAME will not be
accepted 1if NAME is the label on MAC).

EOM (LX)

EOM

<KL (alternate syntax)
This signals the end of the definition of a MACRO. It
may be labeled and used for branches to the end of a
macro, or one of its copies.

PMC (>>>) (macro-name)

PMC macro—name

>>> macro—name (alternate syntax)

macro—name (alternate syntax 2)

This instructs the assembler to a®semble a copy of
the named macro at the present location. See the
section on MACROS. It may be labeled.

-82~

MERLIN PRO Users Manual THE ASSEMBLER

VARIABLES

-

Labels beginning with "]" are regarded as VARIABLES.
They can be redefined as often as you wish. The = de-
signed purpose of variables is for use in MACROS, but
they are not confined to that use.

Forward reference to a variable 1is impossible (with
correct results) but the assembler will assign some
value to it. That is, a variable should be defined
before it is used. ‘

It is possible to wuse variables for backwards branching,
using the same label at numerous places in the source.
This simplifies 1label naming for large programs-and uses
much less space than the equivalent once-used labels.
For example:

LDY #0
]JLOOP LDA TABLE,Y

BEQ NOGOOD

JSR DOIT

INY

BNE }JLOOP ;BRANCH TO LINE 2
NOGOOD LDX #-1
]JLOOP INX

STA DATA,X

LDA TBL2,X

BNE }JLOOP ;BRANCH TO LINE 8

HFOWYLoENGOUVBmEWLWN

-83~-

MERLIN PRO Users Manual THE ASSEMBLER

LOCAL LABELS

A local label is any label beginning with a colon. A local
label is "attached" to the last global label and can be
referred to by any line from - that global label to the next
global label. You can then use the same local 1label in
other segments governed by other global labels. You can
choose to use a meaningless type of local label such as
:1, :2, etc., or you can use meaningful names such as
:LOOP, :EXIT, and so on.

Example of local labels:

1 START LDY #0

2 LDX #0

3 :LOOP LDA (JUNK),Y s:loop is local to start

4 STA (JUNKDEST),Y

5 INY

6 CPY #100

7 BNE :LOOP ;branch back to :LOOP in 3
8 LOOP2 LDY #0

9 :LOOP LDA (STUFF),Y ;:loop is now local to loop2
10 STA (STUFFDEST),Y

11 INY

12 CPY #100

13 BNE :LOOP sbranch back to :LOOP in 9
14 RTS

Some restrictions on use of local labels:

Local 1labels cannot be wused inside macros. You cannot
label a MAC, ENT or EXT with a local label and you cannot
EQUate a local label. The first label in a program cannot
be a local label.

Local Labels, Global Labels and Variables
There are three distinct types of 1labels wused by the
assembler. Each of these are identified and treated
differently by Merlin.
Global Labels : labels not starting with "]" or ":"

Local labels : labels beginning with ":"
Variables : labels beginning with “]"

—84—

MERLIN PRO Users Manual THE ASSEMBLER

(Local Labels, Global Labels and Variables continued)

Note that local 1labels do not save space in the symbol
table, while variables do. Local labels CAN be wused for
forward and backward branching, while variables cannot.
Good programming practice dictates the use of local labels
as branch points, variables for passing data.

-85~

MERLIN PRO Users Manual MACROS

MACROS

Why Macros?

Macros represent a shorthand method of programming that -allows
multiple lines of code to be: generated from a single
statement, or Macro call. They can be used as a simple means
to eliminate repetative entry of frequently used program
segments, or they can be used to generate complex portions of
code that the programmer may not even understand!

Examples of the first type are presented throughout this
manual and in the T.MACRO LIBRARY file (/LIB/MACROS.S on the
ProDOS disk). Examples of the second, more complex type, can
be found in the T.FP MACROS (/LIB/FPMACR0OS.S on the ProDOS
disk) and in the T.RWTS MACROS 1library found on the DOS 3.3
disk.

Macros can also be wused to simulate unimplemented opcodes
(available on the 6502) or to simulate the Rockwell 65C02
extended bit related opcodes, as in the T.ROCKWELL MACROS file
(/LIB/ROCKWELL.S on the ProDOS disk.)

Macros literally allow you to write your own language and then
turn that language into machine code with just a few lines of
source code. Some people even take great pride in how many
bytes of source code they can generate with a single Macro
calll

How Does a Macro Work?

A macro 1is simply a user named sequence of assembly language
statements, with general purpose operands. You define the
macro in a general way, and when you use it, via a macro call,
you "fill in the blanks” left when you defined it. Here’s a
short example:

MAC SWAP ;define a macro named SWAP
LDA]1 ;load accum with variable }1, first blank
STA]2 ;store accum in location]2, second blank
<KL ;this signals the end of the macro

-86-

MERLIN PRO Users Manual MACROS

In this example the ‘"blanks” refered to previously are the
variables]1, and]2. When you call the SWAP macro you provide
a parameter list that "fills in" variables }1 and]2. What
actually happens is the assembler -substitutes the parameters
you provide at assembly time for the variables. The order of
substitution is determined by the parameter”s place in the
parameter list and the location of the corresponding variable
in the macro definition. Here”s how SWAP would be called and
then filled in:

SWAP $00;$01
[[|______{$01 takes place of]2, 2nd parm}

|

| | {400 takes place of]1, lst parm}
I ,

[

{ macro being called }

then, the macro will be "expanded” into assembly code,

SWAP $00;$01
LDA $00 {300 in place of]1}
STA $01 {601 in place of]2}

It is very important to realize that ANYTHING used in the
parameter list will be substituted for the variables. For
example:

SWAP #"A";DATA

would result in the following:
SWAP #"A";DATA
LDA # A"
STA DATA
You can get even fancier if you like:
SWAP #"A";(STRING),Y

LDA #"A”
STA (STRING),Y

-87-

MERLIN PRO Users Manual MACROS

As 1illustrated, the substitution of . the user supplied
parameters ' for - the variables is quite literal. It is quite
possible to.get into trouble this way also, but Merlin will
inform you, via an error message, if you get too carried away.
One common problem encountered is forgetting the difference
between immediate mode NUMBERS and ADDRESSES. The following
two macro calls will do quite different things:

SWAP 10320
SWAP #10;#20

The first stores the contents of memory location 10 (decimal)
into wemory 1location 20 (decimal). The second macro call will
attempt to store the NUMBER 10 (decimal) in the NUMBER 20!
What has happened here is that an illegal addressing mode was
attempted. The second macro call would be expanded into some-
thing like this (if it were possible):

SWAP #10;#20 ;call the SWAP macro
LbA #10 ;nothing wrong here
STA #20 ;woops! can”t do this!
*%% BAD ADDRESS MODE **% sMerlin will let you know!

In order to use the macros provided with Merlin, or to write
your own, study the macro in question and try to visualize how
the required parameters would be substituted. With a little
time and effort you” 1l be using them 1ike a PRO (pun
intended).

Defining a Macro

A macro definition begins with the line:
Name MAC - (no operand)

with Name in the label field. Its definition 1is terminated
by the pseudo-op EOM or <<X. The label you use as Name
cannot be referenced by anything other than a valid Macro
call: NAME, PMC NAME or >>> NAME.

Forward reference to a macro definition is not possible, and

would result in a NOT MACRO error message. That 1is, the
macro must be defined before it is called by NAME, PMC or >>>.

-88-

MERLIN PRO Users Manual : MACROS

The conditionals DO, IF, ELSE and FIN may be used within a
macro.

Labels inside macros are updated each time the macro NAME,
PMC or >>> NAME is encountered.

Error messages generated by errors in macros usually abort
assembly, because of possibly harmful effects. Such messages
will usually indicate the line number of the macro call rather
than the line inside the macro where the error occured.

Nested Macros
Macros may be nested to a depth of 15.

Here 1is an example of a nested macro in which the definition
itself 1is nested. (This can only be done when both defini-
tions end at the same place.)

TRDB MAC

>>> TR.]1+1;]2+1
TR MAC

LDA]1

STA]2

<&KL

In this example >>> TR.LOC;DEST will assemble as:

LDA LOC
STA DEST

and >>> TRDB.LOC;DEST will assemble as:
LDA LOC+1
STA DEST+1

LDA LOC
STA DEST

-89~

MERLIN PRO Users Manual MACROS

A more common form of nesting is illustrated by these two
macro definitions:

CH EQU $24
POKE MAC
LDA #]2
STA]1
LKL
HTAB MAC
>>> POKE.CH; |1
<L

The HTAB macro could then be used 1like this:

HTAB 20 s;htab to column 20 decimal

and would generate the following code:
LDA #20 312 in POKE macro
STA CH ,]1 in POKE macro, lst parm
;5 in HTAB macro

MACRO names may also be put in the opcode column, without
using the PMC or >>>, with the following restriction: The macro
name cannot be the same as any regular opcode or pseudo

opcode, such as LDA, STA, ORG, EXP, etc. Also, it cannot begin
with the letters DEND or POPD.

Note that the PMC or »>>> syntax is not subject to this
restriction.

Special Variables

Eight variables, named }1 through]8, are predefined and are
designed for convenience in MACROS. These are used in a PMC
(or >>>) statement. The instruction:

>>> NAME.exprl;expr2;expr3...

will assign the value of exprl to the variable]1, that of
expr2 to]2, and so on. An example of this usage is:

~9Q—

MERLIN PRO Users Manual MACROS

MACRO DEFINITION RESULTANT CODE EXAMPLE

TEMP EQU $10 SWAP.$6;$7; TEMP ;macro call

MAC

LDA n LDA $06

STA 13 STA TEMP

LDA 12 LDA $07

STA n STA $06

LDA 13 LDA TEMP

STA 12 STA $07

<L

>0 SWAP.$6;$7; TEMP

>>> SWAP.$1000; $6; TEMP

This program segment swaps the contents of location $6 with
that of $7, wusing TEMP as a scratch depository, then swaps
the contents of $6 with that of $1000.

If, as above, some of the special variables are used in the
MACRO definitionm, then values for them must be specified in
the PMC (or >>>) statement. In the assembly 1listing, the
special variables will be replaced by their corresponding
expressions. '

The number of values must match the number of variables used in
the macro definition. A BAD VARIABLE error will be generated
if the number of values 1is less than the number of variables
used. No error message will be generated, however, if there
are more values than variables.

The assembler will accept some other characters in place of
the period (as per examples) or space between the macro name
and the expressions in a PMC statement. You may use any of
these characters:

® / > - (

The semicolons are required, however, between the expressions
and no extra spaces are allowed.

-91~

MERLIN PRO Users Manual MACROS

Macros will accept literal data. Thus the assembler will
accept the following type of macro call:

MACRO DEFINITION

MUV MAC
LDA]1
STA]2
<K

>>> MUV.(PNIR),Y;DEST
>>> MUV.#3;FLAG,X

with the resultant code from the above two Macro calls being:

>>> MUV.(PNTR),Y;DEST ;jmacro call

LDA (PNTR),Y ;substitute first parm

STA DEST ;substitute second parm
and,

>>> MUV.#3;FLAG,X ;jmacro call

LDA #3 ;substitute first parm

STA FLAG,X ;substitute second parm

-92-

MERLIN PRO Users Manual MACROS

It will also accept:

MACRO DEFINITION RESULTANT CODE EXAMPLE
PRINT MAC PRINT."Example”

JSR SENDMSG JSR SENDMSG

ASC]1 ASC "Example”

BRK BRK

KK

Some additional examples of the PRINT macro call:

>>> PRINT.!"quote™!
>>> PRINT. This is an example”
>>> PRINT."So”s this, understand?”

LIMITATION: If such strings contain spaces or semicolons,
they MUST be delimited by quotes (single or double). Also,
literals such as D>>>WHAT."A" must have the final delimiter.
(This is only true in macro calls or VAR statements, but it
is good practice in all cases.)

Macro Libraries and the USES Pseudo Op

There are a number of macro libraries on the Merlin disk.
These libraries are examples of how one could set up a library
of often used macros. The requirements for a file to be
considered a macro library are:

1) Only Macro definitions and label definitions exist in
the file,

2) The file is a text file,

3) If it is a DOS 3.3 library, the file name must be
prefixed with “T.",

4) The file must be accessable at assembly time (it must
be on an available disk drive or "online").

~93-

MERLIN PRO Users Manual MACROS

The macro libraries included with Merlin include:

DOS 3.3 ProDOS Macro Libary functions

T.FPMACROS FPMACROS.S ~ Allow easy access to Applesoft
floating point math routines

T.MACROS MACROS.S — Often used macros for general use

T.ROCKWELL ROCKWELL.S — Implements extended bit related
opcodes on the Rockwell 65C02

T.SENDMSG SENDMSG.S ~ A macro that allows easy printing
from machine language

T.RWTS <none> — Allow easy access to DOS 3.3"s

RWTS disk routines

Any of these macro libraries may be included in an assembly by
simply including a USES pseudo op with the appropriate library
name. There is no limit to the number of libraries that may be
in memory at any one time, except for available memory space.
See the documentation on the USES pseudo op for a discussion
on its use in a program.

-94—

MERLIN PRO Users Manual THE LINKER

The linking facilities built into Merlin offer a number of
advantages over assemblers without this capability:

1) Extremely large programs may be assembled in one
operation, over 41000 bytes long,

2) Large programs may be assembled much more quickly
with a corresponding decrease in development time,

3) Libraries of subroutines (for disk access, graphics,
screen/modem/printer drivers, etc.) may be developed
and linked to any Merlin program,

4) Programs may be quickly re-assembled to rum at any
address,

With a linker you can write portions of code that perform
specific tasks, say a general disk 1/0 handler, and perform
whatever testing and debugging 1is required. When the code is
correct, it is assembled as a REL file and placed on a disk.
Whenever you need to write a program that uses disk I/0 you
won”t have to re-write or re-assemble the disk 1/0 portion of
your new program. Just link your general disk I/0 handler to
your new program and away you go. This technique can be used
for a variety of often used subroutines.

Wouldn“t a PUT file or Macro USES library serve the same
purpose? A PUT file comes the closest tp duplicating the
utility of REL files and the 1linker, but there are a few
rather large drawbacks for certain programs. First, using a
PUT file to add a general purpose subroutine would result in
much slower assembly. Second, any label definitions contained
in the PUT file would be global within the entire program.
With a REL file only labels defined as ENTry in the REL file
(and EXTernal in the current file) would be shared by both
programs. There is no chance for duplicate label errors when
using the linker. Consider the following simple example:

-95-

MERLIN PRO Users Manual THE LINKER

An REL file has been assembled tHat drives a plotter.
There are six entry points into the driver: PENUP,
PENDOWN, NORTH, SOUTH, EAST, WEST. To further illustrate
the value of a linker, assume the driver was written by a
friend who has moved 2000 miles from you. Your job is to
write a simple program .to draw a box. The code would look
something like this:

1 REL ;RELOCATABLE CODE

2 PENUP EXT ; EXTERNAL LABEL

3 PENDOWN EXT ; ANOTHER ONE

4 NORTH EXT

5 SOUTH EXT

6 EAST EXT

7 WEST EXT

8

9 BOX LDY ' #00 ; INITIALIZE Y

10 JSR PENDOWN sGET READY TO DRAW
11 :LooP JSR NORTH sMOVE UP
12 INY 3 INC COUNTER
13 CPY #100 ;100 MOVES YET?
14 BNE :LOOP ; NOTICE LOCAL LABEL
15 ’ LDY #00 sINIT Y AGAIN
16 :LOOP2 JSR EAST ;NOW MOVE TO RIGHT
17 INY
18 CPY #100
19 BNE :LOOP2 ;FINISH MOVING RIGHT

20 * YOU .GET THE IDEA, DO SOUTH, THEN WEST, AND DONE!

This simple sample program illustrates some of the power of
RELocatable, linked files. Your program doesn’t have to
concern itself with conflicts between its” and the REL files
labels, you don“t concern yourself with the location of the
EXTernal labels, your program listing is only 30 to 40 1lines
and it is capable of drawing a box on a plotter!

Some common ‘examples of REL files that may not be readily
apparent are found in Apple Pascal. The Turtlegraphics Unit,
the Applestuff Unit, and with Apple Fortran the Run-Time
libary are all examples of REL files.

-96-

MERLIN PRO Users Manual THE LINKER

Let”s look at another example that illustrates points 1 and 2
above. This time you are writing a data base program. You have
broken the program down into 6 modules, all of which are REL
files:

1) User interface

2) 1ISAM file system

3) Sort subsystem

4) Search subsystem

5) Report generator

6) Memory management subsystem

You would first design and write the User interface for your
program. This would then be assembled and stored as a REL
file. Next, the ISAM file system is written and de-bugged. You
would then 1link the two modules together to see how they
worked together. Next, you would complete the Sort, the
Search, and all the rest. In fact, by wusing REL files, and
documenting the ENTry points and their conditions, six
different people could be working simultaneously on the same
project and need no more from one another than the ENT labels!

To illustrate point 2, assume that the six modules are all
coded as PUT files and that the resulting program was 40k
bytes long (that”s 160 disk sectors or 80 disk blocks). The
time it would take to assemble and cross reference such a
large program would be measured in hours or days. Changing one
byte 1in the source code would require a complete re—assembly
and a quite a wait! By assembling each section independently as
REL files and then 1linking them, the one byte change would
require assembly of only one module in the 40k progranm. In
short, with REL files and a linker, changes to large programs
can be wmade quickly and efficiently, greatly speeding the
program development process.

About the Linker Documentation

There are three pseudo opcodes that deal directly with
relocatable modules and the linking process. These are:

REL - Informs the assembler to generate relocatable files

EXT ~ Defines a label as external to the current file

ENT - Defines a label in the current file as accessable to
other REL files.

-97—-

MERLIN PRO Users Manual THE LINKER

There are two other pseudo opcodes that behave differently
when used in a REL file, relative to a normal file. These are:

DS - Define Storage opcode,
ERR~ Force an ERRor opcode.

Each of these five pseudo opcodes will be defined or redefined
in this section as they pertain to REL files. Also, an Editor
command unique to REL files will also be defined: LINK.

In order to use the Linker, the files to be linked must be
specifed. The linker uses a file containing the names of the
files to be 1linked for this purpose. The format of this
"linker name file"” differs from DOS 3.3 and ProDOS. These
differences will be illustrated here.

The Linker documentation will make no additional attempts to
educate the user as to when (or when not) to use REL files.

Pseudo Opcodes for Use with Relocatable Code Files

REL (generate a RELocatable code file)
REL [only options for this opcode]

This opcode instructs the assembler to generate a
relocatable code file for subsequent use with the
relocating linker.

This MUST occur prior to definition of any labels. You
will get a BAD "REL" . error if not. REL files are
incompatible. with the SAV pseudo op and with the EXEC
mode”s object code save command. To get an object file to
the disk you MUST use the DSK opcode for direct assembly
to disk.

There are additional illegal opcodes and procedures that
are normal with standard files.

An ORG at the start of the code is not allowed.

Multiplication, division or 1logical operations can be
appled to absolute expressions but not relatives one.

-98-

MERLIN PRO Users Manual THE LINKER

Examples of absolute expressions are:

~ An EQUate to an explicit address,
- The difference between two relative labels,
- Labels defined in DUMMY code sections.

Examples of relative expressions that are not allowed
are:

- Ordinary labels,
- Expressions that utilize the PC, like: LABEL=*

The starting address of an REL file, supplied by the
assembler, is $8000. Note that this address is a
fictional address, since it will later be changed by the
linker. It is for this reason that no ORG opcode is
allowed.

There are some restrictions involving use of EXTernal
labels in operand expressions. No operand can contain
more than one external. For operands of the following
form:

#>expression or Yexpression

where the expression contains an external, the value of
the expression must be within 7 bytes of the external
labels” value. For example:

LDA #>EXTERNAL+S [illegal expression]
DFB >EXTERNAL-1 [legal expression]

Object files generated with the REL opcode are given the
file type LNK under ProDOS. This is the type that will
show 1if the disk is cataloged by Merlin. This type is
file type $F8.

-99-

MERLIN PRO Users Manual . THE LINKER

EXT

(define a label EXTernal to the current REL module)

label EXT

ENT

PRINT EXT [define label PRINT as EXT]

This defines the label in the label column as an external
label. Any external label must be defined as an ENTry
label in its own REL module, otherwise it will not be
reconciled by the linker (the label would not have been
found in any of the other linked wmodules). The EXTernal
and ENTry 1label concepts are what allows REL modules to
communicate and use each other as subroutines, etc.

The value of the 1label 1is set to $8000 and will be
resolved by the linker. In the symbol table 1listing, the
value of an external will be $8000 plus the external
reference number ($0-$FE) and the symbol will be flagged
with an "X".

(define a label as an ENTry label in a REL code module)

label ENT

PRINT ENT [define label PRINT as ENIry]

This defines the label in the label column as an ENTry
label. This means that the label can be referred to as
an external label. This facility allows other REL modules
to use the label as if it were part of the current REL
module. If a label is meant to be made available to other
REL modules it must be defined with the ENT opcode,
otherwise, other modules wouldn”t know it existed and the
linker would not be able to reconcile it.

The following example of a segment of a REL module will
illustrate the use of this opcode:

21 STA POINTER ;some meaningless code
22 INC POINTER ;for our example

23 BNE SWAP ;CAN BE USED AS NORMAL
24 JMP CONTINUE

25 SWAP EXT sMUST BE DEFINED IN THE
26 LDA POINTER ;s CODE PORTION OF THE

27 STA PIR ;sMODULE AND NOT USED

28 LDA POINTER+1 ;AS AN EQUated label

29 STA PTR+1

30 * etc.

-100-

MERLIN PRO Users Manual THE LINKER

DS

DS
DS

ERR

ERR

Note that the 1label SWAP is associated with the code in
line 26 and that the label may be used just like any
other label in a program. It can be branched to, jumped
to, used as a subroutine, etc.

ENT labels will be flagged in the symbol table listing
with an "E.”

(Define Storage)

\
\expression
DS \ [skip to next REL file, fill mem
with zeros to next page break]
DS \1 [skip to next REL file, fill mem

with the value 1 to next page |

When this opcode is found in an REL file it causes the
linker to load the next file in the "linker name file" at
the first available page boundary and to fill memory
either with zeros or with the value specified by the
expression. This opcode should be places at the end of
your source file.

(force an ERRor)

\expression
ERR \$4200 [error if current code
passes address $4200]

This opcode will instruct the linker to check that the
last byte of the current file does not extend to
"expression” or beyond. Note that the expression must be
absoulute and not a relative expression.

If the linker finds that this 1s not the case, linking
will abort with the message: CONSTRAINT ERROR:, followed
by the value of the expression in the ERR opcode.

Note that the position of this opcode in a REL file has no
bearing on its action. It is recommended that it be put
at the end of a file.

You can see how this works by trying to link the PI file
on the Merlin disk to an address greater than $81C.

-101-

MERLIN PRO Users Manual THE LINKER .

LINK (LINK REL files, this is an editor command)

LINK adrs "filename" [DOS: 3.3 command]

LINK adrs “pathname” [ProDOS command]
LINK $1000 "NAMES" [link files in NAMES]
LINK $2000 ™/MYPROG/NAMES" { link files these]

This editor command invokes the 1linking 1loader. For
example, suppose you want to link the object files whose
names are held in a "linker name file" called NAMES (DOS
3.3 or ProDOS with the prefix set). Suppose the start
address desired for the linked program is $1000. Then you
would type: LINK $1000 "NAMES" <RETURN>. (The final quote
mark in the name is optional and you can use other
delimiters such as """ or ";".) The specified start
address has no effect on the space available to the
linker.

Note that this command is only accepted if there 4is no
current source file in memory, since the linker would
destroy it.

Linker Name Files (DOS 3.3)

The linker name file is just a text file containing the
file names of the REL object modules you want linked. It
should be written with the Merlin editor and written to
the disk with the "W" EXEC command. (Remember to type a
space to start the. filename for the W command if you don”t
want the "T." appended to the start of the name.) Thus if
you want to link the object files named MYPROG.START,
MYPROG.MID, and LIB.ROUTINE,D2, you would create a text
file with these lines:

MYPROG.START
MYPROG.MID
LIB.ROUTINE,D2

Then you would write this to disk with the "W” command
under the filename (for example) MYPROG.NAMES. (Use any
filename you wish here, it 1s not required to call it
NAMES.) Then you would 1link these files with a start
address of §$1000 by typing NEW and then issueing the
editor command: LINK $1000 "MYPROG.NAMES".

-102-

MERLIN PRO Users Manual THE LINKER

The linker will not save the object file it creates.
Instead, it sets up the object file pointers for the EXEC
mode Object: command ("0") and returns you directly to
EXEC mode upon the completion of the linking process.

Linker Name Files (ProDOS)

The linker name file is just a specially formatted file
(of any type) containing the pathnames of the LNK files
you want linked. This file is most easily created by
- assembling a source file with the proper format, as
follows: Each pathname in the source file should be given
the form
STR "pathname”,00-

Be careful to include the 00 at the end. This is wvital.
The entire source file must end with a BRK (another 00).
This tells the linker that there are no more pathnames in
the file. Thus if <you want to link the LNK files names
/MYDISK/START, /MYDISK/MID, AND /OTHERDISK/END you would
make a source file containing these lines:

STR "/MYDISK/START/,00
STR " /MYDISK/MID",00
STR "/OTHERDISK/END",00
BRK

It is best to use full pathnames as shown, but this is
not required. You should then assemble this file and save
the object code as, for example, /MY DISK/MYPROG/NAMES.
(Use any pathname you want here, it is not necessary to
have NAMES 1in a subdirectory nor to call it NAMES.) Then
you can link these files to address $803 by typing NEW
and then: LINK $803 "/MYDISK/MYPROG/NAMES" <RETURN> in
the editor. : .

-103-

MERLIN PRO Users Manual THE LINKER

The file type used by the object save command is always
the file type used in the 1last assembly. Thus it is BIN
unless the last assembly had a TYP opcode and then it
will be that type. This then will be used by the object
save command after you link a group of files. (that is,
the linker does not change this type.) If you make a
mistake and the file gets saved under a type you did not
want, just delete the file, change the type by going to
the monitor and changing location $BE52 to the correct
type, return and resave the object code. You could also
just assemble an empty file, which would reset the object
type to BIN ($06) but this would defeat the object save
command and you would have to link the files again.

The Linking Process (DOS 3.3 and ProDOS)

Various error messages may be sent during the linking
process (see the ERRORS section of this manual for more
information). If a DOS error occurs involving the file
loading, then that error message will be seen and linking
will abort. If the DOS error FILE TYPE MISMATCH occurs
after the message "Externals:" has been printed then it
is being sent by the linker and means that the file
structure of one of the files 1is incorrect and the
linking cannot be done.

The messsage PROGRAM TOO LARGE may occur for two reasons.
Either the object program is too large to accept (the
total object size of the 1linked file cannot exceed about
$A100) or the 1linking dictionary has exceeded its
allotted space ($BO00 long). Each of these possibilities
is exceedingly remote.

After all files have been 1loaded, the externals will be
resolved. Each external label referenced will be printed
to the screen and will be indicated to have been resolved
or not resolved. An indication is also given 1if an
external reference corresponds to duplicate entry
symbols. With both of these errors the address of the
field (one or two bytes) effected is printed. This is the
address the field will have when the final code is
BLOADed.

-104-

MERLIN PRO Users Manual THE LINKER

This listing may be stopped at any point using the space
bar. The space bar may also be used to single step
through the list. If you press the space bar while the
files are loading then the linker will pause right after
resolving the first external reference.

The 1list can be sent to a printer by using the PRTR or
PR# commands prior to the LINK command. At the end, the
total number of errors (external references not resolved
and references to duplicate entry symbols) will be
printed. After hitting a key you will be sent to EXEC
mode and can save the linked object file with the object
save command, using any filename (or pathname) you please.
You can also return to the editor and use the GET command
to move the linked code to main memory.

-105-

MERLIN PRO Users Manual TECHNICAL INFORMATION

TECHNICAL INFORMATION

The source is placed at STARTOFSOURCE when loaded, regard-
less of its original address.

The important pointers are:

START OF SOURCE in $A,$B (set to $901 unless changed)

HIMEM in $C,$D (defaults to $9853 in DOS 3.3
. defaults to $AAOQ in ProDOS)
END OF SOURCE in SE,SF

Note that HIMEM does not change wunless a USER routine or
utility program changes locations $73, $74. Such a change will
be copied automatically into locations $C, $D.

General Information (DOS 3.3 only)

When you exit to BASIC or to the monitor, these pointers are
saved on the RAM card at $EOOA-SEOOF. They are restored up on
re—entry to MERLIN.

Entry into MERLIN replaces the current I/0 hooks with the
standard ones and reconnects DOS. This 1s the same as typing
PR#0 and IN#0 from the keyboard. Entry to the EDITOR discon-
nects DOS, so that you can use labels such as INIT without
disastrous consequences. Re—entry to EXEC MODE disconnects any
I/0 hooks that you may have established via the editor”s PR#
command, and reconnects DOS. Exit from assembly (completion of
assembly or CTRL-C) also disconnects I/0 hooks.

Re—entry after exit to BASIC is made by the "ASSEM"” command.
Simply use "ASSEM" wherever a DOS command is wvalid (for
example, at the BASIC prompt). A BRUN MERLIN or a disk boot
will also provide a warm re-entry and will not reload MERLIN
if it is already there. A reload may be forced by typing
BRUN BOOT ASM which would then be a cold entry, "destroying”
any file in memory.

-106-

MERLIN PRO: Users Manual TECHNICAL INFORMATION

General Information (ProDOS and DOS 3.3)

If during assembly the object code exceeds usable ram then
the code will not be written to memory, but assembly will
appear to proceed as normal and its output sent to the screen
or printer. The only clue that this has happened, if not
intentional, is that the OBJECT CODE SAVE command at EXEC level
is disabled in this event. There is ordinarily a 16K space for
object code, which can be changed with the OBJ opcode.

Symbol Table

The symbol table is printed after assembly unless LST OFF has
been invoked. It is displayed first sorted alphabetically
and then sorted numerically. The symbol table can be aborted
at any time by pressing CTRL-C. Stopping it in this wmanner
will have no ill effect on the object code which was gener—
ated. The symbol table is flagged as follows:

Macro Definition

Label defined within a Macro

Variable (symbols starting with "]")

A symbol that was defined but never referenced
External symbol

Entry symbol

(]

B <R

local labels are not shown in the symbol table
listing.

When in EDIT mode, MERLIN takes total coatrol of input and
output. The effect of typing a control character will be as
described in this manual and NOT as described in -the manual
for your 80 column card. For example, CTRL-L will not blank
the screen, but is the case toggle. CTRL-A, which acts as a
case toggle on many 80 column cards, will not do this in EDIT
mode and simply produces a CTRL-A in the file line.

-107-

MERLIN PRO Users Manual TECHNICAL . INFORMATION

Ultraterm Information

When in the editor the - ULTRATERM mode can be altered by the
ESCAPE sequence given in the ULTRATERM manual. Thus, the
following commands give the indicated effects:

ceseseess 40

ESC O X 24 (same effect as VID $10 or 16)
ESC 1l ¢veveeeees 80 x 24 standard character set

ESC 2 veveesess 96 x 24

ESC 3 teeeesss.160 x 24

ESC 4 veveevees 80 x 24 high quality character set
ESC 5 .veevsees 80 x 32

ESC 6 +veeneses 80 x 48

ESC 7 ceveesaaal3d32 x 24

ESC 8 .veveesssl28 x 32

Exit to EXEC mode will return to the default state as set up
in the HELLO program for DOS 3.3 or the PARMS file for ProDOS
and the same is true of a VID 3 command.

Except for the normal 24 x 80 format, support for the
ULTRATERM depends on the card being in slot 3.

There may be problems if you try to send things to the print-
er while in some of the ULTRATERM modes. It is recommended
that you switch to 40 columns before doing this. "CONTROL-I
80N" in the PRTR command sometimes overcomes the problem.

Memory Allocation with Merlin

The ' memory areas $300-$3EF in main memory and $800-$FFF in
auxiliary memory are available for user supplied USER and USR
routines. The page three area in main memory is intended for
I/0 interface routines. (One cannot send a character to COUT,
for example, from auxiliary memory.). Merlin does not use these
areas. Zero page locations $90-$9F are not used by Merlin and
are reserved for USER routines (note that the XREF program uses
these locations). Zero page locations $60-$6F are reserved for
user supplied routines and may be used as you wish. No other
zero page locations are available.

-108-

MERLIN PRO Users Manual TECHNICAL INFORMATION

Configuration (ProDOS version)

Configuration data is kept in a file 'called PARMS which is
loaded when the assembler is run. To change the data just
change the source file PARMS.S and reassemble it.

Configuration (DOS 3.3 version)

The DATA statements in the Applesoft boot program “HELLO"
contain the configuation information. To change the data just

LOAD HELLO, change the data in the DATA statements and SAVE
HELLO. .

Description of data for both DOS: 3.3 and ProDOS configuations:

DATA # DEFAULT PURPOSE

1 60 Number of lines.per page (for PRTIR)

2 o Lines to skip at page perforation (0 sends
a form feed character

3 80 Number of characters per line (for PRTR)

4 $80 Must be $80 if printer does its own CR at
end of line, otherwise should be 0O

5 $83 . 80 column flag. Should be $80+3 if 80

column card is in slot 3 (or Apple 80 col
card) is to be selected upon boot.
Otherwise 0. MUST BE $83 WITH ProDOS.

6,7 $901 Source file start address, must not be
less than $901

8,9 $AAQO SHOULD NOT BE CHANGED

10,11 $901 End of source pointer. Must equal the
Source file start address

12 $DE "°" The editor”s .wild card character

13 4 Number of fields per line in symbol
table printout. :

14 SAF /" Character searched for by "UPDATE SOURCE"

entry to assembler. If this is O the
question will be bypassed.

15,16,17 14,20,31 The default tabs for editor and assembler,
note that these values are relative to the
left side of screen.

18 8 Number of object bytes/line after the

) first line.

-109-

MERLIN PRO Users Manual TECHNICAL INFORMATION

DATA # DEFAULT PURPOSE

19 5 Error/bell flag and Ultraterm start
parameters.

The high bit, if on, will force the
assembler to pause forever for a keypress
at an error; if off, a sound continues
for 20 seconds and then assembly
continues.

The V bit, if set disables some bells.
The low nibble determines the default
mode of the Ultraterm if you are using
that. The value 5 or $85 gives the 32X80
mode .

20 $40 Cursor flag. Gives regular cursor if this
is $40 and block cursor if 0. The Apple
80-col card must have te block cursor and
this flag will be overridden if you are
using that card.

21 0 LSTDO default: 0,1=LSTDO ON, >1=LSTDO OFF.
Bit 0, if clear, causes shift to 40
columns when a PRTR command is issued.

22 72 Column at which the cycle count will be
printed when using the CYC opcode.
23 $EC Cursor type for Ultraterm. Must be changed
if the Ultraterm mode is changed (see byte
19)
24-44 "$F1" to File type names for the user defined file
"SF7" types $Fl through $F7. These names will

be shown in the directory when cataloged
by Merlin. ProDOS ONLY.

64K Merlin and Merlin Pro Source Files

Source files from the 64k Merlin can be loaded directly into
DOS 3.3 Merlin Pro. To use 64k Merlin source files with ProDOS
Merlin Pro you must use the CONVERT utility supplied with the
ProDOS User”s Disk. Some changes may be required to the source
due to some of the missing pseudo opcodes in Merlin Pro. 1f
your program uses HIMEM: or SYM, they should be deleted. If
your program uses the ERR opcode to check whether SYM or HIMEM:
have been set, they should be deleted. If your program uses
Sweet 16 then the enabling opcode SW will have to be inserted.
Also, any OBJ opcodes will have to be removed since the meaning
of this opcode has been changed.

-110-

MERLIN PRO Users Manual TECHNICAL INFORMATION .

ProDOS Merlin Pro Notes

The ProDOS version uses TXT files exclusively for - source
files. This includes files 1intended for the PUT: or USE
opcodes, and all such files must have the ".8" extension in
the file name (which is provided by the assembler for all
loads and saves). It 1is suggested that you keep files
intended for PUT or USE in a subdirectory. For example you
could save a file named MYPUT under the pathname LIB/MYPUT. It
would then be called in an assembly program by: PUT LIB/MYPUT,
or PUT /PREFIX/LIB/MYPUT.if it is in the volume called PREFIX.

If you save a file under a directory name that does not exist,
a subdirectory will be created under that name. For example,
suppose you want to save your current source SRC in the volume
MYVOL and in the subdirectory SUB which does not exist in the
MYVOL directory. Then merely type /MYVOL/SUB/SRC when the
pathname is requested (or just SUB/SRC if /MYVOL/ is the
prefix) and the subdirectory SUB will be automatically created
and the file SRC placed in it.

It is wise to use a full pathname in operands of the SAV, USES
and PUT opcodes, since otherwise the current prefix will be
attached to the name and that may not be the prefix you want.

Slot and drive parameters are NOT acceptable by any commands
or opcodes. You MUST use pathnames.

Since the ProDOS version of Merlin runs under its own
interpreter rather than the BASIC interpreter, there is no
warm re—entry as with the DOS 3.3 version.

There is no equivalent of the BASIC CAT or CATALOG commands as
"disk commands.” The interpreter automatically selects the
catalog format for the "C" command according to whether you
are in 40 or 80 column mode.

The ProDOS volume /RAM/ is disconnected by Merlin Pro since it
uses all of auxiliary memory.

-111-

MERLIN PRO Users Manual TECHNICAL INFORMATION

Transferring Source Files from DOS 3.3 TO ProDOS Merlin Pro

There are two methods of transferring files from the DOS 3.3
versions of Merlin to the ProDOS version. Since the ProDOS
version uses text files only, you .could 1load files into the
DOS 3.3 version and write them as text files and then transfer
them with Apple”s CONVERT program. Unfortunately, CONVERT is
not a literal transfer, as it will clear the high bits in the
file. The ProDOS version of Merlin will set the High bits
again, but the tabbing in the editor will be fouled up by this
procedure. However, you merely have to type FIX in the editor
and resave the source to remedy this problem. Files intended
for "PUT" or "USE" should be resave because, otherwise,
assembly will be slowed.

Another method is to transfer the files as binary files from
DOS 3.3 and use the fact that the ProDOS version of Merlin has
the ability to load binary files (or any type). (This does NOT
apply to saving.) After loading a binary source file, it
should be deleted and saved back (as a. TXT file). The Load
command automatically permits loading of TXT of BIN files.
Other types of files can be loaded by changing the byte used
to designate source file type which is kept in location $BE5SD
(this ordinarily holds a 4).

Since the ProDOS version of the assembler does not wuse the

"T." syntax of the DOS 3.3 version for PUT files, there will
be some renaming of such files that will be necessary.

~112-

MERLIN PRO Users Manual ERROR MESSAGES

ERROR MESSAGES

BAD OPCODE

Occurs when the opcode 1is not valid (pthaps misspelled)
or the opcode is in the label column.

BAD ADDRESS MODE

The addressing mode is not a valid 6502 instruction; for
example, JSR (LABEL) or LDX (LABEL),Y.

BAD BRANCH

A branch (BEQ, BCC, &c) to an address that is out of
range, i.e. further away than +127 bytes.

NOTE:Most errors will throw off the assembler”s
address calculationms. Bad branch errors should be
ignored until previous errors have been dealt with.

DUPLICATE SYMBOL

On the first pass, the assembler finds two identical
labels.

MEMORY FULL

This is usually caused by one of two conditions:
Source code too large or - symbol table too large. See
"Special Note" at the end of this section.

UNKNOWN LABEL

Your program refers to a label that has not been
defined. This also occurs if you try to reference a
MACRO definition by anything other than PMC or >>>. it
can also occur if the referenced label is in an area
with conditional assembly OFF. The latter will not
happen with a MACRO definition.

NOT MACRO

Forward reference to a MACRO, or reference by PMC or >>>
to a label that is not a MACRO.

-113-

MERLIN PRO Users Manual ERROR MESSAGES

NESTING ERROR

Macros nested more than 15 deep or conditionals nested
more than 8 deep will generate this error.)

BAD "PUT"

This 1is caused by a PUT inside a macro or by a PUT
inside another PUT file.

BAD "SAV"

This is caused by a SAV -inside a macro or a SAV after a
multiple OBJ after the last SAV.

BAD INPUT

This results from either no input ([RETURN] alone) or an
input exceeding 37 characters in answer to the KBD op-
code”s request for the value of a label.

BREAK

This message is caused by the ERR opcode when the ex—
pression in the operand is found to be non-zero.

BAD LABEL

This 1is caused by an unlabeled EQU, MAC, ENT or EXT, a
label that is too long (greater than 13 characters) or one
containing illegal characters (a label must begin with a
character at least as large in ASCII value "as the colon
and may not contain any characters less than the digit
zero).
BAD ORG
Results from an ORG at the start of a REL file.

BAD OBJ
An OBJ after code start or OBJ not within $4000 to $BFEO.
BAD REL

A REL opcode occurs after some labels have been defined.

-114-

MERLIN PRO Users Manual ERROR MESSAGES

BAD EXTERNAL

EXT or ENT in a macro or an equate of a label to an
expression containing an external, or a branch to an
external (use JMP).

BAD VARIABLE

This occurs when you do not pass the number of variables
to a macro that the macro expects. It can also occur for
a syntax error in a string passed to a macro variable,
such as a literal without the final quote.

ILLEGAL FORWARD REFERENCE
A label equated to .a zero page address after it has - been
used. This also occurs when.an unknown (on the first
pass) label is used for some things that must be able to
calculate the value on the first pass (e.g. ORGK 0BJ
DUM) . It also occurs if a label is used before it is
defined in a DUM section on zero page

TWO EXTERNALS
Two or more externals in an operand expression.

DICTIONARY FULL
Overflow of the relocation dictionary in a REL file.

256 EXTERNALS
The file has more than 255 externals.

ILLEGAL RELATIVE ADRS
In REL mode a multiplication, division or logical
operation occurs in a relative expression. This also
occurs for an operand of the type #>expr or a DFB >expr

when the expr contains an external and the offset of the
value of the expr from that of the external exceeds 7.

-115-

MERLIN PRO Users Manual ERROR MESSAGES

ILLEGAL CHAR IN OPERAND

A non—-math character occurs in the operand - where the
assembler is expecting a math operator. This usually
occurs in macro calls with improper syntax resulting from
the textual substitution.

ILLEGAL FILE TYPE (ProDOS version only)

TYP opcode used with an 1illegal operand. The operand
must evaluate to 0,6,FO-F7, or FF. -

GENERAL NOTE: When an error occurs that aborts assembly, the
line containing the error is printed to the screen. This may
not have the same form as it has in the source, since it shows
any textual substitutions that may have occcurred because of
macro expansion. If it ‘is in a macro call, the line number
will be that of the call line and not of the line in the macro
(which is unknown to the assembler).

Special Note — MEMORY FULL Errors

There are three common causes for the MEMORY FULL error mes—
sage. A more detailed description of this problem and some
ways to overcome it follow.

MEMORY FULL IN LINE: xx. Generated during assembly. CAUSE:
Too many symbols have been placed into the symbol table,
causing it to exceed available space. REMEDY: Make the symbol
table larger by setting OBJ to $BFEO and use DSK to assemble
directly to disk.

ERR:MEMORY FULL. Generated immediately after you type in one
line too many. CAUSE: The source code is too large and has
exceeded available ram. REMEDY: Break the source file up into
smaller sections and bring them in when necessary by using the
"PUT" pseudo-op.

ERROR MESSAGE: ' None, -but no object code will be generated
(there will be no OBJECT information displayed on the EXEC
menu). CAUSE: Object code generated from an assembly would
have exceeded the avaiable 16K space. REMEDY: Set OBJ to an
address less than its $8000 default or use DSK.

-116-

MERLIN PRO Users Manual SOURCEROR

SOURCEROR
Introduction

SOURCEROR 1is a sophisticated and easy to use co-resident
disassembler designed to create MERLIN . source files out of
binary programs, usually in a matter of minutes. SOURCEROR
disassembles SWEET 16 code as well as 6502, 65C02 and 65802
code. :

Using SOURCEROR

1. {DOS 3.3] From the EXEC mode, type C to CATALOG Merlin
Pro . ‘At the Command prompt, type BRUN SOURCEROR.

[ProDOS] From the EXEC mode, type D for DISK COMMAND. At
the prompt, type BRUN/MERLIN/SOURCEROR/OBJ (assuming this
is the appropriate prefix etc.).

2. From the EDIT mode, use ESC CTRL-Q (not Escape-4) to set
the screen to 40 columns, then type USER. If the screen
is in 80 columns, the USER command will be ignored.

3. You will be asked if you want to load an object file to be
disassembled. If you have already loaded the object file
prior to using SOURCEROR, type N and skip to step 5. If
yes, type Y and enter the filename. It will be loaded
showing the load address and end of program address.

Note: If you type CTRL-S after the filename to be loaded,
files using a RAM version of SWEET 16 can be disassembled.

4, Next, you will be asked to press RETURN if the program to
be disassembled is at its original (running) location, or
you must specify in hex the present location of the file
to be disassembled. You will then be asked to give the
ORIGINAL location of that program.

5. Finally, the screen displays the commands available for
disassembly. You may begin disassembling now, or use any
of the other commands shown. Your first command MUST
include a hex address. Thereafter this is optional, as
explained later.

-117-

MERLIN PRO Users Manual SOURCEROR

NOTE: When disassembling, you MUST use the ORIGINAL
address of the progranm, not the address where the pro-
gram - currently resides. It will appear that . you. - are
disassembling the program at its originmal location, but
actually; - SOURCEROR 1is disassembling the code 'at its
present location and translating the addresses.

6. When you are all done using SOURCEROR, you should type
USERlL from the EDITOR to get rid of SOURCEROR and free up
the memory used by the disassembler.

Commands Used in Disassembly

The disassembly commands are very similar to those used by
the disassembler in the Apple monitor. All commands accept a
4-digit hex address before the command letter. If this
number is omitted, then the disassembly continues from its
present - address. A number - must be specified only upon
initial entry.

If you specify a number greater than the present address, a
new ORG will be created.

More commonly, you will specify an address less than the
present default value. In this case, the disassembler checks
to see if this address equals the address of one of the
previous lines. If so, it simply backs up to that point. If
not, then it backs up to the next used address and creates a
new ORG: Subsequent source lines are "erased”. It is gen—
erally best to avoid new ORGs when possible. If you get a
new ORG and don"t want it, try backing up a bit more- until
you no longer get a new ORG upon disassembly.

This "backup” feature allows you to repeat a disassembly if
you have, for example, used a HEX or other command, and then
change your mind.

Command Descriptions
L (List)

This is the main disassembly command. It disassembles 20
lines’ of code. It may be repeated (e.g. 2000LLL will
disassemble 60 lines of code starting at $2000). If a
JSR to the SWEET 16 interpreter is found, disassembly 1is
automatically switched to the SWEET 16 mode.

-118-

MERLIN PRO Users Manual SOURCEROR

Command L always continues the present mode of disassem—
bly (SWEET 16 or normal).

If an illegal opcode 1is encountered, the bell will sound
and opcode will be. printed as three question. marks in
flashing format. ' This is only to call your attention to
the situation. In the source code itself, unrecognized
opcodes are counverted to HEX data, but not displayed on
the screen.

S (SWEET)

This 4is similar to L, but forces the disassembly to start
in SWEET 16 mode. SWEET * 16 mode returns to normal 6502
mode whenever the SWEET 16 RIN opcode is found.

N (Normal)

This is the same as L, but forces disassembly to start in
normal 6502 mode.

H (Hex)

This creates the HEX data opcode. It defaults to one
byte of data. If you insert a one byte (one- or two-
digit) -hex number after the H, that number of data bytes
will be generated.

T (Text)

This attempts to disassemble the data at the current
address as an ASCII string. Depending on the form of the
data, this will (automatically) be disassembled under the
pseudo—opcode ASC, DCI, INV or FLS. The appropriate
delimiter (. " or - “) is . automatically chosen. The
disassembly ~will end when the data . encountered is
inappropriate, when 62 characters have been treated, or
when the :high bit of the data changes. In . the last
condition, the ASC opcode is automatically changed to DCI.

-119-

MERLIN PRO Users Manual SOURCEROR

Sometimes the change to DCI is inappropriate. This
change can be defeated by using TT instead of T in the
command .

Occasionally, the disassembled string may not stop at the
appropriate place because the following code looks = like
ASCII data to SOURCEROR. In this event, you may limit
the number of characters put into the string by inserting
a one or two digit hex number after the T command.

This, or TT, may also have to be used to establish the
correct boundary between a regular ASCII string and a
flashing one. It is wusually obvious where this should be
done.

W (Word)

This disassembles the next two bytes at the current
location as a DA opcode. Optionally, if the command WW
is used, these bytes are disassembled as a DDB opcode.

If W- is used as the command, the two bytes are disassem
bled in the form DA LABEL-1. The latter is often the
appropriate form - when the program uses the address by
pushing it on the stack. You may detect this while
disassembling, or after the program has been disassem-
bled. In the latter case, it may be to your advantage to
do the disassembly again with some notes in hand.

Housekeeping Commands

/ (Cancel)

This essentially cancels the last command. More exactly,
it re—establishes the last default address (the address
used for a command not necessarily attached: to an
address). This is a wuseful convenience which allows you
to idignore the typing of an address when 4 backup is
desired.

-120-

MERLIN PRO Users Manual SOURCEROR

. As an example, = suppose you type T to disassemble . some
text. You may not -know what to expect following the
text, so you can just type to L to look at it. Then if
the text turns out to be followed by some Hex data (such
as $8D for a carriage return), . simply type'/ to cancel
the L and type-the appropriate H command.

R (Read)

This allows you to look at memory in a format that. makes
imbedded text stand out. To look at the data from $1000
to $10FF type 1000R. After that, R alone will bring up
the next page of memory. The numbers you use for this
command are totally .independent of -the - disassembly
address. :

However, you may disassemble, then use (address)R, then L
alone, and the disassembly will proceed just as if you
never used R at all. If you don”t intend to use the
default address when you return to disassembly, it may be
wise to make a note on where you wanted to resume, or to
use the / command before the R command.

Q (Quit)

This ends- disassembly and goes to the final processing
which is automatic. If you type an address before the Q,
the address pointer is backed to (but not including) that
point before the processing. If, at the end of the
disassembly, the disassembled lines include:

2341- 4C 03 EO JMP $E003
2344- A9 BE 94 LDA $94BE,Y

and the last line is just garbage, type 2344Q. This will
cancél the last line, but retain all the previous.
Final Processing
After the Q command, the program does some last wminute - pro-—
cessing of the assembled code. If you hit RESET at this
time, you will return to MERLIN and -lose the disassembled

code.

-121-

MERLIN PRO Users Manual SOURCEROR

The processing may take from a second or two for a short
program and up to several minutes for a long one. Be patient.

When the processing is done, you are returned to Merlin
with the newly created source in the text buffer. You can use
Merlin“s Save command to save it to disk when you want.

Dealing with the Finished Source

In most cases, after you have some experience and assuming
you used reasonable care, the source will have few, if any,
defects.

You may notice that some DA”s would have been more appro-
priate in the DA LABEL-1 or the DDB LABEL formats. In this,
and similar cases, it may be best to do the disassembly again
with some notes in hand. The disassembly is so quick and
painless, that it is often much easier than trying to alter
the source directly.

The source will have all the exterior or otherwise un-
recognized labels at the end in a table of equates. You
should look at this table closely. It should not contain any
zero page equates except ones resulting from DA"s, JMP”"s or
JSR”s. This is almost a sure sign of an error in the disas-
sembly (yours, not SOURCERORs). It may have resulted from
an attempt to disassemble a data area as regular code.

NOTE:Lf you try to assemble the source under these con~
ditions, you will get an error as soon as the equates appear.
If, as eventually you should, you move the equates to the
start of the program, you will not get an error, but the
assembly MAY NOT BE CORRECT.

It is important to deal with this situation first as trouble
could occur if, for example, the disassembler finds the data
ADOOS8D. It will disassemble it correctly, as LDA $008D.
The assembler always assembles this code as a zero page
instruction, giving the two bytes A5 8D. Occasionally you
will find a program that uses this form for a zero page
instruction. In that case, you will have to insert a char-
acter after the LDA opcode to have it assemble identically to
its original form. Often it was data in the first place
rather than code, and must be dealt with to get a correct
assembly.

~122-

MERLIN PRO Users Manual SOURCEROR

The Memory Full Message

When the source file reaches within $600 bytes of the end of
its available space you will see MEMORY FULL and "HIT A KEY".
When you hit a key, SOURCEROR will go directly to the final
processing. The reason for the $600 byte gap is that SOURCEROR
needs a certain amount of space for this processing. There is
a "secret" override provision at the memory full point. If the
key you hit is CTRL-0 (for override), then SOURCEROR will
return for another command. You can wuse this to specify the
desired ending point. You can also use it to. go a little
further than SOURCEROR wants you to, aand disassemble a few more
lines. Obviously, you should not carry this to extremes. 'If
you get too close to the end of available space, Sourceror will
no longer accept this overide and will automatically start the
final processing.

Changing Sourceror”s Label Tables

The label tables used by Sourceror are just assembled Merlin
source files. The source file is on the Merlin disk and can be
modified directly by the user. It must be assembled and saved
‘under the same name as the previous label file, i.e. you have
to replace the old existing file.

-123-

MERLIN PRO Users Manual SOURCEROR.FP

APPLESOFT LISTING INFORMATION

SOURCEROR.FP

A fully labelled and commented source listing of Applesoft
BASIC can be generated by the program SOURCEROR.FP. on the
opposite side of the ProDOS MERLIN diskette.

This program works by scanning the resident copy of Applesoft
present in your computer ‘and generating text files containing
the bulk of Applesoft BASIC: APSOFT.1, APSOFT.2, APSOFT.3,
AND APSOFT.4.

To conserve space, these files contain macros that are de-
fined 1in another file on the disk entitled, APPLESOFT.S.
This file, when assembled using the PRTR command, will print
out a nicely formatted disassembly of - Applesoft, auto-
matically bringing in and using the APSOFT files as
necessary. Exact details on doing this are outlined below.

PLEASE NOTE that this is NOT an “official" 'source 1listing
from Apple Computer, Inc., but rather a product of the
Author”s own research and interpretation of the original
Applesoft ROM. Apple Computer, Inc. was not in any ‘way
involved in the preparation of this data, nor was the final
product reviewed for accuracy by that company. Use of the
term APPLE should not be construed to represent any endorse-—
ment, official or otherwise, by Apple Computer, Inc.

Additionally, Roger Wagner Publishing makes no warranties
concerning the accuracy or wusability of this data. It is
provided solely for the entertainment of users of the MERLIN
assembler.

WARNING: SOURCEROR.FP and some temporary work files are
DELETED when SOURCEROR.FP is BRUN. For this reason, you should
make a backup copy of the SOURCEROR.FP side of the MERLIN disk
with the COPYA program on the DOS 3.3 System Master diskette.
Use the backup copy to make the Applesoft listing as explained
next.

~124-

MERLIN PRO Users Manual SOURCEROR.FP "

Steps to print the Applesoft Disassembly
1. Boot ProDOS Merlin,

2. BRUN SOURCEROR.FP from Merlin“s Disk command, use your
backup copy of the SOURCEROR.FP disk (see waruing above).

3. When SOURCEROR.FP finishes, L)oad the file APPLESOFT.
4. Type the following, to print the listing on your printer:

PRTR 1 "I80N" APPLESOFT LISTING
ASM

In the example above, the PRTR command will send output to
slot 1, initialize the printer interface card with <CTRL
I-80N" (the I is in inverse), and will print “APPLESOFT
LISTING” as a header at the top of every page.

MERLIN will then ask "GIVE VALUE FOR SAVEOBJ :" This refers
to whether or not you want to save object code generated by
the assembly. It is recommended that you answer, "0". This
is all you need to do to begin the printing process. If you
answer "1", you will save object code at the cost of slowing
down the system. Saved object code allows you to verify it
against where it was taken from.

MERLIN will now execute the first assembler pass. The disk
will be accessed a few times, sometimes with long periods
between accesses. This is normal. The entire first pass takes
about 3.5 minutes.

MERLIN will then begin to print out a completely disassembled
and commented listing of Applesoft. It will take 105 pages
(including the symbol tables) and nearly an hour and a half
to print out (at a printer rate of 80 characters per second).

-125~

MERLIN PRO Users Manual SOURCEROR.FP

Applesoft Source Cross Reference Listing

Although 105 pages of Applesoft source would seem like enough
to keep one busy for at least a year, Merlin also offers
another source of Applesoft internal information - Applesoft
internal address, subroutine and zero page cross references.
By using the XREFA utility with the Applesoft source you can
produce a listing of every subroutine, zero page address and
where they are used and called. This is invaluable information
for the programmer who desires to make use of the routines
inside Applesoft in his own programs.

Assume, for example, that a user program is called by a running
Applesoft program. Also assume that the programmer makes calls
to some internal Applesoft routines and that the programmer
wishes to use zero page locations $50 and $51 as temporary
registers or pointers. This cross reference will immediately
inform the programmer whether or not the routines that his
program use will destroy the contents of these two locations
and cause difficult to find bugs in his program.

Steps to print an Applesoft cross reference:

l. Load the APPLESOFT file from the SOURCEROR.FP disk,

2. Quit to the EXEC mode and press D for disk command,

3. BRUN /MERLIN/UTIL/XREFA,

4. Go to the Editor with the E command,

5. Issue the PRTR command: PRTR 1 "I80N” APPLESOFT XREF

6. Issue the following command: USER 3

7. Then ASM to begin the assembly.

When this is dome, the Applesoft source will again be
assembled. This time, however, the XREFA program will limit

your printed output to the cross reference table. Note that
this process also takes quite a bit of time prior to printing.

-126-

MERLIN PRO Users Manual . GLOSSARY

GLOSSARY

ABORT

ACCESS

ADDRESS

ALGORITHM

ALLOCATE

ASCII

BASE

BINARY

BIT

BRANCH

BUFFER

BYTE

CARRY

CHIP

CODE

CTRL

-terminate an operation prematurely.

-locate or retrieve data.

-a.specific location in memory.

—a method of solving a specific problem.

—-set aside or reserve space.

—industry standard system of 128 computer
codes assigned to specified alpha—numeric
and special characters.

-in number systems, the exponent at which
the system repeats itself; the number of

symbols required by that number system.

-the base two number system, composed
solely of the numbers zero and one.

-one unit of binary data, either a zero or
a one.

—continue execution at a new location.
-large temporary data storage area.

~Hex representation of eight binary bits.
-flag in the 6502 status register.

—tiny piece of silicon or germanium con-
taining many integrated circuits.

-slang for data or machine language in-
structions.

—abbreviation for control or control
character.

-127-

MERLIN PRO Users Manual

CURSOR

DATA

DECREMENT

DEFAULT

DELIMIT

DISPLACEMENT

EQUATE

EXPRESSION

FETCH

FIELD

FLAG

HEX

HIGH ORDER

HOOK
INCREMENT

INITIALIZE

GLOSSARY

—character, wusually a flashing inverse
space, which marks the position of the
next character to be typed.

~facts or information used by, or in a
computer program.

~decrease value in constant steps.

-nominal value or condition assigned to a
parameter if not specified by the user.

—-separate, as with a: in a BASIC program
line.

—constant or variable used to calculate
the distance between two memory
locations.

—establish a variable.

~actual, implied or symbolic data.

-retrieve or get.

-portion of a data input reserved for a
specific type of data.

-register or memory location used for
preserving or establishing a status of a
given operation of condition.

—the Hexadecimal (BASE 16) number system,
composed of the numbers 0-9 and the let-
ters A-F.

~-the first, or most significant byte of a
two—-byte Hex address or value.

-vector address to an I/0 routine or port.
—-increase value in constant steps.

—-set all program parameters to zero, nor-
mal, or default comnditionm.

-128-

MERLIN PRO Users Manual GLOSSARY

1/0

INTERFACE

INVERT

LABEL

LOOKUP

LOW-ORDER

LSB

MACRO

MICROPROCESSOR

MOD

MODE

MODULE

MNEMONIC

MSB

NULL

OBJECT CODE

OFFSET

OPCODE

—input/output.

-method of intercounnecting peripheral
equipment.

—change to the opposite state.

-name applied to a variable or address,
usually descriptive of its purpose.

-slang; see table.

—-the second, or least significant byte of
a two-byte Hex address or value.

-least significant (bit or byte) one with
the least value.

—-in assemblers, the capability to “"call” a
code segment by a symbolic name and place
it in the object file.

-heart of a microcomputer. (In the Apple,
the 6502 chip).

—algorithm returning the remainder of a
division operation.

-particular sub-type of operation.

-portion . of a program devoted to a spec—
ific function.

-symbolic abbreviation using characters
helpful in recalling a function.

-most significant (bit or byte), one with
the greatest value.

-without value.

~ready to run code produced by an assem~
bler program.

—value of a displacement.
-instruction to be executed by the 6502.

-129-

MERLIN PRO

OPERAND

PAGE

PARAMETER

PERIPHERAL

POINTER

PORT

PROMPT

PSEUDO

RAM

REGISTER

RELATIVE

ROM

SIGN BIT

SOURCE CODE

STACK

STRING

SWEET 16

Users Manual GLOSSARY

—data to be operated on by a 6502 instruc-
tion.

—-a 256-byte area of memory named for the
first byte of its Hex address.

—constant or value required by a program
or operation to function.

—-external device.

-memory location containing an address to
data elsewhere in memory.

-physical interconnection point to per-
ipheral equipment.

—-a character -asking' the user to input
data.

~artificial, a substitute for.
-Random Access Memory.
-single 6502 or memory location.

—branch - made using an offset or displace-
ment.

—~Read Only Memory.

-bit eight of a byte; negative if value
greater than $80.

—-data entered into an assembler which will

produce a machine language program when
assembled.

~temporary storage area in RAM used by the
6502 and assembly language programs.

~a group of ASCII characters usually en~
closed by delimiters such as ~ or "

—program which simulates a 16 bit micro-
processor.

-130-

MERLIN PRO Users Manual GLOSSARY

SYMBOL

SYNTAX

TABLE

TOGGLE

VARIABLE

VECTOR

-symbolic or mnemonic label.
—prescribed method of data entry.

-list of values, words, data referenced by
a program.

-switch from one state to the other.

—alpha-numeric expression which may assume
or be assigned a number of values.

—address to be referenced or branched to.

-131-

MERLIN PRO Users Manual . UTILITIES

UTILITIES

Formatter

This program is provided to enhance the use of MERLIN as a
general text editor. It will automatically format a file
into paragraphs wusing a specified line length. Paragraphs
are separated by empty lines in the original file.

To wuse FORMATTER, you should first BRUN it from EXEC mode.
FORMATTER will then load itself into high memory.

This will simply set up the editor”s USER vector. To format
a file which is in memory, issue the USER command from the
editor. :

The formatter program will request a range to format. If you
just specify one number, the file will be formatted from that
line to the end. Then you will be asked for a line length,
which must be less than 250. Finally, you may specify
whether you want the file justified on both sides (rather
than just on the left).

The first thing done by the program is to check whether or
not each line of the file starts with a space. If not, a
space 1s inserted at the start of each line. This is to be
used to give a left margin using the editor”s TAB command
before using the PRINT command to print out the file.

Formatter uses inverse spaces for the fill required by two-
sided justification. This is done so that they can be lo-
cated and removed if you want to reformat the file later. It
is important that you do not wuse the FIX or TEXT commands on
a file after it has been formatted (unless another copy has
been saved). For files coming from external sources, it is
desirable to first use the FIX command on them to make sure
they have the form expected by FORMATTER. For the same
reason, it is advisable to reformat a file using only left
justification prior to any edit of the file.

Don"t forget to use the TABS command before printing out a
formatted file.

-132-

MERLIN PRO Users Manual UTILITIES

XREF, XREFA

These utilities provide a convenient means of generating a
cross—reference listing of all labels used within a Merlin
assembly language (i.e., source) program.

Such a 1listing can help you quickly find, identify and :trace
values throughout a program. This becomes especially im-
portant when attempting to understand, debug or fine tune-
portions of code within a large program.

The Merlin assembler by itself provides a printout of its
symbol table only at the end of a successful assembly (pro-
vided that you have not defeated this feature with the = LST
OFF pseudo op code). While the symbol table allows you to
see what the actual value or address of a label is,. it does
not allow you to follow the use of the 1label through the
program. :

This is where the XREF programs come in.
XREF gives you a complete alphabetical and numerical printout
of label usage within an assembly language program. XREFA
gives a cross reference table by ADDRESS. This is more useful
for 1large sources containing lots of PUT files. It also does
not use as much space for its cross-reference data and
therefore can handle larger source files than XREF.
XREF.H and XREFA.H are ProDOS versions of the XREF and XREFA
programs that use a page of high memory rather than page 3
memory. This 1is intended as a convenience for people who have
a clock driver in page 3.
Sample Merlin Symbol Table Printout:
Symbol table - alphabetical order:

ADD =$F786 BC =$F7B0 BK =§F706

Symbol table - numerical order:

BK =$F706 ADD = §F786 BC =$F7B0

-133-

MERLIN PRO Users Manual UTILITIES

Sample Merlin XREF Printout:

Cross referenced symbol table - alphabetical order:

ADD =$F786 101 185%
BC =$F7B0 90 207*
BK =$F706 104 121%

Cross referenced symbol table — numerical order:

BK =$F706 104 121%
ADD =$F786 101 185%*
BC =$F7B0 90 207*

As you can see from the above example, the "definition” or
actual value of the label is indicated by the "=" sign, and the
line number of each line in the source file that the 1label
appears in 1is 1listed to the right of the definition. In
addition, the line number where the label is either defined or
used as a major entry point is suffixed ("flagged”) with a "*".

An added feature is a special notation for additional source
files that are brought in during assembly with the PUT pseudo
opcode: "134.82", for example, indicates 1line number 134 of
the main source file (which will be the line containing the
PUT opcode) and line number 82 of the PUT file, where the
label is actually used.

XREF Instructions
1. Get into Merlin”s Executive Mode, make sure you“ve S)aved
the file that you"re working on and select the D)rive no.

that the Merlin disk is in.

2. C)atalog the disk and when Merlin asks you for a COMMAND:
after the Catalog, enter: BRUN XREF.

2a. For ProDOS Merlin, press D)isk and when Merlin asks for a
COMMAND: enter: BRUN /MERLIN/UTIL/XREF.

~134-

MERLIN PRO Users Manual UTILITIES

3. Enter the Editor, then type the appropriate USER command:

USER O -Print assembly 1listing and alphabetical cross
reference only. (USER has the same effect as
USER 0).

USER 1 -Print assembly listing and both alphabetical and
numerically sorted cross reference listings.

USER 2 -Do not print assembly listing but print alpha-
betical cross reference only.

USER 3 -Do mnot print assembly listing but ‘print both
alphabetical and numerical cross reference
listings.

USER commands 0-3 (above) cause labels within conditional
assembly areas with the DO condition OFF to be ignored and
not printed in the cross reference table.

There are additional USER commands (4-7) that function the
same as USER 0-3, except that they cause labels within con—
ditional assembly areas to be printed no matter what the
state of the DO setting is. The only exception to this is
that 1labels defined in such areas and not elsewhere will be
ignored.

NOTE: You may change the USER command as many times as you
wish (e.g., from USER 1 to USER 2). The change is not per-~
manent until you enter the ASM command (below).

4. Enter the ASM command to begin the assembly and printing
process.

Since the XREF programs require assembler output, code in
areas with LST OFF will not be processed and labels in those
areas will not appear in the table. In particular, it is
essential to the proper working of XREF that the LST condition
be ON at the end of assembly (since the program also intercepts
the regular symbol table output). For the same reason, the
CTRL D flush command must not be wused during assembly. The
program attempts to determine when the assembler is sending it
an error message on the first pass and it aborts assembly in
this case, but this is not 100% reliable.)

~135~-

MERLIN PRO Users Manual UTILITIES

Another thing to look out for when using macros with XREF.
Labels defined within macro definitions have no global meaning
and are therefore not cross-referenced.

DEF MAC {---Macro definition
cMP #]1
BNE DONE
ASL

DONE <L

-—— <---Beg. of program
>>> DEF.GLOBAL <---Macro call

In the above example, variable GLOBAL will be cross ref-
erenced, but local label DONE will not.

XREFA

This is an ADDRESS cross reference program and is handy when
you have lots of PUT files. Since this program needs only four
bytes per cross reference instead of six, it can handle con-
siderably larger sources. Also the "where defined” reference
is not given here because it would equal the value of the label
except for EQUated labels where it would just indicate the
address counter when the equate is done. This also saves
considerable space in the table for a larger source.

PRINTFILER

PRINTFILER is a utility included on the Merlin diskette that
saves an assembled listing to disk as a sequential disk
file. It optionally allows you to also select "file packing”
for smaller space requirements and allows you to turn video
output off for faster operation.

Text files "generated by PRINTFILER include the object code
portion of a disassembled listing, something not normally
available when saving a source file. This allows a complete
display of an assembly language program and provides the
convenience of not having to assemble the program to see what
the object code looks like.

~136-

MERLIN PRO Users Manual UTILITIES

Applications
Applications include:

—Incorporating the assembled text file in a document being
prepared by a word processor.

-Sending the file over a telephone line using a modem.

-Mailing the file to someone who wants to work with the
complete disassembly without having to assemble the program
(such as magazine editors, etc.)

How To Use PRINTFILER from DOS 3.3

1. From EXEC mode, make sure that you”ve Saved any source file
that you may be working on (select the Drive to save it on,
first), select the Drive containing PRINTFILER (usually this
is on the Merlin disk) and do a Catalog. When you see the
"COMMAND:" prompt, enter BRUN PRINTFILER (You may skip this
step if you“ve already BRUN“ed it).

2. Press RETURN, select the Drive containing the file you
want to assemble and Load the file into memory. (You may
skip this step if you“ve already BRUN PRINTFILER).

3. Quit the editor, select the Drive that you want to save
the assembly to, enter the Editor again and enter: USER
“"your file mname” (include the quotes). You may also use
the PRTR command if you wish page headers to be sent with
your listing. In this case enter the following instead of
the USER command: PRTR 8 "filename" page header (note the
quotes only for filename).

4. Enter: ASM and after asking whether you want to “UPDATE
SOURCE", PRINTFILER will automatically assemble the source
file directly to disk. Note that you will not see any
thing on your video screen because PRINTFILER is precon—-
figured to operate with the video output turned off for
faster operation.

-137-

MERLIN PRO Users Manual UTILITIES

How to Use PRINTFILER from ProDOS

1. Be certain, the /MERLIN/UTIL/PRINTFILER file is online.
Then press D for disk command, and then enter: BRUN
/MERLIN/UTIL/PRINTFILER.

2. Load the file you wish to assemble. When you enter the
editor, enter: USER "pathname” (include the quotes with this
pathname). You may also use the PRIR command if you wish
page headers to be sent with your listing. 1In this case
enter the following instead of the USER command: PRTR 8
“pathname” page header (note quotes only for pathname).

3. Enter: ASM and after asking whether you want to "UPDATE
SOURCE", PRINTFILER will assemble the source and send the
listing to disk. Note that you will not see any thing on
your video screen because PRINTFILER is preconfigured to
operate with the video output turned off for faster
operation.

Changing PRINTFILER”s Options

PRINTFILER has two options that you may change: file packing
and video output (“"echoing”). 1In addition, you can make the
change temporary or permanent.

File packing reduces the size of the text file saved to disk by
replacing blanks from the source file with a single character
with its high bit turned off. A listing of a packed file will
display the packed blank characters as an inverse letter.
(inverse A=l blank, inverse B=2 blanks, inverse C=3 blanks,
etc.)

Unpacking means restoring the text file to its original
appearance. Note that while you cannot ASM (assemble) such a
file, you can at least read it.

Video "echoing” means printing on the screen what is sent to
the disk. The time it takes to do this can slow PRINTFILER
down.

The process of turning off video output makes PRINTFILER run

approximately 25% faster. Additional speed can be gained by
using packed files.

-138-

MERLIN PRO Users Manual UTILITIES

In addition, unpacked files are nearly twice as 1large as
packed files and nearly three times the size of the original
source file.

Changing PRINTFILER options
To Change PRINTFILER options (temporarily)
Get into the Editor, enter "MON"” and enter:

300:00 00 for packed, video off, or.
300:00 80 for packed, video on, or
300:80 00 for unpacked, video off, or
300:80 80 for unpacked, video on, or

(normal values are 300:80 00 (unpacked, video off))

Hit RETURN CTRL-Y RETURN to return to EXEC mode. The values
you select will stay in effect until you BRUN PRINTFILER
again.

To Change PRINTFILER options (permanently)

1. Load PRINTFILER and ASM it. During assembly, it will ask
you the following questions in the steps below:

2. After the UPDATE SOURCE? question, PRINTFILER will ask,
"GIVE VALUE FOR FORMAT:". If you hit "0", you will turn
the Pack option ON. If you hit "1", you will turn the
Pack option OFF.

3. PRINTFILER will then ask, "“GIVE VALUE FOR MONITOR". If
you hit "0", video output will be turned OFF. . If you hit
"1", video output will be turned ON. PRINTFILER will then
immediately assemble into object code.

4. Quit the editor and save the Object code. Any time you
BRUN this object code, it will use the values you put in
it in steps 2 and 3 above. Thus, it is possible to use
different versions of PRINTFILER instead of setting -op-
tions.

-139-

MERLIN PRO Users Manual 65802

THE 65802 MICROPROCESSOR

The new 65802 microprocessor chip 1is an enhancement of the
65C02 which supports 16 bit addressing and several new
opcodes and addressing modes.

There is a new status bit, called the emulation bit and
named E. If this bit is set then the 65802 1is totally
compatible with the 6502 and 65C02 but recognizes some new
opcodes. If this bit is clear then a few things (such as BRK
processing) work somewhat differently from the 6502, and 16
bit addressing is possible.

The emulation bit E 1is affected by just one opcode XCE
which exchanges it with the carry bit C of the status
register. Since E :is not technically part of the status
register, PLP does not change it.

When E=0 (emulation off) there are two bits of the - status
register that control the 16 bit modes of the processor. . One
of these bits, bit 5, is the unused status bit on the 6502,
and the other, bit 4, is the BRK bit on the 6502. The use of
this latter bit is made possible by the change in the way a
BRK. is handled when E=0.

Bit 5 of the status register is called M and selects 8-bit
(M=1) or 16 bit (M=0) memory access (by LDA etc.) and
accumulator size.

Bit 4 of the status register is called X and selects 8-bit
(X=1) or 16 bit (X=0) index register length (affecting the X
and Y registers).

When E=0 and M=0, the accumulator is 16 bits long and is
called the C register, with A corresponding to the lower 8
bits and with the upper 8 bits being called B. (One still
uses LDA, etc., in 16 bit mode, however.) In 16 bit mode
(both E and M zero) an instruction LDA $1000 will load the
8-bit A register from $1000 and then load the B register from
address $1001.

The stack register is also 16 bits long when E=0. Thus
one can put a stack anywhere in memory.

=140~

MERLIN PRO Users Manual 65802

There is a new register called the direct register D when
E=0. This register enhances what is called =zero page
addressing on the 6502, and that addressing mode 1is called
"direct addressing” on the 65802. - When E=0 any "direct
address mode” such as LDA $40 operates by adding the byte
following the opcode ($40 here) to the contents of the direct
register, which then forms the effective address for the
instruction. If the direct register contains the value
$2010, then this example would be equivalent to .LDA $2050
(since $2010+540=52050), but would execute faster. For
fastest execution, the low byte of the direct register D
should be kept O, since extra clock cycles are needed when it
is not zero. The effect of this direct register enhauncement
is to enable the implementation of a "zero page” anywhere in
memory. For example, if you place the pointer $1000 in
location $300 (O in $300 and $10 in $30l) and if you load the
D register with the value $300, then the instruction LDA
(0),Y will load the accumulator with the data in memory
address $1000+Y (i.e., from the address held in location
$300+0 plus the value of Y). Note that if the direct
register contains the value zero, then direct addressing is
completely equivalent to the old "zero page addressing” in
all modes.

"DIRECT" ADDRESSING MODES:

The use of the term "direct” results in such abominations
of syntax as. "preindexed direct indirect addressing”. The
more suspicious among us might feel that this terminology was
expressly chosen to confuse the beginner and to keep an air
of mystery surrounding assembly language programming. We
will avoid this terminology and, instead, describe the
various addressing modes by simply showing the corresponding
assembler operand syntax. We use a single dash "-" to
indicate a zero page expression and two dashes "--" to
indicate a 16 bit address or value.

Address mode: -

This is the simplest of the "direct” addressing modes.
The direct register is added to - (the second byte of the
instruction). This forms the effective address. Thus if
D=$1234 then LDA $56 will 1load the accumulator from location
$12344+856=$128A (and from $128B if M=0).

-141-

MERLIN PRO Users Manual 65802

Address mode: -,X

The direct register is added to - and the result is added
to the X register to form the effective address.

Address mode: -,Y

This mode is available only for LDX -,Y and STX -,Y. The
direct register is added to — and this is added to Y to form
the effective address. (Note that the assembler will accept
things like LDA $10,Y but since direct,Y mode is not
supported by LDA, this is assembled as if it were LDA
$0010,Y.) To force the non-direct mode for a LDX or STX
instruction, you should use the LDX: or STX: syntax.

Address mode:- (-),Y

The direct register is added to - to form an address
adrsl. Then the CONTENTS 'of adrsl,adrsl+l form an address
adrs2.. This in turn is added to the Y register to form the
effective address. For example, if D=$1234 and locations
$125A,$125B contain the address $DBAlL then the instruction
LDA ($26),Y will 1load the accumulator with the byte(s) at
$DBAl+Y (and $DBAZ+Y if M=0).

Address mode: (-,X)

The . direct register is added to - to form an address
adrsl. This is added to the X register to form adrs2, Then
the CONTENTS of adrs2 and adrs2+l form adrs3 which is the
effective address.

Address mode: (=)

The direct register is added to — to form adrsl. Then the
contents of adrsl,adrsl+l form the effective address.

ABSOLUTE ADDRESSING MODES:

The addressing modes "--", "=~ X", and "--,Y" operate in
exactly the same manner as on the 6502, except of course for
the effect on them of 16 bit mode. (If M=0 then STA $1000
will 'store A in $1000 and B in $100l.) Thus these need not
be detailed here.

~142~

MERLIN PRO Users Manual 65802

IMMEDIATE ADDRESSING:

Immediate addressing refers to things like LDA #3 and - CPX
#845. The 65802 also allows these same immediate opcodes to
operate on 16 bit data. Whether a particular opcode, such as
LDA #, will operate on 8 or 16 bits depends on the values of
the status bits M and X. Codes such as LDA #, CMP #, BIT #,
(in fact any immediate code not involving the X or Y
registers) operate on 16 bit data if the M status bit is
clear (M=0). The immediate codes, such as LDX # or CPY #,
which involve X or Y operate on 16 bit data if the X status
bit is clear. Unfortunately, the assembler (any - assembler)
has no way of knowing what the state of the M- and X status
bits will be in a running program. Thus, for the assembler
to properly assemble an immediate opcode, it must be informed
of the state of these bits. This is done through the MX
pseudo-opcode. (The assembler instruction MX %0l tells the
assembler that M=0 and X=1, for example. Note the use of
binary data here.) :

STACK RELATIVE ADDRESSING:

This is a new addressing mode which has no counterpart for
the 6502. It comes in both plain and indirect indexed
versions. Both of these are supported for the instructions
ORA,. AND, EOR, ADC, STA, LDA, CMP, and SBC:

_’S

In this mode, the stack register is added to - to form the
effective address (which is an address in the stack).

(—’S)’Y '

In this mode, the stack register 'is added to — to form an
address adrsl. Then the contents of adrsl,adrsl+l form an
address adrs2. The effective address is then adrs2+Y. The
purpose of this addressing mode is to use the stack to pass
data addresses to subroutines.

. =143-

MERLIN PRO Users Manual 65802

INDIRECT LONG ADDRESSING:

This is a new addressing mode, which comes in plain and
indexed = versions. Both of these are supported by the
instructions ORA, AND, EOR, ADC, STA, LDA, CMP, and SBC.
Although the assembler supports these addressing modes, they
really do nothing useful on the 65802. (They . are intended
for the extended addressing capabilties of the 65816 chip.):

-1

The direct register is added to = to form an address
adrsl. The contents of adrsl,adrsl+l is then the effective
address. In 16 bit mode -the byte at adrsl+2 gives the "bank
address’”. .

{=1,Y

The direct register is added to = to form an address
adrsl. The contents of adrsl,adrsl+l (and adrsl+2 in 16 bit
mode) are then added to the Y register. to form the effective
address.

BLOCK MOVE ADDRESSING:

This applies only to the two block move opcodes MVP (move
forward) and MVN (move backward). See the description of
these codes.

NEW OPCODES:

The 65802 supports all the :65C02 instructions (not
including the so-called Rockwell codes). In addition it has
the following new opcodes:

New PUSH and PULL Instructions

PEA — (Push effective absolute address)
($F4 - 3 bytes)

This pushes the 16 bit address -—- on the stack, high byte
first.

x

-144-

MERLIN PRO Users Manual

PEI - (Push effective indirect address)
($D4 - 2 bytes)

The direct register is added to - forming adrsl. The
contents of adrsl,adrsl+l is then pushed on the stack, high
byte first.

PER -- (Push effective relative indirect address)
($62 —— 3 bytes)

The operand gives an offset. This is added to the current
program counter to form an address adrsl. The contents of
adrsl,adrsl+l are pushed on the stack, high byte first.

PLB (Pull data bank register from stack)
(SAB 1 byte)

The data bank register and program bank register pertain
to the extended addressing capabilities of the 65816 and thus
this has little use for the 65802.

PHB (Push data bank register onto stack)
($8B 1 byte)

PLD (Pull direct register from stack)
($2B 1 byte)

PHD (Push direct register onto stack)
(S0B 1 byte)

PHK (Push program bank register on stack)
($4B 1 byte)
STATUS MANIPULATION INSTRUCTIONS:

REP ¥~ (Reset status bits defined by byte)
($C2 2 bytes)

If bit n of - is 1 then the corresponding n—-th status bit
is reset. If bit n of - is 0 then the n-th status bit is
unchanged.

-145-

MERLIN PRO Users Manual 65802

SEP #- (Set status bits defined by byte)
($E2 2 bytes)

If bit n of ~ is 1 then the corresponding n—~th status bit

is set. If bit n of - is 0 then the n-th status bit is
unchanged .
XCE (Exchange emulation bit E with carry C)

($FB 1 byte)
Note that this is the only way you can change or read the
E emulation flag.
NEW REGISTER MANIPULATION INSTRUCTIONS:

(Recall that the C register is the accumulator A together
with B.)

TCD (Transfer C accumulator -to direct register D) -
($5B 1 byte)

TDC (Transfer direct register D to accumulator C)
($7B 1 byte)

TCS (Transfer accumulator C to stack register)
($1B 1 byte)

TSC (Transfer stack register to accumulator C)
($3B 1 byte)

TXY (Transfer X to Y)
($9B 1 byte)

TYX (Transfer Y to X)
($BB 1 byte)

XBA (Exchange the A and B halves of accumulator)
($EB 1 byte)

-146-

MERLIN PRO Users Manual 65802

NEW BRANCH AND JUMP INSTRUCTIONS:

BRL -- (Branch relative long)
($82 3 bytes)

This is just like a 6502 branch except that the offset can
be from -32768 to +32767.

JSR (-—,X) (Preindexed jump to. subroutine)
(SFC 3 bytes)

A jump to subroutine is performed to the address held in
the location -- plus X.

(There are also some "long” jumps which do not do anything
useful on the 65802, and are not supported by the assembler.)

BLOCK MOVE INSTRUCTIONS:

MVP -,- (Block move forward)
($44 3 bytes)

This moves the byte at the address held in the X register
to the address held in the Y register. Then X and Y are
incremented and the accumulator C is decremented. - The
process 1is repeated until the accumulator is zero. The two
bytes following the opcode specify the destination bank and
the source bank respectively. On the 65802 these should just
be zero, but you must specify them nevertheless. ’

MVN -,- (Block move backward)
(854 3 bytes)

This moves the byte at the address held in the X register
to the address held in the Y register. Then X and Y and the
accumulator C are decremented. The process is repeated until
the accumulator is zero. The two bytes following the opcode
specify the destination bank and the source bank
respectively. On the 65802 these should just be zero, but
you must specify them nevertheless.

-147-

MERLIN PRO Users Manual 65802

MISCELLANEOUS INSTRUCTIONS:

cop - (Coprocessor)
($02 2 bytes)

Causes a jump to the address held in $FFF4,5. The meaning
of the second byte would depend on how this is implemented in
hardware. This can be used to call a coprocessor such as an
arithmetic processor, but this must be tied to the hardware.

STP (Stop the clock)
($DB 1 byte)

Stops the microprocessor clock.

WAL (Wait for interrupt)
($CB 1 byte)

Pulls the RDY line low. This ends when an IRQ or NMI1
happens.

-148-

MERLIN PRO Users Manual

DOS 3.3 Merlin Pro Memory ke,

SFFFF

$F800

$D000
$C000

$9853

$900
$8FF

$800

$400

$3F0

$300

$200
$100

$0

MAIN MEMORY
=
MONITOR
by
INTEGER BASIC
(if loaded)
-
al 1/O locations
DOS 3.3
.
Macros
(USE files)
ATILLLATLLL AL AL A Y
unused space
varies
AL L L ALY
Source File
.
u
Editor and Assembler
Workspace
1.
Text Page 1
DOS Vectors
1/0O interfaces for
USER Routines
Input Buffer & mis use
nl Stack
Zero Page
-l

Merin Pro DOS 3.3

$FFFF

$F800

sDO00
$C000

OBj adrs (default $8000)

@ End of Library files

’ <—- End of Source

$1000

$800

$400

$300

$200
$100

$0

-149-

MEMORY MAPS
AUXILIARY MEMORY
.
MONITOR
-
MERLIN PRO
=
ul 1/0 locations
Object Code
‘ and
linking dictionary, if any
a
{Boundary ignored if REL used)
Symbol Table
-
USER Programs
(XREF, etc.)
or
(free space)
u

3 Used by 80 Col Card

unused

Used by XREF

nl Meilin’s Stack

Merlin’s Zero Page

nl

MERLIN PRO Users Manual MEMORY MAPS

Prob0S Merlin Pro Memory Map

Merlin Pro ProDOS

MAIN MEMORY AUXILIARY MEMORY
$FFFF $FFFF [l
MONITOR
$F800 1
ProDOS
MERLIN PRO
$D000 [l $pDooco
$cooo 1/O locations $C000 I/O locations
Merlin ProDOS Object Code
Interpreter and
$AAC0 1 linking dictionary, if any
SAOFF |l OBJ adrs (default $8000) |1
Macros (Boundary ignored if REL used)
{USE files)
ALLTLILLLL L L (—-,End of Library files Symbol Table
unused space
varies
iy e End of Source
$1000
Source File
USER Progr.
$900 (XREF egtc.a;n ®
$8FF I c;r
Editor and Assembler (free space)
Workspace
$8o0 1 $800
Text Page 1 Used by 80 Col Card
s400 i s400 |1 ed
Misc Vectors
$3F0
unused
1/O interfaces for
USER Routines
$300 $300 1
Input Buffer & misc use Used by XREF
$200 1 $200 1
$100 1 Stack s100 Merlin’s Stack
Zero Page Meriin's Zero Page
so A so A

=150~

MERLIN PRO Users Manual INDEX

, Exclusive OR 49-50
, Logical AND 49-50
, in Macros 91
",", in Macros 91

wyw
ngn
n

3
ProDOS command 17
in Macros 91

wow
Ll §

as a logical OR 49-50
in Macros 91
".8",
suffix 15,16,18
suffix, and file names 44
suffix, and ProDOS files 111
"y
as line number range delimiter 21
to abort LIST 28
in Macros 91
to abort a CHANGE 31
to abort a FIND 31
"T.",
prefix 19
prefix, and file names 44
prefix, and Macro Libraries 93
prefix, and PUT files 57
prefix, and the LINKER 102
* for COMMENTS 6
« (period) 29
.y,
(Cancel) 120
(List from last line) 29
/BASIC.SYSTEM INTERPRETER 19
/RAM/ ProDOS volume 18,111
1, entered for ProDOS CATALOG 15
256 EXTERNALS 115
64k Merlin and Merlin Pro Source Files 110

6502 1-2
6502 Addressing Modes 51
65802,

opcodes 75

and cycle times 65

ROCKWELL opcodes 86
80 column card,

output 23

FLAG 109

selection of 35
@:Set Date (ProDOS) 20

-151-

MERLIN PRO Users Manual INDEX

A

A HEX ON THEE 3
A:Append File 16
About the Assembler Documentation 42
About the Editor Documentation 21
About the Linker Documentation 97
Absolute addresses, and LINKER 98
Accumulator mode addressing 52
ADD 7
Add 38
Add/Insert Mode Editing Commands 38
Add/Insert Modes 38
ADDITION operation, in operands 49-50
AND operation, in operands 49-50
Angle brakets in editor doc. 21
APPLE II,
MINI-ASSEMBLER 3
REFERENCE MANUAL 3
MONITOR PEELED 3
Applesoft,
ampersand vector 24
Cross—Reference listing 126
Source Listing 124
Applications 137
Arithmetic and Logical Expressions 49
ASC 66
ASM,
Command 27
and the PR# Command 23
and PRTR 30
ASSEM Command from BASIC 19
Assembler,
The 4-5
Pseudo Opcode Descriptions 54
Syntax Conventions 45
Assembly Language Whys and Wherefores 1
Assembling large files, and PUT,SAV,DSK 59
ASSEMBLY 11
ASSEMBLY LINES: THE BOOK 3
AST 63
Automatic renumbering 10

=152~

MERLIN PRO Users Manual INDEX~

B

Back-up copies of Merlin 14
Backing up Program Counter 55
Backwards DELETE, in EDIT mode 39
BAD,

"PUT" 114

"SAV" 114

ADDRESS MODE 113

BRANCH 113

EXTERNAL 115

INPUT 114

LABEL 114

OBJ 114

OPCODE 113

ORG 114

REL 114

VARIABLE 115
Bells, turning off the 110
BGE opcode 51
BIN files 18
BLOAD Addresses, and ORG 55
BLOAD ProDOS Command 17
Block cursor 110
BLT opcode 51
Branching,

to Variables 83,85
with Local Labels 84-85

BREAK 114
BRUN ProDOS Command 17
BSAVE ProDOS Command 17
Building Expressions 49-50

<

C:Catalog,
(DOS 3.3) 15
: (ProDOS) 15
CALL -151 25
Case sensitive labels 54
CATALOG 13
pause 15
to printer 15
Change 31
Change DRIVE 17
SLOT 17
VOLUME 17

=153~

MERLIN PRO Users Manual INDEX

Changing Printfiler”s Options 138
Changing Sourceror”s Label Table 123
Characters per line 109
Checksum, in object code 73
CHK 73
Clock drivers, XREF and ProDOS 133
Command Mode 21
Commands Used in Dissassembly 118
Comment length 46
Conditional Pseudo Ops 79
Configuring the Cursor 110
Configuration,
(POS 3.3 version) 109
(ProD0OS version) 109
Control-B (go to line begin) 40
Control-B and MON Command 25
Control-B ,and SWAP 37
Control-C 8
Control-C (during CATALOG Command) 15
Control-C and MON Command 25
Control-C to abort assembly 27
Control-C to abort List 28
Control-C and SWAP 37
Control-C to abort a Change 32
Control—C to abort a Find 31
Control-C to cancel lines 38
Control-C or Control-X (cancel) 40
Control-D (delete) 39
Control-D to toggle LIST flag 27
Control-D LIST control 62
Control-F (find) 40
Control-I (dinsert) 39
Control-N (go to line end) 40
Control-0 (insert special) 40
Control=-P (do *#%*“g) 40
Control-Q (accept line to cursor) 41
Control-R (restore line) 40
Control-X 8
Control-X (to CANCEL Commands) 15
Control-X to CANCEL lines 38
Control-Y 14
Control-Y and MON Command 25
Control-Y and SWAP 37
CONVERT program, ProDOS 75,112
CONVERTing Merlin 64K files 110

-154-

MERLIN PRO Users Manual INDEX

Copy 32

Copying Merlin 14

Cursors 110

CW (Change Word) 33

CYC 64

Cycle times 65

Cycle times, column to print 110

1L

D:Disk Commands (ProDOS) 17
D:Drive Change (DOS 3.3) 17
DA 69
DAT (ProDOS only) 64
Data 44
Data and Storage Allocation Pseudo Ops 69
DCI 67
DDB 69
Dealing with Finished Source 122
Defining a Macro 88
DELETE 9
DELETE key 39
Delete, ProDOS 17
Delete, character in Edit mode 39
Delimited Strings, 22,43
as an operand 44
DEND 61
DFB or DB 69
DICTIONARY FULL 115
Directives 54
Disassembling,
raw object code 117
SWEET 16 117

Division operation, in operands 49-50
DO 79
DOS 3.3 TO ProDOS conversion 35
DOS RENAME 13
Drive change 17
Drive, and ProDOS 58,111
DS 71

and LINKER 71,101
DSK 60

and the LINKER 98
DUM 60
DUPLICATE SYMBOL 113
Duplicating Merlin 14

-155-

MERLIN PRO Users Manual INDEX

P

E:Enter Ed/Asm 18

Edit 34

Edit Mode 39

Edit Mode Commands 39

EDITOR 4-5

ELSE 80

END 60

ENT 55,100

EOM or <KX 82

EQU (=) 54

ERR 73,101
and CONVERTing Merlin 64K files 110
and LINKER 74,101

Error Message (general) 12

ESC O, and Ultraterm 35

ESC CONTROL-Q 35

Evaulation of expressions 36

EVERYONE”S GUIDE TO ASSEMBLY LANGUAGE 3

EW (Edit Word) 34

EXCLUSIVE OR operation, in operands 49-50

EXECUTIVE 4-5

EXP ON/OFF/ONLY 62

EXT 54,100

EXTERNAL SOURCE files 35

Err:Memory Full 116

Error Message 113,116

Example of Conditional Assembly 81

Example of Use of Assembler Expressions 51

Executive Mode 15

Expressions 43

Expressions Allowed by the Assembler 49

F

FIELD number 7

Filenames (DOS 3.3) 44

FIN 80

Final Processing 121

FIND 31
a character in Edit mode 40
a string 31

FIX 35

Flashing string data 67

-156-

MERLIN PRO Users Manual INDEX

FLS 67

Forced Assembly Errors 73
Formfeed, printer 63

FW (Find Word) 33
Formatter 132

Formatting Pseudo Ops 62

L4

GET 14,36

GET Command, and LINKED files 105

General Information (DOS 3.3 only) 106
General Information (ProDOS and DOS 3.3) 107
General Notes 116

General Notes on Strings Delimiters 66
Glossary 127

H

H (Hex) 119
HEX 70
Hex-Dec Conversion 23
Hex data, with strings 66
HIMEM 106
~ and READ Command 19
Command and CONVERTing Merlin 64K files 110

HOW TO ENTER CALL-APPLE ASSEMBLY LANGUAGE LISTINGS
Housekeeping Commands 120
How Does a Macro Work? 86
How to Use Printfiler,

from DOS 3.3 137

from ProDOS 138

1

IF 80
ILLEGAL,
char in operand 116
file TYPE (ProDOS only) 116
forward reference 115
relative adrs 115
Initialization string, for printer 30
INPUT .5
INSERT 8
INSERT with TAB key 39
Inserting control characters 40
Integer division, in operands 49-50
INV 67
Inverse spaces 35
~-157-

3

MERLIN PRO Users Manual

Inverse string data .67
Immediate Data Syntax 51
Immediate Data Vs. Addresses 47
Input 5

Insert 38

Introduction 4

K

KBD 72
Keyboard input during assembly 72

L

L (list) 118
L:Load Source 16
LABELS,
length 45
tables, changind SOURCEROR”s
case sensitivity 54
LENgth 24
Line numbers 7
and DELETE 27
in Command Mode 21
Lines per page 109
Link 102
LINKER 4,5
and DS opcode 71,98,101
and DSK opcode 60,98
and ENT opcode 55
and ERR opcode 74,98,101
and EXT opcode 54
and ORG opcode 98
and REL opcode 56
and SAV opcode 98
File Names (DOS 3.3) 102
File Names (ProDOS) 103
LIST 9
and the PR# command 23
and PRTR 30
from last listed line 29
from last specified line 29
to printer, formatted 30
to screen, formatted 30
to slow down 28
without line numbers 29
to abort 28
to pause 28

-158-

123

INDEX

MERLIN PRO Users Manual INDEX

Listing,

CYCLE times 65

DO OFF code 62

MACROS 62

limiting bytes printed in 64
LNK file type 99
Local Labels 84
Local Labels, Global Labels & Variables 84
Local VARIABLES, and PUT files 58
LOCK ProbOS command 17
Logical operations, in operands 49-50
Lower case to upper case toggle 39
LST ON/OFF 62
LSTDO or LSTDO OFF 63
LSTDO, configuring 110
LUP 72

M

M mode, in 65802 76
MAC 82
Machine tools 3
Macros 86
and PUT files 58
libraries, and USE opcode 58,93
libraries, provided with Merlin 94
listings 62
Pseudo Ops for, 82
Making Back—up Copies of Merlin 14
Maximum length of comments 46
length of labels 45
MEMORY,
full 113
full in Line: 116
full error, SOURCEROR and 123
Maps 140-141
use by Merlin 106
Allocation with Merlin 108
Merlin,
DOS 3.3 Memory Map 140
internal entry points 76-78
ProDOS Memory Map 141
Miscelaneous Pseudo Ops 72
MONitor 25
MOVE 32
Multiplication operation, in operands 49-50
MX 75

-159-

MERLIN PRO Users Manual INDEX

X

N (Normal) 119

Nesting error 114

NEW and READ command 19

NOT MACRO 113

Nested Macros 89

New 23

Notes for REL Files & ERR Pseudo Op 74
Notes for REL Files and the Linker 71
Number Format 47

o

0:0BJECT SAVE Command 13,18
command ,and LINKER 103
and LINKER 98
0BJ 57
OBJ opcode, and CONVERTing Merlin 64K files 110
ONLINE ProD0OS command 17
Opcode and Pseudo Opcode Conventions 46
Operand and Comment Length Conventions 46
OR operation, in operands 49-50
ORG 55
and the LINKER 98
Overwriting object code with SWAP 37

L

PAG 63
Page Header, in listing 30
Parentheses,
in Editor Doc 21
and Precedence in Expressions 49
Pathnames (ProD0S) 44
PAU 63
PFX ProDOS command 17
PMC or >>> 82
PR# 23
and ASM command 27
and 80 Col boards 35
PRDEC program, and PUT FILES 58
Precedence, in operand expressions 50
PREFIX ProDOS command 17
Preliminary Definitions 43
Primitive expressions 49-50

-160-

MERLIN PRO Users Manual INDEX

PRINT 29
and the PR# command 23
CATALOG 15
command, and PRTR 30
Printer,
slot#, in PRTR command 30
string, in PRTR command 30
PRINTFILER 136
PRINTING, and the Ultraterm 108
ProDOS,
clock drivers 133
CONVERT program 35
file types 59
Interpreter 4-5
Merlin Pro Notes 111
subdirectories, creating 111
PROGRAM TOO LARGE ERROR, and the LINKER 104
Programming the 6502 3
PRTR command, and Ultraterm 108
PRinTeR 30 -
Pseudo Opcodes for Relocatable Code Files 98
PUT 57
files as text files 19
files vs. Linked files 95

Q

Q (Quit) 26,121
Q:Quit (DOS 3.3) 19
QUIT and MON command 25

R

R (Read) 121

R:Read Text File (DOS 3.3) 19
REL 56,98

REL, and OBJ opcode 57

Relative addresses, and LINKER 98
RENAME ProDOS command 17

REORG opcode 56

Replace 28

Restoring lines in Edit mode 40
Return character 8

Return (RETURN key) 41
Returning to Editor,with 0G 37
REV 67

Reversed string data 67

-161~

MERLIN PRO Users Manual INDEX

Rockwell 65C02 86
and CYCLE times 65
RTS return to Merlin 18

2

S (Sweet) 119
S:Save Source 16
SAV 59
and the LINKER 98
SAVE source 13
Saving REL files 98
Saving and Running Programs 13
Set DATE 20
Skipping lines at page breaks 109
SKP 64
Slot change 17
and ProDOS 58
ProDOS and 111
SNDMSG program, and PUT files 58
Some Restrictions on Local Labels 84
Source,
Code Format 45
Code Label Conventions 45
files other than Merlin”s 35
SOURCEROR 18
SOURCEROR.FP 124
Space bar to pause LIST 28
Special,
characters, in Edit mode 40
Forced Non—Zero Page Addressing 52
Note—Memory Full Errors 116
Variables 90
Square brackets in Editor doc 21
Steps,
From the Very Beginning 5
to Print the Applesoft Dissasembly 125
to print an Applesoft XREF 126
STR 68
String Data Pseudo Ops 66
Subtraction operation, in operands 49-50
Suggested Reading 3
SW 74
SWAP 37
SWEET 16,
General Info 74
Opcodes 53
SOURCEROR and 117

-162-

MERLIN PRO Users Manual : INDEX

SYM command, CONVERTing Merlin 64K files 110
Symbol Table 107
Symbol table, to slow down LISTing 28
Syntax, Source code 45
SYS files 18
System,
Monitor 3
requirements 2
Control and Text Entry Commands 8
Requirements 2

T

T (Text) 119
TAB KEY 39
TABS 5,18,24
and RETURN to zero TABS 24
and word processing text files 35
The Assembler 42
- The Command Mode Commands 23
The Editor”s with Strings and Comments 41
The Linker 95
The Linking Process (DOS 3.3 and ProD0S) 104
The Memory Full Message 123
Technical Information 106
Terminating Insert mode, in Edit 39
TEXT 35
Thunderclock 20
Transferring Source Files to ProDOS 112
TRuncOFf 26
TRuncON 25
TWO EXTERNALS 115
TYP (ProDOS only) 59

g

Ultraterm, parameters 110
Ultraterm Information 108

UNKNOWN LABEL 113

UNLOCK ProDOS command 17

UPDATE SOURCE question, defeating the 109
UPDATE SOURCE prompt 27

Upper and Lower Case Control 22
Upper case to lower case toggle 39
USE 58)

USER 24

USER routines 76-78

-163-

MERLIN. PRO Users Manual

USES, and MACRO LIBRARIES 93
USR 76

Using Sourceror 117
Utilities 132

L

VAL 36

Valid ProDOS file types 59
Value of labels 36

VAR 59

VAR opccde, and PUT files 59
Variables 83

VERIFY with WRITE command 20
VIiDeo 35

Volume change 17

L]

W (Word) 120
W O command 25
W:command, and the LINKER 102
W:Write Text File (DOS 3.3) 20
Where 25
Why Macros? 86
Why a Linker? 95
Wild Cards,
in Delimited Strings 22
character, changing the 109
Word processing TEXT files 35
Write TEXT file 19

X

X mode, 65802 76
XC opcode 75
XC pseudo opcode 52
XREF 18
Instructions 134
and SWAP command 37
XREFA 133,136

z

Zero Page Addresses used by Merlin for USER commands °

-164-

24

INDEX

MERLIN PRO Users Manual ADDENDUM

[Pro DOS Version}
NEW DISK COMMANDS

There is an alternate way to set the disk prefix. Press D for
Disk Command, then enter PFX= or PFX=1 to specify Slot 6, Drive
1, or PFX=2 for Slot 6, Drive 2. You can use the new SLOT
command to specify slots other than 6. SLOT is intended to be
used with the PFX= and CATALOG command as described below.

CATALOG COMMAND

After using the CATALOG command, 1if you press =, =1, or =2,
Merlin Pro will set the prefix to the -volume found in the
specified drive and then catalog that volume.

If you press OPEN APPLE during a catalog, Merlin Pro lists omnly
the directory files present in the specified directory.

If you press CLOSED APPLE during a catalog, Merlin Pro lists
only the TEXT files present in the specified directory.

If you press OPEN APPLE and CLOSED APPLE simultaneously during
a catalog, Merlin Pro lists only the BIN files present in the
specified directory. Note that these keys must be pressed and
held throughout the entire catalog listing process.

INTERPRETER

If the Merlin Pro ProDOS interpreter cannot find a disk volume
required for linking or assembly, it will ask for the correct
volume to be inserted. This request can be aborted by pressing
CTRL-C or RESET. This only applies to volumes, and not files.
Thus, if you want a PUT opcode to prompt you to switch disks,
you must use the full pathmame with the PUT opcode.

Note that this feature will not work with the Linker when using
one disk drive.

If the present prefix does not correspond to any volume online,
Merlin Pro will give a VOLUME NOT FOUND error.

The PROGRAM TOO LARGE error message has been changed to MEMORY
IN USE.

MERLIN PRO Users Manual ADDENDUM

[DOS 3.3 Version]

The DOS 3.3 version does not perform the same volume checking
as the ProDOS version. However, it 1is possible to simulate
this with the following code:

LST
XXX KBD "INSERT MYFILE DISK AND TYPE O <RETURN>"
PAUSE

The assembler will stop at KBD on the first pass and assign a O
value to XXX (any dummy label you desire). PAUSE will force a
pause on the second pass and LST makes sure you will see the
KBD line. On the second pass, assembly resumes when you press
any key (it is not necessary to type 0 and press RETURN.

[ProDOS and DOS 3.3 Versions]
MERLIN PRO AND "SPEED UP" CARDS

Merlin Pro.will work either in main or auxiliary memory (aux
is the default). If you are using the main memory version,
you will get about a 1.6 speed improvement with the SpeeDemon
card, and about a 2x increase with the Accelerator. This is
due to the heavy use of auxiliary memory during assembly.

To select the main memory version with DOS 3.3, change the
HELLO program to BLOAD MERLIN.X instead of MERLIN.

To select the main memory version with ProD0OS, use a $C3 as
the fifth byte in the PARMS file. The V-bit of that location
is: used as a flag to instruct the interpreter to make the main
memory modifications.

A + sign after the MERLIN PRO VERSION 2.xx on the EXEC mode
screen indicates the main memory version is active.

Some utilities do not work with the ProD0S main memory version.
This is because ProDOS is moved to auxiliary memory. Programs
that do not switch zero pages will work correctly. Programs
designed to be run in 64K will most likely run properly. The
Filer and Convert programs will run as long as the - command is
used to run them, and all Merlin Pro wuwtilities will function
correctly. The QUIT command moves ProDOS back to main memory.

MERLIN PRO Users Manual ADDENDUM

MACROS

Errors in macros no longer abort assembly.

LINKER

The addresses of all external references are printed whether or
not they are resolved.

If you use the TRON command prior to the LINK command, only the
errors will be printed in the external list (NOT RESOLVED .and
DUPLICATE errors).

LUP

In a LUP, if the € character appears in the label column, it
will be increased by the loop count (thus A,B,C ...). . Since
the loop count 1s a countdown, these labels will go backwards
(the last label has the A). This makes it possible to label
items inside a LUP. This will work in a LUP with a maximum
length of 26, otherwise you will get a BAD LABEL error and
possibly some DUPLICATE LABEL errors.

CLOCK

This utility is an interrupt driven software clock designed for
the //c which lacks a clock to do the time stamping available
in ProDOS. It requires the //c because it uses the VBLINT
interrupt provision. This utility should be used with caution!
If it is overwritten, anything can happen and probably will.
Press RESET to turn off interrupts. The source files are
provided -in the SOURCE directory on the ProDOS version.

CONV.LNK.REL [ProDOS only]

This makes Merlin Pro”s REL files compatible with Apple”s RLOAD
and RBOOT programs. It will convert a Merlin Pro LNK file to
Apple”s REL format (only if there are no externals). You can
BRUN it from the EXEC mode. If there 1is a source file in
memory, it will just return, so enter NEW first in the Editor.
You will be prompted for the pathname of the file to be
converted. The program will do the conversion and set up the
converted file for Merlin Pro”s object save command. The
CONV.LNK.REL utility does not write anything to disk and does
not delete or otherwise damage the original file.

MERLIN PRO Users Manual ADDENDUM

You will be prompted for the pathname of the file you want to
convert. The program will do the conversion and set up the
converted file for Merlin Pro”s object save command. The CONV.
LNK.REL utility does not write anything to disk and does not
delete or otherwise damage the original file.

CLR.HI.BIT [ProDOS only]

This converts a source file in memory to positive Ascii so the
file can be sent to other programs that expect data in this
form, such as Apple”s ProDOS ED/ASM. To use it, just BRUN
UTIL/CLR.HI.BIT and then save the source. CAUTION: If you
reenter the Editor, the source will be deleted from memory,
since the Editor does not like this format.

65C02 SPECIAL NOTES

To assemble or disassemble 65C02 code with the older //e ROMs,
you must first BRUN MON.65C02. This must be done from BASIC
if you are using the DOS 3.3 . version. This utility is not
needed with the newer //e or //c ROMs.

Whether you are using the ProDOS or DOS 3.3 version, you MUST
use the XC opcode as the very first line in your code. This
serves as a flag to tell Merlin Pro that you are using 65C02
opcodes.

MANUAL CORRECTIONS and ADDITIONAL' INFORMATION
(Page 109)
Configuration (ProDOS version)

Configuration data 1is kept in a file called PARMS which is
loaded when the assembler is run. To change the data in the
source file called PARMS.S, with the prefix set to /MERLIN/,
type L to Load Source. Then type SOURCE/PARMS at the prompt.
When you are done making changes, reassemble the file. Use S
to SAVE the source code as /MERLIN/SOURCE/PARMS (Merlin Pro
adds the .S automatically}). Then save the object code as
/MERLIN/PARMS by using the O command.

'MERLIN PRO"

The Professional Macto Assembiler for the Apple lle and lic

MERLIN PRO Is anextremely powerful
andl comprehensive macro.assembler
designed specifically for. the 128K
Apple e orlic. With all of the regular
Metlin features, this professional ver-
sion- also offers additional enhance-
ments for. the ‘sefious programmer
working - with “either \DOS. 33" or
ProDOSs:

The MERLIN PRO system consists of
four integrated co-resident modules
plus many auxiliary and utility
programs. The four main modules are:

@ EXECUTIVE MODE which provides
file ‘management and disk /O
operations such as Save Object
Code, Load or Save Source Code,
Read or Write Text file, Append
tile,” Change Drve, and. also in-
cludes - a special- ProDOS
interpreter.

EDITOR " MODE » for writing . or
editing programs . with over . 40
word processor-commands such
asAdd, Edit Insert, Delete, Copy,
Move, Global Search and Replace
and -morel Alsoinchides com-
mands “for. formatted . printouts
with headers and page boundary
breaks.

ASSEMBLER MODE with sophisti-
cated features: such as'macros,
macro libraries, nested -macros,
conditional assembly, assembile to
disk; linked files, dummy program
segments and-more.
RELOCATING LINKER to . auto-
matically - generate relocatable
object code; library routines, run
time packages and 50 oh,

MERLIN PRO offers over 50 Psuedo

Opcodes: for ‘frue - programming
flexibility. It -also “allows the -use of
Local Labels and supports both Entry
anc External Label Definitions for use
with the Relocating Linker. MERLIN
PRO . not -only " assembles 6502
programs but also’ supports 65C02
and 65802 opcodes.

MEREIN ' PRO -also includes many
utilities and. ‘support programs such
as:

@® SOURCEROR
A sophisticated and easy to use
disassembier that creates MERLIN
PRO source files: out. of binary
programs, Sourceror uses a-pre-
defined Applesoft Sotirce label file
to give the most.detailed listings
possible. The label file canralso be
edited to include your-own labels.

APPLESOFT SOURCE

This utility creates a fully labeled
and. commented listing .of Apple-
soft BASIC - This-is an invaluable
reference: for anyone” attempting
to.-gain & better understanding of
the internal workings: of Applesoft.
Provides ‘source - listings. for all
versions - of -Applesoft “including
Apple 1l I+, Hle or flc.

MACRO LIBRARIES

Libraries of commonly used macro
definitions and fundamental
operations such as floating point
routines, RWIS routines; Rockwelt
65C02 bit operations; and more.

MERLIN ‘PRO is compatible with the
Apple lle and lic in both 40 and 80
column - formats, - supports. uppet/
lower case entry,” and Is: hard disk
compatible:

SYSTEM REQUIREMENTS:
128K Apple lle orlic

R

PUBLISHH‘!C,5 I

ISBN-0-92/7796-04-X

