

Inside the

Apple 1/e

Gary B. Little

Brady Communications Company, Inc.

A Prentice-Hall Publishing Company

Bowie, MD 20715

Inside the Apple //e
Copyright © 1985 by Brady Communications Company, Inc.
All rights reserved. No part of this publication may be reproduced or trans
mitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or by any information storage and retrieval
system, without permission in writing from the publisher. For information,
address Brady Communications Company, Inc., Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Little, Gary B., 1954-
Inside the Apple lie.

Title appears on t.p. as: Inside the Apple //e.
Includes bibliographies and index.
1. Apple lie (Computer) I. Title.

QA76.8A6623L38 1984 001.64 84-12461

ISBN 0-89303-551-3

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

85 86 87 88 89 90 91 92 93 94 95

Publishing Director: David Culverwell
Acquisitions Editor: Chris Williams
Production Editor/Text Designer: Michael J. Rogers
Art Director: Don Sellers
Assistant Art Director: Bernard Vervin
Cover Design: George Dodson
Manufacturing Director: John A. Komsa

Copy Editor: Keith R. Tidman

345678910

Photo of protoboard and DIP jumper cable: Tony Szary
Typesetting: Electronic Publishing Services, Baltimore, MD
Printing: Fairfield Graphics, Fairfield, PA
Typefaces: Eurostile (display), Aster (text), and Universal Monotype #3 H-P (computer programs)

To my grandfather,
Richard V. Robinson (1899-1978)

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts
in preparing this book and programs contained in it. These efforts
include the development, research, and testing of the programs to
determine their effectiveness. The author and the publisher make
no warranty of any kind, expressed or implied, with regard to these
programs, the text, or the documentation contained in this book.
The author and the publisher shall not be liable in any event for
claims of incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of the text or
the programs. The programs contained in this book are intended
for the use of the original purchaser.

Trademarks of Material Mentioned in This Text

Apple 1/e, Applesoft, Apple II, Apple II Plus, Apple //c, Apple I,
Integer BASIC, DOS 3.3, Lisa, Macintosh, and ProDOS are trade
marks of Apple Computer, Inc.

Note to Authors

Do you have a manuscript or software program related to per
sonal computers? Do you have an idea for developing such a proj
ect? If so, we would like to hear from you. The Brady Company
produces a complete range of books and applications software for
the personal computer market. We invite you to write to David
Culverwell, Publishing Director, Brady Communications Com
pany, Inc., Bowie, MD 20715.

CONTENTS
Preface I xiii

1 Introduction to Apple and the Apple //e I 1
A Condensed History of Apple Computer, Inc. I 1

1976 I 2
1977 I 3
1978 I 4
1979 I 4
1980-1982 I 5
1983 I 6
1984 I 7

Under the Hood of the Apple lie I 7
Learning the Fundamentals I 8

Numbering Systems I 8
Bit Numbering and "Significance" I 9
Pointers and Vectors I 18
Control Characters I 11
6502 Assembly Language I 11
Running Assembly-Language Programs I 13

What Won't Be Covered I 14
Using the Optional Diskette I 14
Further Reading for Chapter 1 I 15

2 The 6512 Microprocessor I 17
Important 6502 Concepts I 17

Zero Page and the Stack I 18
6502 Instruction Set I 19
6502 Registers I 21

The Accumulator-A I 26
The Index Registers-X and Y I 27
The Processor Status Register-P I 28

Carry Flag (C) I 29
Zero Flag (Z) I 38
Interrupt Disable Flag (I) I 38
Decimal Mode Flag (D) I 38
Break Flag (B) I 31
Overflow Flag (V) I 31
Negative Flag (N) I 31

The Stack Pointer-S I 32
The Program Counter-PC I 33

6502 Addressing Modes I 33
Immediate I 34
Absolute I 35

v

vi r==llnside the Apple //e -------------------

Accumulator I 36
Implied I 36
Indexed Indirect I 36
Indirect Indexed I 37
Absolute Indexed I 37
Relative I 38
Indirect I 38

6502 Input/Output Handling I 39
6502 Interrupts I 41

Reset Interrupt I 41
Non-Maskable Interrupt (NMI) I 42
Interrupt Request (IRQ) I 43
The BRK Instruction I 44

The 6502 Memory Space on the 1/e I 45
RAM Memory I 46
Input/Output (110) Memory I 48
ROM Memory I 49

Further Reading for Chapter 2 I 51

3 The System Monitor I 53
The System Monitor Commands I 54

The DISPLAY Command: Displaying the Contents of Memory I 55
The STORE Command: Changing the Contents of Memory I 57
The MOVE Command: Copying the Contents of Memory I 61
The VERIFY Command: Comparing Ranges of Memory I 62
The EXAMINE Command: Examining the 6502's Registers I 62
The GO Command: Running a Program I 63
The LIST Command: Disassembling Assembly-Language

Programs I 64
The NORMAL and INVERSE Commands: Changing Video Display

Modes I 66
The ADD and SUBTRACT Commands: Simple Arithmetic I 66
The BASIC and CONTINUE BASIC Commands: Entering

Applesoft I 66
The USER Command: User-Defined Commands I 68
The READ and WRITE Commands: Cassette Tape 110

Commands I 69
The KEYBOARD and PRINTER Commands: Redirecting Input and

Output I 71
Multiple Commands on One Line I 71
System Monitor Subroutines I 72
Further Reading for Chapter 3 I 76

4 Applesoft BASIC I 77
Applesoft Memory Map I 78

-----------------------Contents CJ vii

Tokenization of Applesoft Programs I 83
Keyword Tokens I 84

Storage of Applesoft Variables I 88
Storage of Simple Variables I 89

The Name Header I 91
The Data Field I 91
End of Simple Variables I 93

Storage of Array Variables I 93
The Name Header I 94
Dimensioning Bytes I 95
The Data Field I 95
End of Array Variables I 96

Representation of Integer Numbers I 96
Representation of Real Numbers I 98

Number Theory I 98
Binary Floating-Point Format I 98

How an Applesoft Program Runs I 181
The CHARGET Subroutine I 182
Changing Program Flow I 184
Finding Line Numbers I 1.5

Linking Applesoft to Assembly-Language Subroutines I 185
The CALL Command I 186
The & Command I 187
The USR Function I 188

Applesoft's Built-In Subroutines I 189
Using Applesoft's Built-In Subroutines I 116

Locating Variables I 116
Evaluating Formulas I 128
Converting Numbers I 121

Further Reading for Chapter 4 I 125

5 Disk Operating System I 127
The Internal Structure of DOS 3.3 I 128

DOS 3.3 Memory Map I 128
DOS 3.3 Page 3 Vectors I 129
Volume Table of Contents (VTOC) I 129
Diskette Catalog I 133

File Types I 135
Track/Sector List (TSL) I 135
Storing File Data I 136
RWTS-Accessing the Diskette Directly I 137
DOS 3.3 READ SECTOR Program I 147

The Internal Structure of ProDOS I 148
ProDOS Memory Map I 158
ProDOS Page 3 Vectors I 151

viii c::::::J Inside the Apple //e -------------------

Volume Bit Map I 152
Diskette Directory I 153

"Protecting" Files I 157
Storing File Data I 158
MLI...,..-Accessing the Diskette Directly I 168
ProDOS READ.BLOCK Program I 162

Further Reading for Chapter 5 I 166

6 Character Input and the Keyboard I 169
Standard Character Input Subroutines I 173

Reading One Character I 174
RDKEY ($FD0C) I 174
Keyboard Input (80-Column Firmware Off) I 177
Keyboard Input (80-Column Firmware On) I 177
Escape Sequences I 178
RDCHAR ($FD35) I 188

Reading a Line of Characters I 188
Changing Input Devices: The Input Link I 182

How About Output? I 183
Designing a KSW Input Subroutine I 184
Replacing the Keyboard Input Subroutine I 184
DOS 3.3, ProDOS, and the Input Link I 187

The K,eyboard I 191
:gncoding of Keyboard Characters I 191

Special Keys I 192
The "Apple" Keys I 192

Keyboard I/0 Locations I 193
Modifying the Keyboard Input Subroutine I 195
Keyboard Auto-Repeat I 212
Keyboard Type-Ahead I 285

Potential Problems with SOFTWARE TYFE-AHEAD I 217
Resetting the Apple lie I 218

Special RESET Procedures I 218
Trapping "Soft" RESETs I 218

Trapping RESET from Assembly Language I 228
Trapping RESET from Applesoft I 221

Further Reading for Chapter 6 I 226

7 Character and Graphic Output and Video Display Modes I 227
Text Mode I 228

Turning on the Text Display I 229
Text Mode Memory Mapping I 232

40-Column Text Mode I 233
80-Column Text Mode I 236

Using Page2 of Text I 237
Video Display Attributes: Normal, Inverse, Flash I 239

------------------~----Contents c=::J ix

Standard Character Output Subroutines I 241
Video Output (80-Column Firmware Off) I 245
Video Output (80-Column Firmware On) I 245

Video Screen Windowing I 246
How COUTl and BASICOUT Set the Video Attribute I 248
Changing Output Devices: The OUTPUT Link I 249

Designing a CSW Output Subroutine I 258
Replacing the Video Output Subroutine I 251

DOS 303, ProDOS, and the Output Link I 252
Low-Resolution Graphics Mode I 253

Turning on the Low-Resolution Graphics Display I 253
Low-Resolution Graphics Screen Memory Mapping I 255
Low-Resolution Graphics Colors I 256
Double-Width Low-Resolution Graphics I 256

Turning on Double-Width Low-Resolution Graphics I 257
Double-Width Low-Resolution Graphics Screen Memory

Mapping I 258
Double-Width Low-Resolution Graphics Colors I 259

Built-In Support for Low-Resolution Graphics I 268
High-Resolution Graphics Mode I 268

Turning on the High-Resolution Graphics Display I 261
High-Resolution Graphics Screen Memory Mapping I 263
High-Resolution Graphics Colors I 266
Animation with High-Resolution Graphics I 267
Double-Width High-Resolution Graphics I 269

Turning on Double-Width High-Resolution Graphics I 272
Double-Width High-Resolution Graphics Screen Memory

Mapping I 273
Double-Width High-Resolution Graphics Colors I 273

Built-In Support for High-Resolution Graphics I 275
Further Reading for Chapter 7 I 277

8 Memory Management I 279
Bank-Switched ROM Areas I 288

The INTCXROM Switches: Switching the $C100 o o o $CFFF Memory
Space I 288

The SLOTC3ROM Switches: Switching the $C300 0 0 0 $C3FF Memory
Space I 283

16K Bank-Switched RAM Areas I 284
Using Bank-Switched RAM I 285

Reading the Status of the Bank-Switched RAM Soft Switches I 286
Auxiliary Bank-Switched RAM I 288
Using Bank-Switched RAM I 289
Bank-Switched RAM and ProDOS I 291

Auxiliary RAM Memory Area I 291
Using Auxiliary Memory I 292

x c=J Inside the Apple //e --------------------

The ALTZP Switch I 292
The RAMRD and RAMWRT Switches I 295

Auxiliary Memory Support Subroutines I 295
AUXMOVE ($C311)-Transferring data to and from auxiliary

memory I 296
XFER ($C314)-Transferring control to a program from main or

auxiliary memory I 300
Running Co-Resident Programs I 301

Initialization of the Auxiliary Stack I 308
Using CONCURRENT I 308
Limitations of CONCURRENT I 310

Further Reading for Chapter 8 I 311

9 The Speaker and the Cassette Port I 313
The Speaker I 313

Generating Musical Notes I 314
Generating Music I 317

The Cassette Port I 320
Digitizing Voice I 323
Further Reading for Chapter 9 I 333

10 The Game 110 Connector I 335
Game I/0 Connector Experiments I 336
Game Controller Inputs I 338
Push Button Inputs I 342
Annunciator Outputs I 345

Experimenting with the Annunciators I 346
Special Use for AN3 I 348

Strobe Output I 349
Summary of Game I/0 Connector Locations I 349
Further Reading for Chapter 10 I 350

11 Peripheral-Card Expansion Slots I 353
Peripheral-Card I/0 Memory Locations I 353
Peripheral-Card ROM I 355
Peripheral-Card Expansion ROM I 357
Peripheral-Card Scratchpad RAM I 358
The Auxiliary Connector and Slot 3 I 359
Programming for Peripheral Cards I 360

Relocatability I 360
Software Protocols I 362

Applesoft Protocol I 362
Pascal 1 .0 Protocol I 363
Pascal 1.1 Protocol I 363
ROM Identification Bytes I 365

Further Reading for Chapter 11 I 366

-----------------------Contents c=J xi

Appendix I American National Standard Code for Information
Interchange lASCIIJ Character Codes I 367

Appendix II 6582 Instruction Set and Cycle Times I 373

Appendix Ill Apple //e Soft Switch, Status, and Other 110
Locations I 379

Appendix IV Apple //e Page 3 Vectors I 387

Appendix V Additional Programs on the Optional Diskette I 391

Appendix VI Recent Enhancements to the Apple //e I 395

Index I 405

PREFACE

I can sense what you're saying right now: "Oh, no, not another
book on the Apple!" Well, yes, it is, but don't put it down just yet.
It's not simply another book on how to write programs in Applesoft
BASIC or on how to use your favorite spreadsheet program. Rather,
it's a detailed study of how the Apple //e works (from a software
point of view) and how you can control it with your own programs.

You will first be introduced to the 6502 microprocessor that
controls the 1/e and to some important 6502 programming con
cepts. You will then be conducted on an internal tour of the lie's
operating systems (the system monitor, DOS 3.3, and ProDOS) and
of its primary language, Applesoft BASIC. Along the way several
programming examples (written in Applesoft and 6502 assembly
language) will be presented to illustrate important principles and
features.

Once this background information has been presented, you will
be shown how the 1/e reads information from the keyboard, displays
information on the video screen, and how you can write and install
your own input/output subroutines. In addition, all of the lie's video
display modes, including 80-column text and double-width graph
ics, will be explained.

The last few chapters of the book will show you how to manage
the lie's internal and expansion memory spaces, how to use the
speaker and cassette port, and how the lie's peripheral expansion
slots are used.

I am sure this book will be of great interest to all readers who
want to know what makes the 1/e tick. It is geared to the more
advanced reader: You will be assumed to have a working knowl
edge of Applesoft and at least some familiarity with 6502 assembly
language. If you are a computer novice, then the references that
are included at the end of each chapter should be consulted for
further information on programming techniques. No matter what
your level of expertise, however, you should find this book an ex
cellent source of programming tips and ideas.

I would like to thank two people in particular for reviewing
portions of the manuscript before publication: Archie Reid and
Vern Little. Archie set me straight on how to generate music on
the lie's speaker and how to digitize voice through the cassette
port. Vern is an electrical engineer and he prevented me from
putting my foot in my mouth when talking about anything other
than software. Thanks are also due to Vern for helping to convince
me to shell out $1,800 for a 16K Apple II in 1978 when I should

xiii

xiv c:=J Inside the Apple //e --------------------

have been saving money to finance my stay at law school; it turns
out to have been the most important purchase I have ever made.

Brady Communications also arranged for several independent
technical reviewers to review the manuscript and I thank them for
all their invaluable assistance, particularly Val Golding and Cecil
Fretwell.

Gary B. Little

Vancouver, British Columbia

September 1984

About the Author

Gary B. Little has been programming Apple com
puters for fun and profit since 197 8. He is a founding
member of Apple's British Columbia Computer So
ciety and of SAGE (Serious Apple Group, Eh!). He
is currently a director of the Pacific Coast Computer
Fair Association, the Software Industry Develop
ment Association, and Vancouver PC Users Group.
When he isn't tinkering with computers, he prac
tices law in a downtown Vancouver, British Colum
bia law firm. Gary lives in Vancouver with his wife
Pamela and their two little ones, Sam and Roo.

XV

1
Introduction to Apple and

the Apple I /e
The Apple lie represents Apple Computer, Inc.'s latest full-size

model in its highly popular Apple II family of computers and was
first announced in January 1983. The earlier members of this fam
ily are the original Apple II (1977) and the Apple II Plus (1979);
the newest member is the portable Apple llc (1984).

In this book we will be taking an advanced "inside" look at the
Apple lie itself. Bear in mind, however, that much of what will be
said will also apply to its two predecessors and to the Apple llc
because Apple has made a substantial effort to maintain a high
degree of compatibility with other members of the Apple II family.
The discussion will be limited to the lie's built-in language and
operating system (Applesoft and the system monitor) and to the
two disk operating systems used with them, DOS 3.3 and ProDOS.

Apple Computer, Inc. is an interesting and exciting company. It
not only produces innovative products, it also ensures that im
portant technical information concerning these products is di
vulged to whoever needs it. This goes against every rule that the
computer industry was following back in 1977 when Apple first
made its presence felt. This "open-system" policy fuels software
development, and this is one of the main reasons Apple has been
so successful-after all, who wants to buy a computer for which
no software is available?

A CONDENSED HISTORY OF APPLE
COMPUTER, INC.

The history of Apple Computer, Inc. is a fascinating one and
represents a real rags-to-riches (or is that "garage-to-multina
tional-corporation"?) story. Let's take a look at what Apple has

1

2 c:::::J Inside the Apple /le --------------------

1976

been up to since it was first formed in 1976 and how the Apple II
slowly evolved into the Apple //e.

In the beginning, Apple was made up of just two individuals:
Stephen Wozniak ("Woz") and Steven Jobs. Woz provided the
hardware and software expertise and almost single-handedly de
signed the company's first two computers, the Apple I and the
Apple II (Rod Holt helped; he designed the Apple II's power supply).
A patent application was subsequently filed with respect to the
Apple II on April 11, 1977, and U.S. patent #4,136,359 was even
tually issued in early 1979. Jobs was largely responsible for mar
keting and raising financing, and it was he who came up with the
"Apple" name (Jobs was apparently thinking of a job that he had
recently had in an Oregon orchard). In the early going, both part
ners were still working for other computer companies in Califor
nia's Silicon Valley, Jobs with Atari and Woz with Hewlett-Pack
ard. Fortunately for Apple, Hewlett-Packard was not interested in
Woz's design for a personal computer and gave him a release so
that he could deal with it as he saw fit.

The Apple I was designed to be sold to and used by hobbyists;
only about 175 were sold. The Apple II, however, was designed
with a much larger market in mind (although Woz claims he simply
wanted to build a computer with which he could play Atari's
"Breakout" game). That market quickly materialized as a result
of the startling combination (for 1977) of excellent hardware, at
tractive packaging, and superb documentation. The Apple 1/e, which
was released six years later, still resembles the original Apple II
and it still operates in much the same way.

Woz decided to use the MOS Technology 6502 microprocessor
to control the Apple II. This decision was dictated not by the 6502's
reliability, powerful instruction set, or any other design charac
teristic, but rather by its price. Whereas other microprocessors
were selling for hundreds of dollars in 1976 and were difficult to
find, the 6502 was readily available and it cost only about $20.

Wozniak wrote all the software for the original Apple II that was
stored in its read-only memory (ROM). This included a version of
the BASIC programming language called Integer BASIC (which
can't handle decimal numbers but is great for games), a system
monitor for debugging and for handling fundamental input/output
operations, a set of mathematical subroutines, a mini-assembler
for entering programs in assembly language, and "Sweet 16," a

1977

1 Introduction to Apple and the Apple //e c:::=J 3

software-simulated 16-bit microprocessor (Woz was way ahead of
his time).

To raise a little money for their fledgling venture, Wozniak sold
his Hewlett-Packard pocket calculator and Jobs sold his Volkswa
gen bus. Overhead expenses were cut to the bare minimum by
setting up operation in the garage of Jobs' parents. As 1977 rolled
around, however, it became clear that more money, a lot more
money, was going to be needed.

Since Jobs was the partner responsible for marketing the Apple
II, it was he who began searching for venture capital. That search
eventually led him to Mike Markkula, a former marketing manager
at Intel, an integrated-circuit designing company. Markkula, Jobs,
and Wozniak quickly struck a deal whereby Markkula agreed to
put $250,000 into Apple in exchange for an equal partnership in
terest. He then proceeded to use his expertise to line up bank fi
nancing and additional capital funding. Apple was then finally
ready for the mass market!

The Apple II was formally announced for sale at the 1st West
Coast Computer Faire in early 1977 and it was an instant success.
The main reasons for its early success were that it was easily ex
pandable (more memory could easily be added to it and eight slots
were available for peripheral devices when they became available),
it had a full-size keyboard, and it had color graphics. Oh, yes, it
also looked great!

Not that there weren't any problems, however. For example,
lower-case characters could not be produced by the keyboard and
the video display was only forty columns wide. These shortcomings
officially persisted until the introduction of the Apple //e, although
several other sources of upper- and lower-case keyboards and 80-
column boards did pop up in the interim.

One software problem had to be remedied quickly. Integer BASIC
did not support decimal (floating-point) numbers or functions, and
so business and scientific use of the Apple II was necessarily lim
ited. Apple began to take steps to remedy this in the summer of
1977 when it negotiated the purchase of about 10,000lines of pro
gram source code for a floating-point version of BASIC from Mi
crosoft Corporation. This code was written in 6502 assembly lan
guage and so could be readily adapted to run on the Apple II.

By this time Apple had a few employees, one of which was a
young programmer by the name of Randy Wigginton. Wigginton

4 c=J Inside the Apple //e --------------------

1978

1979

reworked the Microsoft source code and came out with a prelim
inary version of a floating-point BASIC that would run on the Apple
II. This version was called "Applesoft- Extended Precision Floating
Point BASIC Language" and was released in October 1977. Further
work was required to polish Applesoft into a final product and this
was done during the winter of 1977.

The final version of Applesoft, Applesoft][, was finally released
in May 1978 and this same version is still in use today on the Apple
1/e. It was first available on cassette tape only, but was later pro
vided in ROM on a card that could be plugged into a slot on the
Apple II; it eventually replaced Integer BASIC on the motherboard
when the Apple II Plus was released in 1979.

Probably the most important new product released in 1978 was
the Disk II disk drive and controller card which are still used on
the Apple //e today. The disk drive revolutionized the software
business because for the first time it was feasible to develop so
phisticated programs that could be easily loaded and that could
quickly and reliably access large data bases. Until the disk drive
was released, all programs had to be saved to and loaded from
cassette tape, which was invariably an exercise in frustration. Many
a cottage software business started up after the disk drive became
available.

The Disk II was controlled by a program called the Disk Oper
ating System (DOS), first written by Bob Shepardson and later
substantially modified by Randy Wigginton. DOS has undergone
several revisions throughout the years and the current version is
DOS 3.3. This version is still being shipped with the Apple //e
(together with a brand-new DOS called ProDOS).

Sales really ballooned for Apple in 1979. It was able to increase
sales by a total of forty million dollars (!) over the previous year,
to a total of forty-eight million dollars. By this time, the Apple II
was selling not only because it was an excellent hardware package
but also because an ever-increasing supply of software was avail
able that could be run on it. One important piece of software,
VisiCalc, the very first financial spreadsheet program, is reputed
to have been directly responsible for stimulating the purchase of
tens of thousands of Apple II computers.

1 Introduction to Apple and the Apple //e c=J 5

The Apple II underwent a minor operation in 1979 and came out
of it with a new name, Apple II Plus. The Apple II Plus is essentially
the same as an Apple II, except that its ROM chips contain Apple
soft][rather than Integer BASIC and its system monitor has been
changed to support more powerful screen-editing commands and
to allow the Apple II to automatically run a program from diskette
whenever the power is turned on. At the same time, a couple of
handy debugging commands (step and trace) were taken out of the
system monitor, but they were not missed by many users. The
modifications to the system monitor were written by John Arkley.

Apple announced its Pascal Operating System in 1979 as well.
Because Pascal requires a huge amount of memory in which to
operate, Apple also released a new peripheral card, called a lan
guage card, at the same time. The language card effectively added
another 16K of memory to the Apple II, which could "replace" the
Applesoft ROMs when Pascal was being used. The language card
was plugged into slot #0 of the Apple II but in the //e it is simulated
in the memory chips on the motherboard. These different imple
mentations, however, are transparent to the user.

1980-1982

Apple's sales continued to explode in the early eighties: $117
million in 1980, $334.8 million in 1981, and $583.1 million in 1982!
Most of these sales were generated by the Apple II Plus which
eventually set a record for monthly sales in December 1982.

The infamous Apple/// was released in 1980. For several reasons,
notably its early unreliability and high price, it never established
a significant market presence even though a modified version (known
as the Apple /// Plus) was still being produced in 1984. It comes
with an Apple II emulation mode that allows it to run most, but
not all, of the software that runs on the Apple II.

In the winter of 1980-81, Apple made a public offering of stock,
which was quickly snapped up. The proceeds were largely directed
into intensive (and expensive) research and development projects.
We'll see in a moment what those projects led to.

If imitation is the sincerest form of flattery, then Apple must
surely be crimson red. Since about 1980, tens of thousands of un
official Apple II "clones" (euphemistically called "compatibles")
have been manufactured, mostly by Taiwanese concerns. To achieve
absolute compatibility with the Apple II, most of these clones con
tain ROMs that are direct copies of the Applesoft and system mon
itor ROMs. Not surprisingly, Apple considers this to be highly

6 c::=1 Inside the Apple //e --------------------

1983

improper and has successfully instituted legal proceedings in the
United States and many other countries against several manufac
turers in order to protect its copyrights and patent rights. The
importation of Apple II clones to the United States has also been
reduced because Apple has registered its copyrights with U.S. Cus
toms. The Customs authorities have the power to confiscate ship
ments of products that violate Apple's copyrights.

At Apple's Annual General Meeting on January 19, 1983, two
major announcements were made. First, the Lisa computer was
announced, a computer that was immediately recognized as a tech
nological and innovative triumph because of its ease of use and
excellent operating system. Its retail price, however, was initially
too high for it to sell in the quantities that Apple would have liked.
Subsequent price reductions, coupled with increasing availability
of software, has helped to remedy this problem.

The more important announcement as far as we are concerned
was the introduction of the successor to the Apple II Plus, the Apple
//e. The Apple //e was carefully designed to maintain as high a
degree of compatibility with the Apple II Plus as possible so that
the thousands of software packages developed for the Apple II Plus
would not have to be rewritten. Several new features were added
to the //e, however, that make it a significantly different computer:
built-in support for an 80-column display, an upper- and lower
case keyboard, self-testing subroutines, and enhanced editing ca
pabilities.

In addition, Apple significantly simplified the construction of
the //e by reducing the number of integrated circuits on the moth
erboard from 109 on the Apple II Plus to only 31! It did this by
designing two special integrated circuits, called the IOU (input/
output unit) and MMU (memory management unit), to replace
many of the discrete components used on the II Plus.

The manager of the team that designed the Apple //e was Peter
Quinn. The hardware was designed by Walt Broedner and most of
the modifications to the old system monitor were made by Rick
Auricchio and Bryan Stearns.

There was also a major change at the managerial level at Apple
in 1983. On April 8, Apple announced that Mike Markkula had
resigned as President and that John Sculley had been named to
succeed him. Sculley was formerly president of Pepsi-Cola and it
is reported that his salary is in excess of one million dollars per
year.

1984

1 Introduction to Apple and the Apple //e c=J 7

At its January 24, 1984, Annual General Meeting Apple an
nounced the Macintosh computer ("Mac"), a scaled-down version
of Lisa. Mac undoubtedly represents another mass-market best
seller for Apple because it is easy to use and it is priced affordably.
Within a month of its release, at least two Mac-specific magazines
and several books had been published. This is reminiscent of what
happened in 1979 when sales of the Apple II began to skyrocket.

On the lie front there was one major announcement at the Annual
General Meeting: the release of a successor to DOS 3.3 called ProDOS.
This disk operating system is significantly different from, but up
wardly compatible with, DOS 3.3. Most Applesoft programs, when
transferred to ProDOS-formatted diskettes, will run without mod
ification. Programs and other files can be transferred between DOS
3.3 and ProDOS by using a utility program supplied with ProDOS.
The main advantages of ProDOS are that it is faster, it is easier
for programmers to use, it supports a directory structure that is
more convenient for use with larger-capacity diskettes or hard
disks, and it creates files that can be read by the Apple Ill.

On April 24, 1984, Apple announced a scaled-down, portable
version of the Apple 1/e called the Apple //c and made it known to
the world that it will be supporting the Apple II concept for a long
time to come. This was apparent from the theme of the event at
which the Apple //c was announced: "The Apple II forever." As
expected, the Apple //c will run almost all software written for the
lie.

UNDER THE HOOD OF THE APPLE //e

Although this book is primarily concerned with software, let's
begin by taking a quick look at the hardware that makes up the
Apple //e. You can't see much with its lid on, except the keyboard
at the front and the video, cassette, and game paddle connectors
at the back. So, turn off the power and take the lid off.

The biggest component under the hood is the power supply on
the left side. The main circuit board (called the "motherboard")
contains only 31 integrated circuit packages; these include the 6502
microprocessor (see Chapter 2), the IOU and MMU, eight random
access memory (RAM) chips, three read-only memory (ROM) chips
(which contain Applesoft, the system monitor, and the keyboard
decoder), and miscellaneous support chips.

Lined up at the back of the motherboard are seven 50-pin con-

8 C::J Inside the Apple //e --------------------

nectars called slots. Thes~ siots are numbered consecutively from
1 through 7, with slot 1 being the leftmost slot. Peripheral cards
can be installed in these slots to allow the lie to control a variety
of input/output (1/0) devices. In fact, you undoubtedly have ape
ripheral card already installed that is connected by a ribbon cable
to a disk drive. There is an eighth slot, called the auxiliary con
nector, that is located at the left center of the motherboard (or
directly in front of slot 3 if you are using a United Kingdom Apple
//e). This 60-pin connector is designed for use by an optional 80-
column text card available from Apple (and, now, from others).
This card permits the use of a video display mode in which 80
characters may be displayed on one screen line instead of the stand
ard 40. An extended 80-column text card is also available that
contains 64K of memory and that can be used to generate special
double-width graphics that were unavailable on the Apple II and
Apple II Plus. The peripheral-card expansion slots will be discussed
in Chapter 11.

On the right near the back you will see the 16-pin game 110
connector to which joysticks, push buttons, and other game-play
ing paraphernalia can be attached. We'll see some examples of
how to attach these, and other, devices in Chapter 10.

The last item of interest is the lie's built-in speaker. As we will
see in Chapter 9, the speaker can be used to produce both harsh
sound and beautiful music. It is mounted to the bottom plate of
the 1/e and is connected to the motherboard through a twisted pair
of wires.

So much for the lie's hardware!

LEARNING THE FUNDAMENTALS

The purpose of this section is to introduce you to some of the
fundamental concepts and terminology that will be used in this
book. You should realize, however, that this book has not been
written for computer novices and that more general books should
be consulted if more background information is required.

Numbering Systems

We are all familiar with the decimal numbering system that
makes use of ten fundamental digits. This system, however, is not
sacred and we could, if we preferred, use other systems that use
fewer or more digits.

1 Introduction to Apple and the Apple //e c:::::J 9

When dealing with computers, it is often convenient to use the
binary numbering system and the hexadecimal numbering system.
The binary numbering system uses only two digits, 0 and 1. The
hexadecimal system uses the following sixteen digits:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

which represent decimal numbers 0 through 15, respectively.

The lie's 6502 microprocessor performs all its internal operations
using binary numbers because it has available to it thousands of
logic cells that can easily be turned either" on" or" off" to represent
the binary digits "1" or "0", respectively. Binary numbers, how
ever, are usually not used when writing a program because they
are difficult to read and are prone to transcription errors. Decimal
number equivalents of binary numbers are often used instead, but
the pattern of binary ones and zeros to which they refer are often
not immediately obvious (quick now, what is the binary represen
tation of 225?). The hexadecimal numbering system, however, is
an ideal alternative because each hexadecimal digit defines exactly
one of the sixteen four-digit patterns of binary ones and zeros,
making conversion between binary and hexadecimal very easy.

In this book, hexadecimal numbers will be preceded by "$" to
distinguish them from decimal numbers. They will be used when
referring to data values or to memory addresses.

Bit Numbering and "Significance"

As you undoubtedly know, the basic unit of storage in the Apple
lie, and most other microcomputers, is the byte. As far as the 6502
microprocessor is concerned, each byte is made up of eight bits,
each of which can be either on or off (a computer likes things that
can exist in only one of two states). This means that binary numbers
from 00000000 to 11111111 (0 to 255 decimal) can be stored in a
byte.

Each bit in a byte is associated with a certain binary weight
equal to the number that the byte would represent if that bit were
on and all the other bits were off. These binary weights are as
shown in Figure 1-1.

(Notice that the bits within the byte are numbered from 0 to 7
and not from 1 to 8.) To determine the decimal representation of
the bit pattern, it is simply necessary to add up the binary weights
of all bits in the byte that are on. Since bit 7 contributes most, it
is called the most-significant bit or. "high-order" bit. Conversely,
bit 0 is referred to as the least-significant bit or "low-order" bit.

10 c=J Inside the Apple //e --------------------

7 6 5 4 3 2 0 ~bit numbers

128 64 32 16 8 4 2 ~binary weights

Figure 1-1. Binary weights of each bit in a byte.

Bit 7 of a byte is also called the "sign bit" because it is often
used to indicate whether the number stored in the byte is positive
or negative (if it is 1, then the number is considered to be negative).
The 65f:J2 microprocessor that controls the lie uses a special internal
status register which, among other things, holds a flag that rep
resents the sign of any number being dealt with (see Chapter 2).
Special 65f:J2 instructions are available that can change the flow
of a program depending on the state of this sign flag (they are
called "BPL," branch on plus, and "BMI," branch on minus). We
are going to see in later chapters that the lie uses bit 7 of several
special memory locations to hold information relating to the state
of the system. When these status locations are examined in an
assembly-language program, BPL can be used to transfer control
if the status is off (bit 7 is f:J) and BMI can be used to transfer control
if the status is on (bit 7 is 1). The same thing can be done from an
Applesoft program by using the PEEK command to read the num
ber stored at the status location. If bit 7 is on, then the value read
will be greater than or equal to 128 (since the binary weight of bit
7 is 128).

We will also come across situations in this book where more than
one byte is required to store a number (i.e., the number is larger
than 255). In these cases, the byte that contains information on the
highest-weighted bits for the number is called the most-significant
byte or high-order byte, and the byte that contains information on
the lowest-weighted bits is called the least-significant byte or low
order byte.

Pointers and Vectors

As we will see in Chapter 2, the 65f:J2 microprocessor is capable
of controlling a memory space that is mapped to the addresses
from $f:Jf:Jf:Jf:J ... $FFFF. Since one byte can hold exactly two hex
adecimal digits, any address in the 65f:J2's memory space can be
stored in two bytes.

A pointer or "vector" is a pair of memory locations that contains
the address of another location to which the pointer is said to be
pointing. The least-significant byte of the pair is always stored in

1 Introduction to Apple and the Apple I /e c=J 11

the first memory location and the other byte in the next higher
location. To determine the address stored in a pointer, you can use
the following Applesoft formula:

ADDR = PEEK<X>+256*PEEK<X+1)

where X represents the first memory location that the pointer oc
cupies. The second byte in the pair is multiplied by 256 since it
represents the number of 256-byte units that make up the address.

The 6502 microprocessor makes extensive use of pointers to ac
cess data arrays and to handle interrupts (see Chapter 2). Applesoft
also maintains a great many pointers for keeping track of its many
data areas (see Chapter 4).

Control Characters

Control characters are special characters that are entered from
the keyboard by using the CONTROL key. Although they do not
represent visible symbols, they often cause the lie to perform spe
cial functions. Such characters will be denoted in this book by
<CTRL-X>, where X refers to any alphabetic character (A ... Z) or
one of the following six special symbols: & [\] '-·The CONTROL
key acts just like another SHIFT key in that it and one other key
must be pressed at the same time in order to enter a control char
acter from the keyboard. The procedure involves first pressing the
CONTROL key and then, while still holding it down, pressing the
other key ("X" in the above example).

6502 Assembly Language

Many of the programs presented in this book are written in a
programming language that can be used to generate a series of
bytes (which represent microprocessor instructions and data) that
can be interpreted and directly executed by the lie's 6502 micro
processor. This programming language is called "6502 assembly
language.''

There are two steps involved in developing an assembly-lan
guage program. First, a source code for the program must be en
tered that defines the program in a human-readable form using
symbolic labels for addresses and data, special three-character
mnemonics for the permitted 6502 instructions, and special sym
bols to indicate the addressing modes used by the instructions (see
Chapter 3 for a detailed discussion of 6502 instructions and ad
dressing modes).

12 c::=J Inside the Apple //e -------------------

A typical line of source code looks something like this:

LABEL LDA C$28>,Y ;This is a comment

and is made up of four distinct fields. The first field is the label
field and it holds the symbolic name (if any) for the current location
within the program. The next field is the instruction field and it
holds the three-character mnemonic for the 6502 instruction ("LDA"
in the example). It is immediately followed by the operand field,
which holds the addressing mode used by the instruction, that is,
information relating to the method the instruction is to use to
access the data or memory location on which it is to act ("($28),Y"
in the example). The last field is the comment field and is used for
documenting the program. Each field is separated from the other
by at least one blank space; in addition, most assemblers require
comments to be preceded by a semicolon.

The second step is to interpret or "assemble" the program source
code using a 6502 assembler. This is done in order to produce a
file that contains the bytes defined by the program in a format
that the 6502 can directly execute (the "object code" or "machine
language").

The assembly-language programs presented in this book were
all entered and assembled using the BIG MAC Macro Assembler
published by A.P.P.L.E. (21246 68th Ave. S., Kent, WA 98032). If
you want to modify and reassemble the programs presented in this
book and you are not using BIG MAC, then you will likely have to
make several changes to the program source codes to account for
any differences in syntax and command structure. Differences usu
ally arise in the area of"pseudo-instructions"; these are assembler
specific commands that appear in the 6502 instruction field of a
line of source code, but that represent commands to the assembler
rather than 6502 instructions. They can be used to place data bytes
at specific locations within the program (DFB, DS, and ASC), to
define symbolic labels (EQU), to indicate the starting address of
the program (ORG), and for several other purposes.

Here are descriptions of some of BIG MAC's more commonly
used pseudo-opcodes:

DFB-Define a byte of data
DS-Define a data space
ASC-Define an ASCII string
EQU-Equate a symbolic label to a number or a memory lo

cation
ORG-Specify origin (starting address) of object code

1 Introduction to Apple and the Apple //e CJ 13

Some of the more popular assemblers available for the //e are
listed in the references at the end of Chapter 2.

Running Assembly-Language Programs

To run an assembly-language program, two steps must take place.
The first step is obvious: the program must be loaded into memory.
This can be done by storing the bytes that make up the programs
into the appropriate area of memory by using Applesoft POKE
statements or by using the system monitor STORE command (see
Chapter 3). The easier method, however, is to load it from the
binary file on diskette in which it is contained (a "B" is displayed
to the left of a binary file's name when a diskette is CATALOGued)
by using the DOS BLOAD command. The BLOAD command must
be entered while you are in Applesoft and is of the form

BLDAD FILENAME,Aaddr

where "FILENAME" represents the name of the binary program
and "addr" represents the memory location at which it is to be
loaded, in hexadecimal (if preceded by "$") or decimal notation.
The ",Aaddr" suffix can be omitted if you wish; if it is, then the
file will be loaded into memory at the same position it was in when
the BSAVE command was used to save it to diskette.

The second step is to actually run the program. This can be done
by using the Applesoft CALL command, which is of the form

CALL start

where "start" represents the decimal starting address of the pro
gram. For example, to run a program that begins at location $300
(768 decimal), you would enter the command CALL 768. The al
ternate way of starting the program is to use the system monitor's
GO command (see Chapter 3). This can be done by entering the
system monitor from Applesoft using a CALL -151 command and
then, for a program beginning at location $300, entering the com
mand "300G".

Some of the programs in this book will not operate properly if
they are loaded and called in this way (they will be specifically
noted). Instead, the DOS BRUN command must be used to load
and execute them directly from diskette. This command can be
entered as follows:

BRUN FILENAME

where "FILENAME" represents the name of the binary program.

14 c:::=J Inside the Apple //e -------------------

When the BRUN command is used, the program will be loaded
into memory at the location from which it was saved to diskette
using the DOS BSAVE command. To save a copy of a binary pro
gram that you have already entered into memory to a diskette,
enter the command

BSAVE FILENAME,Aaddr,Lnum

where "addr" represents the starting address of the program and
"num" represents the number of bytes in the program.

WHAT WON'T BE COVERED

There are a few topics that will not be discussed at length in this
book. Integer BASIC, the BASIC that was built into the first few
thousand Apple lis, will not be discussed because it is rarely used
anymore and is fast becoming obsolete. In fact, the new ProDOS
operating system does not allow Integer BASIC programs to be
run at all.

The only language that will be discussed at length will be Ap
plesoft. For more information on Apple Pascal or Apple Logo, you
will have to go elsewhere.

Although Apple produces a wide range of interface cards (super
serial card, parallel printer card, etc.) and peripheral devices
(printers, modems, graphics tablets, etc.), these will not be dis
cussed. The general techniques used to interface these devices to
the 1/e, however, will be discussed in Chapter 11.

USING THE OPTIONAL DISKETTE

This book can be purchased either with or without a program
diskette, or the diskette can be purchased separately. The diskette
contains all the programs that are presented as examples in the
following chapters and will allow you to quickly load a program
into memory, or modify a program, without having to endure the
pleasure of typing it in from scratch.

As an added bonus, several useful programs are included on the
diskette that are not described in the main body of this book.
Instructions on how to operate these programs can be found in
Appendix V.

The diskette has been initialized in the Apple DOS 3.3 format
rather than the ProDOS format. If the programs are to be trans
ferred to a ProDOS-formatted diskette, then the CONVERT pro-

1 Introduction to Apple and the Apple I /e c:::::::::J 15

gram on the Apple ProDOS system diskette must be used. One of
the programs presented in this book, READ.BLOCK, can be run
only in a ProDOS environment.

The files on the diskette are either Applesoft programs (marked
by "A" in the catalog), text files (marked by "T"), or binary pro
grams (marked by "B").

The text files on the diskette are the source-code listings for the
binary programs and are in the format expected by the BIG MAC
assembler (use the "R" command from BIG MAC to load them).
Most other assemblers are also able to read text files. Keep in mind
that the source-code formats used by different assemblers do vary
and it may be necessary to modify a source code file to take into
account any such differences before the file can be properly assem
bled.

The Applesoft programs and binary programs can usually be run
by using the standard RUN and BRUN commands, respectively.
Some of the binary programs, however, are designed to be called
from an Applesoft program only and should simply be loaded into
memory using the BLOAD command. Such exceptions will be noted
in the discussions that relate to these programs in this book.

FURTHER READING FOR CHAPTER 1

Historical background ...
"Photograph of Apple I," Apple Orchard, April1983, front cover.

The original Apple product.
A.L. Taylor III, "Striking it Rich," Time, February 15, 1982, pp.

42-47. Apple makes the front cover of Time!
P. Lopiccola, "Core of a New Apple," Popular Computing, March

1983, pp. 114-117. How the Apple II Plus was transformed into
the Apple //e.

Standard reference work ...
Reference Manual for lie Only, Apple Computer, Inc., 1982. In

cludes detailed information on the hardware and software that
make up the Apple //e.

Introducing the premier of-
Programming Access Tools to Accompany Inside the Apple //e

Gary Little

Now you can discover the magic locked inside your Apple //e-faster and easier than ever before!
Programming Access Tools offers you virtually instant access to 30 major programs (including 17
assembler source code files.) With very little preparation or start-up time, you'll be working with such
programs as:

* Keyboard Input Routines
* Speed Up Cursor Auto Repeat Rate
* How to Use Auxiliary Memory
* DOS Command Changer

*Disk Map
* RAM Disk Program
* DOS Disk Volume Changer

Here's How to Order
Enclose a check or money order for $30.00, plus sales tax, slip in this handy order envelope and
mail! No postage needed. Or charge it to your VISA or MasterCard. Simply complete the in·
formation below.

0 YES! I want to unlock the magic found inside my Apple lie. Please rush me
Programming Access Tools for Inside the Apple lie (05548-5). I have en
closed payment of $30.00 plus sales tax.

Name

Address

City _______ State. __ _&..Zip. __ _

6 Brady Communications Company, Inc.
A Prentice-Hall Publishing Co.
Bowie, Maryland 20715

Charge my Credit Card Instead

D VISA 0 MasterCard

Account Number

Expiration Date

Signature as it appears on card

Dept.Y

~
It Came From Inside
The Apple lie!

See over for complete listings

I IIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1976 BOWIE, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Brady Communications Co., Inc.
A Prentice-Hall Publishing Co.
Bowie, Maryland 20715

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

2
The 6502 Microprocessor

The "brains" of every microcomputer are represented by a com
plex integrated circuit called a microprocessor that controls the
operation of the system as a whole. The microprocessor used in
the lie is called a 6502.

The 6502 is an example of what is usually called an "8-bit"
microprocessor. These types of microprocessors can handle data
only one byte at a time and they typically use 16 address lines.
Since each of these lines can be on or off, the 6502 is capable of
addressing 65,536 (2'16) memory locations at any given time. (Since
one "K" of memory is equal to 1,024 bytes, this represents a "64K"
memory space). This is in contrast to the newer wave of 16-bit
microprocessors that can manipulate two bytes of data at once and
have typical address spaces of one megabyte or more.

While the 6502 is operating, it is continuously interpreting a
stream of bytes in order to determine what it should do next. The
bytes in this stream are controlled by the computer program that
is being executed. This program contains instructions that enable
the 6502 to perform data transfers, input/output operations, logical
operations, simple arithmetic, and other fundamental control op
erations.

In this chapter, we will take a brief look at the 6502 instruction
set and internal registers and describe how the 6502 has been
implemented on the 1/e. Note, however, that the purpose of this
chapter is not to teach you 6502 assembly-language programming,
but rather to review some of the more important principles relating
to the 6502 microprocessor. Consult the references at the end of
the chapter for a list of books that are available to teach you the
art of programming the 6502.

IMPORTANT 6502 CONCEPTS

The 6502 forms only one part of a microcomputer system such
as the 1/e. The other important parts are the system memory (RAM

17

18 c:::J Inside the Apple //e --------------------

and ROM) and the system input/output (IIO) devices. It is the 6502,
however, that is in charge of controlling both the accessing of
memory and the passing of data to and from the I/0 devices.

The 6502 is told how and when to perform its chores by a series
of instructions that it is constantly interpreting. These instructions
will be discussed in the next section. In brief, they cause the 6502
to perform a variety of data-manipulation tasks using a set of six
internal registers that will be discussed below in the section en
titled "6502 Registers."

Zero Page and the Stack

This is a convenient time to introduce you to two rather impor
tant areas of memory that are used in special ways by the 6502
microprocessor: zero page and the stack.

Each 256 bytes of memory that starts at an address that is an
integer multiple of $100 (256), i.e., $0000, $0100, $0200, ... , $FF00
is called a "page" of memory. For example, the area of memory
from $BF00 through $BFFF is referred to as page $BF. Zero page,
the page of memory from $0000 ... $00FF, is treated in a special
way by the 6502. Generally speaking, whenever the address on
which a 6502 instruction acts is contained in zero page, the highest
two hexadecimal digits of the address do not have to be specified
(since they are always zero by definition). This not only reduces
the size of the program, it also allows the program to be executed
more quickly. No wonder, then, that zero page is prime real estate
as far as the 6502 is concerned.

Page one of memory ($100 ... $1FF) holds the 6502 stack. The
stack is used as a temporary data area by the 6502 and several
instructions can be used to implicitly read data from it or store
data to it. These instructions are executed very quickly because
they automatically calculate where to store the data or where to
read it from by examining a special internal 6502 "stack pointer"
register. This register always points to the next free position avail
able in the stack. When a byte is stored on the stack, it is stored
at the position within page one given by the stack pointer and then
the stack pointer is decremented by one. When a byte is removed
from the stack, it is taken from the position within page one given
by the stack pointer plus one and then the stack pointer is incre
mented by one.

We will be discussing the stack pointer, and other registers, in
greater detail below.

-----------------2 The 651Zl2 Microprocessor c:::::::J 19

6502 INSTRUCTION SET

There are 56 general types of instructions that the 6502 is capable
of executing; they are listed in Table 2-1. (An enhanced version of
the 6502, called the 65C02, supports all of these instructions and
a few more-the 65C02 is used in the Apple //c.) Each instruction
is actually a binary number that can be interpreted by the 6502
but is usually represented by a three-character mnemonic name
that is easier to remember. These mnemonics are used whenever
an assembly-language program is being developed. The assembler
that is used takes care of translating them into the corresponding
binary numbers (the "machine language") that the 6502 can exe
cute directly.

Table 2-1. 6502 instruction set mnemonics in alphabetical
order.

ADC Add to accumulator DEX Decrement X register by
AND "And" with accumulator one
ASL Arithmetic bit-shift left DEY Decrement Y register by

BCC Branch on carry clear one

BCS Branch on carry set EOR "Exclusive-or" with
BEQ Branch on result zero accumulator
BIT Test bits INC Increment memory by
BMI Branch on result minus one
BNE Branch on result not INX Increment X register by

zero one
BPL Branch on result plus INY Increment Y register by
BRK Software interrupt one
BVC Branch on overflow

Jump to new location clear JMP
BVS Branch on overflow set JSR Jump + save return

address
CLC Clear carry flag

Load accumulator CLD Clear decimal mode flag LDA
CLI Clear interrupt disable LDX Load X register

flag LDY Load Y register

CLV Clear overflow flag LSR Logical bit-shift right

CMP Compare with NOP No operation
accumulator ORA "Or" with accumulator

CPX Compare with X register
CPY Compare with Y register PHA Push accumulator on

DEC Decrement memory by
stack

PHP Push status on stack
one

(continued)

20 c:::::J Inside the Apple //e --------------------

Table 2-1. 6502 instruction set mnemonics in alphabetical
order (continued).

PLA Pull accumulator from STA Store accumulator
stack STX Store X register

PLP Pull status from stack STY Store Y register

ROL Rotate left through TAX Transfer accumulator to
carry X

ROR Rotate right through TAY Transfer accumulator to
carry y

RTI Return from interrupt TSX Transfer stack pointer to
RTS Return from subroutine X

SBC Subtract from TXA Transfer X to

accumulator accumulator

SEC Set carry flag TXS Transfer X to stack

SED Set decimal mode flag pointer

SEI Set interrupt disable TYA Transfer Y to

flag accumulator

The 6502 instructions can be used to perform a wide variety of
functions. For example, they can be used to pass data between two
registers or between registers and memory, to perform simple
arithmetic, to increment and decrement index registers and mem
ory locations, to pass data between registers and the stack, to per
form logical functions, and so on. Figure 2-1 illustrates, in a general
way, how each of the 6502's instructions affect memory and the
6502 registers.

As you might expect, it takes a finite period of time for any
particular instruction to be executed by the 6502. The time re
quired to execute one instruction, however, is not necessarily the
same as the time required to execute another. In fact, the time it
takes to execute one general type of instruction will even vary
depending on how the instruction is told to access the data on
which it is to operate (i.e., its "addressing mode").

Table 2-2 sets out the times required to execute each instruction
in units of 6502 machine cycles for each valid addressing mode
(addressing modes will be discussed in detail later in thischapter).
The length of a 6502 machine cycle is fixed by the frequency of the
clock signal fed into the 6502 microprocessor. On the //e, this clock
signal is 1.023 megahertz, which means that every machine cycle
takes 0.9775 (1/1.023) microsecond to perform.

It is often convenient to know exactly how long it will take to
execute a particular instruction when precise timing loops must

---------------- 2 The 65!212 Microprocessor c:::::J 21

6502 SYSTEM MEMORY

INC DEC
ASL LSR ROL ROR

I I
I

LbA sf A LbY s+Y
: CMP,ADC,SBC
I AND,ORA,EOR,BIT CPY

X-REGISTER TXA

LOX TAX

INX DEX CPX

TXS TSX
• I

STACK POINTER

PHA PLA PHP PLP
JSR RTS BRK RTI

ACCUMULATOR

ASL LSR ROL ROR
LOA CMP ADC SBC
AND ORA EOR BIT

PHA PLA

6502 STACK

($100 ... $1 FF)

PLP PHP RJI
• I '

STATUS

BRK
I

CLC SEC CLD SED CLV
CLI SEI

TYA Y-REGISTER

TAY LOY

BRK·

RTI...,

INY DEY CPY

PROGRAM
COUNTER

NOP

BEQ BNE
BPL BMI
BCC BCS
BVC BVS

JMP

NOTE: Solid arrows indicate a transfer of data.
Dashed arrows indicate a transfer of information.

· Figure 2-1. Usage chart of 6512 instructions.

be generated in software. We will see an example of this in Chapter
9, where a program is presented that can generate musical notes
of specific frequencies.

6502 REGISTERS

While the 6502 is executing a program, it makes use of the six
internal registers that are shown in Figure 2-2. These registers are
used to manipulate data in the manner dictated by the program

22 c::::::J Inside the Apple //e --------------------

that is executing and also to make the 6502 aware of various aspects
of the status of the system: where the next instruction to be exe
cuted is located, where the next free space in the stack is located,
and what the status of its seven internal flags is. A detailed under
standing of these registers is important before a 6502 assembly
language program can be written. We will now take a closer look
at each of the six registers.

Table 2-2. 6582 instruction set and cycle times.

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles

ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4
(zpage,X) 61 2 6
(zpage),Y 71 2 5*
abs 6D 3 4
abs,X 7D 3 4*
abs,Y 79 3 4~'

AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4
(zpage,X) 21 2 6
(zpage),Y 31 2 5*
abs 2D 3 4
abs,X 3D 3 4'~

abs,Y 39 3 4~'

ASL [accumulator] 0A 1 2
zpage 06 2 5
zpage,X 16 2 6
abs 0E 3 6
abs,X 1E 3 7

BCC disp 90 2 2*'~

BCS disp B0 2 2**

BEQ disp F0 2 2*'~

BIT zpage 24 2 3
abs 2C 3 4

BMI disp 30 2 2~'*

BNE disp D0 2 2*'''

BPL disp 10 2 2**

2 The 6502 Microprocessor c:::=J 23

Table 2-2. 6502 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles

BRK [implied] 00 1 7
BVC disp 50 2 2**

BVS disp 70 2 2*'~

CLC [implied] 18 1 2
CLD [implied] D8 1 2
CLI [implied] 58 1 2
CLV [implied] B8 1 2

CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4
(zpage,X) Cl 2 6
(zpage),Y Dl 2 5*
abs CD 3 4
abs,X DD 3 4*
abs,Y D9 3 4*

CPX #num E0 2 2
zpage E4 2 3
abs EC 3 4

CPY #num C0 2 2
zpage C4 2 3
abs cc 3 4

DEC zpage C6 2 5
zpage,X D6 2 6
abs CE 3 6
abs,X DE 3 7

DEX [implied] CA 2
DEY [implied] 88 1 2
EOR #num 49 2 2

zpage 45 2 3
zpage,X 55 2 4
(zpage,X) 41 2 6
(zpage),Y 51 2 5*
abs 4D 3 4
abs,X 5D 3 4'~

abs,Y 59 3 4*
(continued)

24 c:::J Inside the Apple //e

Table 2-2. 6502 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles

INC zpage E6 2 5
zpage,X 2 6
abs EE 3 6
abs,X FE 3 7

INX [implied] E8 1 2

INY [implied] C8 1 2
JMP abs 4C 3 3

(abs) 6C 3 5
JSR abs 20 3 6

LDA #num A9 2 2
zpage AS 2 3
zpage,X BS 2 4
(zpage,X) A1 2 6
(zpage),Y B1 2 5*
abs AD 3 4
abs,X BD 3 4*
abs,Y B9 3 4~'

LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs,Y BE 3 4*

LDY #num A0 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4'~

LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs,X SE 3 7

NOP [implied] EA 1 2
ORA #num 09 2 2

zpage 05 2 3
zpage,X 15 2 4
(zpage,X) 01 2 6
(zpage),Y 11 2 5*
abs 0D 3 4

2 The 6502 Microprocessor c=::J 25

Table 2-2. 6582 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles

abs,X 1D 3 4*
abs,Y 19 3 4*

PHA [implied] 48 3
PHP [implied] 08 1 3
PLA [implied] 68 1 4
PLP [implied] 28 1 4
ROL [accumulator] 2A 1 2

zpage 26 2 5
zpage,X 36 2 6
abs 2E 3 6
abs,X 3E 3 7

ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 7

RTI [implied] 40 6
RTS [implied] 60 1 6
SBC #num E9 2 2

zpage ES 2 3
zpage,X F5 2 4
(zpage,X) E1 2 6
(zpage),Y F1 2 5*
abs ED 3 4
abs,X FD 3 41'
abs,Y F9 3 4*

SEC [implied] 38 1 2
SED [implied] F8 1 2
SEI [implied] 78 2
STA zpage 85 2 3

zpage,X 95 2 4
(zpage,X) 81 2 6
(zpage),Y 91 2 5*
abs 8D 3 4
abs,X 9D 3 4'~

abs,Y 99 3 4'~

(continued)

2& CJ Inside the Apple //e -------------------

Table 2-2. 6582 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles

STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4

STY zpage 84 2 3
zpage,X 94 2 4
abs 8C 3 4

TAX [implied] AA 1 2

TAY [implied] A8 1 2

TSX [implied] BA 1 2

TXA [implied] 8A 2

TXS [implied] 9A 2

TYA [implied] 98 1 2

*Add one clock cycle if a page boundary is crossed.
**Add one clock cycle if a branch occurs to a location in the same page;

add two clock cycles if a branch occurs to a location in a different page.
See Table 2-3 for a description of the assembler operand formats.

The Accumulator-A

The 6502 supports two simple arithmetic instructions: ADC (add
with carry) and SBC (subtract with carry). Both of them require
that the first of the two operands in the addition or subtraction be
contained in the accumulator register, A. After the arithmetic has
been performed, the result is stored in A, and this is how it gets
its name-it "accumulates" the results of arithmetic operations
that are performed. The accumulator is an 8-bit register and so
can hold numbers from 0 to 255 only.

The accumulator is unique in that it is the only one of the 6502's
registers that can be used to perform the logical instructions, namely,
EOR (logical "exclusive-or"), ORA (logical "or"), and AND (logical
"and"), or any of the bit-shifting instructions, namely, ASL (arith
metic shift left), LSR (logical shift right), ROL (rotate left), and
ROR (rotate right). (You should note, however, that the bit-shifting
instructions can also operate directly on memory locations.)

---------------- 2 The 6502 Microprocessor c=J 27

7 0

I A L-------'1 ACCUMULATOR

7 0

I y '------''INDEX REGISTER Y

7 0

I X '------''INDEX REGISTER X

15 7 0

I PCH I PCL '-----~-----~~PROGRAM COUNTER

7 0

II I s
'---'----------'' STACK POl NTER

7

IN I vt PR I B I D 11 l z I c I RE

0

I
OCESSOR STATUS
GISTER, "P"

CARRY

ZERO

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

UNUSED

OVERFLOW

NEGATIVE

Figure 2-2. The 6582 registers.

Here are the 6502 instructions that directly use and affect the
accumulator:

• Arithmetic : ADC, SBC
• Logical: AND, ORA, EOR
• Bit-shifting : ASL, LSR, ROL, ROR
• Compare : CMP
• Store in memory: STA
• Load from memory or with data: LDA
• Store on stack : PHA
• Load from stack : PLA
• Inter-register transfer: TAX, TAY, TXA, TYA

The Index Registers-X and Y

Like the accumulator, the X andY index registers are eight bits
in size and can contain numbers from 0 to 255.

28 CJ Inside the Apple //e -------------------

The index registers are often used as counters because the 6502
contains special one-byte instructions that allow the index regis
ters to be easily incremented or decremented. No such instructions
are available to increment and decrement the accumulator.

As their names suggest, however, the index registers are used
primarily to locate elements contained in data structures in mem
ory, such as a series of elements in a one-dimensional array. This
is done by fixing the beginning address of the data structure and
then simply adjusting the index register so that the sum of the
beginning address and the index register is equal to the address
of the element that is to be accessed.

The 6502 supports several special instructions that directly use
and affect the index registers:

• Increment : INX, INY
• Decrement : DEX, DEY
• Inter-register transfer: TAX, TAY, TXA, TYA, TXS, TSX
• Store in memory : STX, STY
• Load from memory or with data : LDX, LDY
• Compare: CPX, CPY

Note that the logical instructions and bit-shifting instructions
that can be used with the accumulator cannot be used with the
index registers.

The Processor Status Register- P

The 8-bit processor status register holds the states of seven one
bit flags or "status" bits that are referenced by the 6502 when it
is executing many of its instructions. (One bit in the processor
status register, bit 5, is not used by the 6502.) Each of these flags
has a specific meaning and can markedly affect how instructions
are executed. For example, the 6502 supports a series of "branch
on condition" instructions (BCC, BCS, BPL, BMI, BEQ, BNE, BVC,
BVS), each of which can be used to examine the status of a par
ticular flag and to cause the program to "jump" to a new location
if the condition is met or to continue on with the next instruction
in memory if it is not.

Although almost all instructions will cause flags in the processor
status register to be adjusted after they have been executed, the
following instructions explicitly affect them:

• Clear and set the carry flag : CLC, SEC
• Clear and set the decimal flag : CLD, SED

----------------- 2 The 6502 Microprocessor c::J 29

• Clear and set the interrupt flag : CLI, SEI
• Clear the overflow flag : CL V

Let's take a look at each of these seven flags right now.

Carry Flag (C)

The 6502 uses the carry flag in three quite different ways. First,
the carry flag represents the "ninth" bit in any unsigned addition
(ADC) or subtraction (SBC) operation that is performed. ("Un
signed" means that all eight bits of a byte are used to represent
the magnitude of a number.) It can be examined after the addition
or subtraction in order to determine whether the result is outside
the range of numbers that can be stored in the 8-bit accumulator.
This allows for easy manipulation of numbers that use more than
one byte.

The 6502 can perform arithmetic in one of two modes: binary
and decimal. The mode used depends on the setting of the status
register's decimal mode flag (see below).

In binary mode, each byte is considered to represent a simple
unsigned binary number from 0 ... 255. When arithmetic opera
tions are performed, the standard rules for adding or subtracting
two binary numbers are followed.

In decimal mode, however, each half of the byte is considered
to represent a single decimal digit from 0 to 9; this means that
only those decimal numbers from 0 ... 99 can be represented.
When arithmetic operations are performed on such numbers, the
result is always stored in the same decimal format.

In either mode, before any arithmetic is performed, the carry
flag must be cleared with a CLC instruction, in the case of addition,
or set with a SEC instruction, in the case of subtraction. (If mul
tibyte arithmetic is being performed, then the carry is adjusted
only at the beginning of the sequence of additions or subtractions.)
If the state of the carry flag changes after an addition operation,
then the true answer is 256 (if in binary mode) or 100 (if in decimal
mode) more than the number in the accumulator. If the carry flag
changes after a subtraction, then the true answer is 256 (if in binary
mode) or 100 (if in decimal mode) less than the number in the
accumulator.

The second use of the carry flag is as a ninth bit that participates
whenever the ASL, LSR, ROL, and ROR bit-shifting instructions
are executed.

Third, the carry flag is used as a general-purpose flag that is

30 C:::J Inside the Apple //e --------------------

acted on by the BCC (branch if C-flag is 0) and BCS (branch if C
flag is 1) instructions. As with all of the 6502's "branch on con
dition" instructions, BCC and BCS allow control of the program
flow to be manipulated by simply changing the state of a flag in
the processor status register (in this case, the carry flag).

Zero Flag (ZJ

This flag is used to indicate whether the last data movement or
arithmetic operation involved a zero result. If it did, then the Z
flag will be set (1); otherwise it will be cleared (0).

There are two branch instructions that examine the status of the
Z-flag to determine whether the branch should be performed: BEQ
(branch if Z-flag is 1) and BNE (branch if Z-flag is 0).

Interrupt Disable Flag (IJ

This flag is used to control how the 6502 will react when the
electrical signal on its IRQ (interrupt request) pin is brought near
0 volts. Such an interrupt can be generated by certain peripheral
cards whenever they are ready to send information to, or receive
information from, the //e. If the I-flag is set using the SEI instruc
tion, then all IRQ signals that may be generated will be ignored.
If, however, the I-flag is cleared using the CLI instruction, then the
6502 will respond to IRQ signals when they occur by beginning a
special interrupt sequence that is described in detail below in the
section entitled "6502 INTERRUPTS."

Decimal Mode Flag (DJ

This flag is used to control how the 6502 is to perform addition
and subtraction operations. If standard binary arithmetic is to be
performed using the ADC and SBC instructions, then this flag must
be cleared to 0 using the CLD instruction. As we saw when dis
cussing the accumulator, in binary mode bytes are treated as un
signed binary numbers from 0 to 255.

If, however, the D-flag is set to 1 using the SED instruction, all
arithmetic will be performed under the assumption that all num
bers are stored in a special decimal format. In this format, one
byte is used to store exactly two decimal digits from 0 to 9. The
first digit is stored in the high-order four bits and the other in the
low-order four bits and the maximum number that can be stored

----------------- 2 The 6502 Microprocessor [==:J 31

is 99. When arithmetic operations are performed, the results will
also be stored in this format.

Break Flag (8)

This flag is adjusted internally by the 6502 whenever an IRQ
(interrupt request) interrupt is recognized by the 6502 or a BRK
(break) instruction is executed. See the section below entitled "6502
INTERRUPTS" for more information on these types of interrupts.
When an IRQ interrupt is recognized, then the B-flag is cleared to
0; if a BRK instruction is executed, then it is set to 1.

Whenever an IRQ or a BRK interrupt is generated, the 6502
begins to execute the same program (its address is held at locations
$FFFE and $FFFF). It is often convenient, however, to determine
what the source of the interrupt was so thata different action can
be taken for each source. This is most easily done by having the
interrupt-servicing program examine the state of the B-flag.

Overflow Flag CVJ

The overflow flag is used primarily when performing arithmetic
operations on signed numbers. Signed numbers are those that use
bit 7 of a byte to hold the sign of the number (1 for negative, 0 for
positive). Bits 0 ... 6 are used to store the magnitude of the number
in a special "two's complement" format that will be described in
Chapter 4. If the result of an addition or subtraction of two signed
numbers is outside the range of numbers that can be stored in this
format (-128 ... + 127), then the V-flag will be set to 1; if the
number is in range, however, the V-flag will be cleared to 0.

The V-flag can be explicitly cleared by using the CLV instruction.
Surprisingly, there is no corresponding instruction to explicitly set
the V-flag.

The state of the V-flag can also be affected by using the BIT
instruction. If you "BIT" any memory location, then a copy of bit
6 of the byte stored there will be placed in the V-flag.

Two branch instructions make use of the V-flag: BVS (branch if
V-flag is 1) and BVC (branch if V-flag is 0).

Negative Flag (NJ

The negative flag is used to indicate the sign of the last value
that was directly transferred into the A, X, or Y register or that

32 CJ Inside the Apple //e --------------------

was put there by an instruction that performed an arithmetic op
eration (DEX, DEY, INX, INY, ADC, SBC, and so on). The 6502
considers any byte that contains a one in bit 7 to be negative.

Two branch instructions make use of the N-flag: BPL (branch
on plus, i.e., N-flag is 0) and BMI (branch on negative, i.e., N-flag
is 1).

A BIT instruction can also be used to directly affect the state of
the N-flag. When you "BIT" any memory address, a copy of bit 7
of the byte stored there will be placed in the N-flag. If bit 7 is used
to hold the status of some condition, then you can use BPL to
branch if the status is off (0) or BMI to branch if it is on (1). We
will see in later chapters that the lie uses bit 7 of several locations
to represent the status of different hardware switches that can be
controlled by software.

The Stack Pointer-S

As we saw earlier in this chapter, the 6502 uses the 256-byte area
from $100 to $1FF as a hardware stack. This is a "last-in, first
out" data area: the most recent information stored on the stack is
always removed first. Information is usually placed on the stack
by the "push" instructions, PHA and PHP, and removed from the
stack by the "pull" instructions, PLA and PLP. (Information does
not actually disappear after a pull, but it will be overwritten as
soon as more information is pushed on to the stack.)

The JSR Uump-to-subroutine) instruction also causes informa
tion to be placed on the stack. When the JSR instruction is exe
cuted, the address of the next instruction in memory after the JSR,
minus one, is pushed on the stack (high-order byte first). When the
corresponding RTS (return-from-subroutine) instruction is exe
cuted, this address is removed and the program resumes at that
address (plus 1).

The stack pointer register, S, is used to keep track of where in
the 256-byte stack area the bytes are to be pushed to or pulled
from; it always points to the next free space available in the stack
area. When the system is first initialized, S is set equal to $FF.
Then, whenever a byte is pushed on the stack, it is stored at location
$100 +Sand then the stack pointer is decremented by one. Because
S is decremented, the stack grows downward in memory. When
bytes are pulled from the stack, they are taken from the top of the
stack (location $100 + S + 1). The stack pointer is automatically
incremented each time a byte is removed from the stack in this
way.

----------------- 2 The 6502 Microprocessor c::J 33

Interrupt conditions and interrupt-related instructions also af
fect the stack pointer (see the section below entitled "6502 IN
TERRUPTS" for a detailed discussion of interrupts). When an in
terrupt from a peripheral device is recognized (or one is generated
by a BRK (break) instruction), a two-byte address and a copy of
the processor status register is placed on the stack and the stack
pointer is decremented by three. When the corresponding RTI (re
turn-from-interrupt) instruction is executed, the stack pointer will
be incremented by three, thus effectively "removing" these bytes
from the stack.

Here are the 6502 instructions that directly affect the stack pointer
register:

• Inter-register transfer : TXS, TSX
• Push data on stack : JSR, PHA, PHP, BRK
• Pull data from stack: PLA, PLP, RTS, RTI

The Program Counter-PC

The program counter (sometimes called the instruction pointer)
is the only 16-bit register that the 6502 supports and is used to
hold the address of the next instruction to be executed. This address
will normally be that of the next instruction in the program, but
not necessarily. There are several instructions that can be used to
manipulate the flow of the program and to pass control to other
parts of the program by adjusting the program counter accord
ingly. These are the JMP Uump) instruction, which acts like an
Applesoft GOTO, the JSR Uump-to-subroutine) and RTS (return
from-subroutine) instructions, which act like an Applesoft GOSUB/
RETURN combination, and the branch-on-condition instructions
(BCC, BCS, BEQ, BNE, BPL, BMI, BVC, BVS). The program counter
is also affected by any hardware or software interrupt (BRK) and
by the RTI (return-from-interrupt) instruction.

6502 ADDRESSING MODES

A complete 6502 instruction is either one, two, or three bytes
long. The first byte always represents the operation code Cop
code") for the instruction itself and the remaining bytes (if any)
represent the operand; if an operand is specified, it is either an
address (one byte or two bytes) or immediate data (one byte). If
the operand represents a two-byte address, then the first byte is

34 c::=J Inside the Apple //e --------------------

always the lower two digits of the four-digit hexadecimal address
(the allowable addresses are in the range $0000 to $FFFF).

An address that is specified after an opcode is not necessarily
the address from which the instruction will read data or to which
it will store data. In many instances, the 6502 uses this address to
calculate another address (called the "effective address") on which
it does operate. Exactly how this calculation is to be performed
depends on which of several addressing modes that can be used by
that instruction has been selected. The 6502 determines which
addressing mode has been selected by examining the value of the
opcode itself-each general type of instruction can have several
opcode values associated with it, one for each valid addressing
mode. The value of the opcode also dictates whether the operand
is to be interpreted as immediate data instead of an address.

We will now outline the various addressing modes that the 6502
supports. Before beginning, you should note that not all instruc
tions are permitted to use each addressing mode. The ones that
are supported by each instruction are indicated by entries in Table
2-2. The names of each of the addressing modes that the 6502 uses,
and the operand formats used to represent these modes in an as
sembly-language program, are summarized in Table 2-3 Note that
these operand formats are those used by the BIG MAC assembler
that was used to develop the examples presented in this book; other
assemblers may require that slightly different formats be used.

Immediate

Immediate addressing is used whenever you want an instruction
to act on a specific 8-bit number rather than on a byte stored
somewhere in memory. This 8-bit number is stored in the byte
immediately following the opcode itself and forms the operand for
the instruction.

The immediate addressing mode is most useful for initializing
a register to a constant value and for providing specific data on
which an instruction is to operate. To select this addressing mode
when using an assembler, the "#" symbol must be placed in front
of the number in the instruction's operand:

LDA #49-load the accumulator with 49 (decimal)
LDX #$43-load X with $43 (hexadecimal)

It is often necessary to deal with the high-order or low-order byte
of a two-byte address as an immediate quantity. To do this, you
must use an assembler operand of the form "#<ADDRESS" (for

----------------- 2 The 6502 Microprocessor c=J 35

Table 2-3. 6502 addressing modes and assembler operand
formats.

Addressing Mode

Immediate

Absolute

Accumulator
Implied
Indexed indirect
Indirect indexed
Absolute indexed

Relative'"
Indirect

Assembler Operand
Format

#num
#<abs
#>abs
abs
zpage
[Not applicable]
[Not applicable]
(zpage, X)
(zpage), Y
abs, X
abs, Y
zpage, X
zpage, Y
disp
(abs)

Note: "num" = 1-byte number
"abs" = 2-byte address

Example of
Instruction

LDA #$45
LDA #<$FD1B
LDA #>$FD1B
LDX $FE44
LDA $24
ASL
CLC
LDA ($E0, X)
STA ($28), Y
LDA $2000, X
STA $0400, Y
LDA $28, X
STX $22, Y
BNE $BEAF
JMP ($03EE)

"<abs" = low-order byte of a 2-byte address (or constant)
">abs" = high-order byte of a 2-byte address (or constant)
"zpage" = 1-byte zero page address

"disp" = 1-byte signed displacement

''Relative addressing: An absolute address is usually ·specified in the
operand when the program is written; the assembler converts the operand
to a one-byte displacement to this address when the program is assembled.

the low-order byte) and "#>ADDRESS" (for the high-order byte),
where "ADDRESS" is the address being dealt with. Note, however,
that the form of this type of operand applies to the BIG MAC
assembler only; most other assemblers require that a different
method be used to specify which half of an address is to be dealt
with. One assembler, the Apple 6502 Editor/Assembler, uses the
same general method, but it reverses the meaning: "#>" is used
to specify the low-order byte and"#<" is used to specify the high
order byte!

Absolute

The absolute addressing mode is used whenever the operand
itself contains the absolute address in memory on which the opcode

36 C::J Inside the Apple //e --------------------

is to operate. The two bytes required to store this address are stored
low-byte first.

Here are some examples of how to use the absolute addressing
mode:

LDA $FE43-load the accumulator with the number stored at
$FE43

STY $1 238-store theY register at location $1238

Some instructions support an important variant of the absolute
addressing mode, called zero page absolute, if the address specified
is in the 6502 zero page (the first 256 bytes of memory). In this
mode, the opcode is followed by a one-byte address only because
the high-order byte is implicitly zero. Most assemblers will rec
ognize when a zero page location is being specified and will au
tomatically select this addressing mode for you by changing the
value of the opcode byte used by the instruction when the program
is assembled.

Accumulator

Implied

Accumulator addressing is the mode used by all those opcodes
that act on the accumulator alone and that require no address or
immediate data on which to operate. These are the bit-shifting
opcodes LSR, ASL, ROL, and ROR. There are no operand bytes
for these instructions. Note, however, that some assemblers other
than BIG MAC (notably, the Apple 6502 Editor/Assembler) require
that the letter "A" be entered in the operand field before the pro
gram source code can be properly assembled.

The 6502 supports many opcodes that do not act on immediate
data or on memory locations, but rather on internal registers and
status flags only. These opcodes require no operands because their
actions are implicitly defined by the opcode itself and so the ad
dressing mode used is called implied.

Here are some examples of opcodes that use the implied ad
dressing mode: PHA, PLA, PHP, PLP, CLD, CLI, BRK, DEX, INX,
NOP, RTS, TAX.

Indexed Indirect

When the indexed indirect addressing mode is used, the operand
is only one byte long and represents a location in zero page. The

----------------- 2 The 651212 Microprocessor r:::=J 37

effective address on which the instruction acts is calculated by first
adding the contents of the X register to the zero page location
specified in the operand to obtain a resultant address. The effective
address is represented by the two bytes that are stored at the
resultant address and the very next address (low-order byte first).

You can select this addressing mode when using an assembler
by using an instruction of the form

STA ($EO,X>

where the parentheses indicate that the effective address is not
$E0 +X but rather the address stored at that location.

Indirect Indexed

Indirect indexed is a powerful addressing mode that is often used
to access a block of memory that may not always begin at the same
location in memory or that is longer than 256 bytes in length. The
operand is one byte long and represents a zero page location; this
zero page location, and the one immediately following it, contain
the address (low-byte first) of the beginning of a data block in
memory. These locations are said to "point to" this data block.

When this addressing mode is used, the effective address on which
the instruction is to operate is calculated by first taking the address
of this data block from the zero page locations and then adding to
it the contents of theY register.

Here is an example of how you would select the indirect indexed
addressing mode when using an assembler:

LDA C$26>,Y

The parentheses around $26 mean "contents of"; it is the address
stored at $26 (and $27) that will be used to calculate the effective
address, and not $26 itself. If theY-register contains $FE and the
address $400 is stored at $26/$27, then the accumulator will be
loaded with the contents of memory location $4FE ($4FE = $400
+ $FE).

Absolute Indexed

The operand for the absolute indexed addressing mode is two
bytes long and contains the absolute address of a memory location
called a "base address." The effective address on which the in
struction is to operate is calculated by taking this base address
and adding to it the contents of the X register (if X indexing is
selected) or of the Y register (if Y indexing is selected).

38 c=J Inside the Apple //e -------------------

Here are some examples of the use of this addressing mode:

LDA $4 0 0 , X -load the accumulator with the contents of the
location specified by $400 +X.

STA $A032, Y-store the accumulator at the location specified by
$A032+ Y .

There is a special version of this addressing mode, called zero
page absolute indexed, that can be used by some instructions when
the base address is in page zero. In this case, the operand is only
one byte long and represents this zero page address. Most assem
blers will automatically select this addressing mode for you if the
operand is, indeed, in page zero.

Relative

The 6502 supports a series of branch instructions that examine
the 6502 status register to determine whether a change in the flow
of the program should be made or not: BEQ, BNE, BPL, BMI, BCC,
BCS, BVC, and BVS. The first byte represents, as usual, the opcode
for the instruction. The second byte represents the number that
must be added to the address of the next instruction in memory
in order to calculate the destination address of the branch. Because
this byte represents a displacement from an instruction's location
rather than an absolute location, this addressing mode is called
"relative."

There are restrictions on how far you can branch using relative
addressing. In particular, you can only specify a relative address
that is at most 127 bytes higher in memory or 128 bytes lower in
memory (as measured from the address of the next higher instruc
tion). Values from $00 ... $7F represent the positive branches (0
... 127), and values from $80 ... $FF represent the negative branches
(-128, -127, ... , -1). Note that the values for negative branches
are stored in a special "two's complement" format; see Chapter 4
for a detailed description of this format.

If you must transfer control to a destination location that is
outside this range, you will have to use a JMP instruction instead.

Indirect

This addressing mode is used by only one instruction, JMP. A
/two-byte operand is used and these two bytes define a location in

memory that contains the low half of the address that is to be
jumped to; the high half is stored in the next memory location.

----------------- 2 The 6502 Microprocessor c::=:1 39

If you are using an assembler, then you would select this ad
dressing mode by entering an instruction that looks like this:

JMP ($1234>

The parentheses around the operand indicate that it is not $1234
that is being jumped to but rather the address stored at $1234 (and
$1235).

The indirect addressing mode is useful in situations where the
ultimate destination of the jump instruction may be changed, per
haps by another program. Even if this other program places a new
address at the operand address, the main program itself need not
be changed. On the other hand, if the absolute addressing mode
were used instead, then it would be necessary to modify the pro
gram and this may be difficult to do. The //e uses the indirect
addressing mode whenever it has to jump to its character input
or output subroutines. Whenever new input or output devices are
activated, all that need be done is to change the address stored at
the address specified in the operand-the main program will re
main the same (see the discussion of the lie's input and output links
in Chapters 6 and 7).

You should note that there is a serious hardware bug in the 6502
chip itself that affects the use of the indirect addressing mode. It
turns out that if the address specified in the operand begins at the
end of a page (that is, at $xxFF), then the effective address will not
be the one found at $xxFF and $xxFF + 1 as expected but rather at
$xxFF and $xx00. This bug has been eliminated in the 65C02 micro
processor that controls the Apple //c.

6502 INPUT/OUTPUT HANDLING

Unlike those of some microprocessors, the 6502 instruction set
does not include any instructions that are specifically designed to
perform input/output (110) operations. Instead, all 110 operations
are performed by using standard instructions to read data from or
write data to addresses within the 6502's standard 64K address
space to which 1/0 devices are "connected." These addresses do
not usually represent real RAM or ROM memory locations (mem
ory that holds video display information is one exception) but,
nevertheless, are accessed in exactly the same way as if they did.

This method of handling 110 is called "memory-mapped 110"
because the 110 devices form a logical part of the 6502's 64K mem
ory space itself and so no special instructions are required to make
use of them. The //e contains several addresses that are used to

40 c::::::J Inside the Apple //e -------------------

control various aspects of its hardware environment. As we will
see at the end of this chapter, except for those addresses that relate
to the video display, these addresses are all contained in locations
$C000 ... $C0FF. Note that some of these I/0 locations can be
accessed in order to switch between one of two hardware states,
for example, text or graphics display, primary or alternate char
acter set, and 40-column or 80-column display. Thus, they are called
"soft switch" I/0 memory locations.

65021NTERRUPTS
There are three input pins on the 6502 integrated circuit that

are called RESET, IRQ (interrupt request), and NMI (non-mask
able interrupt). When the electrical signals at each of these three
pins is high (near + 5 volts) the 6502 goes about performing its
normal functions. If, however, one of these pins is suddenly brought
low (near 0 volts), one of three special interrupt sequences may
begin, depending on which pin has been affected. An interrupt
sequence can also be generated in software by using the BRK in
struction.

One especially useful type of hardware interrupt, IRQ, is com
monly generated by devices found on peripheral cards that are
plugged into one of the lie's seven expansion slots (see Chapter 11).
These interrupts indicate to the 6502 microprocessor that an event
has taken place that should be dealt with before continuing to run
the main program. For example, a clock card may generate an
interrupt once per second to allow the new time to be displayed
on the video screen.

Each type of 6502 interrupt has associated with it a two-byte
vector that holds the address of the interrupt-handling subroutine
that will be called when the interrupt occurs. These vectors are all
stored in the high end of of the 6502 memory space from $FFFA
to $FFFF. The specific vector locations for each type of interrupt
and the addresses of the interrupt-handling routines to which they
point are shown in Table 2-4. Note that all of the vector addresses
(except the one for NMI) change when ProDOS is being used. Most
of ProDOS resides in a special "bank-switched RAM" area that
occupies the addresses from $D000 ... $FFFF that are normally
occupied by the Applesoft and the system monitor ROMs (see Chap
ter 8). Thus, the interrupt vectors within this RAM area (from
$FFF A to $FFFF) can be changed as desired and they will take
effect whenever bank-switched RAM is active. ProDOS takes ad
vantage of the power to change the interrupt vectors by storing in

----------------- 2 The 6502 Microprocessor c::J 41

Table 2-4. 6502-Apple //e interrupt locations.

Interrupt
Type

NMI
RESET
IRQ
BRK

Interrupt Vector
Location

$FFFA/$FFFB
$FFFC/$FFFD
$FFFE/$FFFF
$FFFE/$FFFF

Address of Location of
Interrupt Handler User Vector

$03FB nla
$FA62 or $FFCB $03F2*
$FA40 or $FF9B $03FE
$FA40 or $FF9B $03F0

-r when the Pro DOS
Lbank-switched

RAM area is
active only

*Control is passed to the Reset user vector only if the number stored at
$3F4 (the powered-up byte) is equal to the logical exclusive-OR of the
number stored at $3F3 and the constant $AS.

them the addresses of routines that handle interrupts more safely
and efficiently than the normal subroutines that are pointed to by
the ROM interrupt vectors. We will see examples of this later in
this section.

The interrupt-handling routines on the 1/e ultimately pass control
to other addresses that are specified in user-definable vector lo
cations. These user vector locations are also shown in Table 2-4.
Note that a user-defined interrupt subroutine that is used to handle
interrupts generated by an IRQ or NMI signal, or a BRK command,
must end by executing an RTI (return-from-interrupt) instruction
and that when it ends the 6502's A, X, andY registers must contain
the same values as when the subroutine was first called.

Interrupts are often generated by I/0 devices whenever they have
information available to be read (input devices) or whenever they
are ready to receive information (output devices). Because the 6502
can be interrupted by the device, it is not necessary for the program
to continuously monitor (poll) the I/0 devices to determine when
one is ready to be used. This means that the program is able to
execute much more efficiently.

The four basic types of interrupts supported by the 6502 will
now be discussed in detail.

Reset Interrupt

The reset interrupt is used to cause the system to stop executing
the current program and to begin a sequence of instructions that

42 c:::J Inside the Apple //e -------------------

start at the address stored in the reset vector at $FFFC/$FFFD (low
order byte first). On the //e, the reset vector points to a subroutine
beginning at $FA62 (the ProDOS reset vector actually points to
another subroutine that ultimately calls $FA62). This subroutine
takes care of initializing the //e to a known state and will pass
control to a user-definable subroutine whose address is stored at
$3F2 and $3F3 (low byte first) if the logical exclusive-OR of the
value stored at $3F3 and the constant $AS is the same as the value
stored at $3F4 (which is called the powered-up byte). If it isn't,
then the disk drive will start up just as it does when the //e is first
turned on.

The reset interrupt is automatically generated whenever the power
to the 6502 is first turned on. As we will see in Chapter 6, it can
also be generated by pressing the CONTROL and RESET keys on
the//e's keyboard at the same time. Specific examplesof"trapping"
the reset interrupt by adjusting the user vector at $3F2/$3F3 and
the powered-up byte at $3F4 will also be given in Chapter 6.

A reset interrupt is normally used only in panic situations where
the program that is running must be stopped immediately.

Non-Maskable Interrupt CNMIJ

If an NMI interrupt is generated, the 6502 always responds by
first completing the current instruction being executed. The fol
lowing sequence of events then takes place:

1. The current program counter is stored on the stack (this will
be the address of the next instruction in the program to be
executed after the interrupt has been dealt with).

2. The processor status register is stored on the stack.
3. The 1-flag in the processor status register is set to 1 (this

disables subsequent IRQ operations; see below).

After these operations have been performed, the program counter
is loaded with the address that is stored in the NMI vector at $FFFA/
$FFFB (low-order byte first), and then the interrupt-handling pro
gram that begins at that address is executed. The address stored
in the NMI vector on the //e is $3FB. Thus, to properly trap an NMI
signal, a three-byte JMP Uump) instruction must be placed at this
address that passes control to the main body of the interrupt
handling subroutine.

To end an interrupt-handling program, an RTI (return-from-in
terrupt) instruction must be executed. This will cause the old pro-

----------------- 2 The 6502 Microprocessor c=J 43

gram counter and flags to be restored (by pulling them from the
stack), thus allowing the main program to start up again where it
last left off.

As you might expect from its name, there is no way that you can
prevent an active NMI signal from being dealt with by the 6502,
that is, it cannot be "masked." This can cause serious difficulties
in situations where time-critical operations such as timing loops
and disk accesses are being performed, so devices do not generally
use the NMI signal except for the most important reasons (for
example, an anticipated power loss).

Interrupt Request (I RQJ

The maskable equivalent to the NMI signal is the IRQ signal.
When an IRQ signal is generated, the 6502 will take action on it
only if the I-flag in the processor status register is 0 (this can be
achieved using the CLI instruction). If the I-flag is set to 1 (using
the SEI instruction), then the IRQ signal will be ignored and no
further IRQ interrupts will be dealt with until one occurs after the
I-flag is cleared to 0 using a CLI instruction.

If the I-flag is 0 and an active IRQ signal is generated, then the
6502 will handle the interrupt by performing virtually the same
operations that take place when an NMI signal is generated. In
fact, the only differences are that the break flag in the processor
status register is cleared to 0 before it is placed on the stack and
that the address of the interrupt-handling routine is loaded from
the IRQ vector at $FFFE/$FFFF (low-order byte first). The address
stored at the IRQ vector on the //e is usually $FA40 (unless ProDOS
is active; see below).

The subroutine beginning at $FA40 first stores the contents of
the accumulator at location $45 and then determines whether the
cause of the interrupt was an IRQ signal or a BRK instruction
(BRK is discussed in the next section). If it was caused by an IRQ
signal, then control will pass to the address stored at user vector
locations $3FE and $3FF. Thus, to properly handle an IRQ inter
rupt, an interrupt-handling subroutine must be placed in memory
and its starting address must be stored at $3FE/$3FF. Alternately,
if ProDOS is being used, you·can install your interrupt-handling
routine by using a special ProDOS interrupt function. See Apple's
ProDOS Technical Reference Manual for more information on this
feature of ProDOS.)

The major shortcoming in the standard IRQ subroutine begin-

44 c=J Inside the Apple //e --------------------

ning at $FA40 is that it destroys the contents of location $45. This
location is used by DOS 3.3 as a temporary storage location and
if an interrupt occurs just before $45 is to be read, the results can
be disastrous.

If Pro DOS is being used, however, then the $45 problem no longer
exists. When ProDOS is performing any instructions that may use
$45, the IRQ vector (in bank-switched RAM) points to $FF9B, which
is the location of a subroutine that first saves the contents of $45
in a safe place in memory and then stores the accumulator in $45
as usual. It then modifies the stack so that when the user-installed
interrupt-handling subroutine ends, control will return to another
ProDOS subroutine that will restore the original value of $45 before
finally returning control to the main program. Lastly, it passes
control to location $FA42, which is just past the "STA $45" in
struction at the beginning of the standard IRQ subroutine that
begins at $FA40.

The BRK Instruction

One of the 6502's instructions allows you to simulate the effect
of an IRQ signal in software. This is the one-byte BRK (break)
instruction represented by a "00" byte. BRK is primarily used
when debugging a program because when a program encounters
it, control will be directed to a user-definable subroutine that can
display information relating to the state of the program at that
particular point. For example, the contents of important memory
locations and of the 6502 registers can be displayed. If the state is
not as expected, then you can start bug-hunting.

Whenever the 6502 encounters a BRK instruction, the B-flag in
the processor status register is set to 1 and then an interrupt se
quence much like the one generated by an IRQ signal is started
(the main difference is that the address stored on the stack is the
address of the BRK instruction plus two). Since the interrupt
handling routine used is the same one as that used for IRQ inter
rupts, that routine should properly check the status of the B-flag
to determine how the interrupt was caused. In fact, this is what is
done on the 1/e. Once the 1/e determines that the interrupt was
caused by a BRK, control is passed to the address stored at the
user vector locations $3F0 and $3Fl (low-order byte first). This
vector usually contains $FA59, the address of the subroutine that
displays the current contents of all the registers, but can be changed
to point to any other interrupt-handling routine that you care to
use.

---------------- 2 The 6502 Microprocessor r=:J 45

THE 6502 MEMORY SPACE ON THE //e

In this section, we are going to take a look at the layout of the
memory space that is available to the 6502 as implemented on the
1/e. This memory space can be thought of as being composed of
three parts: RAM, ROM, and input/output memory addresses. The
//e's RAM memory map is shown in Figure 2-3. Its ROM and I/0
memory map is shown in Figure 2-4.

In the following sections, we will encounter several situations
where the same logical memory address is used by more than one
actual physical memory location. The 1/e uses a set of special "soft

$FFFF

$F000 t-------1

$E000t------l
$Ox BANK1

$0000 '-----~ $BFFFn
$600 0

$400 0

$200 0

~'II ,..,..

')

$0C!Il0
$!1181/ll/l
$!114!111/l
$0200

$0000

HIGH-RES
PAGE2

HIGH-RES
PAGE1

$Ox BANK2

--TEXT /LOW-RES PAGE2
--TEXT/LOW-RES PAGE1
-- ZERO PAGE and STACK

Figure 2-3. Memory map of internal RAM.

46 c::J Inside the Apple //e ------------------

$FFFF

$F800

$F000

$E000

$0000

$C800
$C700
$C600
$C500
$C400
$C300
$C200
$C100
$C000

STANDARD
SYSTEM MONITOR

APPLESOFT
INTERPRETER

80-COLUMN FIRMWARE
EXPANSION ROM

SELF-TEST
SUBROUTINES

80-COLUMN FIRMWARE
EXTENSION TO STANDARD

SYSTEM MONITOR
l/0 MEMORY

INTERNAL ROM

PERIPHERAL-CARD
EXPANSION ROM

SLOT 7 PERIPHERAL ROM
SLOT 6 PERIPHERAL ROM
SLOT 5 PERIPHERAL ROM
SLOT 4 PERIPHERAL ROM
SLOT 3 PERIPHERAL ROM
SLOT 2 PERIPHERAL ROM
SLOT 1 PERIPHERAL ROM

PERIPHERAL-CARD ROM

Figure 2-4. Memory map of internal ROM and 1/0 memory and
peripheral-card ROM.

switches" to select which of these locations is to be active at any
given time. (A "soft switch" is a memory location that, when ac
cessed from a software program, causes a change in the lie's hard
ware environment.) This is necessary because the 6502 would be
come hopelessly confused if several locations sharing the same
address were active at the same time. We will be looking at the
soft switches that the //e uses to manage its memory space in Chap
ter 8.

RAM Memory

The area of RAM memory that is most often used on the //e
extends from locations $0000 to $BFFF and is contained in eight

----------------- 2 The 6502 Microprocessor [=:I 47

memory chips built in to the system motherboard. As indicated in
Figure 2-3, some regions within this range are dedicated for special
uses. Here is a summary of the usage of the internal (or "main")
RAM memory locations:

• $0000-$00FF. This is the 6502 zero page and it is used exten
sively by all parts of the lie's operating system, including the
system monitor (see Chapter 3), the Applesoft interpreter (see
Chapter 4), and the disk operating system (see Chapter 5). Those
locations available for use by your own programs are set out
in Table 2-5.

• $0100-$01FF. This is the 6502 stack area and is also used for
temporary data storage by the Applesoft interpreter (see Chap
ter 4).

• $0200-$02FF. This area of memory is normally used as an input
buffer whenever character information is entered from the key
board or from diskette (see Chapter 6).

• $0300-$03CF. This area of memory is not used by any of the
built-irt programs in the lie and so is available for use by your
own programs. It is an ideal location for storing small assem
bly-language programs that are called from Applesoft and most
of the examples presented in this book are to be loaded here.

• $03D0-$03FF. This area of memory is used by the disk oper
ating system, Applesoft, and the system monitor for the pur
pose of storing position-independent vectors to important sub
routines that can be located anywhere in memory (such as
interrupt-handling subroutines). See Appendix IV for a com
plete description of how this area is used.

• $0400-$07FF. This is pagel of video memory that is used for
displaying both the primary text screen and the primary low
resolution graphics screen (see Chapter 7). It is also used for
displaying one-half of the text screen when in 80-column mode.

• $0800-$0BFF. This is page2 of video memory that is used for
displaying both the secondary text screen and the secondary
low-resolution graphics screen (see Chapter 7). Since page2 is
rarely used, this area of memory is normally used for program
storage; in fact, the default starting position for an Applesoft
program is $801.

• $0C00-$1FFF. This area of memory is free for use.
• $2000-$3FFF. This is pagel of video memory that is used for

displaying the primary high-resolution graphics screen (see
Chapter 7).

• $4000-$5FFF. This is page2 of video memory that is used for
displaying the secondary high-resolution graphics screen (see
Chapter 7).

48 [::=J Inside the Apple //e --------------------

• $6000-$BFFF. This area of memory is normally free for use.
However, the upper part of it (above $9600) will be used if a
disk operating system is installed (see Chapter 5).

The motherboard also contains an additional16K of RAM mem
ory that is located from $D000 to $FFFF (the 4K block from $D000
to $DFFF is duplicated). The ProDOS disk operating system oc
cupies most of this area but if DOS 3.3 is being used, this area is
free for use by a program. This 16K area is called bank-switched
RAM and will be discussed in detail in Chapter 8.

If you have a standard 80-column text card installed in the aux
iliary slot of the 1/e, another 1K of RAM memory suddenly becomes
available to the 6502. This memory extends from $400 to $7FF and
is used to support the lie's special 80-column text display mode
and double-width low-resolution graphics mode (see Chapter 7).

If an extended 80-column text card is in the auxiliary slot, then
a total of 64K of auxiliary RAM memory is added to the //e. This
memory occupies the same address spaces as the 64K of built-in
RAM memory and so can be thought of as a "twin" memory space.
There are slight differences, however, in how some of the areas
within this memory are interpreted. For example, the two memory
areas corresponding to the page2 video areas in main memory are
not reserved for those purposes in auxiliary memory. Furthermore,
the two areas corresponding to page 1 video areas are not used for
video display purposes unless 80-column text mode is active or
unless a double-width graphics mode is active. These differences
will be discussed in greater detail in Chapter 7.

Input/Output (1/0J Memory

The lie's I/0 memory space corresponds to those addresses from
$C000 to $C0FF. Although these addresses may be read from or
written to in exactly the same way as normal RAM or ROM memory
locations, there is no memory stored at these locations. Instead,
whenever these locations are accessed, a physical change in the
system can be effected (e.g., the graphics display can be turned on,
the character set can be changed, or the disk drive motor can be
turned on), the status of an 1/0 device can be read, or data can be
transferred to or from the I/0 device. This method of handling
1/0 operations is called memory-mapped I/0.

For ~xample, consider the lie's keyboard. The keyboard has been
wired into the system in such a way that it can be be controlled
by using the locations $C000 and $C010 (see Chapter 6). To deter
mine whether a key has been entered, address $C000 is examined;
if bit 7 at this "location" (the keyboard strobe bit) is 1, then a key

---------------- 2 The 651212 Microprocessor [=:J 49

has indeed been entered. Address $C010 is accessed to clear the
keyboard strobe bit. Even though an address is referred to in order
to read and clear the keyboard, there is no memory chip on the
lie that corresponds to this address.

All of the lie's I/0 memory locations will be discussed in later
chapters. A summary of the meaning of each of these locations is
contained in Appendix III.

ROM Memory

As you can see from Figure 2-4, ROM memory on the lie extends
from locations $C100 to $FFFF. However, part of this memory
space (from $C100 to $CFFF) is duplicated: one area represents
built-in internal ROM, and the other represents memory contained
on devices connected to the lie's seven peripheral slots. Here is a
summary of ROM memory usage:

• $Cl00-$C7FF. This is the peripheral-card ROM space. One page
of ROM is reserved for use at each slot: $C100 ... $C1FF for
slot 1, $C200 ... $C2FF for slot 2, and so on (see Chapter 11).

• $C800-$CFFF. This is the peripheral-card expansion ROM space.
Each peripheral card can contain a block of memory that uses
these addresses (see Chapter 11).

• $Cl00-$CFFF. This is the internal 80-column firmware ROM
that contains extensions to the system monitor, subroutines to
support the 80-column text display, and self-test subroutines.

• $DOOO-$F7FF. This is the Applesoft ROM space (see Chapter
4).

• $F800-$FFFF. This is the standard system monitor ROM space
(see Chapter 3).

Table 2-5. 6502 zero page locations not used by the
System Monitor, Applesoft, DOS 3.3, or ProDOS

Available Locations:

$06 $07 $08 $09
$19 $1A $18 $1C $10 $1E
$CE $CF

$07
$E3
$E8 $EC $ED $EE $EF

$FA $F8 $FC $FD $FE $FF

50 c::::::::J Inside the Apple //e --------------------

The permanent programs contained within these ROM areas are
often called "firmware" to distinguish them from "software" that
is loaded into RAM memory from a diskette.

Note that the addresses used by the Applesoft and system mon
itor ROMs ($D000 ... $FFFF) are the same as the ones used by the
lie's bank-switched RAM space.

FURTHER READING FOR CHAPTER 2

On 6502 assembly-language programming ...
MCS65@@ Microcomputer Family Programming Manual, MOS

Technology, Inc., 197 6. This book comes straight from the man
ufacturer.

R. Zaks, Programming the 65@2, Sybex, 1978.
L.A. Leventhal, 65@2 Assembly Language Programming, Osborne/

McGraw Hill, 1979.
M.L. DeJong, Programming & Interfacing the 65@2, With Exper

iments, Howard W. Sams & Co., Inc., 1980.
D. Inman and K. Inman, Apple Machine Language, Reston Pub

lishing Company, Inc., 1981.
R. Wagner, Assembly Lines: The Book, Softalk Books, 1982.
R.C. Haskell, Apple II 65@2 Assembly Language Tutor, Prentice

Hall Inc., 1983.
On enhancements to the 6502 microprocessor ...

S. Hendrix, "The CMOS 6502," Byte, December 1983, pp. 443-
452. This article reviews some of the limitations of the 6502
and introduces the new 65C02 microprocessor.

On machine cycle time ...
S. Wozniak, "Impossible Dream: Computing e to 116,000 Places

With a Personal Computer," Byte, June 1981, pp. 392-407. This
article has interesting comments on the 6502's effective ma
chine cycle time on the Apple II.

On interrupts ...
G.M. White, "Using Interrupts on the Apple II System," Byte,

May 1981, pp. 280-294. A good analysis of how interrupts are
handled on the Apple II (in software and hardware).

D. Fischer and M.P. Caffrey, "Go On and Interrupt Your Apple,"
Softalk, March 1982, p. 47

D. Fischer and M.P. Caffrey, "Go On and Interrupt Your Apple,"
Softalk, April 1982, p. 65

---------------- 2 The 6502 Microprocessor CJ 51

R.L. Emerson, "Interrupts and Apples," Call -A.P.P.L.E., Febru
ary 1983, p. 35.

On memory usage by the 6502/ Apple II ...
W.F. Luebbert, What's Where in the Apple, Micro Ink, Inc., 1982.

This book contains a comprehensive memory map for the Ap
ple II.

Assemblers (software) ...
The following assemblers operate in DOS 3.3:
G. Bredon, BIG MAC Macro Assembler, A.P.P.L.E., 1981.
Apple 65@2 Assembler/Editor, Apple Computer, Inc., 1980.
B. Sander-Cederlof, S-C Macro Assembler, S-C Software Corpo-

ration, 1983.
R. Hyde, LISA, Sierra On-Line Inc., 1981.
G. Bredon, Merlin, Roger Wagner Publishing, Inc., 1982.
The following assemblers operate in ProDOS:
G. Bredon, Merlin Pro, Roger Wagner Publishing, Inc., 1984.
ProDOS Assembler Tools,Apple Computer, Inc., 1983.

3
The System Monitor

The system monitor is a machine-language program that resides
in the lie's ROM area and whose "cold-start" entry point to a special
command interpreter is located at $FF59. It is called a "monitor"
because it supports several commands that allow you to quickly
and easily view and modify the contents of memory locations,
programs loaded into memory, or 6502 registers. In addition, com
mands are available that can be used to run programs, to assist in
the debugging of programs, and to perform general housekeeping
functions (such as data movement or data comparison).

The subroutines that make up the system monitor take up two
large parts of the lie's internal ROM area. The first part resides
from $F800 to $FFFF and the second part from $C100 to $CFFF.
Generally speaking, the first part is comparable to the standard
system monitor ROM that resided at the same locations in the
earlier Apple II and Apple II Plus computers; the code is not iden
tical, but virtually all of the starting addresses for its commonly
used subroutines are the same as on older models. The internal
ROM area from $C100 to $CFFF is found on the //e only and pro
vides the additional space needed for the longer subroutines re
quired to support the lie's 80-column video display mode and also
to hold its special self-test subroutines (see Chapter 5). The areas
used to support these two new functions are as follows:

$ C 1 0 0- $ C 3F F)-Contains extensions to standard system
$ CB 0 0- $ CFFF) monitor subroutines and special subroutines

that are used when an 80-column text card
has been installed.

$ C 4 0 0- $ C 4 F F -Self-test subroutines

The subroutines contained within the system monitor perform
most of the fundamental input/output (IIO) tasks needed to support
programs running on the //e. Such tasks include reading a character
from the keyboard, displaying a character on the video display,
displaying graphics on the video display, and reading the game
paddle input. Other subroutines required to support the monitor
commands themselves are also found here, of course. In addition,

53

54 c:::::J Inside the Apple //e --------------------

there are numerous utility subroutines used by the code performing
these tasks and commands. In the last section of this chapter, we
will identify some of the more useful subroutines that can be ac
cessed from Applesoft by using the CALL command or from as
sembly language by using the JSR Uump-to-subroutine) or JMP
Uump) instructions.

The usefulness of the system monitor is greatly enhanced by the
fact that, being in ROM, its subroutines and command interpreter
are always easily accessible. There are three main entry points to
the system monitor command interpreter-OLDRST ($FF59), MON
($FF65), and MONZ ($FF69)-and control can be passed to them
from Applesoft direct mode by entering the commands "CALL
-167", "CALL -155", and "CALL -151", respectively. (Note that
Applesoft considers a "negative" decimal address to be equivalent
to the standard positive address minus 65536; for example, $FF69
can be represented as 65385 or 65385-65536 = - 151.) After this
has been done, the system monitor prompt symbol (the asterisk
"*") will appear and you can begin to enter any of the commands
that the system monitor supports (or, if DOS is active, any valid
DOS commands).

The lie reacts slightly differently to each of the above three CALLs
to its standard entry points. The cold-start entry point, OLDRST
(-167), will initialize "normal" video mode (white characters on
a black background), select the full-screen text video mode, and
then enable the standard keyboard input and video screen output
subroutines. It also deactivates the lie's disk operating system (DOS)
so that it must be reactivated before returning to Applesoft (see
the discussion below of the BASIC and CONTINUE BASIC com
mands). After this has been done, control passes to the primary
warm-start entry point, MON (-155), where the 6502's decimal
mode flag is cleared (to force binary arithmetic) and the speaker
is beeped. Control then passes to the secondary warm-start entry
point, MONZ (- 151), which takes care of setting up the" t/' prompt
symbol and interpreting commands that are entered from the key
board. MONZ is the entry point that is most commonly used to
enter the system monitor command interpreter.

THE SYSTEM MONITOR COMMANDS

The commands that the system monitor supports are summa
rized in Table 3-1. Before we take a detailed look at these com
mands, let's review the general command entry rules that must be
followed.

------------------ 3 The System Monitor c=J 55

First of all, the system monitor "thinks" in hexadecimal. This
means that it displays all addresses or data in a standard hexa
decimal format and that all information must be provided to it in
this format as well. Decimal numbers cannot be used.

Addresses (from $0000 ... $FFFF) must normally be specified as
four hexadecimal digits but leading zeros may be omitted if you
wish. If an address is entered that is longer than four digits, only
the last four digits specified are used. Similarly, byte values (from
$00 ... $FF) must normally be specified as two hexadecimal digits
but, again, a leading zero may be omitted. If more than two digits
are specified for a byte value, only the last two are used.

The DISPLAY Command : Displaying the
Contents of Memory

After you have entered the system monitor, you can quickly read
and display what is stored in any particular memory location by
simply entering the hexadecimal address of the location and press
ing <RETURN>. For example, to display the number that has
been stored at $FD0C, you would enter

FDOC
(followed by <RETURN>, of course) and the system monitor will
respond with

FDOC- A4
where A4 is the hexadecimal value of the byte stored at $FD0C.
You can also just press <RETURN> by itself to display the con
tents of the locations immediately after the last one acted on, up
to the edge of the next 8-byte boundary (i.e., locations ending in
"7" or "F").

The contents of an entire range of memory can be displayed at
once by typing in the first address, a period("."), and then the last
address. For example, to examine the 17 bytes of the system mon
itor ROM area from $F801 to $F811, you would enter

F801. F811
and you would see the following values displayed (this is called a
"hex dump"):

F801- 08 20 47 F8 28 A9 OF
F808- 90 02 69 EO 85 2E B1 26
F810- 45 30

After the first line, where only those bytes up to the edge of the
next 8-byte boundary are displayed, eight bytes will be displayed

56 c::=J Inside the Apple //e -------------------

per line until the very last line where the last few remaining bytes
are displayed. The two-digit values after the dash in each line
represent the bytes stored at the address displayed immediately
before the dash and in succeeding memory locations.

Table 3-1. Summary of system monitor commands.

Command
Name Syntax Description

DISPLAY addrl.addr2 Displays the contents of
memory from "addr 1 " to
"addr2".

STORE addr1 :b1 b2 ... Stores the values of bytes
"b 1 ", "b2 ", ... into
memory locations
beginning at "addr 1 ".

MOVE addr3<addrl.addr2M Moves the block of
memory from "addrl" to
"addr2" to the block
beginning at "addr 3".

VERIFY addr3<addr1.addr2V Compares the block of
memory from "addr1" to
"addr2" to the block
beginning at "addr3" and
displays any differences.

EXAMINE <CTRL-E> Displays the current values
stored in the 6502
registers.

GO addrlG Runs the program
beginning at "addr 1 ".

LIST addr1L Disassembles 20 lines of a
machine language program
beginning at "addr 1 ".

NORMAL N Set normal video.
INVERSE I Set inverse video.
ADD b1+b2 Adds the bytes "b1" and

"b2" and displays the
result.

SUBTRACT b1-b2 Subtracts byte "b2" from
byte "b 1" and displays the
result.

BASIC <CTRL-B> Causes the system to enter
Applesoft (cold).

CONTINUE <CTRL-C> Causes the system to enter
BASIC Applesoft (warm).

------------------- 3 The System Monitor c=J 57

Table 3-1. Summary of system monitor commands
(continued).

Command
Name

USER

READ

WRITE

Syntax

<CTRL-Y>

addrl.addr2R

addrl.addr2W

KEYBOARD slot <CTRL-K>

PRINTER slot <CTRL-P>

Description

Causes the system to jump
to location $3F8.
Reads data from cassette
tape into memory from
"addrl" to "addr2".
Writes data from "addrl"
to "addr2" to cassette tape.
Causes the device in "slot"
to become source of input.
Causes the device in "slot"
to become the current
output device.

"bl ", "b2" represent byte values (in hexadecimal)
"addrl ", "addr2 ", "addr3" represent addresses of memory locations (in

hexadecimal)
"slot" represents a peripheral expansion slot number (1 ... 7)

The STORE Command : Changing the Contents
of Memory

It is often handy to be able to quickly enter data into memory
locations. You may want to do this in order to provide data to a
program, or even to enter the program itself. The system monitor
makes this easy by providing you with a convenient command to
do this.

To change the contents of memory, you must first type in the
address of the first location to be changed, followed by the STORE
command (a colon), and then the values of the bytes to be stored
in that location and succeeding locations, separated by spaces. For
example, to place the values $3E, $22, $24, $00, and $29 into ad
dresses $300 through $304, you would enter the command

300:3E 22 24 0 29
(The number of bytes that can be stored after the colon is limited
by the fact that only 255 characters can be entered on one line.
This allows about 83 data bytes to be specified.)

To continue entering values at this point, you can simply type

58 CJ Inside the Apple //e --------------------

a colon followed by more data bytes separated by spaces. The
address at which the first byte will be stored will automatically
be assumed to be the one after the last one that was accessed. Thus,
if you entered the command

:44 33
immediately after entering the above command, address $305 would
contain $44 and address $306 would contain $33.

All of the machine language programs that will be presented in
this book can be entered using this technique. To understand how
to do this, first refer to Table 3-2, which sets out the assembler
source listing of a sample program after the assembly process has
been completed. This program doesn't do anything really useful,
it just prints out all digits from 0 to 9 on the video screen and then
stops. What we are really interested in is seeing how to interpret
this listing and how it can be used to allow you to enter the program
into memory.

First remember that the assembler-listing format used in this
book is that used by the BIG MAC assembler only and that if you
are using any other assembler the format may be different. For
tunately, however, formats from one assembler to another are gen
erally quite similar.

The assembler-listing format is made up of six general fields.
The first field is the address and data field and can be found at the
far left of the listing. Each line in this field contains an address
used by the program followed by the data byte stored at that ad
dress and, in certain cases depending on the type of instruction,
at the following one or two addresses as well. This information is
all you need to be able to enter the program from the monitor
because it is in exactly the same format used by the STORE com
mand. To enter the program, all you must do is enter the following
STORE commands:

300:A2 0
302:8A
303:9 80
305:20 ED FD
308:E8
309:EO A
308:DO F5
30D:60

Since the program is so short, you could also enter the whole
program using just one long STORE command:

300:A2 0 8A 9 80 20 ED FD E8 EO A DO F5 60

The rest of the fields in the listing simply relate to the source

Table 3-2. An example of a 6502 assembly-language program.

Page #01

: A S M

0300: A2 00
0302: 8A
0303: 09 BO
0305: 20 ED FD
0308: E8
0309: EO OA
030B: DO F5
030D: 60

~

Address and
data field

1 ******************
2 * SAMPLE PROGRAM *
3 ******************
4
5 GOUT EQU $FDED
6
7 ORG $300
8
9 LDX #0
1 0 DIGITOUT TXA
1 1 ORA #$BO
1 2 JSR GOUT
1 3 INX
1 4 CPX # 1 0
15 BNE DIG IT OUT
16 RTS
1 7
,.~ "-v-' ~

Line Label Instruction Operand
number field field field
field

;Character output subroutine

;Put digit in A
;Convert to ASCII digit

;Go to next digit
;Done?
;No, so loop

'- 'V" ../

Comment field

w
-1
-:r
CD

en
<
Ul
rt
CD
3
~
0
::l
c:;:
0 ..,

D
Ul ca

60 c:J Inside the Apple //e -------------------

code that gave rise to the machine language bytes that make up
the program. These are, in order, the line number field, the label
field, the instruction field, the operand field, and the comment
field.

A faster way to enter a machine language program is, of course,
to load it directly from diskette using the DOS 3.3 or ProDOS
BLOAD command. This is done by entering the command

BLOAD FILENAME,Aaddr
where "FILENAME" represents the name of the binary file to be
loaded and "addr" represents the decimal starting address at which
it is to be loaded, or, if the address is preceded by"$", the hex
adecimal starting address. The ",Aaddr" suffix is optional; if the
suffix is omitted, the program will be loaded at the position it was
in when it was originally saved to diskette using the BSAVE com
mand.

The MOVE Command Copying the Contents of
Memory

It is sometimes necessary to copy the contents of one block of
memory to another part of memory. Two common situations where
such a move would be performed are when an assembly-language
program is being relocated or when a data block is being duplicated
because it may be overwritten by subsequent operations and you
don't want to lose it.

You could perform the move by examining the contents of all
the memory locations in question and then entering these values
at the new locations using the DISPLAY and STORE commands,
but there is an easier way: you can use the MOVE command. The
syntax of this command is as follows:

{destination}<{sourceS}.{sourceE}M
where {destination} represents the address to which the block of
memory is to be moved (the destination address), {sourceS} rep
resents the starting address of the block to be moved (the source
starting address), and {sourceE} represents the ending address of
the block to be moved (the source ending address). For example,
to move the program that you just entered in the previous section,
which resides from $300 through $30D, to locations $1000 through
$100D, you would enter the command

1000<300.30DM

------------------- 3 The System Monitor r=::J 61

To see that the move has, in fact, been performed, enter the fol
lowing two commands:

300.300
1000.1000

and compare the two hex dumps. They will be identical apart from
the address indicators.

When moving a block of memory, you must ensure that the des
tination address is not within the range of addresses defined by
the source block. If it is, then the block will not be properly moved
because the area of the source block from the destination location
to the end of the block will be overwritten before it is actually
moved. This occurs because the byte stored at the lowest-addressed
location in the source block is moved first, followed by the rest of
the bytes in increasing order of address until the end of the block
is reached. For example, if the move command

301<300.300M
is entered, the block of memory from $3fi:H to $30E will not contain
an image of $300 to $30D before the move but rather will be filled
with the value of the byte stored at $300. You can see why by
visualizing the steps that are followed to perform the move: first,
the byte at $300 is moved into $301, then the byte at $301 (which
has just been overwritten) is moved into $302, and so on. This type
of move is handy for quickly storing the same values at locations
throughout an area of memory, but not much else.

One important note on using the MOVE command to relocate
machine language programs: many programs will not operate
properly at their new locations unless they are modified first. Any
program that uses JMP Uump) or JSR Uump-to-subroutine) in
structions to transfer control to areas that are within the block
being moved, or that read from or write to addresses within that
block, fall within this "unrelocatable" category. This problem arises
because such instructions refer to absolute memory locations, lo
cations that will not be meaningful after the program has been
moved. The easiest way to make a program operate at a new lo
cation is to reassemble it at the new location and then enter the
new data bytes that the assembler generates. This can be done by
changing the operand of the ORG (for "origin") statement in the
assembler source listing (see line 7 of the sample program in Table
3-2) to reflect the new starting address of the program. You could
also patch the program manually to fix up all such absolute ref
erences in the program by replacing them with the new absolute
addresses (low-order byte first), but this is time consuming and
prone to error.

62 c:=J Inside the Apple //e -------------------

The VERIFY Command Comparing Ranges of
Memory

Another useful chore that can be performed by the system mon
itor is the comparison of the contents of two blocks of memory.
Comparisons are commonly made for the purposes of determining
the locations at which two similar programs (usually related re
visions) differ from one another.

You could perform the comparison manually by repeatedly using
the DISPLAY command but this would be tedious at best, espe
cially for long data blocks. The process can be automated, however,
by using the VERIFY command. The syntax for this command is
as follows:

{block2}<{blockS}.{blockE}V
where {block2} represents the starting address of the block of mem
ory to which comparisons will be made, {blockS} represents the
starting location of the main block, and {blockE} represents the
ending location of the main block. When the command begins to
execute, each byte in the main block will be compared with its
corresponding byte in the other block. If there are any differences,
then they will be printed out in the following format:

{address}-34 <EA>
where {address} is the address of the byte in the main block that
is different, the first (unbracketed) data byte represents the value
of that byte in the main block and the second number represents
the value of that byte in the other block.

The EXAMINE Command : Examining the 6502's
Registers

The system monitor reserves several locations in zero page for
temporary storage of the 6502's internal registers, A, X, Y, P, and
S. All of these registers (except for the stack pointer, S) are loaded
with the values stored at these locations whenever the monitor's
GO command is entered (see below). This allows you to properly
initialize the 6502 registers before executing any assembly-lan-e
guage program.

The saved contents of the 6502's internal registers can be ex
amined at any time by using the EXAMINE command by entering
the following control character:

<CTRL-E>

------------------- 3 The System Monitor c:::J 63

(Recall that this notation means "press the CONTROL key and,
while it is being held down, press theE key.") When the EXAMINE
command is entered, the currently saved values of each of the five
6502 registers will be displayed in the following format:

A=02 X=CC Y=DB P=OO 5=87

In this list, A represents the accumulator, X andY represent the
X andY index registers, P represents the processor status register,
and S represents the stack pointer. The two-digit hexadecimal
number after each "equal" sign indicates the current value of the
corresponding register.

Immediately after the <CTRL-E> command has been entered
and the contents of the registers have been displayed, you can set
any of the register locations to any value that you want by entering
a colon followed by the new values for the contents of the registers,
separated by spaces. The new values must be entered in the order
in which the registers are displayed. If you want to change some,
but not all, of the registers, then you will have to enter the current
values for those of the other registers that are displayed before the
last one that you wish to change.

For example, if you want to set the X register to $33 and leave
the other registers unchanged, you would enter the command

:02 33
where 02 represents the current value of the accumulator.

The <CTRL-E> command is primarily used as a debugging tool
when developing an assembly-language program. Program sub
routines that require certain registers to be initialized in certain
ways before they will perform properly can easily be tested by
setting up the registers after entering <CTRL-E> and then exe
cuting the subroutine.

The GO Command : Running a Program

You can run any machine-language program that is contained
in memory by using the monitor's GO command. To do this, you
must type in the starting address of the program followed by "G"
and then press <RETURN>. Before control is passed to the pro
gram, the 6502's A, X, Y, and P registers are loaded with the values
last set by the EXAMINE command (see above). When the program
stops running, you will usually return to the system monitor com
mand interpreter and see the"*" prompt symbol once again.

For example, if you want to run a program that starts at location

64 c:=:l Inside the Apple //e --------------------

$300, then you would enter the command

300G

When the program stops running, the monitor's prompt symbol
will reappear.

The LIST Command : Disassembling Assembly
Language Programs

The LIST command can be used to translate bytes in any area
of memory into the assembly-language mnemonics they represent
and to display the listing on the screen. This command essentially
reverses the process performed by an assembler and so the function
it performs is called "disassembly."

A disassembled listing of memory is much more comprehensible
and informative to a programmer than a simple hex dump that
only displays raw numbers. It is especially useful as an aid in
debugging assembly-language programs that have been loaded into
memory. The syntax associated with the LIST command is as fol
lows:

{address}L
where {address} represents the address at which you want to begin
the listing. A total of twenty disassembled lines will be displayed
for each "L" specified after the address.

Let's examine an area of the lie's system monitor ROM to observe
the format in which the LIST command generates its output. As
we will see later, the basic character input routine used by the
monitor begins at location $FD0C and is called RDKEY. To disas
semble the RDKEY subroutine, enter the command

FDOCL

and you will see the following 20-line display:
*FDOCL

FDOC- A4 24 LDY $24
FDOE- B1 28 LDA ($28>,Y
FD10- 48 PHA
FD11- 29 3F AND #$3F
FD13- 09 40 ORA #$40
FD15- 91 28 STA ($28>,Y
FD17- 68 PLA
FD18- 6C 38 00 JMP ($0038)
FD1B- AO 06 LOY #$06
FD1D- 4C B4 FB JMP $FBB4

------------------- 3 The System Monitor c:::::J 65

FD20- EA
FD21- 20
FD24- AO
FD26- 4C
FD29- 8D
FD2C- 28
FD2D- 60
FD2E- 60
FD2F- 20
FD32- 20

oc FD
07
84 FB
06 co

21 FD
AS FB

NOP
JSR
LDY
JMP
STA
PLP
RTS
RTS
JSR
JSR

$FDOC
#$07
$FBB4
$C006

$FD21
$FBAS

Each line in this listing represents a starting address, the ma
chine language bytes representing the 6502 instruction opcode and
its operand, the three-letter mnemonic for the instruction, and the
formatted operand. Note that operands that have a"$" prefix rep
resent an address and that those that have a"#$" prefix represent
immediate hexadecimal data. In addition, the operand after any
branch instruction (BEQ, BNE, BPL, and so on) is the absolute
address of the "branched-to" location rather than the relative ad
dress of that location. The 6502 uses relative addresses only, but
it is the absolute address that is usually more meaningful because
it allows a programmer to more easily follow the flow of the pro
gram.

Note that you can continue to disassemble twenty more lines
beginning at the address immediately after the last disassembled
byte by entering the "L" command without an address. Multiple
"L'"s can also be entered to disassemble more than twenty lines
at once; for example, "LLLL" allows you to disassemble eighty
consecutive lines.

When you are disassembling an area of memory you may some
times see a"???" indicator in the opcode field instead of a standard
6502 mnemonic. The system monitor's disassembler subroutine
uses this triad of question marks whenever it is unable to convert
the contents of memory into a valid 6502 instruction. This might
happen if you are attempting to disassemble an area of memory
that contains program data or ASCII text rather than instructions,
or if you begin disassembling in the "middle" of an instruction
(remember that 6502 instructions can be up to three bytes long).
If you suspect that you have started in the middle of an instruction,
try disassembling from a location that is one or two locations away
from the original starting location.

In many cases, a data area will erroneously be interpreted as a
series of valid instructions by the disassembler. For example, a
zeroed out data area would appear as a series of BRK instructions.
This is because the machine language byte for BRK is 00. Such
data areas are usually obvious, however, because the "program"
they appear to define is clearly meaningless or out of context.

66 c:::::J Inside the Apple //e -------------------

The NORMAL and INVERSE Commands
Changing Video Display Modes

Monitor operations that affect the video display can be per
formed either in normal video (white characters on a black back
ground) or in inverse video (black characters on a white back
ground). To select the inverse video format, enter the command

I <RETURN>
To select the normal video format, enter the command

N <RETURN>
You will probably not have to use these commands very often.

The ADD and SUBTRACT Commands : Simple
Arithmetic

You can perform simple one-byte hexadecimal arithmetic while
in the system monitor by taking advantage of its ADD and SUB
TRACT commands. To add two numbers together, you would enter
the command

{number1}+{number2}
where {numberl} and {number2} represent the two one-byte hex
adecimal numbers to be added. The result of the addition will be
shown on the next video display line.

The subtraction command is similar. To subtract one number,
say {number2}, from another, say {numberl}, you would enter the
command

{number1}-{number2}
and the result will be calculated and displayed.

The result that either the ADD or SUBTRACT command displays
is a one-byte number only. This means that any overflow or un
derflow in the arithmetic calculation is ignored.

The BASIC and CONTINUE BASIC Commands
Entering Applesoft

The system monitor supports two commands that can be used
to transfer control from the monitor to Applesoft direct mode (as
indicated by the "]" prompt symbol). These are the <CTRL-B>
and <CTRL-C> commands. There are also subroutines that can

------------------- 3 The System Monitor c=J 67

be called to enter Applesoft that begin at $0000 (with or without
DOS) and $03D0 (only when DOS is being used).

The BASIC command, <CTRL-B>, is used to re-enter Applesoft
in such a way as to cause it to be reinitialized. This is called a
"cold start" and will cause any Applesoft program which may be
residing in memory to be destroyed.

The CONTINUE BASIC command, <CTRL-C>, is used to re
enter Applesoft in such a way that the existing Applesoft program
and the values of its variables are not affected at all. This is called
a "warm start." An alternate way to warm-start Applesoft is to call
a subroutine that begins at $0000 by entering the command "0G".

The effect on the disk operating system, be it DOS 3.3 or ProDOS,
must also be considered when moving to Applesoft from the mon
itor. If you are using DOS 3.3 and the monitor was entered with
either a CALL -151 or CALL -155 command (the warm-start
entry points), then DOS 3.3 will still be active upon the return to
Applesoft using <CTRL-B> or <CTRL-C>. If you are using ProDOS,
the <CTRL-C> command works fine, but the <CTRL-B> com
mand will cause a NO BUFFERS AVAILABLE error message to be
displayed whenever a ProDOS I/0 command is attempted. This
renders ProDOS useless and so you should never use <CTRL-B>
to return to ProDOS.

If the monitor was entered via its cold-start entry point with a
CALL -167 command, both DOS 3.3 and ProDOS will be deac
tivated after a <CTRL-B> and <CTRL-C> command is entered to
cause a return to Applesoft. In this situation, DOS 3.3 can be reac
tivated by entering a CALL 1002 command and the program and
its variables will not be affected. Similarly, ProDOS can be reac
tivated by entering a CALL 976 command, but this causes the
values of any active program variables to be cleared. Note, how
ever, that even after the CALL 976 is entered, ProDOS will still be
rendered unusable if it was entered with a <CTRL-B> command
for the reasons given in the previous paragraph.

Applesoft can always be entered with the DOS active by using
a "3D0G" command ($3D0 is the address of a subroutine that
performs a warm-start of DOS 3.3 or ProDOS), but this method is
not recommended because of zero page memory conflicts between
DOS 3.3 or ProDOS and the system monitor. A further problem
arises if ProDOS is being used: a 3D0G re-entry will clear any active
program variables.

In summary, to ensure that you never deactivate DOS (either
DOS 3.3 or ProDOS) or clear the values of any active Applesoft

68 CJ Inside the Apple //e --------------------

program variables, you should always enter the monitor at one of
its two warm-start entry points (-151 or -155) and always return
to BASIC using the <CTRL-C> command.

The USER Command : User-Defined Commands

The system monitor is flexible enough to allow you to define the
actions to be taken whenever its special USER command, <CTRL
Y>, is entered. The <CTRL-Y> command causes the monitor to
perform an unconditional jump to location $3F8. By placing a 6502
JMP instruction there (which behaves like an Applesoft GOTO),
followed by the two-byte address (low byte first) of the start of the
subroutine that you want to execute, you can easily make the <CTRL
Y> command execute any program you wish.

Let's take a look at a simple example of how to take advantage
of the USER command. The first thing you have to decide is what
you want to happen when <CTRL-Y> is pressed-that's easy. Then
you must write the program to perform what it is you want to
do-not so easy. We can, however, make use of subroutines that
already exist in the lie's ROM areas to perform many useful chores.
For example, there is a subroutine beginning at $FC58 that can be
called to clear the video screen and a subroutine beginning at
$FD0C to read a key from the keyboard. To set things up so that
when the USER command is entered, the system pauses until a
key is pressed and then clears the screen, a" JMP $0300" instruction
must be set up at $3F8 and then "JSR $FD0C" and "JMP $FC58"
instructions must be stored beginning at $300. This can be done
by using two STORE commands as follows:

3F8:4C 00 03
("4C" is the opcode for the JMP instruction and "00 03" is the
address of the user-defined subroutine-low-order byte first) and

300:20 OC FD 4C 58 FC
where "20 0C FD" are the data bytes for "JSR $FD0C" ($20 is the
opcode for the JSR instruction) and "4C 58 FC" are the data bytes
for "JMP $FC58". Now when you enter <CTRL-Y> the lie will wait
until you press a key and then the screen will be cleared!

Note that you cannot simply place the entire subroutine at $3F8,
because only locations $3F8 to $3FA are reserved for use by the
USER command. Locations after that are reserved for other pur
poses and must not be overwritten.

Parameters can be passed to the USER command by storing
them in memory just before the monitor executes the USER com-

------------------ 3 The System Monitor c=J 69

mand. This can be done by using the STORE command. If the
parameters to be passed represent addresses, there is a much more
convenient way to pass up to three of them. For example, if the
USER command is entered as follows:

addr1<addr2.addr3<CTRL-Y>

then "addrl" will be stored at monitor locations A4L ($42) and
A4H ($43), "addr2" will be stored at AlL ($3C) and AlH ($3D), and
"addr3" will be stored at A2L ($3E) and A2H ($3F). Each of these
addresses is stored with its lower two digits in the first of the two
memory locations specified for each parameter. Two addresses can
be passed (in AlL!AlH and A2LIA2H) by removing the "addrl <"
part in the above command line and one address can be passed
(in AlL/AlH) by removing the "addrl <addr2." part.

The READ and WRITE Commands Cassette
Tape 1/0 Commands

The system monitor also supports two commands that can be
used to save a block of data on cassette tape or to read a block of
data from cassette tape.

The WRITE command is used to to save a block of bytes to tape
and is used by entering the following command:

{address1}.{address2}W

where {addressl} represents the starting address of the block and
{address2} represents the ending address of the block. Just before
you press <RETURN> to enter this command, the tape recorder
must be properly connected to the 1/e and placed in record mode.

The READ command is used to retrieve a block of bytes from
tape and is used by entering the following command:

{address1}.{address2}R

where {addressl} and {address2} represent the starting and ending
addresses of the block of data to be read in. Of course, just after
you press <RETURN> you must begin playing the tape by pressing
the PLAY button on the recorder.

You should note that if the block size specified in the READ com
mand is not the same size as the block you are attempting to read
from the tape, then an error message will be displayed. To avoid
this type of error, you should always write down the starting and
ending locations of a block of memory whenever it is saved to tape.

70 [=:::1 Inside the Apple //e --------------------

The KEYBOARD and PRINTER Commands
Redirecting Input and Output

The system monitor provides two simple commands that allow
you to easily redirect the source of character input and output to
a program that resides on any one of the lie's seven expansion slots.
These are the KEYBOARD, <CTRL-K>, and PRINTER, <CTRL
P>, commands, respectively. They perform exactly the same func
tions as Applesoft's IN# and PR# commands.

The syntax associated with both of these commands is similar:

{slot number}<CTRL-K>

for the KEYBOARD command and

{slot number}<CTRL-P>

for the PRINTER command, where {slot number} is a digit from
1 to 7 representing the peripheral expansion slot to which you wish
to pass control. You can also specify a slot number of 0; if you do
this when entering the KEYBOARD command, the keyboard will
become the source of character information. If you do this when
entering the PRINTER command, the video screen will become
the current output device.

The KEYBOARD command is usually used to "connect" alter
nate input devices such as an external keyboard or a modem to
the lie by vectoring all requests for input to them. The PRINTER
command is usually used to activate a printer so that you can
obtain a hardcopy printout of your activities while in the monitor.
To turn on a printer that is connected to an interface card in slot
1, you would enter the command

1<CTRL-P>

After this is done, all outputted characters will be sent to the
printer instead of the video screen.

Another common use for the PRINTER command is to "boot"
the disk drive. If your disk drive is connected to a disk interface
card in slot 6, then the command to be entered is

6<CTRL-P>

Note that whenever the KEYBOARD or PRINTER command is
entered, the monitor jumps to location $Cs00 (where "s" is the slot
number specified), which is the first address of a program located
in a ROM area dedicated to the particular slot in question (see
Chapter 11). Thus, it is the program in the ROM that dictates

------------------- 3 The System Monitor c=J 71

exactly how the I/0 is to be redirected and it is conceivable that
I/0 may not be redirected at all.

I/0 is redirected on the 1/e by changing the addresses stored in
two vectors in zero page, the input link and the output link. The
use of these links will be discussed in detail in Chapters 6 and 7.

Note that because of the way DOS 3.3 and ProDOS operate, the
KEYBOARD and PRINTER commands may not work properly in
a DOS environment. This is because DOS is forever storing the
addresses of its input and output subroutines in the I/0 links; as
soon as this is done, the new input or output device is disconnected.
Methods of avoiding these problems will also be discussed in Chap
ters 6 and 7.

MULTIPLE COMMANDS ON ONE LINE

All of the examples that we have given so far have contained
only one monitor command per line. The monitor is not fussy about
this, however, and you can actually put as many commands on
one line as that line can hold (a line must be less than 256 char
acters long).

There are a few syntactical rules to follow, however. First of all,
each command on the line must be separated from the next one
by a space unless both adjacent commands are one of the letter
commands (L, G, W, R, M, V, I, N), in which case they can be
jammed together.

Second, any command that immediately follows the data bytes
after the STORE command must be a letter command without a
preceding address. A convenient command to use for this purpose
is the NORMAL command ("N") since it is really a "do-nothing"
letter command.

Let's look at a few examples of multiple command entry to see
how it works.

1. 300LLL will disassemble 60 lines of a program at once.
2. 300:4C 3A FF N 300G will enter a short program beginning

at $300 to beep the speaker and then execute it (note the
"N" after the data bytes of the STORE command).

3. 300.320 800.830 will display two separate blocks of memory,
one after the other.

4. 3F8:4C 00 03 N 300:4C 58 FC N <CTRL-Y> will set up the
USER command jump address, enter the program to be

72 c:=J Inside the Apple 1/e -------------------

jumped to, and then execute the USER command (which
causes the screen to clear).

SYSTEM MONITOR SUBROUTINES

As we have already seen, the system monitor is made up of sev
eral useful subroutines. Most of these subroutines can easily be
accessed from Applesoft or assembly-language programs.

Direct access from Applesoft is achieved by using the Applesoft
CALL command. Note, however, that only those monitor subrou
tines that require no initialization of the 6502 registers can be
CALLed in this way because there are no Applesoft commands
available to you to set up these registers directly.

One way to access subroutines that require register initialization
would be to CALL a RAM-based program that would set up these
registers explicitly and then call the requested subroutine. An al
ternate method makes use of the monitor's GO command and the
fact that GO initializes the 6502's registers to the values stored in
zero page by the EXAMINE command before control is passed to
the subroutine whose address is stored at $3A and $3B (low-order
byte first). The values of the registers A, X, Y, and Pare stored at
locations $45, $46, $47, and $48, respectively. To execute the sub
routine, you must first use the Applesoft POKE command to store
the address of the subroutine to be executed at $3A/$3B and to
store the appropriate register values at locations $45-$48. The final
step is to execute the GO command by entering it at the point
where it sets up the registers before passing control to the address
at $3A/$3B. This is location $FEB9 (65209).

For example, you can set up a simple decimal-to-hexadecimal
conversion program from Applesoft by calling a monitor subrou
tine called PRINTYX ($F940). This subroutine prints out theY and
X registers as four hexadecimal digits (the two most-significant
digits are held in Y). To get the converter to work, all you have to
do is take your decimal number, divide it by 256, and put the
quotient in Y (this represents the decimal value of the two high
order digits) and the remainder in X (this represents the decimal
value of the two low-order digits). Here is an example of such a
program:

100 DEF FN MD(Z) = Z- 256 * INT(Z I 256)
110 INPUT "ENTER A NUMBER: ";N
120 ADDR = 63808 : REM ADDRESS OF "PRINTYX" ($F940>
130 POKE 70,FN MD(N):REM SET UP "X"
140 POKE 71,INT (N/256>:REM SET UP "Y"

------------------ 3 The System Monitor c::::J 73

150 POKE 58,FN MD<ADDR> : REM SET UP ADDR LOW
160 POKE 59,INT <ADDR/256) : REM SET UP ADDR HIGH
170 CALL 65209 : REM CALL "GO" AT $FEB9

Line 100 in this program defines a "modulo 256" function that can
be used to calculate the decimal value of the lower two digits of a
hexadecimal number (0 ... 255).

These complications do not really arise when calling monitor
subroutines from an assembly-language program because the 6502
has explicit commands for initializing registers (LDA, LDX, LDY,
and so on). Once the registers have been properly set up, you can
execute the subroutine by using a JSR instruction (like an Applesoft
GOSUB) or a JMP instruction (like an Applesoft GOTO).

Some of the more useful subroutines available in the system
monitor are set out in Table 3-3. These subroutines are presented
in increasing order of address and the symbolic name for each
address (as published by Apple in "Reference Manual Addendum:
Monitor ROM Listings") is shown immediately after the address.

Table 3-3 by no means represents a complete list of the monitor's
subroutines. To examine all the subroutines for yourself, you should
consult Apple's published source listing of the monitor ROM in
"Reference Manual Addendum: Monitor ROM Listings."

Table 3-3. Apple //e system monitor subroutines.

Address
Hex (Dec)

Symbolic
Name

$F940 (63808) PRINTYX

$FB1E (64286) PREAD

$FBC1 (64449) BASCALC

$FC22 (64546) VTAB

Description

Prints out the number held in X
(low) and Y (high) as four hex
adecimal digits.

Reads the current value of the
game paddle input. On entry,
X= game paddle number (0 ... 3).
On exit, Y =game paddle value
(0 ... 255) and A is destroyed.

Calculates the address of the first
location used by the current video
line. On entry, A=video line
number (0 ... 23). On exit, the
address is stored in BASL ($28)
and BASH ($29), low byte first,
and A is destroyed.

Moves the cursor to the video dis
play line indicated by CV ($25).

74 c::::J Inside the Apple //e -------------------

Table 3-3. Apple //e system monitor subroutines
(continued).

Address
Hex (Dec)

Symbolic
Name

$FC42 (64578) CLREOP

$FC58 (64600) HOME

$FC62 (64610) CR

$FC9C (64668) CLREOL

$FCA8 (64680) WAIT

$FD0C (64780) RDKEY

$FD1B (64795) KEYIN

Description

On entry, CV must contain the line
number required (0 ... 23). On
exit, the base address for the line
is set up in BASL ($28) and BASH
($29) and A is destroyed.

Clears the screen display from the
current cursor position to the end
of the screen without changing the
position of the cursor. On exit, A
andY are destroyed.

Clears the screen display and po
sitions the cursor at the left of the
first line on the screen. On exit, A
and Y are destroyed.

Moves the cursor to the first po
sition of the next video display
line (and scrolls if required). On
exit, A andY are destroyed.

Clears the screen display from the
current cursor position to the end
of the line without changing the
cursor position. On exit, A andY
are destroyed.

Causes a delay of
0.5.,.,(26 + 27*A + 5*A*A) micro
seconds. On exit, A is destroyed.

Receives a character of informa
tion from the currently active in
put device (the address for the in
put subroutine for this device is
held in KSWL ($38) and KSWH
($39)). On exit, A contains the in
putted character and Y is de
stroyed; other registers may be
destroyed, depending on the in
put subroutine for the input de
vice.

Receives a character of informa
tion from the keyboard. On exit,
A contains the inputted character
andY is destroyed.

------------------ 3 The System Monitor r::=:J 75

Table 3-3. Apple //e system monitor subroutines
(continued).

Address
Hex (Dec)

Symbolic
Name

$FD35 (64821) RDCHAR

$FD6A (64874) GETLN

$FDDA (64986) PRBYTE

$FDED (65005) COUT

$FDF0 (65008) COUTl

Description

Receives a character of informa
tion from the currently active in
put device and handles any valid
escape sequences. On exit, A con
tains the inputted character and
Y is destroyed; other registers may
be destroyed, depending on the
input subroutine for the input de
vice.

Receives a line of information
(terminated by RETURN) from
the currently active input device
and places it into the input buffer
at $200 ... $2FF. On entry, the
prompt symbol to be used must
be stored in PROMPT ($33). On
exit, the line is stored in the input
buffer beginning at $200, X con
tains the number of characters in
the line, and A and Y are de
stroyed.

Displays a byte as two hexade
cimal digits. On entry, A contains
the byte to be displayed. On exit,
A is destroyed.

Sends a character of information
to the currently active output de
vice (the address for the output
subroutine for this device is held
in CSWL ($36) and CSWH ($37)).
On entry, A contains the byte to
be sent. On exit, registers may be
destroyed, depending on the out
put subroutine for the output de
vice.

Displays a character of informa
tion on the video display screen
at the current cursor position. The
display mode is set by logically
ANDing the byte with INVFLG
($32). On entry, A contains the byte
to be displayed (with its high bit

76 c:::J Inside the Apple //e -------------------

Table 3-3. Apple //e system monitor subroutines
(continued).

Address
Hex (Dec)

Symbolic
Name

$FF69 (65385) MONZ

Description

set to one). On exit, all registers
are preserved.

Enters the lie's system monitor.
On exit, all registers are de
stroyed.

FURTHER READING FOR CHAPTER 3

On system monitor subroutines ...
Reference Manual Addendum: Monitor ROM Listings, Apple Com

puter, Inc., 1982. All the source code for the system monitor
except from $C401 ... $C7FF (self-test subroutines).

W.E. Dougherty, The Apple II Monitors Peeled, Apple Computer,
Inc., 1981. A detailed look at the system monitors for the Apple
II and Apple II Plus.

4
Applesoft BASIC

Applesoft BASIC is a high-level programming language inter
preter that occupies lOK of the lie's ROM space from location
$D000 through location $F7FF. (BASIC is an acronym for Begin
ner's All-Purpose Symbolic Instruction Code.) It is yet another ver
sion of the "basic" BASIC developed by Microsoft Corporation of
Bellevue, Washington, and so is structurally similar to Microsoft
developed BASICs running on many other personal computers,
including those manufactured by Tandy, Commodore, and IBM.

What exactly is 'the Applesoft programming language, anyway?
Well, it's really just another 6502 assembly-language program, but
one that has a special goal: to allow you to easily write your own
programs using straightforward, English-like commands. These
commands can be used in such a way as to allow you to manipulate
various types of data and to perform input/output functions. In
addition, Applesoft comes with a built-in editing environment that
facilitates creation of its programs.

Applesoft is actually a language interpreter and a program is
simply a set of data that the Applesoft code in ROM is continuously
analyzing (interpreting) to determine what commands are to be
executed and in what order. Other types of BASICs, called "com
pilers," are also available. Compilers are simply preprocessors that
convert your program source code into directly executable ma
chine language that can then be run just like any other machine
language program. Since directly executable code is generated, no
interpretation is necessary when the code is actually executed (ex
cept, of course, by the microprocessor) and so the program will
run much faster than its interpreted counterpart. Although Apple
soft compilers have been written for the 1/e, none have been offi
cially released by Apple itself.

The purpose of this chapter is not to teach you how to program
in the Applesoft language. In fact, you will be presumed to be
familiar with Applesoft already. What we are going to do is take
a close look at the internals of Applesoft to see how the interpreter

77

78 c::::::::J Inside the Apple //e -------------------

performs its various duties. This will include a look at how an
Applesoft program and its variables are stored and arranged in
memory and how the program is actually executed by the Applesoft
interpreter. We will also take a look at how Applesoft can be linked
to machine-language subroutines to improve program speed and
efficiency.

The study of the internal structure of Applesoft is difficult and
frustrating because no official source listing for its code has been
made available by Apple. Such a study is not totally futile, how
ever, because it is possible to disassemble the contents of the Ap
plesoft ROM (using the monitor's "L" command) to view the lan
guage in a convenient assembler-language form that can sometimes
be made intelligible (if you're lucky). In addition, at least two
"unofficial" source listings of Applesoft have been published (see
the references at the end of this chapter).

Knowledge of the internal structure of Applesoft is important
for three main reasons. First, by analyzing the work of the profes
sional programmers who wrote the language you might develop
better personal programming practices. Second, you can generally
write much more elegant and efficient assembly-language routines
to be used in conjunction with Applesoft programs if the routines
use the standard routines found in Applesoft because this spares
you from having to redevelop the same code from scratch. Third,
it is possible to write much more efficient Applesoft programs if
you understand how they are being executed.

APPLESOFT MEMORY MAP

The Applesoft interpreter makes use of most of the RAM space
located from $0000 to $95FF on the lie for program and variable
storage and for work areas. The area of RAM memory above this,
from $9600 to $BFFF, is reserved for use by DOS 3.3 or ProDOS . .

Much of the 6502 zero page ($0000 ... $00FF) is used by Applesoft
to hold short subroutines, temporary data areas, and several two
byte pointers that contain the addresses of important data areas
used by the program. For example, there are pointers that indicate
the starting and ending addresses of the program itself, of the space
reserved for simple variables and array variables, and of the space
reserved for string data. We'll be looking at these pointers in greater
detail later on in this section.

(To review, a pointer is a pair of bytes that are positioned in
adjacent memory locations and that contain the base address of

------------------4 Applesoft BASIC c::::::J 79

an area in memory to which they are said to be pointing. The lower
half of this address is stored in the byte that is lower in memory.
To calculate the absolute address of the area being pointed to, take
the number held in the first location and add it to 256 times the
number in the second location.)

Page one of memory ($100 ... $1FF) is implicitly used by Apple
soft since the 6502 microprocessor uses this page as its stack. In
addition, Applesoft uses the stack area for temporary storage of
information when it executes instructions such as FOR/NEXT, GO
SUB/RETURN, and ONERR GOTO that need space to hold trans
fer-of-control information and when it converts binary numbers
into decimal numbers.

Applesoft uses page two of memory ($200 ... $2FF) as its char
acter input buffer. For example, whenever an Applesoft program
executes the INPUT command to read a line from the keyboard, it
initially stores the response in this buffer and then processes it and
moves it up into a space reserved for string data near the end of
the RAM space reserved for use by Applesoft.

The lower part of page three of memory from $300 ... $3CF is not
used by Applesoft and so is a good place to store short assembly
language programs or other data. However, the entire upper part
of this page, from $300 ... $3FF, is reserved for use by the disk
operating system (DOS 3.3 or ProDOS), the system monitor (to
handle the USER command and the 6502 RESET, IRQ, NMI, and
BRK interrupts), and by Applesoft. Applesoft reserves the three
bytes beginning with $3F5 for use with its & (ampersand) com
mand. Thus, the upper part of memory should not be overwritten
unless it is for the specific purpose of modifying the information
stored there. Appendix IV contains a complete memory map of the
area in page three from $300 ... $3FF.

Pages four through seven ($400 ... $7FF) are used for the lie's
primary text display screen. (A secondary text display screen can
also be enabled that uses pages eight through eleven ($800 ... $BFF),
but it is rarely used.) See Chapter 7 for more information on how
the //e interprets these pages.

The rest of the RAM space, from $800 up to $95FF, is usually
available for storage of the Applesoft program itself and of any
variables that it may use. Figure 4-1 shows a generalized Applesoft
memory map that indicates the relative positions of the program
and its variable spaces. The pointers to these areas are all held in
zero page and are summarized in Table 4-1.

The Applesoft program itself is usually stored beginning at lo
cation $801, which is the default value ofTXTTAB ($67), the start-

'

80 c:::::::J Inside the Apple //e --------------------

of-program pointer. The byte stored at the location immediately
before this location (usually $800) must always be zero. The space
used to store information relating to program variables usually
starts immediately after the end of the program at the location
pointed to by VARTAB ($69), the start-of-simple-variables pointer.
The position of the start of variable space, however, can be selected
by using the Applesoft LOMEM: command before any variables
have been defined in the program. This allows you to create a free
space between the end of the program and the beginning of the
variables that will not be overwritten and that could be used to
hold, for example, a machine-language subroutine that is called
by the Applesoft program.

Applesoft supports two fundamental classes of variables: array
variables and simple variables. Array variables can hold real num
bers, integer numbers, or strings; simple variables can hold any
of these three types of variables and a special function variable as
well (more on this later). An array variable is one that is a member
of a collection of variables that are referred to by the same name
but that are distinguished from one another by specifying a sub
script for each dimension of the array. For example, the variable
AB(3,4,2) is the "3,4,2" element of a three-dimensional array called
"AB". A simple variable is simply one that is not an element of
such an array and that is specified by name only and not by a
subscript.

Applesoft keeps information relating to simple variables in a
contiguous block of memory that begins at the address pointed to
by VARTAB ($69) and ends at the address just before the one pointed
to by ARYTAB ($6B). Information relating to array variables begins
at the address pointed to by AR YT AB and ends at the address
pointed to by STREND ($6D).

After the end of the array variable space comes a free space that
ends at the address pointed to by FRETOP ($6F), the start-of-string
space pointer. Generally speaking, the contents of string variables
are stored from here to the highest available location in memory
(usually $95FF). The MEMSIZ ($73) pointer contains this address
plus 1. Strings grow down in memory, so that when more strings
are defined, they are placed in memory just below the value con
tained in FRETOP and then FRETOP is reduced by the length of
the string. The value of MEMSIZ can be lowered by using the
Applesoft HIMEM: command. This is usually done to provide a
safe area for the storage of machine-language programs, but it is
also commonly done to avoid storing variable data within either
of the lie's two 8192-by.te high-resolution graphics screen areas (if
this happens, the data could be destroyed when a graphics com
mand is executed). These areas are located from $2000 ... $3FFF

------------------- 4 Applesoft BASIC c::::=J 81

$BF

SET BY HIME
(USUALLY

$9600)

$60

FF

M: .

-

00

$40 00

$20

SET BY
LOMEM:

$08

00

01

DISK
OPERATING

SYSTEM

--MEMSIZ ($73)

STRING DATA ~
--FRETOP ($6F)

FREE SPACE

HIGH-RES
PAGE2

HIGH-RES
PAGE1

FREE SPACE

ARRAY t VARIABLES

--STRENO ($60)

SIMPLE t VARIABLES

-. ARYTAB ($6B)

FREE SPACE
-VART AB ($69)

--PRGEND ($AF)

TOKENIZED I APPLESOFT
PROGRAM

-TXTTAB ($67)

Figure 4-1. Applesoft memory map and data pointers.

and from $4000 ... $5FFF, respectively. For example, to set MEM
SIZ to just below the first high-resolution graphics screen, you
would enter the command HIMEM:8192. There are some impor
tant rules to keep in mind when changing HIMEM: in a DOS 3.3
or ProDOS environment; they will be discussed in Chapter 5.

Note that the free space between the end of the array variables

82 c:::::J Inside the Apple //e -------------------

Table 4-1. Applesoft pointer locations.

Pointer Location
Hex (Dec) Symbolic Name Description

$67
$68

$69
$6A

$6B
$6C

$6D
$6E

$6F
$70

$73
$74

$AF
$B0

(103)
(104)

(105)
(106)

(107)
(108)

(109)
(110)

(111)
(112)

(115)
(116)

(175)
(176)

TXTTAB (low) Start of Applesoft program
(high) (normally $801).

VARTAB (low)
(high)

ARYTAB (low)
(high)

STREND (low)
(high)

FRETOP (low)
(high)

MEMSIZ (low)
(high)

PRGEND(low)
(high)

Start of simple variable
space. This space usually
begins right after the end of
the program. However, it can
be set higher by using the
Applesoft LOMEM: com
mand.

Start of array space. This
space begins right after the
end of simple variable space.

End of variable space.

Start of string space.
Applesoft strings are stored
from here to just before the
address pointed to by
MEMSIZ ($73).

End of string space plus 1
and last location available to
Applesoft plus 1. Applesoft
strings are stored from
FRETOP ($6F) to this
location. This location is
usually $9600 (when using
DOS) but can be set lower
by using the Applesoft
HIMEM: command.

End of Applesoft program
plus 1 or 2. The end of an
Applesoft program is
signified by three
consecutive "0" bytes. The
first "0" is the end-of-line
marker for the last line in
the program and the next
two "0" 's are the "address"
of the next line.

------------------ 4 Applesoft BASIC c::::J 83

and the beginning of the string data will become smaller and smaller
as more variables are defined and as more strings are defined.
When all of the free space has been used up, an OUT OF MEMORY
error message will be generated.

In the next few sections, we will discuss the data spaces used by
Applesoft in greater detail.

TOKENIZATION OF APPLESOFT
PROGRAMS

An Applesoft program is simply the data the Applesoft inter
preter acts on in order to determine exactly what instructions it
is to execute and in what order. This data is put into memory with
a LOAD or RUN command or is simply typed in from the keyboard.

You might think that an Applesoft program is stored in memory
in exactly the same format in which it is displayed when it is listed.
To save valuable memory space (an Applesoft program and its
variables cannot use up more than about 36,000 bytes when DOS
is being used), and to speed up program execution, however, each
line of an Applesoft program is analyzed and compressed before it
is actually inserted into the proper area of memory. This process
is called "tokenization" because it involves, among other things,
substituting one-byte tokens for Applesoft keywords. For example,
if you enter the line

100 HGR2

it is not stored as nine bytes in memory as it would be if you used
a standard line editor to create the source file (eight bytes of text
plus one byte for the carriage return that follows the line). Rather,
it is stored as six bytes: two for the line number, one for the token
for the HGR2 keyword, and three for overhead information (these
overhead bytes will be described below).

It is the tokenized program that is analyzed by the Applesoft
interpreter and not the original source listing. By the way, listing
a program is the same as "detokenizing" it because the LIST com
mand essentially converts tokens back into their full keywords.

Let's take a detailed look at what happens when you add a new
line to an Applesoft program while in direct mode (that is, when
the program is not running and the "]" prompt symbol is being
displayed).

When you type in a line of characters (each line can be up to 239

84 c=J Inside the Apple //e --------------------

characters in length) and then press the RETURN key to enter it,
Applesoft scans the input line and checks to see whether it begins
with a valid line number. If it doesn't, then Applesoft thinks that
this is a direct command and attempts to execute it right away; if
it does begin with a line number, then Applesoft interprets it as a
deferred command (that is, one that is to be executed only when
the program is executed) and will tokenize it and store it in the
proper position in memory.

The line is placed in memory in such a way that the ascending
numeric sequence of the line numbers in the program is main
tained. The lowest-numbered line is stored lowest in memory at
the location pointed to by the beginning-of-program pointer,
TXTTAB ($67), and the higher-numbered lines are stored sequen
tially upward in memory.

The bytes that make up a tokenized line are arranged in memory
as follows:

XX yy XX yy XX yy zz 00

LJ LJ t
address this tokens and ASCII end of
of next line characters for the line

line number contents of line marker

The "address of next line" and "this line number" fields are
stored as two bytes, with the least-significant byte coming first.
The three bytes of overhead that were mentioned above are made
up of the two bytes allocated for the address of the next line and
the 00 byte that marks the end of the line.

Keyword Tokens

We will now take a closer look at what the tokenized part of the
line (the part between the line number and end-of-line marker)
looks like. We will begin with a description of the tokens used to
replace the Applesoft keywords in a program line. These keywords
represent the Applesoft commands, functions, and mathematical
and logical operators.

Each Applesoft keyword is assigned by the interpreter to a one
byte quantity called a token. This is done for two main reasons:
first, to conserve memory space and, second, to improve the exe
cution speed of the program.

The tokens that Applesoft assigns to each of its keywords are
presented in Table 4-2 together with the addresses of the subrou-

----------------4 Applesoft BASIC CJ 85

Table 4-2. Applesoft keyword tokens.

Token

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F
$A0
$Al
$A2
$A3
$A4
$AS
$A6
$A7
$A8
$A9
$AA

Keyword

END
FOR
NEXT
DATA
INPUT
DEL
DIM
READ
GR
TEXT
PR!f
IN#
CALL
PLOT
HUN
VLIN
HGR2
HGR
HCOLOR=
HPLOT
DRAW
XDRAW
HTAB
HOME
ROT=
SCALE=
SHLOAD
TRACE
NOTRACE
NORMAL
INVERSE
FLASH
COLOR=
POP
VTAB
HIM EM:
LOMEM:
ON ERR
RESUME
RECALL
STORE
SPEED=
LET

Address of
Subroutine

$D870
$D766
$DCF9
$D995
$DBB2
$F331
$DFD9
$DBE2
$F390
$F399
$F1ES
$FIDE
$F1DS
$F225
$F232
$F241
$F3D8
$F3E2
$F6E9
$F6FE
$F769
$F76F
$F7E7
$FC58
$F721
$F727
$F775
$F26D
$F26F
$F273
$F277
$F280
$F24F
$D96B
$F256
$F286
$F2A6
$F2CB
$F318
$F3BC
$F39F
$F262
$DA46

86 C::J Inside the Apple //e

Table 4-2. Applesoft keyword tokens (continued).

Address of
Token Keyword Subroutine

$AB GOTO $D93E
$AC RUN $D912
$AD IF $D9C9
$AE RESTORE $D849
$AF & $03F5
$Bfl GO SUB $D921
$Bl RETURN $D96B
$B2 REM $D9DC
$B3 STOP $D86E
$B4 ON $D9EC
$B5 WAIT $E784
$B6 LOAD $D8C9
$B7 SAVE $D8Bfl
$B8 DEF $E313
$B9 POKE $E77B
$BA PRINT $DADS
$BB CONT $D896
$BC LIST $D6A5
$BD CLEAR $D66A
$BE GET $DBA0
$BF NEW $D649
$Cfl TAB(
$C1 TO
$C2 FN
$C3 SPC(
$C4 THEN
$C5 AT
$C6 NOT
$C7 STEP
$C8 +
$C9
$CA *
$CB I
$CC
$CD AND
$CE OR
$CF >
$Dfl
$Dl <
$D2 SGN $EB90
$D3 INT $EC23
$D4 ABS $EBAF
$D5 USR $000A
$D6 FRE $E2DE

------------------- 4 Applesoft BASIC c::=J 87

Table 4-2. Applesoft keyword tokens (continued).

Token

$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
$DF
$E0
$El
$E2
$E3
$E4
$ES
$E6
$E7
$E8
$E9
$EA

Keyword

SCRN(
PDL
POS
SQR
RND
LOG
EXP
cos
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$

Address of
Subroutine

$D412
$DFCD
$E2FF
$EE8D
$EFAE
$E941
$EF09
$EFEA
$EFF1
$F03A
$F09E
$E764
$E6D6
$E3CS
$E707
$E6ES
$E646
$E65A
$E686
$E691

tines within Applesoft that are used to deal with the keyword com
mand or function that they represent (where applicable). You will
notice that all of these tokens are greater than or equal to $80. If
the tokenized part of a program line contains bytes that are less
than $80, then these bytes are simply the ASCII codes for the char
acters that were typed in when the line was entered (see Appendix
I for the ASCII codes used to represent characters). This will include
all digits (other than those entered for the line number), all text
between quotation marks after a PRINT statement and after DATA
and REM statements, and all characters of variable names.

Before you get hopelessly confused, let's look at an example.
From Applesoft direct mode, enter NEW, and then enter the fol
lowing line:

100 PI = 4 * ATN <1 >: PRINT "PI = ";PI: END

The bytes used to store this line in memory are as follows:

1D 08 64 00 so 49 DO 34 CA E1 28 31 29 3A
address line p I token 4 token token (1)
of next number for for for
line * ATN

88 c:J Inside the Apple //e --------------------

BA 22 50 49 20 3D 20 22 3B 50 49 3A 80
token
for

END

00
end of

line
marker

token P I P I
for

PRINT

(You can see these bytes for yourself by first entering CALL -151
to enter the system monitor, and then entering 801.81C to display
the first few bytes of the program. As we saw earlier, an Applesoft
program is usually stored in memory beginning at location $801.)

Notice that the five keywords in this line, =, '~, ATN, PRINT,
and END, have been replaced by their tokens, $D0, $CA, $E1, $BA,
and $80, respectively. Also notice that each character that is not
part of a keyword is not tokenized and is represented by its ASCII
code.

STORAGE OF APPLESOFT VARIABLES
Now that we have seen how an Applesoft program is stored in

memory, let's take a more detailed look at how and where the
program's variables are stored during program execution. Not only
is the knowledge of the data structures used to store variables
fundamentally interesting, it will undoubtedly be invaluable to
those who wish to manipulate Applesoft variables from within 6502
assembly-language subroutines that are called from Applesoft.

Applesoft supports four fundamental variable types. There are
three numeric types, integer, real, and function, and one alpha
numeric type, string. Integer numbers are made up of all positive
and negative whole numbers and zero, that is, all numbers that
have no fractional parts. Real numbers, also called floating-point
numbers, are made up of all numbers, including those that do have
fractional parts. Strings are simply sequences of ASCII character
codes. Functions are special variables that are defined by the Ap
plesoft DEF FN command and that are evaluated using a user
specified mathematical expression. For example, if a function is
defined as follows:

DEF FN MD<X>=X-256*INTCX/256)

then whenever the value of MD(aexpr) is requested (where "aexpr"
represents an arithmetic expression) it is evaluated by substituting
the value of "aexpr" wherever "X" appears in the "X-256,~INT(X/
256)" formula and then calculating the result.

The first character of an Applesoft variable name must begin
with an upper-case letter from A ... Z; subsequent characters can
be either upper-case letters or a digit from 0 ... 9. The variable name
can be up to 239 characters in length, but only the first two char-

------------------ 4 Applesoft BASIC r:::::=J 89

Table 4-3. Applesoft variable identifier symbols.

Variable Identifier
Symbol Variable Type Example

<none> real AB

% integer AB%
<none> function FN AB ()

$ string AB$

acters arc significant (the rest are simply ignored). This means that
Applesoft considers the variables LESS and LESSEN, for example,
to be equivalent.

A variable name cannot be used that contains the names for any
of the keywords shown in Table 4-2. For example, the variable
name "LETTER" is illegal because it contains the LET keyword.

If an integer or string variable is being defined, a special variable
identifier symbol must be added to its name so that Applesoft can
properly interpret it and store its value. The variable identifier
symbol for integer variables is "%" and for string variables it is
"$".No special identifier symbol is needed to identify real or func
tion variables. Table 4-3 sets out the variable identifier symbols
used by Applesoft.

When a variable is defined in a program, Applesoft stores its
name and value at the end of one of two memory spaces located
after the end of the program. One space is reserved for simple
variables and functions and is pointed to by VARTAB ($69). The
other space is reserved for array variables and is pointed to by
ARYTAB ($6B). In the following sections, we will take a look at
how variables are represented in these two variable spaces.

Storage of Simple Variables

Whenever Applesoft has to make use of a certain variable, it has
to locate it within its variable space. It does this by searching the
variable space beginning with the first entry and continuing until
it finds a match. Thus, the farther into the space a variable is
located, the longer it will take Applesoft to find it. Since Applesoft
stores variables in its variable space in the order in which they are
encountered when the program is executed, you can improve pro
gram execution speed by ensuring that more frequently used var
iables are defined before less frequently used ones. This is most

90 [=:J Inside the Apple //e -------------------

easily done by defining all the variables in the desired order as
soon as the program starts executing. For example, if your program
uses four variables, say I, J, K, and L$, but you would like K to be
accessed as quickly as possible, then you should execute a line such
as

10 K=O:I=O:J=O:L$=""

before any other line that defines or uses any variables.

Each entry in the simple variable space is exactly seven bytes
long and consists of two parts: the name header, which is used to
store the variable's name and type, and the data field, which con
tains the encoded value of the variable or a pointer to its location.
The storage format used for each type of variable is summarized
in Figure 4-2.

(a) Real variables. (b) Integer variables.

First name byte f-hi gh bit OFF high bit ON First name byte 1-1

Second name byte f.-11 Second name byte -I igh bit OFF high bit ON

Exponent + 128 Value (high)

Mantissa (highest) Value (low)

Mantissa [Not used]

Mantissa [Not used)

Mantissa (lowest) [Not used]

(c) String variables. (d) Function variables.

First name byte l-1 First name byte -high bit OFF high bit ON

Second name byte 1- Second name byte -high bit ON high bit OFF

Length of string Pointer to function (low)

Pointer to string (low) Pointer to function (high)

Pointer to string (high) Pointer to argument
data (low)

[Not used) Pointer to argument
data (high)

[Not used] First character
following " =" is

FN definition

Figure 4-2. Storage formats for Applesoft simple variables.

------------------4 Applesoft BASIC c=:J 91

The Name Header

The name header contains all the information related to the
variable's type and name so that it can be quickly located and
accessed whenever it is referred to during execution of the Apple
soft program. The name header for a simple variable is always
exactly two bytes long. Stored in these two bytes are the 7-bit ASCII
codes for the the first two characters of the variable's name; if
there is only one character used in the name, then the second
character is assumed to be the ASCII null character, $00. The high
order bits of each of the two bytes are used to indicate the type of
simple variable being referred to. For example, for a string vari
able, these bits will be OFF (0) and ON (1), respectively. For real
and integer variables, they will be OFF-OFF and ON-ON, respec
tively. Lastly, the bits will be ON-OFF if the name refers to a
function defined by the DEF FN command.

The Data Field

The encoded data that relates to the value of the simple variable
is stored in five bytes just after the end of the two name header
bytes. Despite the fact that five bytes are always reserved for data
storage, however, only real variables and functions make use of
them all. The number of bytes required for the data for each type
of variable is as shown in Table 4-4, as are the restrictions on the
values for each type of Applesoft variable.

Let's take a look at the storage formats used for each type of
variable.

Table 4-4. Storage requirements and limitations for
Applesoft variables.

Number of
Data Bytes

Variable Type Required

Integer
Real
String
Functions

2
5
3
5

Restrictions on Variable Value

-32767 ... + 32767
2.9E-39 ... 1.7E+38 (pas. or neg.)
Length of string is 0 ... 255
One argument only

92 c:=J Inside the Apple //e -------------------

INTEGER. The data for integer variables is stored in a signed
"two's complement" format and occupies two bytes (most-signif
icant byte followed by least-significant byte). See the section below
entitled "REPRESENTATION OF INTEGER NUMBERS" for a
detailed description of the two's complement storage format. The
high bit of the most-significant byte can be read to determine the
sign of the number. If this bit is 1, then the number is negative; if
it is 0, then the number is positive. The last three bytes of the data
field are not used.

REAL. The data for real numbers is stored in all five bytes. The
first byte is related to the exponent of the number and the next
four bytes represent its signed mantissa, most-significant byte first.
The sign bit is the high bit of the second byte of the five. See the
section below entitled "REPRESENTATION OF REAL NUM
BERS" for a detailed description of the method Applesoft uses to
store real numbers.

STRING. The data for string variables is really made up of two
parts. The first part is stored in the variable table itself and is a
three-byte "descriptor" that represents the length of the string
(first byte) followed by a two-byte pointer (low-order byte first) to
a sequence of ASCII-encoded characters that defines the string
itself. The second part is, in fact, made up of those characters that
define the contents of the string.

The contents of strings are normally stored in the high end of
memory in a string space beginning at a location pointed to by
FRETOP ($6F) and ending lower in memory just before the location
pointed to by MEMSIZ ($73). Whenever a new string is entered
from the keyboard or a diskette file, or an old one is manipulated
using any of Applesoft's string-handling commands, it is placed in
memory just before the address to which FRETOP points in such
a way that the first character in the string is located lowest in
memory and the last character is located at the location pointed
to by FRETOP. After this is done, FRETOP is adjusted downward
so that it points to the byte immediately before the beginning of
the string just stored.

When a string variable is redefined using Applesoft's string-han
dling commands, its new definition is placed in the string space
in the upper part of memory as if it were a newly defined variable;
however, its former characters are not immediately removed from
the string space even though it is no longer used. This means that
if strings are continuously being redefined, then a lot of unused
information will accumulate in the string space and eventually the
address stored in FRETOP will come very close to the address

------------------4 Applesoft BASIC c=J 93

stored in the end-of-variable pointer, STREND ($6D). When this
happens, Applesoft initiates a procedure that maximizes its avail
able free space by removing the unused string characters, packing
the currently active string characters up to the high end of memory,
and resetting FRETOP. This procedure is called "garbage collec
tion" or, more euphemistically, "house-cleaning," and can last
anywhere from a few seconds to a few minutes, depending on the
number of string variables that have been defined in the program.

Note, however, that if a string is explicitly defined within the
program itself, for example, in a program line that looks like this:

100 A$="THIS IS A TEST"

then the string pointer in the variable table's data field will point
to this definition inside the program itself and not to a location
within the string space. Such a string will be moved into the string
space only if it is operated on by an Applesoft string-handling
command.

FUNCTIONS. The data for functions is stored in five bytes. The
first two bytes act as a pointer to the body of the function's defi
nition within the program (that is, the part after the "=" sign in
the DEF FN definition). The next two bytes contain the address of
the data field for the variable representing the function's argument.
The last byte contains the first byte in the function definition.

End of Simple Variables

ARYTAB ($6B) points to the Applesoft array variable space lo
cated immediately after the end of the simple variable space.
Whenever a new simple variable is defined, the whole of the array
variable space is moved up in memory by seven bytes to make
room for the new simple variable definition and the end-of-vari
ables pointer, STREND ($6D), is adjusted accordingly. The name
header and data bytes for the variable are then stored beginning
at ARYTAB. ARYTAB is then increased by seven so that it equals
the new starting position of the array space.

Storage of Array Variables

Each entry in the array variable space is made up of a name
header, special dimensioning bytes that indicate the size of the
array and how it is indexed, and a data field. The storage format

94 c:=:1 Inside the Apple //e -------------------

Header used by all three array variable types:

First name byte

Second name byte

Offset to next
array variable
(low byte first)

Number of dimensions

Size of last
dimension

(high byte first)

Size of first
dimension

(high byte first)

(a) Real variables. (b) Integer variables. (c) String variables

Exponent + 128 1---V_al_ue~(h-=ig_h:..._) ---llelefimrset nt
Value (low)

Length of string

Mantissa (high) Location of string (low) first.
element

Mantissa

Mantissa

first
element

Location of string (high)

Mantissa (low) 1---V_al_ue_(.:...h..::ig.:...h):........._----Jl last

Value (low) element Length of string

Exponent + 128 Location of string (low) last
element

Mantissa (high) Location of string (high)

Mantissa

Mantissa

last
element

Mantissa (low) NOTE: Array elements are stored in such a way that
the right-most dimensioning index increases slowest (see text).

Figure 4-3. Storage formats for Applesoft array variables.

used for each type of array variable is summarized in Figure 4-3.
Note that arrays are permitted for each Applesoft variable type
except functions.

The Name Header

Just as for simple variables, entries for array variables begin
with a name header. The name headers for array variables are
identical to those for the corresponding simple variables discussed
in the previous section (for example, the header for an array di
mensioned as AB(5,6) is the same as for AB).

------------------4 Applesoft BASIC c::J 95

Dimensioning Bytes

When array variables are stored, a series of bytes that describe
the number of dimensions of the array and their sizes are placed
in memory just after the header.

First, two bytes are used to store a number that is equal to the
number of bytes that the array occupies in the array variable space.
This number is simply the offset from the name header of this
array to the next array and is stored here so that the address of
the next array variable in the array space can be quickly and easily
calculated when Applesoft is searching for an array. The number
is stored with the low-order byte first.

The next byte is equal to the number of array indexes (or "di
mensions") and can be from 1 to 255. For example, an array di
mensioned as AB(3,5,2) would have a value of 3 stored in this byte.

Pairs of bytes follow this last byte that indicate the size of the
indexes of the array, with the number of elements in the last index
being stored in the first pair and the number of elements in the
first index being stored in the last pair. The high-order byte is
stored first in each pair. The numbers stored here will be one higher
than the number used when the array was first dimensioned (using
the DIM statement) since it starts counting the elements from one
rather than zero.

Let's look at an example. The name header bytes and dimen
sioning bytes for an array dimensioned as AB(3 ,5 ,2) would be as
follows:

41 42 73 01 03 00 03 00 06 00 04

LJ LJ t LJ LJ LJ
name offset to # of size of size of size of
(AB) next array indexes 3rd index 2nd index 1st index

The Data Field

After the dimensioning bytes come the actual data bytes for each
array element. They are stored in exactly the same formats used
by the corresponding simple variables except that, in the case of
integer and string arrays, the data bytes are packed. This means
that the unused bytes that are stored in the simple variable data
space for these two types of variables are not stored.

The array elements are stored in memory in such a way that the

96 c:::J Inside the Apple //e --------------------

rightmost dimensioning index ascends most slowly. Thus, if an
array is dimensioned as A(l,l), then A(0,0) is stored first, followed
by A(l ,0), A(0, 1), and then A(l, 1).

End of Array Variables

STREND ($6D) points to one byte past the end of the array
variable space. It also points to the beginning of Applesoft free
space. When a new array variable is defined, its header and data
are stored beginning at this location and then the value STREND
is increased by the size of the entry for the array.

REPRESENTATION OF INTEGER
NUMBERS

Applesoft stores the data for its integer variables in a special
two-byte format called "two's complement." As we will see, the
advantage of using this format is that it allows both negative and
positive numbers to be represented in a way that greatly simplifies
the execution of the two basic signed arithmetic operations, ad
dition and subtraction.

The most-significant byte of the pair of data bytes reserved for
an integer is stored first (note that this is just the opposite of how
two-byte quantities are usually stored). The high-order bit of this
byte is used to indicate the sign of the number. If it is 1, then the
number is negative; if it is 0, then it is positive. The remaining 7
bits of this byte, and the 8 bits of the least-significant byte, are
used to represent the magnitude of the integer. For a positive in
teger, the 15-bit magnitude is simply represented by the standard
unsigned binary pattern for the integer. For example,

00000001 00000011

is used to represent +259 ($0103).

The 15 bits used to represent a negative integer are determined
somewhat differently. To determine what they are, you must first
take the binary pattern for the absolute value of the integer (that
is, its positive counterpart), complement it by changing all its 1
bits to 0 and vice versa, and then add one to the result. The most
significant bit will then be 1, indicating that the number is neg
ative. For example, the representation for the integer - 11 would
be calculated as follows:

------------------4 Applesoft BASIC c:J 97

0000000 00001011
1111111 11110100

+ 1
1111111 11110101

(+ 11)
(complement)
(add 1)
(- 11 in two's complement)

Using the two-byte two's complement format, it is possible to
hold integers that range from -32768 (10000000 00000000) to
+ 32767 (01111111 11111111). Note, however, that even though the
number -32768 can be represented in the two-byte two's com
plement format, Applesoft does not allow its integer variables to
take on this value. The lowest value that is allowed is -32767.

Applesoft stores its integers in this apparently strange format to
simplify the way in which binary arithmetic can be performed. By
using the two's complement format, positive and negative numbers
can be easily added and subtracted without having to perform the
complicated adjustments needed to account for the different signs
of the numbers if any other representation is used. (Another rep
resentation may be the conventional "sign plus magnitude" (S + M),
where a positive integer and its negative counterpart are identical
except for the value of the sign bit.). When using the two's com
plement representation, it is only necessary to add the 16-bit rep
resentations of the two integers (be they positive or negative) as if
they were just two standard unsigned binary numbers. The result,
and its sign, will then automatically be correct if the result is
viewed as another two's complement integer (which it is).

Let's take a look at an example to see what we mean by this.
Consider the problem of adding the integer + 8 to the integer -5.
If these numbers were stored in their normal binary representa
tions with the sign bit being the most-significant bit, then the
calculation to be performed would be

00000000 00001000
+ 10000000 00000101

10000000 00001101

(+ 8)
(-5 in S+M binary)
(-13 in S+M binary)

This result is, of course, wrong. Thus, if this representation is
used, special programs must be written to avoid these erroneous
results. On the other hand, if the integers are represented in the
two's complement format, then the calculation becomes

00000000 00001000
+ 11111111 11111011

00000000 00000011

(+ 8)
(-5 in two's complement)
(+3)

This result is, of course, correct. If you experiment with other
integers, you will see that the signed result is always correct (unless
the result is out of the allowable range).

98 c:::::J Inside the Apple //e --------------------

REPRESENTATION OF REAL NUMBERS

As we have seen, Applesoft real numbers are stored in the simple
variable space and array variable space in a binary floating-point
format. This special format will be described in detail now.

Knowledge of this format will be of use mainly to those who
write 6502 assembly-language programs that access Applesoft nu
meric variables. However, even if you never intend to write such
a program, the following information should prove to be interest
ing.

Number Theory

Even though numbers are commonly entered into a computer
in a "decimal" or "base 10" format, they are generally stored in
ternally in some sort of compressed binary format to reduce data
storage space and to make it easy for programs to manipulate them.

Decimal integer numbers can be stored in a binary form without
loss of accuracy due to rounding or truncation (provided that the
integers are within the numeric range supported by the computer)
because they do not contain fractional parts. On the other hand,
floating-point numbers (that is, real numbers), which do have frac
tional parts, can only be approximated by a binary representation
unless the decimal number is exactly equal to a sum of powers of
two. Because approximations have to be made in most cases, you
will sometimes find that if you multiply a number by its reciprocal
in Applesoft that the number calculated is not equal to one!

Floating-point real numbers are often expressed in "scientific
notation" that looks like this:

134.56 X 10"6

The first part of this representation is called the mantissa and
the second part is called the exponent (the exponent is actually the
number to which the number base being used has been raised). An
understanding of scientific notation is important because it turns
out that it is the binary mantissa and exponent that are stored by
Applesoft when real numbers are stored in its variable spaces.

Binary Floating-Point Format

Real numbers are stored in the variable spaces of Applesoft in
a "binary floating-point" format. As indicated in Figure 4-4, this

------------------- 4 Applesoft BASIC c:::::::J 99

is a five-byte format in which one byte is reserved for exponent
information and four bytes for mantissa information. The mantissa
contains the binary representation of the fractional part of the
number.

The lowest-addressed byte in the fivesome is the exponent byte.
The value stored here is actually not the exponent itself but rather
the value of the exponent plus 128. Because this method is used to
store the exponent, the exponent is said to be "biased" by 128.

Before a number is stored in the binary floating-point format, it
is "normalized." Normalization is the process whereby the binary
point of the binary number (as opposed to a decimal point for a
decimal number) is adjusted so that there is a" 1" to its immediate
right and no "1" 's to the left of it. Thus, after normalization, the
mantissa of the number will be between 0.1 and 0.11111111 ...
(in binary). For each movement of the binary point to the left, the
exponent is increased by one; for each movement to the right, the
exponent is reduced by one. For example, consider the binary num
ber "1101.11". To normalize this number, the binary point must
be moved four places to the left; thus, the initial exponent (0) must
be increased by four.

In the binary floating-point representation, the high-order bit of
the second byte represents the sign of the number. If this bit is 1,
then the number is negative; if it is 0, then the number is positive.

The remaining 7 bits of the second byte and the remaining three
bytes are used to represent the mantissa of the number, most
significant byte first. Within a particular byte, the 7th bit is the
most significant and the Oth bit the least significant. As has been
explained, the mantissa has been normalized so that there is a" 1"
to the immediate right of the decimal point; this "1" is implicit
and is not stored. Thus, a floating-point number has 32-bit preci
sion (about nine decimal digits) even though only 31 bits are ac
tually used to hold the mantissa.

Any number whose exponent byte is equal to zero is considered
to be zero by the Applesoft interpreter even though its mantissa
bytes may be nonzero.

The decimal range of numbers that is allowed using the five
byte binary floating-point format is as follows:

+1- 2.9387355E-39 to +1- 1.70141183E+38

To calculate a decimal number from its binary format, multiply
the value of each mantissa bit by its corresponding binary weight,
add the implied 0.5 (which is the decimal equivalent of binary 0.1),
and then multiply the total by 2 raised to the value of the exponent

100 c::::::J Inside the Apple //e ------------------

byte minus 128. The binary weight of a particular mantissa bit is
given by (1/2r(32-BN), where BN is the bit number. The bit num
bers range from the most-significant bit 30 (bit 6 of byte 2) to the
least-significant bit 0 (bit 0 of byte 5).

For example, consider the decimal number '8.67'. It is stored by
Applesoft as the following five bytes:

BYTE1 BYTE2 BYTE3 BYTE4 BYTES
$84 $0A 8B $51 $EB

and the corresponding binary number is
+.10001010 10111000 01010001 11101011 * 2 ($84- $80)

bytel

r
byte2 byte3 byte4 byteS

implicit

To convert this binary number to its corresponding decimal
number, you must add the implicit 0.5 to the sum of each binary
digit multiplied by its binary weight. The resultant calculation is
as follows:

0.5+(1/2)"5+(1/2)"7+(1/2)"9+(1/2)"11+(1/2)"12+(1/2)"13+(1/2)"18
+(1/2)"20+(1/2)"24+(1/2)"25+(1/2)"26+(1/2)"27
+(1 /2)"29+(1 /2)"31 +(1 /2)"32

If you calculate this quantity, you will get 0.541875. It then must
be multiplied by the exponential part (which is 2'4 or 16) in order
to yield the final result: 8.67.

Note that the high bit of BYTE2 in the above example is zero
indicating that the number is positive.

If you wish to look at the bytes that Applesoft uses to store other
numbers, use the program found in Table 4-5. When you RUN this
program, you will be asked to enter a number to be analyzed (X).
The program locates the data bytes used to store this number by
recognizing the fact that since X is the first simple variable defined
in the program, its five data bytes must be stored two bytes from
the beginning of the simple variable space (remember that the first
two bytes are reserved for the name header). The address of the

BYTE #1 I I BYTE #2 I
Exponent t Mantissa

+ 128 I (highest)

sign
bit

BYTE #3 I I BYTE #4 I I BYTE #5

Mantissa
(lowest)

Figure 4-4. Applesoft binary floating-point format.

------------------4 Applesoft BASIC [::=:J 101

beginning of this space is simply PEEK(l OS)+ 256* PEEK(HJ6) since
the pointer to the beginning of the simple variable space is located
at $69 and $6A.

Table 4-5. REAL NUMBER DATA STORAGE. A program
to display the data bytes for an Applesoft real variable.

J LIST

0 REM "REAL NUMBER DATA STORAGE"

100 TEXT : HOME : PRINT "DECIMAL
---> BINARY FLOATING-POINT"

110 VTAB 5
120 INPUT "ENTER NUMBER TO BE CO

NVERTED: ";X
130 DIM HX$(15) : FOR I = 0 TO 15

: READ HXS<I> : NEXT
140 XD = PEEK (105> + 256 * PEEK

<106) + 2: REM LOCATION OF
DATA FOR X

150 PRINT : PRINT "THE FLOATING
POINT REPRESENTATION IS:": PRINT

160 FOR I = XD TO XD + 4
170 D = PEEK <I>:D1 = D
180 PRINT "BYTE #";I- XD + 1;":

"·
' 190 FOR J = 7 TO 0 STEP - 1

200 T = INT <D I <2 ft J>> : PRINT
T;

210 D = D - T * <2 ft J)
220 NEXT J: PRINT " ($";HXS< INT

(01 I 16>>;HXS<D1 - 16 * INT
(01 I 16>>;") ";

230 READ OS$: PRINT OS$
240 NEXT 1: PRINT
250 PRINT "BIT 7 OF BYTE #2 IS T

HE SIGN BIT": PRINT "(0 -->
POSITIVE, 1 --> NEGATIVE>"

260 DATA 0,1,2,3,4,5,6,7,8,9,A,B
,C,D,E,F

270 DATA EXPONENT + 128,MANTISSA
HIGH,.,.,MANTISSA LOW

HOW AN APPLESOFT PROGRAM RUNS
Right after you enter the RUN command to begin execution of

an Applesoft program, at least two important things happen. First,

102 c::J Inside the Apple //e ------------------

all the pointers to the variable spaces are initialized, effectively
destroying any variables that may have been active when the pro
gram last stopped running. Then, just before the program starts
to be executed, a special pointer, called TXTPTR ($B8/$B9), is
initialized so that it contains the address of the beginning of the
program. This address is usually $801.

TXTPTR is an important pointer as far as the interpreter is con
cerned because it always contains the address of the location within
the program that the interpreter is acting on. Whenever the inter
preter wants to examine the next byte of the tokenized program,
it simply increments this pointer and then reads the new byte to
which it points.

The CHARGET Subroutine

Since TXTPTR must be incremented by many different subrou
tines in the interpreter, one special subroutine is used to take care
of it. This subroutine is called CHARGET (for CHARacter GET)
and is located in page zero from location $Bl to location $C8. A
source listing of CHARGET appears in Table 4-6. Another subrou
tine, called CHARGOT, is contained within CHARGET; this sub
routine reads the current byte being pointed to without incre
menting TXTPTR. An image of the CHAR GET subroutine is loaded
into its page zero locations from the Applesoft ROM area by the
Applesoft interpreter when Applesoft is first initialized. It must be
placed in a RAM area because, as we will see, it contains self
modifying code.

TXTPTR is actually located within this subroutine at location
$B8/$B9 and it forms the operand of an LDA instruction that re
trieves the value of the byte pointed to by TXTPTR.

When CHARGET is called, TXTPTR is incremented, the 6502
accumulator is loaded with the byte located at the new address it
points to, certain processor flags are set, and then the routine ends.
Exactly how the flags are set depends on the value of the byte
loaded into the accumulator. If it is an end-of-line marker (0) or
end-of-statement byte ($3A), then the zero flag (Z) is set; otherwise,
it is cleared. In addition, if the byte is a digit (that is, its ASCII
code is between $30 and $39), then the carry flag (C) will be clear;
otherwise, it will be set. The reason for testing for these conditions
in the CHARGET subroutine is that many of Applesoft's internal
subroutines are constantly checking for end-of-line conditions or
for the presence or absence of numbers and this is an efficient way
of providing that information. If it wasn't done this way, then

Table 4-6. CHARGET. Applesoft's internal locator subroutine.

Page #01

: A S M
1 ***********
2 * CHARGET *
3 ***********
4
5 TXTPTR EQU $B8
6
7 DRG $B1
8

0 OB1 : E6 B8 9 CHARGET INC TXTPTR
OOB3: DO 02 1 0 BNE CHARGDT
OOBS: E6 B9 1 1 INC TXTPTR+1
OOB7: AD FF FF 1 2 CHARGOT LDA $FFFF
OOBA: C9 3A 1 3 CMP #$3A
OOBC: BO OA 1 4 BCS EX IT
OOBE: C9 20 1 5 CMP #$20
OOCO: FO EF 16 BEQ CHARGET
OOC2: 38 1 7 SEC
OOC3: E9 30 18 SBC #$30
DOCS: 38 19 SEC
OOC6: E9 DO 20 SBC #$DO

OOC8: 60 21 EX IT RTS
22

--End assembly--

24 bytes

Errors: 0

<NOTE: This is CHARGOT+1)

;Bump the text pointer
; by one position

;Get the byte pointed to
; and compare it to ":"
;Branch if >= ":"
;Is this a blank?
;Yes, so get next byte

;If digit, carry will be
;clear

.::.
l>

"0
"0
ro en
0 -C"t

OJ
l>
en
f.i

D ...
0 w

104 c::=J Inside the Apple //e ------------------

wasteful duplication of code would be required because every sub
routine that needed the information would have to perform its own
separate testing procedures.

Let's get back to our program, which was just starting to run
with TXTPTR set to $801 when we last left it. Since the first four
bytes of the program ($801 ... $803) are simply the line number
and the address of the next line, they are skipped over by increasing
TXTPTR by four so that the next time CHARGET is called the first
byte in the token field of the program line will be read.

The next step, of course, is to call CHARGET and get that first
byte and analyze it. This is where Applesoft really starts its inter
pretation chores. If the byte happens to be an end-of-line marker
(0), then TXTPTR is bumped by four positions so that it points to
the byte just before the token field of the next line. If it's a colon
separator ($3A), then CHARGET is called again to load the next
byte (which will be the first byte in the token field of the next
statement on that line).

If the byte is a keyword token (that is, it is greater than or equal
to $80), then, assuming it is not out of context, the appropriate
subroutine in the interpreter that handles that command or func
tion to which it refers will be called. That subroutine will, among
other things, evaluate numerical or string expressions and perform
syntax checking; it will do this by making extensive use of CHAR
GET to analyze the bytes "surrounding" the keyword. When the
keyword has been dealt with, CHARGETwill point to the next byte
to be interpreted.

If the byte is not a keyword token or an end-of-line or end-of
statement marker, then, depending on the context, it may be con
sidered to be a variable name, a piece of data, or maybe nothing
at all (in which case you will see the dreaded SYNTAX ERROR).
As long as no syntax errors are detected, TXTPTR will keep being
changed and new bytes interpreted until such time as the token
for END or STOP is encountered or until the last line in the pro
gram has been executed.

Changing Program Flow

Because Applesoft always relies on the value of TXTPTR to de
termine what part of the program to execute next, you can easily
cause Applesoft to skip certain parts of the program and to continue
executing elsewhere merely by adjusting TXTPTR. In fact, this is
exactly how the Applesoft GOTO and GOSUB commands work.
When the interpreter encounters either of these commands, it per
forms a number of tasks, the most important of which are to de-

------------------ 4 Applesoft BASIC c:::=J 105

termine the target line number, to find that line number in mem
ory, and then to store the address of the line's token field in TXTPTR.
Then, when Applesoft continues interpreting the program by call
ing CHARGET, the commands there will begin to be executed.

Finding Line Numbers

We have just seen how TXTPTR is adjusted when either a GOTO
or GOSUB command is executed. What we did not explain is how
the interpreter determines where the line to which control is to be
passed by either of these commands is located.

There are two different methods Applesoft uses, depending on
whether the high-order byte of the destination line number is greater
than the high-order byte of the current line number. If it is, then
the interpreter starts looking for a line with the proper number
beginning with the next line in memory. If it is not, then the in
terpreter begins with the first line of the program. The interpreter
can quickly skip over lines whose numbers don't match by ex
amining the link field address (the first two bytes of the tokenized
line) to determine the address of the next line of the program.

What this means is that GOTO and GOSUB commands that
transfer control to line numbers just before the current line will
execute more slowly than those that transfer control to lines nearer
the start of the program or to lines just after the current line.

In should be obvious, then, that to increase program execution
speed, "backward" GOTO and GOSUB statements should transfer
control to lines that are as close to the beginning of the program
as possible. By placing commonly used subroutines near the be
ginning of a program in decreasing order of activity, program speed
can be noticeably increased.

LINKING APPLESOFT TO ASSEMBLY
LANGUAGE SUBROUTINES

The execution speed of an Applesoft program can be improved
dramatically by linking it to assembly-language subroutines. This
is because the code generated by the assembly process is directly
executable by the microprocessor and does not have to be inter
preted first. Such subroutines can be accessed from Applesoft by
using one of three Applesoft commands: CALL, USR, and & (am
persand). These three commands are summarized in Table 4-7.

Assembly-language subroutines often need to make use of zero

106 CJ Inside the Apple //e ------------------

Table 4-7. Applesoft to assembly-language commands.

Command Description

CALL aexpr Transfers control to the memory location
specified by "aexpr".

X = USR (aexpr) Evaluates "aexpr" and places the result in the
floating point accumulator (see text) and then
transfers control to $000A. On return, the value
of the function is set equal to the value in the
FAC.

& Transfers control to $3FS.

Note: "aexpr" represents an arithmetic expression.

page locations to take advantage of some of the 6502's more pow
erful addressing modes. As we have seen, however, several loca
tions in zero page are reserved for use by Applesoft pointers. Others
are used by Applesoft, the system monitor, or DOS for other pur
poses. Table 2-5 at the end of Chapter 2 contains a complete list
of those zero page locations that are not used and that are available
for use by an assembly-language program.

The CALL Command

The CALL command is the one that is usually used to link Ap
plesoft programs with assembly-language subroutines. If such a
subroutine begins at a memory location represented by "aexpr",
then you would use the command

CALL aexpr

to invoke the subroutine. The value of "aexpr" that you use must
be a literal decimal number (not hexadecimal) or, alternately, a
mathematical expression that evaluates to a number.

For example, to execute a subroutine from Applesoft that begins
at location $300 (768 decimal), you would use the command

CALL 768

When the subroutine finishes executing, you will normally return
to Applesoft and the next statement in the Applesoft program will
be executed.

You can try using the CALL command without even writing any
assembly-language subroutines simply by accessing subroutines

------------------4 Applesoft BASIC c=J 107

that are already contained in the system monitor ROM. For ex
ample, to clear the screen you would use the command CALL 64600
since $FC58 is the address of the screen clear, command. As ex
plained in Chapter 3, there are many other subroutines in the
monitor, some of which require that data be provided to them first
or that registers be set up in certain ways.

If the subroutine that you are calling requires that data be pro
vided to it before it can perform its duties, you would normally
precede your CALL with several POKE commands that would place
the appropriate information at the locations expected by the sub
routine. Similarly, you will usually have to use the PEEK command
to examine any numerical results that the program may store in
memory.

It is possible, however, using more advanced techniques, to pass
the values of named variables to and from your called subroutines.
These techniques will be described below in the section entitled
"USING APPLESOFT'S BUILT-IN SUBROUTINES."

The & Command

The & (ampersand) command is similar to the CALL command
and is used for similar purposes. Whenever the Applesoft inter
preter comes across the & command, it immediately causes the
system to transfer control to location $3F5, thus causing the sub
routine that is located there to be executed. In the usual case, a
6502 JMP Uump) instruction is stored at this location that passes
control to some other location where the main body of the sub
routine begins.

If you want to use the & command to access assembly-language ,;
subroutines, you must first set up the jump at location $3F5 (1013)
so that it points to the desired subroutine. This can be done by
using the following three POKE commands:

P 0 K E 1 0 1 3 , 7 6 : REM 7 6 < $ 4 C > is the 6502 JMP opcode
POKE 1014,YY: REM YY isthelowaddressofthesubroutine
POKE 1015,XX: REM XX isthehighaddressofthesubroutine

To calculate the high and low halves of the address of the sub-
routine, you can use the following formulas:

XX = INT<ADDRESS/256>
YY = ADDRESS - 256*XX

After you install the subroutine at the proper location, you can
then execute the & command to access it.

As with the CALL statement, no built-in provisions have been

108 c:J Inside the Apple //e ------------------

made for the passing of variables to and from & subroutines. How
ever, the program that is called can be written to do this for itself.
See the section below entitled "USING APPLESOFT'S BUILT-IN
SUBROUTINES."

The USR Function
The USR function can also be used to link Applesoft to assembly

language subroutines. The syntax of the USR function is as follows:

Y = USR(aexpr>

where "aexpr" represents a mathematical expression that is called
the argument of the function. When the USR function is encoun
tered by the interpreter, the formula is evaluated, the result of the
evaluation is placed in an internal floating-point accumulator (FAC)
in zero page and a jump to location $000A is performed. By setting
up a 6502 JMP instruction at $000A, you can transfer control to
the beginning of an assembly-language program that has been loaded
anywhere in memory.

After the program has finished executing, control will return to
Applesoft and the "Y" variable in the above equation will be set
equal to the current value of the FAC. This is why USR is called
the "user-defined function."

Let's take a look at a specific application involving the USR
command. In particular, let's calculate the sine of the argument
by using Applesoft's internal sine evaluation subroutine located at
$EFF1. As we shall see later in this chapter, this subroutine cal
culates the sine of the number in the FAC and returns the result
there. The subroutine required to perform the conversion is simple:
JMP $EFF1. You can install it at location $300 by entering CALL
-151 to enter the system monitor, and then entering the command

300:4C F1 EF

To link this subroutine to the USR command, a JMP $300 in
struction must be placed at the USR locations from $A to $C. This
can be done by entering the following monitor command:

A:4C 00 03

where 4C is the JMP opcode and 00 03 represents the address of
the subroutine (low-order byte first). Note that you could have also
entered all this information using Applesoft POKE statements.

To try out the USR routine, enter and RUN the following short
program:

100 X = 3
200 PRINT USR (X)
300 PRINT SIN (X)

------------------ 4 Applesoft BASIC c::::::J 109

As you will see after the program has stopped RUNning, USR is
indeed calculating the sine of X.

USR is not a popular Applesoft function for two main reasons.
First, only a single numeric expression can be passed to the USR
subroutine. Second, the structure of the internal floating-point ac
cumulator has never been officially described by Apple. However,
as we shall see in the section below entitled "USEFUL APPLESOFT
BUILT-IN SUBROUTINES," there are many built-in subroutines
in Applesoft that can be used to facilitate manipulation of the FAC.

APPLESOFT'S BUlL T-IN SUBROUTINES
The Applesoft interpreter is made up of many subroutines that

are used to perform many different functions: evaluating functions,
performing arithmetic operations, locating variables, handling er
rors, and so on. Many of them make use of the previously described
CHARGET subroutine and the TXTPTR ($B8) pointer to perform
their duties. Table 4-8 describes some of the more useful and com
monly used Applesoft subroutines. The addresses of these subrou
tines are called "entry points."

Many of the Applesoft subroutines make use of special locations
in the lie's zero page. The locations that are referred to in connec
tion with the subroutines in Table 4-8 are shown in Table 4-9.

Many of the subroutines contained in Table 4-8 deal with float
ing-point real numbers. Applesoft uses two seven-byte areas in zero
page, one from $9D to $A3 and the other from $AS to $AB, to store
binary floating-point numbers whenever mathematical operations
are being performed on real numbers or functions are being eval
uated. These areas are called the primary floating-point accumu
lator (FAC) and argument register (ARG), respectively. Note that
despite the use of the words "accumulator" and "register," these
are not 6502 registers, but merely special data storage areas. Al
though the format Applesoft uses to store numbers in either FAC
is not quite the same as the five-byte format used to store real
numbers in the Applesoft simple and array variable spaces, it will
not be described here since knowledge of it is not necessary to
make use of Applesoft's built-in floating-point mathematical sub
routines.

The FAC is used by Applesoft to hold the argument for those
calculations that require only one argument (for example, the cal
culation of a sine). If two arguments are required, however, the
first argument is kept in the ARG and the second is kept in the
FAC. In either case, the answer is returned in the FAC.

Remember the Applesoft USR command? The argument that is
evaluated when this command is executed is stored in the FAC, as
is the returned result.

110 c=J Inside the Apple //e ------------------

Table 4-8. Applesoft built-in subroutines.

(a) Locating Variables, Data, and Line Numbers

Address Symbolic
Hex (Dec) Name Description

$00B1 (177) CHARGET

$00B7 (183) CHAR GOT

$DFE3 (57315) PTRGET

$F7D9 (63449) GETARYPT

$D61A (54810) FNDLIN

Increments TXTPTR by one po
sition and returns the next byte
in the program in the A-register.
Certain flags are also set: if A is
a colon (": ") or a zero, then the
zero flag is set; otherwise, it is
cleared. If A is an ASCII digit ("0"
to "9"), then the carry flag is
cleared; otherwise it is set.

Returns the current byte in the
program pointed to by TXTPTR
in the A register. The flags are set
in the same way as for CHAR
GET.

Finds the address of the begin
ning of the data field within the
variable space for any Applesoft
variable. On entry, TXTPTR must
be pointing to the first character
of the variable's name. On exit,
the address can be found in
VARPNT ($83/$84) and in Y (high)
and A (low).

Finds the address of the name
header for any array variable. On
entry, TXTPTR must be pointing
to the first character in the vari
able's name. On exit, the address
can be found in LOWTR ($9B/$9C).

Locates the line in the program
whose number is in LINNUM ($50/
$51). On exit, if the line is found,
the carry flag is clear and LOWTR
($9A/$9B) points to the start of the
line. If the line was not found, then
the carry flag will be set and
LOWTR will point to the next
higher line.

------------------4 Applesoft BASIC c::::J 111

(b) Evaluating Formulas

Address Symbolic
Hex (Dec) Name

$DD67 (56679) FRMNUM

$E6F8 (59128) GETBYT

$DD7B (56699) FRMEVL

(c) Converting Numbers

Address Symbolic
Hex (Dec) Name

$E2F2 (58098) GIVA YF

$E6FB (59131) CONINT

Description

Evaluates a mathematical for
mula and stores the result in the
FAC. On entry, TXTPTR must be
pointing to the first character in
the formula. On exit, the result is
placed in the FAC unless a syntax
error is detected in which case an
appropriate error message is dis
played.

Evaluates a mathematical for
mula that will yield a result in the
range 0 ... 255. On entry, TXTPTR
must be pointing to the first char
acter in the formula. On exit, the
result is stored in the X-register
and FACLO ($Al).

Evaluates a mathematical or
string formula and stores the re
sult in the FAC. On entry, TXTPTR
must be pointing to the first char-

. acter in the formula. On exit, if a
strong formula is being evalu
ated, $A0 (low) and $Al (high)
points to the 3-byte string de
scriptor.

Description

Converts the 2-byte signed inte
ger in A (high) and Y (low) into
floating-point format and stores
it in the FAC.

Converts the number in the FAC
to a single-byte integer. On entry,
the number to be converted must
be in the FAC. On exit, the single
byte integer is contained in the
X-register and FACLO ($Al) un-

(continued)

112 CJ Inside the Apple //e ------------------

Table 4-8. Applesoft built-in subroutines (continued).

(c) Converting Numbers

Address Symbolic
Hex (Dec) Name

$E752 (59218) GETADR

$ED24 (60708) LINPRT

$ED2E (60718) PRNTFAC

Description

less the result is not in the range
0 ... 255 in which case an "IL
LEGAL QUANTITY ERROR"
message is displayed.

Converts the number in the FAC
into an unsigned 2-byte integer (0
... 65535) in LINNUM ($50/$51).
If the number is negative, then
65535 is added to its value.

Converts the unsigned hexadeci
mal number in X (low) and A

(high) into a decimal number and
displays it.

Prints the number contained in
the FAC (in decimal format). The
FAC is destroyed by this process.

(d) Applesoft Real-Number Mathematics

Before executing any of the following subroutines, a number must
be loaded into the FAC. All of these subroutines first move the
number in memory pointed to by Y (high) and A (low) into the
ARG and perform the mathematical operation. The result is placed
in the FAC.

Address
Hex (Dec)

Symbolic
Name

$E7 A 7 (59303) FSUB

$E7BE (59326) FADD

$E97F (59775) FMULT

$EA66 (60006) FDIV

(e) Applesoft String Handling

Address
Hex (Dec)

Symbolic
Name

$E452 (58450) GETSPACE

Description

Subtract the FAC from the ARG.

Add the FACto the ARG.

Multiply the ARG by the FAC.

Divide the ARG by the FAC.

Description

Reduces the start-of-strings
pointer, FRETOP ($6F), by the
number specified in the A-regis
ter (the string length) and sets up

------------------4 Applesoft BASIC c:::=J 113

(e) Applesoft String Handling (continued)

Address Symbolic
Hex (Dec) Name Description

$E484 (58500) GARBAGE

$E5E2 (58850) MOVESTR

$ED34 (60724) FOUT

$DB3A (56122) STROUT

$DB3D (56125) STRPRT

FRESPC ($71) so that it equals
FRETOP. After this has been done,
A remains unaffected and Y (high)
and X (low) point to the begin
ning of the space. The string can
then be moved into place in up
per memory by using MOVESTR.

Clears out old string definitions
that are no longer being used and
adjusts FRETOP {$6F) accord
ingly. (Each time that a string is
redefined, its old definition is kept
in memory but is not used.) This
process is called "garbage collec
tion" and is performed automat
ically whenever the start-of
strings address, FRETOP, comes
close to the end-of-variables ad
dress, STREND {$6D).

Copies the string that is pointed
to by Y (high) and X (low) and
that has a length of A to the lo
cation pointed to by FRESPC
($71).

Converts the FAC into an ASCII
character string that represents
the number in decimal form (like
Applesoft's STR$ function). The
string is followed by a $00 byte
and is pointed to by Y (high) and
A (low) so that STROUT can be
used to print the string.

Prints the string pointed to by Y
(high) and A (low). The string must
be followed immediately by a $00
or a $22 byte. All of these condi
tions are set up by FOUT.

Prints the string whose 3-byte de
scriptor is pointed to by $A0/$A1.
FRMEVL sets up such a pointer
when calculating string formu
las.

(continued)

114 c=J Inside the Apple //e ------------------

Table 4-8. Applesoft built-in subroutines (continued).

(f) Applesoft Real-Number Functions

In executing the following subroutines, Applesoft expects the ar
gument to be in the FAC. After the result has been calculated, it
will be placed in the FAC.

Address Symbolic
Hex (Dec) Name Description

$E941 (59713) LOG

$EBAF (60335) ABS

$EE8D (61069) SQR

$EF09 (61193) EXP

$EFEA (61418) COS

$EFF1 (61425) SIN

$F03A (61498) TAN

$F09E (61598) ATN

(g) Miscellaneous Subroutines

Address Symbolic
Hex (Dec) Name

$DA0C (55820) LINGET

$D412 (54290) ERROR

$DEBE (57022) CHKCOM

Calculate the natural logarithm

Calculate the absolute value

Calculate the square root

Calculate "e to the power of"

Calculate the cosine (in radians)

Calculate the sine (in radians)

Calculate the tangent (in radians)

Calculate the arctangent (in ra
dians)

Description

Loads a line number into LIN
NUM ($50/$51). On entry,
TXTPTR must point to the first
digit of the line number.

Handles any Applesoft error con
ditions that may occur during the
running of a program. The sub
routine first checks ERRFLAG
($D8) to see if an ONERR GOTO
statement is in effect; if ERR
FLAG > = $80, then error han
dling has been enabled and con
trol passes to the appropriate line
number. If ERRFLAG <$80, then
an error message is printed (the
error-number code is in X) and
the program stops.

Checks that TXTPTR ($B8) is
pointing to a comma and, if it is,
bumps TXTPTR by one. If
TXTPTR is not pointing to a
comma, then a syntax error will
be generated.

------------------ 4 Applesoft BASIC c::::=l 115

(g) Miscellaneous Subroutines (continued)

Address Symbolic
Hex (Dec) Name Description

$E000 (57344) COLD

$E003 (57347) WARM

Performs an Applesoft cold start
(the program in memory is de
stroyed).

Performs an Applesoft warm start
(the program in memory remains
intact).

Table 4-9. Some important zero page locations used by
Applesoft's built-in subroutines.

Address
Hex (Dec) Symbolic Name

$50 (80) LINNUM (low)
$51 (81) (high)

$71 (113) FRESPC (low)
$72 (114) (high)

$83 (131) VARPNT (low)
$84 (132) (high)

$9B (155) LOWTR (low)
$9C (156) (high)

$Al (161) FACLO

$B7 (183) TXTPTR (low)
$B8 (184) (high)

$D8 ~1~ ERRFLAG

Description

These are the locations, used
by GETADR, that contain the
result of the conversion of the
FACto a 2-byte integer.

This is a temporary pointer,
used by GETSPACE and
MOVESTR, that contains the
address of the location to which
a string is to be moved.

This is a temporary pointer,
used by PTRGET, that con
tains the location of the data
bytes for the last variable that
was found using PTRGET.

A pointer used by FNDLIN and
GETARYPT.

This is a byte in the FAC that
contains the result of CONINT
and GETBYT.

This is a pointer to the position
within the program that is cur
rently being acted on by the in
terpreter. It is part of the
CHARGET subroutine.

This is the ONERR GOTO flag.
If it's > = $80, then ONERR is
active.

116 [==:J Inside the Apple //e ------------------

USING APPLESOFT'S BUlL T-IN
SUBROUTINES

Applesoft's built-in subroutines can be used in conjunction with
your own assembly-language programs to greatly simplify those
programs and to allow you to dispense with having to rewrite
programs that have already been written. In most cases, it is not
even necessary to understand exactly how the Applesoft subroutine
operates as long as you understand what the entry conditions are
and what effect the subroutine has on the system.

There are literally hundreds of useful subroutines within the
Applesoft interpreter that can be usefully accessed, but only a few
of them have been listed in Table 4-8. Three of the more important
classes of subroutines will be discussed in detail here: those used
to locate variables, those used to evaluate formulas, and those used
to convert numbers between different formats.

Locating Variables

We have already seen how Applesoft keeps track of its variables
and how it stores them. Using that information, it would be a fairly
simple chore to write a program to locate and retrieve any partic
ular one. All you would have to do would be to check the name
bytes of each variable in the variable table that begins at the start
of simple variable space until a match was found. Applesoft already
contains a program to do this, however, so why bother? This pro
gram is called PTRGET and begins at $DFE3.

To find the location of a variable, all you must do is adjust
TXTPTR ($B8/$B9) so that it points to the first character in the
variable name, and then execute a JSR PTRGET instruction. When
the subroutine ends, VARPNT ($83/$84) will contain the address
of the beginning of the variable's data field.

PTRGET can be used to simplify the passing of Applesoft vari
ables to and from an assembly-language program. Variables are
usually passed by tacking their names, separated by commas, on
to a CALL or & command. For example, to pass two variables, say
F% and L%, to a program starting at $300, you could use the
following command:

CALL 768,F%,L%

------------------ 4 Applesoft BASIC c::::::J 117

Immediately after the CALL 768 command is executed, TXTPTR
is pointing to the location occupied by the comma separator. Before
we can use PTRGET, TXTPTR must be advanced by one position.
This is done at the beginning of the subroutine being called by
using a subroutine called CHKCOM ($DEBE) that ensures that the
current character is indeed a comma, and then increments TXTPTR.
Once this has been done, everything is ready for a call to PTRGET.
After it has been called, VARPNT ($83/$84) can be examined to
determine where the data for that variable is located. Since the
storage format of the data is known, it is a simple matter to read
and interpret it. In summary then, the method to be used to locate
a variable is as follows:

JSR CHKCOM
JSR PTRGET
LOY #0

;Skip over the "," separator
;Find the variable and put ptr in VARPNT

LOA <VARPNT>, Y ;Get first byte of variable's data

INY
LOA <VARPNT>,Y ;Get second byte of variable's data

After PTRGET has been called, TXTPTR points to the byte after
the last character of the variable's name. This means that you
would perform another

JSR CHKCOM
JSR PTRGET

sequence to retrieve the next variable specified after the CALL
statement.

Let's look at a complete example to see how to use these sub
routines. Table 4-10 shows a program called UPPER that is de
signed to convert any lower-case characters in a string variable to
their corresponding upper-case characters. Once the program has
been installed, it can be called from Applesoft as follows:

CALL 768,A$

where A$ is the string variable to be modified.

Notice how the program works. The first step is to skip over the
comma by calling CHKCOM. After that has been done, TXTPTR

Table 4- UJ. UPPER. A program to convert lower-case strings to upper-case.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4

0300: 20 BE DE 1 5
0303: 20 E3 DF 16
0306: AO 00 1 7
0308: B1 83 18
030A: AA 19
030B: C8 20
030C: B1 83 21

* UPPER *
* *
* CALL 768,A$ *
* Convert A$ to upper ca5e *

STRING EQU $6
VARPNT EQU $83
CHKCDM EQU $DEBE
PTRGET EQU SDFE3

DRG $300

JSR CHKCDM
JSR PTRGET
LDY #0
LDA <VARPNT>, Y
TAX
INY
LDA <VARPNT>, Y

;Pointer to 5tring element5
;Pointer to variable'5 data
;Check for comma and move on
;Find addre55 of variable

;Skip over comma 5eparator
;Locate 5tring variable

;Get length of 5tring
; and put it in X

;Get 5tring pointer <low)

..a.

..a.
CD

D
5"
Ul
a:
CD
rt
~
CD

)>
"'C
"'C
ro --CD

030E: SS 06 22
0310: CS 23
0311 : B1 S3 24
0313: ss 07 25

26
0315: SA 27
0316: AS 2S
0317: co 00 29
0319: FO 16 30
031B: SS 31
031C: CO FF 32
031E: F 0 11 33
0320: B1 06 34
0322: C9 61 35
0324: 90 FS 36
0326: C9 7B 37
032S: BO F1 3S
032A: 29 DF 39
032C: 91 06 40
032E: 4C 1B 03 41
0331 : 60 42

43

--End assembly--

50 bytes

SCAN

ALLDDNE

STA
INY
LDA
STA

TXA
TAY
CPY
BEQ
DEY
CPY
BEQ
LDA
CMP
BCC
CMP
BCS
AND
STA
JMP
RTS

STRING

<VARPNT>,Y
STRING+1

#0
ALLDONE

#$FF
ALLDDNE
<STRING>,Y
#'a
SCAN
#, z + 1
SCAN
#$DF
<STRING>,Y
SCAN

;Get string pointer {high>

;Put length in Y
;Null string?
; Yes, so done
;Move to previous element
;At the end?

;Get string element
;Is it less than "a"?
;Yes, so branch
;Is it greater than "z"?
;Yes, so branch
;Convert to u.c.
; and put it into string.

.!::>
:x>

"'C
"'C
ro
en
0
~
Ill
:x>
(f)

f.i

D
..a.
..a.
CD

120 c:=J Inside the Apple //e -------------------

will be pointing to the "A" in A$ and PTRGET can be called to
locate the three data bytes used to describe the string (one byte
for the length and two bytes representing its location). The pointer
to the first of these three bytes is automatically stored in V ARPNT
($83/$84), so that the three bytes can be examined by using indirect
indexed instructions as follows:

LDA <VARPNT>, Y

where Y = 0,1 ,2. After the length and pointer have been determined,
it is a simple task to scan through the bytes in the string to see
whether their ASCII codes are between those for "a" and "z" and,
if they are, to convert them to upper-case by performing an AND
#$DF operation. (This essentially subtracts 32 from the lower-case
ASCII code, thus converting it to the corresponding upper-case
ASCII code.) If you print A$ after calling UPPER, you will see that
all of its lower-case characters have, indeed, been converted to
upper-case.

Evaluating Formulas

Not surprisingly, there are also several built-in Applesoft sub
routines that can be used to evaluate mathematical formulas. Again,
you could write such programs yourself, but they would need to
be exceedingly complex and would be difficult to develop.

The main Applesoft subroutine for evaluating a mathematical
formula is called FRMNUM and is located at $DD67. To use it,
you must first ensure that TXTPTR is, as usual, pointing to the
location of the first character in the formula. Once this has been
done, FRMNUM can be called; after this subroutine has finished
executing, the result of the calculation will be stored in the FAC.
You can then use other built-in subroutines to massage this number
as you see fit, for example, to print it out or to convert it to an
integer.

Let's look at an example of the use of FRMNUM. The program
in Table 4-11, called FORMULA, evaluates any mathematical for
mula that is passed to it and displays the result. To CALL it from
Applesoft, you must enter the command

CALL 768,aexpr

where "aexpr" represents the Applesoft formula that is to be eval
uated.

The first part of the program should look familiar. It is the
"standard" JSR CHKCOM instruction that skips over the comma
after the CALL statement. Once this has been performed, the for-

------------------4 Applesoft BASIC c=J 121

mula can be evaluated by a JSR FRMNUM and the result will be
placed in the primary FAC. To see the result it is simply necessary
to perform a JSR PRINTFAC ($ED2E).

Converting Numbers

Number conversion plays an important role in the Applesoft
interpreter. Numbers are normally handled internally in a binary
format, but whenever they are to be displayed they must be con
verted to more recognizable decimal numbers. Conversely, num
bers that are inputted, say from the keyboard by a user, are nor
mally inputted in decimal form and must be converted to binary
form before they can be processed.

In addition to the above types of conversions, it is often necessary
to convert an integer number to a floating-point number and vice
versa. This is handled by the Applesoft GIVA YF subroutine and by
the CONINT or GETADR subroutines, respectively. The latter two
subroutines are especially useful because quite often only integer
quantities are being manipulated and, as we have seen, whenever
a formula is evaluated by performing a JSR FRMNUM, the result
is placed in the FAC, which is difficult to interpret. By using CON
INT or GETADR, the FAC can be quickly converted to an easy-to
handle one- or two-byte integer format.

The program in Table 4-12, CONVERT, shows how the CONINT
subroutine can be used to convert the contents of the FACto a one
byte integer in the range 0 ... 255. As usual, CONVERT is designed
to be called from Applesoft, using the command

CALL 768,aexpr

where "aexpr" represents a mathematical formula that will eval-
' uate into an integer within the 0 ... 255 range.

The first step is to skip over the comma with a JSR CHKCOM.
Then, the formula is evaluated and placed in the primary FAC with
a JSR FRMNUM. At this stage, we would like to convert the FAC
into an easier format to handle: a one-byte humber. This is done
by executing a JSR CONINT; after CONINT has been executed,
the one-byte number will be found in the X register. CONVERT
then stores the value in the X register at location $6 where it can
be read with an Applesoft PEEK (6) command.

If the integer result is going to be larger than 255, then GETADR
must be used instead of CONINT. After a JSR GETADR, the value
of the integer will be contained in LINNUM ($50/$51), so that the
decimal result will be PEEK(80) + 256*PEEK(81).

Table 4-11. FORMULA. A program to add two integers together.

Page #01

: A 5 M

0300: 20 BE DE

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
16
1 7
18

* FORMULA *
* *
* CALL 768,[formulal *
*This program evaluates *
*and displays an Applesoft *
*mathematical formula. *

FRMNUM EQU $DD67
CHKCDM EQU $DEBE
PR I NTFAC EQU $ED2E

DRG $300

JSR CHKCDM

;Evaluate formula
;Check for comma and move on
;Display the result

;Skip over comma separator

..a.
N
N

0
:r
(fl

a:
CD
rt
:::r
CD

l>
"'C
"'C
ro -ro

19
20
21
22

0303: 20 67 DD 23
24
25
26
27
28

0306: 20 2E ED 29
30

0309: 60 31
32

--End assembly--

10 bytes

Errors: 0

* Evaluate the fomula and put *
* it in the FAC. *

I

JSR FRMNUM

* Convert the number in FAC *
* to decimal and display it.•

JSR PR I NTFAC

RTS

.):>.

~
"'0
"'0
ro
Ul
0 _,
C"t

CD
~
(/)

(")

D ...
N
w

Table 4-12. CONVERT. A program to evaluate a formula.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4

0300: 20 BE DE 1 5
0303: 20 67 DD 16
0306: 20 FB E6 1 7

18
0309: 86 06 19
030B: 60 20

21

--End assembly--

12 bytes

Errors: 0

* CONVERT *
* *
* CALL 768,(formulal *

RESULT EQU $6

CHKCOM EQU $DEBE
FRMNUM EQU $DD67
CONI NT EQU $E6FB

ORG $300

JSR CHKCDM
JSR FRMNUM
JSR CONI NT

STX RESULT
RTS

;Store the answer here

;Check for comma and move on
;Evaluate a formula
;Convert FAC to integer

;Skip over comma
;Evaluate the formula
;Put one-byte answer in X

;Store the answer

.a.
N
A

D
::J
Ul
c.:
CD
C"t ::r
CD
)>

"'0
"'0 ro -ro-

------------------4 Applesoft BASIC C:=J 125

FURTHER READING FOR CHAPTER 4

Standard reference works ...
Applesoft BASIC Programmer's Reference Manual, Volumes 1 and

2, Apple Computer, Inc., 1982.
All About Applesoft, Call -A.P.P.L.E., 1981. A useful source of in

ternal information about Applesoft.
On Applesoft entry points ...

J. Crossley, "Applesoft Internal Entry Points", Apple Orchard,
March/April (1980). The seminal work on Applesoft entry points.
Unfortunately, it contains numerous typographical errors and
incorrect addresses - these corrections have been made in a
reprint of the article which appears in "All About Applesoft,"
above.

R.M. Mottola, "Applesoft Floating Point Routines," Micro, Au
gust 1980, p. 53. A detailed look at Applesoft's built-in sub
routines that support real-number mathematics.

C. Bongers, "In the Heart of Applesoft," Micro, February 1981,
p. 31. A comprehensive look at the internals of the Applesoft
interpreter.

"Using Applesoft ROMs from Assembly Language," Apple Assem
bly Line, November 1981, pp. 2-13. More on accessing Apple
soft's built-in subroutines.

C. Bongers, "Applesoft's CHARGET Routine," Call -A.P.P.L.E.,
March 1982, p. 21. Suggestions for improvements to CHAR
GET.

B. Sander-Cederlof, "All About PTRGET & GETARYPT," Apple
Assembly Line, March 1983, pp. 2-9. A look at two useful entry
points to Applesoft.

On Applesoft data storage ...
V. Golding, "Applesoft From Bottom to Top," Call -A.P.P.L.E.,

March 1979, p.3. A look at the internal structure of Applesoft.
G.A. Lyle, "Float, Float, Float Your Point (F.P. Representation),"

Apple Orchard, Winter 1980, pp. 37-39. A description of how
Applesoft stores real variables.

E.E. Goez, "Real Variable Study," Call-A.P.P.L.E., January 1981,
pp. 8-23. A detailed look at how Applesoft deals with real var
iables.

C.K. Mesztenyi, "Applesoft Internal Structure," Call-A.P.P.L.E.,
January 1982, p.9

A. Moss, "Playing With Program Pointers," Nibble, Vol. 4, No. 3
(1983), pp. 69-81. A look at the various Applesoft pointers.

126 c:::::J Inside the Apple //e ------------------

On linking to assembler language ...
B. Sander-Cederlof, "Using USR for a WEEK," Apple Assembly

Line, October 1982, p. 30. A program is presented which uses
USR to calculate the value of a two-byte pointer.

D. Lingwood, "The Return of the Mysterious Mr. Ampersand,"
Call -A.P.P.L.E., May 1980, p.26. Examples of uses for the &
command.

Source Code for the Applesoft interpreter ...
Available from:

(1) Roger Wagner Publishing, P.O. Box 582, Santee, CA 92071
(comes with and requires Merlin Assembler).

(2) S-C Software Corporation, P.O. Box 280300, Dallas, TX
75228 (requires S-C Macro Assembler)

5
Disk Operating System

The first peripheral device that users of the //e add to their sys
tems is invariably a disk drive. There are two main reasons for
this. First, the alternative low-cost mass storage device, a cassette
recorder, is extremely awkward to use since it is slow, unreliable,
and does not allow for random access of information. Second, vir
tually all commercially available software for the //e is available
on diskette only.

Information is passed to and from a diskette by using special
disk operating system (DOS) commands that are available for use
by an Applesoft program after a DOS diskette is first started up
(or "booted"). The purpose of this chapter is not to teach you how
to use these commands but rather to explain the methods used by
DOS to organize information on diskettes and to provide you with
an insight into the internal operation of DOS. The two operating
systems used by Applesoft programs will be covered: DOS 3.3 and
ProDOS.

Before a diskette can be used by either DOS 3.3 or ProDOS it
must be initialized. This is done by using the DOS 3.3 INIT com
mand or a command in the ProDOS FILER program. The initial
ization process formats the diskette into 35 "tracks" on the diskette
(numbered from 0 to 34), each of which can hold 4096 bytes of
information. These tracks are arranged in concentric rings around
the central hub of the disk, with track 0 being located at the outside
edge and track 34 at the inside edge.

Each of the 35 tracks that are formatted on a diskette are sub
divided into sixteen smaller units called "sectors." The sectors that
make up a track are numbered from 0 to 15 and each can hold
exactly 256 bytes of information. If you do the mathematics, you
will quickly determine that a diskette can hold 560 sectors (140K)
of information.

Note that although DOS 3.3 and ProDOS both subdivide each
track into 256-byte sectors, only DOS 3.3 uses the sector as the
basic unit of file storage. That is, the smallest unit of disk space

127

128 c:::J Inside the Apple lie------------------
that can be allocated to a file is one sector. Pro DOS uses the "block"
as the basic unit of file storage; each block is made up of two
sectors.

We are now ready to take a look at where DOS 3.3 and ProDOS
are loaded into memory and how they organize and store infor
mation on a formatted diskette. We will begin with a description
of DOS 3.3 and then move on to a description of ProDOS.

THE INTERNAL STRUCTURE OF DOS 3.3

DOS 3.3 Memory Map

DOS 3.3 occupies the upper part of built-in internal RAM mem
ory from locations $9D00 to $BFFF. However, it also reserves a
space just below this for diskette file work areas, called "file buff
ers." When DOS 3.3 is first activated, three such file buffers are
reserved, and they occupy the area from $9600 to $9CFF in mem
ory.

To ensure that an Applesoft program does not overwrite the areas
used by DOS 3.3, DOS 3.3 ensures that Applesoft's HIMEM pointer
at $73/$74 (see Chapter 4) is set equal to the lowest address reserved
for the file buffers (usually $9600). Thus, the data for Applesoft
string variables will be stored at locations below this memory
location and DOS 3.3 and its file buffer areas will be protected.

Note, however, that the starting location of the file buffer area
reserved by DOS 3.3 can be changed by using the MAXFILES com
mand. The syntax associated with the MAXFILES command is

MAXFILES n

where "n" represents an integer from 1 to 16 that is equal to the
number of DOS 3.3 files permitted to be open at the same time.
Each of these files has associated with it a 595-byte buffer that is
used for input/output operations. The first of these buffers begins
at location $9AA6 and successive buffers begin every 595 bytes
lower in memory than the previous one. Since the default setting
for MAXFILES is 3, the lowest file buffer begins at $9600.

Whenever MAXFILES is changed, not only does the start of the
file buffer area change, but so also does the Applesoft HIMEM
location (in fact, it is set equal to the start of the file buffer area).
Because of this, MAXFILES should always be changed at the very
beginning of an Applesoft program, before any string variables are
defined.

----------------- 5 Disk Operating System CJ 129

After MAXFILES has been set to the desired value, the Applesoft
HIMEM command can be used to set the highest memory location
that Applesoft strings can use (this must be lower in memory than
the start of the lowest DOS 3.3 file buffer). By moving HIMEM
lower in memory, a space can be freed up between HIM EM and
the beginning of the DOS 3.3 file buffers that can be used as a safe
place to store machine-language programs.

DOS 3.3 Page 3 Vectors

DOS 3.3 also reserves for its own use a block of memory in page
3 of memory beginning at location $3D0 and ending at location
$3EE. This area contains several subroutines that can be called to
transfer control to commonly used DOS 3.3 subroutines; for this
reason, these subroutines (most of which are simply 6502 JMP
instructions) are called vectors. The reason for placing these vec
tors at fixed locations in page 3 is to allow a program to auto
matically maintain compatibility with future versions of DOS 3.3.
If a program accesses DOS 3.3 only through these vectors, then it
need not be modified even if the absolute locations within DOS
3.3 to which these vectors point are changed.

The memory map of the DOS 3.3 page 3 vector area is set out
in Table 5-l.

DOS 3.3 also initializes most of the system vectors that appear
in page 3 from $3F0 ... $3FF. This includes the interrupt vectors
for BRK, Reset, IRQ, and NMI (see Chapter 2), as well as the vector
for the system monitor's <CTRL-Y> USER command (see Chapter1
3). Descriptions of the vector addresses set up by DOS 3.3 are given
in Table 5-2.

Volume Table of Contents CVTOCJ

One of the 560 sectors on a DOS 3.3-formatted diskette is reserved
for use as the volume table of contents (VTOC). The VTOC is used
to hold the following important information:

• The location of the start of the diskette's catalog (see next sec
tion)

• Numeric constants that relate to the characteristics of the dis
kette

• A bit map that is used to indicate which sectors on the diskette
are in use.

130 c:::::J Inside the Apple //e ------------------

Table 5-l. DOS 3.3 page 3 vectors.

Address Description of Vector

$3DB-$3D2 A JMP instruction to the DOS 3.3 warm-start entry
point. A call to this vector will reconnect DOS with
out destroying the Applesoft program in memory.
Use the "3D0G" command to move from the system
monitor to Applesoft.

$3D3-$3D5 A JMP instruction to the DOS 3.3 cold-start entry
point. A call to this vector will initialize DOS 3.3
to the state it was in when it was first loaded and
will clear the Applesoft program in memory.

$3D6-$3D8 A JMP instruction to the DOS 3.3 file manager. See
Note 1.

$3D9-$3DB A JMP instruction to the DOS 3.3 RWTS subroutine.
See Note 2.

$3DC-$3E2 A subroutine that loads the A register with the high
order address and theY register with the low-order
address of the DOS 3.3 file manager parameter list.
See Note 1.

$3E3-$3E9 A subroutine that loads the A register with the high
order address and theY register with the low-order
address of the DOS 3.3 R WTS parameter list (called
lOB). See Note 2.

$3EA-$3EC A JMP instruction to the DOS 3.3 subroutine that
causes it to accept new I/0 links and reconnect it
self. This subroutine must be called to properly in
stall new I/0 subroutines without affecting DOS 3.3
(see Chapters 6 and 7).

Note 1. The DOS 3.3 file manager is the intermediary between the DOS
3.3 commands and the fundamental disk I/0 subroutine (RWTS). It is
responsible for ensuring that the parameters for a DOS 3.3 command have
been correctly specified and that the correct disk operations that must be
executed for that command are performed.

Note 2. The RWTS subroutine is discussed in detail later in this chapter.

The VTOC is located at track 17, sector 0 on the diskette. Table
5-3 sets out the meaning of each of the 256 bytes in the VTOC
sector.

The track bit map that begins at location $38 in the VTOC sector
and ends at location $C3 represents the most important part of the
VTOC. It is referred to by any DOS 3.3 command that writes in
formation to a diskette so that the command can determine which
sectors on the disk are free and which are already in use by a file.

----------------- 5 Disk Operating System c::J 131

Table 5-2. Initialization of page 3 system vectors by DOS
3.3.

Vector Name Address Contents Description

BRK $3F0-$3F1 $FA59 Address of a subrou-
tine to display the
6502 registers and en-
ter the system moni-
tor.

RESET $3F2-$3F3 $9DBF Address of the DOS
3.3 reset-handling
subroutine (recon-
nects DOS 3.3).

USER $3F8-$3FA "JMP Jump to the system
$FF65" monitor's warm-start

entry point.

NMI $3FB-$3FD "JMP Jump to the system
$FF65" monitor's warm-start

entry point.

IRQ $3FE-$3FF $FF65 Address of the system
monitor's warm-start
entry point.

Note: The addresses stored at each vector location are stored with the
low-order byte first.

You will see from Table 5-3 that four bytes in the track bit map
are allocated to represent the usage of each track on the diskette;
however, it turns out that only the first two are used (the other
two bytes are always 00). As shown in Figure S-1, each of the 16
bits in these first two bytes corresponds to one of the 16 sectors
that make up the track. Track 15 corresponds to bit 7 of the first
byte in the pair, track 14 corresponds to bit 6, track 13 corresponds
to bit 5, and so on. Whenever the bit corresponding to a particular
sector is 0, then that sector is in use. Conversely, if that bit is 1,
then that sector is free.

Note that when a diskette is first initialized, all of tracks 0, 1, 2,
and 17 are marked "in use" by DOS 3.3. This is because tracks 0,
1, and part of 2, are used for storage of DOS 3.3 itself and track
17 is used for storage of catalog and VTOC information. When a
file is saved to diskette, the sectors it occupies will be marked in
use as well. When a file is deleted from the diskette, DOS 3.3
determines which sectors that file was using and changes the zeros
in the track bit map corresponding to those sectors to ones.

132 c::::J Inside the Apple //e ------------------

Table 5-3. Map of the DOS 3.3 Volume Table of Contents
(VTOC) sector.

Byte number
in VTOC

$00
$01
$02
$03

$04-$05
$06

$07-$26

Description (Usual values in parentheses)

<Not used>
Track number of first catalog sector (17)
Sector number of first catalog sector (15)
DOS version number (3 for DOS 3.3)
<Not used>
Volume number of diskette (1 ... 254)
<Not used>

$27 Maximum number of track/sector pairs in each sec-

$28-$2F
$30-$31
$32-$33

$34
$35
$36
$37

$38-$3B
$3C-$3F
$40-$43
$44-$47

II

II

II

$BC-$BF
$C0-$C3
$C4-$FF

tor of a file's track/sector list (122)
<Not used>
Used by DOS 3.3 when allocating sectors
<Not used>
Number of tracks per diskette (35)
Number of sectors per track minus 1 (15)
Number of bytes/sector low (0)
Number of bytes/sector high (1)
Track bit map for track #0
Track bit map for track #1
Track bit map for track #2
Track bit map for track #3
II

II

II

Track bit map for track #33
Track bit map for track #34
<Not used>

All manipulations of the track bit map are handled automatically
whenever a DOS 3.3 command is entered and it is usually not
necessary to deal with it directly. There is one particularly useful
utility program, however, that necessitates analyzing the track bit
map directly: a program that calculates the free space remaining

Bits of first byte -

Sector number -

Bits of second byte -

Sector number -

I 7 I 6 I 5 I 4 I
$0F $0E $00 $0C

I 7 I 6 I 5 I 4 I
$07 $06 $05 $04

3 I 2 I I 0 I
$08 $0A $09 $08

3 I 2 I I 0 I
$03 $02 $01 $00

Figure 5·1. Correlation of track bit map byte pairs to sectors.

------------------ 5 Disk Operating System c=J 133

on a diskette. Such a program works by scanning through all the
track bit map bytes and counting the number of" 1" bits that are
detected. A program that will do this will be presented later in
this chapter, when we discuss how to read into memory individual
sectors of the diskette using the RWTS subroutine.

Diskette Catalog

Up to 105 files of information can be stored on a diskette. DOS
3.3 keeps track of these files by asking you to assign names to each
of them when they are created (the names of all files on the diskette
are displayed whenever the CATALOG command is entered). DOS
3.3 reserves 15 sectors in track 17 of the diskette (sectors 15 down
to 1) to store these file names; these sectors comprise the diskette
catalog. The diskette catalog also holds information relating to the
size and type of each file, as well as the locations of the sectors on
the disk that contains the list of sectors used to hold the data for
each file.

The first catalog sector is actually found at the location stored
in byte 1 (track number) and byte 2 (sector number) of the VTOC;
the values stored here are 17 and 15, respectively. This first catalog
sector at track 17/sector 15 is the first in a linked list of sectors;
the next link in the chain is always contained in byte 1 (which
contains the track number) and byte 2 (which contains the sector
number) of a catalog sector. The last catalog sector will contain
zeros in byte positions 1 and 2. If DOS 3.3 has not been modified,
the catalog sectors used will be sectors 15 through 1 of track 17.

The layout of a typical catalog sector is shown in Table 5-4. As
can be seen, each catalog sector reserves 35 bytes of information
for each of seven different files. Since 15 different catalog sectors
are used by DOS 3.3, a total of 105 different files can be stored on
the diskette.

Each 35-byte catalog entry in a catalog sector contains infor
mation relating to the name of a file, its size and type, and the
location of its track/sector list (TSL). The structure of the TSL will
be discussed in the next section. The meanings of each of the bytes
in a catalog entry are set out in Table 5-5.

It may be that a particular catalog entry refers to a file that has
been deleted. If this is the case, then byte $00 of the catalog entry
will be set to $FF and the original value stored there (which rep-
resents a track number) will be stored at byte $20. ·

If a file has been accidentally deleted from a diskette, it is pos
sible to resurrect it if no other file has been saved to disk since the

134 c::::J Inside the Apple //e ------------------

Table 5-4. Map of a DOS 3.3 catalog sector.

Byte
number in

Catalog
Sector

$00
$01
$02

$03-$0A
$0B-$2D
$2E-$50
$51-$73
$74-$96
$97-$B9
$BA-$DC
$DD-$FF

Description

<Not used>
track number of next catalog sector
sector number of next catalog sector
<Not used>
Catalog entry for file #1
Catalog entry for file #2
Catalog entry for file #3
Catalog entry for file #4
Catalog entry for file #5
Catalog entry for file #6
Catalog entry for file #7

Note: Bytes 1 and 2 are both 0 for the last catalog sector.

deletion. This is done by restoring byte $00 in the file's catalog
entry to its original value (which is stored in byte $20) and then
changing byte $20 to an ASCII blank (code $A0). This can be done
using the READ SECTOR program presented later in this chapter.
This program allows you to easily modify the contents of any sector
on a diskette.

After the modified catalog entry has been saved to the diskette,
the deleted program will once again appear in a CATALOG listing.
One more important step must be performed, however: the file
must be immediately copied to another diskette using the FID
program on the DOS 3.3 system master diskette and then deleted
from the original diskette once again. It is not enough simply to

Table 5-5. Description of catalog entry.

Relative
Byte

Number

$00
$01
$02

$03-$20
$21
$22

Description

Track number of first TSL sector
Sector number of first TSL sector
File type code (see Table 5-6)
File name (in ASCII with bit 7 = 1)
Number of sectors occupied by file (low)
Number of sectors occupied by file (high)

----------------- 5 Disk Operating System c::::::::J 135

restore the catalog entry, because the track bit map will not mark
as "in use" those sectors used by the accidentally deleted file. Thus,
the file could be overwritten the next time any information is saved
to the diskette.

File Types

The file type code (relative byte $02 of a catalog entry) can be
one of sixteen values, depending on the file type and whether the
file is locked or not (a locked file cannot be renamed, deleted, or
written to). A code letter for each file type is displayed to the
immediate left of the file name whenever a diskette is catalogued
and is preceded by an asterisk if the file is locked. Table 5-6 sets
out the numeric file type codes and code letters for each permitted
DOS 3.3 file type.

Track/Sector List CTSLJ

The first two bytes of a catalog entry point to an important sector
that is associated with each file. This is the track/sector list (TSL)
sector and it contains an ordered list of all those sectors on the
diskette that contain the file's data. Without this list, it would be
impossible to determine where the contents of a file were stored
on the diskette.

The layout of a TSL sector is shown in Table 5-7. Each such
sector contains up to 122 track/sector pairs that indicate where on
the diskette the file data is located. If more track/sector pairs are
used, then another TSL sector is allocated; its location is pointed

Table 5-6. DOS 3.3 file type codes.

File Type

Text
Integer BASIC program
Applesoft program
Binary
[Reserved but undefined]
Relocatable EDASM
[Reserved but undefined]
[Reserved but undefined]

Code
Letter

T
I
A
B
s
R
A
B

File Type Code
Unlocked Locked

$00
$01
$02
$04
$08
$10
$20
$40

$80
$81
$82
$84
$88
$90
$A0
$C0

Note: EDASM files are created by the Apple 6502 Editor/Assembler.

136 c::::J Inside the Apple //e ------------------

Table 5-7. Map of a DOS 3.3 Track/Sector List (TSL)
sector.

Byte Number

$00
$01
$02

$03-$04
$05-$06

$07-$0B
$0C
$0D
$0E
$0F

II

II

II

$FE
$FF

Description

<Not used>
Track number of next TSL sector
Sector number of next TSL sector
<Not used>
Number of TIS pairs defined in previous TSL sec-

tors (low byte first)
<Not used>
Track number of 1st data sector
Sector number of 1st data sector
Track number of 2nd data sector
Sector number of 2nd data sector
II

II

II

Track number of 122nd data sector
Sector number of 122nd data sector

to by bytes 1 and 2 in the preceding TSL sector. If these bytes are
zero, then no further TSL sectors have been allocated.

If a particular track/sector pair in a TSL is 0/0, then that data
sector is undefined. With one exception, the 0/0 pair also indicates
an end-of-file condition, that is, there are no more track/sector pairs
in the TSL that have been allocated to the file.

The only exception arises when random-access textfiles are being
used. When these types of files are created, only those track/sector
pairs within the TSL that correspond to random-access records
that have actually been used will contain track/sector information.
A 0/0 will be stored at the other TSL locations. Thus, if a high
record number is used before any lower ones, several0/0 pairs will
appear in the TSL before the one corresponding to the record that
was used.

Storing File Data

Generally speaking, the contents of each sector referred to in the
TSL for a particular file contains the data that makes up that file:
the tokenized program for an Applesoft or Integer BASIC file, the
binary data for a binary file, and the ASCII codes (with the high
bits set to 1) for the characters in a text file.

------------------ 5 Disk Operating System CJ 137

In the case of an Applesoft or Integer BASIC file, however, the
first two bytes in the first data sector allocated to it are not program
tokens but rather the length of the stored program (low-order byte
first). The DOS 3.3 LOAD and RUN commands use this information
to determine how many bytes in the file are to be transferred into
memory.

In the case of a binary file, the first four bytes in the first data
sector allocated to it are not part of the binary image that was
saved to diskette. The first two bytes represent the default loading
address for that image (low-order byte first) and the next two bytes
represent the length of that image (low-order byte first). The DOS
3.3 BLOAD and BRUN commands require this information to prop
erly load the image into memory.

Note that every byte in a sequential text file is significant since
no overhead bytes are stored with it. The end of the file is indicated
by a $00 byte and when this byte is encountered when a READ
operation is being performed, no further information is read from
the file. For random-access textfiles, the unused portion of each
record contains $00 bytes, and there is no end-of-file indicator.

RWTS-Accessing the Diskette Directly

So far, we have only described how information is organized on
the diskette and not how DOS 3.3 physically stores it there. It turns
out that all diskette I/0 operations performed by DOS 3.3 are ex
ecuted by a single subroutine called RWTS (Read or Write a Track
and Sector) that can be invoked by calling the RWTS page 3 vector
at location $3D9 (see Table S-1). It is this subroutine that is re
sponsible for loading a 256-byte sector into a memory area (called
an I/0 buffer) and also for storing the contents of an I/0 buffer to
any particular sector on the diskette.

RWTS expects two data blocks to be set up before control is
passed to it. These blocks are called the I/0 block (lOB) and the
device control table (DCT). The information in these data blocks
provides all the information RWTS requires in order to perform
its chores: the disk drive slot and drive number, the type of op
eration to perform, the location of the I/0 buffer, and so on. The
meanings of each of the bytes in these blocks is shown in Table
S-8.

Just before the RWTS subroutine is called, the accumulator must
contain the high-order address of the lOB and the Y register must
contain the low-order address. You can set up your own lOB and
DCT data blocks or use the ones already set up by DOS 3.3. If

138 c::::::J Inside the Apple //e ------------------

Table S-8. Map of DOS 3.3 RWTS data blocks-lOB and
DCT.

(a) 1/0 Block (lOB)
Byte Number Description

$00 Type code of lOB (must be $01)
$01 Slot number x 16 (e.g., $60 for slot 6)
$02 Disk drive number ($01 or $02)
$03 Expected volume number ($00 will match any-

thing)
$04 Track number (0-34)
$05 Sector number (0-15)
$06 Address of DCT (low order)
$07 Address of DCT (high order)
$08 Address of data buffer (low order)
$09 Address of data buffer (high order)
$0A <Not used>
$0B <Not used>
$0C Command codes:

$00 (turn on drive/position head)
$01 (read sector into data buffer)
$02 (write to sector from data buffer)
$04 (initialize the diskette)

$0D Error code that is returned:
$00 (no error)
$10 (write-protected)
$20 (wrong volume number)
$30 (formatting error)
$40 (disk I/0 error)

$0E Actual volume number found on diskette
$0F Disk slot times 16 last accessed
$10 Drive number last accessed ($01 or $02)

(b) Device Characteristics Table (DCT)
Byte Number Meaning

$00
$01

$02-$03

Device type (must be $00)
Phases per track (must be $01)
Motor on-time count, low-order byte first (must

be $EFD8)

DOS's IOB and DCT blocks are to be used, the accumulator andY
register can be properly set up by a call to the page 3 vector at
$3E3.

If you are going to make use of DOS 3.3's own lOB, then all the
necessary parameters must be stored in it before calling RWTS.

----------------- 5 Disk Operating System c=J 139

This can be done by calling $3E3 to get the address of the lOB in
Y (low) and A (high), storing this address in two consecutive zero
page locations, and then using the 6502's indirect indexed address
ing mode to access the lOB. For example, to locate the lOB and
place the value $60 (slot 6 times 16) at location $01 and the value
$01 (drive number) at location $02, the following program would
be used:

JSR $3E3
STY $6
STA $7
LDY #1
LDA #$60
STA ($6),Y
LDY #2
LDA #$01

;Get address of lOB in A/Y
;Put address in zero page

;Set index for slot*16

;Store slot*16 at position $01
;Set index for drive #

STA ($6),Y ;Store drive # at position $02

After all the applicable parameters have been stuffed into the
lOB, another call to $3E3 must be made to ensure that A andY
again contain the address of the lOB, and then RWTS can be called
by executing a JSR $3D9 command (RWTS requires that A andY
contain the lOB address). If an error occurs while RWTS is per
forming diskette I/0, the carry flag will be set when the subroutine
ends (otherwise it will be clear). If an error occurs, the type of error
can be deduced by looking at byte $0D of the lOB. The error codes
stored here are listed in Table 5-8.

The program in Table 5-9, called DISK FREE SPACE, is a good
example of a program that makes use of the RWTS subroutine.
DISK FREE SPACE determines the number of free sectors on a
diskette by using RWTS to load the VTOC sector into memory
(track 17, sector 0) and then counting the number of "1" bits in
the track bit map. Parameters are put into the same lOB that DOS
3.3 uses by setting theY register equal to that parameter's position
within the lOB and then using an indirect-indexed store instruction
of the form "STA (IOBPTR),Y", where IOBPTR is the first of two
zero page locations containing the address of the lOB.

DISK FREE SPACE stores its two-byte result in zero page lo
cations $8 and $9, low-order byte first. To convert this to a decimal
number from Applesoft, it is necessary to calculate the quantity
PEEK(8) + 256*PEEK(9).

Table 5-9. DISK FREE SPACE. A program to calculate the number of free sectors on a DOS 3.3
diskette.

Page #01

A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5

0300: 20 E3 03 16
0303: 84 06 1 7
0305: 85 07 18
0307: AO 01 19
0309: A9 60 20
030B: 91 06 21
0300: C8 22
030E: A9 01 23
0310: 91 06 24
0312: C8 25
0313: A9 00 26
0315: 91 06 27
0317: C8 28

* DISK FREE SPACE *

BUFFPTR EQU $0
IDBPTR EQU $6
FREE EQU $8
BUFFER EQU $200

STATUS EQU $48
RWTS EQU $309
GET! DB EQU $3E3

DRG $300

JSR GET IDB
STY IDBPTR
STA IDBPTR+1
LOY #1
LOA #$60
STA CIDBPTR>,Y
INY
LOA #1
STA CIDBPTRl,Y
INY
LOA #0
STA CIDBPTRl,Y
INY

;Pointer to data buffer
;Pointer to location of lOB
;Number of free sectors
;Sector will be loaded here

;Monitor status location
;RWTS entry point
;Get DOS 3.3's lOB location in A/Y

;Find DOS's lOB
; and store low address
; and high address

;(Slot 6 * 16)

;(Drive 1)

;(Any volume number will do)

..a
A
0

D
::J
en
0.:
ro
C'1'
:::r
ro
)>

"'C
"'C
iD --ro

0318: A9 11 29 LOA #17 ;(Track 17>
031A: 91 06 30 STA <IOBPTR>,Y
031C: C8 31 INY
0310: A9 00 32 LOA #0 ;<Sector Q)
031F: 91 06 33 STA <IOBPTR>,Y
0321 : AO 08 34 LOY #8
0323: A9 00 35 LOA #<BUFFER ;<Low part of buffer address)
0325: 91 06 36 STA <IOBPTR>,Y
0327: 85 00 37 STA BUFFPTR ;<Set up 0-page pointer too)
0329: C8 38 INY
032A: A9 02 39 LOA #>BUFFER ;(High part of buffer address>
032C: 91 06 40 STA <IOBPTR>,Y
032E: 85 01 41 STA BUFFPTR+ 1 ;(Set up 0-page pointer too)
0330: AO OE 42 LOY #$0C
0332: A9 01 43 LOA #1 ;<READ command code)
0334: 91 06 44 STA <IOBPTR>,Y

45
0336: 20 E3 03 46 JSR GETIOB ;Get address of lOB in A/Y
0339: 20 09 03 47 JSR RWTS ; and call RWTS to get VTOC
033C: A9 00 48 LOA #0
033E: 85 48 49 STA STATUS ;(Clear monitor status) Ul

0
Page #02 m·

7'

0
so -c

CD
51 * Determine the number of I 1 I bits in track bit map:,

[l)

0340: A9 00 52 LOA #0 ;Zero the free-space counter C"t s·
0342: 85 08 53 STA FREE co

0344: 85 09 54 STA FREE+1 en
<

55 (IJ
C"t

0346: AO 38 56 LOY #$38 ;Track bit map starts here CD
3

0348: A2 08 57 COUNT LOX #8 ;8 bits to examine

D 034A: B1 00 58 LOA <BUFFPTR>,Y ;Get bit map byte
034C: 2A 59 COUNT1 ROL ;Put high bit into carry
0340: 90 06 60 BCC NEXTBIT ;Branch if bit was 0 ..a.

A
{continued) ..a.

Table 5-9. DISK FREE SPACE. A program to calculate the number of free sectors on a DOS 3.3
diskette (continued).

034F: E6 08 61 INC FREE ;Bump 2-byte counter by one
0351 : DO 02 62 BNE NEXTBIT
0353: E6 09 63 INC FREE+1
0355: CA 64 NEXTBIT DEX ;Decrement bit count
0356: DO F4 65 BNE CDUNT1 ;Branch if not done
0358: C8 66 INY ;Move on to next byte in bit map
0359: CO C4 67 CPY #$C4 ; At end of bit map?
035B: DO EB 68 BNE COUNT ; No, 50 keep counting
0350: 60 69 RTS

70

--End assembly--

94 bytes

Errors: 0

...
A
N

D
3'"
Ul a:
CD
rt
::r
CD
)>

"'C
"'C
rn ----CD

---------------- 5 Disk Operating System c:=J 143

Table 5-UJ. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette.

JLIST

0 REM "READ SECTOR"
1 REM <FOR DDS 3.3 ONLY>
100 FOR I = 768 to 937: READ X: POKE

I,X: NEXT
110 DEF FN MD<X> = X - 16 * INT

<X I 16>
120 TS = 15: REM TRACKS/SECTOR
130 TR = 34: REM NUMBER OF TRACKS

140 IN# 0: PR# 0
150 TEXT : HOME : PRINT TAB< 16

>; : INVERSE : PRINT "READ SE
CTDR": NORMAL : PRINT TAB<
11);"<C> 1984 GARY LITTLE"

160 VTAB 10: CALL - 958: PRINT
"ENTER BASE TRACK NUMBER <O
-";TR;: INPUT"): ";T$: IF T
$ = ""THEN 160

170 T = INT (VAL (T$)): IF T =
0 AND T$ < > "0" THEN 160

180 IF T < 0 DR T > TR THEN 160
190 VTAB 11 : CALL - 938: PRINT

"ENTER BASE SECTOR NUMBER (0
-";TS;: INPUT">: ";S$: IF S
$ = 1111 THEN 190

200 S = INT (VAL <SS»: IF S =
0 AND S$ < > "0" THEN 190

210 IF S < 0 DRS> TS THEN 190
220 POKE O,T: REM TRACK#
230 POKE 1 , S: REM SECTOR#
240 POKE 2,1: REM READ=1 WRITE=2

250 CALL 768
260 IF PEEK <8> < > THEN PRINT

: INVERSE : PRINT "DISK 1/0
ERROR": NORMAL : PRINT "PRES
S ANY KEY TO CONTINUE: ";: GET
A$: PRINT A$: GOTO 150

1000 VTAB 4: CALL - 958: PRINT
" CONTENTS OF TRACK ";T;
", SECTOR ";S: PRINT : POKE
34,5: HOME

1010 CALL 823: IF PR = 0 THEN GET
A$

1020 HOME : CALL 924
1030 PR = 0: PR# O:B = O:P = 1

(continued)

144 c=J Inside the Apple //e ------------------

Table 5-HJ. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

1 040 HTAB 1 : VTAB 23: CALL - 95
8: PRINT "ENTER COMMAND CB,C
,D,E,N,P,Q,W,HELP>; ";: GET
A$: IF A$ = CHR$ (13) THEN
A$ = II II

1050 PRINT A$
1060 IF A$ = "D" AND P = 0 THEN

P = 1 : HOME : CALL 924: GOTO
1040

1070 IF A$ = "D" AND P = 1 THEN
P = 0: HOME : CALL 823: GOTO
1040

1080 IF A$ "H" THEN 5000
1090 IF A$ "Q" THEN 1230
1100 IF A$ "E" THEN 1240
1110 IF A$ "P" THEN 1190
1120 IF A$ "N" THEN 1210
1130 IF A$ "B" THEN 140
1140 IF A$ "C" THEN VTAB 23: CALL

- 958: PRINT TAB(6);: INVERSE
: PRINT "TURN ON PRINTER IN
SLOT #1 ": NORMAL : PR = 1 : PR#
1: PRINT : GOTO 1000

1150 IF A$ < > "W" THEN 1180
1160 POKE 0, T: POKE 1 , S: POKE 2,

2: VTAB 23: CALL - 958: PRINT
"PRESS I y I TO VERIFY WRITE:
";:GET A$: IF A$= CHR$ (1
3) THEN A$ = II II

1170 PRINT A$: IF A$ = "Y" THEN
CALL 768:RW = 1: VTAB 23: CALL
- 958: PRINT "WRITE COMPLET

ED. PRESS ANY KEY: ";: GET A
$: GOTO 1040

1180 GOTO 5000
1190 S = S - 1: IF S = - 1 THEN

S = 15:T = T- 1: IF T =-
1 THEN T = TR

1200 GOTO 220
121 0 S = S + 1 : IF S 16 THEN S

0: T = T + 1 : IF T TR + 1 THEN
T = 0

1220 GOTO 220
1230 TEXT : HOME : CALL 1002: END

1240 V = 8:H = 3: VTAB 5: PRINT TAB(
6);: INVERSE: PRINT "I=UP M
=DOWN J=LEFT K=RIGHT": NORMAL

---------------- 5 Disk Operating System c=:J 145

Table 5-10. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

1250 HTAB 1: VTAB 23: CALL -95
8: PRINT TAB< 6);"PRESS ";:

INVERSE : PRINT "ESC";: NORMAL
: PRINT " TO LEAVE EDITOR"

1260 REM
1270 GOSUB 1410: GET A$
1280 LC = 16384 + 128 * P + 8 * V

+ H: Y = PEEK < LC >: X = ASC
<A$)

1290 IF A$ = CHR$ <27> THEN HTAB
1: VTAB 5: CALL - 868: GOTD
1040

1300 IF A$ = "I" THEN B = O:V =
V - 1 : IF V = - 1 THEN V =
15: IF P = 1 THEN P = 0: HOME
: CALL 823: GOTO 1250

1 31 0 IF A$ = "J" THEN B = 0: H =
H - 1 : IF H = - 1 THEN H =
7

1320 IF A$= "K" THEN B = O:H =
H + 1 : IF H = 8 THEN H = 0

1330 IF A$ = "M" THEN B = O:V =
V + 1 : IF V = 16 THEN V = 0:

IF P = 0 THEN P = 1 : HOME :
CALL 924: GOTD 1250

1340 IF B = 0 THEN Y = FN MD<Y>
+ 1 6 * <X - 48 > * <X < = 5

7> + 16 * <X - 55) * <X > =
65)

1350 IF B = 1 THEN Y = 16 * INT
<Y I 16) + <X - 48) * <X < =
57) + <. - 55> * <X > = 65)

1360 X = ASC <A$): IF <X > = 48
AND X < = 57> DR <X > = 6

5 AND X < = 70) THEN PRINT
A$;: POKE< pEEK <40) + 256 *

PEEK (41 > + 31 + H>,Y: POKE
LC, Y: IF B = 0 THEN CALL 64
500:8 1

1370 IF X 8 AND B = 1 THEN B =
0

1380 IF X 21 AND B = 0 THEN B =
1

1390 GOTD 1270
1400 CALL - 167
1410 VTAB V + 16: HTAB 3 * H + 7 +

B: RETURN

(continued)

146 c:::J Inside the Apple //e -----------------

Table 5-10. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

5000 HOME : PRINT TAB< 10>;"SUM
MARY OF COMMANDS": PRINT TAB<
10);"===================": PRINT

5010 PRINT "B -- RESET BASE TRAG
K AND SECTOR"

5020 PRINT "C -- COPY SECTOR CON
TENTS TO PRINTER"

5025 PRINT "D -- DISPLAY THE DTH
ER 1/2 SECTOR"

5030 PRINT "E EDIT THE CURREN
T SECTOR"

5040 PRINT "N -- READ THE NEXT S
ECTOR"

5050 PRINT "P -- READ THE PREVIO
US SECTOR"

5060 PRINT "Q -- QUIT THE PROGRA
M"

5080 PRINT "W -- WRITE THE SECTO
R TO DISK"

5090 PRINT : PR.INT "PRESS ANY KE
Y TO CONTINUE: ";: GET A$: PRINT
A$: GOTO 1020

6000 DATA 169,0,133,8,32,227,3,1
33,7,132,6,169,0,160,3,145,6
'165' 0 '20 0 '1 45 '6 '20 0 '165' 1 '1
45,6,169,0,160

6010 DATA 8,145,6,169,64,200,145
,6,165,2,160,12,145,6,32,227
' 3 ' 3 2 ' 21 7 ' 3 ' 1 4 4 ' 2 ' 1 0 2 ' 8 ' 96 ' 1
69,0,133,25,169

6020 DATA 64,133,26,162,0,160,0,
169,0,32,218,253,165,25,32,2
18,253,169,186,32,237,253,16
9,160,32,237,253,177,25,32

6030 DATA 218,253,169,160,32,237
,253,200,192,8,208,241 ,169,1
60,32,237,253,160,0,177,25,1
40,169,3,164,36,145,40,230,3
6

6040 DATA 172,169,3,200,192,8,20
8,237,169,141,32,237,253,232
,24,165,25,105,8,133,25,165,
26,105,0,133,26,224,16,208

6050 DATA 170,169,141,76,237,253
,169,128,133,25,169,64,133,2
6,162,0,76,65,3,255

----------------- 5 Disk Operating System CJ 147

DOS 3.3 READ SECTOR Program
Table 5-10 shows an extremely useful program called READ

SECTOR that can be used to examine any sector on a DOS 3.3
diskette, to edit the contents of a sector, and to write a modified
sector back to the diskette. With this program, you can easily look
at real examples of the types of sectors we have been discussing
in this chapter, for example, the VTOC, the catalog sectors, the
TSL sectors, and the file's data sectors themselves. You should be
careful when writing a sector to a diskette, however, as it is easy
to accidentally render the diskette unreadable.

When READ SECTOR is first run, you will be asked to enter a
base track and sector number. After this information has been
provided, the sector corresponding to that location on the diskette
will be read into memory and displayed on the screen in a special
format. Because of 40-column screen size limitations, only one-half
of the sector can be represented at once (you have to press the "D"
key to display the other halt).

The contents of a sector are displayed in 32 rows, each of which
contains an offset address from the beginning of a sector followed
by the hexadecimal representations of the eight bytes stored from
that location onward in the sector. At the far right of each row are
the ASCII representations of each of these eight bytes. Note that
only the first 16 or last 16 rows are displayed at any one time.

After both halves of the sector have been displayed, you will be
asked to 1 enter one of eight commands. The meanings of each of
these commands are as follows:

"B" -reset the base track and sector
"C" -copy the contents of the sector to the printer (in slot 1)
"D" -display the other half of the current sector
"E" -edit the current sector
"N" -read and display the next sector on the diskette
"P" -read and display the previous sector on the diskette
"Q" -quit the program
"W" -write the sector back onto the diskette

The functions that most of these commands perform are obvious.
The only "tricky" one is the "E" (Edit) command. When the Edit
command is entered, the cursor will move into the middle of the
8 x 16 array of hexadecimal digits that represent the contents of
one-half of the sector. To change any of these digits, use the I, J,
K, and M keys to move the cursor up, left, right, and down, re
spectively, and then enter the new two-digit hexadecimal entry for
that position. You can leave editing mode at any time by pressing
the ESC key. Once you have left editing mode, you can save the
changes to diskette by using the "W" (Write) command.

148 c=J Inside the Apple //e ------------------

THE INTERNAL STRUCTURE OF ProDOS

ProD OS was first released by Apple in January 1984 as a suc
cessor to DOS 3.3. Actually, it does not represent another version
of DOS 3.3, but rather a whole new disk operating system for the
1/e. ProDOS organizes information on a diskette in a completely
different way than does DOS 3.3, and so neither DOS can directly
use files that have been created by the other. A utility program
called CONVERT is included with ProDOS, however, which allows
most files to be transferred between DOS 3.3 and Pro DOS for
matted diskettes so that they can be used by either operating sys
tem. Unfortunately, CONVERT will not work properly with ran
dom-access textfiles; such files must first be converted to sequential
textfiles. ProDOS is compatible with the SOS operating system for
the Apple///, however. This means that files stored on a diskette
using ProDOS can be read by SOS and vice versa.

Apple has made great efforts to ensure that virtually all DOS 3.3
commands available to an Applesoft program are also available
when ProDOS is being used. ProDOS has enhanced many of these
commands, however, and has added several new ones. In addition,
ProD OS commands perform disk I/0 operations significantly faster
than DOS 3.3 commands.

As you might expect, ProDOS supports several useful features
that the older DOS 3.3 does not. For example, the CATALOG com
mand displays not only the file name and type, but also the exact
size of the file in bytes, the date and time that the file was created
and last modified (if a clock card has been installed), the default
starting locations of a binary file, and the record length of a ran
dom-access textfile.

ProDOS also allows user-defined commands to be added to the
standard ProDOS commands that are available to an Applesoft
program. In addition, a well-defined group of diskette file I/0 sub
routines can be easily accessed from a machine-language program
by making requests through a special "machine-language inter
face" handler. This handler can be used to perform all basic disk
ette file operations: open, read, write, close, and so on.

One useful new feature supported by ProDOS is the ability to
use the 64K of auxiliary memory contained on Apple's extended
80-column text card as if it was a disk drive. The volume name
given to this "RAM-disk" is /RAM and it is treated as if it were an
actual disk drive residing in slot 3, drive 2. The RAM-disk can be
used to load and save programs extremely quickly since "disk" I/
0 operations do not involve using any slow-moving mechanical
parts that degrade the data transfer rate considerably. Remember,

----------------- 5 Disk Operating System c=J 149

however, that any information stored in the /RAM volume will
disappear as soon as the //e is turned off or when ProDOS is re
booted.

Probably the most noticeable difference between ProDOS and
DOS 3.3 is the method used to organize files on a diskette. In DOS
3.3, all files on the diskette are contained within one main catalog
that is capable of holding the names of up to 105 files. ProDOS
supports a hierarchical directory structure, however, that allows
several separate directories to coexist on the same diskette. Any of
these directories can contain standard disk files like those that
appear in a DOS 3.3 catalog, but they can also contain files that
themselves define directories (called subdirectories). Any nondi
rectory file in any directory can always be accessed by specifying
its unique pathname. The pathname is of the form

VOLUME/DIRECTORY1/ ... /DIRECTORYn/FILENAME

where VOLUME represents the name of the first directory on the
diskette (the volume directory), and DIRECTORY! through DI
RECTORYn represent the names of all the directories that must
be passed through to reach the file being accessed, FILENAME.
Each of the directories in this pathname must be contained within
the previously specified directory.

If all files of interest are contained in the same subdirectory, it
becomes annoying to have to specify the same chain of directory
names leading up to the filename every time one is to be used. To
circumvent this problem, ProDOS supports a PREFIX command
that can be used to set the chain of directory names to which any
name specified in a ProDOS command will be automatically ap
pended. For example, if PREFIX is set by entering the following
ProDOS command:

PREFIX VOLUME/DIRECTDRY1/ ... /DIRECTDRYn/

then any file contained in the directory at the end of this path can
be referred to by its filename only. (A continuation of the prefix
could also be entered to access files in lower-level subdirectories.)

The advantage of subdirectories is often not readily apparent to
users of floppy diskettes, but becomes obvious when a hard disk
system is used where there is enough room to hold thousands of
files. If all the files were held in one directory you might have to
wait a long time to spot your file when the disk was catalogued,
and even then you could well miss it amidst the multitude of other
files. Fortunately, the hierarchical directory structure provided by
ProDOS allows related files to be grouped within the same sub
directory for easy access.

As far as organization of files on the diskette is concerned, ProDOS

150 c::::J Inside the Apple //e -------------------

deals with 512-byte blocks rather than 256-byte sectors. An ini
tialized diskette is considered to be made up of 280 blocks (num
bered from 0 ... 279), and it is rarely necessary to know where
these blocks are actually located on the diskette since ProDOS
performs all necessary conversions.

ProDOS Memory Map

When a ProDOS diskette is first booted, a system file called
PRODOS is loaded into memory and executed. This file contains
the fundamental I/0 subroutines that are used to read and write
blocks of data from and to the diskette. PRODOS then loads and
executes another system file into memory; the one loaded is in the
volume directory and it has a name of the form xxxx.SYSTEM (the
first file having such a name when the disk is catalogued will be
used). If an Applesoft programming environment is to be sup
ported, this file must be BASIC.SYSTEM (it is found on the ProDOS
system diskette). BASIC.SYSTEM contains the subroutines that
"add" the standard ProDOS commands to Applesoft. It also takes
care of parsing these commands, doing syntax checking, and call
ing the PRODOS subroutines when required. For convenience, we
will be referring to the resultant PRODOS/BASIC.SYSTEM pro
gram combination as "ProDOS" even though this is technically
not the case.

After ProDOS has been loaded as described, it will occupy the
following memory locations:

• $E000-$FFFF in internal bank-switched RAM
• $D000-$DFFF in Bankl of internal bank-switched RAM
• $9A00-$BFFF in internal RAM
• $D100-$D3FF in Bank2 of internal bank-switched RAM

(See Chapter 8 for a discussion of bank-switched RAM.) In ad
dition, a general-purpose file buffer will be set up from $9600 to
$99FF and the Applesoft HIMEM location will be set equal to $9600
(HIMEM refers to the value of the Applesoft end-of-string pointer
at $73/$74).

The $400-byte buffer just above Applesoft HIMEM is always used
by ProDOS as a buffer for directory blocks whenever the diskette
is CATALOGued. This buffer does not always begin at $9600, how
ever, since HIMEM could be changed in the following instances:

• By using the Applesoft HIMEM: command
• By opening and closing diskette files using the ProDOS OPEN

and CLOSE commands.

-----------------5 Disk Operating System c::::::::J 151

It's obvious how the HIMEM: command affects the position of
HIMEM, but why do the OPEN and CLOSE commands affect it?
The answer is that whenever a file is opened, ProDOS creates a
$400-byte file buffer by moving HIMEM down in memory by that
number of bytes and then reserving the $400 byte area beginning
at the original HIMEM position for use by the file. Whenever a file
is closed, HIMEM is moved up by $400 bytes. While doing all this,
ProDOS takes all steps necessary to ensure that Applesoft's string
variables are not overwritten.

Earlier in this chapter, we saw how a safe area of memory be
tween HIMEM and the beginning of the DOS 3.3 file buffers could
be reserved for use by assembly-language programs. Unfortu
nately, because ProDOS is forever changing HIMEM when files are
opened and closed, it is not possible to use this same technique
with ProDOS. There is a way, however, in which a safe area can
be reserved above ProDOS's file buffers. The steps that must be
followed to do this are as follows:

• Close all files using the ProDOS CLOSE command
• Lower HIMEM by a multiple of 256 bytes using the Applesoft

HIMEM: command.

These steps must be performed before any Applesoft variables
have been defined, since the Applesoft string space will be over
written. After these two steps have been completed, the area from
HIMEM + $400 to $99FF can be used for storage of machine-lan
guage programs without danger of having them overwritten by
ProDOS operations.

Keep in mind one important restriction that applies when using
ProDOS: if HIMEM is being changed (that is, the $73/$74 end-of
string pointer is being changed), it must be changed in multiples
of 256 bytes only!

ProDOS Page 3 Vectors

You will recall that DOS 3.3 uses the entire area from $3D0 ...
$3EE to hold several subroutines that can be called to perform
special DOS 3.3 functions. Although ProDOS also reserves this
entire area, only the first six locations are actually used (at present).
As indicated in Table 5-11, these six locations hold two JMP in
structions to the warm-start entry point of ProDOS (location $BE00).

ProDOS also initializes all of the system vectors that appear in
page 3 from $3F0 ... $3FF. These are the interrupt vectors for

152 [=:J Inside the Apple //e ------------------

Table 5-11. ProDOS page 3 vectors.

Address

$3D0--$3D2

$3D3-$3DS

Description of Vector

A JMP instruction to the ProDOS warm-start entry
point. A call to this vector will reconnect DOS with
out destroying the Applesoft program in memory.
Use the "3D0G" command to move from the system
monitor to Applesoft.

Another JMP instruction to the ProDOS warm-start
entry point.

BRK, Reset, IRQ, and NMI (see Chapter 2), the vector for the system
monitor's <CTRL-Y> useR command (see Chapter 3), and the
vector for the Applesoft & command (see Chapter 4). Descriptions
of all the vector subroutines installed by ProDOS are given in Table
5-12.

Volume Bit Map

Of the 280 blocks on a ProDOS diskette, the first seven (numbered
from 0 to 6) are reserved for specific purposes. Blocks 0 and 1
contain a program that is loaded into memory by the ROM sub
routine on the disk controller card whenever the system is booted.
This program is called the bootstrap loader and is respQnsible for
loading and executing the PRODOS system file. Blocks 2 through
5 represent the four blocks that contain the volume directory in
formation and will be described in the next section. Block 6 con
tains the volume bit map for the diskette.

The volume bit map is used for the same purpose as DOS 3.3's
track bit map, namely, to keep track of which areas of the diskette
are in use and which are free. Only the first 35 bytes (280 bits) in
the volume bit map block are actually used and each bit in each
byte corresponds to a unique block number. The byte number (from
0 to 34), and the bit number within that byte (from 0 to 7), that
corresponds to any given block number (from 0 to 279) can be
calculated using the following Applesoft formulas:

BYTENUM = INT<BLOCKNUM/8)
BITNUM = 7- BLDCKNUM - 8 * BYTENUM

If the bit associated with a particular block is one, then that
block is free. If it is zero, then it is being used by a file on the
diskette.

----------------- 5 Disk Operating System c:=J 153

Table 5-12. Initialization of page 3 system vectors by
Pro DOS.

Vector Name Address Contents Description

BRK $3F0-$3Fl $FA59 Address of a subrou-
tine to display the 6502
registers and enter the
system monitor.

RESET $3F2-$3F3 $BE00 Address of the ProDOS
warm-start entry point
(reconnects ProDOS).

& $3F5-$3F7 "JMP Jump to ProDOS's ex-
$BE03" ternal entry point for

command strings (see
Apple's ProDOS Tech-
nical Reference Man-
ual).

USER $3F8-$3FA "JMP Jump to ProDOS's
$BE00" warm-start entry point.

NMI $3FB-$3FD "JMP Jump to the system
$FF59" monitor's cold-start

entry point.
IRQ $3FE-$3FF $BFEB Address of the special

ProDOS interrupt han-
dler (see Chapter 2).

Note: The addresses stored at each vector location are stored with the
low-order byte first.

Diskette Directory

As was explained earlier, ProDOS allows multiple directories to
be created on one diskette. With the exception of the volume di
rectory (the one through which all the others must be accessed),
these directories can be stored just about anywhere on the diskette
since they are treated similarly to standard files. The volume di
rectory, however, is always located in blocks 2 through 5 of the
diskette.

Each block used by any directory can hold up to thirteen 39-
byte file entries. (This means that the four-block volume directory
can hold a total of 52 entries, one of which is the volume name
entry.) These entries completely describe the files by specifying the

154 c::::J Inside the Apple //e ------------------

Table 5-13. Map of a ProDOS directory block.

Byte number in
Directory Block Meaning of Entry

$000-$001

$002-$003

$004-$02A

$02B-$051
$052-$078
$079-$09F
$0A0-$0C6
$0C7-$0ED
$0EE-$114
$115-$13B
$13C-$162
$163-$189
$18A-$1B0
$1B1-$1D7
$1D8-$1FE

$1FF

Block number of the previous directory block (low
byte first). This will be zero if this is the first
directory block.

Block number of the next directory block (low
byte first). This will be zero if this is the last
directory block.

Directory entry for file #1 OR, if this is the first
block of the directory (bytes $00 and $01 are 0),
the directory header.

Directory entry for file #2
Directory entry for file #3
Directory entry for file #4
Directory entry for file #5
Directory entry for file #6
Directory entry for file #7
Directory entry for file #8
Directory entry for file #9
Directory entry for file # 10
Directory entry for file # 11
Directory entry for file #12
Directory entry for file # 13
<Not used>

name, type, and size of the file. The map of a directory block is
shown in Table 5-13.

The first block used by a directory (or subdirectory) is called the
key block and is configured slightly differently than the others. The
39-byte entry that normally describes the first file in the block is
instead used to describe the directory itself. This entry is called
the directory header.

The meaning of each of the 39 bytes that make up a directory
header are shown in Table 5-14. Notice the differences between the
header for a volume directory and the header for a subdirectory.

All directory entries that do not represent directory headers rep
resent either standard data files (for example, binary files, text
files, and Applesoft programs) or subdirectory files. The formats
of the directory entries for both of these two types of files are
virtually identical and are as shown in Table 5-15.

The only way to determine what type of file a particular file

----------------- 5 Disk Operating System c::::J 155

Table 5-14. Map of a ProDOS directory header.

Byte number
in Key Block Description (usual entries in parentheses)

$04 High four bits: storage type
-$OF for a volume directory
-$0E for a subdirectory

Low four bits: length of directory name

$05-$13 Directory name (in ASCII). The length of the name
is contained in the low half of byte $04.

$14-$1B <Reserved>
$1C-$1D The date on which this directory was created (for

mat: MMMDDDDD YYYYYYYM)

$1E-$1F The minute (byte $1E) andhour(byte $1F) at which
this directory entry was created.

$20 The version number of ProDOS that created this
directory.

$21 The lowest version of ProDOS that is capable of
using this directory.

$22 Access code for this directory (see Figure 5-2).

$23 The number of bytes occupied by each directory
entry (39).

$24 The number of directory entries that can be stored
on each block (13).

$25-$26 The number of active files in this directory (not
including the directory header).

$27-$28 VOLUME DIRECTORY: The block where the vol
ume bit map is located (6).
SUBDIRECTORY: the block in which the entry de
fining this subdirectory is located (this is in the
parent directory of the subdirectory).

$29-$2A VOLUME DIRECTORY: The size of the volume in
blocks (280).

$29 SUBDIRECTORY: The directory entry number
within the block given by $27/$28 that defines this
subdirectory (1 to 13).

$2A SUBDIRECTORY: The number of bytes in each
directory entry of the parent directory (39).

156 c=J Inside the Apple //e ------------------

Table 5-15. Map of a ProDOS directory file entry.

Relative
Byte Number Meaning of Entry

$00 High four bits: storage type (see text)
-$00 for an inactive file
-$01 for a seedling file
-$02 for a sapling file
-$03 for a tree file
-$0D for a subdirectory file

Low four bits: length of file name

$01-$0F File name (in ASCII with bit 7 = 0)

$10 File type code (see Table 5-16)

$11-$12 Key pointer. If a subdirectory, the block number
of the key block of the subdirectory. If a standard
file, the block number of the index block of the file
(or the data block if this is a seedling file).

$13-$14 Size of the file in blocks.

$15-$17 Size of the file in bytes (low-order bytes first).

$18-$19 The date on which this file was created (format:
MMMDDDDD YYYYYYYM).

$1 A-$1 B The minute (byte $1A) and hour (byte $1B) at which
this file was created.

$1C The version number of ProDOS that created this
file.

$1D The lowest version of ProDOS that is capable of
using this file.

$1E Access code for this file (see Figure 5-2).

$1F-$20 For a binary file, the load address of the file; for
a random-access textfile, its record length.

$21-$22 The date on which this file was last modified (for
mat: MMMDDDDD YYYYYYYM).

$23-$24 The minute (byte $23) and hour (byte $24) at which
this file was created.

$25-$26 The block number of the key block of the directory
that holds this file entry.

entry corresponds to is to examine the file type code that appears
at relative position $10 within the entry. Although 256 different
codes are possible, only a few are commonly used by ProDOS, and
it is these which are shown in Table 5-16. The three-character
mnemonics used to represent these file types in a CATALOG listing

----------------- 5 Disk Operating System c::::J 157

Table 5-16. ProDOS file type codes.

File Type
Code

$04
$06
$0F
$F0
$FC
$FD
$FE
$FF

CATALOG
Mnemonic

TXT
BIN
DIR
CMD
BAS
VAR
REL
SYS

Type of File

ASCII text file (with bit 7 = 0)
Binary file
Directory file
ProDOS added command file
Applesoft program file
Applesoft variable file
Relocatable code file (EDASM)
ProDOS system file

are also shown in Table 5-16. For a list of all ProDOS file types,
even the obscure ones, refer to the ProDOS Technical Reference
Manual.

"Protecting" Files

Both DOS 3.3 and ProDOS allow files to be protected using the
LOCK command. If a file is locked, then it cannot be altered or
renamed unless it is first unlocked. If a file is locked, then an
asterisk will appear at the far left of the line in which the file name
appears when the directory is catalogued.

ProDOS reserves a one-byte access code in its directory entries
to indicate the write status of the file (at relative byte $1E in each
directory entry). Four bits in this byte are used to individually
control the read, write, rename, and delete status of the file. A fifth
bit acts as a flag to indicate whether the file has been modified
since the last time it was backed up (it is the backup program's
responsibility to clear this bit to 0 when the file is backed up).
These bits are described in Figure 5-2.

Unfortunately, there is no ProDOS command that can be used
from Applesoft to adjust these bits individually. The LOCK com
mand turns off the write, rename, and delete bits together and the
UNLOCK command turns them all back on again. The bits can be
changed, however, by directly reading the block that contains the
directory entry, changing the access code, and then writing the
block back to diskette. The READ.BLOCK program listed in Table
5-18 will allow you to do this (this program will be described later
on).

158 [=::1 Inside the Apple //e -------------------

-DELETE (1 =enabled)

-RENAME (1 =enabled)

- BACKUP (1 =make a backup)

- (RESERVED)

- (RESERVED)

- (RESERVED)

-WRITE/SAVE (1 =enabled)

-READ/LOAD (1 =enabled)

Figure 5-2. ProDOS access codes bit map.

Storing File Data

The method ProDOS uses to keep track of where a standard file's
data is stored on the diskette varies depending on the size of the
file. ProDOS uses the following "woodsy" file classifications:

Seedling file
Sapling file
Tree file

: 1 to 512 bytes
: 513 to 131 ,072 (128K) bytes
: 131,073 to 16,777,215 (16M-1) bytes

ProDOS determines what type of file it is dealing with by ex
amining the four highest bits of relative byte $00 in the directory
entry for the file: the number stored here is 1 for a seedling file, 2
for a sapling file, and 3 for a tree file.

ProDOS uses these three different file structures to reduce the
amount of space needed to manage a file on the diskette to the
absolute minimum. This permits ProDOS to deal with a file as
quickly as possible and frees up valuable disk space for the storage
of other files.

The directory entry's key pointer (relative bytes $11 and $12)
points to the key block on the diskette for the file. Let's take a look
at how Pro DOS interprets this key block for each of the three types
of files.

SEEDLING FILE. A seedling file, which, by definition, cannot
exceed 512 bytes in length, obviously uses only one block on the
diskette for data storage. It is this block that is pointed to by the
key pointer. This means that the key block is, in.fact, also the sole
data block for the file.

----------------- 5 Disk Operating System c=J 159

SAPLING FILE. The key pointer in the directory entry for this
type of file points to an index block that contains an ordered list
of the block numbers on the diskette that are used to store that
file's data. Table 5-17 shows what an index block for a sapling file
looks like. Since block numbers can exceed 255, two bytes are
needed to store each block number. The low part of the block
number is always stored in the first half of the block and the high
part is stored 256 bytes further into the block. The maximum size
of ajsapling file is 128K; it cannot be larger than this since only
256 blocks (of 512 bytes each) can be pointed to by the index block.

TREE FILE. If the file is a tree file, then the key pointer points
to a master index block that contains an ordered list of the block
numbers of up to 128 sapling-file-type index blocks. The structure
of a master index block is shown in Table 5-18. Just as for sapling
files, each of the index blocks pointed to by the master index block
contains an ordered list of block numbers on the diskette that the
file uses to store its data. The maximum size of a tree file is 16
megabytes (less one byte, which is reserved for an end-of-file marker)!

ProDOS takes care of all conversions that might become nec
essary if a file changes its type because it has either grown or
shrunk. All this happens invisibly and it is not necessary to know
what type of file is being dealt unless special programs are being
used that do not use the standard ProDOS commands to access
files.

Table 5-17. Map of the Pro DOS index block for a sapling
file.

Byte Number

$000
$001
$002 ,
,
,
$0FF
$100
$101
$102 ,
,
,
$1FF

Meaning

Block number of 0th data block (low)
Block number of 1st data block (low)
Block number of 2nd data block (low) ,
,
,
Block number of 255th data block (low)
Block number of 0th data block (high)
Block number of 1st data block (high)
Block number of 2nd data block (high) ,
,
,
Block number of 255th data block (high)

160 c:::::J Inside the Apple //e ------------------

Table 5-18. Map of the ProDOS master index block for a
tree file.

Byte Number

$000
$001
$002
"

"
$07F
$100
$101
$102
"
"
"
$17F

Meaning

Block number of 0th index block (low)
Block number oi 1st index block (low)
Block number of 2nd index block (low)
"

"
Block number of 127th index block (low)
Block number of 0th index block (high)
Block number of 1st index block (high)
Block number of 2nd index block (high)
"
"
"
Block number of 127th index block (high)

MLI-Accessing the Diskette Directly

ProDOS supports a special machine-language interface (MLI)
protocol that makes it extremely simple for assembly-language
programs to perform standard diskette 1/0 commands. The MLI is
explained in detail in Chapter 4 of the ProDOS Technical Reference
Manual. (In contrast, DOS 3.3 is poorly suited to such use because
there is no standard interfacing protocol to allow standard diskette
file operations to be performed.)

The same general type of subroutine is used to invoke all MLI
commands. The code used to invoke an MLI command looks like
this (to review, "DFB" is a BIG MAC assembler directive that causes
the byte in the operand to be stored in memory):

JSR $BFOO ;Call the MLI
DFB CMDNUM ; and execute this command #
DFB #<CMDLIST ;Low part of address
DFB #>CMDLIST ;High part of add~ess
BCS ERROR ;Error if carry flag set

where $BF00 represents the entry point to the MLI, CMDNUM is
the command number that ProDOS has assigned to the requested
command, and CMDLIST is the address of the parameter list as
sociated with the command. (Recall from Chapter 2 that if you are
using the Apple 6502 Assembler/Editor rather than BIG MAC, then
you should replace "#>" with "#<" and vice versa in the above
example.) The parameter list contains the values of variables that

----------------- 5 Disk Operating System [=::J 161

the command needs in order to execute properly; result codes are
also stored in the parameter list.

After the command is executed, control passes to the code that
begins immediately after the three bytes stored after the "JSR
$BF00" instruction. If an error occurs, then both the carry and zero
flags are set and the error code number is placed in the accumu
lator. You can transfer control to an error-handling subroutine by
using a BCS instruction (as shown in the example) or a BNE in
struction.

There are two MLI commands that can be used to read from and
write to individual blocks on the diskette directly. The command
numbers for these commands are $80 (READ_BLOCK) and $81
(WRITE_BLOCK). The parameter lists for these commands are
identical and are constructed as follows:

1st byte: number of parameters (always $03)
2nd byte: disk slot and drive to be accessed
3rd byttr: 512-byte data buffer address (low part)
4th byte: 512-byte data buffer address (high part)
5th byte: block number to be accessed (low part)
6th byte: block number to be accessed (high part)

The second byte in the parameter list contains information re
lating to the slot and drive number of the diskette to be accessed.
The number stored here is equal to 16 times the slot number if the
diskette is in drive 1, or 16 times the slot number plus 128 if the
diskette is in drive 2.

For example, if a diskette is in slot 6 and drive 2 and you want
to read the contents of block number 260 on that diskette into a
buffer beginning at location $2000, you would use a program that
looks like this:

IDERROR

JSR SBFOO
DFB $80
DFB #<CMDLIST
DFB #>CMDLIST
BCS IDERRDR

RTS

RTS
CMDLI ST DFB $0 3

DFB $EO
DFB $00
DFB $20
DFB $04
DFB $01

;<Code for READ>

;<Got it!>

;<Didn't get it~)

;Slot 6/Drive 2
;Buffer address $2000

;Block 260 ($0104)

The same program can be used to write a block to the diskette
simply by changing the command code from $80 to $81.

162 c=:1 Inside the Apple //e -----------------

ProDOS READ.BLOCK Program

Table 5-19 contains the program listing for the READ.BLOCK
program. This program is the ProDOS counterpart of the DOS 3.3
READ SECTOR program in Table 5-10 and can be used to read
and display any of the 280 blocks of data on a ProDOS-formatted
diskette. It makes use of the MLI READ_BLOCK and WRITE_
BLOCK commands and is useful for examining any block on a
ProDOS-formatted diskette.

The instructions for using READ.BLOCK are virtually the same
as those for READ SECTOR. The two main differences between
READ.BLOCK and READ SECTOR are as follows: first,
READ.BLOCK asks you to enter block numbers rather than track
and sector numbers; second, only one-quarter of the 512-byte block
is displayed on the screen at one time. The "D" command can be
used to flip between the four display pages.

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette.

lll ST

0 REM "READ BLOCK"
1 REM CFOR PRODOS ONLY>
100 FOR I = 768 TO 892: READ X: POKE

I,X: NEXT
110 DEF FN MDCX> X - 16 * INT

ex 1 16>
120 DEF FN M2CX> X - 256 * INT

CX I 256)
130 D$ = CHR$ C4)
140 BM = 279: REM NUMBER OF BLOCK

s
150 TEXT : PRINT CHR$ (21): HOME

:PRINT TABC 16>;: INVERSE
: PRINT "READ BLOCK": NORMAL
: PRINT TABC 11>;"CC> 1984
GARY LITTLE"

160 VTAB 10: CALL - 958: PRINT
"ENTER BASE BLOCK NUMBER (0-
";BM;: INPUT"): ";T$: IF T$
= 1111 THEN 160

170 BL = INT (VAL CT$)): IF BL =
0 AND T$ < > "0" THEN 160

180 IF BL < 0 DR BL > BM THEN 16
0

190 RW = 128
200 POKE 782, FN M2CBL>: REM BLD

CK# CLOW>

--------------- 5 Disk Operating System c::::J 163

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

21 0 POKE 783, I NT <BL I 256>: REM
BLOCK# <HIGH>

220 POKE 771 ,RW: REM READ=128 I
WRITE=129

230 CALL 768
240 IF PEEK <8> < > 0 THEN PRINT

: INVERSE : PRINT "DISK 110
ERROR": NORMAL : PRINT "PRES
S ANY KEY TO CONTINUE: ";: GET
A$: PRINT A$: GOTO 150

1000 VTAB 4: CALL - 958: PRINT
TAB< 11>;"CONTENTS OF BLOCK
";BL: PRINT II POKE 34,5

1010Q=1
1020 HOME : GOSUB 2000: CALL 794

: Q = Q + 1 : IF Q = 5 THEN 1 0
50

1030 IF PR = 0 THEN GET A$: IF
A$ = CHR$ <27> THEN 1050

1040 GOTO 1020
1050 Q = Q- 1:PR = 0: PRINT D$:"

PR#O":B = 0
1 060 HTAB 1 : VTAB 23: CALL - 95

8: PRINT "ENTER COMMAND <B,C
,D,E,N,P,G,W,HELP>: ";: GET
A$: IF A$ CHR$ (13) THEN
A$ = II II

1070 PRINT A$
1080 IF A$ < > "D" THEN 1110
1 090 Q = Q - 1 : OF Q = 0 THEN Q

4
1100 HOME : GOSUB 2000: CALL 794

: GOTO 1060
1110 IF A$ "H" THEN 5000
1120 IF A$ "Q" THEN 1260
1130 IF A$ "E" THEN 1270
1140 IF A$ "P" THEN 1220
1150 IF A$ "N" THEN 1240
1160 IF A$ "B" THEN 150
1170 IF A$ "C" THEN VTAB 23: CALL

- 958: PRINT TAB< 6>;: INVERSE
: PRINT "TURN ON PRINTER IN
SLOT #1": NORMAL :PR = 1: PRINT
D$;"PR#1": PRINT : GOTO 1000

1180 IF A$ < > "W" THEN 1210
1190 POKE 782,BL: POKE 771,129: VTAB

23: CALL - 958: PRINT "PRES
S 'Y' TO VERIFY WRITE: ";: GET
A$: IF A$ = CHR$ <1.3) THEN
A$ = II II (continued)

164 c::::J Inside the Apple //e -----------------

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

1200 PRINT A$: IF A$ = "Y" THEN
CALL 768:RW = 128: VTAB 23:
CALL - 958: PRINT "WRITE C

OMPLETED. PRESS ANY KEY: ";:
GET A$: GOTO 1060

1210 GOTO 5000
1220 BL = BL - 1 : IF BL - 1 THEN

BL = 279
1230 GOTO 190
1240 BL = BL + 1 : IF BL > 279 THEN

BL = 0
1250 GOTO 190
1260 TEXT : HOME : END
1270 V = 8:H = 3: VTAB 5: PRINT TABC

6);: INVERSE: PRINT "I=UP M
=DOWN J=LEFT K=RIGHT": NORMAL

1280 HTAB 1: VTAB 23: CALL - 95
8: PRINT TABC 6);"PRESS ";:

INVERSE : PRINT "ESC";: NORMAL
: PRINT " TO LEAVE EDITOR"

1290 REM
1300 GOSUB 1500: GET A$
1 31 0 LC = 16384 + 1 28 * (Q - 1 > +

8 * V + H:Y = PEEK CLC>:X =
ASC CAS>

1320 IF A$ = CHR$ C27> THEN HTAB
1: VTAB 5: CALL - 868: GOTO
1060

1330 IF A$ < >"I" THEN 1370
1 34 0 B = 0 : V = V - 1 : IF V > = 0

THEN 1300
1 350 V = 1 5: Q = Q - 1 : IF Q < 1 THEN

Q = 4
1360 GOSUB 2000: HOME : CALL 794

: GOTO 1280
1 370 IF A$ = "J" THEN B = 0: H =

H - 1 : IF H = - 1 THEN H =
7

1380 IF A$ = "K" THEN B = O:H =
H + 1 : IF H = 8 THEN H = 0

1390 IF A$ < > "M" THEN 1430
1 4 0 0 B = 0: V V + 1 : IF V < 16 THEN

1300
1410 V = O:Q = Q + 1: IF Q = 5 THEN

Q = 1
1420 GOTO 1360
1430 IF B = 0 THEN Y FN MDCV>

+ 16 * ex - 48> * ex < = 5
7> + 16 * ex - 55> * ex > =
65)

--------------- 5 Disk Operating System c:::::J 165

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

1 440 IF B = 1 THEN Y = 16 * I NT
<Y I 16) + <X - 48) * <X < =
57) + <X - 55) * <X > = 65)

1450 X = ASC <AS>: IF <X > = 48
AND X < = 57) OR <X > = 6

5 AND X < = 70) THEN PRINT
A$;: POKE< PEEK <40) + 256 *

PEEK <41> + 31 + H>,Y: POKE
LC, Y: IF B = 0 THEN CALL 64
500:B 1

1460 IF X 8 AND B = 1 THEN B =
0

1470 IF X 21 AND B = 0 THEN B =
1

1480 GOTO 1300
1490 CALL- 167
1500 VTAB V + 6: HTAB 3 * H + 7 +

B: RETURN
2000 IF Q = 1 THEN POKE 795,0: POKE

799,64
2010 IF Q = 2 THEN POKE 795,128

: POKE 799,64
2020 IF Q = 3 THEN POKE 795,0: POKE

799,65
2030 IF Q = 4 THEN POKE 795,128

: POKE 799,65
2040 RETURN
5000 HOME : PRINT TAB< 10J;"SUM

MARY OF COMMANDS": PRINT TAB<
10>;"===================": PRINT

5010 PRINT "B -- RESET BASE BLOC
K"

5020 PRINT "C -- COPY BLOCK CONT
ENTS TO PRINTER"

5030 PRINT "D -- DISPLAY PREVIOU
S 1/4 BLOCK"

5040 PRINT "E ED IT THE CURREN
T BLOCK"

5050 PRINT "N READ THE NEXT B
LOCK"

5060 PRINT "P READ THE PREVIO
US BLOCK"

5070 PRINT "Q QUIT THE PROGRA
M"

5080 PRINT "W WRITE THE BLOCK
TO DISK"

5090 PRINT : PRINT "PRESS ANY KE
Y TO CONTINUE: ";: GET A$: PRINT
A$: GOTO 1100 (continued)

166 Cllnside the Apple //e ------------------

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

8000 DATA 32,0,191,128,10,3,144,
8, 1 76, 11 , 3, 96, 0 , 64, 0 , 0 , 1 69, 0
, 1 33,8, 96, 1 69, 1 , 1 33, 8, 96, 1 69
,0,133,6

8010 DATA 169,64,133,7,162,0,160
,0,56,165,7,233,64,32,218,25
3,165,6,32,218,253,169,186,3
2,237,253,169,160,32,237

8020 DATA 253,177,6,32,218,253,1
69,160,32,237,253,200,192,8,
208,241,169,160,32,237,253,1
60,0,177,6,9,128,201 ,160,176

8030 DATA 2,~69,174,32,237,253,2
00,192,8,208,238,169,141 ,32,
237,253,24,165,6,105,8,133,6
, 1 65 , 7 , 1 0 5 , 0 , 1 33, 7 , 2 32

8040 DATA 224,16,208,168,96

FURTHER READING FOR CHAPTER 5

Standard reference works ...
DOS User's Manual, Apple Computer, Inc., 1983.
DOS Programmer's Manual, Apple Computer, Inc., 1982.
ProDOS Technical Reference Manual, Apple Computer, Inc., 1983.
ProDOS User's Manual, Apple Computer, Inc., 1983.
BASIC Programming with ProDOS, Apple Computer, Inc., 1983.
D. Worth and P. Lechner, Beneath Apple DOS, Quality Software,

1981. The definitive work on the "guts" of DOS 3.3.
All About DOS, A.P.P.L.E., 1983. This book contains a lot of in

teresting information about DOS 3.3 and several useful pro
grams.

On the internal structure of DOS 3.3 and ProDOS ...
M. Pump, "DOS Internals: An Overview," Call-A.P.P.L.E., Feb

ruary 1981, pp. 8-12. A quick look at some of the important
areas within DOS 3.3.

D.J. Black, "Apple DOS Revealed," Kilobaud Microcomputing,
November 1982, pp. 102-112. A good analysis of the DOS 3.3
file manager.

-----------------r 5 Disk Operating System CJ 167

B. Sander-Cederlof, "Commented Listing of DOS 3.3," Apple As
sembly Line:
a. $B052-$B0BS, $B35F-$B7FF: October 1981, pp. 18-24
b. $BD00-$BEAE: September 1981, pp. 16-20
c. $B800-$BCFF: June 1981, pp. 10-18
d. $BEAF-$BFFF: April1981, pp. 14-17

B. Sander-Cederlof, "Commented Listing of DOS 3.3 Boot ROM,"
Apple Assembly Line, August 1981, pp. 17-20.

L. Meador, "DOS Error Trapping from Machine Language," Ap
ple Assembly Line, February 1982, pp. 2-10.

D.P. Tuttle and T. Cleaver, "An Overview of DOS," Micro, June
1982, pp. 25-33. A good analysis of the internal structure of
DOS 3.3.

B. Sander-Cederlof, "Commented Listing of ProDOS," Apple As
sembly Line:
a. $F90C-$F995, $FD00-$FE9A, $FEBE-$FFFF: December 1983,

pp. 2-11
b. $F800-$F90B, $F996-$FEBD: November 1983, pp. 2-14

On making space for assembl,y-language programs ...
G.R. Sogge, "Protecting Memory from DOS," Micro, May 1981,

p. 81. This article shows how to reserve areas that will not be
overwritten by DOS 3.3.

6
Character Input and the

Keyboard
The 1/e, like most other microcomputers, usually deals with in

formation that is delivered to it in one-byte (8-bit) chunks (from a
keyboard or a disk drive, for example). This information is com
monly referred to as "character input" because the bytes usually
represent the encoded representations of letters of the alphabet,
numbers, and other printable characters. Although any encoding
scheme that the input device cares to use could be dealt with by
the 1/e, it is the American National Standard Code for Information
Interchange (ASCII) standard that is usually used to encode char
acters. Two other incompatible encoding schemes, Extended Bi
nary-Coded Decimal Interchange Code (EBCDIC) and Baudot, are
also in widespread use, the first by all large IBM computers and
compatibles and the second by some older TeleType machines.

ASCII is a seven-bit code and is used by virtually all microcom
puters. A total of 128 (2'7) codes are defined by the ASCII standard.
Table 6-1 contains a list of these codes, their standard names or
symbols, and the keys on the keyboard (or combination of keys)
that must be pressed to enter them.

When the 1/e performs character input/output operations, the
ASCII code for the character is stored in bits 0 through 6 of the
byte being inputted or outputted and bit 7 of the byte is normally
set equal to "1 ". Since a "1" in bit 7 is often used to indicate that
the value stored in that byte is negative, this "variant" of ASCII
is called "negative ASCII"; if bit 7 is 0, then "positive ASCII" is
being used.

Note that all but the first 32 ASCII codes and ASCII code 127
(rubout) are used to represent visible symbols. The first 32 codes
are called "control characters" and are usually sent to a video
display or a printer controller to cause it to perform some special

169

170 [==:::1 Inside the Apple //e

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes.

ASCII Code
Hex Dec Symbol Keys to Press

$00 000 NUL (Null) CONTROL@
$01 001 SOH (Start of header) CONTROL A
$02 002 STX (Start of text) CONTROL B
$03 003 ETX (End of text) CONTROL C
$04 004 EQT (End of transmission) CONTROL D
$05 005 ENQ (Enquiry) CONTROL E
$06 006 ACK (Acknowledge) CONTROL F
$07 007 BEL (Bell) CONTROL G
$08 008 BS (Backspace) LEFT -ARROW or

CONTROL H
$09 009 HT (Horizontal tabulation) TAB or CONTROL I
$0A 010 LF (Line feed) DOWN-ARROW or

CONTROL J
$0B 011 VT (Vertical tabulation) UP-ARROW or

CONTROL K
$0C 012 FF (Form feed) CONTROL L
$0D 013 CR (Carriage return) RETURN or CONTROL M
$0E 014 so (Shift out) CONTROL N
$0F 015 SI (Shift in) CONTROL 0
$10 016 DLE (Data link escape) CONTROL P
$11 017 DC1 (Device control 1) CONTROL Q
$12 018 DC2 (Device control 2) CONTROL R
$13 019 DC 3 (Device control 3) CONTROLS
$14 020 DC4 (Device control 4) CONTROLT
$15 021 NAK (Negative acknowledge) RIGHT -ARROW or

CONTROL U
$16 022 SYN (Synchronous idle) CONTROL V
$17 023 ETB (End of transmission CONTROL W

block)
$18 024 CAN (Cancel) CONTROL X
$19 025 EM (End of medium) CONTROL Y
$1A 026 SUB (Substitute) CONTROL Z
$1B 027 ESC (Escape) ESC or CONTROL [
$1C 028 FS (Field separator) CONTROL\
$1D 029 GS (Group separator) CONTROL]
$1E 030 RS (Record separator) CONTROL'
$1F 031 us (Unit separator) CONTROL_
$20 032 (Space) SPACE BAR
$21 033 SHIFT 1
$22 034

, SHIFT'
$23 035 # SHIFT 3
$24 036 $ SHIFT 4

6 Character Input and the Keyboard [:=J 171

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code
Hex Dec Symbol Keys to Press

$25 037 % SHIFT 5
$26 038 & SHIFT 7
$27 039 I I

$28 040 (SHIFT 9
$29 041) SHIFT 0
$2A 042 * SHIFT 8
$2B 043 + SHIFT=
$2C 044
$2D 045
$2E 046
$2F 047 I I
$30 048 0 0
$31 049 1 1
$32 050 2 2
$33 051 3 3
$34 052 4 4
$35 053 5 5
$36 054 6 6
$37 055 7 7
$38 056 8 8
$39 057 9 9
$3A 058 SHIFT;
$3B 059 I ,
$3C 060 < SHIFT I

$3D 061
$3E 062 > SHIFT.
$3F 063 ? SHIFT I
$40 064 @ SHIFT 2
$41 065 A SHIFT A
$42 066 B SHIFT B
$43 067 c SHIFT C
$44 068 D SHIFT D
$45 069 E SHIFT E
$46 070 F SHIFT F
$47 071 G SHIFT G
$48 072 H SHIFT H
$49 073 I SHIFT I
$4A 074 J SHIFT J
$4B 075 K SHIFT K
$4C 076 L SHIFT L
$4D 077 M SHIFT M
$4E 078 N SHIFT N

(continued)

172 c::J Inside the Apple //e

Table 6-l. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code
Hex Dec Symbol Keys to Press

$4F 079 0 SHIFT 0
$50 080 p SHIFT P
$51 081 Q SHIFT Q
$52 082 R SHIFT R
$53 083 s SHIFTS
$54 084 T SHIFT T
$55 085 u SHIFT U
$56 086 v SHIFT V
$57 087 w SHIFT W
$58 088 X SHIFT X
$59 089 y SHIFTY
$SA 090 z SHIFT Z
$5B 091 [[
$5C 092 \ \
$5D 093]]
$5E 094 SHIFT 6
$SF 095 SHIFT-
$60 096
$61 097 a A
$62 098 b B
$63 099 c c
$64 100 d D
$65 101 e E
$66 102 f F
$67 103 g G
$68 104 h H
$69 105 I
$6A 106 j J
$6B 107 k K
$6C 108 l L
$6D 109 m M
$6E 110 n N
$6F 111 0 0
$70 112 p p
$71 113 q Q
$72 114 r R
$73 115 s s
$74 116 t T
$75 117 u u
$76 118 v v
$77 119 w w
$78 120 X X
$79 121 y y

------------- 6 Character Input and the Keyboard c:::::J 173

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code
Hex

$7A
$7B
$7C
$7D
$7E
$7F

Dec Symbol Keys to Press

122 z z
123 { SHIFT [
124 I SHIFT\
125 } SHIFT]
126 SHIFT'
127 I (Rubout) DELETE

action. Some of the more important control characters on the lie
are as follows (in negative ASCII):

$87 (bell)-causes the speaker to beep
$88 (backspace)-causes the cursor to move back one position
$8A (line feed)-causes the cursor to move down one line
$8D (carriage return)-causes the cursor to move to the begin

ning of the current line

Some of the names associated with the other control characters
(see Table 6-1) are somewhat archaic in that they refer to various
aspects of the operation of old TeleType terminals. Other names
relate to the codes used by certain standard data-interchange pro
tocols that the lie does not normally use (for example, Start of Text
(STX), End of Text (ETX), and Cancel (CAN)).

In this chapter, we will take a look at how the lie requests and
reads character input from any device interfaced to it, including
the keyboard. In doing so, we will examine the built-in ROM sub
routines that the lie normally uses whenever it requires character
input.

You will be able to follow this chapter a lot more easily if you
have by your side a copy of the Apple Reference Manual Addendum:
Monitor ROM Listings. This publication contains the source code
listing for all of the ROM subroutines we will be examining.

STANDARD CHARACTER INPUT
SUBROUTINES

There are three special, general-purpose character input sub
routines in the lie's system monitor that are used to fetch characters
so that they can be used and interpreted by other parts of the

174 C=:J Inside the Apple //e -------------------

system, including Applesoft and the system monitor. These rou
tines are usually referred to by the symbolic names of RDKEY,
RDCHAR, and GETLN. They, in turn, usually make use of two
other subroutines that are used to read information from the key
board; these are called KEYIN and BASICIN. Each of these sub
routines are briefly described in Table 6-2. Let's take a closer look
at them.

Reading One Character

RDKEY ($FOIZJCJ

RDKEY is the most important of the three fundamental char
acter input subroutines since it is the one that is eventually called
by the other two. This subroutine is used to scan any input device
that has been designated as being active (usually, but not neces
sarily, the keyboard) until a character has been entered, and to
return the ASCII code for that character (with its high bit set to
one) in the 6502's accumulator. The Applesoft GET command calls
RDKEY directly.

As soon as RDKEY is called, it attempts to display a visible
cursor by causing the character at the currently active video po
sition (as calculated from the values of CH ($24) and CV ($25), the
horizontal and vertical cursor coordinates) to begin to flash. The
code that does this looks like this:

LDY CH
LDA <BASL>, Y
PHA
AND #$3F
ORA #$40
STA <BASL>, Y
PLA

;Get horizontal position
;Get the screen byte
; and save it.
;Adjust byte for flash video
; (see Chapter 7)
;Replace screen byte
;Restore the screen byte in A

where BASL ($28) is the first of two zero page locations that to
gether contain the base address for the line number held in CV
(see Chapter 7). As we will see shortly, this cursor is quickly "re
moved" by the lie's standard 40-column and 80-column input sub
routines and replaced by another one (either a blinking checker
board or a nonblinking inverse square). This removal is not absolutely
necessary when in 40-column mode, but becomes necessary when
in 80-column mode because CH no longer contains the true hori
zontal cursor position (it is held in OURCH ($57B) instead).

------------- 6 Character Input and the Keyboard c=::J 175

Table 6-2. Built-in input subroutines.

Address Symbolic
Name Hex (Dec)

$FD0C (64780) RDKEY

$FD35 (64821) RDCHAR

$FD1B (64795) KEYIN

$C305 (51446) BASICIN

$FD6A (64874) GETLN

Description

Reads a character from the
currently active input de
vice and places its negative
ASCII code in the accumu
lator.

Uses RDKEY to read a char
acter from the currently ac
tive input device. Handles
escape sequences if the 80-
column firmware is not being
used.

Keyboard input routine used
when 80-column firmware
is not being used. The
negative ASCII code for the
character is returned in the
accumulator.
Keyboard input routine used
when 80-column firmware
is being used. The negative
ASCII code for the character
is returned in the accumu
lator. This subroutine han
dles all escape sequences and
the right-arrow "pick."

Reads a line of information
into the input buffer at $200
by making repeated calls to
RDCHAR.

After the initial blinking cursor is set up, the following code is
executed:

JMP <KSWL>

which effectively passes control to the body of a user-selectable
input subroutine whose address is held at KSWL ($38) and KSWH
($39). This input subroutine is responsible for returning the ASCII
code for an inputted character as soon as the input device being
used makes one available. For the purposes of this discussion, we
will assume that the input device is the lie's keyboard. We will see

176 CJ Inside the Apple //e -------------------

later how other input devices can be linked into the RDKEY sub
routine instead by simply storing the address of the input subrou
tine for the alternate input device at KSWL and KSWH.

The //e's disk operating system (DOS 3.3 or ProDOS) is integrated
into the system by storing the address of its special input subrou
tine at KSWL and KSWH. This input subroutine will read input
from either a diskette file or the keyboard, depending on whether
a DOS READ command is in effect. It will also cause special disk
operations to be performed if a valid DOS command is entered
from the keyboard (for example, LOAD a file and CATALOG the
diskette). When it reads information from the keyboard, it uses one
of the //e's two built-in subroutines available for this purpose.

The keyboard input subroutine that is used will depend on whether
the //e's internal 80-column firmware ROM (that uses addresses
between $C300 ... $C3FF and $C800 ... $CFFF) is being used. This
firmware is not used when you first turn on the //e but can be
selected by entering a PR#3 command from Applesoft. (If you do
not have an 80-column text card installed, you must enter a POKE
49162,0 command before entering the PR# 3 command- see Chap
ter 11.) Once you have selected the 80-column firmware in this
way, you can flip between an 80-column display and a 40-column
display (if you are using an 80-column text card) by using the two
keystroke "escape sequence"

ESC 4

to go from 80-column mode to 40-column mode and

ESC 8

to go from 40-column mode to 80-column mode. (An escape se
quence is entered by pressing the ESC key, releasing it, and then
pressing the second key; the RETURN key must not be pressed.)
Note that there is a bug in the 80-column firmware that may cause
you to "lose" the cursor and/or overwrite the area reserved for a
tokenized Applesoft program if ESC 4 is entered when the cursor
is in the right-hand half of the 80-column screen. Because of this,
always make sure that the 80-column cursor is in the first forty
columns before entering ESC 4.

You can usually tell whether the 80-column firmware is being
used by looking at the cursor. If it's a blinking "checkerboard,"
then the 80-column firmware is not in use; if it's a nonflashing,
inverse-video square, then it is. The 80-column firmware can be
deactivated by entering an ESC <CTRL-Q> sequence from the
keyboard or printing a <CTRL-U> character; this returns you to
standard 40-column mode.

We will be looking at the video display modes in considerably
more detail in Chapter 7.

------------- 6 Character Input and the Keyboard c:::::J 177

Keyboard Input (80-Column Firmware Off)

If the SO-column firmware on the lie is not being used, then the
lie usually uses a subroutine called KEYIN ($FD1B) to handle key
board input. The important part of this subroutine really begins
at B.KEYIN ($C2SS) in the lie's built-in internal ROM space. The
first thing that it does is to remove RDKEY's cursor and change
it to a blinking checkerboard. This blinking effect is generated
totally in software by alternating between the display of the check
erboard character (ASCII code $FF) and the true screen character
at fixed intervals. When a key that generates an ASCII code is
entered, the screen character is put back on the screen, the ASCII
code representing the entered key is placed in the 6502's accu
mulator (with the high bit set to one), and the subroutine finishes
with the X andY registers preserved.

Keyboard Input (80-Column Firmware OnJ

If the SO-column firmware has been selected, then another sub
routine to handle keyboard input, called BASICIN ($C305), is used
instead. The important part of this subroutine really begins at
BINPUT ($CSF6). This subroutine also removes the cursor that
RDKEY sets up and changes it to a nonflashing, inverse video block
by calling the INVERT ($CEDD) subroutine. INVERT simply re
verses the video attribute of the character at the current cursor
position (as set by OURCH ($57B) and OURCV ($5FB), the SO
column firmware's horizontal and vertical cursor coordinates). That
is, if the screen character is displayed in normal video, it is changed
to inverse video, and vice versa. Once this has been done, the sub
routine calls GETKEY ($CB15), a subroutine that waits for a key
corresponding to an ASCII code to be entered from the keyboard,
and then returns that code in the accumulator (with its high bit
set to one).

After a key has been entered, BINPUT removes the cursor by
calling INVERT once again and then takes one of two paths, de
pending on whether the ESC key was pressed. If a key other than
ESC was pressed, then control passes to NOESC ($C9B7), which
performs two main chores. First, it examines the key to see if it
was a right arrow (CTRL-U) and, if it was, replaces it with the
character on the video display "below" the cursor. This allows the
right arrow to be used to "pick" characters off the screen without
retyping them. If the key was not a right arrow, then a block of
code is executed that takes care of handling the //e's upper-case
restrict mode (see the next section). This may involve converting
a lower-case character to upper-case if upper-case restrict mode is

178 [::::=J Inside the Apple //e ------------------

active. When NOESC finishes, BINPUT does some housekeeping
and then returns with the ASCII code for the keyboard character
in the accumulator (with the high bit set to one) and with the X
and Y registers preserved.

Escape Sequences
If, however, the ESC key is pressed, then BINPUT does something

quite different: control passes to ESCAPING ($C918), which causes
the cursor to change to an inverse " + " sign and escape mode to be
turned on. Whenever the lie is in this mode, it reads the keyboard
once again and then executes a special function dictated by the
key that is read. This two-key combination is commonly referred
to as an" escape sequence." A list of all of the valid escape sequences
and the functions they perform are listed in Table 6-3.

Most of the escape sequences that have been defined on the lie
are used to move the cursor around the screen or to affect the video
display in some way and are self-explanatory. Two of them are
somewhat unusual, however, and will now be described; they are
ESC Rand ESC T. ESC R is used to turn on "upper-case restrict"
mode, and ESC T is used to turn it off again. When upper-case
restrict mode is on, any lower-case alphabetic characters that are
entered from the keyboard will automatically be converted to their
upper-case equivalents unless the characters are entered between
successive quotation marks. This feature facilitates the entry of
Applesoft programs where all the keyword commands and DOS
commands must be in upper-case but any phrases to be displayed
with a PRINT command (that appear within quotation marks
after the PRINT command) can be in any combination of upper
and lower-case characters.

In general, escape mode ends immediately after the key after
ESC has been pressed and, if you want to re-enter escape mode,
you must press ESC once again. The I,J ,K,M and arrow-key se
quences, however, behave a little differently. If you enter any of
these sequences, then escape mode remains active until any other
key that generates an ASCII code that is not part of an escape
sequence is pressed. This means that you can quickly move the
cursor around the screen by pressing ESC once and then pressing
any combination of cursor-movement keys until the cursor is prop
erly positioned. You can then press another key (the space bar is
convenient) to leave escape mode.

Due to a bug in the lie's 80-column firmware, there is one other
"unofficial" escape sequence that is supported: ESC <CTRL-L>.
When this sequence is entered, control passes to location $4CCE.

------------- 6 Character Input and the Keyboard c:::=J 179

Table 6-3. Escape sequences.

Escape
Sequence

ESC@

ESCA

ESCB

ESCC.

ESC D

ESC E

ESC F

ESC I
ESC t
ESC J
Esc~

ESC K
Esc~

ESCM
ESC ~

ESC R1'

ESC T'~

ESC 4*

ESC 81'

ESC CTRL-Q*

Description

Clears the video screen window and places the
cursor in the top left-hand corner.

Moves the cursor one position to the right.

Moves the cursor one position to the left.

Moves the cursor down one line.

Moves the cursor up one line (if not already at
top).

Clears the screen from the current cursor position
to the end of the line. The cursor position does
not change.

Clears the screen from the current cursor position
to the end of the window. The cursor position does
not change.

Moves the cursor up one line and keeps escape
mode active.

Moves the cursor one position to the left and keeps
escape mode active.

Moves the cursor one position to the right and
keeps escape mode active.

Moves the cursor down one line and keeps escape
mode active.

Turns on upper-case restrict mode. This forces all
lower-case alphabetic characters to be displayed
in upper-case, except between quotation marks.

Turns off upper-case restrict mode.

Switches to 40-column mode from 80-column
mode.

Switches to 80-column mode from 40-column
mode.

Deselects the 80-column firmware and returns to
standard 40-column mode.

''Note: The last five escape sequences are available only when the 80-
column firmware is being used.

Unfortunately, this location is right in the middle of the memory
area reserved for page2 of the lie's high-resolution graphics screen
and could also be within Applesoft's tokenized program space or

180 c:::J Inside the Apple //e ------------------

variable spaces, depending on the size and type of program. If you
can ensure that this location (and the few bytes just past it) will
not be used by your program, however, you could place a subrou
tine here that will take control whenever ESC <CTRL-L> is en
tered. This odd escape sequence is available because the ESCAP
ING ($C918) subroutine improperly assumes that the table in ROM
that contains the valid escape sequences has eighteen entries rather
than seventeen.

After escape mode ends, the keyboard is immediately scanned
agal.n for another keypress. Thus, BINPUT does not finish until an
ASCII code is generated that is not part of an escape sequence.
Since ESC is handled internally to BINPUT, the Applesoft GET
command cannot be used to detect ESC when the SO-column firm
ware is being used. Similarly, a right-arrow key (CTRL-U) cannot
be detected with GET since it is also processed before BINPUT
finishes.

RDCHAR ($FD35l

The RDCHAR subroutine is almost identical to the RDKEY sub
routine. In fact, it first calls RDKEY and then, after the inputted
character has been entered from the keyboard, it checks to see
whether it is the ESC key. If it is, then another escape mode is
entered into beginning at ESCNEW ($FBAS), which is similar to
the one described above. In fact, the only differences are that the
cursor does not change to an inverse "+" sign and that the last
five escape sequences set out in Table 6-3 will not be available.

Note, however, that if the 80-column firmware is being used,
then a call to RDCHAR turns out to be identical to a call to RDKEY.
This is because RDCHAR calls RDKEY to get a keyboard character
and it checks for an ESC character only after RDKEY has finished.
As we have seen, however, when the 80-column firmware is in use,
RDKEY itself handles the ESC key and so it will never return the
ASCII code for ESC to RDCHAR. Therefore, RDCHAR's escape
mode will never be activated unless the 80-column firmware is not
in use.

Reading a Line of Characters

RDKEY and RDCHAR read only one character at a time. A much
more useful and general subroutine is one that allows you to enter
a whole line of information at once (a line being defined as a series
of characters that is entered before RETURN is pressed). Such a
subroutine does exist on the lie and is called GETLN ($FD6A).

------------- 6 Character Input and the Keyboard C=:J 181

The GETLN subroutine is used by the //e whenever you are en
tering commands in the system monitor or in Applesoft direct
mode. In addition, the Applesoft INPUT command uses this sub
routine directly.

As soon as GETLN is called, a special symbol, called a prompt
symbol, is displayed. The code for this symbol is always read from
PROMPT ($33). This symbol serves two purposes: it tells you what
part of the //e is currently active (the system monitor or Applesoft,
for example) and it reminds you that the //e is expecting you to
enter a line of information. Table 6-4 sets out the various prompt
symbols commonly used by the //e.

After the prompt symbol has been displayed, GETLN calls
RDCHAR again and again until the RETURN key is pressed. The
characters returned by the series of RDCHAR calls are stored in
consecutive locations in a 256-byte character input buffer located
in page two of memory beginning at IN ($200). When RETURN is
pressed, the subroutine ends and the number of characters in the
buffer is returned in the X register.

When a line is entered using GETLN, all those escape sequences
that are normally available can be used. In addition, GETLN sup
ports several simple editing commands that can be used when the
line is being entered. These editing commands will now be dis
cussed.

LEFT-ARROW KEY. This key allows you to backspace over
the previous item in the input buffer and, thus, to remove it from
the buffer. The cursor moves one position to the left on the video
screen when the left-arrow key is pressed.

Table 6-4. //e prompt symbols.

Prompt
Symbol

*
]

>

?

Meaning

the system monitor is waiting for a command.

Applesoft is waiting for you to enter a command or
a program line.

Integer BASIC is waiting for you to enter a com
mand or a program line (not available under
ProDOS).

Applesoft is waiting for you to respond to an INPUT
statement.

Note: The ASCII code for the prompt symbol is kept
in PROMPT ($33).

182 [==:1 Inside the Apple //e -------------------

RIGHT-ARROW KEY. This key allows you to copy the char
acter on the video screen beneath the cursor into the input buffer.
Note that GETLN itself deals with the right-arrow key only if the
80-column firmware is not being used, because when the 80-col
umn firmware is in use, BASICIN handles the right-arrow key
internally (though in much the same way).

CTRL-X. This key allows you to erase everything that is cur
rently in the input buffer. When it is pressed, a backslash (''\")will
be displayed after the characters that have already been typed in
and the cursor will be placed at the far left of the next line on the
screen. Note that the line will automatically be canceled like this
if you attempt to enter more than 255 characters before pressing
RETURN. Beeps will be sounded after every character entered
after the 248th one to remind you that the buffer is almost full.

RETURN. This key indicates to GETLN that the current line is
completed and is to be entered.

CHANGING INPUT DEVICES
THE INPUT LINK

The most common source of character input to the //e is the
keyboard. It is possible, however, to interface many other sources
of such input to the //e through any of the expansion slots located
at the rear of the //e's motherboard. A familiar example of such a
source is the //e's disk drive.

The //e uses a flexible and powerful method for handling the
problems associated with having many possible sources of char
acter input. Even though the source of the input may vary, calls
are still always made to the RDKEY subroutine whenever a char
acter from any device, in general, is required. To activate a par
ticular device, the destination of a jump instruction that RDKEY
uses to locate the character input subroutine is set to the address
of the device's input subroutine. This means that your program's
input commands (for example, INPUT and GET in Applesoft) can
always be used regardless of the source of input.

Let's take a closer look at the mechanics of this procedure. We
saw earlier that whenever RDKEY is called to obtain another char
acter, control ultimately passes to an instruction that looks like
this:

JMP ($0038>

The addressing mode used by the jump instruction here is called

------------- 6 Character Input and the Keyboard c:=J 183

"indirect." This means that the destination of the jump is not
location $38 itself but rather the address stored at locations $38
(low byte) and $39 (high byte). This address is normally a subrou
tine within DOS that ultimately calls KEYIN ($FD1B) or BASICIN
($C305), the system monitor's standard keyboard input routines
(unless input is being requested from a diskette file). By simply
changing the address stored at $38/$39, however, you can force the
lie to execute any subroutine that you want whenever input is
requested, including one associated with an alternative input de
vice.

The symbolic name for locations $38/$39 is KSW (for keyboard
switch); $38 by itself is called KSWL and $39 is called KSWH.
Since these locations are used to incorporate new input routines
into the system, KSW is commonly referred to as the "input link"
or "input hook."

The address of the input subroutine for a peripheral input device
is usually placed in KSWL and KSWH by using the Applesoft
"IN#s" command. This command causes the //e to transfer control
to a program beginning at location $Cs00 (where "s" is the pe
ripheral slot number) that is the first location in a ROM area re
served for that slot. Typically, the program in the new input de
vice's ROM will modify KSW so that it will point to a new input
routine also contained in that ROM. Note that if an IN#0 command
is entered, then the address of KEYIN ($FD1B), the //e's standard
40-column input subroutine, will be stored at KSWL and KSWH.

You can also change the input hook by using the Applesoft POKE
command to store the address of the new input routine directly
into KSW at $38 and $39; this address can be in a ROM area or a
RAM area. Caution should be exercised when carrying out these
changes, however, since the slightest error could easily cause the
system to crash.

How About Output?

You may well be wondering whether the //e uses the same method
to handle its output that it uses to handle its input. The answer is,
you guessed it, "yes," but we're going to defer discussion of output
until Chapter 7. For those of you who just can't wait, the //e uses
an output link called CSW ($36/$37) to point to the output sub
routine that is to take control whenever the standard output sub
routine, COUT ($FDED), is called. The PR# command can be used
to transfer control to a peripheral slot in much the same way that
IN# can be.

184 CJ Inside the Apple //e -------------------

Designing a KSW Input Subroutine

A KSW input subroutine must be designed carefully to ensure
that it adheres to certain rules that restrict its usage of 6502 reg
isters, The most important rule is that when the subroutine ends,
the inputted character must be contained in the accumulator with
its high-order bit set to one. Furthermore, the X and Y registers
must contain the same values they held when the subroutine was
first entered. Thus, if X and Y are to be changed by the KSW
subroutine, they must first be saved in a safe place (such as the
stack) and then restored just before the subroutine ends.

The KSW subroutine must also properly handle the screen cur
sor. As we saw earlier, before RDKEY ($FD0C) calls the KSW sub
routine, it displays a cursor by reading the byte at the current
screen position defined by CH ($24) and BASL ($28) and then
changing it into its flashing video representation. When the KSW
subroutine takes over, the original screen byte is contained in the
accumulator and the value inCH ($24) is in theY register.

If this original cursor is to be "removed" so that it can be replaced
by one generated by the KSW subroutine, the contents of the A
register must be immediately stored at the address given by
BASL+ Y. This' can be done with a "STA (BASL),Y" instruction.
Note that if the 80-column firmware is being used, then you must
remove the cursor in this way because it will not be properly po
sitioned. This is because CH is not used to store the cursor's hor
izontal position when the 80-column firmware is being used; in
stead, it is stored at OURCH ($57B).

Whatever cursor is used, it must be removed just before the KSW
subroutine ends.

Replacing the Keyboard Input Subroutine

As we saw earlier, the lie comes with a built-in keyboard input
subroutine called KEYIN ($FD1B). This subroutine takes care of
setting the cursor flash rate and of scanning the keyboard until a
key has been pressed. There is nothing magic about this particular
subroutine, however, and you could easily replace it with another
program that would still get input from the keyboard, but would
do it differently. In fact, this is essentially what is done whenever
you enter a PR#3 command to turn on the lie's 80-column display.
As we have seen, when this is done, RDKEY uses a new keyboard
input routine called BASICIN which changes the type of cursor
used and supports more escape sequences.

------------- 6 Character Input and the Keyboard c::::::J 185

You can use your own imagination to dreaiJ? up some useful
features that could be added to a keyboard input subroutine. Some
interesting ones to think about are as follows:

• The ability to prevent certain characters from being entered
• Allowing additional escape sequences
• Displaying a different cursor
• Allowing for macro keys (a macro key is one that, when pressed,

causes a whole string of characters to be entered).

Later in this chapter, after we have seen how to read the key
board, we will present some examples of modifying the keyboard
input subroutine to meet special requirements such as these.

It is simple to redefine the keyboard input subroutine so that it
operates properly when standard 40-column mode is active. In fact,
only three basic steps need be performed:

1. Wait for a key to be pressed
2. Remove the cursor
3. Return with the key code in the accumulator.

Complications arise, however, when the subroutine is to work
when the lie's 80-column firmware is being used. The following
seven steps must be performed by such a subroutine:

1. Remove the "RDKEY" cursor
2. Set up a new cursor
3. Wait for a key to be pressed
4. If ESC is pressed, handle any escape sequence and wait for

another key
5. If right-arrow (CTRL-U) is pressed, pick character off screen
6. Remove the new cursor
7. Return with the key code in the accumulator.

The input subroutine has suddenly become much more compli
cated, for two main reasons. First, as we saw in the previous sec
tion, the cursor that the RDKEY ($FD0C) subroutine sets up before
calling the input subroutine is valid in standard 40-column mode
only. Thus, it must be immediately removed (with a "STA (BASL),Y"
instruction) and replaced by one that appears in the proper column
position on the 80-column screen. A suitable cursor can be set up
by calling a subroutine called INVERT ($CEDD) to toggle the video
attribute of the character at the cursor position (from normal to
inverse or vice versa). Note that since INVERT is located within
the lie's internal ROM space (a space shared with peripheral-card

186 c::J Inside the Apple //e ------------------

ROM), it can only be used by first activating this ROM area by
writing to INTCXROMON ($C007)- see Chapter 8. The cursor
can subsequently be removed by calling INVERT once again.

Second, all escape sequences and right-arrow (CTRL-U) entries
must be handled within the input subroutine itself. If the ASCII
code for an ESC character was permitted to be returned to the
subroutine that requested input (which is usually RDCHAR if a
line is being read), then RDCHAR would attempt to handle it by
calling ESCNEW ($FBAS). Unfortunately, ESCNEW will not prop
erly handle those escape sequences designed to move the cursor
left~or right. This is because ESCNEW assumes that the horizontal
cursor position is stored inCH ($24), whereas it is actually stored
in OURCH ($57B) when the 80-column firmware is being used.
Writing the subroutines necessary to handle all the 80-column es
cape sequences is not simple. The chore can be simplified, however,
if the standard 80-column firmware subroutines are referred to as
models. One simple alternative, which we will use in later exam
ples, is simply to ignore the ESC key and wait for another keypress
if an attempt is made to enter it.

The new input subroutine must also handle the right-arrow key
internally; because if it doesn't, GETLN ($FD6A), the subroutine
that is called to read a line of information, would try to replace it
with the character below the flashing cursor that RDKEY ($FD0C)
first sets up. As we have already seen, however, this is usually not
the proper cursor position and so the "wrong" character would be
copied over by the right-arrow key. The new input subroutine can
easily handle the right-arrow key itself by loading the current cur
sor horizontal position stored at OURCH ($57B) into theY register
and then calling PICK ($CF01) to get the character from the screen
and put it in the accumulator. You must then set the character's
high-order bit to one by executing an "ORA #$80" instruction.

Just before the 80-column input subroutine ends, it must turn
off its internal ROM so that the the peripheral-card ROMs will be
active once again. This is done by writing to INTCXROMOFF ($C006).
See Chapter 8 for a discussion of the INTCXROM switches.

The ideal input subroutine is one that works equally well whether
the 80-column firmware is active or not. Unfortunately, there is
no definitive way to determine the state of the 80-column firmware.
One method, which will be used in later examples, is to read the
status of the ALTCHARSET ($C01E) switch. As we will see in Chap
ter 7, this switch indicates which of two character sets is active
and is normally on (greater than 127) when the 80-column firm
ware is being used and off when it is not. This method is not
foolproof, however, and will fail if the state of ALTCHARSET is
changed from its expected value.

------------- 6 Character Input and the Keyboard c=J 187

Table 6-5 lists a simple keyboard input subroutine that dem
onstrates how to implement some of the techniques referred to
above so that it will be usable whether the 80-column firmware is
being used or not. To use it, you must BRUN it directly from
diskette.

DOS 3.3, ProDOS, and the Input Link

The ability to change the KSW input link is somewhat restricted
if either DOS 3.3 or ProDOS is active. (Similar restrictions apply
if the CSW output link is to be changed.) When either DOS is first
activated, the address stored in the KSW input link is placed in
another input link located within DOS itself. A special KSW input
subroutine is then installed that is responsible for detecting and
executing any DOS commands that are entered (when Applesoft
direct mode is active) and for redirecting the source of input to a
diskette file if a DOS READ command is in effect. If a READ com
mand is not in effect, then DOS uses the subroutine whose address
is stored in its own input link to get input. The address stored here
is initially that of one of the standard keyboard input subroutines.

If standard attempts are made to modify KSW, then DOS could
be temporarily disconnected. With two exceptions, this means that
you must not use any of the following methods to install a new
input subroutine:

• Using an Applesoft IN# command (as opposed to the DOS IN#
command) from within a program

• Using Applcsoft POKE commands to place new values directly
into KSWL and KSWH

• Using the Applesoft CALL command or the system monitor GO
command (as opposed to the DOS BRUN command) to execute
an assembly-language program that stores values directly into
KSWL and KSWH.

The first exception to these rules applies if you are using DOS
3.3 (but not ProDOS). You are permitted to use POKE to store a
new address into KSW, or CALL an assembly-language program
that modifies KSW, if immediately thereafter (and before any I/0
operations are performed) you execute a CALL 1002 command or
a JSR $3EA instruction. At location 1002 ($3EA) is a subroutine
that takes the address stored in KSW, moves it into the DOS 3.3
input link, and then places the address of the standard DOS 3.3
input subroutine back into KSW. This procedure effectively re
connects DOS 3.3 and keeps your new subroutine active at the
same time. Although there is no corresponding subroutine at $3EA

Table 6-5. MODIFY KEYBOARD INPUT. A program to illustrate how to modify the keyboard input
subroutine.

Page #0 1

: A S M

0300: A9 09
0302: S5 3S
0304: A9 03
0306: S5 39

1
2
3
4
5
6
7
s
9
1 0
1 1
1 2
1 3
1 4
1 5
16
1 7
1S
19
20
21
22
23
24
25
26
27
2S
29
30

* MODIFY KEYBOARD INPUT *

* <BRUN this program from disk)

BASL EQU S2S
KSWL EQU $3S

OURCH EQU $578

KBD EQU $COOO
KBDSTRB EQU $C010

CXROMON EQU $C007
CXROMOFF EQU $C006
ALTCHAR EQU $C01E

* SO-column firmware
GETKEY EQU $CB15
INVERT EQU $CEDD
PICK EQU $CF01

ORG $300

;Horizontal position <SO-column>

;Keyboard data + strobe
;Clear keyboard strobe

;Turn on internal ROM
;Enable slot ROMs
;>=$SO if SO-column firmware on

subroutines:
;Get character from keyboard
;Invert character on screen
;Pick character off screen

* Set up new input link:
LDA #<NEWIN
STA KSWL
LDA #>NEWIN
STA KSWL+1

..a.
CD
CD

D
::J
en
a:
CD
C'1"
::r
CD
)>

"'0
"'0 ro --CD

0308: 60 31 RTS
32
33 * This is the new input subroutine:

0309: 2C 1E CO 34 NEW IN BIT AL TCHAR ;80-column firmware in use?
030C: 30 OE 35 BMI NEWIN1 ;Yes, so branch
030E: 2C 00 CO 36 GETKBD BIT KBD ;Key pressed?
0311 : 1 0 FB 37 BPL GETKBD ; No, so branch
0313: 91 28 38 STA <BASL>, Y ;Remove cursor
0315: AD 00 CO 39 LDA KBD ;Get the keyboard character
0318: 2C 10 CO 40 BIT KBDSTRB ;Clear keyboard strobe
031B: 60 41 RTS

42
031C: 91 28 43 NEWIN1 STA <BASL>,Y ;Replace RDKEY's cursor
031E: 8D 07 CO 44 STA CXROMON ;Turn on internal $C800 ROM
0321 : 20 DD CE 45 JSR INVERT ;Set up new cursor
0324: 20 15 CB 46 INPUT JSR GETKEY ;Get a keystroke
0327: C9 9B 47 CMP #$9B ; I s it an ESC? OJ

0329: FO F9 48 BEQ INPUT ; If so, ignore it n
::r 032B: C9 95 49 CMP #$95 ; I s it a right arrow? Cl -,
Cl
()

Page #02 rt
C1l -,

032D: DO 08 50 BNE CLRCURS ;No, so branch 5"
"C

032F: AC 7B 05 51 LDY OURCH ;Get horizontal cursor position c
rt

0332: 20 01 CF 52 JSR PICK ;Grab character from screen Cl
:::J

0335: 09 80 53 ORA #$80 ; and set its high bit Cl.

0337: 20 DD CE 54 CLRCURS JSR INVERT ;Remove the cursor rt
::r

033A: 8D 06 CO 55 STA CXROMOFF ;Re-enable slot ROMs C1l

;;a:; 033D: 60 56 RTS C1l

57 '<
C'"
0
Cl

--End Assembly--
-,
Cl.

62 bytes 0
..a.

Errors: 0 CD
ca

190 c::::::::J Inside the Apple //e ------------------

that is available when using ProDOS, you can install a new input
subroutine by storing its address directly into the ProDOS input
links found at $BE32 and $BE33 instead of into KSW.

The second exception relates to the use of the BRUN command
and applies to both DOS 3.3 and ProDOS. If an assembly-language
program is loaded and executed directly from diskette by using
the BRUN command, then the program is permitted to modify the
contents of KSW and both DOS and the new input subroutine will
still remain active. This is because just before the program which
is BRUN ends, DOS checks to see whether the input link has changed.
If it has, it moves the link address into its own input link and places
the address of its input subroutine back into KSW.

If you want to use an IN# command within an Applesoft program
in order to redirect input to a particular slot, you must use the
DOS 3.3 or ProDOS "version" of that command by printing a <CTRL
D> character (ASCII code 4), immediately followed by "IN#s"
(where "s" is the slot number) and a carriage return. The <CTRL
D> signifies to DOS that a DOS command is about to be presented;
it can be generated using the Applesoft CHR$ function. For ex
ample, to redirect input to slot 2 when DOS is being used, execute
the following statement:

PRINT CHRH4>;"IN#2"

instead of the Applesoft "IN#2" command. After this is done, both
DOS and the new input subroutine will be active.

ProDOS supports a special form of the IN# command that DOS
3.3 does not. This special IN# command can be used to properly
install an input subroutine that is located anywhere in memory
and not just to pass control to a program located at a slot. The
only restriction on its use is that the first byte of the new input
subroutine must be a 6502 "CLD" (clear decimal flag) instruction.
To install any such input subroutine, you must execute the state
ment

PRINT CHRH4>;"IN# Aaddr"

where" addr" represents either the decimal starting address of the
new input subroutine or, if preceded by"$", the hexadecimal start
ing address. For example, if your new input subroutine begins at
$300 (decimal 768), then you would execute either of the following
two statements:

PRINT CHRH4>;"IN# A$300"

or

PRINT CHRH4>;"IN# A768"

-------------6 Character Input and the Keyboard c::::J 191

and the new input subroutine will be pro'perly installed in the
ProDOS input link.

THE KEYBOARD

The keyboard is probably the most important input/output de
vice attached to the 1/e. It is one of three primary sources of input
(the disk drive and the cassette port being the other two) and
without it you would not be able to interact conveniently with any
program running on the //e.

We are now going to take a close look at the keyboard. We will
explain how it is used to enter information and present examples
of how to modify the handling of keyboard input to meet special
requirements.

Encoding of Keyboard Characters

The lie's keyboard is made up of 62 typewriter-like keys and one
special recessed RESET button. These keys include most of the
ones that you would see on a standard typewriter as well as a few
more special ones. They are spatially arranged in the standard
QWERTY configuration familiar to all typists.

All of the keys on the keyboard, except for the RESET button at
the far right of the top row and the two "Apple" keys that flank
the space bar, are used to generate the ASCII codes that the lie uses
to represent the 52 alphabetic characters (26 upper-case and 26
lower-case), 10 digits (0 ... 9), 34 special symbols, and 32 "control"
codes that it recognizes.

Some keys on the keyboard do not generate ASCII codes when
pressed by themselves, but are used to affect the code that is nor
mally generated by another key that is pressed at the same time.
These keys are the two SHIFT keys, the CONTROL key, and the
CAPS LOCK key.

You can probably guess how the SHIFT keys affect the character
codes already. Ignoring the effect of the CAPS LOCK key for the
moment, if you press any alphabetic key by itself, you will generate
an ASCII code for a lower-case character. If either SHIFT key is
pressed at the same time, however, the ASCII code for the corre
sponding upper-case character is generated instead. The SHIFT
key is also pressed to select the ASCII code for the top symbol on
those keys that have two symbols marked on them.

192 c:::=J Inside the Apple //e -------------------

The CAPS LOCK key, if in the down position, merely causes any
lower-case alphabetic character code that is entered to be con
verted to the code for the corresponding upper-case character.

The CONTROL key acts in a similar way as the SHIFT keys. If
you hold the CONTROL key down and then press any of the 26
alphabetic keys, then an ASCII code for a control character will
be selected and not the code for the alphabetic key itself. (The
remaining six control characters are generated by pressing the
CONTROL key together with one of the following special symbols:
@, [, \,], ', and_).

Special Keys

There are several special keys on the lie's keyboard that you
probabiy won't see on a standard typewriter. These are the ESC
(for ESCape), TAB, DELETE, UP-ARROW, DOWN-ARROW, LEFT
ARROW, RIGHT-ARROW, OPEN-APPLE, and CLOSED-APPLE keys.

The ESC, TAB, DELETE, and the fourarrow keys all generate
specific ASCII codes when they are pressed and they are often
referred to as "editing" keys. Refer to Table 6-1 for the ASCII codes
generated by these keys.

Different programs will perform different tasks when an editing
key is pressed. It is hoped, however, that the tasks performed will
relate in a meaningful way to the name or the symbol on the keycap.
That is, it would be preferable if the ESC key actually caused you
to ESCape (or exit) some part of a program and the TAB key caused
the cursor to move several spaces to the right, and so on. It would
be incredibly annoying, for example, if when you pressed the down
arrow key your cursor moved up or if you pressed the DELETE
and the cursor moved five spaces to the right.

The "Apple" Keys

The OPEN-APPLE and CLOSED-APPLE keys that flank the space
bar are actually equivalent to push buttons #0 and #1 on the game
1/0 connector, respectively. These push buttons will be described
in detail in Chapter 10. Althm1;gh these keys cannot be used to
generate ASCII codes, they could be used, with appropriate soft
ware, to act as special shift keys. The software, after reading a key,
could check to see whether an "Apple" key was being pressed; if
one was, then a different action could be taken than if the key were
pressed by itself. For example, Apple has issued design guidelines
urging software developers to consider the question mark key as

-------------6 Character Input and the Keyboard CJ 193

a "HELP" key if it is pressed at the same time as the OPEN-APPLE
key. Here is how you would implement a help function in an Ap
plesoft program:

10 PRINT "Enter a command: ";:GET A$
20 IF A$="?" AND PEEK<49249)>127 THEN 1000

1000 REM PLACE "HELP" CODE HERE

Memory location 49249 is the address of the location that holds
the state of the OPEN-APPLE key (49250 is used for the CLOSED
APPLE key). If the value read from this location is greater than
127 (that is, bit 7 is on), then OPEN-APPLE is being pressed.

The OPEN-APPLE and CLOSED-APPLE keys can also be used to
modify the effect of resetting the //e. This is discussed in the last
section of this chapter.

KEYBOARD 1/0 LOCATIONS

The Apple //e reserves two I/0 memory locations for use by the
keyboard I/0 device. These two locations are $C000 and $C010 and
their meanings are summarized in Table 6-6.

KBD ($C000) is used to hold the 7-bit ASCII code for any key-

Table 6-6. Keyboard 110 locations.

Address
Hex (Dec) Symbolic Name Meaning

$C000 (49152) KBD

$C010 (49168) KBDSTRB
orAKD

Keyboard data and strobe.
Keyboard data is stored in
bits 0 ... 6. Bit 7 represents
the keyboard strobe and will
be 1 if keyboard data is ready
to be -read.

Clear keyboard strobe and
read any-key-down status.
Reading or writing this lo
cation will clear the key
board strobe bit at $C000. Bit
7 indicates whether a key is
being pressed; if it is 1, then
a key is being pressed.

194 [-=::1 Inside the Apple //e -------------------

board character that is entered as well as a 1-bit "strobe" flag. The
strobe flag is held in bit 7 of KBD and indicates whether a key has
been pressed and is ready to be presented to the system. If the bit
is set to 1, then keyboard data is ready to be read; if it is cleared
to 0, then no keyboard character has yet been entered since the
last time the strobe was cleared. The lower 7 bits of KBD always
contains the ASCII code of the last key entered.

The second keyboard I/0 location is KBDSTRB ($C010). This
location is used for two purposes. First, if any read or write op
eration is performed on this location, such as a PEEK or a POKE,
then the keyboard strobe bit (in KBD) will be cleared to zero. This
tells the //e's built-in keyboard input subroutines that the keyboard
data has already been dealt with and that no further information
should be read from the keyboard until the strobe flag becomes
set once again.

Second, bit 7 of KBDSTRB ($C010), also called AKD ($C010),
indicates the status of the "any-key-down" flag. If it is 1, then a
key is being pressed; if it is 0, then no key is being pressed. This
flag is not the same as the strobe flag because, as we will see later
on, there are times when even though a key is being pressed, it has
not yet been officially strobed into the system.

Here is a simple assembly-language program to read data from
the keyboard:

WAITFORKEY LDA $COOO ;Get keyboard data + strobe
BPL WAITFORKEY ;Loop until strobe is set
STA $C010 ;Clear keyboard strobe

The branch-on-plus (BPL) instruction will cause this program to
loop until KBD becomes "negative," that is, until bit 7 of KBD
(the strobe bit) becomes 1.

In Applesoft, this program would be written as follows:

100 IF PEEK<49152)<128 THEN 100 : REM WAIT FOR STROBE
110 POKE 49168,0 : REM CLEAR KEYBOARD STROBE

It is important that the keyboard strobe be cleared after reading
data from the keyboard. If it isn't, the program will keep thinking
that a key has just been pressed whenever it checks for more key
board data.

Let's look at a simple program, called TYPING TIMER, that
makes use of the AKD ($C010) flag; it is shown in Table 6-7. This
program analyzes your typing speed by displaying the length of
time your finger stays on each key that you press and the time
delay between successive keystrokes. It does this by simply mon
itoring the status of the AKD flag and keeping track of the elapsed
time using a software counter. In a fully developed program of this

------------- 6 Character Input and the Keyboard c=J 195

sort, you would be able to quickly pinpoint a typist's problem
areas.

After you enter the program, you can run it by entering CALL
768 from Applesoft direct mode. After you do this, type in four
characters from the keyboard as fast as you can. After you have
done this, a set of five times (in units of 20 microseconds) will be
displayed. The meanings of each of these times are as follows:

First
Second
Third
Fourth
Fifth
Sixth

: ON time for first key
: delay between first and second keys
:ON time for second key
: delay between second and third keys
: ON time for third key
: delay between third and fourth keys

To convert the displayed numbers into milliseconds, simply di
vide them by fifty. You should take note of how the decimal values
for these times are displayed. The program makes use of an Ap
plesoft subroutine called LINPRT ($ED24); this subroutine takes
a binary number that is in X (low byte) and A (high byte) and
displays it as an unsigned decimal number.

MODIFYING THE KEYBOARD INPUT
SUBROUTINE

Earlier in this chapter, we saw how it was possible to replace
the subroutine that the lie uses in order to obtain character input
by simply changing the input link at KSW ($38/$39). At that time,
we indicated that it would be possible to install a wide variety of
subroutines that would still obtain input from the keyboard but
would do it in different, more useful, ways.

Look at the program called MACRO ENTRY in Table 6-8. It must
be installed by using the BRUN command to execute it directly
from diskette. This program allows you to automatically enter a
commonly used command phrase from the keyboard simply by
pressing the OPEN-APPLE key at the same time as one of three
other keys, C, H, or L. These keys will generate the following se
quences of characters:

C ~ CATALOG,Dl (followed by RETURN)
H ~ HOME (followed by RETURN)
L ~ LOAD (followed by SPACE)
A key that is used to enter a whole string of other characters is

called a macro key. With MACRO ENTRY installed, it is a simple
matter to catalog the disk, clear the screen, or to "type in" LOAD
before specifying the name of a program. All you must do is press
OPEN-APPLE and the appropriate macro key.

...
Table 6-7. TYPING TIMER. A program to demonstrate how AKD($C010) works. ca en

Page #01 D
: A S M 5"

Ul
0:

1 **************** m

2 * TYPING TIMER * rt
::r

3 ****************
m

4
)>

"C

5 CHARS EQU 3 ;Number of chars. to be typed "C
ro

6 .._

7 AKD EQU $C010 ;Any-key-down flag ro
8
9 HEX DEC EQU $ED24 ;Hex-to-decimal conversion
1 0 CROUT EQU $FDBE ;Send a CR
1 1
1 2 ORG $300
13

0300: A2 00 1 4 LDX #0
0302: 20 41 03 1 5 JSR RELEASE
0305: 20 2C 03 16 NEXTKEY JSR PRESS ;Get a keystroke
0308: EB 1 7 INX
0309: EB 18 INX
030A: EB 19 INX
0308: EB 20 INX
030C: EO oc 21 CPX #CHARS*4
030E: DO F5 22 8NE NEXTKEY

23
24 * Display the results:

031 0: AO 00 25 LDY #0
0312: 89 58 03 26 TIMEDSP LOA TIMEON,Y
0315: AA 27 TAX
0316: 89 59 03 28 LDA TIMEON+1, Y
0319: BC 57 03 29 STY YSAVE
031C: 20 24 ED 30 JSR HEXDEC ;Display in decimal
031F: 20 BE FD 31 JSR CROUT
0322: AC 57 03 32 LDY YSAVE

0325: C8 33 INY
0326: C8 34 INY
0327: co oc 35 CPY #CHARS*4
0329: DO E7 36 BNE TIMEDSP
0328: 60 37 RTS

38
39 * <Loop time is -20 microsec.)

032C: A9 00 40 PRESS LDA #0
032E: 9D 59 03 41 STA TIMEON+1,X ;Initialize "ON" timer
0331 : 9D 58 03 42 STA TIMEON,X
0334: FE 58 03 43 KEYWA IT INC TIMEON,X ;Bump the time count
0337: DO 03 44 BNE KEYWAIT1
0339: FE 59 03 45 INC TIMEON+1 ,X
033C: 2C 10 CO 46 KEYWAIT1 BIT AKD ; Is key still pressed?
033F: 30 F3 47 BMI KEYWAIT ; Yes, so wait

48
0341 : A9 00 49 RELEASE LDA #0

Page #02
(J)

0343: 9D 58 03 50 STA TIMEOFF+1,X ;Initialize "OFF" timer (")
:::r

0346: 9D SA 03 51 STA TIMEOFF,X Ol ...,
0349: FE SA 03 52 RELWA IT INC TIMEOFF,X ;Bump the time count Ol

0

034C: DO 03 53 BNE RELWAIT1 rt
CD

034E: FE 58 03 54 INC TIMEOFF+1 ,X
...,
5" 0351 : 2C 10 co 55 RELWAIT1 BIT AKD ;Has key been released? "'C
c: 0354: 10 F3 56 BPL RELWAIT ;No, so wait rt

0356: 60 57 RTS Ol
::J

58 c..

59 YSAVE DS 1 rt :::r
60 CD

?'\
61 TIMEON DS 2 ;Duration of keypress CD

'< 62 TIMEOFF DS 2 ;Duration of key release c-
0

63 DS CHARS*4-4 ;Data for other keystrokes Ol ...,
c..

--End assembly--
D 100 bytes
~

Errors: 0 CD

Table 6-8. MACRO ENTRY. A program to define macro keys.

Page #01

: A 5 M

0300: A9 09
0302: 85 38
0304: A9 03
0306: 85 39
0308: 60

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
13
1 4
15
16
1 7
18
19
20
21
22
23
24
25
26
27
28
29
30
31

* MACRO ENTRY *

* <BRUN this program from disk>

MTOTAL EQU 3 ;Number of macro keys in MACROKEY

BASL EQU $28 ;Base address for video line
KSW EQU $38 ;Input "link"
OURCH EQU $578 ;Horizontal position <SO-column)

KBD EQU $COOO ;Keyboard data + strobe
CXROMOFF EQU $C006 ;Select slot ROMs
CXROMON EQU $C007 ;Select internal ROM
KBDSTRB EQU $C010 ;Clear keyboard strobe
ALTCHAR EQU $C01E ;Status of character set
OPENAPL EQU $C061 ;OPEN-APPLE switch

INVERT EQU $CEDD ;Invert character on screen
PICK EQU $CFO 1 ;Pick character off screen

ORG $300

* Set up new input 1 ink:

LDA #<NEWIN
STA KSW
LDA #>NEWIN
STA KSW+1
RTS

...
CD
CD

D
::J
Ul
a:
CD
C"1"
:::T
CD

)>
"C
"C
iii"
~

ro-

32
33 * This is the new input routine:
34

0309: 2C 1E CO 35 NEW IN ·BIT AL TCHAR ;SO-column firmware active?
030C: 1 0 08 36 BPL NEWIN1 ; No, so branch
303E: 91 28 37 STA <BASL >, Y ;Replace RDKEY's cursor
0310: BD 07 co 38 STA CXROMDN ;Turn on internal $Cx ROM
0313: 20 DD CE 39 JSR INVERT ;Set up new cursor
0316: BE AE 03 40 NEWIN1 STX XSAVE
0319: BC AF 03 41 STY YSAVE
031C: BD AD 03 42 STA ASAVE
031F: 2C B1 03 43 BIT MACROFLG ;Are we processing a macro?
0322: 30 67 44 BMI GETMAC ;Yes, so branch
0324: 2C 00 CO 45 NEWIN2 BIT KBD ;Anything at keyboard?
0327: 1 0 FB 46 BPL NEWIN2 ;Branch until there is
0.329: 2C 1E CO 47 BIT ALTCHAR ;SO-column firmware active?
032C: 30 02. 48 BMI NEWIN3 ; Yes, so branch
032E: 91 28 49 STA <BASL>, Y ;Replace screen character en

(")

Page #02 ::r
OJ ...,

0330: AD 00 CO 50 NEWIN3 LDA KBD ;Get the keystroke OJ
()

0333: 2C 10 CO 51 BIT KBDSTRB and clear the strobe. <"t
; m

0336: 2C 1E CO 52 BIT AL TCHAR ;SO-column firmware active?
...,
s-

0339: 1 0 16 53 BPL NEWIN4 ; No, so branch "0

033B: C9 9B 54 CMP #$9B ;ESC pressed?
c
<"t

033D: FO ES 55 BEQ NEWIN2 ;Yes, so ignore and branch OJ
::::l

033F: C9 95 56 CMP #$95 ;Right arrow? 0..
<"t

0341 : DO 08 57 BNE CLRCURS ::r
m

0343: AC 7B OS 58 LDY OURCH A
0346: 20 01 CF 59 JSR PICK ;Get character from screen m

<
0349: 09 80 60 ORA #$80 C"

0

034B: 20 DD CE 61 CLRCURS JSR INVERT ;Remove cursor OJ ...,
034E: BD 06 co 62 STA CXROMOFF ;Re-enable slot ROMs 0..

0351 : 2C 61 co 63 NEWIN4 BIT OPENAPL ;Is OPEN-APPLE being pressed? 0 0354: 10 53 64 BPL EX IT ; No, so exit
0356: A2 00 65 LDX #0 ..a.

(continued)
CD
CD

N
Table 6-8. MACRO ENTRY. A program to define macro keys (continued). Q

Q

035B: DD 83 03 66 DRIGSCAN CMP MACROKEY,X ;Is this a command key? D 0358: FO 07 67 BEQ FINDMAC ; Yes, so branch
035D: EB 6B INX ;Go on to next item in table S"

Ul
035E: EO 03 69 CPX #MTDTAL ;At end of table? Ci
0360: DO F6 70 BNE DRIGSCAN ;No, so keep looking CD

C"t

0362: FO 45 71 BEQ EX IT ::r
CD

0364: A9 BO 72 FINDMAC LDA #$BO ~
0366: BD 81 03 73 STA MACROFLG ;Set "macro in effect" flag "C

"C
0369: BE 80 03 74 STX CMDNUM ro
036C: A2 00 75 LDX #0 --ro-
036E: BE 82 03 76 STX MACROPOS
0371 : AO 00 77 LDY #
0373: cc 80 03 7B FINDMAC1 CPY CMDNUM ;Have we found the macro?
0376: FO 1 3 79 BEQ GETMAC ; Yes, so branch
037B: AE 82 03 BO SKIPMAC LDX MACRDPOS
0378: BD 86 03 B"'l LDA PHRASES,X ;Get macro character
037E: FO OS B2 BEQ FINDMAC2 ;Branch if past end
03BO: EE 82 03 B3 INC MACROPOS ; else move to next position
03B3: DO F3 B4 BNE SK.I PMAC
03BS: EE 82 03 BS FINDMAC2 INC MACRDPDS
03BB: CB B6 INY ;Increment macro count
03B9: DO EB B7 BNE FINDMAC1
03BB: AE 82 03 BB GETMAC LDX MACROPOS
03BE: BD 86 03 B9 LDA PHRASES,X ;Get new character
0391 : EE 82 03 90 INC MACRDPOS ;Update position within macro
0394: C9 00 91 CMP #0 ; At the end?
0396: DO 07 92 BNE EXIT1 ;No, so exit
039B: A9 00 93 LDA #0
039A: BD 81 03 94 STA MACROFLG ;Clear "macro in effect" flag
039D: FO BS 95 BEQ NEWIN2 ; and get a keystroke
039F: 4B 96 EX I T1 PHA
03AO: AD AD 03 97 LDA ASAVE
03A3: AC AF 03 9B LDY YSAVE
03A6: 91 2B 99 STA <BASL>, Y
03AB: 6B 1 0 0 PLA

Page #03

03A9: AE AE 03 1 01 EX IT LDX XSAVE
03AC: 60 102 RTS

103
104 A SAVE DS 1
105 X SAVE DS 1
106 YSAVE DS 1
107 CMDNUM DS 1

0381: 00 108 MACROFLG DF8 0 ;O=no macro I
0382: 00 109 MACROPOS DF8 0

11 0
1 1 1 * Table of macro keys:
11 2 * (high bit must be on)

0383: C3 11 3 MACROKEY ASC "C"
0384: C8 11 4 ASC "H"
0385: cc 11 5 ASC "L"

11 6
11 7 * Table of macro phrases:
118 * <each entry must end with a O>

0386: C3 C1 D4 119 PHRASES ASC "CATALOG,D1"
0389: C1 CC CF C7 AC C4 81
03CO: 8D 00 120 DF8 $8D,O
03C2: C8 CF CD 121 ASC "HOME"
03C5: C5
03C6: 8D 00 122 DF8 $8D,O
03C8: CC CF C1 123 AC "LOAD"
03C8: C4 AO
03CD: 00 124 DF8 0

125

--End assembly--

206 bytes

Errors: 0

$80=macro

Ol
(')
:r
Ill ..,
Ill
(')
rt
CD ..,
::J
"0
c
rt

Ill
::J
Cl.
rt
:r
CD

6;'
'< c
o
Ill ..,
Cl.

D
N
0
..a.

202 c:::J Inside the Apple //e ------------------

The first part of MACRO ENTRY simply sets up the new input
link so that it points to NEWIN, the start of the new input routine.
This means that every time a program requests input from the
lie by calling the standard RDKEY ($FD0C) input subroutine, con
trol will eventually pass to NEWIN instead of the standard key
board input subroutine.

When NEWIN is entered, some registers that will be used are
first saved and then a location (called MACROFLG) is checked to
see whether a macro entry is currently being processed. If not, the
program enters a tight loop until a keypress is detected. After a
key has been pressed, the character is loaded into the accumulator
and the status of the OPEN-APPLE key is examined with a BIT
OPENAPL instruction. If it is not being pressed, then the following
BPL instruction will succeed (because bit 7 of OPENAPL will be
0) and control will return to the calling program as usual.

However, if OPEN-APPLE is being pressed, then the MACRO KEY
table is scanned to see whether it contains the keyboard character
that has been entered. If it doesn't, then control returns to the
calling program. If it does, then the high-order bit of MACROFLG
is set and the first character of the entry in the PHRASES table is
returned to the calling program. Each time that input is requested
after this, the next character in the macro phrase will be returned
to the calling program. This will continue until all characters have
been returned, at which time MACROFLG is cleared.

If you want to change the macro commands and associated en
tries, then you must modify the MACRO KEY and PHRASES tables.
The ASCII code for each command key must be stored in the
MACROKEY table with the high bit on. The corresponding macro
phrases for each key must be stored, in order, in the PHRASES
table; each phrase must be terminated by a 00 byte. In addition,
you must set MTOT AL equal to the number of macro keys in the
MACROKEY table before reassembling the program.

Recall that only locations $300 through $3CF are available for
use in page three of memory. You must ensure that your macro
tables are short enough that you do not spill over the $3CF bound
ary.

KEYBOARD AUTO-REPEAT

When you enter a key that corresponds to a particular ASCII
code, that code will begin to repeat after you have kept the key
pressed for longer than about 900 milliseconds. (This time could

------------- 6 Character Input and the Keyboard c.:::J 203

ON

be shorter, but heavy-handed typists might then encounter diffi
culties.) Once this "pre-repeat" period has elapsed, the code will
begin to repeat itself 15 times per second (that is, once every 66.7
milliseconds). The auto-repeat phenomenon is generated by cir
cuitry on the lie's motherboard.

The auto-repeat feature is useful if you are editing programs or
if are you are using word-processing programs. In both cases, it is
often necessary to repeat character sequences or use an arrow key
several times in succession to move the cursor to a new position.
These tasks can be done easily merely by pressing the appropriate
key and holding it down until the key is repeated as many times
as is required.

The timing diagram for the keyboard's auto-repeat function is
shown in Figure 6-1. As soon as a key is first pressed, the AKD
($C010) flag is turned on and, a few microseconds later, the key
board strobe is turned on. The keyboard strobe will then stay on
until it is cleared by accessing KBDSTRB ($C010). This is done
right after the keyboard is read by the standard keyboard input
subroutines. Note, however, that if the key is still being pressed,
the AKD flag will remain on even after the strobe has been cleared.

After the strobe is cleared, and if the key is still being pressed,
there is a short delay of about 900 milliseconds (called the "pre
repeat" delay) and then the keyboard strobe is turned on again.

I:RE-REPEAT PERIOD ~REPEAT PERIOD
~900 msec. •I• ~66.7 msec.

b c d

OFF~----~~--~~---~ ~---KEYBOARD STROBE
SIGNAL ($C000)

ON

0 FFI--------l
ANY -KEY -DOWN

'------- SIGNAL ($C010)

f KEY FIRST PRESSED f KEY RELEASED

NOTE: The keyboard strobe is cleared at
points "a", "b", "c", and "d" by
accessing KBDSTRB ($C010).

Figure 6-1. Keyboard auto-repeat timing diagram.

204 c::J Inside the Apple //e ------------------

As usual, it will stay on until KBDSTRB is accessed once again.
The width of the strobe pulse will depend on how rapidly the strobe
is cleared after the strobe is turned on. Figure 6-1 was prepared
by assuming that this is happening soon after the strobe is high
and certainly much faster than the rate at which the key repeats.

At this stage, the keyboard strobe will automatically be turned
on once every 66.7 milliseconds after it has been cleared and until
the key is finally released. Even while the keyboard strobe is being
turned on and off, however, the AKD flag remains on; in fact, AKD
is turned off only when the key is finally released. Thus, there are
substantial periods of time when even though the AKD flag is on
(that is, a key is being pressed), the keyboard strobe is not on.

Since most keyboard input subroutines, including the standard
ones used in the //e, rely on the keyboard strobe to detect the
presence or absence of a valid key code, the key code will be re
peated at the same rate that the strobe is turned on (this is fixed
by the //e's internal circuitry). If, however, an alternate input sub
routine is used that examines the AKD flag and returns a key code
if it is on continuously for a given time period (even though, at the
end of the period, the keyboard strobe may not be on), then a
different repeat rate can be generated in software.

The SOFTWARE AUTO-REPEAT program in Table 6-9 shows
you how to adjust the auto-repeat rate in software. This program
must be installed by using the BRUN command to load and execute
it directly from diskette. SOFTWARE AUTO-REPEAT modifies the
input link so that it points to the code beginning at NEWIN. After
this has been done, all requests for keyboard input will be pro
cessed by this subroutine and a much faster auto-repeat rate will
be observed.

The first thing the new input subroutine does when it is called
is to determine whether a new character was entered the last time
it was called (RPTFLAG = $00) or whether an old one was being
repeated (RPTFLAG = $80). If a new character was entered, then
the accumulator is loaded with the number given by PREDELA Y
(the pre-repeat delay time); if not, it is loaded with the smaller
number given by RPTDELAY (the auto-repeat time interval).

A delay loop is then entered during which the status of the AKD
flag is repeatedly checked. If the flag is turned off (that is, the key
is released) at any time before the loop finishes, then RPTFLAG is
set equal to $00 (to indicate that repeating has ended) and then
keyboard input is requested in the standard way (by waiting for
the keyboard strobe to be turned on). After a keyboard character
is received, it is stored in OLDKEY.

------------- 6 Character Input and the Keyboard c::=J 205

If a key remains pressed until the timing loop finishes, then the
keyboard data is immediately read from KBD ($C000), even though
the strobe may not actually be on. This data will usually equal the
code stored in OLDKEY (the previous key strobed in). If at some
time during the loop, however, another key was pressed before the
previous one was released, it will be different. If the key code is
the same (the usual case), RPTFLAG is set equal to $80. This in
dicates that an auto-repeat sequence is in effect so that the next
time input is requested, the shorter "RPTDELAY" delay loop will
be selected. Otherwise, RPTFLAG is set to $00. In either case, the
key code is stored in OLDKEY before the subroutine finishes.

The important point to note here is that the keyboard data will
always be read after the key has been pressed for the length of time
set by the loop counter (PREDELAY or RPTDELAY). Thus, we can
select both the auto-repeat rate and the predelay time simply by
changing the RPTDELAY and PREDELAY constants. You may want
to try out different repeat rates and predelay times by changing
these constants in the program. Be warned, however, that if you
set RPTDELAY too low, your reflexes may not be fast enough to
control the speeding cursor! You should also be careful not to set
PREDELA Y too low or else you may not be able to press and release
a key before it starts to repeat!

KEYBOARD TYPE-AHEAD

As we have seen, whenever the //e wants to receive a character
from the keyboard it calls a subroutine that continually scans the
keyboard strobe line until it goes high and then reads KBD. This
technique is called "polling" because the software is continually
directly "asking" the keyboard whether it has a character avail
able. One consequence of using the polling method is that if you
try to enter characters from the keyboard when the //e is not ac
tually polling the keyboard, then all those characters will be "missed"
except for the last one entered.

Some computer systems, notably the IBM Personal Computer,
handle keyboard input in a different way. They allow the keyboard
to interrupt the microprocessor whenever a key has been strobed
into the system. The keyboard interrupt-handling routine then gets
this character from the keyboard and stores it in a small buffer,
typically 16 bytes in length. When a program wants a character
from the keyboard, it does not poll the keyboard itself but rather

· reads it from this buffer.

Table 6-9. SOFTWARE AUTO-REPEAT. A program to alter the auto-repeat rate.

Page #0 1

: A S M

1
2
3
4
5
6
7
8
9
1 0
1 1
12
1 3
1 4
1 5
16
1 7
18
19
20
21
22
23
24
25
26
27
28
29

* SOFTWARE AUTO-REPEAT *

* CBRUN this program from disk)

PREDELAY EQU 150
RPTDELAY EQU 20

BASL
KSW

OURCH

KBD
KBDSTRB
AKD

EQU $28
EQU $38

EQU $578

EQU $COOO
EQU $C010
EQU $C010

CXROMOFF EQU $C006
CXROMON EQU $C007
ALTCHAR EQU $C01E

INVERT
PICK

EQU $CEDD
EQU $CF01

ORG $300

;Delay before repeating begins
;Delay between repeats

;Base address for video line
;Input "link"

;Horizontal position (80-column)

;Keyboard data + ~trobe
;Clear keyboard strobe
;Any-key-down flag

;Select slot ROMs
;Select internal ROM
;Character set status

;Invert character on screen
;Pick character off screen

* Install new input subroutine:

N
0
en

D
5"
Ul a:
m
rt
::r m
)>
"0
"0
ro
..._
ro-

0300: A9 09 30 LDA #<NEWIN
0302: 85 38 31 STA KSW
0304: A9 03 32 LDA #>NEWIN
0306: 85 39 33 STA KSW+1
0308: 60 34 RTS

35
0309: 48 36 NEWIN PHA ;Save screen character
030A: BC 82 03 37 STY YSAVE ;Save Y-register
030D: 2C 1E CO 38 BIT ALTCHAR ;Using SO-column firmware?
0310: 10 08 39 BPL NEWIN1 ;No, so branch
0312: 91 28 40 STA <BASL>,Y ;Remove RDKEY cursor
0314: BD 07 CO 41 STA CXROMDN ;Turn on internal $Cx ROM
0317: 20 DD CE 42 JSR INVERT ;Set up new cursor

43
44 * Wait before repeating:
45

031A: A9 14 46 NEWIN1 LDA #RPTDELAY ;Get auto-repeat counter m
031C: 2C 81 03 47 BIT RPTFLAG ;Are we repeating? 9
031F: 30 02 48 BMI WAIT ;Yes, so branch ~
0321: A9 96 49 LDA #PREDELAY ;Use pre-repeat counter instead g

ro ...,
Page #02 5

"'C

0323: 38 50 WAIT SEC ~
0324: AO 80 51 WAIT1 LDY #128 ~
0326: 2C 10 CO 52 WAIT2 BIT AKD ;Key still being pressed? ~
0329: 10 20 53 BPL RPTOFF ;No, so go to standard input ffi
032B: 88 54 DEY A
032C: DO FB 55 BNE WAIT2 ~
032E: E9 01 56 SBC #1 g
0330: DO F2 57 BNE WAIT1 ~

58 ~
59 * If we've reached here, we are repeating (unless another D
60 * key was pressed before releasing the first one). The
61 * followinq code reads the keyboard (before its code N . 0

(continued) ...,

N

Table 6-9. SOFTWARE AUTO-REPEAT. A program to alter the auto-repeat rate (continued). Q
CD

62 * has been strobed in) and sets the high bit as per D
63 * the standard input protocol:

5" 64 CJ)

0332: AD 00 CO 65 LDA KED ;Get key code 0:
CD

0335: 2C 10 CO 66 BIT KBDSTRB ;Clear strobe <just in case) rt
:::r

0338: 09 80 67 ORA #$80 ;Set high bit CD

033A: CD 80 03 68 CMP OLDKEY ;Same as previous key?)>
-o

033D: FO 04 69 BEQ RPTON ; Yes , so we're repeat1ng -o

033F: AO 00 70 LDY #0 ;Repeat off ro --0341 : FO 02 71 BEQ FIXRPT ; (always taken) ro-
0343: AO 80 72 RPTON LDY #$80 ;Repeat on
0345: BC 81 03 73 FIXRPT STY RPTFLAG ;Adjust the repeat flag
0348: 4C 58 03 74 JMP GETKEY1

75
76 * Key was lifted, so wait for standard keypress:
77

0348: A9 00 78 RPTOFF LDA #0
034D: BD 81 03 79 STA RPTFLAG ;Repeat off

80
0350: AD 00 CO 81 GETKEY LDA KED ;Has a key been strobed in?
0353: 1 0 FB 82 BPL GETKEY ; No, so branch
0355: 2C 10 co 83 BIT KBDSTRB ;Clear keyboard strobe
0358: BD 80 03 84 GETKEY1 STA OLDKEY ;Save key code for next time

85
0358: 2C 1E CO 86 BIT ALTCHAR ;80-column firmware active?
035E: 1 0 16 87 BPL CLRCURS1 ; No, so branch
0360: C9 98 88 CMP #$98 ; I s it an ESC?
0362: FO 86 89 BEQ NEWIN1 ; Yes , 50 ignore
0364: C9 95 90 CMP #$95 ; I s it a right arrow?
0366: DO 08 91 ENE CLRCURS ; No, so branch
0368: AC 78 05 92 LDY OURCH ;Get screen position
0368: 20 0 1 CF 93 JSR PICK ;Grab character from screen
036E: 09 80 94 ORA #$80 ; and set its high bit

0370: 20 DD CE 95 CLRCURS
0373: BD 06 CO 96
0376: 68 97 CLRCURS1
0377: AC 82 03 98
037A: 91 28 99
037C: AD 80 03 1 0 0

Page #03

037F: 60 1 01
1 02

0380: 00 103 OLDKEY
0381 : 00 1 04 RPTFLAG

105 YSAVE
106

--End assembly--

1 31 bytes

Errors: 0

JSR INVERT
STA CXROMOFF
PLA
LDY YSAVE
STA < BASL>, Y
LDA OLDKEY

RTS

DFB 0
DFB 0
DS 1

;Remove SO-column cursor
;Re-enable slot ROMs
;Get old screen character
;Restore Y-register
;Remove 40-column cursor
;Get the key code

;Last key pressed
;O=not repeating I $80=repeating
;Temporary storage area for Y

OJ
(')
:::T
Ql ...,
Ql
C1
C"1"
CD ...,
~

"'C
c
C"1"

Ql
~
0..
C"1"
:::T
CD

?\
CD
<
0"
0
Ql

d.

D
N
0 m

210 c:::::J Inside the Apple //e ------------------

The advantage of using the keyboard interrupt technique should
be obvious: unless the interrupts are turned off by the software
(using something like a SEI instruction), all characters entered
from the keyboard will be recorded in the buffer (assuming that it
is not full) and will be available to the system even if the program
is not, at the time of the keypress, reading the keyboard. Thus, you
can "type ahead" of the program and wait for it to read your
already entered input later, when it is ready to receive it.

It is not possible to use the keyboard interrupt technique on the
lie without making major hardware changes to the system. We can
simulate such a technique in software, however, by using a pro
gram such as SOFTWARE TYPE-AHEAD, listed in Table 6-10.

This program maintains a 16-byte first-in, first-out (FIFO) type
ahead buffer that can be used to store up to 15 characters. Two
pointers are used to keep track of the information contained in this
buffer: BUFFHEAD is always equal to the position, less one, of the
first character placed in the buffer and not yet read; and BUFFTAIL
is always equal to the position of the last character placed in the
buffer. If BUFFHEAD and BUFFTAIL are equal, then the buffer is
empty.

Because we can't take advantage of a keyboard interrupt to signal
us whenever a character has been entered from the keyboard, we
will have to do the next best thing and call, as often as possible,
a subroutine called GETCHAR that checks the keyboard for the
presence of input. GETCHAR takes care of scanning the keyboard
and, if a keypress is detected, of placing its ASCII code in the buffer.
If it turns out that the buffer is full, then you will hear a beep and
the character will not be placed in the buffer. If it is placed in the
buffer, you will hear a more pleasant-sounding click.

Two convenient times to call GETCHAR are whenever the lie is
performing input or output operations. If you look at the program
listing in Table 6-10 you will see that the input link (and the output
link that will be discussed in Chapter 7) have been adjusted so that
they point to INPUT and OUTPUT, respectively. The INPUT sub
routine executes a loop where it continually calls GETCHAR and,
at the same time, keeps checking the keyboard buffer to see whether
a character is available. If a character is available, it is taken from
the buffer and BUFFHEAD is incremented.

OUTPUT is almost identical to the lie's standard output routine
at COUTl ($FDF0). In fact, the only difference is that it first calls
GETCHAR to buffer a keyboard character, if one has been entered.

Table 6-UJ. SOFTWARE TYPE-AHEAD. A program that provides a keyboard type-ahead buffer.

Page #01

: A S M
1 ************************
2 * SOFTWARE TYPE-AHEAD *
3 ************************
4
5 * <BRUN this program from disk)
6
7 BASL EQU $28 ;Base address of video line
8 CSWL EQU $36 ;Output link
9 CSWH EQU $37 en 1 0 KSWL EQU $38 ;Input link C1
1 1 KSWH EQU $39 ::;

1 2 RNDL EQU $4E ;Random number seed Cl,
Cl

1 3 RNDH EQU S4F n
rt

1 4 CHRGET EQU SEA ;Applesoft line parsing routine CD,
1 5 RETCHR EQU $BE :J
16 OURCH EQU $57B ;Horizontal position (80-column) "C

c
1 7 rt

Cl
18 KED EQU SCOOO ;Keyboard data + strobe :::J

c.
19 CXROMOFF EQU SC006 ;Select slot ROM rt

20 CXROMON EQU SC007 ;Select internal ROM ::;
CD

21 KBDSTRB EQU $C010 ;Clear keyboard strobe 7'
22 ALTCHAR EQU $C10E ;Character set status CD

<
23 SPEAKER EQU $C030 ;1/0 address for speaker cr

0
Cl 24,

25 BASICOUT EQU $C307 ;Standard 80-column output c.

26 INVERT EQU SCEDD ;Invert character on screen D 27 PICK EQU $CF01 ;Pick character off screen
28 WAIT EQU SFCA8 N

""" (continued)
"""

Table 6-10. SOFTWARE TYPE-AHEAD. A program that provides a keyboard type-ahead buffer
(continued).

02DB: A9 00
02DD: 80 AC 03
02EO: 80 AD 03

Page #02

02E3: A9 4C
02E5: 85 BA
02E7: A9 A1
02E9: 85 BB
02EB: A9 03
02ED: 85 BC

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

BELL
COUT1

EQU
EQU

$FF3A
$FDFO

BUFFSIZE EQU 16

ORG $2DB

;Sound the bell
;Video output

;Size of type-ahead buffer

* Initialize the buffer *
* read and write pointers.*

LDA #0
STA BUFFHEAD
STA BUFFTAIL

* Overlay Applesoft CHRGET *
* routine with a JMP PARSECHK *
* to allow type-ahead to work *
* during line parsing. *

LDA #$4C ;JMP opcode
STA CHRGET
LDA #<PARSECHK
STA CHRGET+1
LDA #>PARSECHK
STA CHRGET+2

* Set up new I/0 links. *

N ...
N

D
:::l
en
0.:
CD
C"t
::r
CD

l>
"0
"0 ro --ro

02EF: A9 SA 60 LDA #<OUTPUT
02F1 : ss 36 61 STA CSWL
02F3: A9 03 62 LDA #>OUTPUT
02FS: ss 37 63 STA CSWH
02F7: A9 00 64 LDA #<INPUT
02F9: ss 3S 65 STA KSWL
02FB: A9 03 66 LDA #>INPUT
02FD: ss 39 67 STA KSWH
02FF: 60 6S RTS

69
70 *****************************
71 * This is the new input *
72 * routine that takes a *
73 * character from the buffer *
74 * instead of the keyboard. *
75 *****************************

0300: 2C 1 E CO 76 INPUT BIT ALTCHAR ;SO-column firmware active?
0303: 1 0 OB 77 BPL INPUT1 ;No, so branch OJ
0305: 91 2S 7S STA CBASL>, Y ;Replace RDKEY's cursor 0
0307: SD 07 CO 79 STA CXROMON ;Turn on internal $Cx ROM :::r

Ql

030A: 20 DD CE so JSR INVERT ;Set up new cursor ...,
Ql

030D: 4C 1 1 03 S1 JMP INPUT2 ()
rt

0310: 4S S2 INPUT1 PHA ;Save video character CD ...,
0311 : 20 6S 03 S3 INPUT2 JSR GETCHAR ;Buffer a character (if possible) :r
0314: E6 4E S4 INC RNDL ;(Random number generator) "'C

c

0316: DO 02 ss ENE INPUT3
rt
Ql

031S: E6 4F S6 INC RNDH :::l
0.

031A: AD AC 03 S7 INPUT3 LDA BUFFHEAD ; If buffer head = buffer tail, rt

031D: CD AD 03 ss CMP BUFFTAIL then buffer empty
:::r

; is CD

0320: FO EF S9 BEQ INPUT2 i'\

0322: 2C 1E CO 90 BIT ALTCHAR ;SO-column firmware active?
CD
'<
C'"

0325: 30 03 91 BMI INPUT4 ; Yes, so branch 0
Ql

0327: 6S 92 PLA ...,
0.

032S: 91 2S 93 STA CBASL>, Y ;Restore video character

D 032A: AC AC 03 94 INPUT4 LDY BUFFHEAD
032D: 20 52 03 95 JSR PTRBUMP

N

(continued) "" w

Table 6-10. SOFTWARE TYPE-AHEAD. A program that provides a keyboard type-ahead buffer
(continued).

0330: 8C AC 03
0333: 89 AE 03
0336: 2C 1E CO
0339: 1 0 16
0338: C9 98

Page #03

033D: FO D2
033F: C9 95
0341 : DO 08
0343: AC 78 05
0346: 20 01 CF
0349: 09 80
0348: 20 DD CE
034E: 8D 06 CO
0351: 60

0352: C8
0353: co 10
0355: DO 02
0357: AO 00
0359: 60

96
97
98
99
1 0 0

1 01
102
103
1 04
1 05
106
107
1 08
109
1 1 0
1 1 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
119
120
1 21
1 22
123
1 24
1 25
126

CLRCURS

EX IT

STY
LDA
BIT
BPL
CMP

BEQ
CMP
BNE
LDY
JSR
ORA
JSR
STA
RTS

BUFFHEAD
BUFFER,Y
ALTCHAR
EX IT
#$98

INPUT2
#$95
CLRCURS
OURCH
PICK
#$80
INVERT
CXROMOFF

;Get next character in buffer
;80-column firmware active?
;No, so branch
;ESC pressed

;Yes, so ignore
;Is it a right arrow?
;No, so branch

;Get character off screen

;Turn off cursor
;Re-enable slot ROMs

* Increment buffer pointer. *

PTRBUMP

NOWRAP

INY
CPY
BNE
LDY
RTS

#BUFFSIZE
NOWRAP
#0 ;Wrap-around to beginning

* This is the new output *
* routine that allows *
* characters to be buffered *
* during video output *
* operations. *

N ...
A

D
::J
Ul
0.:
CD
C"T
:::;
CD

)>
"tJ
"tJ
10 --ro

035A: 20 6S 03
0350: 2C 1E CO
0360: 30 03
0362: 4C FO FD
0365: 4C 07 C3

036S: 4S
0369: OS
036A: 9S
036B: 4S
036C: AD 00 CO
036F: 10 10
0371: 2C 10 CO
0374: AC AD 03
0377: 20 52 03
037A: CC AC 03

Page #04

0370: DO 06
037F: 20 3A FF
03S2: 4C SE 03
03S5: SC AD 03
03SS: 99 AE 03
03SB: 20 93 03
03SE: 6S
03SF: AS
0390: 2S
0391 : 6S

127
12S
129
130
1 31
132
133
134
135
136
137
13S
139
140
1 41
142
143
144
1 45
146
147
14S
149
150
1 51

152
153
154
1 55
156
157
15S
159
160
161

OUTPUT JSR
BIT
BMI
JMP
JMP

GETCHAR
ALTCHAR
OUTPUT1
COUT1
BASICDUT

;Buffer a character {if possible)
;SO-column firmware active?
;Yes, so branch

OUTPUT1
;Standard output {40-column)
;Standard output <SO-column)

* This routine will put a *
* character in the type-ahead *
* buffer if a key has been *
* pressed. If the buffer is *
*full, however, a bell will *
* be sounded and the *
* character will be ignored. *

GETCHAR PHA

PHP
TVA
PHA
LOA
BPL
BIT
LOY
JSR
CPY

KBD
NOPRESS
KBDSTRB
BUFFTAIL
PTRBUMP
BUFFHEAD

;Save A,P,Y

;Check keyboard
;Branch if nothing there

;Is the buffer full?

;No, so branch
;Yes, so sound bell
; and exit

NOTFULL

NDPRESS

BNE
JSR
JMP
STY
STA
JSR
PLA
TAY
PLP
PLA

NDTFULL
BELL
NDPRESS
BUFFTAIL
BUFFER,Y
CLICK

;Store new buffer write pointer
;Store character in buffer
;Click speaker when key entered
;Restore Y,P,A

(continued)

0)

CJ :::r
Ill ...,
Ill
0
rt ro ...,
::J
"0
c
rt
Ill
::J
0.
rt :::r ro
i'\ ro
'< c
o
Ill ...,
0.

D
N
..a.
Cll

Table 6-HJ. SOFTWARE TYPE-AHEAD. A program that provides a keyboard type-ahead buffer
(continued).

0392: 60 162 RTS
163
164 **********************
165 * Click the speaker. *
166 **********************

0393: AO 03 167 CLICK LDY #3
0395: A9 OF 168 CLICK1 LDA #$OF
0397: 20 A8 FC 169 JSR WAIT
039A: AD 30 CO 170 LDA SPEAKER
039D: 88 1 71 DEY
039E: DO F5 172 BNE CLICK1
03AO: 60 173 RTS

174
175 ********************
176 * Patch to CHRGET. *
177 ********************

03A 1 : 20 68 03 178 PARSECHK JSR GETCHAR ;Buffer a character (if possible)
03A4: C9 3A 179 CMP #$3A ;Continue with CHRGET routine
03A6: BO 03 180 BCS NULL
03A8: 4C BE 00 1 81 JMP RETCHR
03AB: 60 182 NULL RTS

183
03AC: 00 184 BUFFHEAD DFB 0
03AD: 00 185 BUFFTAIL DFB 0

186 BUFFER DS BUFFSIZE
187

--End assembly--

227 bytes

Errors: 0

N
..a.
en

D
3"
Ul
a.:
CD
c.-1"
:::r
CD

)>
"C
"C ro --rn

------------- 6 Character Input and the Keyboard c=J 217

There can be long periods of time, however, when the lie is per
forming neither input nor output. Unless calls are made to GET
CHAR during these periods, keystrokes could be missed. If you are
running an assembly-language program, then you can avoid miss
ing keystrokes by making repeated explicit JSRs to GETCHAR.

If you are running an Applesoft program, then the problem is a
bit more difficult to solve. The brute-force solution would be to
place CALL statements to the GETCHAR subroutine at the begin
ning of every line in the program. This is not only highly incon
venient, however, it is also wasteful of space and makes it awkward
should you wish to use the program without the type-ahead feature
installed.

A much more elegant solution is to make a modification to the
Applesoft CHARGET subroutine. This subroutine was discussed in
detail in Chapter 4. In summary, it is responsible fot examining
and interpreting Applesoft program lines whenever an Applesoft
program is being executed. By overlaying CHARGET with a JSR
GETCHAR instruction, an attempt will be made to buffer a char
acter every time an Applesoft line is being examined (which hap
pens very often).

To use the SOFTWARE TYPE-AHEAD program, load and execute
it directly from diskette by using the BRUN command from Ap
plesoft direct mode. To see that is working properly, enter and run
the following program:

100 FOR I= 1 TO 2000: NEXT

and then start typing madly away at the keyboard. When the pro
gram finishes, all the keystrokes that you entered should be dis
played after the Applesoft prompt symbol!

Potential Problems with SOFTWARE
TYPE-AHEAD

Even with SOFTWARE TYPE-AHEAD installed and operating,
there may be occasions on which characters will be missed. This
will occur in situations where you are calling time-consuming ma
chine language routines from Applesoft or when Applesoft itself
invokes a rather time-consuming ROM routine (such as the string
data garbage collection subroutine) or when DOS commands are
being executed. The problem is that while such routines are exe
cuting no attempts are made to call the GETCHAR subroutine until
the routine is finished. To overcome these problems, keep pressing
the key that you want to enter until you hear the click that is
produced each time a character is placed in the buffer.

218 c:::J Inside the Apple 1/e ------------------

RESETTING THE APPLE //e

The RESET button on the //e should really be called a "panic"
button since it is usually used to interrupt the running of a program
when all else fails. After a reset signal is generated, the 1/e generally
returns to Applesoft direct mode from where you can easily ex
amine the program that was just running or you can load and run
another one.

Actually, the RESET button does nothing really important if you
press it by itself. If you press it while you are also holding down
the CONTROL key, however, then the RESET pin on the 6502
microprocessor will be held in a low state, causing the 6502 to
begin its standard reset procedure. This procedure was described
in Chapter 2.

Special RESET Procedures

There are two special reset procedures that can be selected by
pressing either of the two "Apple" keys on the keyboard at the
same time that CONTROL and RESET are pressed. Both of these
reset procedures are unconditional and both will destroy any pro
gram that may be in memory when they are requested.

If the OPEN-APPLE key is held down when CONTROL-RESET
is pressed, then a "cold" reset procedure will be started that will
always allow you to restart the //e. If you are using a disk drive,
then the cold reset will cause the diskette to boot up just as it did
when the power was first turned on.

If the CLOSED-APPLE key is held down when CONTROL-RE
SET is pressed, then the Apple will begin a self-test procedure that
involves the execution of a program that begins at location $C401
in the system monitor and that performs several diagnostic tests
on the //e. If every test is passed, then the following message will
be displayed:

KERNEL OK

If a diagnostic test fails, then an error message will be displayed.
After the self-test procedure has been completed, you will have to
press CONTROL-RESET to restart the system.

Trapping "Soft" RESETs

The two reset procedures just mentioned cannot be avoided using
software techniques because they are wholly contained within the

------------- 6 Character Input and the Keyboard c:::=t 219

lie's ROM area. It is possible, however, to redirect a standard "soft"
reset (invoked by pressing CONTROL-RESET by itself) to any rou
tine that you want to use to trap such a condition.

When CONTROL-RESET is pressed, the 6502 microprocessor
jumps to a location stored at locations $FFFCI$FFFD (low byte
first). On the lie, these locations are stored either in the system
monitor ROM area or in the bank-switched RAM area that shares
the same address space as the system monitor, depending on which
one was enabled when the reset signal occurred (see Chapter 8 for
a discussion of bank-switched RAM). The ROM locations always
hold the address of RESET ($FA62) in the system monitor but any
address can be stored in bank-switched RAM. If ProDOS is being
used, the address stored is $FFCB, which is the start of a ProDOS
subroutine that re-enables the system monitor ROM and then passes
control to the standard reset handler at RESET ($FA62).

The subroutine that begins at $FA62 takes care of some general
purpose housekeeping chores (like setting normal video, selecting
the keyboard and video screen for I/0, and so on), checks for one
of the two special "Apple" resets, and then, if no special reset has
been requested, checks to see whether a user-defined reset handling
routine should be executed.

If the result of the logical exclusive-OR of the value stored at
SOFTEVH ($3F3) with the constant $AS is stored at PWREDUP
($3F4), the lie will jump to a subroutine whose address is contained
in SOFTEV ($3F21$3F3) (low-order byte first). If this test fails, then
the lie will begin a sequence that is identical to the one performed
when you press the OPEN-APPLE key at the same time as CON
TROL-RESET; that is, if you are using a disk drive, it will be
rebooted. The important reset locations are summarized in Table
6-11.

Thus, to trap a RESET condition, two things must be done:

1. The address of the subroutine that is to take control after a
RESET must be stored at SOFTEV.

2. The byte stored at $3F3 must be logically exclusive-ORed with
$AS, and the result stored at $3F4. This can be done by exe
cuting the following instructions:

LDA $3F3
EDR #$AS
STA $3F4

Right after the lie is turned on, SOFTEV is initialized to $E000,
the cold start for Applesoft, and then, after CONTROL-RESET has
been pressed once, to $E003, the warm start for Applesoft. If DOS
3.3 or ProDOS is being used, then SOFTEV will later be adjusted

220 c::::J Inside the Apple //e ------------------

Table 6-11. Reset interrupt locations.

Address Symbolic
Hex (Dec) Name

$FFFC (65532) RESETV (low)
$FFFD (65533) (high)

$03F2 (1010) SOFTEV (low)
$03F3 (1011) (high)

$3F4 (1012) PWREDUP

Description

Reset vector. These loca
tions contain the address of
the subroutine that is called
when a reset signal occurs.

User-defined reset vector.
These locations contain the
address of a user-installed
subroutine to _which control
is passed when a reset signal
occurs (if PWREDUP is set
up properly).

Powered-up byte. If the value
stored here is the same as
the result of the logical ex
clusive-OR of the value at
$3F3 with $AS, then control
will pass to the user-defined
subroutine specified by
SOFTEV.

so that it points to a reset handler within DOS itself. This handler
takes care of reconnecting DOS after reset is pressed and of entering
Applesoft direct mode. (When reset is pressed, the addresses of the
standard keyboard input and output subroutines are stored in the
input and output links, thus effectively "removing" DOS from the
system.)

By the way, the reason for storing the "funny" number at PWRE
DUP is to allow the //e to detect whether or not it has just been
turned on. If it has been, then it is highly likely that PWREDUP
will not be properly "related" to SOFTEVH, and the //e will in
terpet this to mean that the diskette must be automatically booted.

Trapping RESET from Assembly Language

If an assembly-language program is being executed, any reset
condition that may occur can be easily trapped by setting up SOF
TEV and PWREDUP as indicated above as soon as the program
begins. The error-handling routine to which SOFTEV points must
handle the reset in an orderly manner; its main duty will be to
ensure that the data areas of the program still make sense and to

------------- 6 Character Input and the Keyboard CJ 221

take appropriate action if they do not. For example, if reset is
pressed after one byte of a two-byte pointer has been set up, then
the reset handler had better detect this and fix it or else the next
time that the program uses this (incomplete) pointer it will dis
appear into outer space.

It is also important to ensure that the reset-handling routine
adjusts the stack pointer to a suitable value. Remember that reset
can be pressed at any time, including times when there are several
bytes of information stored on the stack. If you don't adjust the
stack pointer downward in these situations, it might eventually
"overflow," allowing you to overwrite important information stored
on the stack. A simple way of handling this problem is to always
reset the stack pointer to its value when the program was first
entered. To do this, execute the following two instructions when
beginning your assembly-language program:

TSX
STX STACKSV

where STACKSV refers to a memory location. In the reset-handling
routine, the original stack pointer can be restored by executing the
following instructions:

LDX STACKSV
TXS

and then the remainder of the reset-handling routine can be exe-
cuted. ·

Another important chore for the reset-handling routine to per
form is to reconnect DOS (recall that DOS is deactivated whenever
the //e is reset). This is most easily done by initially saving the DOS
addresses stored in the input and output links (at $36 ... $39) in
safe locations so that the links to DOS can be restored when reset
is trapped.

Trapping RESET from Applesoft

Reset can be trapped while running an Applesoft program by
using Applesoft's built-in error-handling subroutine. If this is done
properly, then every time the //e is reset, the program can be caused
to go to the line number that is specified in the currently active
ONERR GOTO statement.

The following steps must be performed by the subroutine that
traps reset when Applesoft is active:

• The DOS I/0 addresses must be stored in the I/0 links to reac
tivate DOS.

222 c:::J Inside the Apple //e ------------------

• The 80-column MODE ($4FB) byte must be set to 0 to indicate
to the 80-column firmware that Applesoft is active.

• The 80-column video display must be turned on (but only if it
was on before the lie was reset).

• A subroutine at $D683 must be called to properly configure the
6502 stack.

• The program should put an error code number in the X register
and then execute a "JMP $D412" to pass control to the Apple
soft ONERR GOTO handler. (The handler will place the error
code number in location 222).

To install such a subroutine, its starting address must be stored
in SOFTEV (low-order byte first) and PWREDUP must be properly
adjusted as discussed above.

You can reactivate DOS using the technique mentioned at the
end of the last section: save the values of the 1/0 links when the
reset-handling subroutine is first installed and then restore them
when reset is pressed.

Two special steps must be performed if reset is pressed when
the 80-column display is on. These steps are necessary because the
40-column display will be automatically turned on and the 80-
column firmware's MODE ($4FB) byte will be destroyed. First, a
$00 value must be stored in MODE; this indicates to the 80-column
firmware that Applesoft is being used and will cause the video
output routines to continue to work as expected. Second, the 80-
column display must be turned on; as we will see in the next
chapter, this is done by writing to 80COLON ($C00D). Note, how
ever, that this last step is only to be performed if the 80-column
display was active when reset was pressed. The only way for the
reset handler to determine this is to examine a flag which contains
the contents of the 80COL ($C01F) status location immediately
before the lie was reset. This flag can be initialized in the subroutine
that sets up the reset vector, but it must be changed whenever the
display mode is changed.

The subroutine at $D683 must be called in order to fix a bug in
Applesoft which arises when an error (which is not handled by the
Applesoft RESUME command) occurs within a FOR/NEXT loop
or a GOSUB/RETURN subroutine. This bug causes incorrect in
formation to be left on the 6502 stack after the error is processed.

Applesoft, DOS 3.3, and ProDOS all store error code numbers in
location $DE (222) whenever an error occurs. The ONERR GOTO
error-handling routine can then examine this location using a
PEEK(222) command to determine what kind of error occurred.
(See the Ap_plesoft BASIC Programmer's Reference Manual and the

Table 6-12. TRAPPING RESET. A program to trap reset when an Applesoft program is running.

Page #01

: A S M
1
2
3
4
s
6
7
s
9
1 0
1 1
1 2
1 3
1 4
1 s
16
1 7
1S
19
20

0300: A9 2A 21
0302: SD F2 03 22
030S: A9 03 23
0307: SD F3 03 24
030A: 49 AS 2S
030C: SD F4 03 26

27
030F: AD 1F CO 2S

* TRAPPING RESET *

ORG $300

csw EQU $36
KSW EQU $3S

SOFTEV EQU $3F2
PWREDUP EQU $3F4
MODE EQU $4FB

COLSOON EQU $COOD
COLSO EQU $C01F

ERRFN EQU $0412
FIXSTACK EQU $06S3

* Set up RESET vector:
LDA #<ERRHNDL
STA SOFTEV
LOA #>ERRHNDL
STA SOFTEV+1
EOR #$AS
STA PWREDUP

LDA COLSO

;Output Link
;Input Link

;RESET soft entry vector
;Power-up byte
;SO-column firmware mode flag

;Turn on SO-column mode
;Read status of SOCOL

;Applesoft ONERRGOTO handler
;Fix stack "bug"

;Adjust the power-up byte
; to prevent rebooting

;Get video status
(continued)

OJ
C1
~
[l) ...,
[l)
0
rt ro ...,
::J

"'Cl
c
rt
[l)
::J
0..
rt
~ ro
7\ ro
<
0'"
0
[l) ...,
0..

D
N
N
w

N
Table 6-12. TRAPPING RESET. A program to trap reset when an Applesoft program is running N • (continued). D 0312: 8D 57 03 29 STA FLAG80 ; and save it.

30 5"
Ul

0315: AS 38 31 LDA KSW ;Save current DOS links 0.:
0317: 8D 53 03 32 STA KSWTEMP

(1)

<"1"

031A: AS 39 33 LDA KSW+ 1 :::r
(1)

031C: 8D 54 03 34 STA KSWTEMP+1)>

031F: AS 36 35 LDA csw "C
"C

0321 : 8D 55 03 36 STA CSWTEMP ro
0324: AS 37 37 LDA GSW+1 --ro
0326: 8D 56 03 38 STA CSWTEMP+1
0329: 60 39 RTS

40
41 * RESET handler:

032A: AD 53 03 42 ERRHNDL LDA KSWTEMP ;Restore DOS input link
032D: 85 38 43 STA KSW
032F: . AD 54 03 44 LDA KSWTEMP + 1
0332: 85 39 45 STA KSW+1
0334: AD 55 03 46 LDA CSWTEMP ;Restore DOS output 1 ink
0337: 85 36 47 STA csw.
0339: AD 56 03 48 LDA CSTEMP+1
033C: 85 37 49 STA CSW+ 1

Page #02

50
033E: A9 00 51 LDA #0 ;Set "BASIC" flag for
0340: 8D FE 04 52 STA MODE ; 80-column firmware

53
0343: 2C 57 03 54 BIT FLAG80 ;Was 80-column mode active?
0346: 10 03 55 BPL ERRHNDL1 ; No, so branch
0348: 8D OD CO 56 STA COL800N ; Yes, so turn it on again

57
0348: 20 83 D6 58 ERRHNDL1 JSR
034E: A2 FD 59 LDX
0350: 4C 12 D4 60 JMP

61
62 KSWTEMP DS
63 CSWTEMP DS
64 FLAG80 DS
65

--End assembly--

88 bytes

Errors: 0

FIXSTACK
#253
ERRFN

2
2
1

;Fix stack bug
;RESET = error code #253
;Go to ONERRGOTO handler

;DOS input hook
;DOS output hook
;>=$80 if 80-column mode

OJ
(')
::!"
OJ ...,
OJ
()
rt ro ...,
::J

"'C
c
rt
OJ
::J
0..
rt
::!" ro
A ro
<
0'"
0
OJ ...,
0..

D
N
N
Ul

226 CJ Inside the Apple //e -------------------

DOS Programmer's Manual for a list of error code numbers.) Several
error code numbers are not used by either Applesoft, DOS 3.3, and
ProDOS, including number 253. Thus, if the X register is loaded
with 253 just before calling $0412, the Applesoft error-handling
subroutine will be able to detect a reset "error" by determining
whether PEEK(222)=253.

Table 6-12 contains a program that will set up the reset vector
so that it points to a subroutine that traps reset when an Applesoft
program is being run. To use it effectively, an ONERR GOTO state
ment must always be active, that is, error-trapping should never
be turned off with a POKE 216,0 command. The error-trapping
subroutine must be installed by loading into memory and then
executing a CALL 768 command. It must not be BRUN directly
from diskette.

FURTHER READING FOR CHAPTER 6

On changing the input link ...
G. Little, "Zoom and Squeeze," Micro, July 1980, pp. 37-38. This

article shows how the input link can be changed to control
keyboard input.

On ProDOS and the input link ...
C. Fretwell, "Setting I/0 Hooks in ProDOS," Call-A.P.P.L.E., April

1984, p.39
On modifying the keyboard input device ...

L.A. Tomlinson, "Type-Ahead Keyboard Buffer for the Apple II,"
Nibble, Vol. 4, No.8 (1983), pp. 101-107. This article shows you
how to create a hardware type-ahead buffer on an Apple II
Plus.

P. Schwejda and G. Vanderheiden, "Adaptive-Firmware Card for
the Apple II," Byte, September 1982, pp. 276-314. This article
gives an example of how to substitute an alternate input device
for the keyboard.

7
Character and Graphic

Output and Video Display
Modes

In this chapter, we will be discussing the primary output device
supported by the //e: the video display monitor. This will include
an analysis of how both text and graphic information are generated
and how alternate output devices can be easily integrated into the
system.

The 1/e is capable of controlling the video display in such a way
as to support three general classes of output modes:

• Text mode
• Low-resolution graphics mode
• High-resolution graphics mode

Text mode is used whenever the standard character symbols
represented by ASCII codes are to be displayed on the screen. Both
graphics modes are used to illuminate distinct blocks (low-reso
lution graphics) or points (high-resolution graphics) on the screen
so that a variety of shapes can be generated. Whereas text can be
displayed in black-and-white only, both graphics modes can be
used to generate colored images if a color monitor or television set
is connected to the 1/e. All of these modes can exist in a standard
single-width format or, with an 80-column text card installed, in
a special double-width format (which includes an 80-column text
mode).

The 1/e uses a memory-mapped video display technique. This means
that the display of information on the video screen can be con
trolled simply by storing bytes of information in special memory
locations that make up part of the 6502's 64K address space; these
locations are mapped to unique positions on the screen display.

227

228 c::J Inside the Apple //e ------------------

Similarly, information shown on the video screen can be retrieved
by reading the contents of these memory locations. These memory
locations are connected to the //e's video display support circuitry
in such a way that the bytes stored are converted into appropriate
pictorial representations on the video display monitor.

TEXT MODE
A standard //e is capable of displaying text in a 40-column-by-

24-row mode only. However, if an 80-column text card is installed
in the //e's auxiliary slot, then an 80-column-by-24-row mode can
also be selected.

There are actually two versions of 40-column text mode sup
ported by the //e. The "standard" 40-column mode is the one that
is usually in effect and is easily identified by its characteristic
"checkerboard" cursor that is displayed whenever keyboard in
formation is being requested. The other version is the "special"
40-column mode that is available when the //e's 80-column firm
ware is being used; in this mode the cursor is an inverse block that
does not flash. If an 80-column text card is installed in the //e's
auxiliary slot, you can enter this mode only from 80-column mode
(see below).

The 80-column text mode is invoked (assuming that you have an
80-column text card installed) by entering a PR#3 command from
Applesoft direct mode or by executing a

PRINT CHRH 4); "PR#3"

command from within an Applesoft program. This command ac
tivates the //e's special internal 80-column firmware, which is ca
pable of displaying information properly on the 80-column text
screen. This is done by changing the addresses stored in the //e's
input and output links.

Once you are in 80-column mode, you can switch between the
80-column mode and the special 40-column mode whenever key
board information is being requested by using the two special
escape sequences discussed in Chapter 6: ESC 4 and ESC 8. For
example, if you are in 80-column mode and you want to enter the
special 40-column mode, enter the sequence

ESC 4

If you want to go in the opposite direction, enter the sequence

ESC 8

----- 7 Character and Graphic Output and Video Display Modes c=:J 229

To leave either the special40-column mode or 80-column mode
and go back to the standard 40-column mode, you can do one of
two things (apart from resetting the system). First, you can enter
ESC <CTRL-Q> from the keyboard or you can print a <CTRL
U> character (by using a PRINT CHR$(21) command).

Note that you cannot leave 80-column mode by entering a PR#0
and a IN#0 command. Although these commands do, indeed, re
connect the standard 40-column input and output subroutines,
KEYIN ($FD1B) and COUTl ($FDF0), they do not turn off the 80-
column screen display.

In the following sections, we will be taking a closer look at the
memory-mapped video RAM areas, the standard character output
subroutines that are built into the //e, and the soft switches used
to select the video display mode.

Turning on the Text Display

The //e uses several input/output (I/O) memory locations as soft
switches to control various aspects of the video display as well as
several locations that can be read to determine the states of these
switches. These locations are summarized in Table 7-1 and we will
be referring to them throughout this chapter. Notice that the soft
switches are arranged in pairs of locations, one of which turns the
switch on and the other that turns it off.

To activate a particular soft switch, other than those from $C050
... $C057, you must write to its location using an Applesoft POKE
command or a STA assembler instruction. You can activate any
of the switches from $C050 ... $C057 by either reading or writing.
Each pair of ON/OFF soft switches is associated with a status lo
cation that can be read to determine the state of the switch. The
status is kept in bit 7 (that has a binary weight of 128), which
means that the associated switch will be on if the value read from
the status location is greater than or equal to 128.

The //e uses the TEXT and 80COL switches to select the video
display mode to be used. The TEXT switches are used to select
either a graphics mode or a text mode. To select text mode, the
TEXTON ($C051) switch must be accessed (by a read or write
operation). This can be done by executing a PEEK(49133) com
mand from Applesoft or a LDA $C051 command from assembler
language. Alternately, you can use just the Applesoft TEXT com
mand.

Table 7-1. Video display soft switch and status locations.

Address
Hex (Dec) Usage Symbolic Name Action Taken

$C000 (49152) w 80STOREOFF Allow PAGE2 to switch between video page1
and page2

$C001 (49153) w 80STOREON Allow PAGE2 to switch between main and aux.
video memory

$C018 {49176) R7 80S TORE 1 = PAGE2 switches main/aux.
0 = PAGE2 switches video pages

$COOC (49164) w 80COLOFF Turn off 80-column display
$C00D {49165) w 80COLON Turn on 80-column display
$C01F {49183) R7 80COL 1 = 80-column display is on

0 = 40-column display is on

$C050 (49232) RW TEXT OFF Select graphics mode
$C051 {49233) RW TEXTON Select text mode
$C01A (49178) R7 TEXT 1 = a text mode is active

0 = a graphics mode active

$C052 (49234) RW MIXED OFF Use full-screen for graphics
$C053 (49235) RW MIXED ON Use graphics with four lines of text

Note

1

1

1

2
2

N w
Q

D
::J
en
0.:
CD
n
:::r
CD
):>
-c -c
ro
::::::
CD

$C01B (49179) R7 MIXED 1 = mixed graphics and text 2
0 = full screen graphics

$C054 (49236) RW PAGE20FF Select page1 display (or main video memory) 1
$C055 (49237) RW PAGE20N Select page2 display (or aux. video memory) 1
$C01C (49180) R7 PAGE2 1 = video page2 selected OR aux. video page 1

selected

$C056 (49238) RW HIRES OFF Select low-resolution graphics 1,2
$C057 (49239) RW HIRES ON Select high-resolution graphics 1,2
$C01D (49181) R7 HIRES 1 = high-resolution graphics 1,2

0 = low-resolution graphics

The "Usage" column in this table indicates how a particular location is to be accessed:
"W" means "write to the location."
"RW" means "read from or write to the location."
"R7" means "read and check bit 7 to determine the status."

Notes:

1. If 80STORE is ON, then PAGE20FF activates main video RAM ($400-$7FF) and PAGE20N activates auxiliary video RAM.
If HIRES is also ON, then PAGE20FF also activates main high-resolution video RAM ($2000-$3FFF) and PAGE20N also
activates auxiliary high-resolution video RAM.

If 80STORE is OFF, then PAGE20FF turns on text pagel mode and PAGE2 turns on text page2 mode. If HIRES is also
ON, then PAGE20FF also selects high-resolution pagel mode and PAGE20N selects high-resolution page2 mode.

2. The HIRES and MIXED switches are meaningful only if the TEXT switch is OFF (i.e., a graphics mode is active).

-.....!
C1
::::r
Dl ..,
Dl
()
C"t
CD ..,
Dl
:J
c..
G) ..,
Dl

"C
::::r
j=j"

0
c
C"t

"C
c
C"t

Dl
:J
c..

<
0.:
CD
0

0
iii"

"C
1il
<
~
0
c..
CD
Ul

D
N
w
.a

232 c::J Inside the Apple //e -------------------

The 1/e uses the 80COLOFF ($C00C) and 80COLON ($C00D) soft
switches to control whether a 40- or 80-column text screen is to
be displayed. If you write to 80COLOFF, then the 40-column dis
play will be turned on. To turn on the 80-column display instead,
write to 80COLON. These writes can be performed by an Applesoft
POKE command or an assembler STA instruction. A program can
always deduce which display mode is currently active by reading
the 80COL ($C01F) status location. If the number read is greater
than 127 (that is, bit 7 is on), then the 80-column display is on.

Of course, the PR#3 command that is usually used to enter 80-
column mode automatically takes care of properly setting the 80COL
switches. Hence, you will usually not have to deal with them di
rectly.

You can see for yourself how the 80COL soft switches work by
entering the system monitor so that you can easily access them.
Before doing this, make sure that the standard 40-column mode is
active by resetting the //e. Then enter CALL -151 from Applesoft
and wait for the monitor's "*"prompt to appear. To tell the lie's
internal hardware to display an 80-column screen, store any num
ber at 80COLON ($C00D) by entering the command

COOD:O

As you will recall from Chapter 3, this command causes a 0 to
be stored at $C00D. (Any other number could also have been stored.)
As soon as you do this, the 80-column display will be turned on.
Since the special 80-column firmware required to fully support
this display mode is not being used, however, the system monitor's
video output subroutine will not function properly and only odd
numbered columns in the display will be used when information
is sent to it. To return to a normal 40-column display, enter the
command

COOC:O

to activate the 80COLOFF ($C00C) switch. Again, any number, not
just 0, can be stored at a soft switch location in order to activate
the switch.

Text Mode Memory Mapping
There are significant differences in the method the 1/e uses to

display 40-column and 80-column text. We will begin with a dis
cussion of the 40-column text display and then move on to explain
how the 80-column text display differs.

----- 7 Character and Graphic Output and Video Display Modes c::=J 233

40-Column Text Mode

In the 40-column text mode, the screen can be considered to be
a matrix of 40 columns by 24 rows. The video subroutines within
the system monitor number the rows starting with 0 at the top
and ending with 23 at the bottom; the columns are numbered
starting with 0 at the left and ending with 39 at the right. Unfor
tunately, the Applesoft cursor positioning commands, VTAB and
HTAB, start numbering the rows and columns with 1. We shall be
using the system monitor's numbering system in this section.

In 40-column text mode, the //e translates the contents of one of
two 1024-byte blocks of memory (called video RAM) into appro
priate images on the video display. The first of these two blocks
extends from $400 ... $7FF and is referred to as page1 of text; the
other block extends from $800 ... $BFF and is referred to as page2
of text. Note that the word "page" in this context means a block
of 1024 bytes of video RAM.

Each character that appears on the 40-column video display
screen is defined by one byte in the currently active video page.
This means that 64 of the bytes in the 1024-byte block are not used
because there are only 960 (40 X 24) screen locations to be dis
played. These unused locations are called "screenholes" and are
reserved for data storage by devices interfaced to the lie's expansion
slots (see Chapter 11).

To makes things as simple as possible, it would be nice if the
memory locations used by the video display were mapped linearly
to their corresponding coordinates on the video display. If this were
the case, then the memory location corresponding to any screen
location would be given by BASE+ (40 X LINE)+ COLUMN, where
BASE is the starting address of the video page, LINE is the line
number (0 ... 23), and COLUMN is the column number (0 ... 39).
Unfortunately for all programmers, this is not how the //e handles
its mapping of the video display.

Instead, the //e assigns a unique base address to each line on the
video screen that is not simply forty positions further into the video
memory area from the start of the previous line. The byte at this
address and the thirty-nine bytes that immediately follow it in
memory are used to represent the forty characters on that video
line. Table 7-2 shows the base addresses that are used for the page1
video display and shows how to calculate the address of the byte
corresponding to any position on the video display (add 1024 to
these addresses to calculate the corresponding page2 addresses).

234 c=J Inside the Apple //e ------------------

Table 7-2. Text screen video RAM addresses.

Line Number Base Address Line Number Base Address

0 $400 12 $628
1 $480 13 $6A8
2 $500 14 $728
3 $580 15 $7A8
4 $600 16 $450
5 $680 17 $400
6 $700 18 $550
7 $780 19 $500
8 $428 20 $650
9 $4A8 21 $600
10 $528 22 $750
11 $5A8 23 $700

(a) 40-COLUMN SCREEN (columns 0 ... 39). The address correspond
ing to a position on the screen is equal to the base address for the
line plus the column number.

(b) 80-COLUMN SCREEN (columns 0 ... 79). The address correspond
ing to a position on the screen is equal to the base address for the
line plus one-half of the column number. If the column number is
even, then this address on the 80-column Text Card is used; if it is
odd, then the address in main memory is used.

In general terms, if the video line number (0 ... 23), in binary
notation, is given by

OOOabcde

where a ... e represent bit values, then the 2-byte base address is
given by

000001cd eababOOO

for page1 addresses or

000010cd eababOOO

for page2 addresses.

The base address for the line in which the cursor is currently
located is always stored in two zero page locations, called BASL
($28) and BASH ($29). To calculate the decimal value of the base
address for a given line on the page1 video display from Applesoft,
simply move the cursor to the line and then calculate the quantity
PEEK(40)+ 256*PEEK(41). You can add 1024 to this result to con
vert it to a page2 base address. Table 7-3 shows a short program
that does just this. It positions the cursor with the VTAB command

----- 7 Character and Graphic Output and Video Display Modes CJ 235

Table 7-3. TEXT SCREEN BASE ADDRESSES. A
program to calculate the base addresses for each line on
the text screen.

lLIST

0 REM "TEXT SCREEN BASE ADDRESSE
S"

50 TEXT : HOME
60 DIM RWC24>
1 0 0 FOR I = 1 TO 24
200 VTAB I
300 RW<I> PEEK (40) + 256 * PEEK

(41)
400 NEXT
500 HOME
600 PRINT "THE BASE ADDRESSES FO

R EACH LINE ARE:": PRINT
700 FOR I = 1 TO 24 STEP 2
800 PRINT "LINE #";I -1;":"; TAB<

11>;RW<I>;
900 PRINT TAB< 20>;"LINE #";I;"

:";TAB< 31>;RW<I>
1000 NEXT : PRINT

and then calculates the base address using the method just de
scribed.

If you want to calculate the base address for a line from assembly
language, then use the following instructions:

LDA #LINENUM ;LINENUM=O ... 23
JSR BASCALC ;BASCALC = $FBC1 <standard 40-column>

= $CB51 <special 40-column>

BASCALC is a subroutine within the system monitor ($FBC1) or
80-column firmware ($CB51) that does the base address calculation
for you. The result will be stored in BASL/BASH ($28/$29) and will
be equal to the pagel base address. To convert it to the correspond
ing page2 base address, add $04 to BASH.

Why does the //e use this strange video mapping scheme? Well,
back when the original Apple II was being designed, the main
concern was not simplicity of software but rather simplicity of
hardware. By changing to this mapping scheme, several chips from
the original hardware design could be eliminated, thus making the
Apple II less expensive and easier to manufacture. Six years later
the new and improved //e was released but, for the sake of com
patibility, the video mapping scheme was not changed.

236 c:::J Inside the Apple //e -------------------

BIZJ-Column Text Mode

Since the 80-column screen displays twice as many characters
as its 40-column counterpart, another 1024-block of video memory
is required to support it. It turns out that this additional block is
not located in the //e's main built-in memory; if this were the case,
then the //e would be unacceptably incompatible with the Apple
II and Apple II Plus. Instead, a lK block of memory that is con
tained in an auxiliary memory area on the 80-column text card is
used.

This "extra" lK block actually shares the same addresses used
by the main display page, $400 ... $7FF, but, as we have just said,
it is in a different physical location. When the //e's 80-column dis
play is active, the video circuitry maps the standard pagel video
page locations in main memory to the odd-numbered column po
sitions on the 80-column screen and the auxiliary memory loca
tions to the even-numbered positions. So for any given line on the
screen, the contents of columns 0,2,4, ... ,78 are found in auxiliary
memory and the contents of columns 1,3,5, ... ,79 are found in
main memory. The base addresses for each line are the same as
for the 40-column screen, however. The mapping scheme used by
the 80-column screen is explained in Table 7-2.

You should now be able to see why only odd-numbered columns
were used when you experimented with the 80COLON switch ear
lier. The standard system monitor video output subroutine pre
sumes that a 40-column display is being used and so it accesses
the $400 ... $7FF area in main memory only. When 80COL is ON,
these locations correspond to odd-numbered columns on the video
display; the locations corresponding to even-numbered columns
are never accessed by this monitor subroutine.

It is not permissible, of course, to have two physical memory
locations, which share the same logical address, active at the same
time. The //e uses soft switches to control which of the two $400
... $7FF areas is to be active so that data can be stored to or read
from any 80-column screen position directly. The switches used
are PAGE20FF ($C054) and PAGE20N ($C055). They are used to
select the main memory video RAM block and the auxiliary mem
ory video RAM block, respectively, provided that the 80STORE
switch is ON. If 80STORE is not ON, then, as we will see below,
the PAGE2 switches are used to select between the two different
40-column video pages.

The procedure to follow to store any value to a particular 80-
column screen location is as follows:

----- 7 Character and Graphic Output and Video Display Modes c=J 237

1. Turn off 6502 interrupts by executing a SEI instruction. This
will prevent an interrupt routine from taking over when the
video screenholes (which are in main memory only) are not
available to a peripheral card.

2. Select the proper mode for the PAGE2 switches by storing
any number at 80STOREON ($C001).

3. Determine the base address for the line required.
4. Divide the required horizontal position (0 ... 79) by two and

add it to the base address.
5. If the horizontal position is odd, then turn on the main $400

... $7FF video page by storing any number at PAGE20FF
($C054). If the position is even, then turn on the auxiliary $400
... $7FF video page by storing any number at PAGE20N
($C055).

6. Store the byte at the address calculated in step 4.
7. Reselect main memory by accessing PAGE20FF ($C054). This

ensures that the main memory screenholes will be available
for use by devices interfaced to the expansion slots.

8. Re-enable interrupts by executing a CLI instruction.

This is a fairly elaborate procedure but it is handled automati
cally if you are using the 80-column firmware for video output. It
must be followed strictly, however, if you want to POKE data
directly into the video screen from your own programs. Table 7-4
shows an Applesoft program called POKE80 that uses this tech
nique to display information on the video screen. Note that this
program turns off interrupts by calling a two-byte program that
begins at $300. This program is simply made up of the two one
byte instructions for SEI ($78) and RTS ($60). The corresponding
program to turn interrupts on begins at $302 and is made up of
the instructions for CLI ($58) and RTS ($60).

Using Page2 of Text

We have seen how the PAGE2 switches can be used to select
between main and auxiliary memory if 80STORE is ON. If80STORE
is OFF, then PAGE2 behaves in quite a different way. That is, it is
used to select which of the two available 40-column text pages is
to be displayed, the one from $400 ... $7FF (pagel) or the one
from $800 ... $BFF (page2).

To select pagel, the PAGE20FF ($C054) switch must be accessed
and to select page2 - you guessed it - the PAGE20N ($C055)

238 c=J Inside the Apple //e ------------------

Table 7-4. POKE80. A program to write data directly to
the 80-column screen.

JLIST

0 REM "POKE80"
100 HOME
110 FOR I = 768 TO 771
120 READ X: POKE I,X
130 NEXT
140 INPUT "ENTER LINE # (0 ... 23>

: II ; L
1 SO INPUT "ENTER COLUMN # (0 ... 7

9): ";C
160 INPUT "ENTER VALUE OF BYTE T

0 BE POKED TO SCREEN <O ... 25
5): ";BY

170 CALL 768: REM DISABLE INTERR
UPTS

180 VTAB L + 1: REM MOVE CURSOR
TO PROPER LINE

190 BA = PEEK (40> + 256 * PEEK
<41): REM GET BASE ADDRESS

200 BA = BA + INT <C I 2>: REM A
DD HORIZ12

210 IF 2 * INT (C I 2> < > C THEN
POKE 49236,0: PRINT A: GOTO

230
220 POKE 49237,0: REM SELECT AUX

MEMORY IF EVEN
230 POKE BA,BY
240 POKE 49236,0: REM SELECT MAl

N MEMORY
250 CALL 770: REM ENABLE INTERRU

PTS
260 VTAB 22: END
270 DATA 120,96: REM "SEI","RTS"

280 DATA 88,96: REM "CLI","RTS"

switch must be accessed. You can always tell which page has been
selected by reading the PAGE2 ($C01C) status location. If the num
ber read is greater than 127, page2 is active.

Pagel of the video display is the one that is invariably used by
programs, especially if those programs are written in Applesoft.
There are two good reasons for this. First, the lie's standard video
output subroutines always write screen information to the pagel
memory area; if you wanted to send output in the usual way to
page2, you would have to write your own subroutines to do this.
Second, Applesoft programs are normally stored beginning at lo-

----- 7 Character and Graphic Output and Video Display Modes c:::=J 239

cation $801, that is, within page2, which means that your program
will be overwritten when the screen display changes. Although it
is possible to load an Applcsoft program so that it starts beyond
page2 at $C01, this involves using an awkward "preloading" pro
gram that looks something like this:

100 POKE 103,1:PDKE 104,12:PDKE 3072,0
200 PRINT CHRH4l;"RUN YOUR.PRDGRAM"

where YOUR.PROGRAM is the name of the program that you want
loaded above page2. Line 100 in the above program stores $C01 in
the Applesoft beginning-of-program pointer, TXTTAB ($67), and
puts a $00 byte at $C00 (a zero byte must always be stored im
mediately before the start of a tokenized Applesoft program). See
Chapter 4 for a discussion ofTXTTAB and other Applesoft pointers.

Page2 does have its uses, however. For example, while pagel is
being displayed, a program can be busily writing information on
page2 and then, when page2 is complete, the PAGE20N switch
can be accessed to immediately display page2. Then, while page2
is being displayed, pagel can be modified and later switched in
by accessing PAGE20FF. If this process is repeated, extremely good
animation effects can be achieved and pages of written information
can be displayed very smoothly.

Note that the second 80-column text page (from $800 ... $BFF
in main and auxiliary memory) can be selected using PAGE20N
with 80STORE set to OFF and 80COL set to ON. Use the RAMRD
and RAMWRT switches to access the appropriate half of the sec
ondary page (see Chapter 8).

Video Display Attributes : Normal, Inverse, Flash

The 1/e text screens support three fundamental video display
attributes:

1. Normal video (white characters on a black background)
2. Inverse video (black characters on a white background)
3. Flash video (blinking characters)

Every printable ASCII character (that is, those with negative
ASCII codes greater than $9F) can be displayed in normal video
without restriction. There are restrictions, however, on what char
acters can be displayed in inverse and flash video, and these re
strictions will depend on which of two possible characters sets
available for the 1/e is currently active.

The two characters sets that the 1/e supports are called the "pri
mary" character set and the "alternative" character set. When the

240 c::::J Inside the Apple //e ------------------

lie's primary character set is in effect, it is not possible to display
flashing or inverse lower-case characters. On the other hand, when
the alternative character set is in effect, you will be able to display
inverse lower-case characters but you will not be able to display
flashing characters.

One character set or the other can be selected by writing to one
of the following two soft switch memory locations:

AL TCHARSETDF F ($ C 0 0 E) to select the primary character set

or

AL TCHARSETDN ($ C 0 0 F) to select the alternative character set

When the lie is in its standard 40-column mode, the default set
ting of ALTCHARSET is off; when the 80-column firmware is ac
tive, the default setting is on. The setting of ALTCHARSET can
easily be changed at any time, however, in order to allow either
character set to be used in both text modes.

You can determine which character set is currently active by
reading the ALTCHARSET status location at $C01E. If this location
is greater than 127 (that is, bit 7 is on), then the alternative set is
currently active; otherwise, the primary set is active. The soft switch
and status locations that relate to the lie's character sets are sum
marized in Table 7-5.

The lie examines the two most-significant bits (bits 7 and 6) of
each byte that has been stored within the video RAM area in order
to determine which attribute is to be used to display the character
that it represents.

If these two bits are "10" or "11 ", then the character will be
displayed in normal video. If they are "00", the character will be

Table 7-5. Character set soft switches and status location.

Address
Hex (Dec) Symbolic Name Description

$C00E (49166) ALTCHARSETOFF Select primary character
set

$C00F (49167) ALTCHARSETON Select alternative char
acter set

$C01E (49182) ALTCHARSET Status of character set
switch (> = $80 if alter
native set is active)

----- 7 Character and Grap~ic Output and Video Display Modes c:=J 241

Table 7-6. Video attribute control bits.

Bit 7 Bit 6 Video Attribute

1 1 Normal

1 0 Normal

0 1 Flash (primary character set)
Inverse (alternate character set)

0 0 Inverse

displayed in inverse video. Finally, if they are "01", then the char
acter will be displayed either in flash video, if the primary char
acter set is active, or in inverse video, if the alternative character
set is active. These rules are summarized in Table 7-6.

Table 7-7 sets out how the lie interprets each of the 256 possible
values that can be stored in its video display memory area, for
both the primary and alternative character sets. You can see that
the only difference between the two sets is that codes $40 ... $7F
represent flashing alphabetic characters and special symbols when
the primary set is active, whereas they represent inverse upper
and lower-case alphabetic characters when the alternative set is
active.

The program in Table 7-8 will show you visually how the lie's
video system interprets each of the 256 possible bytes that might
be stored in a video RAM memory location. When you run this
program, the name of the currently active character set will be
shown at the top of the screen and then eight rows of 32 characters
will be displayed, which represent bytes $00 through $FF. You can
easily select the character set that you want to view by pressing
"P" for primary or "A" for alternative after the symbols corre
sponding to each of the 256 bytes have been displayed. Notice how
fast the display changes after you change the character set - this
is indicative of a hardware-controlled change rather than a soft
ware-controlled change.

Standard Character Output Subroutines

There is just one standard output subroutine that is used when
a program running on the lie wants to send a character to the
currently active output device; it is called COUT ($FDED). The
Applesoft PRINT command makes uses of this subroutine. If the
active output device is the video display screen, however, then

Table 7-7. Text screen character display and attributes.
Value of
Bytes in
Video Page

$00-$1F
$20-$3F

$40-$5F
$60-$7F

$40-$5F
$60-$7F

$80-$9F
$AO-$BF
$CO-$DF
$EO-$FF

Symbols Displayed

®ABCDEFGH I JKLMNOPQRSTUVWX YZ [\]'_
! "#$%& '()*+,-. /0123456789:; <=>?

®ABCDEFGH I JKLMNOPQRSTUVWXYZ [\]'_
!"#$%&'()*+,-./0123456789: ;<=>?

®ABCDEFGH I JKLMNDPQRSTUVWX YZ [\ l' _
'abcdefghij klmnopqrstuvwxyz{l}~•
®ABCDEFGH I JKLMNOPQRSTUVWX YZ [\ 1 '_
! II#$% & I () * + , - • I 0 1 2 3 4 56 7 89 : ; < =)?
®ABCDEFGH I JKLMNOPQRSTUVWX YZ [\]'_
'abcdefghij klmnopqrstuvwxyz{l}~•

Display Attribute

Inverse
Inverse

Flash (primary)
Flash (primary)

Inverse (alternative)
Inverse (alternative)

Normal
Normal
Normal
Normal

1\)
A
1\)

D
:::J
en c.:
CD
rt
:::J'"
CD

)>
"'C
"'C
ro --ro

----- 7 Character and Graphic Output and Video Display Modes c:J 243

Table 7-8. APPLE //e CHARACTER SETS. A program to
display the primary and alternative character sets.

0 REM "APPLE //e CHARACTER SETS
II

100 PRINT CHR$ (21): TEXT : HOME

110 GOSUB 500
120 FOR I = 0 TO 255
130 HTAB 1 + I - 32 * < I NT <I I

32))
1 40 VTAB 3 + I I 32
150 SL = PEEK (40) + 256 * PEEK

(41> +PEEK (36)
160 POKE SL,I
170 NEXT
180 GOSUB 500
190. VTAB 20: HTAB 1 : CALL - 95

8
200 PRINT "(PlRIMARY DR <A>LTER

NATIVE?";: GET A$: PRINT A$

210 IF A$ = "P" DR A$ = "p" THEN
POKE 49166,0: GDTD 180

220 IF A$ = "A" DR A$ = "a" THEN
POKE 49167,0: GDTD 180

230 IF A$ = CHR$ (27) THEN HOME
: END

240 GOTO 180
50 0 VTAB 1 : HTAB 1 : CALL - 868

: PRINT "THE ";
510 IF PEEK (49182) > 127 THEN

PRINT "ALTERNATIVE"; : GDTD
530

520 PRINT "PRIMARY";
530 PRINT " CHARACTER SET IS:"
540 RETURN

COUT usually makes use of two other built-in subroutines called
COUTl ($FDF0), and BASICOUT ($C307) to display the character
at the proper position on the screen. All of these subroutines are
summarized in Table 7-9.

As soon as COUT is called, the following code is executed:

JMP CCSWL>

which causes the 1/e to jump to a subroutine that begins at the
address stored at CSWL ($36) and CSWH ($37). This subroutine is
responsible for properly handling the character to be outputted
(which is in the accumulator). If the current output device being

244 CJ Inside the Apple //e ------------------

Table 7-9. Built-in output subroutines.

Address
Hex (Dec) Symbolic Name Description

$FDED (65005) COUT

$FDF0 (65008) COUTl

$C307 (49927) BASICOUT

Sends a character to the
currently active output
device. The negative AS
CII code for the character
is in the accumulator.

Video output routine used
when standard 40-col
umn mode is active.

Video output routine used
when the 80-column
firmware is being used
(this includes 80-column
mode and the special 40-
column mode).

used is the video display, then this usually means displaying the
character on the screen at the current cursor position and ad
vancing the cursor (and scrolling when necessary). If a special
control character is being outputted, then special video control
subroutines may be invoked instead (see below). Note that by sim
ply changing the address stored at CSWL/CSWH, any output sub
routine can be installed on the //e. We will see how to do this in
greater detail later on.

When DOS 3.3 or ProDOS is being used, the address stored at
CSWL and CSWH is actually that of a special DOS output sub
routine. This subroutine will either store information on diskette
or display it on the video screen, depending on whether a diskette
file is being written to. It also continuously checks to see whether
a valid DOS command has been printed so that it can execute it
immediately. DOS commands are easily identified because they
are always preceded by a <CTRL-D> character.

If the DOS output subroutine needs to display the output on the
video screen, then one of two built-in video output subroutines is
used. One is called COUTl ($FDF0), which is used when in standard
40-column mode. The other is called BASICOUT ($C307) and is
used when the 80-column firmware is being used. Before calling
either of these subroutines, the 6502 accumulator must be loaded
with the ASCII code for the character to be printed (usually with
the high bit set to one). If the high bit is zero, the character will

----- 7 Character and Graphic Output and Video Display Modes c=J 245

be displayed with a special display attribute (either inverse or
flashing).

Let's take a closer look at both of these subroutines right now.

Video Output (80-Column Firmware Off)

As we have seen, if the lie is in its standard 40-column mode,
then COUT will normally pass control (through DOS) to a subrou
tine called COUTl ($FDF0) to handle the task of displaying a char
acter on the screen. Before COUTl actually deals with the char
acter, however, it calls a subroutine called VIDWAIT ($FB78) that
will (if an $8D carriage return code is being printed) check the
keyboard to see whether a <CTRL-S> has been entered. If it has,
then VIDWAIT pauses until another ASCII code is entered from
the keyboard before passing control to VIDOUT ($FBFD), the sub
routine that actually handles the printed character.

If the character being printed is not a control character (that is,
its ASCII code is not between $80 and $9F), then VIDOUT stores
its code in the video RAM page at the currently active cursor po
sition. This position is defined by the values stored at CH ($24)
and CV ($25), the horizontal and vertical cursor coordinates, re
spectively. It then advances the cursor and finishes.

If the character is a control character, VIDOUT will either ignore
it or perform a special action that usually affects some aspect of
the video screen display, depending on the control character in
volved. VIDOUT reacts in a special way to four control characters
only: <CTRL-G>, <CTRL-H>, <CTRL-J>, and <CTRL-M>. The
actions that are taken when any of these control characters is en
countered are listed in Table 7-10. After a control character is
handled, VIDOUT finishes.

Video Output (80-Column Firmware Onl

If the 80-column firmware is being used, then COUT passes con
trol (through DOS) to BASICOUT ($C307). After doing some basic
housekeeping, this subroutine passes control to BPRINT ($C8Al).
The first part of BPRINT is similar to the VIDWAIT subroutine,
that is, a pause will be generated if a <CTRL-S> is entered from
the keyboard when a carriage return is being printed.

BPRINT then examines the character to be printed to see whether
it is a control character. If it isn't, then a subroutine called BPNCTL
($C8CC) is called that stores the character code in the video RAM

246 c:::::J Inside the Apple 1/e ------------------

Table 7-HJ. Special control codes used by COUTl and
BASICOUT.

Control Code Description

<CTRL-G> $87 Bell. Beep the speaker.

<CTRL-H> $88 Backspace. Move the cursor one position to the
left or to the end of the previous line if already
at left edge.

<CTRL-J> $8A Line feed. Move the cursor down one line.

<CTRL-M> $8D Carriage return. Initiates a carriage return/line
feed sequence that moves the cursor to the left
position of the next line.

memory location defined by the currently active cursor position.
This position is defined by the values stored at OURCH ($57B) and
OURCV ($5FB), the horizontal and vertical cursor coordinates, re
spectively. After this is done, the cursor is advanced by one position
by updating OURCH and OURCV, and then BASICOUT finishes.

If BPRINT encounters a control character, control passes to a
subroutine called CTLCHAR ($CB99) that is responsible for pro
cessing it. As with the corresponding 40-column VIDOUT subrou
tine, CTLCHAR reacts only to certain control characters; however,
it reacts to a lot more. The control characters that cause special
effects are listed in Tables 7-10 and 7-11. After a control character
is dealt with, BASICOUT finally finishes.

Video Screen Windowing

When the //e is first turned on, the standard output subroutines
will automatically use the entire video screen for text display. It
is possible to define a smaller "window," however, into which all
output is to be confined. The advantage of defining such a window
is that information outside the window wfll not usually be over
written. When it becomes necessary to perform a scrolling oper
ation, only the contents of the window will be moved; the infor
mation outside of the window will stay put.

The dimensions of the text window can be set by adjusting four
locations in zero page, described in Table 7-12. These locations are
used to set the leftmost column position of the window (WNDLFT),
the first line number used by the window (WNDTOP), the bottom

----- 7 Character and Graphic Output and Video Display Modes c=J 247

Table 7-11. Special control codes used by BASICOUT (SO
column firmware only).

<CTRL-K> $8B Clear to end of screen. Clear from the current
cursor position to the end of the screen.

<CTRL-L> $8C Form feed. Clear the screen and move the cur-
sor to the home position (top left-hand cor-
ner).

<CTRL-N> $8E Normal. Turn on normal video display.

<CTRL-0> $8F Inverse. Turn on inverse video display.

<CTRL-Q> $91 40-column. Keep 80-column firmware active,
but move to a 40-column display.

<CTRL-R> $92 80-column. Move to an 80-column display.

<CTRL-U> $95 80-off. Turn off the 80-column firmware and
return to 40-column format.

<CTRL-V> $96 Scroll down. Scroll the display down one line
leaving the cursor where it is.

<CTRL-W> $97 Scroll up. Scroll the display up one line leav-
ing the cursor where it is.

<CTRL-Y> $99 Home. Move the cursor to the home position.

<CTRL-Z> $9A Clear line. Clear the entire line on which the
cursor is positioned.

<CTRL-\> $9C Forward. Move the cursor forward one space
with wraparound.

<CTRL-]> $9D Clear to end of line. Clear the screen from the
current cursor position to the end of the line.

<CTRL-_> $9F Move cursor up one line (in the same column).
If the cursor is already at the top, it will not
move.

line number used by the window plus one (WNDBTM), and the
width of the window (WNDWDTH).

You can change the window parameters with simple Applesoft
POKE statements. If you do change them, however, keep in mind
the following two rules:

1. WNDBTM must always be greater than WNDTOP.
2. WNDWDTH + WNDLFT must not exceed the maximum dis

play width (40 or 80).

You should note that if 80-column text mode is being used, the
window width; WNDWDTH ($21), should be an even number. If

248 c::::J Inside the Apple //e ------------------

Table 7-12. Text window parameters.

Address
Hex (Dec) Symbolic Name Description

$20 (32) WNDLFT Left side of window
(40 column: 0 ... 39)
(80 column: 0 ... 79)

$21 (33) WNDWDTH Width of window
(40 column: 1 ... 40)
(80 column: 2, 4, ... 80)

$22 (34) WNDTOP Top of window (0 ... 23)

$23 (35) WNDBTM Bottom of window + 1 (1 ... 24)

an odd number is specified, then the 80-column firmware that
controls the screen display will automatically assume that the next
lower (even) width has actually been selected.

After the window parameters have been changed, you can quickly
and easily restore them to their initial default values by entering
the Applesoft TEXT command.

How COUT1 and BASICOUT Set the Video
Attrib~ute

As we have seen, a character is normally displayed on the video
screen by loading the 6502 accumulator with its ASCII code (with
the high bit on) and then calling COUT ($FDED). COUT, in turn,
calls either COUTl ($FDF0), if the standard 40-column mode is
active, or BASICOUT ($C307), if the 80-column firmware is being
used. These subroutines take care of displaying the character at
the proper position on the screen.

How, then, does the //e determine whether to display the char
acter in normal, inverse, or flash video? The answer depends on
whether COUTl or BASICOUT is being used.

If COUTl is being used, then just before a printable ASCII code
(that is, everything above $9F) is sent on to the main part of the
video output routine, it is logically ANDed with the number stored
at INVFLG ($32). The purpose of doing this is to adjust bits 6 and
7 of the outgoing character code so that they are equal to the values
needed to select the required video attribute (see Table 7-6). The
value stored at INVFLG is called a "mask" because it will hide

(clear to 0) those bits in the character code that are 0 in the INVFLG

----- 7 Character and Graphic Output and Video Display Modes c::::J 249

Table 7-13. INVFLG mask values.

Value of
INVFLG Video Attribute

$FF
$7F
$3F

Normal video
Flash video
Inverse video

INVFLG is at location $32.

Effect on Character Code

No effect
Clears bit 7
Clears bits 7 and 6

byte, but will leave unaffected those bits that are 1 in the INVFLG
byte. The three values for INVFLG, which are used to select the
normal, flash, and inverse attributes, respectively, are set out in
Table 7-13.

If you take any printable ASCII code and logically AND it with
each of the three values for INVFLG, you will see that the bits will
be set in accordance with the rules set out in Table 7-6.

IfBASICOUT is being used, then INVFLG is still examined before
storing the character code in the video RAM area, but only bit 7
is used. If it is one, the character will be displayed in normal video;
if it is zero, it will be displayed in inverse video. Although it is
possible to display a flashing character on the 80-column screen,
the 80-column firmware does not support this attribute.

The Applesoft NORMAL, FLASH, and INVERSE commands are
all used to select the value stored at INVFLG. Keep in mind, how
ever, that the 80-column firmware is being used, the FLASH com
mand will only cause an inverse video display; if you want to
display flashing characters, you will have to POKE bytes directly
to the video RAM area.

Changing Output Devices : The OUTPUT Link

Character output on the //e is usually sent to built-in system
monitor subroutines that control the //e's 40-column or 80-column
video display screens. It is possible, however, to interface many
other output devices to the //e through its expansion slots and it
will be necessary to control these as well. Examples of such devices
are a disk drive and a serial interface card connected to a printer
or a modem.

The //e uses the same general method to handle output to such
peripheral devices that it uses to handle input. This method was
discussed in detail in Chapter 6 in the section describing the lie's
input link.

250 c:::J Inside the Apple //e -----------------'---

We mentioned earlier that the first instruction in the standard
COUT character output routine looks like this:

JMP ($0036>

As we explained when discussing the input link, this is called an
"indirect jump" instruction and it will cause the //e to transfer
control to the address stored at location $36 (low byte) and location
$37 (high byte). If you are using the standard 40-column output
routine, $36/$37 will contain the address of a subroutine in DOS
that in turn usually calls COUTl ($FDF0). (It could also call another
subroutine to write information to a diskette file instead.) By
changing the address stored at $36/$37, you can redirect the //e to
any other output subroutine that you care to execute, including
one used by an alternative output device.

The symbolic name for locations $36/$37 is CSW (for character
switch); $36 by itself is called CSWL and $37 is called CSWH. CSW
is commonly referred to as the "output link" or "output hook."

You will recall from Chapter 6 that the Applesoft "IN#s" com
mand can be used to redirect input to slot "s". In a similar way,
you can use "PR#s" to redirect output to slot "s". When "PR#s"
is entered, a program beginning at location $Cs00 (where s is the
expansion slot number), which is the first location in a ROM area
dedicated to that slot (see Chapter 11), is executed. Typically, the
program in the new output device's ROM will modify CSW so that
it will point to a new output routine also contained in its ROM.
Note that if a PR#0 command is entered, then the address of COUTl
($FDF0), the //e's standard 40-column output subroutine, will be
stored at CSW.

Subject to complications that arise whenever DOS 3.3 or ProDOS
is being used (see below), you can also change the output link
directly by using the Applesoft POKE command or the assembler's
ST A command to store the address of the new input routine directly
into CSW at $36 and $37. This address can be in either ROM or
RAM.

Designing a CSW Output Subroutine

Any CSW output subroutine that will be used to replace the
standard ones used by the //e must adhere to certain rules relating
to the usage of 6502 registers. First of all, the output subroutine
must examine the accumulator to determine which character code
is being passed to it. Second, the subroutine must end with the A,
X, andY registers unaffected. If it is necessary to change the con
tents of these registers in the body of the subroutine, the registers

----- 7 Character and Graphic Output and Video Display Modes c=J 251

must first be saved and then restored just before the subroutine
ends.

Replacing the Video Output Subroutine

One common reason for changing the CSW output subroutine is
simply to modify the manner in which character output to the
video display is handled. For example, you may want to perform
one of the following tasks:

• Redefine the effect of control characters on the video display
or define special actions to be performed by previously unused
control characters.

• Prevent certain characters from being displayed.
• Translate character codes from one encoding system to an

other.

For relatively minor changes such as these, it is not necessary
to rewrite all the underlying code that takes care of positioning
the cursor and displaying characters on the video display. What
can be done instead is to install a new output subroutine that
performs its special chores and then, if necessary, passes control
to the standard output subroutine that can then handle the;rela
tively complex chores of displaying a character on the screen and
executing special video-control commands.

Here is an example of a short input subroutine that preprocesses
character output before passing it on (if necessary) to the standard
output subroutine:

NEWOUT CMP #$87
BNE NOCHANGE
RTS

NOCHANGE JMP COUT1

;15 thi5 a bell?
; No, 50 branch
;Ye5, 50 do nothing
;Perform normal output
;<JMP BASICOUT if SO-column
; firmware i5 being U5ed.)

This subroutine will prevent a bell character from ever being
sent to the standard output subroutine (meaning that you won't
hear that annoying beep when you make an error). It works by
continually comparing each character code that is printed with
the ASCII "bell" code (code $87) and by simply executing an RTS
instruction if one is found. If the character code is not a bell, control
passes directly to the standard video output subroutine (either
COUTl or BASICOUT).

252 CJ Inside the Apple //e -------------------

DOS 3.3, ProDOS, and the Output Link

The same restrictions referred to in Chapter 6 that apply when
changing the input link while either DOS 3.3 or ProDOS is active
also apply when changing the output link. When DOS is first ac
tivated, the address stored in CSW is copied to an internal DOS
output link location and then the address of a special DOS output
subroutine is placed in CSW. This subroutine is responsible for
detecting and handling any DOS commands that are printed (they
are preceded by a <CTRL-D> character) and for writing infor
mation to a diskette file if a DOS WRITE or APPEND command
is in effect. If DOS is not currently writing to a file, then it will
send output to the subroutine whose address is stored in the DOS
output link. This is initially one of the standard video output sub
routines.

Normal attempts to store new addresses directly to CSW will
obviously lead to a disconnection of DOS. Rather than repeating
the explanations given in Chapter 6, we shall simply state how the
output link must be changed to ensure that both DOS and the new
output subroutine will be active. Any one of the following proce
dures may be used:

• Use the PR# command while in Applesoft direct mode (not
within a program) or use the command

PRINT CHR$(4); 11 PR#s 11

from within a program (where "s" represents the slot number).
• ~e the BRUN command to load and execute an assembly

language program that stores the new output address into CSW.
• DOS 3.3 only: execute a CALL 1002 command or a "JSR $3EA"

instruction immediately after using the POKE command to
put a new address into CSW or after using CALL to execute a
subroutine that changes CSW (this must be done before per
forming any further I/0 operations).

• ProDOS only: use the POKE command to store the new input
address directly into the ProDOS output link locations at $BE30
and $BE31. Alternately, use the Applesoft CALL command or
the system monitor GO command to execute an assembly-lan
guage program that stores the address directly into $BE30 and
$BE31.

If you are using ProDOS, you can also use a special form of the
PR# command to properly install an output subroutine that is
located anywhere in memory and not just in the slot ROM area.
The output subroutine must, however, begin with a 6502 "CLD"

----- 7 Character and Graphic Output and Video Display Modes c::=J 253

(clear decimal) instruction. To install the output subroutine, exe
cute a statement of the form

PRINT CHR$<4>;"PR# Aaddr"

from within an Applesoft program, where "addr" represents either
the decimal starting address of the new output subroutine or, if
preceded by "$", the hexadecimal starting address.

LOW-RESOLUTION GRAPHICS MODE

The //e also supports two general graphic display modes called
low-resolution graphics and high-resolution graphics. These modes
are primarily used to present nontext information such as pictures,
graphs, and maps and will now be described in detail, beginning
with low-resolution graphics mode.

Turning on the Low-Resolution Graphics Display

The easiest way to activate the lie's low-resolution graphics dis
play is to enter the Applesoft GR command from Applesoft direct
mode. This command, however, selects only one of four possible
versions of low-resolution graphics (namely, pagel with mixed
graphics/text). As we will see later, other versions must be activated
by directly setting some of the lie's video soft switches.

When low-resolution graphics mode is in effect, colored "blocks"
are displayed on the screen instead of text symbols. The dimensions
of the screen are 40 blocks wide by 48 blocks deep (or 40 blocks
deep if a special mixed mode is in effect-see below). Column
positions range from 0 on the left to 39 on the right; row positions
range from 0 on the top to 47 on the bottom.

There are two possible pages of low-resolution graphics that can
be displayed on the //e. The video RAM area that defines the first
display screen (pagel) extends from $400 ... $7FF, and the area
that defines the second (page2) extends from $800 ... $BFF. These
are the same video RAM areas used to support the two pages of
text mode.

To turn on either page of standard low-resolution graphics, you
must first ensure that the PAGE2 switches (PAGE20FF and
PAGE20N) can be used to select which of the two graphics pages
is to be used rather than to select whether main memory or aux
iliary memory is to be used. This can be done by writing to
80STOREOFF ($C000). In addition, to ensure that double-width

254 c=J Inside the Apple //e ------------------

Table 7-14. Low-resolution graphics display modes.

Pagel of Low-Resolution
Graphics (full-screen mode)

TEXT OFF
HIRES OFF
MIXEDOFF
PAGE20FF

($C050)
($C056)
($C052)
($C054)

Pagel of Low-Resolution
Graphics (mixed mode)

TEXT OFF
HIRESOFF
MIXED ON
PAGE20FF

($C050)
($C056)
($C053)
($C054)

Page2 of Low-Resolution
Graphics (full-screen mode)

TEXTOFF
HIRESOFF
MIXEDOFF
PAGE20N

($C050)
($C056)
($C052)
($C055)

Page2 of Low-Resolution
Graphics (mixed mode)

TEXTOFF
HIRES OFF
MIXED ON
PAGE20N

($C050)
($C056)
($C053)
($C055)

low-resolution graphics are not accidentally enabled, you must
read from or write to CLRAN3 ($C05F) in order to turn off annun
ciator 3 on the lie's game 110 connector (see Chapter 10). As we
shall see in the next section on double-width low-resolution graph
ics, this will disable the circuitry that enables this special graphics
mode.

To turn on pagel of low-resolution graphics, the following switches
must be "thrown" by reading from or writing to all of the following
soft switch memory locations:

TEXTOFF ($C050)-selects a graphics mode
HIRESOFF ($C056)-selects low-resolution graphics
PAGE20FF ($C054)-selects pagel

To turn on page2, throw the following switches by reading from
or writing to all of the following locations:

TEXTOFF ($C050)
HIRESOFF ($C056)
PAGE20N ($C055)-selects page2

In addition, it will be necessary to throw one of two other switches
that control whether full screen graphics will be displayed or whether
four lines of text will be "mixed in" at the bottom of the screen
with 40lines of low-resolution graphics above them. The switches
that control this are MIXEDON ($C053), which enables mixed
graphics and text, and MIXEDOFF ($C052), which enables full
screen graphics. Simply read from or write to these memory lo
cations to activate these switches.

----- 7 Character and Graphic Output and Video Display Modes CJ 255

The switches that must be accessed to turn on the four different
combinations of low-resolution graphics display modes are sum
marized in Table 7-14.

Low-Resolution Graphics Screen Memory
Mapping

Each block on the low-resolution graphics screen is defined by
one-half of a byte (four bits) that is stored within the currently
active video RAM area ($400 ... $7FF for page1 or $800 ... $BFF
for page2). The number stored in this half byte is the color code
for the block (see the next section). Table 7-15 shows the mapping
scheme for each block on page1 of the low-resolution graphics

Table 7-15. Low-resolution graphics video RAM screen
addresses.

Line Number Base Address Line Number Base Address

0,1 $400 24,25 $628
2,3 $480 26,27 $6A8
4,5 $500 28,29 $728
6,7 $580 30,31 $7A8
8,9 $600 32,33 $450
10,11 $680 34,35 $4D0
12,13 $700 36,37 $550
14,15 $780 38,39 $5D0
16,17 $428 49,41 $650
18,19 $4A8 42,43 $6D0
20,21 $528 44,45 $750
22,23 $5A8 46,47 $7D0

(a) STANDARD LOW-RESOLUTION GRAPHICS (columns 0 ... 39).
The address corresponding to a position on the screen is equal to
the base address for the line plus the column number. If the line
number is even, then the lower 4 bits of the byte stored at this address
are used to store the color code; if it is odd, the upper 4 bits are
used.

(b) DOUBLE-WIDTH LOW-RESOLUTION GRAPHICS (columns 0 ...
79). The address corresponding to a position on the screen is equal
to the base address for the line plus one-half of the column number.
If the column number is even, then this address on the 80-column
text card is used; if it is odd, the address in main memory is used.
If the line number is even, then the lower 4 bits of the byte stored
at this address are used to store the color code; if it is odd, the upper
4 bits are used.

256 c::=J Inside the Apple //e ------------------

screen; page2 addresses can be calculated by adding 1024 to the
corresponding addresses for page1. Note that the base addresses
for each pair of lines in the graphics screen (that is, 011, 213, 415,
... ,4614 7 are the same as those for text lines 0, 1, 2, ... ,23 .)

Low-Resolution Graphics Colors

A special color code is stored in 4 bits of the byte in the video
RAM page that corresponds to a particular block position. As Table
7-15 indicates, these 4 bits are found in the top half of the byte
(bits 4 ... 7) or the bottom half (bits 0 ... 3), depending on the
block's position on the screen. Table 7-16 contains a list of the color
codes that can be stored in the byte in video RAM in order to
generate the sixteen different colors that the low-resolution graph
ics mode supports.

Double-Width Low-Resolution Graphics

The lie is also capable of supporting a special double-width low
resolution graphics mode that was not available on the earlier
Apple II and Apple II Plus models. Unfortunately, this mode cannot

Table 7-16. Low-resolution graphics color codes.

Color Code Color

$00 Black
$01 Magenta
$02 Dark blue
$03 Purple
$04 Dark green
$05 Gray1
$06 Medium blue
$07 Light blue
$08 Brown
$09 Orange
$0A Gray2
$0B Pink
$0C Light green
$0D Yellow
$0E Aquamarine
$0F White

Note: These codes relate to bytes in main memory only (see Table 7-17
for the corresponding codes for bytes in auxiliary memory when using
double-width low-resolution graphics).

----- 7 Character and Graphic Output and Video Display Modes c:J 257

be controlled by the standard Applesoft low-resolution graphics
commands or the associated system monitor subroutines. It is nec
essary to develop entirely new subroutines from scratch to use this
mode efficiently. The references at the end of the chapter provide
sources of such subroutines.

Unlike standard low-resolution graphics, only one page of dou
ble-width graphics is available. Just as for 80-column text mode,
the PAGE2 switches normally used to flip between display pages
are instead used to select whether the part of the double-width
graphics video page within main memory or auxiliary memory is
to be used.

There are two important prerequisites to using this special dou
ble-width graphics mode. First, you must be using an Apple lie
with a Revision-B motherboard (the revision marking can be found
at the back of the lie's motherboard, behind the expansion slots).
Second, you must have an 80-column text card installed in the
auxiliary slot (ideally the "extended" version) that has pins 50 and
55 connected to one another.

If you are using the extended 80-column text card, you can easily
connect pins 50 and 55 together by properly installing the jumper
plug that comes with the card. If you are using the standard 80-
column text card (the one without the extra 64K of memory), then
you will have to solder a wire between pins 50 and 55 yourself
(CAUTION: This will undoubtedly void your lie's warranty). Once
the necessary connection has been made, the lie will be capable of
displaying double-width graphics.

Turning on Double-Width Low-Resolution
Graphics

Once the 80-column text card has been properly configured, the
double-width low-resolution graphics can be displayed by first set
ting the TEXTOFF ($C050) soft switch to select a graphics mode,
HIRESOFF ($C056) to select low-resolution graphics, and either
MIXEDOFF ($C052) to select full-screen graphics or MIXEDON
($C053) to select 40 lines of graphics with 4 lines of text. This can
be done by executing the following assembly-language instruc
tions:

STA $COSO
STA $C056
STA $C052 <or STA $C053>
If you do this while you are in standard 40-column mode, the

normal-width low-resolution graphics screen will be displayed. To
enable the double-width graphics, two further soft switches must
be set: 80COLON ($C00D) and SETAN3 ($C05E). As we saw when

258 CJ Inside the Apple //e -------------------

discussing 80-column text mode, the 8eJCOLON switch is used to
turn on the double-width display mode. We haven't come across
the SETAN3 switch before-it is usually used to turn on annun
ciator 3 on the lie's game 110 connector (see Chapter lei). It is also
connected to the 80-column text card in such a way as to allow
you to turn on and off the double-width graphics support circuitry.
Annunciator 3 can be turned off by accessing CLRAN3 ($CeJSF). To
select 8eJCOLON and SETAN3 from an assembly-language pro
gram, you would use the following two instructions:

STA $COOD
STA $COSE

An easier way to turn on the double low-resolution graphics
screen is to use standard Applesoft commands. To throw the same
series of switches that we have just outlined from Applesoft, you
would use this program segment:

100 PRINT CHR$C4);"PR#3": REM THIS SETS 80COLON
200 GR : REM THIS SETS LOW-RES GRAPHICS SWITCHES
300 POKE 49246,0: REM TURN ON AN3

Of course, you will not be able to use the standard low-resolution
graphics commands to properly plot points and draw lines on the
screen because they assume you are using the standard low-reso
lution screen. If you try using these graphics commands, you will
notice that only the odd-numbered columns will be affected. As
we shall see next, these columns relate to physical memory loca
tions used by standard low-resolution graphics only.

Double-Width Low-Resolution Graphics Screen
Memory Mapping

The lie displays double-width low-resolution graphics in much
the same way that it displays its 80-column text screen. That is,
the region of memory from $4elel ... $7FF that resides on the 80-
column text card (auxiliary memory) is interleaved with the same
region of memory on the motherboard (main memory). For a given
low-resolution graphics screen line, all even locations are mapped
to locations in auxiliary memory and all odd locations are mapped
to locations in main memory. This mapping scheme is described
in Table 7-15.

You can select which area of screen memory is to be accessed
by first ensuring that the 8eJSTORE switch is on (by writing to
location $Celell). This allows the PAGE2 switches to be used to
select between main and auxiliary memory rather than pagel and
page2 of graphics. PAGE20FF ($Cel54) is used to select main mem-

----- 7 Character and Graphic Output and 'video Display Modes c=J 259

ory and PAGE20N ($C055) is used to select auxiliary memory. As
you can see, writing to the double low-resolution graphics screen
is done in exactly the same way as writing to the 80-column text
screen. Keep in mind that if you do write directly to the auxiliary
memory part of the screen, then interrupts should first be turned
off with a SEI instruction. After auxiliary memory has been written
to, interrupts can be re-enabled with a CLI instruction and PAGE2
must be turned off by accessing PAGE20FF ($C054). This will en
sure that the main memory screenholes will still be available to
peripheral cards.

Note that there is a second page of double-width low-resolution
graphics that occupies $800 ... $6FF in main and auxiliary mem
ory. (It can be selected by setting 80STOREOFF, 80COLON and
PAGE20N.) Use the RAMRD and RAMWRT switches to access the
appropriate half of the secondary page (see Chapter 8).

Double-Width Low-Resolution Graphics Colors

Because of timing differences in interpreting auxiliary memory,
the color codes stored in auxiliary memory to set the color of the
low-resolution graphics blocks are different from the standard ones
set out in Table 7-16. These new color codes are set out in Table
7-17 in the standard color order of Table 7-16.

Table 7-17. Low-resolution graphics color codes for
auxiliary memory locations.

Color Code

$00
$08
$01
$09
$02
$0A
$03
$0B
$04
$0C
$05
$0D
$06
$0E
$07
$0F

Color

Black
Magenta
Dark blue
Purple
Dark green
Gray1
Medium blue
Light blue
Brown
Orange
Gray2
Pink
Light green
Yellow
Aquamarine
White

260 C:::::J Inside the Apple //e ------------------

Table 7-18. Applesoft low-resolution graphics commands.

Command

GR

COLOR=

PLOT

HUN

VLIN

SCRN

Description

Turns on page1 of low-resolution graphics in
mixed mode and clears the display.

Selects a low-resolution color number.

Plots a block on the screen.

Draws a horizontal line on the screen.

Draws a vertical line on the screen.

Gets the color code at a given screen position.

Built-In Support for Low-Resolution Graphics

The easiest way to manipulate the standard low-resolution
graphics screen is to use the Applesoft commands designed for this
purpose. These commands are briefly summarized in Table 7-18.

Support for low-resolution graphics is also afforded by a series
of subroutines contained within the lie's system monitor. These
subroutines are described in Table 7-20 and the zero page locations
that they use are set out in Table 7-19. Note that some zero page
locations must be properly set up before calling these subroutines.
In particular, COLOR ($30) must contain the desired 4-bit color
code (in both halves of the byte), H2 ($2C) must contain the des
tination location of a horizontal line before HLINE ($F819) is called,
and V2 ($2D) must contain the destination location of a vertical
line before VLINE ($F828) is called.

Remember that these commands and subroutines can be used
for single-width pagel low-resolution graphics only.

HIGH-RESOLUTION GRAPHICS MODE

Of the two main graphics modes that the 1/e supports, high
resolution graphics mode is probably the most useful and exciting.
This is because, as the name of this mode suggests, the points that
can be plotted on the screen (called "pixels", for picture elements)
are much smaller than low-resolution graphics blocks, thus allow
ing you to draw much finer shapes. This allows you not only to
place easily recognizable images on the screen but also to place
more images on the screen. No wonder that virtually all popular
games now being released for the lie use high-resolution graphics.

_____ 7 Character and Graphic Output and Video Display Modes c=J 261

Table 7-19. Zero page locations used by low-resolution
graphics subroutines.

Address
Hex (Dec)

$26 (38)

$27 (39)

$2C (44)

$2D (45)

$2E (46)

$30 (48)

Symbolic
Name

GBASL

GBASH

H2

V2

MASK

COLOR

Description

Low byte of graphics screen
line base address.

High byte of graphics screen
line base address.

Horizontal destination lo
cation for drawing a hori
zontal line.

Vertical destination loca
tion for drawing a vertical
line.

Contains $F0 or $0F and is
used to clear out the proper
4-bit area before setting the
color for a low-resolution
block.

Contains the color code for
the low-resolution block in
the upper 4 bits and the
lower 4 bits.

Turning on the High-Resolution Graphics Display

The 1/e supports two pages of high-resolution graphics, each of
which are defined by a block of 8192 bytes. Pagel of high-resolution
graphics is mapped to the area from $2000 ... $3FFF and page2
is mapped to $4000 ... $5FFF.

The dimensions of the full-size high-resolution screens are 280
pixels wide by 192 pixels high. A mixed mode can also be defined,
however, where the bottom 32 lines of pixels are replaced by 4
lines of text so that the dimensions of the graphics screens become
280 x 160. Numbering of both the pixel rows and the pixel columns
begins at 0 and the (0,0) position is at the top left-hand corner of
the screen.

Each pixel on the display screen is controlled by one bit of a byte
in the 8K area associated with that screen and can be made to
appear as one of eight colors, with some restrictions. If that bit is
off, then a black dot will be displayed on the screen; if it is on, one

262 C:::J Inside the Apple //e _____ ___;, ___________ _

Table 7-20. System monitor low-resolution graphics
subroutines.

Address Symbolic
Hex (Dec) Name Description

$F800 (63488) PLOT Plot a block using the cur-
rent color at the position
given by A (vertical) and Y
(horizontal).

$F819 (63513) HLINE Draw a horizontal line be-
ginning from the position
given by A (vertical) and Y
(horizontal). The ending
horizontal position is stored
at H2 ($2C).

$F828 (63528) VLINE Draw a vertical line begin-
ning from the position given
by A (vertical) and Y (hori-
zontal). The ending vertical
position is stored at V2 ($2D).

$F832 (63538) CLRSCR Clear the full low-resolution
graphics screen to black.

$F836 (63542) CLRTOP Clear the top 40 lines of the
low-resolution graphics
screen to black.

$F847 (63559) GBASCALC Put the base address for the
line number contained in the
accumulator (0 ... 47) into
GBASL ($26) and GBASH
($27).

$F864 (63558) SETCOL Set up the color mask at lo-
cation COLOR ($30). On en-
try, A contains the color code
(0 ... 15).

$F871 (63601) SCRN Determine the color code
stored at the location given
by A (vertical) and Y (hori-
zontal).

of the five other colors (white, green, violet, orange, or blue) will
be displayed. The two other colors are a duplicate white and black.
We'll take a closer look at how to generate colored images later in
this chapter.

You can quickly turn on the two high-resolution screens from

----- 7 Character and Graphic Output and Video Display Modes c::=J 263

Applesoft by using the HGR and HGR2 commands. HGR turns on
mixed-mode pagel high-resolution graphics, and HGR2 turns on
full-screen page2 high-resolution graphics. Let's take a closer look
at how the lie's video soft switches can be used directly to select
the various high-resolution graphics display modes.

To turn on either page of standard high-resolution graphics, you
must first ensure that the PAGE2 switches (PAGE20FF and
PAGE20N) can be used to select which of the two graphics pages
is to be used rather than to select whether main memory or aux
iliary memory is to be used. This can be done by writing to
80STOREOFF ($C000). In addition, to ensure that double-width
high-resolution graphics are not accidentally enabled, you must
read from or write to CLRAN3 ($C05F) to turn off annunciator 3
on the game I/0 connector. As we shall see in the next section on
double-width high-resolution graphics, this will disable the cir
cuitry that enables this special graphics mode.

The high-resolution graphics displays are turned on in much the
same way as the low-resolution displays. In fact, the only difference
is that the HIRESON ($C057) soft switch must be accessed instead
of the HIRESOFF ($C056) soft switch. To turn on pagel, read from
or write to the following locations (with 80STORE in the off po
sition):

TEXTOFF ($C050)-selects a graphics mode
HIRESON ($C057)-selects high-resolution graphics
PAGE20FF ($C054)-selects pagel

To turn on page2, simply access PAGE20N ($C055) instead of
PAGE20FF.

You can also control whether full screen graphics are to be dis
played or whether four lines of text are to appear at the bottom of
the screen instead of the last 32 lines of the graphics page. The
switches to use to control these two options are MIXEDON ($C053),
which selects the graphics-text combination, and MIXEDOFF
($C052), which selects full-screen graphics.

Table 7-21 summarizes the switches that must be set to select
each of the four possible combinations of high-resolution display
modes.

High-Resolution Graphics Screen Memory
Mapping

The lie uses 40 consecutive bytes in the applicable high-resolu
tion screen video RAM memory area ($2000 ... $3FFF, pagel, or

264 c=J Inside the Apple //e -------------------

Table 7-21. High-resolution graphics display modes.

Pagel of High-Resolution
Graphics (full-screen mode)

TEXTOFF
HIRES ON
MIXED OFF
PAGE20FF

($C050)
($C057)
($C052)
($C054)

Pagel of High-Resolution
Graphics (mixed mode)

TEXT OFF
HIRES ON
MIXED ON
PAGE20FF

($C050)
($C057)
($C053)
($C054)

Page2 of High-Resolution
Graphics (full-screen mode)

TEXT OFF
HIRES ON
MIXEDOFF
PAGE20N

($C050)
($C057)
($C052)
($C055)

Page2 of High-Resolution
Graphics (mixed mode)

TEXT OFF
HIRES ON
MIXED ON
PAGE20N

($C050)
($C057)
($C053)
($C055)

$4000 ... $5FFF, page2) to define the contents of each 280-pixel
graphics line. The most-significant bit of each of these bytes, how
ever, is not used for display purposes (it is used to select which of
two sets of four colors can be displayed). Each of the 40 x 7 = 280
active bits in these 40 bytes corresponds to a unique column po
sition. The seven pixels corresponding to each byte in memory are
displayed on the screen in reverse order of their positions within
the byte. That is, the first pixel displayed on the screen (the one
farthest to the left) corresponds to bit 0, the next one corresponds
to bit 1, and so on. If a bit is set to "1 ", then the pixel will be
illuminated; if it is cleared to "0", it will be turned off.

As with the text screen, the high-resolution page1 and page2
memory areas are not mapped linearly to the video screen. To
determine the memory address corresponding to a particular pixel,
it is first necessary to calculate the base address for the line in
which it appears. Reverting to binary notation for a moment, if
the line number (0 ... 191) is given by

abcdefgh

(where a ... h represent values of bits 7 ... 0, respectively), then
the base address for that line is given by the two bytes

Oppfghcd eababOOO

where

pp 01 for page1
pp = 10 for page2

----- 7 Character and Graphic Output and Video Display Modes c=J 265

The base addresses for each line of the high-resolution display are
set out in Table 7-22. To convert these addresses to the correspond
ing page2 addresses, add $2000 (8192).

The byte position number (0 ... 39) for a particular pixel column
(remember that 7 columns are defined by one byte) is given by the
quotient of

X/7

where X is the column number (0 ... 279). To access this byte, the
6502 indirect-indexed addressing mode, "(zp),Y", can be used ("zp"
refers to any zero page location that contains the low half of the
base address for the line; zp + 1 contains the high half). The bit
number within this byte that is mapped to the column is given by

Table 7-22. High-resolution graphics video RAM screen
addresses.

Line
Number Base Address

0-7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
64-71
72-79
80-87
88-95

$2000 + $400 x RLN
$2080 + $400 x RLN
$2100 + $400 x RLN
$2180+ $400 x RLN
$2200 + $400 x RLN
$2280 + $400 x RLN
$2300 + $400 x RLN
$2380 + $400 x RLN
$2028 + $400 x RLN
$20A8 + $400 x RLN
$2128 + $400 x RLN
$22A8 + $400 x RLN

Line
Number Base Address

96-103 $2228 + $400 x RLN
104-111 $23A8 + $400 x RLN
112-119 $2328+$400xRLN
120-127 $23A8 + $400 x RLN
128-135 $2050 + $400 x RLN
136-143 $20D0 + $400 x RLN
144-151 $2150 + $400 x RLN
152-159 $21D0+ $400 x RLN
160-167 $2250+ $400 x RLN
168-175 $22D0+$400XRLN
176-183 $2350+$400xRLN
184-191 $23D0+$400xRLN

RLN = relative line number. This number is equal to the actual line
number minus the first line number in the group of eight within which
it falls in the above table. For example, RLN for line #83 is 3 (83- 80).

(a) STANDARD HIGH-RESOLUTION GRAPHICS (columns 0 ... 279).
The address of the byte corresponding to a pixel position is equal
to the base address for the line plus the horizontal pixel position
divided by 7. The bit position within this byte corresponding to the
pixel is the horizontal pixel position modulo 7.

(b) DOUBLE-WIDTH HIGH-RESOLUTION GRAPHICS (columns
0 ... 559). The address of the byte corresponding to a pixel position
is equal to the base address for the line plus the horizontal pixel
position divided by 14. If the horizontal pixel position modulo 14
is between 0-6, this address on the 80-column text card is used; if
it is between 7-13, this address in main memory is used. The bit
position within the byte corresponding to the pixel is the horizontal
pixel position modulo 7.

266 c::::J Inside the Apple //e -------------------

the remainder generated by the X/7 calculation (that is, X modulo
7). This is the bit that can be set to 1 to illuminate a pixel on the
screen or cleared to 0 to turn it off.

High-Resolution Graphics Colors

Pixels on the high-resolution graphics screen can be one of eight
colors: black1, black2, white1, white2, green, orange, violet, and
blue. These are the eight colors that can be set using the Applesoft
HCOLOR = command. Because of the way the high-resolution
graphics circuitry works on the 1/e, however, you cannot display
all colors at all positions on the high-resolution screen. For ex
ample, green and orange pixels can appear only in odd-numbered
columns, and violet and blue pixels can appear only in even-num
bered columns. In addition, in some circumstances that we will
refer to in a moment, you cannot display blue and orange pixels
close to green and violet pixels, and vice versa.

If you are plotting points in a particular color, you must ensure
that, even if a particular column is selected, you do not illuminate
pixels in that column if it is a restricted column for that color, or
else the color will be wrong. This is handled automatically by the
Applesoft high-resolution graphics commands and can be done
from assembly language by logically ANDing the byte that is to
be stored in the video page with the appropriate color mask. This
mask will ensure that no "1 "s can appear in restricted columns.
Table 7-23 sets out the column restrictions and color masks for
each of the eight allowed high-resolution graphics colors.

Not all colors can be used at the same time. The most- significant
bit of the byte that defines the pixel must be cleared to 0 in order
to have a' 1' in the byte displayed as green/violet or set to 1 to have
it displayed as orange/blue (for an odd/even column). A side effect
of this phenomenon is that it is not possible to generate green and
violet pixels if they are defined by bits in the same byte as orange
and blue pixels.

To get white displayed on the screen, two horizontally adjacent
pixels on the screen must be set to 1. If this is done, then both
pixels will be displayed as white. Note that there are two different
types of white, white1 and white2. The only difference between
these two colors is the status of the high-order bit within the byte
that defines the two adjacent pixels. Note, also, that it is not pos
sible to get a single white dot surrounded by black because an
isolated '1' bit will be interpreted as either green/violet or orange/
blue.

----- 7 Character and Graphic Output and Video Display Modes c=J 267

Table 7-23. High-resolution screen display information.

Value of
High-Order Display Byte Mask

Applesoft Bit of Display Even Odd Column
Color HCOLOR= Byte Byte Byte Restriction

Black1 0 0 $00 $00 None
Green 1 0 $2A $55 Odd only
Violet 2 0 $55 $2A Even only
White1 3 0 $7F $7F None
Black2 4 1 $80 $80 None
Orange 5 1 $AA $D5 Odd only
Blue 6 1 $D5 $AA Even only
White2 7 1 $FF $FF None

In summary, the standard high-resolution screen looks at each
horizontally adjacent pair of bits to determine which of four colors
is to be displayed: black1 (00), white1 (11), green (01), or violet
(10), if bit 7 in the byte in which they are contained is off; or black2
(00), white2 (11), orange (01), or blue (10), if bit 7 is on.

It should now be clear that because of the column restrictions
on colors other than black and white, the effective screen resolution
is only 140 x 192 for color graphics even though it is possible to
control the states of all 280 horizontal pixels individually.

Animation with High-Resolution Graphics

One of the primary reasons for including two high-resolution
graphics pages on the 1/e was to allow you to generate high-quality
animation effects. Animation is typically simulated on a computer
by first drawing a shape, pausing, erasing the original shape, and
then redrawing it at its new position. By repeating this procedure,
the effect of motion is created.

If this procedure is used in connection with one display screen
only, then the problem of "flickering" can arise and the first shape
will not appear to change smoothly into the next. This effect is
observed because the screen is continualfy being "redrawn" by the
electronic circuitry within the video display unit before the first
shape has been completely erased and redrawn. If the shape is
complex enough, a partially erased or partially redrawn shape will
be displayed for discernible periods of time.

One way of getting around this problem is to draw the next shape

268 c::J Inside the Apple //e ------------------

in an animation sequence on the graphics page that is not being
displayed and then, after it has been so drawn, to throw the switch
that activates that page of graphics. Then, while that page is being
displayed, the shape on the other page can be erased and reposi
tioned, and then that page can be displayed again. The net effect
is that all erasing and redrawing is done on the screen that is not
being displayed and so flickering will be eliminated. If Applesoft
graphics commands are being used, the page that is being written
to can be controlled simply by adjusting the value of the byte
located at $E6. To write to page1, this byte must be set equal to
$20; to write to page2, it must be set equal to $40.

One problem with using the two pages of high-resolution graph
ics in this way, however, is that another 8K of memory must be
devoted for use by the display screen and is unavailable for use by
the program. For larger programs, this can be a major limitation
indeed.

Fortunately, there is an alternative method that can be used to
achieve flicker-free animation: moving a shape while the video
display unit is not actually refreshing the screen. This method is
available on the //e only and not on the earlier Apple II and Apple
II Plus models.

The video display unit is continually "refreshing" the screen by
redrawing all the scan lines that define the display screen. It does
this by moving an electron beam in a zig-zag motion across the
display screen from top to bottom. After all of the video scan lines
have regenerated in this way, there is a synchronization delay
during which the electron beam is repositioned to the upper left
hand corner of the screen awaiting the arrival of the next video
frame.

The delay between the end of one zig-zag scan and the beginning
of the next one is called the vertical blanking interval, and during
this time the screen display is not being altered in any way. Thus,
if during this vertical blanking interval we could change the data
bytes that define the screen display image in such a way as to cause
the shape being animated to be erased and repositioned, there
would be no discernible flickering.

How do we tell when the video display unit is performing a
vertical blanking operation? By examining another I/0 memory
location, that's how. This location is called VERTBLANK and is
located at $C019. If the value read from this location is greater
than 127, then the video display unit is performing a retrace; if it
is less than 128, it is not. Table 7-24 summarizes how the VERT
BLANK status location is used.

Table 7-25 lists a short assembly-language program that can be

----- 7 Character and Graphic Output and Video Display Modes CJ 269

Table 7-24. Vertical blanking status location.

Address
Hex (Dec) Symbolic Name Meaning

$C019 (49177) VERTBLANK If this location is > = $80,
then the video display is··
performing a vertical blank
ing operation.

used to tell you how long the vertical blanking interval lasts in
terms of 6502 machine cycles. If you load this program into mem
ory and then enter CALL 768 to activate it, a number will be dis
played that should be either 520 or 521. This number is equal to
the number of 24 machine-cycle periods that occur during one
vertical blanking interval. Thus, the vertical blanking interval is
somewhere between 12,480 and 12,504 machine cycles. If you can
erase and redraw your animated shape in less than this number
of cycles, then you can achieve the goal of flicker-free animation.

Just before you draw a shape to be animated using the vertical
blanking technique, you should call a subroutine that looks some
thing like this:

WAITVBL LDA VERTBLANK
BMI WAITVBL

WAITVBL1 LDA VERTBLANK
BPL WAITVBL1
RTS

;Wait for end of retrace
; currently in progress
;Wait for retrace to begin

This subroutine will end at the beginning of the next vertical
blanking interval and will allow you to maximize the time avail
able to erase and redraw your animated shape.

Double-Width High-Resolution Graphics

The 1/e also supports an impressive double-width high-resolution
graphics display mode if an extended 80-column text card has been
installed in a //e with a Revision-B motherboard and the jumper
plug on the text card has been installed. The extended 80-column
text card contains the additional memory required to support the
other "half" of the double-width graphics screen. As with the dou
ble-width low-resolution graphics mode, however, neither Apple
soft nor the system monitor contains any commands or subroutines
that allow you to use this mode directly. Programs are available,
however, that will allow you to take advantage of the power of this

Table 7-25. VERTICAL BLANKING. A program to determine the time needed to perform a vertical
blanking operation.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1

0300: A9 00 1 2
0302: 8D 32 03 1 3
0305: 8D 33 03 1 4
0308: AD 19 CO 1 5
0308: 30 FB 16

1 7
030D: AD 19 CO 18
031 0: 1 0 FB 19

20

* VERTICAL BLANKING *

VBLANK EQU SC019

HEX DEC EQU SED24
CROUT EQU SFD8E

ORG $300

LDA #0
STA TI MECNT
STA TIMECNT+1

ENDWAIT LDA VBLANK
BMI ENDWA IT

STRTWAIT LDA VBLANK
BPL STRTWAIT

;Vertical blanking signal

;Hex-to-decimal conversion
;Send a carriage return

;Wait for end of retrace
; currently in progress

;Wait for retrace to begin

N
0

D
:::J
en
c.:
CD
c-t
:::;
CD

)>
"0
"0 ro --CD

21
0312: EE 32 03 22
0315: DO 05 23
0317: EE 33 03 24
031A: DO 04 25
031C: EA 26
031D: EA 27
031E: EA 28
031F: EA 29
0320: AD 19 CO 30
0323: 30 ED 31

32
0325: AE 32 03 33
0328: AD 33 03 34
032B: 20 24 ED 35
032E: 20 8E FD 36
0331 : 60 37

38
39
40

--End assembly--

52 bytes

-Errors: 0

* <Loop time
TIMEIT INC

BNE
INC
BNE

TIMEIT1 NOP
NDP
NOP
NOP

TIMEIT2 LDA
BMI

is 24 microsec.):
TIMECNT ;<Incremented during retrace)
TIMEIT1
TIMECNT+1
TIMEIT2

VBLANK
TIME IT

;Even out the loop time

;Loop until retrace finished

LDX TIMECNT
LDA TIMECNT+1
JSR HEXDEC ;Display result in decimal
JSR CROUT ;Send a CR
RTS

TIMECNT DS 2

-.....!
n
::::r
OJ,
OJ
(')
C"'1"
CD,
OJ
::::J
Cl...

G'J,
OJ

"'0
::r
C)"

0
c .,.,.

"'0
c .,.,.
Q)
::I
a.
< a.:
CD
0

0
Cii"

"'0
ill
'<

~
0
a.
CD
Ul

D
N .._. ...

272 CJ Inside the Apple //e ------------------

graphics mode; some of them are listed in the references at the
end of this chapter.

The double-width high-resolution graphics mode has a pixel res
olution of 560 X 192, rather than the standard 280 x 192, and allows
a total of sixteen colors! These colors are the same ones that can
be displayed when using standard low-resolution graphics.

Turning on Double-Width High-Resolution
Graphics

Assuming that you have installed the jumper on the extended
80-column text card, it is relatively simple to activate the double
width high-resolution graphics mode. The first step is to turn on
pagel of high-resolution graphics mode as you would normally.
This can be done by executing the following sequence of instruc
tions:

STA $C050-TEXTOFF (enables graphics)
STA $C057-HIRESON (high-resolution)
STA $C053-MIXEDON (mixed graphics/text)

The next step is to enable the double-width mode by setting the
80COLON ($C00D) switch and then setting the SETAN3 ($C05E)
switch to enable the double-width graphics circuitry. As mentioned
earlier, SETAN3 turns on annunciator 3 on the lie's game I/0 con
nector. You can set these switches by executing these two instruc
tions:

STA $C00D-80COLON (sets double-width switch)
STA $C05E-SETAN3 (enables double-width graphics)

You can also turn on the same series of switches from Applesoft
by running the following program:

100 PRINT CHRH4> ;"PR#3": REM THIS SETS 80COLON
200 HGR : REM THIS SETS HIGH-RES GRAPHICS SWITCHES
300 POKE 49246,0: REM TURN ON AN3

Once the double-width graphics screen has been activated, the
next step is to draw something on it. This is easier said than done,
however, because the Applesoft high-resolution graphics com
mands work only with the standard 280-column screen. If you
attempt to use them, you will see rather strange effects, since only
the screen area in main memory will be used. For example, try
entering the Applesoft commands

HCOLOR=3
HPLOT 0,0 TO 279,0

If you were to do this for normal-width high-resolution graphics

----- 7 Character and Graphic Output and Video Display Modes c:::J 273

you would see a horizontal white line drawn across the top of the
screen. With double-width graphics enabled, however, the white
line is "broken" at forty different positions. The data bytes for these
positions are contained in auxiliary memory and are not dealt with
by Applesoft.

See the references at the end of this chapter for sources of pro
grams that support double-width high-resolution graphics.

Double-Width High-Resolution Graphics
Screen Memory Mapping

You will re&::all that when the 1/e is displaying double-width text
(that is, 80 cqlumns of text) or double-width low-resolution graph
ics, it interleaves the video RAM bytes in main memory with those
contained at the same ~ddresses in auxiliary memory. Well, dou
ble-width high-resolution graphics works in exactly the same way.
The region of memory from $2000 ... $3FFF in main memory is
interleaved with an 8K block of memory having the same addresses
on the extended 80-column text card in such a way that of the 80
consecutive bytes used to define the contents of one line (recall
that only 40 were required for standard high-resolution graphics),
the even ones (0, 2, 4, ... ,78) are found in auxiliary memory and
the odd ones in main memory. The mapping scheme used is sum
marized in Table 7-24..

Just as in standard high-resolution graphics mode, each of the
80 bytes corresponds to seven consecutive pixels on the screen. The
first pixel is controlled by bit 0, the next one by bit 1, and so on.
Bit 7 is not used.

The 80STORE switch enables you to select which of the two
$2000 ... $3FFF blocks you want to read from or write to. By setting
80STOREON (by writing to location $C001), the PAGE2 switches
can be used to select either the 8K block in main memory, by
accessing PAGE20FF ($C054), or the 8K block in auxiliary memory,
by accessing PAGE20N ($C055). As wehave warned before, always
ensure that interrupts are disabled before reading from or writing
to auxiliary memory like this, and always access PAGE20FF ($C054)
after you have finished doing so. This will prevent peripheral cards
from gaining control when the screenholes in main memory are
not available.

Note that there is a second page of double-width high-resolution
graphics that occupies a $4000 ... $5FFF in main and auxiliary
memory. It can be selected by setting 80STOREOFF, 80COLON
and PAGE20N. Use the RAMRD and RAMWRT switches to access
the appropriate half of the secondary page (see Chapter 8).

274 c=J Inside the Apple //e ------------------

Table 7-26. Bit patterns for the sixteen double-width high
resolution graphics colors.

Color

Black
Dark red
Dark blue
Purple
Dark green
Gray1
Medium blue
Light blue
Brown
Orange
Gray2
Pink
Green
Yellow
Light green
White

Bit Pattern

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Table 7-27. Applesoft high-resolution graphics commands.

Command

HGR

HGR2

HCOLOR=
HPLOT
DRAW

XDRAW

SHLOAD
ROT=
SCALE=

Description

Turns on page1 of high-resolution graphics in
mixed mode and clears the screen.

Turns on page2 of high-resolution graphics in
full-screen mode and clears the screen.

Selects the high-resolution color number.

Plots pixels and draws lines on the screen.

Draws a shape on the screen in the color set by
HCOLOR=.

Draws a shape on the screen using the comple
ment of the color already existing at each plotted
point.

Loads a shape table from cassette tape.

Sets the rotation factor used when drawing shapes.

Sets the scale factor used when drawing shapes.

----- 7 Character and Graphic Output and Video Display Modes [=:J 275

Double-Width High-Resolution Graphics Colors

When we discussed normal high-resolution graphics, we saw
how the lie interprets two adjacent pixels as one of four colors. Not
surprisingly, when double-width graphics are used, the //e inter
prets four adjacent pixels as one of sixteen different colors (2'4 = 16).
The 4-bit pixel patterns that give rise to these colors are set out in
Table 7-26. Since pixels are displayed on the video screen in the
reverse order that they appear in the video RAM data bytes, these
patterns must be reversed to obtain the corresponding bit patterns
that must be stored in memory to generate them.

Note that the high bit of each of the 80 bytes that is used to store
information for each line of double-width graphics is not used at
all-not even to affect the colors generated by the bits within that
byte (as it is in normal high-resolution graphics).

Built-In Support for High-Resolution Graphics

Applesoft contains several commands that are used to control
various aspects of the two standard high-resolution graphics screens.
These commands are summarized in Table 7-27.

The lie's system monitor does not support high•resolution graph
ics at all. The Applesoft ROM itself does, however, contain several

Table 7-28. Zero page locations used by the Applesoft
high-resolution graphics subroutines.

Address
Hex (Dec) Symbolic Name Description

$E0 (224) HHORIZ (low) Horizontal coordinate (0 ... 279).
(high)

$E2 (226) HVERT Vertical coordinate (0 ... 191).

$E4 (228) HMASK High-resolution color mask.

$E6 (230) HPAG High-resolution page designa-
tion. Set this byte to $20 for pagel
and to $40 for page2.

$E7 (231) SCALE Applesoft SCALE= factor for
shapes.

$F9 (249) ROT Applesoft ROT= factor for shapes.

276 c::J Inside the Apple //e ------------------

built-in subroutines that can be used from an assembly-language
program in order to draw points, lines, and shapes. These subrou
tines are set out in Table 7-29 and the zero page locations that they
use are set out in Table 7-28.

Note that these commands and subroutines do not support dou
ble-width high-resolution graphics at all.

Table 7-29. Applesoft ROM high-resolution graphics
subroutines.

Address
Hex (Dec) Symbolic Name Description

$F3D8 (62424) HGR2

$F3E2 (62434) HGR

$F457 (62551) HPLOT

$F53A (62778) HLIN

$F601 (62977) DRAW

$F65D (63069) XDRAW

$F6EC (63212) SETHCOL

Turns on high-resolution page2
(full-screen) and clears it to
black.

Turns on high-resolution pagel
(with 4lines of text) and clears
it to black.

Plots a colored dot at the po
sition given by A (vertical), Y
(horizontal high) and X (hori
zontal low).

Draws a line from the last
plotted dot to the position given
by Y (vertical), X (horizontal
high), and A (horizontal low).

Draws the shape whose data
area is pointed to by Y (high)
and X (low) using the rotation
factor in A. The shape is drawn
by inverting the existing screen
bits that are used by the shape.

Same as DRAW except that
when the shape is plotted, the
existing screen bits and the
shape bits are logically exclu
sive-ORed with each other to
determine the new value of the
screen bit.

Sets the active code to the value
of X (0 ... 7). These are the
eight colors defined by the Ap
plesoft HCOLOR = command.

----- 7 Character and Graphic Output and Video Display Modes c:::J 277

FURTHER READING FOR CHAPTER 7

Standard reference works ...
8@-Column Text Card Manual, Apple Computer, Inc., 1982.
Extended 8@-Column Text Card Supplement, Apple Computer, Inc.,

1982.
On changing the output link ...

G. Little, "Paged Printer Output for the Apple," Micro, October
1980, pp. 47-48. This article demonstrates how to change the
output link so that the format of printed output can be con
trolled.

On ProDOS and the output link ...
C. Fretwell, "Setting I/0 Hooks in ProDOS," Call-A.P.P.L.E., April

1984, p.39
On high-resolution graphics ...

B. Bishop, "Apple II Hires Picture Compression," Micro, Novem
ber 1979, p. 17.

L. Spurlock, "Understanding Hi-Res Graphics," Call -A.P.P.L.E.,
January 1980, p.6. An analysis of the high-resolution mapping
scheme.

B. Bishop, "Apple II Hi-Res Graphics: Resolving the Resolution
Myth," Apple Orchard, Fall 1980, pp. 7-10. Discussion of the
mapping of the high-resolution graphics screen.

E.C. So, "Picture Compression," Call-A.P.P.L.E., May 1982, p. 21.
R.T. Simoni, Jr., "A New Shape Subroutine for the Apple," Byte,

August 1983, pp. 292-309. A new method for drawing high
resolution shapes that leads to flicker-free animation.

On double-width graphics ...
R. Moore, "80-Column lie Low-Res Graphics," Call -A.P.P.L.E.,

July 1983, pp. 9-13. A set of subroutines supporting double
width low-resolution graphics is presented in this article.

D. Worth, "Hi-Res Double Play," Softalk, July 1983, pp. 120-126.
A description of the lie's double-width high-resolution graph
ics.

P. Baum and L. Roddenberry, "Applesoft Brushes for Double Hi
Res Art," Softalk, September 1983, pp. 82-99. Programs are
presented which support double-width high-resolution graph
ics.

A. Watson III, "True Sixteen-Color Hi-Res," Apple Orchard, Jan
uary 1984, pp. 26-46. An excellent discussion of the theory of
double-width high-resolution graphics. A set of assembly lan
guage driver programs are also presented which can be called
from Applesoft.

278 c::::::J Inside the Apple //e ------------------

Extended 8@-Column Text Card Supplement, Apple Computer, Inc.,
1982.

R.R. Devine, "Double Hi-Res Graphics I," Nibble, May 1984, pp.
81-96. Another detailed discussion of the double-width display
mode.

On hardware for alternate output devices ...
S. Ciarcia, "High-Resolution Sprite-Oriented Color Graphics,"

Byte, August 1982, pp. 57-80. This article describes how to use
sprite graphics on an Apple II.

R. Dahlby, "Polish Your Apple With a Luminance Board," Com
puters&- Electronics, November 1982, pp. 42-52. This article
presents construction details for a special video board for the
Apple II.

On video display theory ...
J. Hockenhull, "Video Interfacing," Call-A.P.P.L.E., June 1982,

pp. 9-13. A good discussion of the theory of video display tech
nology.

J. Mazur, "Hardtalk," Softalk, April 1983, pp. 215-225. A tech
nical analysis of the Apple II video display system.

J. Mazur, "Hardtalk," Softalk, May 1983, pp. 91-98. A technical
analysis of the Apple II video display system.

R.H. Sturges, Jr., "Double the Apple II's Color Choices," Byte,
November 1983, pp. 449-463. A good explanation of how the
Apple II generates colored images.

8
Memory Management

As we saw in Chapter 2, the 6502 microprocessor that controls
the lie is capable of addressing only 65536 (64K) different logical
memory locations. These locations have addresses that range from
$0000 to $FFFF. A standard lie, however, contains much more built
in internal physical memory locations than this and even more
can be added.

A detailed memory map of the lie was presented at the end of
Chapter 2. In summary, the memory that is internal to a "stand
ard" lie is as follows:

• 64 K of RAM memory on the motherboard
• 10K of ROM memory for Applesoft
• 2K of ROM memory for the standard system monitor
• 0.25K of I/0 memory.
• 3.75KofROM memory that contains extensions to the standard

system monitor, self-test subroutines, and 80-column support
subroutines

To this memory can be added an additional 1K if the standard
80-column text card is being used or 64 Kif the extended 80-column
text card is being used.

Finally, each peripheral card that is interfaced to the lie typically
adds another 2.25K of memory to the system (although some spe
cial memory cards can add much more than this). See Chapter 11
for a discussion of the memory used by peripheral cards.

Assuming that all the peripheral slots are being used and that
each peripheral card uses 2.25K of memory, a "fully loaded" Apple
lie system with an extended 80-column text card contains a total
of 159.75K of memory!

But hold on, we just said that the lie's 6502 microprocessor is
capable of addressing only 64K locations. How is all that extra
memory accessed? To answer this, you must first realize that you
can install as much memory in the lie as you want, as long as you

279

280 c=J Inside the Apple //e ------------------

can provide a way to ensure that there will never be more than
64K physical memory locations active at the same time and that
no two active memory locations will be associated with the same
address. Several soft switches are available on the //e that allow
you to easily select which one of those duplicated memory areas
is· to be active. The technique used to select memory in this way
is called "bank-switching."

In this chapter, we will be looking at the soft switches that the
1/e uses to control usage of its duplicated ROM and RAM areas,
and we will show how they can be used to take advantage of all
of the memory available on the //e.

BANK-SWITCHED ROM AREAS

The //e contains an internal ROM space that is mapped to ad
dresses $C100 ... $CFFF. These same addresses are used by mem
ory that is installed on peripheral cards plugged into one of the
lie's seven standard expansion slots (see Chapter 11). A memory
map of these alternate ROM areas is shown in Figure 8-1.

There are several soft switches that can be used to select which
of these different ROM areas is to be active at any given time.
These switches, and their corresponding status locations, are sum
marized in Table 8-1. In the next two sections, we will explain in
detail how to use these switches.

The INTCXROM Switches : Switching the
$C100 ... $CFFF Memory Space

The seven 256-byte pages of memory from $C100 to $C7FF on
the //e are normally reserved for use by memory contained on
peripheral cards that are connected to expansion slots 1 through
7, respectively (see Chapter 11). The memory associated with these
addresses is usually contained in ROMs located on the interface
cards themselves. For example, a typical printer card that is con
nected to slot 1 will contain a ROM chip that occupies the area of
memory from $CHI0 ... $ClFF.

Each card that is connected to an expansion slot can also make
use of a 2K memory space from $C800 ... $CFFF to hold programs
or data. This is called the peripheral-card expansion ROM space
and the memory needed to support it is also contained on the
peripheral card itself. Before a card can use its own expansion

---------------- 8 Memory Management c=J 281

$CFFF

$C800
$C700
$C600
$C500
$C400
$C300
$C200
$C100

PERIPHERAL-CARD
EXPANSION ROM

SLOT 7 PERIPHERAL ROM
SLOT 6 PERIPHERAL ROM
SLOT 5 PERIPHERAL ROM
SLOT 4 PERIPHERAL ROM
SLOT 3 PERIPHERAL ROM
SLOT 2 PERIPHERAL ROM
SLOT 1 PERIPHERAL ROM

t
PERIPHERAL-CARD ROM

80-COLUMN FIRMWARE
EXPANSION ROM

SELF-TEST
SUBROUTINES

80-COLUMN FIRMWARE
EXTENSION TO STANDARD

SYSTEM MONITOR

t
INTERNAL ROM

I• INTCXROMON ($C007) selects INTERNAL ROM from $C100 ... $CFFF

• INTCXROMOFF ($C006) and SLOTC3ROMON ($C00B) together select
PERIPHERAL-CARD ROM from $C100 ... $CFFF

• INTCXROMOFF ($C006) and SLOTC3ROMOFF ($C00A) together select
INTERNAL ROM from $C300 ... $C3FF and PERIPHERAL-CARD ROM
from $C100 ... $C2FF and from $C400 ... $C7FF. The space from
$C800 ... $CFFF in INTERNAL ROM is selected as soon as an address
in page $C3 is accessed and remains selected until an address in
page $C1, $C2, or $C4 ... $C7, or location $CFFF is accessed.

Figure 8-1. Alternate ROM areas from $C188 ... SCFFF.

ROM, it must first turn off all expansion ROMs and then turn its
own on; it can do this by first accessing memory location $CFFF
and then any address within its 256-byte ROM space. This pro
cedure must be followed to ensure that only the one expansion
ROM space on the card being used is active.

The lie also contains built-in ROM memory that shares the same
addresses used by memory residing on the peripheral cards: $CleJeJ
... $CFFF. This ROM contains extensions to the system monitor,
self-test subroutines, and subroutines that support the 80-column
text display and is usually referred to as the lie's "internal ROM"
to distinguish it from peripheral-card ROM.

The INTCXROM switches are used to control whether the in
ternal ROM area from $CleJeJ ... $CFFF is to be selected for use or
whether the ROMs on any peripheral cards installed are to be
selected instead. If you write to INTCXROMOFF ($CeleJ6), the pe
ripheral card ROM areas will be selected (subject to the state of
the SLOTC3ROM switches that control the two spaces from $C3eJeJ

282 c:::::J Inside the Apple //e ------------------

Table 8-l. Bank-switched ROM soft switches and status
locations.

Address
Hex (Dec) Symbolic Name Description

$C006 (49158) INTCXROMOFF Select slot ROM from
$C100-$CFFF

$C007 (49159) INTCXROMON Select internal ROM from
$C100-$CFFF

$C015 (49173) INTCXROM Status: >=$80 is ON,
<$80 is OFF

$C00A (49162) SLOTC3ROMOFF Select internal ROM from
$C300-$C3FF

$C00B (49163) SLOTC3ROMON Select slot ROM from
$C300-$C3FF

$C017 (49175) SLOTC3ROM Status: > = $80 is ON,
<$80 is OFF

Note: The SLOTC3ROM switches have no effect if INTCXROM is ON .

. . . $C3FF-see below). If you write to INTCXROMON ($C007),
the internal ROM will be selected. INTCXROM ($C015) can be
examined at any time to determine the status of the INTCXROM
switch. If the number read from this location is greater than 127,
then internal ROM is enabled; otherwise, peripheral-card ROM is
enabled.

If you want to call any of the subroutines that reside in internal
ROM or if you simply want to disassemble them using the moni
tor's "L" command, you must first enable internal ROM by setting
the INTCXROMON switch. You can easily do this by entering the
system monitor from Applesoft with a CALL -151 command, and
then entering the command

C007:0

To deactivate internal ROM, enter the command

C006:0

When internal ROM is deactivated, the peripheral-card ROM
will be enabled, allowing you to examine or use the ROMs residing
on peripheral cards.

The internal ROM from $C100 ... $CFFF is normally used only
when performing standard input/output operations with routines
contained in the system monitor that make use of subroutines

----------------- 8 Memory Management c:=J 283

contained in the internal ROM. These routines automatically turn
on INTCXROM just before calling the subroutines and usually turn
it off right after the subroutine finishes. (INTCXROM will not be
turned off if, for whatever reason, it was already on when the
subroutine was called.)

The SLOTC3ROM Switches : Switching the
$C300 . . . $C3FF Memory Space

When the INTCXROM switch is OFF, the SLOTC3ROM switches
can be used to control which of two ROM areas is to occupy the
memory space from $C300 ... $C3FF. There are two choices: the
ROM that is contained on a peripheral card plugged into slot 3,
or the internal ROM that contains subroutines that support the
Apple 80-column text card.

SLOTC3ROMON ($C00B) is used to turn on the peripheral-card
ROM memory, and SLOTC3ROMOFF ($C00A) is used to select
internal ROM instead. The status of the switch is contained at
SLOTC3ROM ($C017). If the number read from this location is
greater than 127, then the peripheral-card ROM is currently active;
otherwise, the internal ROM is active.

The default setting of the SLOTC3ROM switch (that is, its setting
when the //e is first turned on or when it is reset) depends on
whether an 80-column text card is installed in the auxiliary slot.
If the auxiliary slot is being used, then SLOTC3ROM will initially
by turned off so that the internal80-column firmware will be avail
able. If the auxiliary slot is vacant, however, SLOTC3ROM will
initially be turned on and the ROM on a peripheral card in slot 3
will be available. Thus, SLOTC3ROM automatically takes on the
setting that is most appropriate in the circumstances.

Since SLOTC3ROM is usually off when an 80-column text card
is installed, internal ROM from $C300 ... $C3FF will be selected,
and so the ROM on a peripheral-card installed in slot 3 will not
be active. If, however, SLOTC3ROM is turned on by writing to
SLOTC3ROMON ($C00B), then the peripheral-card ROM will be
activated and a PR#3 command can be used to pass control to it
instead of the firmware that supports the 80-column text card.
Similarly, if no 80-column text card is installed, then even though
SLOTC3ROM is initially on, the internal 80-column firmware can
be activated by writing to SLOTC3ROMOFF ($C00A) and then en
tering a PR#3 command. This allows you to enter the special 40-
column mode supported by the 80-column firmware even if the 80-
column text card is not installed.

284 c=:l Inside the Apple //e ------------------

16K BANK-SWITCHED RAM AflEAS

The //e comes with 64K of internal RAM memory built in to its
motherboard. This memory, however, is not mapped to one con
tiguous area of memory encompassing the entire 64K space that
the 6502 is capable of addressing. The first 48K of this memory
space corresponds to the contiguous block of memory from $0000
... $BFFF but the remaining 16K of memory, which is called "bank
switched RAM," corresponds to one 8K region of memory from
$E000 ... $FFFF and two 4K regions of memory from $D000 ...
$DFFF. The addresses used by bank-switched RAM are exactly the
same as those used by the internal Applesoft ROM and the standard
system monitor ROM. A memory map of the alternate internal
memory areas from $D000 ... $FFFF is shown in Figure 8-2.

The 16K bank-switched RAM on the //e traces its roots to the
earlier Apple II or Apple II Plus models. On those models, the 16K
of bank-switched RAM was introduced to the system by inserting
a special 16K memory expansion card into slot 0 of those systems
(the //e does not have a slot 0). The original reason for adding this
memory was to provide needed space for the extremely large Apple
Pascal Operating System. The extra memory, however, can also be
used for conventional data and program storage. In fact, ProDOS
occupies much of bank-switched RAM.

As usual, the //e reserves several I/0 memory locations for use
as soft switches to control whether bank-switched RAM or the

$FFFF

$F800

$E000 1---------1

(THERE ARE TWO
$Dx BANKS

$0000 '------:-+ __ ____.
INTERNAL

BANK-SWITCHED
RAM

STANDARD
SYSTEM MONITOR

APPLESOFT
INTERPRETER

t
INTERNAL ROM

Figure 8-2. Alternate internal memory areas from $0888 . .. SFFFF.

------------------ 8 Memory Management c=J 285

corresponding internal ROM space is to be active. As we will see
in the following section, we can even set these switches in such a
way that the RAM area will be active for write operations at the
same time that the corresponding ROM area is active for read
operations, and vice versa.

Using Bank-Switched RAM

As we have seen, the 16K of bank-switched RAM on the lie's
motherboard is made up of one 8K area that is mapped to the
addresses $Eelelel ... $FFFF and two different 4K areas that are
mapped to the addresses $Delelel ... $DFFF. These 4K areas are .
commonly referred to as "banks."

Unfortunately, there are two schools of thought on how to refer
to these two 4K memory banks: sometimes they are referred to as
banks 0 and 1 and sometimes as banks 1 and 2. For our purposes,
we will use the latter nomenclature.

The sixteen I/0 addresses in the range $Cel80 $Cel8F are used
as soft switches to control the operation of the bank-switched RAM.
Switches are available to select which of the two 4K banks is to
be used, to enable the bank-switched RAM for reading, for writing,
or for both reading and writing. Note that the bank-switched RAM
does not have to be enabled for reading and writing at the same
time. This means that you can be writing to the RAM area while
running a program that uses subroutines in the ROM that occupies
the same memory locations (that is, subroutines in Applesoft and
the system monitor).

To activate the particular mode of operation that is desired, it
is necessary to select the appropriate soft switch address and then
perform any kind of read operation at that address, for example,
an LDA, LDY, LDX, or BIT instruction in assembly language or a
PEEK from Applesoft.

The addresses that are to be used to control the operation of
bank-switched RAM are of the form $Cel8X, where X represents
the four least-significant bits of the address. Figure 8-3 indicates
the general function of each of these bits; only three of these bits
are used.

The functions of each of the three active bits are as follows:

BANK-SELECT BIT (bit 3J. This bit indicates which of the
two $Delelel-$DFFF memory banks is to be used. If the bit is set to
1' then bank 1 will be selected; if it is cleared to e, then bank 2
will be selected.

286 c:::::::J Inside the Apple //e ------------------

1/0 Address: $C08X

BANK-
X= SELECT UNUSED

bit 3 bit 2

1 =bank 1

0= bank 2

READ-
SELECT

bit 1

1
0
1
0

WRITE-
SELECT

bit 0

1
1
0
0

- read RAM/write RAM
- read ROM/write RAM
- read ROM/write ROM
- read RAM/write ROM

Figure 8-3. Bank-switched RAM control bits.

READ-SELECT BIT (bit 1). This bit, in conjunction with the
write-select bit, indicates the read status of bank-switched RAM.
If the bit is set equal to the value of the write-select bit, then
locations in bank-switched RAM will be read from when an address
in the range $D000 ... $FFFF is specified; otherwise, the corre
sponding locations in ROM will be used.

WRITE-SELECT BIT (bit rzn. This bit indicates the write sta
tus of bank-switched RAM. If the bit is 1, and the l/0 address is
read twice in succession, then locations in bank-switched RAM wfll
be written to when an address in the range $D000 ... $FFFF is
specified; otherwise, the corresponding locations in ROM will be
used.

There are eight different ways of turning on and off these three
control bits, and each of the eight different addresses generated
controls bank-switched RAM in a unique way. The function of each
of the eight unique bank-switched RAM soft switches is summa
rized in Table 8-2.

Reading the Status of Bank-Switched RAM
Soft Switches

Any program that changes the soft switches that control the state
of bank-switched RAM should properly restore them to their orig
inal states when the program ends. (If it doesn't, the next program
executed may not perform properly.) This can easily be done on
the //e because there are two 110 status locations, called BSRBANK2
($C011) and BSRREADRAM ($C012), that can be read to determine
the current state of the bank-switched RAM switches. These two
locations are summarized in Table 8-3.

8 Memo~y Management c=J 287

Table 8-2. Bank-switched RAM soft switches.

Active $Dx Write to
Address Symbolic Name Bank Read From RAM?

$C080 READBSR2 2 RAM No
$C081 WRITEBSR2 2 ROM Yes*
$C082 OFFBSR2 2 ROM No
$C083 RDWRBSR2 2 RAM Yes*
$C088 READBSR1 1 RAM No
$C089 WRITEBSR1 1 ROM Yes*
$C08A OFFBSR1 1 ROM No
$C08B RDWRBSR1 1 RAM Yes*

Note: Addresses $C084 ... $C087 and $C08C ... $C08F duplicate the func
tions of addresses $C080 ... $C083 and $C088 ... $C08B, respec
tively.

*These locations must be read twice in succession to write-enable bank
switched RAM.

Table 8-3. Bank-switched RAM status locations.

Address
Hex (Dec) Symbolic Name

$C011 (49169) BSRBANK2

$C012 (49170) BSRREADRAM

Description

If this location is > = $80,
then Bank2 of bank
switched RAM has been se
lected; if not, Bank1 has
been selected.

If this location is > = $80,
then bank-switched RAM
has been read-enabled; if
not, the corresponding
ROM locations are ena
bled.

A program that saves the two bank-switched RAM status values
and then uses them to restore the original state of bank-switched
RAM would look something like this:

LDA BSRBANK2 ;Save bank status
STA BANKSAVE
LDA BSRREADRAM ;Save read-enable status

288 c=J Inside the Apple //e ------------------

SETROM

SETBANK1

SETROM1

STA READSAVE

<the program fiddles with
bank-switched RAM here>

LDA BANKSAVE ;Get bank
BPL SETBANK1 ;Branch if

status
bank 1

LDA BSRREADRAM ;Get read-enable
selected
status

BPL SETROM ;Branch if ROM selected
LDA $COB3 ;Read RAM, bank2
LDA $COB3 ; <write-enable>
RTS
LDA $COB1 ;Read ROM, bank2
LDA $COB1 ; (write-enable)
RTS
LDA BSRREADRAM ;Get read-enable status
BPL SETROM1 ;Branch if ROM selected
LDA $COBB ;Read RAM, bank 1
LDA $COBB ; <write-enable)
RTS
LDA $COB9 ;Read ROM, bank 1
LDA $COB9 ; <write-enable)
RTS

Since there is no status location available for determining the
write-enable status of bank-switched RAM, you always have to
"guess" what it was. The best guess is that it was write-enabled
because even if your guess is wrong, no program should be trying
to write to bank-switched RAM without first write-enabling it any
way. In keeping with this, those soft switches that write-enable
bank-switched RAM were used in the above example (remember
that they must be read twice in succession).

Auxiliary Bank-Switched RAM

If you have an extended 80-column text card installed in the
lie, then another 16K bank-switched RAM area is available to the
system. This time, however, the memory resides in auxiliary mem
ory on the card itself and not in the lie's internal memory.

The same soft switches that are used to control the bank-switched
RAM area on the motherboard are used to control the bank-switched
RAM area in auxiliary memory. Before you can read to or write
from this part of auxiliary memory, however, you will also have
to use another set of switches that control, among other things,
which of the two bank-switched RAM areas is to be used. These
switches are ALTZPOFF ($C008) and ALTZPON ($C009) and are
described in Table 8-4. The status of the switch is held in ALTZP
($C016).

-----------------8 Memory Management r=:J 289

Table 8-4. Auxiliary bank-switched RAM soft switches.

Address
Hex (Dec) Symbolic Name

$C008 (49160) ALTZPOFF

$C009 (49161) ALTZPON

$C016 (49174) ALTZP

Description

Enable the main bank
switched RAM+ main zero
page/stack

Enable auxiliary bank
switched RAM + auxiliary
zero page/stack

States: > = $80 is ON, <$80
is OFF

The AL TZP switches are used not only to select which of the two
bank-switched RAM areas is to be used, but also to select which
of two 6502 zero pages ($0 ... $FF) and stacks ($100 ... $1FF) are
to be used. As you might expect, the lie keeps its "spare" zero page
and stack in auxiliary memory and the "original" ones in main
memory. This means that as soon as the ALTZPON switch is set,
the main zero page and stack are disengaged and unless the pro
gram that is running realizes this and adjusts for it, it might just
end up in the twilight zone.

To avoid such problems, the program must always set ALT
ZPOFF as soon as it is finished dealing with auxiliary bank-switched
RAM but after it has returned from all subroutines that it has called
since it first set ALTZPON. The return addresses for these subrou
tines are stored in the auxiliary stack and not the main stack and
will be lost when the main stack is restored. For similar reasons,
the program must never return from a subroutine that was called
before ALTZPON was set until ALTZPOFF is restored. Further
more, before setting ALTZPON, the program should move to a safe
part of memory all zero page locations that it will be using while
ALTZP is ON. Once ALTZP is ON, it can move them into the same
locations in the auxiliary zero page. It should repeat this process
when going in the other direction (that is, from ALTZPON to AL
TZPOFF) so that no zero page information is lost.

Using Bank-Switched RAM

If you want to store information (programs or data) in bank
switched RAM, then you must first write-enable the portion of
bank-switched RAM that you want to write to, store the infor-

290 CJ Inside the Apple //e ------------------

mation at the desired locations in the $D000 ... $FFFF address
space, and then write-protect bank-switched RAM. The program
ming sequence to use to do this would be as follows:

LOA $C081 ;Two accesses will write-enable
LOA $C081 ; Bank-switched RAM (bank 2)
<store information>
LOA $C082 ;Write-protect and set ROM read

LOA

To read information (programs or data) contained in bank
switched RAM, or to execute programs that reside there, you must
first enable bank-switched RAM for reading, read the information
or execute the program, and then re-enable reading of the ROMs.
The programming sequence would be as follows:

$COSO ;reqd-enable bank-switched RAM (bank 2)
(read information)
LOA $C082 ;re-enable ROM read

The latter method can be used to execute machine-language pro
grams only. The reason that Applesoft programs cannot be made
to execute while residing in bank-switched RAM is that the place
where the program is stored and the Applesoft ROM area must be
active at the same time and this just isn't possible because bank
switched RAM and the Applesoft interpreter use the same ad
dresses.

Note that if you are running assembly-language programs that
reside in bank-switched RAM, you must make absolutely sure that
those programs do not use subroutines contained in the internal
ROMs (that is, those contained in Applesoft or the system monitor).
The reason is simple: as far as the lie is concerned, as soon as you
read-enable bank-switched RAM, the lie doesn't think the ROMs
exist and so the system will "hang" when it attempts to execute a
ROM subroutine. If you really must use these ROM subroutines,
you must first execute a JSR instruction to a location in normal
RAM that contains code that first deselects bank-switched RAM
for reading and selects the ROMs ($C082), calls the ROM subrou
tine, and then read-enables bank-switched RAM ($C080) and exe
cutes an RTS instruction to return to the program in bank-switched
RAM.

To avoid these software complexities, you could move the ROM
code that you need to use into bank-switched RAM by write-ena
bling bank-switched RAM and then performing a memory move
from the ROMs to the same memory locations in bank-switched
RAM. When this is done, the program can call the "pseudo-ROM"
locations directly. For example, to move the system monitor to

------------------ 8 Memory Management c:=:J 291

CALL
C081

bank-switched RAM, you would execute the following commands,
starting from Applesoft direct mode:

-151 ;Enter the monitor
;Two accesses will write-enable

C081
F800<F800.FFFFM
C082

; the RAMcard <Read ROM>
;Move the monitor to the BSR
;Write-protect and set ROM read

3DOG ;Return to Applesoft

By the way, you can easily customize the system monitor by first
saving it to disk by entering the DOS command "BSAVE MONI
TOR,A$F800,L$800" and then BLOADing it into normal RAM (say
beginning at location $800), making the desired changes, and then
moving the "new" monitor to bank-switched RAM using the method
just described (except that the monitor move command will now
be "F800<800.FFFM"). In a similar manner, you could even modify
Applesoft to suit your requirements!

You should bear in mind one more important consideration when
using bank-switched RAM. Do not attempt to deselect bank-switched
RAM for reading while running a program that is contained in
bank-switched RAM. If you try to do this, the motherboard ROMs
will immediately be enabled and your program, which is still ex
ecuting at the same address in RAM, will suddenly enter limbo
because its code has been "replaced" by the internal ROM code.
Any deselection of bank-switched RAM must be done by a program
segment that resides in "normal" RAM (from $0000 ... $BFFF).

Bank-Switched RAM and ProDOS

If you are using Pro DOS, as opposed to DOS 3.3, then you should
not try to use the main bank-switched RAM area for data or pro
gram storage. The reason for this is simple: ProDOS uses this area
of memory to hold its operating system subroutines. If you over
write this area, you will almost certainly crash the system.

AUXILIARY RAM MEMORY AREA

"Auxiliary" memory is that memory contained on an 80-column
text card that has been inserted into the lie's auxiliary connector.
There are currently two such cards available for the 1/e, the stand
ard 80-column text card and the extended 80-column text card. As
we saw in Chapter 7, both of these cards contain a speciallK area
of memory that is needed to support the lie's special 80-column

292 c=:J Inside the Apple //e ------------------

text display. The extended 80-column text card, however, also con
tains an additional63K of memory; the entire 64K of RAM memory
on the extended card is mapped to addresses in exactly the same
way as main RAM memory. In the following sections, we will be
describing in detail how to use the auxiliary memory on the ex
tended 80-column text card.

There are several soft switches that are used to control auxiliary
memory. We have already discussed some of these in Chapter 7,
when we looked at how to control the 80-column text display and
double-width graphics displays. In addition, in the previous sec
tion, we saw that the upper 16K of auxiliary memory is functionally
identical to main memory's bank-switched RAM and can be se
lected or deselected by making use of the ALTZPON and ALTZPOFF
switches.

In this section, we will examine all the other soft switches that
control auxiliary memory and elaborate further on the ones that
have previously been discussed.

Using Auxiliary Memory

There are three main groups of switches that control the status
of auxiliary memory. These are the ALTZP switches ("ALTernate
Zero Page"), the RAMRD ("RAM ReaD") switches, and the RAMWRT
("RAM WRiTe") switches; they are summarized in Table 8-5.

The AL TZP Switch

We briefly discussed ALTZP earlier in this chapter when we
looked at the bank-switched RAM contained in auxiliary memory.
The ALTZP switches control two blocks of memory that are du
plicated in main and auxiliary memory. First, they are used to
select whether the 6502 zero page and stack areas ($0000 ... $01FF)
in main internal memory or in auxiliary memory are to be used.
Second, they are used to select whether main-memory bank-switched
RAM or auxiliary-memory bank-switched RAM is to be used.

The ALTZPON ($C009) switch is used to select auxiliary memory
and the ALTZPOFF ($C008) switch is used to select main memory.
The current status of this switch can be determined by reading
ALTZP ($C016); if the value read from this location is greater than
127, then ALTZP is ON; otherwise it is OFF. Note that you must
write to the ALTZPON and ALTZPOFF switches in order to use

8 Memory Management c:=J 293

Table 8-5. Auxiliary memory soft switch and status
locations.

Address
Hex (Dec) Symbolic Name Description

$C002 (49154) RAMRDOFF Read main memory
from $200-$BFFF

$C003 (49155) RAMRDON Read aux. memory from
$200-$BFFF

$C013 (49171) RAMRD Status: > = $80 is ON,
<$80 is OFF

$C004 (49156) RAMWRTOFF Write main memory
from $200-$BFFF

$C005 (49157) RAMWRTON Write aux. memory from
$200-$BFFF

$C014 (49172) RAMWRT Status: > = $80 is ON,
<$80 is OFF

$C008 (49160) ALTZPOFF Select main memory
from $0-$1 FF and
enable main 16K bank
from $D000-$FFFF

$C009 (49161) ALTZPON Select aux. memory
from $0-$1FF and
enable aux. 16K bank
from $D000-$FFFF

$C016 (49174) ALTZP Status: > = $80 is ON,
<$80 is OFF

them. Figure 8-4 indicates which memory areas are switching
whenever the ALTZP switches are written to.

As was mentioned earlier, great care must be taken when using
the ALTZP switches to ensure that vital zero page and stack in
formation is not "lost." All 6502 operations that affect the stack
(this includes PHA, PLA, PHP, PLP, JSR, and RTS instructions) use
the stack that is currently selected by ALTZP, which is not nec
essarily the stack in main memory. So, if ALTZP is on and infor
mation is stored on the stack in auxiliary memory, don't expect it
to be on the stack in main memory when ALTZP is turned off.

Keep in mind that it is extremely important that the value of
the 6502 stack pointer be saved before changing ALTZP and then
restored when ALTZP is changed to its original state. If this is not
done and the stack pointer is changed while in the other state, then

294 c=:J Inside the Apple //e ------------------

$FFFF

$E000

$0000
$BFFF

$4000

$2000

$0800

$0400
$0200

$0100

$0000

HIGH-RES
PAGE1 RAM

TEXT PAGE1
RAM

~~MAIN-AUXILIARY SWITCHING

D NOT SWITCHING

Figure 8-4. The effect of switching ALTZP.

the program will become hopelessly confused and will crash. The
following program segment will do the trick:

TSX
STX SAVESP
STA ALTZPDN

<execute instructions>

STA ALTZPOFF
LOX SAVESP
TXS

;Put stack pointer in X
; and save it somewhere in memory.
;Turn on ALTZP

;Turn off ALTZP
;Get original stack pointer in X
; and restore it.

Any zero page locations that need to be used after ALTZP has
been changed will have to be duplicated in the other portion of

----------------- 8 Memory Management [==:J 295

memory before they can be properly used. To do this, it is necessary
to move the contents of zero page into a part of memory that the
ALTZP switches do not affect, say $200 ... $2FF, set the appro
priate ALTZP switch, and then move this area of memory back
down into the new zero page. This process should be repeated when
setting ALTZP back to its original position.

The RAMRD and RAMWRT Switches

The RAMRD switches are used to control whether read opera
tions are to use the memory locations from $200 ... $BFFF in main
memory or the same locations in auxiliary memory. The RAMWRT
switches control write operations for the same area of memory.

If RAMRDON ($C003) or RAMWRTON ($C005) is selected, and
the 80STOREOFF ($C000) switch is active, then the entire block
of auxiliary memory from $200 ... $BFFF will be selected for read
ing or writing, respectively. If RAMRDOFF ($C002) or RAM
WRTOFF ($C004) is selected, then main memory will be selected
for reading or writing, respectively, instead. The memory areas
that are switched by RAMRD or RAMWRT in each of three different
situations are summarized in Figure 8-5.

The area of memory that is affected when the RAMRD and
RAMWRT switches are used is slightly different if the switching
occurs when 80STOREON ($C001) is active. As you will recall from
Chapter 7, the 80STORE switches are used to define the effect of
the lie's PAGE2 switches. If 80STORE is ON, then PAGE20N ($C055)
and PAGE20FF ($C054) are used to select whether the text screen
video RAM page ($400 ... $7FF) in auxiliary or main memory is
to be selected. In addition, if HIRESON ($C057) is active, then the
PAGE2 switches will also select whether the high-resolution graph
ics screen video RAM page ($2000 ... $3FFF) in auxiliary or main
memory is to be selected. The important point to note is that when
ever 80STORE is ON, the PAGE2 switches take priority over the
RAMRD and RAMWRT switches and so these latter two switches
cannot be used to control which of the video RAM areas are active.
The effect of switching PAGE2 with 80STOREON is summarized
in Figure 8-6.

Auxiliary Memory Support Subroutines

The lie has two useful subroutines contained in its system mon
itor ROM area that facilitate the use of auxiliary memory. These
subroutines are called AUXMOVE ($C311) and XFER ($C314).

296 [:=J Inside the Apple //e -----------------

$FFFF

BANK
SWITCHED

RAM

BANK
SWITCHED

RAM

BANK
SWITCHED

RAM

$E000 1---------1

(THERE ARE TWO
$Dx BANKS)

$0000 .__ ___ ____J

(THERE ARE TWO
$Dx BANKS)

(THERE ARE TWO
$Dx BANKS)

$BFFF

$4000

$2000

$0800

$0400

$0100
6502 STACK

ZERO PAGE

6502 STACK

ZERO PAGE

6502 STACK

ZERO PAGE
$0000 L....-..------1

with ...

80STOREOFF
with ...

80STOREON
HIRESOFF

with ...

80STOREON
HIRESON

Ill MAIN-AUXILIARY SWITCHING

0 NOT SWITCHING

Figure 8-5. The effect of switching RAMWRT or RAMRD.

AUXMOVE ($C311)-Transferring data to
and from auxiliary memory

AUXMOVE is used to transfer blocks of data contained within
the memory range $200 ... $BFFF from main memory to auxiliary
memory or vice versa. Before using this subroutine, six locations
in zero page must be set so that they hold the parameters of the
block move. These are summarized in Figure 8-7.

The beginning address of the block to be moved must be stored
at locations AlL ($3C) and AlH ($3D) and the ending address at

---------------- 8 Memory Management~ 297

$FFFF
BANK

SWITCHED
RAM

$E000 r-------t
(THERE ARE TWO

$Dx BANKS)
$0000 L--------1

$BFFF

BANK
SWITCHED

RAM

(THERE ARE TWO
$Dx BANKS)

6502 STACK

ZERO PAGE

with ...

80STOREON
HIRESON

MAIN-AUXILIARY SWITCHING

D NOT SWITCHING

Figure 8-6. The effect of switching PAGE2.

A2L ($3E) and A2H ($3F). Finally, the destination address must be
stored at A4L ($42) and A4H ($43). As is usually the case on the
1/e, the low-order part of each address is stored in the first byte of
each zero-page pair.

The state of the 6502 carry flag is used to tell AUXMOVE the
direction of the block move. If the carry flag is set, then the move
will be performed from main memory to auxiliary memory. If it
is clear, the move will take place in the opposite direction. The
state of the carry flag can be set by using the 6502's CLC (clear
carry) and SEC (set carry) instructions. There is no simple way,
however, of setting these flags using Applesoft commands; the best

298 c::J Inside the Apple //e ------------------

I Source Block

i A1LIA1H
. ($3C/$3D)

I •
i A2L/A2H

($3E/$3F)

Destination Block

i A4L/A4H
($42/$43)

Carry Flag Set (1) Move from Main to Auxiliary memory
Carry Flag Clear (0): Move from Auxiliary to Main memory

Figure 8-7. AUXMOVE l$C311J subroutine parameters.

that can be done is to call a short machine-language subroutine
that clears or sets the carry flag before calling AUXMOVE.

The Applesoft program in Table 8-6 shows how you might trans
fer an area of memory between main and auxiliary memory. It
saves a main-memory high-resolution graphics screen to auxiliary
memory and then brings it back again.

The program first installs a short four-byte machine-language
program beginning at location 768 ($300) by POKEing into mem
ory those DATA statement values that appear in lines 120 and 130.
These values define the following simple program:

SEC
JMP AUXMOVE

The program then turns on high-resolution graphics and draws
a diagonal line on it before setting up the parameters for the block
move. In this case, the area of memory to be moved is $2000 ...
$3FFF and it will be moved to the area beginning at $4000 in
auxiliary memory. (You shouldn't try to move it to $2000 ... $3FFF
in auxiliary memory because if the 80STORE switch is ON-and
it will be if the 80-column firmware is being used-and high
resolution graphics are being displayed, then the RAMRD and
RAMWRT switches that AUXMOVE uses when performing the
transfer will not affect this area of memory and no transfer will
take place.)

After the screen has been saved to auxiliary memory, you can
press a key to clear the screen, and then press another key to restore
the line that was drawn on the screen. The line is restored by simply
moving the 8K of screen memory that was saved in auxiliary mem
ory back into main memory and not simply by redrawing the line.

To transfer a block of memory in the opposite direction, the first
instruction in the four-byte machine-language subroutine must be
changed from SEC to CLC. This is done in line 270 by POKEing
24 into location 768. The number 24 is the value of the CLC in
struction.

-------------- 8 Memory Management c=:::J 299

Table 8-6. AUXMOVE. A program to move data between
main and auxiliary memory.

0 REM "AUXMDVE" DEMO
100 PRINT CHR$ <4>;"PR#3"
110 FOR I = 768 TO 771: READ X: POKE

I,X: NEXT
120 DATA 56: REM "SEC"
130 DATA 76,17,195: REM "JMP $C3

1 1 II
140 HGR : HCDLDR= 3: HPLOT 10,10

TO 150,150
150 HOME : VTAB 22: PRINT TAB<

17>;"MAIN <---> AUXILIARY ME
MDRY TRANSFER DEMO"

160 HTAB 2: VTAB 23
170 -PRINT "PRESS ANY KEY TO SAVE

THE SCREEN IN AUXMEM: ";: GET
A$

180 REM SET UP THE PARAMETERS OF
THE MOVE:

190 POKE 60,0: POKE 61 , 32: REM F
ROM $2000

200 POKE 62,255: POKE 63,63: REM
THROUGH $3FFF

210 POKE 66,0: POKE 67,64: REM T
0 $4000 <AUX>

220 CALL 768: REM PERFORM THE MD
VE

230 HTAB 2: VTAB 23: CALL - 958
240 PRINT "PRESS ANY KEY TO CLEA

R THE SCREEN: ";: GET A$: HGR
250 HTAB 2: VTAB 23; CALL - 958
260 PRINT "PRESS ANY KEY TO REST

ORE THE SCREEN FROM AUXMEM:
";: GET A$

270 POKE 768,24: REM PUT IN A "C
LC"

280 REM SET UP THE PARAMETERS OF
THE MOVE:

290 POKE 60,0: POKE 61,64: REM F
ROM $4000

300 POKE 62,255: POKE 63,95: REM
THROUGH $5FFF

310 POKE 66,0: POKE 67,32: REM T
0 $2000 <MAIN>

320 CALL 768: REM PERFORM THE MD
VE

300 c:::::J Inside the Apple //e ------------------

XFER ($C314J-Transferring control to a
program from main or auxiliary memory

XFER is used to transfer control to a program in either main or
auxiliary memory and, at the same time, to select which stack and
zero page is to be used when the new program takes over. This is
done by setting up certain parameters and executing a JMP Uump)
instruction to XFER at $C314.

As with AUXMOVE, certain parameters and 6502 flags must be
set up before XFER is called. These are summarized in Table 8-7.
First of all, the address of the program that is going to take control
must be placed at locations $3ED and $3EE (low-order byte first).
Then, the carry flag must be adjusted to indicate the direction of
transfer: it must be set (1) if control is being transferred from a
program in main memory to a program in auxiliary memory and
clear (0) if transferring control in the reverse direction. Finally, the
6502 overflow flag must be adjusted to indicate which of the two
zero pages and stacks the new program is to use: if it is set (1),
then the auxiliary zero page and stack will be used and if it is clear
(0), then the main zero page and stack will be used.

The CLV (clear overflow) instruction can be used to clear the
6502 overflow flag to zero. There is no similar command, however,
that can be used to set the overflow flag to one. One method of
forcing the overflow flag to one is to use the BIT instruction to test
any memory location that holds a byte that has a "1" in bit 6. A
convenient location to use is $FF58 because there is an RTS in
struction located there and it has an opcode value of $60.

Of course, before you transfer control to a program in the other

Table 8-7. XFER ($C314) subroutine parameters.

Parameter Description

Transfer address $3ED/$3EE (low-order byte first). This contains
the starting address of the program to which
control is to be transferred.

Carry flag Carry set (1) means "transfer from main to aux
iliary memory." Carry clear (0) means "transfer
from auxiliary to main memory~"

Overflow flag Overflow set (1) means "use auxiliary stack and
zero page." Overflow clear (0) means "use main
stack and zero page."

----------------- 8 Memory Management CJ 301

memory area, you had better make sure that the program has been
loaded there. This is easily done for programs residing in main
memory but is a bit more tricky for those residing in auxiliary
memory. The easiest way to load a program into auxiliary memory
is to use the AUXMOVE subroutine.

Note that the same concerns that were raised about the stack
and the stack pointer when discussing the ALTZP switches apply
to the use of XFER. It is good practice to save the stack pointer
immediately before jumping to XFER and then to restore it if and
when a reverse transfer is made. In addition, if the two programs
are both using the same stack, care must be taken to avoid over
writing any information that the other program has left on the
stack. This is most easily done by saving the whole stack when
control is transferred and then restoring it just before returning to
the calling program. Alternately, the two programs should each
use a different stack; however, this cannot be done without using
two zero pages as well and this may be inconvenient.

Running Co-Resident Programs

As we have seen, the 64K of RAM memory on the //e's extended
80-column text card is virtually a mirror image of the 64K of RAM
on the motherboard. Both of these memory spaces span exactly
the same logical addresses, each has its own 6502 stack and zero
page, and each has a 16K area of bank-switched RAM. One im
portant area of difference, however, lies in the use of locations $400
... $7FF. When in 40-column text mode, only these locations in
main memory are used to define the video display; the same lo
cations in auxiliary memory have no effect on the video display.
When the SO-column display is active, locations $400 ... $7FF in
main memory define the odd-numbered columns in the display
while the same locations in auxiliary memory define the even
numbered columns.

The similarities between these two 64K spaces are great enough,
however, that it is conceivable that different programs could be
loaded into each space and then run independently of one another
(well, almost independently of one another). After all, since each
program can have its own stack and zero page, there is not a strong
temptation for either program to interfere with the other's use of
these important areas of memory. The video display will have to
be shared, however, for the reasons just given.

Table 8-8. CONCURRENT. A program to control two Applesoft programs in memory at the same
time.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
16
1 7
18
19
20
21
22
23
24
25
26
27
28

* CONCURRENT *

* <BRUN this program from disk)

SPSAVE
DLDCSW

EQU $6
EQU $7

CSW EQU $36

;Stack pointer save area
;Initial value of CSW (aux, only)

* Parameter locations for AUXMOVE:
A1 EQU $3C
A2 EQU $3E
A4 EQU $42

* Memory
STORBOON
RAMRDDFF
RAMRDDN
RAMWRTOF
RAMWRTDN

switches:
EQU $C001
EQU $C002
EQU $C003
EQU $C004
EQU $COOS

ALTZPOFF EQU
ALTZPDN EQU
ALTZP EQU

$COOS
$C009
$C016

AUXMOVE EQU $C311

;Don't switch $400 ... $7FF
;Read main from $200 ... $BFFF
;Read auxiliary from $200 ... $BFFF
;Write main from $200 ... $BFFF
;Write auxiliary from $200 ... $BFFF

;Select main zero page+stack
;Select auxiliary zero page+stack
;ALTZP status: on if >=$80

;AUX <--> MAIN move subroutine

w a
N

D
S"
(J)

c.:
CD
rt
::r
CD

)>
"0
"0
m
---m

02B3: A9 00
02B5: 85 3C
02B7: 85 42
02B9: A9 03
02BB: 85 3D
02BD: 85 43
02BF: A9 4A
02C1 : 85 3E

Page #02

02C3: A9 03
02C5: 85 3F
02C7: 38
02C8: 20 1 1 C3

02CB: 80 09 co

02CE: 08

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58

APPLSDFT EQU $E000-1 ;Cold start to Applesoft (less 1)

* Monitor initialization subroutines:
INIT EQU $FB2F
HOME EQU $FC58
SETNORM EQU $FE84
SETVID EQU $FE93
SETKBD EQU $FE89

DRG $2B3

* Copy SWITCH to auxiliary memory:
LDA #<SWITCH
STA A1
STA A4
LOA #>SWITCH
STA A 1 + 1
STA A4+1
LOA #<SWLAST
STA A2

LOA #>SWLAST
STA A2+1
SEC ;<Move to aux. mem)
JSR AU X MOVE

STA ALTZPON ;Select aux. zero page + stack

* Initialize the monitor's auxiliary zero-page usage:
CLD

(continued)

CD

s:
CD
3
0
~
s:
Q)
:::l
Q)

co
CD
3
CD
:::l
C"'t

0
w
0 w

w
Table 8-8. CONCURRENT. A program to control two Applesoft programs in memory at the same time

0
A

(continued). D
02CF: 20 84 FE 59 JSR SETNORM ;Set normal video 5"
02D2: 20 2F FB 60 JSR INIT ;Set full-screen text mode en

02DS: 20 93 FE 61 JSR SETVID ;Set for standard 40-column output 0.:
CD

02D8: 20 89 FE 62 JSR SETKBD ;Set for standard 40-column input rt
:::r

02DB: 20 58 FC 63 JSR HOME ;Clear the screen CD

64)>
"'C

65 * Redefine output link to keep SOSTOREDN: "'C
ro

02DE: AS 36 66 LDA csw --02EO: 85 07 67 STA DLDCSW ro-
02E2: AS 37 68 LDA CSW+ 1
02E4: 85 08 69 STA DLDCSW+ 1

70
02E6: A9 44 71 LDA #<NEWOUT
02E8: 85 36 72 STA csw
02EA: A9 03 73 LDA #>NEWOUT
02EC: 85 37 74 STA CSW+ 1

75
76 * Initialize auxiliary memory stack:

02EE: A9 DF 77 LDA #>APPLSOFT ;Set up a return to the cold
02FO: SD FF 01 78 STA $1FF ; start entry point for
02F3: A9 FF 79 LDA #<APPLSOFT ; Applesoft the first time
02F5: SD FE 01 80 STA $1FE ; you enter auxiliary memory
02F8: A2 FD 81 LDX #$FD ;Set up initial stack pointer
02FA: 86 06 82 STX SPSAVE ; and save it in aux. memory

83
02FC: SD 08 CO 84 STA ALTZPOFF ;Select main zero page + stack

85
02FF: 60 86 RTS

87
88 * SWITCH is used to move between aux. and main:

0300: BE 41 03 89 SWITCH STX X SAVE ;Save X, y, A, p, s
0303: sc 42 03 90 STY YSAVE

0306: 8D 40 03 91 STA A SAVE
0309: 08 92 PHP
030A: 68 93 PLA
030B: 8D 43 03 94 STA PSAVE
030E: BA 9S TSX
030F: 86 06 96 STX SPSAVE
0311 : 8D 01 co 97 STA STORHOON ;Don't switch video RAM
0314: AD 16 CO 98 LDA ALTZP ; Check ALTZP status
0317: 30 1 B 99 BMI TOMAIN ;Go to main if in aux.
0319: 8D 09 CO 1 0 0 STA ALTZPON ;Turn on aux. ZP+stack

Page #03

031C: 8D 03 CO 1 01 STA RAMRDON ;Turn on aux. memory
031F: 8D OS CO 102 STA RAMWRTON
0322: A6 06 103 RESTORE LDX SPSAVE ;Restore all registers
0324: 9A 1 04 TXS
032S: AE 41 03 1 OS LDX X SAVE
0328: AC 42 03 106 LDY YSAVE
032B: AD 43 03 1 07 LDA PSAVE
032E: 48 108 PHA ())

032F: AD 4 0 0 3 109 LDA A SAVE ~

0332: 28 11 0 PLP
CD
3

0333: 60 1 11 RTS 0 ..,
0334: 8D 08 CO 11 2 TOMAIN STA ALTZPOFF ;Turn on main ZP+stack <

0337: 8D 02 CO 11 3 STA RAMRDOFF ;Turn on main memory ~
Dl

033A: 8D 04 CO 11 4 STA RAMWRTOF ::l
Dl

033D: 4C 22 03 11 s JMP RESTORE (Q
CD

116 3
11 7 A SAVE DS 1

CD
::l
ct

118 X SAVE DS 1
119 YSAVE DS 1 D 120 PSAVE DS 1
1 21 w

0
(continued) Ul

w
Table 8-8. CONCURRENT. A program to control two Applesoft programs in memory at the same time ~
(continued).

0344: 8D 01 CO
0347: 6C 07 00

--End assembly--

151 bytes

Errors: 0

122
123
124
125
126
127
128
129
1 30
1 31

* The following new input ~ubroutine is really needed only
* when Applesoft is first initialized. When Applesoft is
* initialized, it writes to $COOO, thus turning 80STOREDFF
* and preventing the program in auxiliary memory from
* using the 40-column video RAM (in main memory>.
NEWOUT STA STOR800N

JMP <DLDCSW>

SWLAST EQU *

D
::J
Ul
c.:
CD
C"t
::::T
CD
)>

"'C
"'C
ro
---m

------------------ 8 Memory Management c::J 307

The CONCURRENT program in Table 8-8 is a short assembly
language program that allows you to run one of two Applesoft
programs that can be loaded into memory at the same time, one
in main memory and the other in auxiliary memory, and to easily
switch between the two programs. It must be activated by using
the BRUN command to load and execute it directly from diskette;
you must be in standard 40-column mode before doing this.

The first thing that CONCURRENT does is to copy its SWITCH
and NEWOUT subroutines from main to auxiliary memory by us
ing the AUXMOVE subroutine. The SWITCH subroutine is re
sponsible for transferring control from main to auxiliary memory
and vice versa, and so a copy of it must be stored in both these
memory areas to ensure that it is always available. There is one
other important reason for duplicating SWITCH in this way. Part
way through the subroutine, the area of memory (main or auxil
iary) that is currently active will be turned off and replaced by the
other, thus causing the current copy of SWITCH to temporarily
vanish. This would normally cause the system to hang because the
instruction at the next address at which SWITCH resumes exe
cuting after switching would no longer be available and the pro
gram would behave unpredictably. If SWITCH is present at exactly
the same locations in the other area of memory, however, then one
copy will always be active and no problems will be encountered.

After CONCURRENT has moved SWITCH to auxiliary memory,
it enables the zero page and stack in auxiliary memory (ALTZPON)
and then calls five system monitor initialization routines (SET
NORM, INIT, SETVID, SETKBD, and HOME) that will cause the
auxiliary zero page to be properly initialized so that system mon
itor I/0 subroutines will work properly.

The next task that CONCURRENT performs is to redefine the
standard character output subroutine by storing the address of the
NEWOUT subroutine at the CSWL/CSWH ($361$37) output link in
auxiliary memory. The NEWOUT subroutine must be used to han
dle output because of a complication that arises when Applesoft
is first initialized in auxiliary memory.

When Applesoft is first initialized, it determines how much RAM
memory is installed in the lie by storing and reading numbers at
the first location of each memory page (beginning with page $08)
until it finds that the number read is not the same as the number
stored. When such a discrepancy occurs, then a non-RAM location
must have been reached.

On the lie, the first non-RAM address written to will be $C000,
which is the first address in the lie's IIO memory space. Unfortu
nately, this has the side effect of turning off the 80STORE soft

308 [=:J Inside the Apple //e ------------------

switch that resides at that location. This means that if the RAMRD
and RAMWRT switches are on (that is, auxiliary memory from
$200 ... $3FF and $800 ... $BFFF is active), then the auxiliary
memory space from $400 ... $7FF will be active as well. (Remem-
ber that this same space in main memory-which represents the
video RAM for the 40-column text screen-will remain active if
80STORE is on.) This auxiliary memory space has no effect on the
40-column screen display, however, and so the screen display will
not change when attempts are made to update it by calling the
standard video subroutines (that only affect the currently active
$400 ... $7FF space).

If we could turn the 80STORE switch on before Applesoft tries
to perform its first video operation after initialization (the dis
playing of its"]" prompt symbol), then we could avoid the problem
of having the "wrong" $400 ... $7FF space active. This is done by
replacing the standard output subroutine with the nearly identical
NEWOUT subroutine. In fact, the only difference is that NEWOUT
first writes to 80STOREON ($C001) to ensure that the video RAM
area from $400 ... $7FF in main memory will be active.

Initialization of the Auxiliary Stack
After the new output link address is set up in auxiliary memory,

CONCURRENT initializes the auxiliary stack by placing the ad
dress, less 1, of the cold start entry point to Applesoft ($E000) at
the first two stack locations, $1FF and $1FE. The high-order part
of this address is stored at $1FF and the low-order part at $1FE.
After this has been done, the value $FD is stored at SPSAVE, a
temporary storage location. The first time that auxiliary memory
is enabled by calling SWITCH, the 6502 stack pointer register will
be loaded from SPSAVE, meaning that when the RTS is executed
at the end of the SWITCH subroutine, control will be returned to
$E000, the Applesoft cold start entry point. The subroutine at $E000
takes care of initializing Applesoft in auxiliary memory by setting
up all its program and data pointers that are contained in zero
page.

The last thing that CONCURRENT does is re-enable zero page
and the stack in main memory and then end. At this point the 1/e
is configured in such a way as to allow you to easily switch between
programs in main and auxiliary memory.

Using CONCURRENT
CONCURRENT is simple to use. Whenever you want to leave

main memory and resume running the program in auxiliary mem-

----------------- 8 Memory Management c:J 309

ory, or vice versa, you must activate the SWITCH subroutine by
entering a CALL 768 command. This subroutine determines which
bank of memory is active (by examining the status of the ALTZP
switch) and then enables the other bank of memory from $0000
... $BFFF (except for the $400 ... $7FF video RAM area) for reading
and writing by adjusting the ALTZP, RAMRD, and RAMWRT
switches accordingly. The $400 ... $7FF video RAM area in main
memory is kept active by writing to 80STOREON ($C001) before
accessing the RAMRD and RAMWRT switches.

When the SWITCH subroutine ends it executes an RTS instruc
tion that instructs the 6502 to return to the address (plus 1) that
is stored on the top of the stack. Unless some tricky programming
is being done, this address is that of the instruction immediately
following the JSR instruction that called the subroutine. Such is
not the case, however, when calling SWITCH because just before
its RTS instruction is executed, the other stack is reactivated and
its stack pointer is set equal to the value it had when SWITCH was
last called. What this means is that as soon as SWITCH is called,
the 1/e begins executing those instructions right after the CALL 768
that activated the switch in the first place.

To see a simple example of how CONCURRENT works, first
install SWITCH by executing CONCURRENT. Then enter the fol
lowing Applesoft program:

100 IF PEEK <49152> = 155 THEN
POKE 49168,0: CALL 768

200 PRINT "MAIN MEMORY": GOTO 100

and RUN it. This program doesn't do much but continuously print
out "MAIN MEMORY" on the screen. However, the program is
constantly monitoring the keyboard for an ESC character in line
100. If ESC is pressed, then the keyboard strobe is cleared (POKE
49168,0) and then SWITCH is called by executing a CALL 768
command.

When SWITCH is called for the first time, you will be put into
Applesoft direct mode in auxiliary memory. While you are there
for the first time, enter this program:

100 IF PEEK <49152> = 155 THEN
POKE 49168,0: CALL 768

200 PRINT "AUXILIARY MEMORY": GOTO 100

This is the same as the previous program, except that it prints
out "AUXILIARY MEMORY." Now type RUN to start this program
and then press the ESC key. As soon as ESC is pressed, you will
switch back to main memory and the program there will resume
executing right where it left off and will start printing "MAIN

310 C1 Inside the Apple //e ------------------

MEMORY." By pressing ESC again and again, you can see that
you are indeed switching between the two programs!

Limitations of CONCURRENT

The major limitation of CONCURRENT is that the program run
ning in auxiliary memory cannot use any DOS commands. Al
though a copy of DOS could be transferred to auxiliary memory
and used by the program running there, several problems could
arise that would be difficult to solve in software. For example,
special "lockout" flags would have to be used to prevent one pro
gram from modifying a file until the other had finished using it.
If this was not done, then the data in the file could easily become
scrambled. Rather than complicate the CONCURRENT program
and obscure its usefulness as an example of how to use main and
auxiliary memory, no attempt has been made to allow the program
in auxiliary memory to use DOS.

Other problems arise because the two programs must share the
same video screen. This means that information placed on the
screen by one program could easily be overwritten by the other.
One solution to this problem is to define nonoverlapping text win
dows for each program by modifying the window parameters held
in zero page (see Chapter 7).

Since auxiliary memory is initialized by installing the standard
40-column input and output subroutines (by calling SETVID and
SETKBD), you should not enter auxiliary memory when 80-column
mode is active. If you wish to use CONCURRENT with an 80-
column display, the "JSR SETVID" and "JSR SETKBD" instruc
tions should be replaced by a "JSR $C300" instruction; the latter
instruction takes care of installing the 110 subroutines that support
the 80-column display.

Finally, you should note that you must not write to 80STOREOFF
($C000) while in auxiliary memory. If this is done, then the aux
iliary memory space from $400 ... $7FF will become active and,
as explained above, you will not be able to display anything on
the video screen.

----------------- 8 Memory Management c::::::J 311

FURTHER READING FOR CHAPTER 8

Standard reference works ...
8@-Column Text Card Manual, Apple Computer, Inc., 1982.
Extended 8@-Column Text Card Supplement, Apple Computer, Inc.,

1982.
On uses for auxiliary memory ...

D.C. Johnson, "Using Auxiliary Memory in the 1/e," Apple Assem
bly Line, August 1983, pp. 2-12. Another program to switch
between main and auxiliary memory.

On uses for bank-switched RAM ...
C. Bongers, "Loading DOS 3.3 on the Language Card," Call

-A.P.P.L.E., July/Aug 1981, pp. 9-21. Putting DOS 3.3 in bank
switched RAM frees up a lot more room for Applesoft. See
follow-ups in Call-A.P.P.L.E., Nov/Dec 1981, pp. 81-85, and in
"All About DOS," Call-A.P.P.L.E., 1983, pp. 5-17.

D.W. Miller, Jr., "Painting the Ramcard," Call-A.P.P.L.E., April
1983, p. 51. How to store high-resolution pictures in bank
switched RAM.

K. Manly and F. Manly, "RAM Disk," Nibble, Vol. 4, No.8 (1983),
pp. 25-37. How to use bank-switched RAM as a "fake" disk
drive.

9
The Speaker and the

Cassette Port
In this chapter, we will examine two more built-in I/0 devices

that the //e supports: the speaker and the cassette port.

The lie's speaker can be used to add the dimension of sound to
programs. In many cases, this simply means that you will hear a
short (but suitably aggravating) beep whenever you make an error.
However, some programs, notably educational software and games,
exercise the speaker in much more dramatic ways to generate com
plex sound effects and recognizable musical patterns that tend to
dramatically liven up these types of programs. We will look at the
techniques used to generate music later in this chapter.

With the advent of low-cost and reliable disk drives, the cassette
port has probably become the least used built-in I/0 device on the
1/e. This is because its prime function has always been to store
programs or data on standard audio cassette tape and to read them
back again into the computer, a chore that the disk drive performs
much more conveniently, quickly, and reliably. Nevertheless, many
users still use cassette tape for archival storage of information. In
this chapter, we will describe a particularly interesting application
involving the cassette port: the digitization of voice input.

THE SPEAKER

As was indicated above, the speaker on the lie serves several
purposes, the most common of which is to emit a harsh "beeeep!!"
whenever some kind of error occurs while entering or operating a
program. This sound is generated by entering or printing the ASCII
"bell" character (ASCII code 7). This can be done by pressing <CTRL
G> on the keyboard or by printing CHR$(7) from Applesoft. With
appropriate software, the speaker can also be used to generate

313

314 c:::J Inside the Apple //e ------------------

music and sound effects and even to reproduce (though crudely)
the human voice.

The sounds that the speaker generates are caused by the in and
out movement of the speaker cone; the frequency (also called the
pitch) of a sound is the same as the frequency of the cone's move
ment. The position of the cone is controlled by a voice coil and a
permanent magnet located near the base of the cone. When this
coil is turned on, the cone moves out and when it is turned off, the
cone moves in. Thus, you can select the frequency of the tone to
be emitted merely by switching this coil on and off at the desired
frequency.

There is one special I/0 memory location reserved for the speaker
that allows you to control it in this way. As indicated in Table
9-1, this is SPEAKER ($C030). This is yet another soft switch lo
cation; each time that it is read (using Applesoft's PEEK or an
assembler's LDA) the state of the speaker changes from off to on
(if it was last off) or from on to off (if it was last on).

Generating Musical Notes

Let's take a close look at how you can use the lie to generate
musical notes. First recognize that the sound wave generated by
a single musical note is merely a smoothly varying sine wave, as
shown in Figure 9-1 (a). Since, however, we can only turn the lie's
speaker on or off (that is, we cannot smoothly vary the amplitude
of its output), we can only generate square waves like the one shown
in Figure 9-1 (b). It turns out, however, that for most frequencies,
this square wave is an acceptable approximation of its sine wave
equivalent and the sound that is generated is close to what you
would normally expect to hear.

Before a specific note can be generated, you will have to know
its frequency (or "pitch"). Table 9-2 contains a list of two octaves
of musical notes from Low "C" through Middle "C" to High "C",

Table 9-1. Speaker 1/0 memory location.

Address
Hex (Dec) Symbolic Name Description

$C030 (49200) SPEAKER Speaker output. Reading
this location toggles the
state of the speaker.

------------- 9 The Speaker and the Cassette Port c::=J 315

(a) Sine wave for pure tone.

t
Amplitude

(b) Square wave approximation of pure tone.

Amplitude
~-----+------4-------+-----~~-----+------,-Time~

Figure 9-1. Sine waves and square waves.

their frequencies on the standard Even-Tempered Scale in hertz
(cycles/second), and their periods. The period is equal to the time
it takes to finish one complete sinusoidal cycle and is equal to the
reciprocal of the frequency.

To generate the waveform for any note, the speaker must be
turned on for one-half of its period and off for the other half. Given
this information, the procedure to follow for generating a note is
as follows:

1. Turn the speaker on
2. Wait one-half period
3. Turn the speaker off
4. Wait one-half period
5. Return to step 1

Since the status of the speaker toggles between on and off every
time you access its soft switch at SPEAKER ($C030), you can sim
plify this flowchart by removing steps 3 and 4.

The above procedure must be repeated for the duration of the
note; if you are playing a note from a piece of music, this duration

316 c:::J Inside the Apple //e ------------------

Table 9-2. Frequencies and periods of musical notes on
the even-tempered scale.

Note

C (low "C")
C#
D
D#
E
F
F#
G
G#
A
A#
B
C (Middle "C")
C#
D
D#
E
F
F#
G
G#
A (Concert "A")
A#
B
C (High "C")

*See text.

Frequency (Hz) Period (JJ.sec) HALFTIME'~

131
139
147
156
165
175
185
196
208
220
233
247
262
277
294
311
330
349
370
392
415
440
466
494
523

7,634
7,194
6,803
6,410
6,061
5,714
5,405
5,102
4,808
4,545
4,292
4,049
3,817
3,610
3,401
3,215
3,030
2,865
2,703
2,551
2,410
2,273
2,146
2,024
1,912

112
106
100
94
89
84
80
75
71
67
63
60
56
53
50
47
45
42
40
38
35
33
32
30
28

will depend on the type of note that is being played (a whole note,
half-note, quarter-note, and so on) and the tempo of the music.

Table 9-3 shows the NOTE program, which is capable of using
the lie's speaker to produce a note of a specified frequency and
duration. This program toggles the speaker whenever the X reg
ister, which at the beginning of every tone cycle contains a code
number related to the period of the note, is reduced to zero by
successive DEX instructions. The X register is reduced by one unit
every 34*HALFTIME microseconds, where HALFTIME is this code
number and 34 happens to be the length of an internal software
delay loop that has been used. The code number is simply equal
to the number of 34-microsecond loops that must be performed
before one-half of the period of the note elapses. It can be calculated
by dividing one-half of the period time (in microseconds) by 34.
For example, the value of HALFTIME for an-"A" note (440 Hz)

------------- 9 The Speaker and the Cassette Port C=:J 317

would be equal to 1136 (one-half its period in microseconds) di
vided by 34, which is equal to 33. In this way, you can easily
calculate the HALFTIME values for all the other notes that you
may wish to generate; they are listed in Table 9-2 for your con
venience.

NOTE also allows you to specify the duration of the note to be
played by adjusting the LENGTH constant. A temporary value of
LENGTH, called LTEMP, is decremented each time the program
executes 255 of the aforementioned 34-microsecond loops, that is,
once every 8670 microseconds. Thus, to play a note for one second
(1,000,000 microseconds), LENGTH would be set equal to 1,000,000/
8670, or 115.

The loop time in the NOTE program has been calculated by
determining exactly how many 6502 machine cycles take place
between successive reductions of the loop counters (that control
the frequency and duration of the note) and multiplying that num
ber by the period of the 6502 microprocessor's clock. Since the
lie's clock is operating at about 1 MHz, it turns out that the loop
time (in microseconds) is simply equal to the number of machine
cycles needed to perform the instructions in the loop. To calculate
the total number of machine cycles being performed in the loop,
you must first determine what instructions are being executed in
the loop and then add up their individual cycle times. The cycle
times for each 6502 instruction are listed in Appendix II. Note that
the number of cycles depends not only on the particular instruction
being executed but also on the addressing mode that is being used
by that instruction.

It should be obvious by now that because of the meticulous tim
ing loops that music programs require to produce precise fre
quencies, it is really not possible to create quality music by directly
accessing SPEAKER ($C030) using the Applesoft PEEK statement
and FOR/NEXT loops. Applesoft delay times simply cannot be ad
justed as finely as can assembler delay times and, even if they
could be, they could actually change depending on the location of
the loop in the program. So stick to assembly language if you want
to create music. Applesoft programs can be used, however, to POKE
frequency and duration information into an assembly-language
program's data area and to CALL the assembly-language program.
We will see how to do this next.

Generating Music

Now that we have written a program to generate one musical
note, it will be almost trivial to develop a program that actually

Table 9-3. NOTE. A program to play a musical note.

Page #01

A 5 M
1 ********
2 * NOTE *
3 ********
4
5 SPEAKER EQU $C030
6
7 ORG $300
8

0300: 21 9 HALFTIME DFB 33
0301 : 1D 1 0 LENGTH DFB 29

1 1
0302: AO FF 1 2 NOTE LDY #255
0304: AD 01 03 1 3 LDA LENGTH
0307: 8D 2F 03 1 4 STA LTEMP
030A: AE 00 03 15 NOTE1 LDX HALFTIME
030D: AD 30 CO 16 LDA SPEAKER
0310: 4C 1A 03 1 7 JMP STALL1
0313: EA 18 STALL NOP
0314: EA 19 NOP
0315: EA 20 NOP
0316: EA 21 NOP
0317: EA 22 NOP
0318: EA 23 NOP

;Speaker I/0 location

; = (1/frequency)/(2*34>
;Duration in units of 34*255 usee

;The program starts here

;X contains the length of the note
;Toggle the speaker

;These NOPs compensate for
; brariches to NOTE1 from line 37
;They ensure that the overall loop

times are the same so that the
; units of "length" don't vary
; with the frequency

w
..a.
CD

D
::J
Ul
c.:
CD
c-t
:::r
CD

)>
1:l
1:l ro --ro

0319: EA 24
031A: 88 25
0318: DO 07 26
031D: CE 2F 03 27
0320: FO OC 28
0322: DO 05 29
0324: EA 30
0325: EA 31
0326: EA 32
0327: EA 33
0328: EA 34
0329: CA 35
032A: DO E7 36
032C: FO DC 37
032E: · 60 38

39
40
41

--End assembly--

48 bytes

Errors: 0

STALL1

STALL2

STALL3

EX IT

LTEMP

NOP
DEY
BNE
DEC
BEQ
BNE
NOP
NOP
NOP
NOP
NOP
DEX
BNE
BEQ
RTS

DS

STALL2
LTEMP
EXIT
STALL3

STALL
NOTE1

;Loop time is 34 cycles

;Reduce this every 34*255 cycles

;These NOPs compensate even
; out the loop time when the code
; in lines 27-29 is not executed

;Loop time is 34 cycles

CD
-I
=r
CD

en
-c
CD
Ql

"' CD -,
Ql
:J
0.
C"t
=r
CD

C1
Ql
en
Ul
CD
C"t
C"t
CD

lJ
0
~

D
w
..a.
ca

320 C) Inside the Apple //e ------------------

plays a short tune. All we have to do is link single notes together
in the orders, and for the durations, dictated by the sheet music
for the tune.

Consider the Applesoft SONG program in Table 9-4. This pro
gram contains s~veral DATA statements that contain the HALF
TIME and LENGTH values needed by NOTE for each of the notes
in the first part of the theme from the television series '' M 1, A* S *H.''
The LENGTH values have been calculated by assuming that a
whole note has a duration of one second; if this is the case, then
LENGTH= 115, as explained earlier. To play the tune defined by
the DATA statements, first ensure that the NOTE program has been
saved to diskette and then enter the Applesoft RUN command.
SONG plays the tuhe by executipg an Applesoft FOR/NEXT loop
that reads the HALFTIME and LE:f\;!GTH values for a note, POKEs
them into the NOTE program data area, and tHen CALLs the NOTE
program to generate the tone. After all the notes have been played
in this way, the program ends.

You can easiJy play your owh favorite song by translating its
notes into HALFTiME and LENGTH values and placing these val
ues into the DATA statements of the SONG program. The last pair
of values in the DATA statements must be zeros so that SONG will
know when all the notes have been read.

You may well be wondering whether you can play chords of
music, that is, more than one note at once, in order to improve the
quality of the sound that is generated. The short answer is "yes,
you can!" but the software required to do this is much more com
plex. For example, to play two notes at once, you would have to
intertwine two timing loops, one for each note, and you would have
to ensure that the speaker was being toggled at the proper rate for
each note. This is not an impossible feat to be sure, but it is left
as an exercise for the more interested reader.

THE CASSETTE PORT

The cassette port is primarily used to store programs and data
on cassette tape and to read this information back again. Exter
nally, the port is made up of two miniature phone jacks, called the
input and output jacks, that are located on the //e's back panel
right next to the video connector. To connect up a cassette recorder
to the //e, you need only acquire a pair of miniature phone plug
cables and connect them between the input jack (marked with a
picture of an arrow coming from a cassette tape) and the recorder's
earphone jack and the output jack (marked with a picture of an

------------ 9 The Speaker and the Cassette Port c:::::::::J 321

Table 9-4. PLA YTUNE. A program to play a song.

J LIST

0 REM "PLAYTUNE"
100 PRINT CHR$ <4>;"BLOAD NOTE"

11 0

120

130
140
150

160
1000
1 0 1 0

1020

1030

1040

1050

1060

1070

1080

1090

READ HT: READ LN: REM READ
HALFTIME AND LENGTH
IF HT = 0 AND LN = 0 THEN 16
0
POKE 768,HT: POKE 769,LN
CALL 770: REM PLAY THE TONE
GOTO 110: REM AND GET NEXT N
OTE
END

REM NAME THAT TUNE!!
DATA 63,29,67,29,63,29,67,2

9,63,29,67,29,75,58
DATA 67,29,75,29,67,29,75,2

9,67,29,75,29,84,29,67,29,75
,29,84,29,75,29,84,29

DATA 75,29,84,29,89,29,75,2
9,84,29,89,29,84,29,89,29,84
,29,75,29,67,58

DATA 67,58,56,29,50,29,56,2
9,50,29,56,29,50,29,56,58,56
,29

DATA 50,29,56,29,50,29,56,2
9,50,29,56,58,56,29,67,29,56
,29,50,29,42,29

DATA 38,29,42,29,50,29,56,2
9

DATA 50,115,50,58,50,29,56,
29,67,29,56,29,50,29,42,29

DATA 38,29,42,29,50,29,56,2
9,50,115,50,58

DATA 0,0: REM END OF DATA
MARKER

arrow pointing toward a cassette tape) and the recorder's micro
phone jack.

The 1/e devotes two I/0 memory locations for use by the cassette
port; these locations allow you to control the signal that is sent to
the output jack and to monitor the signal that is received through
the input jack. These memory locations are described in Table
9-5.

The cassette output jack transmits audio voltage levels to a cas
sette recorder that are compatible with the levels that the recorder
would normally receive through a microphone. For this output to

322 c=J Inside the Apple //e ------------------

Table 9-5. Cassette port 1/0 memory locations.

Address
Hex (Dec) Symbolic Name Description

$C060 (49248) CASSIN

$C020 (49184) CASSOUT

Cassette input. The status
of the cassette input port is
contained in bit 7.

Cassette output. Reading
this location will toggle the
state of the cassette output
port.

be saved to tape, all you have to do is put the recorder into record
mode by simultaneously pressing its RECORD and PLAY buttons.
Two discrete levels of output (high and low) can be generated by
using a soft switch at CASSOUT ($C020). Whenever this location
is read, the output level will toggle from high to low or from low
to high, depending on its prior state. The timing of these transitions
can easily be controlled by software, thus allowing you to generate
audible frequencies and to store them on tape. This procedure
should sound familiar: it's the same one used to generate sound
on the lie's speaker (except that in that case, of course, the speaker's
soft switch is read).

The cassette input jack is designed to be compatible with the
audio voltage levels sent by a cassette recorder to its earphone
jack. When a miniature phone plug cable is connected between the
cassette input jack and this earphone jack, the signal from the
recorder can be interpreted and dealt with by the lie instead of
your ear. This signal will typically fluctuate between a positive
and negative voltage at a rate that is dictated by the sound being
played.

The status of the cassette input port can be determined by ex
amining the status of bit 7 ofiiO memory location CASSIN ($C060).
When this bit is "on" (1), the input voltage of the audio signal is
positive; when it is "off" (0), the voltage is negative. When bit 7
changes from 1 to 0 or from 0 to 1, the signal is said to have
performed a "zero-crossing."

Since the lie can only detect signals that are either on or off, it
is not possible to determine the amplitude of the audio input or
its waveform. This is fine if you are simply reading binary data
stored on the tape, because in such a case amplitude is largely

------------- 9 The Speaker and the Cassette Port c:=J 323

irrelevant (we're concerned only with whether the signal is on or
oft) and the waveform can be considered to be a square wave. If
you are attempting to read anything else, however, such as voice
data, then this important information will not be available to you.
More on this later, when we examine how to digitize and play back
a voice signal.

DIGITIZING VOICE
Now that we've covered the basics of the cassette port, let's

embark on a seemingly complex (but actually straightforward)
software project that makes use of both the cassette port and the
speaker. What we want to be able to do is to play a voice recording
into the cassette input port, sample the incoming waveform, and
save it as a series of bits that represent whether the signal was on
or off (a process called" digitization"), and then play the voice back
through the lie's speaker by using these bits to reconstruct the audio
waveform.

As we have seen, all we can tell about a signal that appears at
the cassette input jack is how long it is in the "on" state and how
long it is in the "off" state. It turns out, however, that for our
purposes, the square-wave defined by the pattern of on times and
off times is an acceptable representation of the actual voice signal
being monitored. There will be significant distortion, to be sure,
but not enough to prevent us from understanding what is being.
said.

A typical voice signal has a complex waveform that is quite
unlike the perfect sine wave generated by a pure tone; it is made
up of a combination of many, many sine waves. To be able to
ultimately reconstruct such a signal, we will have to periodically
sample the signal at a fixed rate and record the values that are
detected. The sampling rate to be used will obviously be an im
portant factor if the signal is to be reconstructed properly. For
example, if the sampling rate is too low then we could well miss
several zero-crossings that might occur between consecutive sam
ples; if this happens, the signal we detect will not be the true one
(it is said to be an alias signal).

Even though a voice signal does have a complex, and apparently
nonrepetitive, waveform, mathematicians have proved that it can
be considered the sum of a series of periodic sine waves of varying
frequencies and amplitudes. As we have just seen, the higher fre
quencies that make up this signal are going to be troublesome if

324 c::::J Inside the Apple //e ------------------

the sampling rate is not fast enough to keep up with them. Just
how fast does the sampling rate have to be to allow us to detect a
particular frequency?

To answer this question, we must resort to the theoretical math
ematicians once again. There is a theorem, called the Fundamental
Sampling Theorem, that states that in order to be able to properly
reconstruct a signal, it must be sampled at a rate that is at least
twice the frequency of the highest frequency component present
in the signal. For example, if the highest frequency present in a
signal is 1,000 Hz, then to be able to reconstruct it, you would have
to sample it at least 2,000 times per second. One-half of the sam
pling rate is often referred to as the "Nyquist frequency."

If the incoming signal contains frequencies that are higher than
the Nyquist frequency (that is, you are sampling too slowly to
detect them), then erroneous frequencies will be detected. As we
saw earlier, these frequencies are called "aliases." This aliasing
effect will cause the signal to be distorted when it is ultimately
reconstructed.

The human voice can generate sound frequencies anywhere be
tween 20 Hz and 10,000 Hz (approximately). Thus, to detect the
highest frequency of 10,000 Hz, we would have to sample the cas
sette input status at least 20,000 times per second, or once every
50 microseconds.

Whenever you are sampling a signal, however, there is a tradeoff
between the quality of the reconstructed signal and memory avail
ability. As we have seen, to be able to precisely digitize any signal,
including voice, you have to sample it quickly in order to detect
all the zero-crossings. The more sampling data that is collected,
however, the faster your computer's memory is used up and the
shorter the voice sample that can be stored. You can decrease the
sampling rate to conserve memory, but as soon as you do this you
will not, according to the Fundamental Sampling Theorem, be able
to detect some of the higher frequencies that make up the signal.
A sampling rate has to be selected that allows you to digitize the
voice for a significant time period without sacrificing voice quality
when it is ultimately reconstructed.

The program in Table 9-6, called GETVOICE, takes care of sam
pling the cassette input port, assembling eight successive one-bit
samples into a byte, and storing this byte in a "voice buffer" ex
tending from $1000 to Applesoft HIMEM (normally $9600). To run
GETVOICE, load it into memory, press the PLAY button on the
recorder to begin sending your voice sample, and then start GET
VOICE by entering CALL 768 from Applesoft direct mode or by
entering 300G from the system monitor.

Table 9-6. GETVOICE. A program to digitize a voice sample.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
13
1 4
1 5

0300: A9 00 16
0302: 85 06 1 7
0304: A9 10 18
0306: 85 07 19

20
0308: A2 08 21

22
23

030A: AC 53 03 24
030D: 88 25
030E: DO FD 26
0310: EA 27
0311 : EA 28

* GETVOICE *

VPOINT EQU $6
VDATA EQU $1000

HIMEM EQU $73

KEYBOARD EQU $COOO
KBSTROBE EQU $C010
CASSIN EQU $C060

DRG $300

LDA #<VDATA
STA VPOINT
LDA #>VDATA
STA VPOINT+1

LDX #8

;Pointer to current pos. in buffer
;Beginning of voice buffer

;Top of memory pointer

;Cassette input port

;Set up pointer to the beginning
; of the voice data area

;Set bit counter

Loop time is 76 + S<STALLNUM-1> cycles
READTAPE LDY STALLNUM
STALL DEY

BNE STALL
NOP
NDP

(continued)

CD
-i
::r
ro
(J)
'"0
ro
Q)

@,
Q)
::J
0..
C"t
::r
ro
(')
Q)
rJl
rJl
ro
C"t
C"t
ro
"'0
0
;4

0
w
N
Ul

Table 9-6. GETVOICE. A program to digitize a voice sample (continued).

0312: EA
0313: EA
0314: AD 60 CO
0317: 2A
0318: 2E 52 03
031B: CA
031C: DO 25

031E: A2 08
0320: AD 00 CO
0323: 30 1A
0325: AO 00
0327: AD 52 03
032A: 91 06
032C: E6 06
032E: DO OS
0330: E6 07
0332: 4C 39 03
0335: EA
0336: EA
0337: DO 00

Page #02

0339: AS 07
033B: cs 74
0330: DO CB

033F: 2C 10 CO
0342: 60

0343: 20 51 03

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

so
51
52
53
54
55
56
57
58

FULLCHK

NDP
NDP
LDA CASSIN
RDL
RDL VBYTE
DEX
BNE DELAYADJ

LOX #8
LDA KEYBOARD
BMI EX IT
LOY #0
LDA VBYTE
STA <VPOINT>,Y
INC VPOINT
BNE FULLCHK
INC VPOINT+1
JMP FULLCHK1
NOP
NDP
BNE FULLCHK1

FULLCHK1 LDA VPOINT+1
CMP HIMEN+1
BNE READTAPE

EX IT BIT KBSTRDBE
RTS

;Read the cassette port
;Put result into carry bit
;Move result into current byte
;Decrement bit counter
;Branch until 8 bits done

;Reinitialize bit counter
;Has a key been pressed?
;Branch if so

;Get the voice byte
; and store it in buffer
;Move to the next buffer position

;(Kill 3 cycles)

;Get the page we're in
;At HIMEM yet?
;No, so keep on digitizin'

;Clear the keyboard strobe

* Kill 43 cycles to equalize loops
DELAYADJ JSR DUMMY ; (12>

w
N
en

D
::J
en
c.: m
C"t
::r
m
)>

"'0
"'0
ro --ro

0346: 20 51 03 59
0349: 20 51 03 60
034C: EA 61
034D: EA 62
034E: 4C OA 03 63

64
0351 : 60 65

66
67

0353: 1 0 68
69

--End assembly--

84 bytes

Errors: 0

JSR DUMMY
JSR DUMMY
NOP
NOP
JMP READTAPE

DUMMY RTS

VBYTE DS 1
STALLNUM DFB 16

; (12)
; (12)
; (2)
; (2)
; (3)

;Contains 8 cassette input samples
;(Change to adjust sampling rate)

CD
-I
:::r
ro
en
-a
ro
Q)
7' ro,
Q)
::J
c.
C"t
:::r
ro
C1
Q)
CJ)
CJ)
ro
C"t
C"t ro
"'lJ
0
;+

D
w
N

328 c=J Inside the Apple//e ------------------

To digitize the voice signal, GETVdiCE samples CASSIN ($C060)
once every 76+5*(STALLNUM-1) microseconds, where STALL
NUM is a constant. In the sample program, STALLNUM is set equal
to 16 so that the sampling rate is 151 microseconds. This period
corresponds to a sampling rate of 11(151 x 10'-6)=6,623 Hz and
a Nyquist frequency of 3,311 Hz.

Every time that CASSIN ($C060) is read, the cassette input status
(bit 7 of $C060) is moved into the next available bit in a data byte
called VBYTE. After eight bits have been stored in VBYTE in this
way, VBYTE is stored in the voice buffer and another eight bits
are assembled. This process continues until the buffer becomes full
or until any key is pressed on the keyboard. When GETVOICE ends,
we will be left with a series of bits in the buffer that represents
the status of the cassette input port every 151 microseconds. This
is precisely the information required to simulate the voice using
square-waves generated by the lie's speaker.

The period of the loop used in GETVOICE has been carefully
selected to allow you to digitize as long a voice sample as possible
without sacrificing intelligibility when the voice is eventually played
back through the speaker. It has been calculated by adding up the
number of machine cycles required to execute each instruction
within the loop (see Appendix II for machine-cycle times for each
6502 instruction). If you shorten the loop time, then, although the
voice quality will improve, the voice buffer will be filled more
quickly. Conversely, if the loop time is longer, then a less accurate
digitization of the voice will occur because higher frequency tones
in the voice will cause aliasing and, therefore, distortion in the
reconstructed signal. As it stands now, all frequencies in the voice
that are above the 3,311-Hz Nyquist frequency will cause prob
lems; however, in most voice samples, these frequencies are not
abundant. The bulk of voice information is usually contained in
the 200-Hz to 3,000-Hz range, especially in male voices.

If you are thinking of modifying GETVOICE in any way, then
you must be careful to ensure that its loop time (the time between
taking successive samples of the cassette input port) remains the
same no matter which of two main paths the program follows. The
program spends most of its time in the main loop, which comprises
all of the code from $30A (READ TAPE) to $31 C and then from $343
(DELAYADJ) to $34E. If, however, the branch at $31C (BNE) to
$343 is not performed, and it won't after all eight bits of VBYTE
are assembled, then the program will fall through into another
portion of the code beginning at $31E and ending at $33D. This
portion is responsible for storing VBYTE in the voice buffer and
incrementing the pointer to the end of the buffer. To compensate

Table 9-7. PLAYVOICE. A program to play back a digitized voice sample.

Page #01

: A S M
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
14
1 5

0300: A9 00 16
0302: 85 06 1 7
0304: A9 10 18
0306: 85 07 19

20
0308: A9 00 21
030A: 8D 60 03 22
030D: 4C 43 03 23

24
25

0310: AC 61 03 26
0313: 88 27
0314: DO FD 28

* PLAYVOICE *

VPDINT EQU
VDATA EQU

HIMEM EQU

KEYBOARD EQU
KBSTROBE EQU
SPEAKER EQU

DRG

LDA
STA
LDA
STA

LDA
STA
JMP

$6
$1 0 0 0

$73

SCOOO
$C010
$C030

$300

#<VDATA
VPOINT
#>VDATA
VPOINT+1

#0
LASTSPKR
GETVDATA

;Top of memory pointer

;Speaker output port

;Set up pointer to beginning
; of voice data area

;Assume speaker was last off

* Loop
PLAYIT
STALL

time is 76+5*<STALLNUM-1 > cycles
LDY STALLNUM
DEY
BNE STALL

(continued)

(0

-l
:;,
CD

Ul
"'0
CD
OJ
'A
CD,
OJ
::J
a.
rt
:;,-
CD

C1
OJ
en
en
CD
rt
rt
CD

-o
0,
rt

D
w
N ca

w
Table 9-7. PLAYVOICE. A program to playback a digitized voice sample (continued). w

0

29 D 0316: 4D 60 03 30 EDR LASTSPKR ;This bit same as previous one?
5" 0319: 30 03 31 BMI SPKRHIT ;No, so hit speaker en

031B: EA 32 NOP 0.:
(1)

031C: 10 03 33 BPL SPKRMISS C'1"

031E: AC 30 CO 34 SPKRHIT LDY SPEAKER ;Toggle speaker
:::r
(1)

0321 : 4D 60 03 35 SPKRMISS EDR LASTSPKR ;Restore current bit l>
"'0

0324: 8D 60 03 36 STA LASTSPKR ; and save it "'0

0327: 2A 37 RDL ;Move next bit into high bit ro --0328: CA 38 DEX ;Decrement bit counter ro-
0329: DO 25 39 BNE DELAYADJ

40
0328: AD 00 CO 41 LDA KEYBOARD ;Has a key been pressed?
032E: 30 1 c 42 BMI EX IT ;Yes, so done
0330: E6 06 43 INC VPOINT ;Move to next buffer position
0332: DO 05 44 BNE FULLCHK
0334: E6 07 45 INC VPDINT+1
0336: 4C 3D 03 46 JMP FULLCHK1
0339: EA 47 FULLCHK NOP
033A: EA 48 NOP
0338: DO 00 49 BNE FULCHK1 ;<Kill 3 cycles)

Page #02

033D: AS 07 50 FULLCHK1 LDA VPOINT+1 ;Get current page
033F: cs 74 51 CMP HIMEM+1 ;At HIMEM yet?
0341 : FO 09 52 BEQ EX IT ;If so, stop

53
0343: AO 00 54 GETVDATA LDY #0
0345: B1 06 55 LDA <VPDINT>,Y ;Get the next byte in buffer
0347: A2 08 56 LDX #8 ;Reinitialize bit count
0349: 4C 10 03 57 JMP PLAY.IT

58
034C: 2C 10 CO 59
034F: 60 60

61
62

0350: 20 SF 03 63
0353: 20 SF 03 64
0356: 20 SF 03 65
0359: 4C SC 03 66
035C: 4C 10 03 67

68
035F: 60 69

70
71

0361: 1 0 72
73

--End assembly--

98 bytes

Errors: 0

EX IT BIT KBSTRDBE ;Clear the keyboard strobe
RTS

* Kill 42 cycles to
DELAYADJ JSR DUMMY

JSR DUMMY
JSR DUMMY
JMP D1

equalize loops
(12}
(12}
(12}

D1 JMP PLAY! T
(3}

(3}

DUMMY RTS

LASTSPKR DS 1
STALLHUM DFB 16

;High bit is state of speaker
;<Change to adjust sampling rate)

CD
-l
:::r
CD

en
""0
CD
Dl
7'
CD,
Dl
::J
a.
C"''
:::r
CD

C1
Dl
(Jl
(/)
CD
C"''
C"''
CD

"'0
0
~

D
w w
~

332 c::=J Inside the Apple //e ------------------

for the additional time required to execute this code, the main loop
is routed through the portion of the code beginning at DELA YADJ
that the second loop never sees. This code simply kills time for the
number of microseconds required to execute the code between
$31E and $33D. As a result, the cassette input port is always sam
pled at the same rate, no matter which path through the program
is taken.

Once a voice sample has been digitized using GETVOICE, the
next step is to play it back through the speaker. The program for
reconstructing the digitized voice on the lie's speaker is called
PLA YVOICE and is listed in Table 9-7. It performs a tedious chore.
It repeatedly executes a loop in which it gets a byte from the voice
buffer, examines each bit, and then toggles the speaker whenever
two consecutive bits are different. This process is repeated for each
byte in the buffer in such a way that the processing time between
two consecutive bits is always the same. Although there are two
main paths through the main program loop, careful programming
has ensured that the overall loop time is always kept the same. To
ensure that the voice is reconstructed at its normal speech rate,
this loop time has been adjusted so that it is identical to the loop
time of the GETVOICE program.

Note that the speaker is toggled only when the voice data indi
cates that the cassette input has changed from 1 to 0 or vice versa,
because it is only then that the voice signal changes. To detect
these changes, a variable called LASTSPKR is used that contains
(in bit 7) the last voice data bit read. The current bit is compared
to the last one by performing an EOR LASTSPKR instruction at
$316. If the two bits are the same, then the BMI instruction that
follows will fail and the speaker will not be toggled. If they are
different, then the BMI instruction will succeed and the speaker
will be toggled.

By using GETVOICE and PLA YVOICE, you can easily add the
dimension of voice to your own programs. By digitizing short phrases
and words and storing the data on diskette (using DOS's BSAVE
command), you can quickly build up an extensive voice library
that can be easily accessed and replayed when required.

------------ 9 The Speaker and the Cassette Port c=J 333

FURTHER READING FOR CHAPTER 9

On the speaker ...
"Apple Noises and Other Sounds," Apple Assembly Line, February

1981, pp. 2-9. Generating sound effects using the speaker.
B.C. Detterich, "Apple Free Speech," Call-A.P.P.L.E., September

1981, pp. 9-14. Using the Apple II speaker to generate voice
and sound.

J.H. Bender, "Pitch and Rhythm on the Apple," Call-A.P.P.L.E.,
June 1982, p. 15. More on music for the Apple.

B. Sander-Cederlof, "Your Apple Can Talk," Apple Assembly Line,
November 1982, pp. 2-9.

M. Eve, "Apple Talker," Nibble, Vol. 4, No.8 (1983), pp. 72-75.
Digitization and playback of voice.

On the cassette ...
C.C. Foster, Real Time Programming-Neglected Topics, Addison

Wesley Publishing Company, Inc., 1981. There is a great chap
ter in this book on digital sampling theory.

Apple Computer, Inc., "The Apple II Cassette Interface," Apple
Orchard, Spring 1981, pp. 57-58. The method used to store
programs and data on tape is discussed.

10
The Game 1/0 Connector

The game I/0 connector is a 16-pin socket located in the right
hand back corner of the //e's motherboard (as viewed from the
keyboard end). Some of the signals from that socket are duplicated
in an external 9-pin D-type miniature game I/0 connector located
on the back panel of the //e. Pinout diagrams for both connectors
are shown in Figure 10-1.

The external connector has been provided to permit you to con
nect and disconnect game paddles and joysticks without having to
remove the //e's lid. In addition, there are screw holes on the ex
ternal connector that can be used to securely fasten the incoming
male connector. This means that even during the most exciting
video game, you won't inadvertently yank the plug out of the con
nector.

For the remainder of this chapter we will be considering the
internal game I/0 connector only. You can refer to Figure 10-1,
however, to relate pin numbers on that connector to those on the
external connector.

The game I/0 connector is a versatile interface. As its name sug
gests, it is primarily used to interface devices that allow you to
play video games: devices such as paddles, joysticks, and push
buttons. When interfaced to the appropriate supporting circuitry,
however, it can also be used to control circuits that turn on indi
cator lights, detect light levels, measure the temperature, and per
form many other interesting and useful feats.

Of the 16 pins on the main game 110 connector, two are not used,
two are used for the power supply connections (+ 5 volts and elec
trical ground), seven are used for one-bit inputs (3 switch inputs
and 4 analog inputs), and five for one-bit outputs (4 annunciators
and 1 strobe). All of these inputs and outputs will be discussed in
detail in the following sections.

335

336 c::::::J Inside the Apple //e ------------------

(a) Motherboard Connector

N.C. 9 8 GND

GC1 10 7 GC2

GC3 11 6 GC0

AN3 12 5 C040 STROBE

AN2 13 4 PB2

AN1 14 3 PB1

AN0 15 2 PB0

N.C. 16 +5v

(front)

(b) Back Panel Connector

GC0 GC2 GND +5v
5 4 3 2

• • • •
• • • •
9 8 7 6

GC3 GC1 PB0 PB2

NOTE: AN = annunciator output
PB = push button input
GC = game controller input
GND = electrical ground
+ Sv = + 5 volt power supply
N.C. = no connection

PB1

•

Figure 11~1. Pinout diagrams for the game 1/0 connectors.

GAME 1/0 CONNECTOR EXPERIMENTS

In this chapter, you are going to be encouraged to perform some
simple, yet instructive, experiments in electronics. To make these
experiments as simple as possible, you should first obtain the ex
perimenter's "protoboard" and speciall6-pin dual-inline-package
(DIP) jumper cable shown in Figure 10-2. These are readily ob
tainable from most Radio Shack dealers; the relevant part numbers
are 276-1395 (protoboard) and 276-1976 (jumper cable).

---------------- 10 The Game 1/0 Connector [=:J 337

Figure 11-2. Protoboard and DIP jumper cable.

The protoboard is an extremely handy device to use if you are
going to build circuits that make use of the game I/0 connector. If
you use the protoboard, you can easily construct simple circuits
without doing any soldering at all, thus making troubleshooting
and disassembly a relatively simple task.

The jumper cable is used to extend the game 110 connector in
terface to the protoboard where it is a lot more convenient to deal
with. This is done by plugging one end of the jumper cable into
the game 110 connector and the other end into the protoboard in
such a way that the two rows of pins on the plug straddle the
protoboard's longitudinal center line. (Check the orientation of the
DIP plug so that you can tell which pin on the plug on the pro
toboard corresponds to which pin on the plug in the game 110
connector.) Once this is done, each pin on the jumper cable plug
will be connected in parallel to four other pinholes right next to
it on the proto board. When a wire must be connected to a particular
pin on the game 110 connector, all you have to do is plug the wire
into one of these parallel pinholes instead.

338 C:::J Inside the Apple //e ------------------

Now that you have your protoboard set up and ready to go, let's
take a close look at the game I/0 connector and the signals that it
supports.

GAME CONTROLLER INPUTS

There are four gm;ne controller input pins on the game I/0 con
nector (GC0, GC1, GC2, and GC3), which are normally used to
interface game paddles or joysticks to the //e. These inputs are also
often referred to as the analog inputs. The GC inputs are each
associated with a unique I/0 memory location, as shown in Table
10-1. Only bit 7 of these locations is meaningful as we will see
shortly.

The game controller inputs are designed to be used with analog
devices capable of changing their internal resistances in the range
0-150K ohms in response to a physical phenomenon that is to be
measured (such as the position of a game paddle or joystick, the
temperature, or air pressure). Such devices are called "trans
ducers" because they are converting a physical phenomenon into
an electrical quantity (resistance) that can be quantified by a dig
ital computer like the //e.

Each GC input is part of an analog-to-digital (A/D) conversion
circuit that allows an analog resistance value to be converted (by
software) into a digital quantity the //e can handle. The resistor
forms part of a simple "RC" (resistor-capacitor) timing circuit that
sets the time constant of a special integrated circuit called a 558
Timer. When this timer is reset, by accessing GCRESET ($C070),
bit 7 of each GC I/0 memory location becomes high (1) but will
eventually become low (0) when the timer "times out," that is,
the period of time equal to the time constant for each of the four
"RC" circuits has elapsed.

Table HJ-1. Game controller 110 memory locations.

Address Symbolic
Hex (Dec) Name Description

$C064 (49252) GC0 Status of game controller 0 (bit 7).
$C065 (49253) GC1 Status of game controller 1 (bit 7).
$C066 (49254) GC2 Status of game controller 2 (bit 7).
$C067 (49255) GC3 Status of game controller 3 (bit 7).

$C070 (49264) GCRESET Reset the game controllers.

---------------- 1 fZI The Game 1/0 Connector c=J 339

To interface a variable-resistor device, all you need to do is con
nect one of its leads to + 5v (pin 1) and the other to one of the GC
input pins. A simplified diagram for one such circuit is presented
in Figure 10-3. Since the maximum "R" value recommended by
Apple is 150,000 ohms and the "C" value is 0.022 microfarad, the
maximum time constant for this circuit is 0.022 x 150,000 ohms
= 0.0033 second. That is, when the resistance is at its maximum,
the time required for the 558 Timer to bring bit 7 of the GC I/0
memory location low (0) is about 3.3 milliseconds. The time re
quired to do this will change whenever the resistance of the device
changes because the RC time constant will also change.

By setting up a program that periodically checks to see whether
the 558 Timer has timed out (by examining bit 7 of the GC I/0
memory location) and increments a counter if it has not, you can
easily convert the resistance to a numerical value that varies lin
early with resistance. In fact, Applesoft's built-in paddle-reading
functions, PDL(0), PDL(l), PDL(2), and PDL(3), do this for you au
tomatically-the counter value they return is an integer between
0 and 255. (You can examine the assembly-language subroutine
that these functions use by looking at the PREAD ($FB1E) subrou
tine located in the system monitor; it checks for a timeout condition
every 11 microseconds.) You should note, however, that the PDL
functions assume that your input resistance is in the range 0-150K
ohms. This translates to a time constant that ranges from 0 to
about 2.8 milliseconds and to PDL readings between 0 and 255.
(Remember that the PDL subroutine's counter increments every
11 microseconds until the timer has timed out. This means that
the maximum allowable time constant is 255* 11 microseconds, or
2.8 milliseconds.) If the upper limit of the resistance is higher than
150K ohms, then there will be a "dead area" where the resistance
may change but the value calculated stays at 255; if it is lower,
then the highest PDL value that can be generated will be less than
255.

The GCRESET ($C070) signal initiates the AID conversion pro
cedure for all four game controller circuits at the same time. Since
the 558 Timer will time out at different times for each game con
troller (unless their resistances are identical), it is possible that
after reading one PDL value that certain of the other game con
trollers will still be timing out. If an attempt is made to read one
of these controllers immediately after reading the first controller,
then only the time needed to complete the timing-out process from
the first GCRESET will be measured. This leads to a spurious game
controller signal that is lower than expected. To avoid this "cross
talk" between paddles, you should wait about 3 milliseconds be
fore reading another game controller; this delay gives all of the

GC 1/0
LOCATION
$C064 (#0)
$C065 (#1)
$C066 (#2)
$C067 (#3)

558
TIMER

GCRESET
($C070)

1-------.--------<~ +5 volts

Tc = 0.022 uF r
t (pin 1)

R = 0-150K ohm
(variable resistor)

GC INPUT
pin 6 (#0)
pin10(#1)
pin 11 (#2)
pin 7 (#3)

NOTE: the RC time constant varies from 0 to 3.3 milliseconds.

Figure 1111-3. Block diagram of game controller circuitry.

~
Q

D
:::J
Ill
0:
CD
C"t
=r
CD
)>
"0
"0 ro --ro

---------------- 1 fZJ The Game 1/0 Connector c:=J 341

game controllers a chance to time out. This can be done in Applesoft
by placing a short FOR/NEXT loop between the two PDL functions.
Here is an example of how to do this:

100 X=PDL<O>:FDR 1=1 TO 10:NEXT: Y=PDL<1>

Two devices that are commonly interfaced to the game controller
inputs are the game paddle and the joystick. A game paddle is a
device that controls the signal at one GC input only; it typically
takes the form of a knob that you can rotate with your hand. As
the knob is rotated, the resistance value changes linearly. A joystick
allows you to control two GC inputs at once in such a way that
the two-dimensional position of the joystick can be easily detected
by reading two game controller values.

There is no reason to restrict the game controller inputs for use
with game paddles and joysticks, however. Any device that pro
vides a fluctuating resistance value within the 0-150K range could
also be interfaced and its resistance converted to a value between
0 and 255 using the Applesoft PDL() commands or their assembly
language equivalents.

Examples of two such useful devices are a thermistor and a
photoresistor. A thermistor is a device that changes resistance with
temperature. Several types of thermistors are available, including
types that will generate resistances within the 0-150K ohm range
for most temperatures that you would want to measure.

Unfortunately, most thermistors are not sensitive to small tem
perature changes, such as those that might occur in a home, so the
range of PDL values read may not be large. In addition, the values
generated may not vary linearly with temperature. Nevertheless,
you can calibrate the thermistor by preparing a table of actual
temperatures (measured with a standard thermometer) and their
associated paddle readings. This will at least allow you to estimate
the temperature from a given "paddle" reading.

A photoresistor is a device that changes resistance with the amount
of light shining on it. The greater the light intensity, the lower the
resistance. You would calibrate this device by preparing a table
of light intensities (as measured by a light meter) and their asso
ciated "paddle" readings.

Let's wire up a photoresistor to the game I/0 connector to show
you how it works. A handy photoresistor to use is a cadmium sulfide
one that is readily available from Radio Shack (part number 276-
116). All you have to do to interface it to a game controller input,
say GC3, is to connect one leg of the photoresistor to + 5 volts (pin
1) and the other leg to GC3 (pin 11). Once you have done this, you

342 c:::J Inside the Apple //e -------------------

can read its current setting by using the Applesoft PDL(3) com
mand. Enter the following program and then run it:

100 PRINT PDL<3>
200 GDTD 100

While the program is running, turn off the room lights to verify
that the "paddle" value increases when there is less light. If you
have a dimmer light switch, slowly turn the light intensity up and
see how the value slowly decreases until it goes to 0 in very bright
light.

PUSH BUTTON INPUTS

There are three one-bit input ports on the game I/0 connector
that are normally used to read the state of external switches con
nected to them. These are the so-called "push-button" input ports.
These ports, and the switches themselves, are usually referred to
by their descriptive names: PB0, PB1, and PB2.

The lie assigns one I/0 memory location to each of the push
button input ports, but only bit 7 at that location is actually used.
These locations are shown in Table 10-2. By reading the memory
location for a particular push-button input (using an Applesoft
PEEK or an assembler LDA) and examining bit 7, you can deter
mine whether a switch is being pressed or not. By convention, if
the bit is set to 1 , then the switch is considered to be· on (that is,
pressed); if it is cleared to 0, the switch is considered to be off (that
is, released). You should note, however, that it is possible for a
switch to ·be connected in such a way that exactly the opposite
result is observed. More on this later.

A switch is a simple electrical component. It is typically used to
allow you to complete an electrical circuit between its two contacts
in order to turn something on and to break this circuit in order to
turn something off. (Some switches can have more than two con
tacts, but we'll ignore them for the moment.) There are many va-

Table 10-2. Push button 1/0 memory locations.

Address
Hex (Dec)

$C061
$C062
$C063

(49249)
(49250)
(49251)

Symbolic
Name

PB0
PB1
PB2

Description

Status of push button 0 (bit 7).
Status of push button 1 (bit 7).
Status of push button 2 (bit 7).

---------------- 1 fZl The Game 1/0 Connector c=J 343

rieties of switches, but the variety that is commonly connected to
the push button inputs is, you guessed it, the push button. This is
because they are ideally suited as triggers for such video game
weaponry as laser cannons, machine guns, and so on.

Switches can be classified into one of two categories: "momen
tary contact" or "fixed contact." A momentary-contact switch is
one that returns to its initial "resting" position immediately after
you take your finger off it. All of the keys on the lie's keyboard
(except the CAPS LOCK key) are examples of such a switch.

A fixed-contact switch is one that can be turned on or off and
that will stay on or off, as the case may be, after you have taken
your finger off it. Examples of fixed-contact switches are the CAPS
LOCK key on the lie's keyboard, a standard light switch, and a
toggle switch.

Two other special terms are used to describe the operation of
momentary-contact switches: "normally open" and "normally
closed." A switch is said to be normally open if, when it is not
being pressed, no connection is made between its contacts. Con
versely, a normally closed switch is one in which the contacts are
closed when it is not pressed.

It is important to know whether the momentary-contact switch
that you wish to interface to the game I/0 connector is normally
open or normally closed, because the interface circuit that you
must build will be different for each type of switch. Figure 10-4
sets out the two alternate circuits. These circuits have been de
signed in such a way that if the switch is not being pressed, then
the input to the push button pin is grounded and when it is being
pressed, it is connected to 5 volts. This ensures compatibility with
Apple's on/off push-button convention referred to earlier.

It is easy to install your favorite type of switch, be it momentary
contact or fixed contact, normally open or normally closed, to the
game I/0 connector. You must install it, however, when the power
to the //e is off! Let's assume you have a normally open push button
switch and you want to install it as PB2. Following Figure 10-4 (a),
connect a wire from one switch contact to the + Sv line (pin 1 on
the game I/0 connector), another wire from the other contact to
PB2 (pin 4), and then connect a 1,000-ohm resistor between PB2
(pin 4) and ground (pin 8). (This resistor ensures that the input to
the connector will not "float" between 1 and 0 when the switch is
not pressed and will also prevent a short-circuit when the switch
is pressed.)

You can easily determine whether or not a push button is being
pressed by examining bit 7 of the I/0 memory location that the

344 c:=J Inside the Apple //e ------------------

(a) normally-open push button
I PUSH BUTTON

PB -I-
I nput a------1-.--------tll • a+ 5 v (pin 1)

pin 2 (#0)
pin 3 (#1) 1000 ohms
pin 4 (#2)

Ground (pin 8)

(b) normally-closed push button

PB
1 nput a--------,..------:L..Ju------t 11 Ground (pin 8)

pin 2 (#0)
pin 3 (#1)
pin 4 (#2)

1000 ohms

+5 v (pin 1)

Figure 11-4. Interfacing push buttons to the game 1/0 connector.

//e reserves for that button. As explained earlier, if this bit is on
(1), then the button is being pressed; if it is off (0), the button is
not being pressed. This means that if you PEEK this memory lo
cation from Applesoft, then the number you read is greater than
or equal to 128 if the button is pressed or less than 128 if it is not.

Two keys on the //e's keyboard are actually directly connected
to the game I/0 connector's push-button input lines. These are the
OPEN-APPLE and CLOSED-APPLE keys that flank the space bar.
These two keys are connected to PB0 and PBl, respectively.

The presence of these two keys enables you to easily experiment
with the concept of game-paddle switches without having to do
any circuit design at all. Let's write a simple little program to test
the status of PB0, the OPEN-APPLE key.

The I/0 memory location reserved for PB0 is 49249. To read this
location from an Applesoft program, you would use the PEEK(49249)
command. Enter the following simple Applesoft program and run
it:

100 IF PEEK<49249>>127 THEN PRINT "DOWN WE GO!"
200 IF PEEK<49249><128 THEN PRINT "BACK AGAIN!"
300 GOTO 100

While the program is running, periodically press and release the
OPEN-APPLE key. You will find that when it is pressed, themes
sage

DOWN WE GO!

---------------- 10 The Game 1/0 Connector c=.J 345

will appear, and that when it is released, you will see the message

BACK AGAIN!

By changing the address that is PEEKed, you can easily test the
status of any of the other push buttons, including the one you wired
up yourself.

Remember that the switches connected to the push-button in
puts on the game I/0 connector need not be push buttons. Any type
of switch can be connected, including toggle switches, reed switches,
blow switches, pressure switches, and magnetic switches.

ANNUNCIATOR OUTPUTS
There are four one-bit outputs on the game I/0 connector that

are called "annunciators" and are referred to as AN0, AN1, AN2,
and AN3. The original purpose of providing these outputs on the
//e's predecessor, the Apple II, was apparently to allow the Apple
to drive a series of control lights. We will show you how to do that
shortly.

The annunciator output signals are standard 74LS series tran
sistor-transistor-logic (TTL) outputs, so they can also be used to
control other TTL devices (logic gates, integrated circuits, and so
on), or to drive relays, speakers, and many other devices. See the
references at the end of the chapter for further information on TTL
logic and digital electronics.

Each annunciator output is controlled by a pair of I/0 memory
locations, as indicated in Table 10-3. These I/0 memory locations
are called "soft switches" because switching the states of the an
nunciators can be achieved only by accessing memory locations in
software. If you read or write the first location in the pair, the

Table 10-3. Annunciator 1/0 memory locations.

Address
Hex (Dec)

$C058
$C059
$C05A
$C05B
$C05C
$C05D
$C05E
$C05F

(49240)
(49241)
(49242)
(49243)
(49244)
(49245)
(49246)
(49247)

Symbolic Name Description

CLRAN0
SETAN0
CLRAN1
SETAN1
CLRAN2
SETAN2
CLRAN3
SETAN3

Turn off annunciator 0.
Turn on annunciator 0.
Turn off annunciator 1.
Turn on annunciator 1.
Turn off annunciator 2.
Turn on annunciator 2.
Turn off annunciator 3.
Turn on annunciator 3.

346 Cl Inside the Apple //e ------------------

annunciator will be turned off; if you read or write the second
location, it will be turned on. When an annunciator is in the "off'
state, the voltage on its pin goes low (near 0 volts) and when it is
in the "on" state, the voltage goes high (near 5 volts).

It is simple to control the states of the annunciators from an
Applesoft program. In general terms, to put annunciator #N
(N=0,1,2,3) into the off position, you would use the command

POKE 49240+2*N,O

and to put annunciator #N into the on position, you would use the
command

POKE 49241+2*N,O

To make things even simpler, you could include a flag variable
in your program, say "F", where F = 1 if you want the on position
and F = 0 if you want the off position, so that the command

POKE 49240+F+2*N,O

will be the only one you need to use to control the states of the
annunciators.

Experimenting with the Annunciators
The best way to learn more about the annunciators is to wire up

a simple circuit and experiment with them it. One such circuit is set
out in Figure 10-5. This circuit allows you to control one light-emit
ting diode (LED) through each of the annunciators. Figure 10-5
contains both the schematic diagram and the pictorial diagram
for this circuit. You will have to obtain four LEDs, four 330-ohm
resistors, and a 4049B Hex Inverter integrated circuit from an
electronic parts store before you can build this circuit. Once you
obtain them, use the pictorial diagram to assemble the circuit.
Note that LEDs, being diodes, can pass current only in one direc
tion, so you should be careful to orient them properly (anode to
+ 5v). The resistors are used to limit the current flowing through
the LEDs to a safe level. The hex inverter integrated circuit is used
to "buffer," or strengthen, the annunciator output levels so that
they will be capable of lighting the LEDs. As its name suggests,
the inverter also reverses the signal coming from the annunciator.
That is why the anodes of the LEDs are connected to + 5v: when
the annunciator is low (off), the output from the inverter will be
high (+ 5v), no current will flow through the LED, and so it will
be off as expected.

Now that you've assembled this circuit, what can you do with
it? Well, since you can turn any LED on or off by reading one of

---------------- 10 The Game 1/0 Connector [=:J 347

(a) Schematic diagram.

+5v
ill

AN1D---......;.-i

NOTE: Numbers in squares
represent pin
numbers on the game
1/0 connector.
Uncircled numbers
represent pin
numbers on the 40498
inverter.

[HI

R = 330 ohms.

AN3o---~~

1m . .
................. '-40498 hex inverter

(b) Pictorial diagram.

AN3
1m

9 8 Ground
10 CMOS 7 AN2fll] lBI
11

40498 6
12

HEX
5 AN11IT] NOTE: R = 330 ohms.

13 4
14INVERTER3 AN01B]
15 2
16 1 +5v

Ill

Figure 18-5. Game 1/0 connector LED experiments.

its associated annunciator I/0 memory locations, you could easily
write a program that would cause the circuit to act as a blinking
four-bulb emergency flasher. In addition, the LEDs could be used
as indicator lights for displaying the status of up to four on/off
switches.

The sample program in Table 10-4 illustrates one interesting
application: converting a decimal number to its binary equivalent.
When the program is run, you will be asked to enter a decimal
number between 0 and 15 and then its binary equivalent (that will
be in the range 0000 . . . 1111) will be displayed using the four
LEDs on the proto board. A lighted LED corresponds to a '1' and
an LED that is off corresponds to a '0'. Before running the program,

348 [:::::::J Inside the Apple //e ------------------

Table HJ-4. ANNUNCIATOR DEMO. A program to
convert from decimal to binary using LEOs connected to
the annunciators.

l LIST

100 REM 11 ANNUNCIATOR DEM0 11

110 TEXT : HOME : PRINT TAB< 5)
; 11 DECIMAL ---> BINARY CONVER
SION 11 : PRINT TAB< 9); 11 USING

THE ANNUNCIATORS ..
120 VTAB 5: CALL - 958
1 30 INPUT 11 ENTER A NUMBER < 0 ... 1

5): 11 ;Y: PRINT
140 IF Y < 0 or Y > 15 THEN 120
150 FOR I = 3 TO 0 STEP - 1
160 X = INT <Y I (2 A I>>: REM

CHECK 11 I 11 TH BIT OF NUMBER
170 POKE 49240 + 2 * I +<X= 1>

' 0 180 y = y - (2 A I) * (X = 1): REM
REDUCE NUMBER BY BINARY WEIG
HT OF BIT

190 PRINT 11 ANNUNCIATOR # 11 ;I ; 11 : II

; : IF X = 1 THEN PRINT 11 0N 11

: GOTO 210
200 PRINT 11 0FF 11

210 NEXT I

you should ensure that the LEDs are spatially arranged from left
to right in descending numerical order (that is, AN3-AN2-AN1-
AN0).

You should realize by now that even though this project is an
extremely simple one, the annunciators can be used to control
much more complex circuits. For example, they can be used to
control the number displayed on a seven-segment LED or to ac
tivate any one of a number of other simple logic circuits.

Special Use for AN3

There is one annunciator output that is used in a special way by
the //e: AN3. As was discussed in Chapter 7, this annunciator allows
you to select or deselect double-width high-resolution and low
resolution graphics.

---------------- 1121 The Game 1/0 Connector c:::::J 349

STROBE OUTPUT

This is a single-bit output that can be used to send a momentary
pulse (a "strobe") to an external circuit. Such a pulse may be
required to change the state of an on/off device or to latch data
into the circuit so that it will not change until after it has been
read or sent.

As indicated in Table 10-5, the strobe signal is controlled by
GCSTROBE ($C040). The signal is normally kept at a high-voltage
level (+ Sv) but when this location is accessed by a read operation
(such as an Applesoft PEEK), it drops to a low-voltage level (near
0v) for about half a microsecond before returning to a high level.

Table UJ-5. Game connector strobe 1/0 memory location.

Address
Hex (Dec) Symbolic Name Description

$C040 (49216) GCSTROBE Generate a game I/0
connector strobe signal.

SUMMARY OF GAME 1/0 CONNECTOR
LOCATIONS

Table 10-6 contains a list of all of the I/0 locations on the lie that
relate to the game I/0 connector.

Table 10-6. Summary of all game 1/0 connector 1/0
locations.

Address Symbolic
Hex (Dec) Name Description

$C040 (49216) GCSTROBE Generate a game I/0 connector
strobe signal.

$C058 (49240) CLRAN0 Turn off annunciator 0.
$C059 (49241) SETAN0 Turn on annunciator 0.
$C05A (49242) CLRAN1 Turn off annunciator 1.
$C05B (49243) SETAN1 Turn on annunciator 1.
$C05C (49244) CLRAN2 Turn off annunciator 2.

(continued)

350 c.J Inside the Apple //e ------------------

Table H:J-6. Summary of i;tll game 1/0 connector 1/0
locations (continued).

Address Symbolic
Hex (Dec) Name Description

$C05D (49245) SETAN2 Turn on annunciator 2.
$C05E (49246) CLRAN3 Turn off annunciator 3.
$C05F (49247) SETAN3 Turn on annunciator 3.
$C061 (49249) PB0 Status of push button 0 (bit 7).
$C062 (49250) PB1 Status of push button 1 (bit 7).
$C063 (49251) PB2 Status of push button 2 (bit 7).
$C064 (49252) GC0 Status of game controller 0 (bit

7).
$C065 (49253) GC1 Status of game controller 1 (bit

7).
$C066 (49254) GC2 Status of game controller 2 (bit

7).
$C067 (49255) GC3 Status of game controller 3 (bit

7).

$C070 (49264) GCRESET Reset the game controllers.

FURTHER READING FOR CHAPTER 10

On reading the game paddles ...

B. Sander-Cederlof, "Reading Two Paddles at the Same Time,"
Apple Assembly Line, March 1982, p. 1. A program to simul
taneously read two game paddle inputs.

On generating music through the annunciators ...

M.A. Cross, "Apple Audio Processing," Byte, April 1980, p. 212.
How to generate multiphonic sound through the annunciators.

On interfacing a numeric keypad ...

M. Harvey, "Numeric Key Pad Lab!," Nibble, Vol. 1, No.5 (1980),
pp. 28-29. How to hook up a numeric keypad to the game 1/0
connector.

On interfacing a lie detector ...

D.B. Curtis, "To Tell the Truth," Kilobaud Microcomputing, Au
gust 1981, pp. 87-89. How to hook up a lie-detecting device to
the game paddle inputs.

---------------- 11Zl The Game 1/0 Connector c=:J 351

On interfacing a joystick ...
"Dual Joysticks for Under $15.00," Nibble, Vol. 1, No.2 (1980),

p. 13. How to hook up a joystick to the game paddle inputs.
On interfacing a thermistor ...

C.J. Kershner, "A Digital Thermometer for the Apple II," Micro,
March 1980, p. 21. How to hook up a thermistor to the game
paddle inputs.

On interfacing a light pen ...
D.J. Lilja, "Build a Simple Light Pen for the Apple II," Byte, June

1983, pp. 395-406. How to hook up a light pen to the push
button inputs.

On TTL logic and digital electronics ...
D. Lancaster, TTL Cookbook, Howard W. Sams and Co., Inc.,

1976.

11
Peripheral-Card

Expansion Slots
One of the main reasons that the lie and its predecessors, the

Apple II and the Apple II Plus, have proved to be so popular is that
it is relatively simple to interface to them a multitude of external
devices such as printers, disk drives, modems, music synthesizers,
and so on. Devices such as these can be controlled by the lie through
special peripheral cards that can be inserted into any of the seven
50-pin expansion connectors (or slots) found at the back of the
lie's motherboard. I/0 circuitry on these peripheral cards can be
controlled by accessing addresses within the lie's IIO memory space
from $C090 to $C0FF.

The seven slots on the lie are numbered from 1 to 7, with the
leftmost slot (as viewed from the keyboard end) representing slot
1. The lie also contains an eighth slot, called the auxiliary connec
tor, into which Apple's 80-column text card can be installed. It is
located at the left side of the lie's motherboard in front of the other
slots. The auxiliary connector is markedly different from the other
slots and different interfacing methods must be followed to use it.

In this chapter, we will take a look at some of the rules that must
be followed when designing and using peripheral cards. We will
also see how the lie allocates memory space and I/0 memory lo
cations to peripheral cards.

PERIPHERAL-CARD 1/0 MEMORY
LOCATIONS

Apple has developed certain hardware conventions that should
be adhered to whenever peripheral cards are being designed. For
tunately, the vast majority of manufacturers have followed these

353

354 c=J Inside the Apple //e ------------------

conventions, thus making it possible to plug several peripheral
cards into the lie at the same time and use them without fear of
interference or irreconcilable conflicts.

The first of these conventions relates to the I/0 memory locations
within the lie's IIO memory space that are to be used by the I/0
circuitry on the peripheral card in a given slot. As we saw in Chap
ter 2, this I/0 space extends from $C000 to $C0FF. The convention
is that whenever a peripheral card is plugged into one of the seven
standard slots, it must only make use of the sixteen I/0 memory
locations from $C080 + $10*s to $C08F + $10*s, where "s" is the
slot number. The I/0 memory locations assigned to each of the
seven expansion slots on the lie are shown in Table 11-1.

It is the responsibility of the designer of the peripheral card to
ensure that the I/0 circuitry on the card remains inactive until an
IIO memory location assigned to the slot into which that card has
been inserted has been accessed. This can be done fairly easily
because the lie generates a low-voltage signal on pin 41 of the slot
connector, called the DEVICE SELECT signal, whenever this con
dition is met (the voltage at this pin is normally high). In the usual
case, the I/0 circuitry on the peripheral card will be connected to
the DEVICE SELECT pin in such a way that it will be operative
only when DEVICE SELECT is low. When the circuitry becomes
operative, the low four address lines from the 6502 microprocessor
can be examined (or "decoded") to determine which of the 16 I/0
memory locations has been selected, and then the specific action
that has been associated with that particular location can be per
formed.

Some peripheral cards that are available for the lie do not adhere
to the I/0 memory locations convention. These are the multifunc
tion cards, which typically combine two or three discrete I/0 cir
cuits on one physical card. A card such as this allows each of its

Table 11-1. Peripheral-card 110 memory locations.

Slot Number

Slot 1
Slot 2
Slot 3
Slot 4
Slot 5
Slot 6
Slot 7

110 Memory Locations

$C090--$C09F
$C0A0-$C0AF
$C0B0-$C0BF
$C0C0--$C0CF
$C0D0-$C0DF
$C0E0--$C0EF
$C0F0-$C0FF

------------- 11 Peripheral-Card Expansion Slots c=J 355

distinct circuits to be controlled as if it was contained on a card
plugged into another physical slot.

The phenomenon of allowing one physical card to behave as if
it occupied several slots is called "phantom slotting." Phantom
slotting is made possible by circuitry on the peripheral card that
is capable of reacting to an I/0 memory location reserved for a slot
other than the one into which the card has been installed. Special
address decoder circuits similar to those which the 1/e uses to de
termine when to generate an active DEVICE SELECT signal are
used for this purpose.

If peripheral cards are used that are using phantom slotting
techniques, it is important to ensure that no card is inserted into
the physical slot that is being phantomed. If a card is inserted there
by mistake, then two separate I/0 operations could be activated
at the same time and this is probably not what was intended.

PERIPHERAL-CARD ROM

Each peripheral card that plugs into the //e is permitted to con
tain memory. The second hardware convention developed by Apple
relates to the address space that may be used by any ROM or RAM
memory included on the peripheral card (it's usually ROM). Ac
cording to this convention, each peripheral card is assigned 256
bytes of memory within the space from $C100 to $C7FF; this mem
ory space is called peripheral-card ROM. The memory space as
signed to each slot is shown in Table 11-2.

A 256-byte page of memory has been allocated to each slot to
permit intelligent peripheral cards to be attached to the //e. The
page is normally used by a ROM that contains device drivers writ-

Table 11-2. Peripheral-card ROM spaces reserved for
expansion slots.

Slot Number

Slot 1
Slot 2
Slot 3
Slot 4
Slot 5
Slot 6
Slot 7

Memory Space

$C100-$ClFF
$C200-$C2FF
$C300-$C3FF
$C400-$C4FF
$C500-$C5FF
$C600-$C6FF
$C700-$C7FF

356 c:=J Inside the Apple //e ------------------

ten in 6502 assembly language that allow for simplified control of
the peripheral by providing a set of subroutines that can be used
to perform the basic I/0 and status-reading operations normally
associated with it. If these drivers could not be stored on the pe
ripheral card in this way, they would have to be loaded into RAM
memory whenever the //e was turned on and this would be highly
inconvenient.

There are two Applesoft (and DOS) commands that can be used
to redirect character input and output to the peripheral-card ROM
area: IN#s and PR#s. Both of these commands cause Applesoft to
jump to a subroutine that starts at location $Cs00 on the peripheral
card, where "s" is the slot number. This subroutine is responsible
for initializing the device and then, if necessary, for altering the
//e's input and output links in order to redirect all further character
input and output requests to subroutines contained in the periph
eral-card ROM area. See Chapters 6 and 7 for further information
on the //e's input and output links.

A character input subroutine contained in ROM on the periph
eral card must return the inputted character in the 6502 accu
mulator with the high-order bit set to one and with the X andY
registers unchanged (this is the protocol used by the standard key
board input subroutine). A character output subroutine can expect
to find the character to be outputted in the accumulator (with its
high-order bit set to one) when it takes control and it must return
with the A, X, andY registers unchanged.

The //e generates a special signal that simplifies the interfacing
of the 256-byte memory page on a peripheral card. This is called
the I/0 SELECT signal and it appears at pin 1 of the slot connector.
I/0 SELECT is normally high, but becomes low at a given slot
whenever any address within the 256-byte memory page allocated
to that slot is accessed. The low signal it produces can be used to
enable the memory chips being used so that the starting address
of the ROM will automatically take on the proper value in whatever
slot the card is installed ($C 100 for slot 1, $C200 for slot 2, and so
on).

As we saw in Chapter 8, the same address space encompassed
by peripheral-card ROM ($C100 ... $C7FF) is used by built-in in
ternal ROM that holds the extensions to the standard system mon
itor, self-test subroutines, and the 80-column firmware. Before pro
grams in peripheral-card ROM can be used, the INTCXROM switch
must be turned off by writing to INTCXROMOFF ($C006) and, if
any ROM in slot 3 is to be used, the SLOTC3ROM switch must be
turned on by writing to SLOTC3ROMON ($C00B). In the normal

-------------- 11 Peripheral-Card Expansion Slots CJ 357

course of events, INTCXROM will always be off, so you shouldn't
have to worry about adjusting it before peripheral cards can be
used. If an 80-Column Text Card has been installed in the auxiliary
slot, however, then SLOTC3ROM will initially be off and must be
turned on before accessing the ROM on a card in slot 3. Note,
however, that if SLOTC3ROM is on, the lie's special 80-column
firmware that supports the text card cannot be used because the
physical memory in which it is contained will be temporarily in
active.

PERIPHERAL-CARD EXPANSION ROM

The //e also permits each peripheral card to contain a 2,048-byte
area of memory that is mapped to locations $C800 ... $CFFF. This
area is called peripheral-card expansion ROM and is used when
ever additional space is needed to hold programs that control the
peripheral device.

Before making use of any subroutines within the expansion ROM
space for any particular card, the expansion ROMs in all peripheral
cards must first be disabled. If this were not done, then several
different physical locations might be active that correspond to the
same logical address and this is not tolerated by the 6502 micro
processor. This is where Apple's third convention comes into play.
This convention states that the circuitry on each peripheral card
must turn off its expansion ROM whenever location $CFFF is ac
cessed. Fortunately, most peripheral cards adhere to this conven
tion. Thus, to turn off all the peripheral-card expansion ROMs, an
instruction such as

STA $CFFF

or

LDA $CFFF

must be executed. (This instruction is usually contained in the
standard peripheral-card ROM-it obviously cannot be contained
in the peripheral-card expansion ROM.) After this has been done,
the circuitry on the peripheral card must be such that the card's
expansion ROM will be enabled as soon as an address in the card's
256-byte peripheral card ROM is accessed. After the card's expan
sion ROM space has been enabled like this, it will remain enabled
until all expansion ROMs are turned off again with a subsequent
access of $CFFF.

358 c:::::::J Inside the Apple //e ------------------

PERIPHERAL-CARD SCRATCHPAD RAM

It is often necessary for the program running in the ROMs con
tained on a peripheral card to make use of RAM memory locations
so that it can store information that may change from time to time.
These locations are referred to as "scratchpad" RAM. For example,
it may be necessary to store the current status of a device, a con
stant such as" slot number" or" 16 times slot number" or a default
command value. Any RAM memory location could be used for such
purposes, but unless that location is specifically reserved for use
by a peripheral device, it could be overwritten by any program
that uses the same location.

Apple's fourth convention relates to the RAM memory locations
reserved for use as scratch pad RAM. If a peripheral card is installed
in slot "s", then it may make use of the following RAM locations:
$478 + S, $4F8 + s, $578 + s, $5F8 + S, $678 + s, $6F8 + s, $778 + s,
$7F8 + s. The specific addresses that are available for use at each
slot are set out in Table 11-3.

The base addresses set out in Table 11-3 are used by DOS 3.3
and for the storage of information that indicates the status of the
system. For example, $5F8 holds the value $Cs, where "s" is the
slot number from which DOS 3.3 was booted, and $7F8 holds the
value $Cs, where "s" is the slot number of the peripheral device
whose ROM was last accessed.

You will recall from Chapter 7 that the scratchpad locations are
all contained within the area of memory dedicated for use by the
text screen and the low-resolution graphics screen ($400 ... $7FF).
Remember, however, that not all of the bytes from $400 to $7FF

Table 11-3. Peripheral-card scratchpad RAM locations.

Base Slot Number
Address 1 2 3 4 5 6 7

$478 $479 $47A $47B $47C $47D $47E $47F
$4F8 $4F9 $4FA $4FB $4FC $4FD $4FE $4FF
$578 $579 $57 A $57B $57C $57D $57E $57F
$5F8 $5F9 $5FA $5FB $5FC $5FD $5FE $5FF
$678 $679 $67A $67B $67C $67D $67E $67F
$6F8 $6F9 $6FA $6FB $6FC $6FD $6FE $6FF
$778 $779 $77A $77B $77C $77D $77E $77F
$7F8 $7F9 $7FA $7FB $7FC $7FD $7FE $7FF

-------------- 11 Peripheral-Card Expansion Slots c:=J 359

are used by the screen display circuitry; in fact, there are a total
of 64 unused locations which are called "screenholes." It is these
screenholes that are used for peripheral-card scratchpad storage.

THE AUXILIARY CONNECTOR
AND SLOT 3

The auxiliary connector on the //e is designed to hold the //e's
80-column text card or extended 80-column text card. For histor
ical reasons, when either of these two cards is plugged in, the //e
reacts in such a way that it thinks that a card has been plugged
into slot 3. This means that the 80-column display is enabled by
entering an Applesoft PR#3 command, that the ROM supporting
the 80-column display occupies locations $C300 to $C3FF (and
$C800 to $CFFF), and that the scratchpad RAM areas used by this
ROM are those normally reserved for a card in slot 3. In "emulat
ing" slot 3, Apple is simply adhering to another convention that
stems from Apple II and Apple II Plus days: that an 80-column
card is to be installed in slot 3.

As you might guess, if an 80-column text card is installed in the
auxiliary connector, there are considerable problems in using any
peripheral card that is installed in slot 3 at the same time. In a
nutshell, the problem arises because the //e initially prevents any
ROMs on a peripheral card in slot 3 from being used by turning
off the SLOTC3ROM soft switch (see Chapter 8) in order to select
internal ROM memory from $C300 ... $C3FF. Even with
SLOTC3ROM off, however, it is still possible to use a peripheral
card in slot 3 by using a driver program that resides in main RAM
memory and that uses only the I/0 memory addresses used by the
device in slot 3 and not the ROM subroutines on the peripheral
card. Unfortunately, it may not be possible to do this if commercial
software is being used since it becomes difficult, if not impossible,
to interface RAM drivers of this sort.

As we sawearlier in this chapter, and in Chapter 8, the ROM on
a peripheral card in slot 3 can be activated even if an 80-column
text card is present in the auxiliary slot by turning on SLOTC3ROM
by writing to SLOTC3ROMON ($C00B). When this is done, a PR#3
or IN#3 command will not transfer control to $C300 in the internal
80-column firmware ROM but rather it will transfer control to the
same address in the slot 3 ROM. This means that the device in
terfaced to slot 3 can be used in the normal manner (but the SO
column text card subroutines will be temporarily disabled).

360 c:::::J Inside the Apple //e -----------'---------

PROGRAMMING FOR
PERIPHERAL CARDS

Programs that are to be stored in the ROM area of a peripheral
card have to be carefully written. There are two fundamental re
strictions on such programs: first, they must be relocatable and,
second, they must adhere to certain software protocols established
by Apple.

Relocatability

A program is said to be relocatable if it can be run in any part
of memory without having to be changed. This is an important
attribute for a peripheral-card program because it means that the
peripheral card can be placed in any of the lie's seven standard
interface slots and still operate properly. (Remember that if the
card has been properly designed, the beginning address of the ROM
will automatically change if the card is placed in another slot-it
will be $C100 for slot 1, $C200 for slot 2, and so on.)

There are two main reasons why a program may not be relo
catable. One reason is that the program may read data from or
store data to absolute memory locations that are within the pro
gram boundaries itself. If this is done, then when the program is
moved, the old locations will still be accessed and this is likely not
what was intended.

The second reason that the program may not be relocatable is
that it contains JSR or JMP instructions that transfer control to
instructions within the program itself. Since both of these instruc
tions use the absolute addressing mode, when the program is moved
by changing slots, the absolute addresses specified will stay the
same and the program will no longer operate properly. Any change
in program flow should be done by using branch-on-condition in
structions (such as BNE, BPL, BCC, and BCS), which use relative,
rather than absolute, addressing. For example, instead of jumping
to a location called TARGET using the instruction

JMP TARGET

you could use relocatable code such as this:

SEC
BCS TARGET

-------------- 11 Peripheral-Card Expansion Slots c=J 361

Because slot independence of the peripheral card is such an im
portant feature, peripheral-card ROM driver subroutines must never
use absolute addressing to access I/0 memory locations or the
scratchpad RAM locations. Instead, indexed addressing must be
used where the base addresses are fixed at locations that will be
the same for each slot.

For example, to read the third of the sixteen I/0 memory loca
tions for a given slot, an instruction like this:

LDA $C082,X

should be used, where X holds 16 times the slot number (alter
nately, theY register could be used as the index). This makes the
instruction slot independent.

Scratchpad RAM locations should be accessed using a similar
method; the only difference is that the index register will contain
the slot number itself. For example, to access the second scratch pad
RAM location for a given slot, the following instruction should be
used:

LDA $4F8,X

where X contains the slot number.

The above two examples bring up an important question: how
does the program in the peripheral-card ROM know which slot the
peripheral card has been placed in? This information cannot be
stored in the peripheral-card ROM because this would prevent the
card from being operable in any slot. The slot number can be
determined by using a rather tricky software technique that takes
advantage of the fact that whenever the 6502 executes a JSR Uump
to-subroutine) instruction, it saves the current value of the program
counter on the stack (the "return address"). If the subroutine is
called from a program contained within the peripheral-card ROM
space, the high-order byte of the return address will be of the form
$Cs, where "s" is the slot number. Thus, "s" can be deduced by
finding this byte in the stack area and examining it.

Here is how this technique works in practice. First, the periph
eral-card ROM subroutine must perform a JSR to a location that
contains an RTS (return-from-subroutine) instruction. A conven
ient location to use for this purpose is $FF58 because Apple has
guaranteed that this location will always contain an RTS instruc
tion. After the JSR and RTS instructions have been executed, the
6502 stack pointer will be pointing to a byte of the form "$Cs",

362 c::J Inside the Apple //e ------------------

where "s" is the slot number, and the stack will look something
like this:

a a
Cs +--- stack pointer
bb
cc
dd

(to bottom of stack)

where aa, bb, cc, and dd represent hexadecimal numbers. "$Csaa"
is the address minus 1 of the next in-line instruction to be executed
after the subroutine to which JSR passes control finishes. The byte
being pointed to by the stack pointer can be obtained by executing
the following instructions:

TSX ;Put stack pointer into X index
LDA $100,X ;Get "$Cs" byte off stack
AND #$OF ;Convert "$Cs" to "$0s"
TAX ;Put slot number in X

After these instructions have been executed, the slot number will
be in the X register and can be used to properly access I/0 memory
locations (if it is first multiplied by 16) and scratchpad RAM lo
cations.

Software Protocols

Apple has also established several software protocols that the
programs contained in the ROMs of any peripheral cards should
adhere to. Many of these protocols are important only if the pe
ripheral card is going to be used in connection with the Apple
Pascal language rather than Applesoft. Even though we are not
looking at Apple Pascal in this book, these Pascal-related protocols
will be summarized for the sake of completeness.

If you want to study implementations of the following protocols,
refer to Apple's source listing for the //e's internal 80-column firm
ware (in "Reference Manual Addendum: Monitor ROM Listings") or
for the Apple super serial card (contained in the reference manual
for that peripheral).

Applesoft Protocol

The Applesoft software protocol requires that the initialization,
input, and output subroutines for a peripheral card begin at those
fixed locations shown in Table 11-4.

-------------- 11 Peripheral-Card Expansion Slots CJ 363

Table 11-4. Applesoft software protocol.

Subroutine

Initialization
Character Input
Character Output

s = slot number.

Starting Address

$Cs00
$Cs05
$Cs07

Note that this protocol is not adhered to by some of Apple's older
peripheral cards, namely, the parallel printer interface card and
the communications card. These cards represent special cases and
must be treated as exceptions by any program that needs to know
the absolute locations of the initialization, input, and output sub
routines.

Pascal 1 .0 Protocol

Pascal 1.0 expects initialization, input, and output subroutines
on a peripheral card to begin at different locations than those
expected by Applesoft. These locations are shown in Table 11-5.

Besides supporting these subroutines, the peripheral card must
have the values $38 and $18 stored at locations $Cs05 and $Cs07,
respectively. If these values are not present, the peripheral card
will be ignored by Pascal 1.0.

Pascal 1 . 1 Protocol

Pascal 1.1 is a significant upgrade to its predecessor, Pascal 1.0.
It supports a much more flexible software protocol for peripheral
devices that enables it to easily determine not only that a usable
device has been installed, but also what kind of device it is.

Table 11-5. Pascal 1.0 software protocol.

Subroutine

Initialization
Character input
Character output

Starting Address

$C800
$C84D
$C9AA

364 c:::::J Inside the Apple //e ------------------

Interface cards that support Pascal 1.1 must contain a table at
$Cs0D to $Cs13 in the peripheral-card ROM that contains the off
sets from $Cs00 of various subroutines that Pascal 1.1 may need
to use. The primary subroutines are those for initialization, input,
output, and I/0 status. However, two other subroutines, one for
control of the device and the other for interrupt handling, can also
be included. A description of the meaning of each entry in this
offset table is shown in Table 11-6. Note that the last two offsets
contained in the table are not actually used because Pascal1.1 does
not use Device Control and Interrupt Handler subroutines.

Before any of the subroutines referred to in Table 11-6 are called,
the 6502 X register must contain $Cs (where "s" is the slot number)
and theY register must contain $s0. In addition, if the Character
Output subroutine is being called, the byte to be outputted must
be contained in the accumulator. If the I/0 status subroutine is
being called, the accumulator must contain the request code: 0
means "Are you ready for output?" and 1 means "Is any input
ready?"

After the subroutine has performed its duties, the X register will
contain an error code; this code will be 0 if no error actually oc
curred. If the Character Input subroutine was called, the character
read will be returned in the accumulator. If the I/0 Status sub
routine was called, the status of the carry flag must be checked to
determine the status. Only if the carry flag is set is the device ready
to perform I/0.

Table 11-6. Pascal 1.1 software protocol.

Address of Offset

$Cs0D
$Cs0E
$Cs0F
$Cs10
$Csll

$Cs12
$Cs13

Subroutine Description

Initialization
Character input
Character output
I/0 status
Continuation byte: $00 if the following two

offsets are used
Device control
Interrupt handler

------------- 11 Peripheral-Card Expansion Slots c=J 365

Table 11-7. Peripheral-card ROM identification bytes.

Address

$Cs05
$Cs07
$Cs0B
$Cs0C

Value

$38 (SEC opcode)
$18 (CLC opcode)
$01 (generic signature byte)
$ci (device signature from Table 11-8)

ROM Identification Bytes

Four other bytes in the peripheral-card ROM are used by Pascal
1.1 to allow I/0 devices to be identified. The addresses for these
bytes, and the values stored there, are set out in Table 11-7.

The device signature byte at $Cs0C is not currently used by Pas
cal 1.1 but may be examined by a program that is operating to
determine the type of peripheral card installed in the slot. The first
hexadecimal digit of the signature ("c") represents the general
device class, as shown in Table 11-8, and the second digit ("i")
represents a unique identifier that has been assigned to the device
by Apple. The identifier makes it possible to determine the precise
model of the interface card being used.

Table 11-8. Pascal 1.1 device class digits.

Device Class Digit

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B-$F

Description of Class

<Reserved>
Printer
Joystick or other X-Y input device
Serial or parallel I/0 device
Modem
Sound or speech device
Clock
Mass storage device (disk drive)
80-column card
Network or bus interface
Special purpose (none of the above)
<Reserved>

366 c::::::::J Inside the Apple //e -------------------

FURTHER READING FOR CHAPTER 11

On hardware interfacing techniques ...
J.S. Titus, D.G. Larsen, and C.A. Titus, Apple Interfacing, Howard

W. Sams & Company, Inc., 1981. The hardware aspects of
interfacing devices to the Apple's slots.

J.W. Coffron, The Apple Connection, Sybex, 1982.
J .E. Uffenbeck, Hardware Interfacing with the Apple I I Plus, Pren

tice-Hall, Inc., 1983. A good introduction to hardware inter
facing with lots of examples.

On software protocols ...
B. Haynes, Attach-BIOS for Apple II Pascal 1.1, International

Apple Core, 1980. This bookiet explains the Pascal1.1 firmware
protocols.

Apple 1/e Design Guidelines, Apple Computer, Inc., 1982. This book
reviews all of Apple's software protocols and "preferred" pro
gramming practices.

Appendix I
American National Standard

Code for Information
Interchange CASCIIJ

Character Codes

367

w
ASCII Code en

CD
Hex Dec Symbol Keys to Press

D
$00 000 NUL (Null) CONTROL@ 5"
$01 001 SOH (Start of header) CONTROL A Ul

$02 002 STX (Start of text) CONTROL B 0.:
ctl

$03 003 ETX (End of text) CONTROL C C"t
::r

$04 004 EOT (End of transmission) CONTROL D ctl

)>
$05 005 ENQ (Enquiry) CONTROL E "'CJ

"'CJ

$06 006 ACK (Acknowledge) CONTROL F m
$07 007 BEL (Bell) CONTROL G --ro-
$08 008 BS (Backspace) LEFT -ARROW or CONTROL H
$09 009 HT (Horizontal tabulation) TAB or CONTROL I
$0A 010 LF (Line feed) DOWN-ARROW or CONTROL J
$0B 011 VT (Vertical tabulation) UP-ARROW or CONTROL K
$0C 012 FF (Form feed) CONTROL L
$0D 013 CR (Carriage return) RETURN or CONTROL M
$0E 014 so (Shift out) CONTROL N
$0F 015 SI (Shift in) CONTROL 0
$10 016 DLE (Data link escape) CONTROL P
$11 017 DCl (Device control 1) CONTROL Q
$12 018 DC2 (Device control 2) CONTROL R
$13 019 DC3 (Device control 3) CONTROLS
$14 020 DC4 (Device control 4) CONTROLT
$15 021 NAK (Negative acknowledge) RIGHT-ARROW or CONTROL U
$16 022 SYN (Synchronous idle) CONTROL V
$17 023 ETB (End of transmission block) CONTROL W
$18 024 CAN (Cancel) CONTROL X
$19 025 EM (End of medium) CONTROL Y
$1A 026 SUB (Substitute) CONTROL Z
$1B 027 ESC (Escape) ESC or CONTROL [
$1C 028 FS (Field separator) CONTROL\
$1D 029 GS (Group separator) CONTROL]
$1E 030 RS (Record separator) CONTROL'
$1F 031 us (Unit separator) CONTROL_

$20 032 (Space) SPACE BAR
$21 033 ! SHIFT 1
$22 034 " SHIFT'
$23 035 # SHIFT~
$24 036 $ SHIFT 4
$25 037 % SHIFT 5
$26 038 & SHIFT 7
$27 039 ' '

$28 040 (SHIFT 9
$29 041) SHIFT 0
$2A 042 * SHIFT 8
$2B 043 + SHIFT=
$2C 044
$2D 045
$2E 046
$2F 047 I I
$30 048 0 0
$31 049 1 1
$32 050 2 2
$33 051 3 3
$34 052 4 4
$35 053 5 5
$36 054 6 6
$37 055 7 7
$38 056 8 8 :t>

"0

$39 057 9 9 "0
CD

$3A 058 SHIFT; ::J
c..

$3B 059 x·
' ' -

$3C 060 < SHIFT,

D $3D 061 = =
$3E 062 > SHIFT. w
$3F 063 ? SHIFT I en

(continued) CD

w
ASCII Code

0
Hex Dec Symbol Keys to Press

D
$40 064 @ SHIFT 2

5"
$41 065 A SHIFT A (IJ

$42 066 B SHIFT B c:
CD

$43 067 c SHIFT C C"t
::::r

$44 068 D SHIFT D CD

)>

$45 069 E SHIFT E "'C
"'C

$46 070 F SHIFT F ro
$47 071 G SHIFT G --ro-
$48 072 H SHIFT H
$49 073 I SHIFT I
$4A 074 J SHIFT J
$4B 075 K SHIFT K
$4C 076 L SHIFT L
$4D 077 M SHIFT M
$4E 078 N SHIFT N
$4F 079 0 SHIFT 0
$50 080 p SHIFT P
$51 081 Q SHIFT Q

$52 082 R SHIFT R
$53 083 s SHIFTS

. $54 084 T SHIFT T
$55 085 u SHIFT U
$56 086 v SHIFT V
$57 087 w I SHIFT W
$58 088 X SHIFT X
$59 089 y SHIFTY
$SA 090 z SHIFT Z
$5B 091 [[
$5C 092 \ \
$5D 093]]
$5E 094 A SHIFT 6

$SF 095 - SHIFT-
$60 096
$61 097 a A
$62 098 b B
$63 099 c c
$64 100 d D
$65 101 e E
$66 102 f F
$67 103 g G
$68 104 h H
$69 105 i I
$6A 106 j J
$6B 107 k K
$6C 108 1 L
$6D 109 m M
$6E 110 n N
$6F 111 0 0
$70 112 p p
$71 113 q Q
$72 114 r R
$73 115 s s
$74 116 t T
$75 117 u u
$76 118 v v
$77 119 w w
$78 120 X X)>

$79 121 y y "'C
"'C

$7A 122 z CD
z :::l

$7B 123 { SHIFT [a. :x·
$7C 124 I SHIFT\ -
$7D 125 } SHIFT] D $7E 126 ~ SHIFT'
$7F 127 I (Rubout) DELETE w

Appendix II
6502 Instruction Set and

Cycle Times
Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles

ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4
(zpage,X) 61 2 6
(zpage),Y 71 2 5>'<
abs 6D 3 4
abs,X 7D 3 4*
abs,Y 79 3 4*

AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4
(zpage,X) 21 2 6
(zpage),Y 31 2 5*
abs 2D 3 4
abs,X 3D 3 4*
abs,Y 39 3 4*

ASL [accumulator] 0A 1 2
zpage 06 2 5
zpage, X 16 2 6
abs 0E 3 6
abs,X 1E 3 7

BCC disp 90 2 2**
BCS disp B0 2 2~'*

BEQ disp F0 2 2**
BIT zpage 24 2 3

abs 2C 3 4
BMI disp 30 2 2**
BNE disp D0 2 2**

(continued)

373

374 c::::::::J Inside the Apple //e

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles

BPL disp 10 2 2,h~

BRK [implied] 00 1 7

BVC disp 50 2 2**
BVS disp 70 2 2**
CLC [implied] 18 1 2

CLD [implied] DB 1 2

CLI [implied] 58 1 2

CLV [implied] B8 1 2

CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4
(zpage,X) Cl 2 6
(zpage),Y Dl 2 5*
abs CD 3 4
abs,X DD 3 4>~

abs,Y D9 3 4>~

CPX #num E0 2 2
zpage E4 2 3
abs EC 3 4

CPY #num C0 2 2
zpage C4 2 3
abs cc 3 4

DEC zpage C6 2 5
zpage,X D6 2 6
abs CE 3 6
abs,X DE 3 7

DEX [implied] CA 1 2
DEY [implied] 88 1 2
EOR #num 49 2 2

zpage 45 2 3
zpage,X 55 2 4
(zpage,X) 41 2 6
(zpage),Y 51 2 5*
abs 4D 3 4
abs,X 5D 3 4*
abs,Y 59 3 4*

INC zpage E6 2 5
zpage,X F6 2 6
abs EE 3 6
abs,X FE 3 7

Appendix II c:=J 375

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles

INX [implied] E8 1 2

INY [implied] C8 1 2

JMP abs 4C 3 3
(abs) 6C 3 5

JSR abs 20 3 6

LDA #num A9 2 2
zpage AS 2 3
zpage,X BS 2 4
(zpage,X) A1 2 6
(zpage),Y B1 2 5*
abs AD 3 4
abs,X BD 3 4*
abs,Y B9 3 4*

LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs,Y BE 3 4*

LDY #num A0 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4*

LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs,X SE 3 7

NOP [implied] EA 2

ORA #num 09 2 2
zpage 05 2 3
zpage,X 15 2 4
(zpage,X) 01 2 6
(zpage),Y 11 2 5*
abs 0D 3 4
abs,X 1D 3 4*
abs,Y 19 3 4*

PHA [implied] 48 1 3

PHP [implied] 08 1 3

PLA [implied] 68 1 4
(continued)

376 c=J Inside the Apple //e

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles

PLP [implied] 28 4

ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage,X 36 2 6
abs 2E 3 6
abs,X 3E 3 7

ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 7

RTI [implied] 40 6

RTS [implied] 60 1 6

SBC #num E9 2 2
zpage E5 2 3
zpage,X F5 2 4
(zpage,X) E1 2 6
(zpage),Y F1 2 5*
abs ED 3 4
abs,X FD 3 4*
abs,Y F9 3 4*

SEC [implied] 38 1 2

SED [implied] F8 1 2

SEI [implied] 78 1 2
STA zpage 85 2 3

zpage,X 95 2 4
(zpage,X) 81 2 6
(zpage),Y 91 2 5*
abs 8D 3 4
abs,X 9D 3 4*
abs,Y 99 3 4*

STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4

STY zpage 84 2 3
zpage,X 94 2 4
abs 8C 3 4

TAX [implied] AA 1 2

TAY [implied] A8 1 2
TSX [implied] BA 1 2

Appendix II c=J 377

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles

TXA [implied] 8A 1 2

TXS [implied] 9A 2

TYA [implied] 98 2

* Add one clock cycle if a page boundary is crossed.

*" Add one clock cycle if a branch occurs to a location in the same page; add two
clock cycles if a branch occurs to a location in a different page.

See Table 2-3 in Chapter 2 for a description of the assembler operand formats.

Appendix Ill
Apple //e Soft Switch,

Status, and Other
1/0 Locations

NOTE: The "Usage" column in the following tables indicates
how a particular location is to be accessed:

"W" means "write to the location."
"R" means "read from the location:"
"RW" means "read from or write to the location."
"R7" means "read and check bit 7 to determine the status."
"RR" means "read from the location twice in a row."

The term "aux." refers to auxiliary memory on an 80-column
text card; "main" refers to built-in internal memory. "BSR" refers
to the lie's 16K bank-switched RAM space from $D000-$FFFF.

Memory Management Soft Switches

Address
Hex (Dec) Usage Symbolic Name Action Taken Note

$C000 (49152) w 80STOREOFF Allow PAGE2 to 1
switch between
video pagel and
page2

$C001 (49153) w 80STOREON Allow PAGE2 to 1
switch between
main and aux. video
memory

$C002 (49154) w RAMRDOFF Read-enable main 4
memory from $200-
$BFFF

(continued)

379

380 .c:=J Inside the Apple //e

Memory Management Soft Switches (continued)

Address
Hex (Dec) Usage Symbolic Name Action Taken Note

$C003 (49155) w RAMRDON Read-enable aux. 4
memory from $200-
$BFFF

$C004 (49156) w RAMWRTOFF Write-enable main 4
memory from $200-
$BFFF

$C005 (49157) w RAMWRTON Write-enable aux. 4
memory from $200-
$BFFF

$C006 (49158) w INTCXROMOFF Enable slot ROM 5
from $C100-$CFFF

$C007 (49159) w INTCXROMON Enable main ROM 5
from $C100-$CFFF

$C008 (49160) w ALZTPOFF Enable main memory 5
from $0000-$01FF
and make main
BSR available

$C009 (49161) w ALTZPON Enable aux. memory
from $0000-$01 FF
and make aux. BSR
available

$C00A (49162) w SLOTC3ROMOFF Enable main ROM 5
from $C300-$C3FF

$C00B (49163) w SLOTC3ROMON Enable slot ROM 5
from $C300-$C3FF

Video Soft Switches

Address
Hex (Dec) Usage Symbolic Name Action Taken Note

$C00C (49164) w 80COLOFF Turn off 80-column
display

$C00D (49165) w 80COLON Turn on 80-column
display

$C00E (49166) w ALTCHARSETOFF Turn off alternate
characters

$C00F (49167) w ALTCHARSETON Turn on alternate
characters

$C050 (49232) RW TEXTOFF Select graphics mode
$C051 (49233) RW TEXTON Select text mode
$C052 (49234) RW MIXEDOFF Use full screen for 2

graphics

--------------------Appendix Ill c=J 381

Video Soft Switches (continued)

Address
Hex (Dec) Usage Symbolic Name Action Taken Note

$C053 (49235) RW MIXEDON Use graphics with 2
four lines of text

$C054 (49236) RW PAGE20FF Select page1 display 1
(or main video
memory)

$C055 (49237) RW PAGE20N Select page2 display 1
(or aux. video
memory)

$C056 (49238) RW HIRESOFF Select low-resolution 1,2
graphics

$C057 (49239) RW HIRESON Select high-resolution 1,2
graphics

Soft Switch Status Flags

Address
Hex (Dec) Usage Symbolic Name

$C010 (49168) R7 AKD

$C011 (49169) R7 BSRBANK2

$C012 (49170) R7 BSRREADRAM

$C013 (49171) R7 RAMRD

$C014 (49172) R7 RAMWRT

Status Description Note

1 = a key is being 3
pressed

0 = all keys are
released

1 = bank2 of BSR is
available

0 = bank1 of BSR is
available

1 = BSR is active for
read operations

0 = $D000--$FFFF
ROM is active for
read operations

0 = main $200- 4
$BFFF is active for
read operations

1 = auxiliary $200-
$BFFF is active for
read operations

0 = main $200- 4
$BFFF is active for
write operations

1 = auxiliary $200-
$BFFF is active for
write operations

(continued)

382 c:=J Inside the Apple //e

Soft Switch Status Flags (continued)

Address
Hex (Dec) Usage Symbolic Name Status Description Note

$C015 (49173) R7 INTCXROM 1 = main $C100- 5
$CFFF ROM is
active

0 = slot $C100-$CFFF
ROM is active

$C016 (49174) R7 ALTZP 1 = aux. zero
page + stack is
active; aux. BSR is
available

0 = main zero
page+ stack is
active; main BSR is
available

$C017 (49175) R7 SLOTC3ROM 1 = slot $C3 ROM is 5
active

0 = main $C3 ROM is
active

$C018 (49176). R7 80S TORE 1 = PAGE2 switches 1
main/aux.

0 = PAGE2 switches
video pages

$C019 (49177) R7 VERTBLANK 1 = vertical retrace is
on

0 = vertical retrace is
off

$C01A (49178) R7 TEXT 1 = a text mode is
active

0 = a graphics mode
active

$C01B (49179) R7 MIXED 1 = mixed graphics 2
and text

0 = full-screen
graphics

$C01C (49180) R7 PAGE2 1 = video page2 1
selected OR aux.
video page selected

$C01D (49181) R7 HIRES 1 = high-resolution 1,2
graphics

0 = low-resolution
graphics

$C01E (49182) R7 ALTCHARSET 1 = alternate
character is on

0 =primary
character is on

---------------------Appendix Ill c:::::J 383

Soft Switch Status Flags (continued)

Address
Hex (Dec) Usage Symbolic Name

$C01F (49183) R7 80COL

Notes:

Status Description

1 = 80-column
display is on

0 = 40-column
display is on

Note

1. If 80STORE is ON, then PAGE20FF activates main video RAM ($400---$7FF) and
PAGE20N activates auxiliary video RAM. If HIRES is also ON, then PAGE20FF
also activates main high-resolution video RAM ($2000---$3FFF) and PAGE20N
also activates auxiliary high-resolution video RAM.
If 80STORE is OFF, then PAGE20FF turns on text pagel mode and PAGE2 turns
on text page2 mode. If HIRES is also ON, then PAGE20FF also selects high
resolution pagel mode and PAGE20N selects high-resolution page2 mode.

2. The HIRES and MIXED switches are meaningful only if the TEXT switch is OFF
(i.e., a graphics mode is active).

3. Reading this switch will cause the keyboard strobe (bit 7 of $C000) to be cleared.
4. The RAMRD and RAMWRT switches do not affect the video RAM area from

$400-$7FF if the 80STORE switch on ON or the high-resolution graphics area
from $2000-$3FFF if the HIRES switch is ON as well. In these situations, these
RAM areas are controlled by the PAGE2.

5. The SLOTC3ROM switches affect $C300 ... $C3FF only if INTCXROM is OFF.

Annunciator Soft Switches (READ or WRITE)

Address Symbolic
Hex (Dec) Usage Name Action Taken

$C058 (49240) RW CLRAN0 Turn off annunciator 0
$C059 (49241) RW SETAN0 Turn on annunciator 0
$C05A (49242) RW CLRAN1 Turn off annunciator 1
$C05B (49243) RW SETANl Turn on annunciator 1
$C05C (49244) RW CLRAN2 Turn off annunciator 2
$C05D (49245) RW SETAN2 Turn on annunciator 2
$C05E (49246) RW CLRAN3 Turn off annunciator 3
$C05F (49247) RW SETAN3 Turn on annunciator 3

384 CJ Inside the Apple //e

Input/Output Locations for Built-In Devices

Address Symbolic
Hex (Dec) Usage Name Action Taken (or Status)

$C000 (49152) R KBD Keyboard data (bits 0 ... 6)
R7 KBD 1 = keyboard stroke is on

0 = keyboard stroke is off
$C010 (49168) RW KBDSTRB Clear keyboard strobe

R7 AKD 1 = a key is being pressed
0 = all keys are released

$C020 (49184) R CASSOUT Toggle the state of the cassette
output port

$C030 (49200) R SPEAKER Toggle the state of the speaker
$C040 (49216) R GCSTROBE Generate a game I/0 connector

strobe signal
$C060 (49248) R7 CASSIN 1 = cassette input on
$C061 (49249) R7 PB0 1 = push button 0 is on
$C062 (49250) R7 PB1 1 = push button 1 is on
$C063 (49251) R7 PB2 1 = push button 2 is on
$C064 (49252) R7 GC0 0 = game controller 0 timed out
$C065 (49253) R7 GC1 0 = game controller 1 timed out
$C066 (49254) R7 GC2 0 = game controller 2 timed out
$C067 (49255) R7 GC3 0 = game controller 3 timed out
$C070 (49264) R GCRESET Reset the game controllers

Bank-Switched RAM Soft Switches

Address Symbolic
Hex (Dec) Usage Name Action Taken

$C080 (49280) R READBSR2 Select Bank2, read BSR, write-
protect BSR

$C081 (49281) RR WRITEBSR2 Select Bank2, read ROM, write-
enable BSR

$C082 (49282) R OFFBSR2 Select Bank2, read ROM, write-
protect BSR

$C083 (49283) RR RDWRBSR2 Select Bank2, read BSR, write-
enable BSR

$C088 (49288) R READBSR1 Select Bank1, readBSR, write-
protect BSR

$C089 (49289) RR WRITEBSR1 Select Bankl, read ROM, write-
enable BSR

$C08A (49290) R OFFBSRl Select Bankl, read ROM, write-
protect BSR

$C08B (49291) RR RDWRBSR1 Select Bankl, read BSR, write-
enable BSR

Note: Addresses $C084 ... $C087 and $C08C ... $C08F duplicate the functions of
addresses $C080 ... $C083 and $C088 ... $C08B, respectively.

---------------------Appendix Ill c:=:J 385

Peripheral-Card 1/0 Memory Locations

110 Memory Locations

$C090-$C09F
$C0A0--$C0AF
$C0B0--$C0BF
$C0C0-$C0CF
$C0D0--$C0DF
$C0E0-$C0EF
$C0F0-$C0FF

Description

Reserved for use by slot 1
Reserved for use by slot 2
Reserved for use by slot 3
Reserved for use by slot 4
Reserved for use by slot 5
Reserved for use by slot 6
Reserved for use by slot 7

Appendix IV
Apple //e Page 3 Vectors

Address

$3D0-$3D2

$3D3~$3DS

$3D6-$3D8

$3D9-$3DB

$3DC-$3E2

Contents
(DOS 3.3) (ProDOS) Description

JMP $9DBF JMP $BE00 A JMP instruction to the DOS
3.3 or ProDOS warm-start
entry point. A call to this
vector will reconnect DOS
without destroying the Ap
plesoft program in memory.
Use the "3D0G" command
to move from the system
monitor to Applesoft.

JMP $9D84 JMP $BE00 DOS 3.3: a JMP instruction
to the DOS 3.3 cold-start en
try point. A call to this vec
tor will initialize DOS 3.3 to
the state it was in when it
was first loaded and will
clear the Applesoft program
in memory. ProDOS: a JMP
instruction to the ProDOS
warm-start entry point.

JMP $AAFD

JMP $B7BS

LDA $9D0F
LDY $9D0E
RTS

387

A JMP instruction to the DOS
3.3 file manager.

A JMP instruction to the DOS
3.3 RWTS subroutine.

A subroutine that loads the
A register with the high-or
der address and the Y reg
ister with the low-order ad
dress of the DOS 3.3 file
manager parameter list.

388 c:::J Inside the Apple //e ------------------

Address

$3E3-$3E9

$3EA-$3EC

$3ED-$3EE

$3EF

$3F0--$3Fl

$3F2-$3F3

$3F4

$3FS-$3F7

Contents
(!JOS 3.3) (ProDOS)

LDA $AAC2
LDY$AAC1
RTS

JMP $A851

$4C

Description

A subroutine that loads the
A register with the high-or
der address and . the Y reg-
ister with the low-order ad
dress of the DOS 3.3 RWTS
parameter list (called lOB).

A JMP instruction to the DOS
3.3 subroutine that causes it
to accept new I/0 links and
reconnect itself. This sub
routine must be called to
properly install new I/0 sub"
routines without affecting
DOS 3.3 (See Chapters 6 and
7).

The address of the subrou
tine to be called by XFER
($C314) is stored here.

A JMP opcode. (DOS 3.3 sets
this byte but does not use it.)

$FA 59 $FA 59 The address of the subrou
tine to which control is to be
passed when a BRK instruc
tion is executed (low-order
byte first).

$9DBF $BE00 The address of the subrou
tine to which control is to be
passed when a RESET in
terrupt is generated (low-or
der byte first).

$38 $1B POWERED-UP BYTE. The
reset vector at $3F2 is used
only if the number stored
here is equal to the logical
exclusive-OR of the number
stored at $3F3 and the con
stant $AS.

JMP $FF58 JMP $BE03 A JMP instruction to the
subroutine to which control
is to be passed when the Ap
plesoft "&" command is ex
ecuted.

---------------------Appendix IV c:::=J 389

Address

$3F8-$3FA

$3FB-$3FD

$3FE-$3FF

Contents
(DOS 3.3) (ProDOS) Description

JMP $FF65

JMP $FF65

$FF65

JMP $BE00 A JMP instruction to the
subroutine to which control
is to be passed when the sys
tem monitor's USER com
mand ((CTRL-Y)) is entered.

JMP $FF59 A JMP instruction to the
subroutine to which control
is to be passed when an NMI
interrupt is generated.

$BFEB The address of the subrou
tine to which control is to be
passed when an IRQ inter
rupt is generated (low-order
byte first).

NOTES: All addresses are stored with the low-order byte first.

For descriptions of the specific vectors that DOS 3.3 and Pro DOS set up from $3F0-
$3FF, refer to Tables 5-2 and 5-12 in Chapter 5.

Appendix V
Additional Programs on the

Optional Diskette
There are four "bonus" programs on this book's optional pro

gram diskette that are not described within the main body of the
text. These programs are all DOS 3.3 utility programs and will not
operate in a ProDOS environment. Let's look at them now.

RAMDISK

You will recall from Chapter 5 that ProDOS defines a disk volume
called /RAM that walks and talks just like a real disk drive but
that is really just a block of auxiliary RAM memory residing on
the extended 80-column text card. DOS 3.3 does not automatically
define a RAMdisk such as this when it is started up, but you can
run the RAMDISK program to install it into DOS 3.3.

To run RAMDISK, enter Applesoft direct mode and then enter
the command

BRUN RAMDISK

After the program starts to run, you will be asked to enter a slot
number and a drive number for the RAM disk. The slot number
must be between 1 and 7, inclusive, and the drive number must
be 1 or 2. Be careful, however, not to specify a drive/slot combi
nation that relates to an actual disk drive; if you do, then you won't
be able to use that drive while the RAMdisk is active.

Once the slot and drive information has been entered, the RAM
disk will be automatically "initialized" and will be ready for use.
You will find that, from a software point of view, it behaves exactly
like a real disk drive, except that it has a storage capacity of only
40K.

391

392 CJ Inside the Apple //e ------------------

DISK MAP

DISK MAP is a useful'DOS 3.3 utility program that draws a map
of the sector usage on a diskette on the low-resolution graphics
screen. To run the program, enter Applesoft direct mode and then
enter the command

BRUN DISK MAP

After you do this, you will be asked to insert any diskette and to
press any key to begin. DISK MAP maps each sector on the disk
to a unique position in a 16 X 35 rectangular grid map. The vertical
axis of the map represents the sector number from 0 (top) to 15
(bottom); the horizontal axis represents the track number from 0
(left) to 34 (right).

Differently colored low-resolution blocks are used to indicate the
usage of any particular sector. If the block is blue, then the sector
is in use and readable; if it is white, then the sector is in use but
not readable (that is, the sector is damaged). If the block is grey,
then the sector is not being used.

DISK MAP also displays the amount of free space on the diskette
and the volume number of the diskette.

COMMAND CHANGER

DOS 3.3 supports a total of 28 different commands that can be
used from Applesoft. The names of these commands are found
within the copy of DOS 3.3 that is stored on every initialized dis
kette.

You can use the COMMAND CHANGER program to change the
command names to (almost) any other name that you prefer. There
are only two caveats to keep in mind when entering new names:

• the total number of characters in all 28 names must not exceed
132.

• one command name cannot be the same as the first part of
another command name. For example, if you rename DELETE
as KILL, then you can't have another command name that has
K-I-L-L as the first four characters.

To run the COMMAND CHANGER program, first enter Applesoft
direct mode and then enter the command

RUN COMMAND CHANGER

After you do this, the first command name (INIT) will be displayed

---------------------Appendix V c:J 393

in inverse video and you will be asked to enter a new name for it.
If you prefer to keep the same name, just press <RETURN>. After
INIT has been dealt with, the other 27 DOS 3.3 commands will be
displayed, one-by-one, and you will be asked to redefine them as
well.

After all the commands have been displayed, the new commands
will be saved to diskette. The next time that the diskette is booted,
the new command names will be active.

DISK VOLUME CHANGER

Whenever you use the DOS 3.3 CATALOG command, the 12-
character phrase "DISK VOLUME "appears at the top of the list
of files that are displayed, followed by the disk volume number.

With the DISK VOLUME CHANGER program, you can modify
the copy of DOS 3.3 that is stored on a diskette so that any other
12-character phrase will be displayed instead.

You can run DISK VOLUME CHANGER by entering Applesoft
direct mode and then entering the command

RUN DISK VOLUME CHANGER

After you do this, you will be asked to enter the new 12-character
phrase. After you enter it, it will be saved to disk on top of the old
phrase. This means that the next time the diskette is booted, you
will see your own phrase instead of "DISK VOLUME " whenever
the diskette is cataloged.

Appendix VI
Recent Enhancements to

the Apple I /e
In March, 1985, Apple Computer, Inc. announced an interesting

enhancement to the Apple //e: four new chips to replace the 6502
microprocessor, the character generator ROM, and the two Apple
soft and system monitor ROMs used in the original version of the
1/e. The main reasons for the enhancement were to make the 1/e
more closely compatible with the Apple //c and to facilitate the
development of mouse-based software by including 32 graphic icons
(called "MouseText") in the character generator ROM and rewrit
ing the system monitor output subroutine to work with them. Other
reasons were to allow lower-case command entry from Applesoft
and the system monitor, to improve the way in which the 1/e re
sponds to interrupts from peripherals, and to fix a few minor, but
annoying, bugs that had been discovered in the code stored in the
original //e ROMs.

Despite the ROM changes, most programs written for the orig
inal //e will run properly on the enhanced //e. Just to be safe, Apple
informed most major software developers of the proposed ROM
change well in advance of the public announcement so that incom
patibility problems could be cleared up before the new ROMs were
in the hands of general users.

All Apple //e units manufactured after March, 1985 were shipped
with the four new chips already installed. Owners of the original
1/e can have the chips installed by an authorized Apple dealer for
about $70.

When an enhanced Apple //e is booted, the message "Apple //e"
is displayed at the top of the screen (the original Apple //e displays
"Apple]["). You can also examine two identification bytes in the
system monitor to determine what version of the Apple II you are
using. The value stored at location $FBB3 is used to distinguish
an Apple //e or 1/c from other members of the Apple II family. If

395

396 c=J Inside the Apple //e -----------------

it's $06, then you're either working with the lie (original or en
hanced version) or the 1/c. The value stored at $FBC0 indicates the
precise version: $EA for an Apple //e with original ROMs, $E0 for
a //e with the enhanced ROMs, or $00 for an Apple //c.

In this appendix, we will take a close look at the 1/e enhancements
and see how they improve the performance of the Apple //e.

THE NEW MICROPROCESSOR : "65C02"

The new microprocessor for the Apple //e is the same as the one
used in the Apple 1/c, the 65C02. As its name suggests, the 65C02
is a close relative of the 6502 that it replaces. In fact, every program
that runs with the 6502 will also run with the 65C02 (with rare
exceptions). The converse is not true, however, since the 65C02
supports some ten instructions that are unknown to the 6502. Here
are brief descriptions of these new instructions:

BRA Branch relative always
DEA Decrement accumulator
INA Increment accumulator
PHX Push the X register on the stack
PHY Push the Y register on the stack
PLX Pop the X register from the stack
PLY Pop the Y register from the stack
STZ Store zero in memory
TRB Test and reset memory bits with accumulator
TSB Test and set memory bits with accumulator

The 65C02 also supports two useful new addressing modes that
can be used by some of its instructions: absolute indexed indirect
and zero-page indirect.

ABSOLUTE INDEXED INDIRECT. This addressing mode can
be used with the JMP instruction only. Its assembler form is

JMP ($1234,X>

The effective address is calculated by first adding the contents
of the X-register to the address specified in the operand to get an
intermediate location. The address stored at this intermediate lo
cation, and the next location, is the effective address, the address
to which the JMP instruction will pass control.

ZERO-PAGE INDIRECT. The operand for this addressing mode
is a single byte that represents a location in zero page. The effective
address is simply the address stored at this and the very next
location. This means that the zero-page indirect mode is the same
as the 6502's zero-page indexed indirect mode, but without the X

---------------------Appendix VI c:::::J 397

indexing. An instruction of the form

STA ($EO>

is used with an assembler to indicate that the zero-page indirect
mode is to be used.

There are several minor differences between the 6502 and 65C02
that may affect the performance of some programs. For example,
the cycle times for some instructions are different, the BIT instruc
tion behaves differently when the immediate addressing mode is
used, and an indirect JMP command on a page boundary is handled
differently. (Because of a 6502 design error, a JMP ($xxFF) instruc
tion transfers control to the address stored at $xx00 and $xxFF,
not $(xx + 1)00 and $xxFF, as might be expected. This instruction
behaves properly on the 65C02.)

Read the data sheet for the NCR Corporation version of the 65C02
for detailed descriptions of its instruction set and addressing modes.

By the way, the "C" in 65C02 stands for CMOS, an acronym for
Complementary Metal Oxide Semiconductor. This is the name for
the process used to manufacture the transistors that form the 65C02
integrated circuit. A CMOS integrated circuit consumes far less
power than a functionally identical circuit built using conventional
technology. It will run cooler and can be operated by a smaller
power supply.

THE NEW CHARACTER GENERA TOR
ROM : "MouseText"

The new character generator ROM contains the definitions of
thirty-two graphic icons that can be displayed on the screen if the
lie's alternative character set has been turned on. (It is automati
cally turned on when you enter a PR#3 command to enter the 80-
column display mode.) This set of icons is called MouseText and
is shown in Figure VI-1. As you can see, MouseText is made up of
many useful symbols, such as representations of the two "Apple"
keys, different kinds of arrows, shading blocks, and so on. Some
of the icons can even be displayed next to one another to create
other useful images, such as a running man or a file folder. As the
name Mouse Text suggests, the icons are meant to be used primarily
in programs that use the Apple Mouse input device to point to and
select commands and functions.

398 [=:J Inside the Apple //e --------~------

Mouse Text ASCII Video RAM
ICON character value

• @ $40
0 A $41
..... B $42
X c $43
v D $44 • E $45
~ F $46 - G $47_

~ H $48
... I $49
~ J $4A
t K $48 - L $4C
...,1 M $40 • N $4E
1: 0 $4F
f p $50 .. Q $51
....; R $52
- s $53
L T $54
7 u $55 • v $56
I w $57
c X $58
::. y $59
I z $5A

• [$58 -- I $5C
_,L] $50 ,r
!] /\ $5E
I $5F

Figure Vl-1. The MouseText character set.

--------------------Appendix VI c::J 399

A MouseText icon is displayed on the video screen whenever a
number between $40 and $SF is stored in the lie's video RAM
memory. With the original lie ROMs installed, these numbers cor
respond to inverse upper-case characters and six special symbols.

New subroutines in the lie's 80-column firmware make it quite
simple to display MouseText using standard Applesoft PRINT
statements. To do this, you must follow these steps (after the 80-
column firmware has been activated):

• Turn on inverse video.
• Enable the firmware's handling of MouseText.
• Print the standard ASCII characters that correspond to the

special MouseText characters that are to be displayed (see Fig
ure VI-1).

• Turn on normal video.
• Disable the firmware's handling of MouseText.

Here is a short program that prints out the entire MouseText
character set:

100 PRINT CHRH4);"PR#3": REM SELECT SO-COLUMN FIRMWARE
200 PRINT CHRS<27);
300 PRINT CHRH15>;"®ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_
";CHR$(14>;
400 PRINT CHR$<24>

Here is what the four control characters in lines 200 through 400
are used for:

*CHRH 27>

*CHRH 1 5 >
*CHRH 1 4 >
*CHRH24>

Tells the firmware to display MouseText
characters.
Turns on inverse video.
Turns on normal video.
Turns off the MouseText feature.

When the display of MouseText has been enabled and reverse
video is on, the 80-column firmware converts printed characters
having ASCII codes from $C0 (' @') through $DF ('_')to the Mouse Text
characters having codes from $40 through $SF. Thus, in the above
program you will not see a reverse video display of standard ASCII
characters, but rather the complete MouseText character set.

THE NEW SYSTEM MONITOR

All system monitor commands can now be entered in upper- or
lower-case characters. Other improvements are the inclusion of a
search command and a simple assembler, and the ability to specify
ASCII codes by character rather than by hexadecimal code.

400 c:::J Inside the Apple //e -------------------

Entry of ASCII Characters

ASCII characters can now be used with the system monitor STORE
command(":"), or any other monitor command, in a much more
convenient way. Rather than entering the hexadecimal ASCII code
for a character, you can precede the character itself with a tick
mark (" '"). (That's the character marked on the key to the im
mediate left of RETURN.) For example, use 'G instead of C7 when
you want to enter the ASCII code for G.

Here's what to enter to place the wdrd "Inside" into memory
beginning at $300 (don't type the asterisk-it's just the monitor's
prompt symbol):

*300:'1 'n 's 'i 'd 'e

Notice that each ASCII character is separated from the next by
a blank space.

The Search Command

The new system monitor ROM includes a search command that
allows you to find one- or two-byte patterns stored in a specified
area of memory. To find a two-byte pattern, say "ED FD", in the
standard system monitor area beginning at $F800 and ending at
$FFFF, you would use the command

*FDED<F800.FFFFS

When a matching pattern is found, its address is displayed on
the screen followed by a hyphen.

Notice that the byte pattern specified in the command line is
the reverse of the actual pattern to be found. Also, there is no blank
space between the two search bytes.

To find the occurrence of a single byte, say the ASCII code for
"L", anywhere in the block from $2000 to $2FFF, use the command

*'L<2000.2FFFS

You can, of course, specify the ASCII code for "L" instead of
using the tick notation.

The Mini Assembler

Another useful addition to the system monitor is a "mini assem
bler" that can be used to quickly enter 6502 programs in assembly

---------------------Appendix VI CJ 401

language (mnemonic) form rather than machine language (hex
adecimal bytes) form. Unfortunately, the mini assembler does not
recognize the ten new instruction mnemonics that are unique to
the 65C02.

To enter the mini assembler from the system monitor, enter the
"!"command. After you do this, the mini assembler's"!" prompt
symbol will appear and you can start entering a program.

To enter a program line, first type in the address of the 6502
instruction, a colon, and then the instruction mnemonic and its
operand. If you do this properly, the starting address of the in
struction, the hexadecimal bytes for the instruction, and the in
struction mnemonic and operand will be displayed. If you make a
mistake, you will hear a beep, the line will be reprinted, and a"'"
will appear beneath the character that caused the error.

After the first line has been successfully entered, you can enter
subsequent lines just by typing a space and then the next instruc
tion; the code generated will be placed in succeeding memory lo
cations.

The mini assembler assumes that all numbers and addresses that
you enter are in hexadecimal form, even if a leading "$" sign is
not used. The instruction mnemonics and operand formats that it
recognizes are the standard ones used by most assemblers. How
ever, symbolic labels for memory locations or data cannot be used
as with standard assemblers.

To leave the mini assembler and return to the system monitor,
press [RETURN] at the beginning of any line.

Changes in Escape Sequences

Two new keyboard escape sequences have been added to the
lie's standard input subroutine: ESC [control-D) and ESC [control
E).

ESC [control-D) is used to disable the printing of any control
characters that are sent to the standard output subroutine, other
than the codes for carriage return ($8D),line feed ($8A), backspace
($88), and bell ($87). The lie reacts in special ways to several other
control characters that are sent to its output subroutine when the
80-column firmware is being used. For example, if a [control-U]
character is printed in 80-column mode, the 40-column display
will be turned on. This is a handy way of exiting 80-column mode,
but what if you happen to be communicating with a remote com
puter through a modem and it sends you a [control-U] character

402 c::J Inside the Apple //e ------------------

for some reason? Before you know it, you will pop out of 80-column
mode and you will be left scratching your head wondering what
happened. To avoid this type of trouble it is best to enter the ESC
[control-D) sequence before running such a program. You can re
enable the handling of the control codes later by entering the ESC
[control-E) sequence.

The upper-case restrict escape sequences, ESC Rand ESC T, are
not supported by the enhanced ROMs. In the original ROMs, these
sequences are used to activate and deactivate an input mode where
all lower-case text that is not entered within quotation marks is
converted to upper-case. This mode is no longer required since
Applesoft and system monitor commands can now be entered in
both upper- and lower-case characters.

Improvements in Interrupt Handling

Interrupts are handled badly on the Apple II, Apple II Plus, and
the original Apple lie because both DOS 3.3 and the system monitor
use location $45 for data storage and this location is overwritten
when an interrupt occurs. With the enhanced lie ROMs in place,
however, the integrity of $45 is preserved and interrupts are han
dled properly.

The interrupt request (IRQ) interrupt vector on the enhanced
lie (at $FFFEI$FFFF) now points to $C3FA, the address of the mon
itor's interrupt handling subroutine. This subroutine ultimately
passes control to NEWIRQ at $C400.

NEWIRQ is responsible for saving the state of the system when
the interrupt occurs and then setting it to the following standard
state:

• Main memory is active for reading and writing

• The ROM space from $D000 to $FFFF is active
• The main stack and zero page are active
• The main text page is active
• If the alternative stack is active, the current stack pointer is

stored at $101 (in the alternative stack) and the main stack
pointer is set equal to the value stored at $100 (in the alter
native stack). For this scheme to work properly, any program
that turns on the alternative stack must also store the value of
the main stack pointer at $100. Here's the code that will do
the trick:

PHP
SEI

;Save status
;Disable interrupts for this

---------------------Appendix VI c=J 403

STA $C009
TSX

;Turn on alternative stack
;Transfer SP to X

STX $100
PLP

;Save main SP
;Restore interrupt status

After this has been done, the alternative stack pointer can
be set up.

Once this standard state has been set up, the interrupt handler
calls the user's own interrupt handler (its address is stored at $3FE/
$3FF). After it finishes (with an RTI instruction), the original state
of the system is restored, and control returns to the interrupted
program.

Slot 3 Peripheral Cards

When the original Apple //e is turned on, or RESET is pressed,
the internal slot 3 firmware is always enabled if an 80-column text
card is installed, or disabled if it is not.

The situation is different with the enhanced Apple //e. If there is
a peripheral card installed in slot 3 that has the following two
identification bytes:

$C305 = $38
$C307 = $18

then the peripheral card slot 3 firmware is turned on, even if an
80-column text card is also installed. This means that the slot 3
peripheral will be used when a PR#3 command is entered, and
not the 80-column text card.

The firmware in a slot 3 peripheral card must contain a special
sequence of four instructions beginning at $C3F4 to support the
lie's new internal interrupt handling subroutine:

$C3F4: STA $C081
JMP $FC7A
BIT $C015
STA $C007

;Read ROM, write RAM
,
;Get INTCXROM status
;Select internal ROM

If these instructions are not present, you will not be able to use
interrupts on the new //e.

OTHER CHANGES
• Applesoft commands can now be entered in upper- or lower

case characters.

404 [==:1 Inside the Apple //e ------------------

• It is possible to boot directly from a ProFile hard disk when
the //e is turned on or RESET is pressed.

• The bug-induced ESC [control-L] sequence that transfers con
trol to $4CCE has been removed.

• The code for the Applesoft HTAB, TAB, SPC, and PRINT com
mands has been rewritten to ensure that these commands work
properly in 80-column mode.

• Even or odd window widths are now supported.
• The Applesoft GET command and the monitor RDKEY ($FD0C)

subroutine will now return the ESC or right-arrow keycode.

For more information on the Apple //e enhancements, see About
Your Enhanced Apple 1/e: Program111er's Guide, a publication of Ap
ple Computer, Inc. This book also contains a source listing of the
new system monitor ROM.

6502 microprocessor, 2, 17-51
zero page, 18
stack, 18
instruction set, 19-21, 373-377
registers, 21-33, 62-63
clock, 21

65C02 microprocessor, 19, 50
80-column text card,$, 48, 227, 257,

269, 279, 283, 291-292
&, see ampersand
/RAM, 148-149

absolute addressing mode, 35-36
absolute indexed addressing mode,

37-38
accumulator, 26-27
accumulator addressing mode, 36
ADD command, 66
addressing modes, 12, 20, 33-39
ampersand(&), 107-108
AN3

and double-width high-res
graphics, 263, 272, 348

and double-width low-res graphics,
254,258,348

animation, 239, 267-269
annunciator outputs, 345-348

see AN3
any-key-down flag, 194-195, 202-205
Apple 1/c, 1, 7, 19
Apple lie

release date, 6
Apple Ill, 5, 148
Apple Computer, Inc.

history, 1-7
Apple I, 2, 15
Apple II, 3

clones, 5-6
patent, 2

Apple II Plus, 5
Applesoft

Index

data pointers, 11, 78-83, 77-126
history, 3-4, 5
memory map, 78-83
subroutines, 109-124
tokens, 83-88
variables, 80, 88-101

ARG (argument register), 109
Arkley, John, 5
ASC pseudo opcode, 12
ASCII code, 169-173, 368-371

negative ASCII, 169
assemblers, 51

BIG MAC, 12, 35
Apple 6502 Editor/Assembler, 35,

160
assembly language, 11-13

running 6502 programs, 13-14
linking to Applesoft, 105-106

Auricchio, Rick, 6

405

auto repeat, 202-205
auxiliary connector, 8, 359
auxiliary memory, 48, 291-301
AUXMOVE, 296-299, 307

bank-switched RAM, 48, 50, 284-291
and interrupts, 40-41, 42, 43-44
and ProDOS, 291
in auxiliary memory, 288-289
soft switches, 286-288, 384

BASIC command, 66-68
Baudot code, 169
BIG MAC, 12, 35, 160
binary arithmetic, 9
binary mode, 29
BIT instruction, 31, 32
bits

numbering, 9-10

406 C-:::J Inside the Apple //e ------------------

significance, 9-10
BLOAD command, 13
blocks, 127-128

key block, 154
break flag, 31
BRK instruction, 40, 41, 44
Broedner, Walt, 6
BRUN command, 12-13
BSAVE command, 13

CALL command, 13, 106-107
carry flag, 29-30
cassette port, 320-323

digitizing voice, 323-332
catalog sectors, 133-135
character output

standard subroutines, 241-246
character sets, 239-241
CHARGET subroutine, 102-104
CLOSED-APPLE key, 192-193

effect on reset, 218
compiler, 77
CONTINUE BASIC command, 66-68
control characters, 11
CSW input subroutines, 250-251

DCT (device characteristics table),
137-139

decimal mode flag, 29, 30
DFB pseudo opcode, 12
directory (ProDOS), 153-157

hierarchical structure, 149
disassembling, 64-65
DISPLAY command, 55-57
DOS 3.3

and Applesoft, 78-79, 81
and I/0 links, 176, 187
comparison with ProDOS, 148-150
entering from monitor, 66-68
history, 4
memory map, 128-129
VTOC, 129-133

double-width graphics
high-resolution, 269-275

low-resolution, 256-259
DS pseudo opcode, 12

EBCDIC code, 169
EQU pseudo opcode, 12
escape sequences, 178-180
EXAMINE command, 62-63

PAC (floating-point accumulator),
108, 109, 116

files
file data (DOS 3.3), 136-137
file data (ProDOS), 158-159
file type code (DOS 3.3), 135
file type code (ProDOS), 154-157
protecting files, 157

floating-point numbers, see real
numbers

formulas
evaluation, 120-121

function variables, 93

game controller inputs, 338-342
game I/0 connector, 8, 335-351

annunciator outputs, 345-348
game controller inputs, 338-342
push button inputs, 342-345
strobe output, 349

GETLN subroutine, 180-182
GO command, 63-64, 72-73

hexadecimal arithmetic, 9, 66
high-resolution graphics mode, 80-81,

260-276
animation, 267-269
colors, 266-267
double-width, 269-275
how to turn on, 261-263
memory mapping, 263-266
subroutines, 275-276

HIMEM: co:mmand, 80-81
and DOS 3.3, 128-129

---------------------Index c=J 407

and ProDOS, 150-151
Holt, Rod, 2

110 links, 39, 71
input, 182-183
output, 249-253

110 memory, 48-49
immediate addressing mode, 34-35
implied addressing mode, 36
index block, 159
index registers, 27-28
indexed indirect addressing mode, 36
indirect addressing mode, 38-39
indirect indexed addressing mode, 37
input link, 175-176, 182-183

and DOS, 176, 187, 190-191
instruction pointer, see program

counter
Integer BASIC, 2, 3, 5, 14, 137, 181
integer numbers, 92

Applesoft representation, 96-97
interpreter, 77
interrupt disable flag, 30
interrupts, 11, 30, 31, 40-44

effect on stack, 33
INVERSE command, 66
lOB (input/output block), 137-139
IOU (input/output unit), 6, 7
IRQ interrupt, 40, 41, 43-44

and ProDOS, 43-44

Jobs, Steven, 2-3

keyboard, 191-217
auto repeat, 202-205
110 locations, 193-195
input subroutines, 177-182, 184-

187, 195-202
type ahead, 205-217

KEYBOARD command, 70-71
KSW input subroutines, 184

language card, 5

Lisa, 6
LIST command, 64-65
Logo, 14
LOMEM: command, 80
low-resolution graphics mode, 253-

260
colors, 256
double-width, 256-259
how to turn on, 253-255
memory mapping, 255-256
subroutines, 260

machine cycles, 20-21
Macintosh, 7
Markkula, Mike, 3, 6
master index block, 159
memory-mapped 110, 39-40, 227-228
memory maps

internal RAM, 45, 46-48
110 memory, 48-49
ROM, 49-50

Microsoft Corporation, 3, 77
MLI (machine language interface),

160-161
MMU (memory management unit), 6,

7
MOVE command, 60-61
music, 314-320

negative flag, 31
NMI interrupt, 40, 41, 42-43
NORMAL command, 66
Nyquist frequency, 324, 328

opcode, see operation code
OPEN-APPLE key, 192-193

effect on reset, 218
operand, 12, 33
operation code, 33
ORG pseudo opcode, 12
output link, 183, 249-253

and DOS, 244, 250, 252-253
overflow flag, 31

408 c::::J Inside the Apple //e ------------------

page 3, 47, 79, 129, 151-152
usage, 387-389

Pascal, 5, 14, 284
software protocols, 362-365

pathname, 149
peripheral cards, 279, 353-365

expansion ROM, 357
110 memory, 353-355, 385
programming considerations, 360-

362
ROM, 280-283, 355-357
scratchpad RAM, 358-359
software protocols, 362-365

photoresistor, 341-342
pixels, 260, 261, 264, 275
pointers, 10-11

Applesoft, 78-83
prefix, 149
PRINTER command, 70-71
processor status register, 10, 28-32
Pro DOS

and Applesoft, 78-79, 81
and 110 links, 176, 187
comparison with DOS 3.3, 148-150
entering from monitor, 66-68 ,
history, 4, 7
memory map, 150-151

program counter, 33
push I?utton inputs, 342-345

CLOSED-APPLE, 344
OPEN-APPLE, 344

Quinn, Peter, 6

RDCHAR subroutine, 180
RDKEY subroutine, 174-180
READ command, 69
real numbers, 92

Applesoft representation, 98-101
relative addressing mode, 38
relocatability, 61, 360-362
reset interrupt, 40, 41,41-42, 191,

218-226

and DOS, 42, 219-220, 221, 222,
226

ROM, 49-50
bank-switched areas, 280-283

RWTS, 137-139

sapling file, 159
scratchpad RAM, 358-359
screenholes, 237, 259, 358-359
Sculley, John, 6
sectors, 127
seedling file, 158
self-test subroutines, 53
Shepardson,Bob,4
slots, 7, 8, 353-365
soft switches, 40, 46

table, 379-385
speaker, 8, 313-320

playback of voice, 332
stack, 8, 32-33, 47, 79

and auxiliary memory, 288-289,
292-295

stack pointer, 32-33
status register, see processor status

register
Stearns, Bryan, 6
STORE command, 57-60
string variables, 92-93
strobe output, 349
SUBTRACT command, 66
system monitor, 53-76

multiple command entry, 71-72
subroutines, 72-76

text mode, 228-253
80-column mode, 236-237
display attributes, 239-241, 248-249
memory mapping, 232-235
page2, 237-239
turning it on, 229-232

tokenization, 83-88
track bit map, 129-133
track/sector list, 133, 135-136

-----------------------Index c:=J 409

tracks, 127
tree file, 159
two's complement, 31, 38, 96-97
type ahead, 205-217

USER command, 68-69
USR function, 108-109

variables, Applesoft
array, 80, 93-96
locating them, 116-118
simple, 80, 89-93

vector, 10-11
VERIFY command, 62
vertical blanking, 268-269
video display attributes, 239-241,

248-249
video memory, 47, 79, 233, 236, 253,

255-256,258,261,263-266,273,
301

VisiCalc, 4
volume bit map, 152
volume directory, 149
VTOC (volume table of contents),

129-133

Wigginton, Randy, 3, 4
windows, 246-248
Wozniak, Stephen, 2-3
WRITE command, 69

XFER subroutine, 300-301

zero flag, 30
zero page, 18, 47, 78

addressing modes, 36, 38
unused areas, 49

	Inside the Apple //e
	Table of Contents
	Preface
	About the Author
	1 -Introduction to Apple and the Apple //e
	2 -The 6502 Microprocessor
	3 -The System Monitor
	4 - Applesoft BASIC
	5 - Disk Operating System
	6 - Character Input and the Keyboard
	7 - Character and Graphic Output and Video Display Modes
	8 - Memory Management
	9 - The Speaker and the Cassette Port
	10 - The Game I/O Connector
	11 - Peripheral-Card Expansion Slots
	Appendix I - American National Standard Code for Information Interchange (ASCII) Character Codes
	Appendix II - 6502 Instruction Set and Cycle Times
	Appendix III - Apple //e Soft Switch, Status, and Other I/O Locations
	Appendix IV - Apple //e Page 3 Vectors
	Appendix V - Additional Programs on the Optional Diskette
	Appendix VI - Recent Enhancements to the Apple //e
	Index

