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PREFACE

I can sense what you're saying right now: “Oh, no, not another
book on the Apple!” Well, yes, it is, but don’t put it down just yet.
It’s not simply another book on how to write programs in Applesoft
BASIC or on how to use your favorite spreadsheet program. Rather,
it's a detailed study of how the Apple //e works (from a software
point of view) and how you can control it with your own programs.

You will first be introduced to the 6562 microprocessor that
controls the //e and to some important 6502 programming con-
cepts. You will then be conducted on an internal tour of the //e’s
operating systems (the system monitor, DOS 3.3, and ProDOS) and
of its primary language, Applesoft BASIC. Along the way several
programming examples (written in Applesoft and 6502 assembly
language) will be presented to illustrate important principles and
features.

Once this background information has been presented, you will
be shown how the //e reads information from the keyboard, displays
information on the video screen, and how you can write and install
your own input/output subroutines. In addition, all of the //e’s video
display modes, including 8@-column text and double-width graph-
ics, will be explained.

The last few chapters of the book will show you how to manage
the //e’s internal and expansion memory spaces, how to use the
speaker and cassette port, and how the //e’s peripheral expansion
slots are used.

I am sure this book will be of great interest to all readers who
want to know what makes the //e tick. It is geared to the more
advanced reader: You will be assumed to have a working knowl-
edge of Applesoft and at least some familiarity with 6502 assembly
language. If you are a computer novice, then the references that
are included at the end of each chapter should be consulted for
further information on programming techniques. No matter what
your level of expertise, however, you should find this book an ex-
cellent source of programming tips and ideas.

I would like to thank two people in particular for reviewing
portions of the manuscript before publication: Archie Reid and
Vern Little. Archie set me straight on how to generate music on
the //e’s speaker and how to digitize voice through the cassette
port. Vern is an electrical engineer and he prevented me from
putting my foot in my mouth when talking about anything other
than software. Thanks are also due to Vern for helping to convince
me to shell out $1,800 for a 16K Apple II in 1978 when I should
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have been saving money to finance my stay at law school; it turns
out to have been the most important purchase I have ever made.

Brady Communications also arranged for several independent
technical reviewers to review the manuscript and I thank them for
all their invaluable assistance, particularly Val Golding and Cecil
Fretwell.

Gary B. Little
Vancouver, British Columbia
September 1984
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Introduction to Apple and
the Apple //e

The Apple //e represents Apple Computer, Inc.’s latest full-size
model in its highly popular Apple II family of computers and was
first announced in January 1983. The earlier members of this fam-
ily are the original Apple II (1977) and the Apple II Plus (1979);
the newest member is the portable Apple //c (1984).

In this book we will be taking an advanced “inside” look at the
Apple //e itself. Bear in mind, however, that much of what will be
said will also apply to its two predecessors and to the Apple //ic
because Apple has made a substantial effort to maintain a high
degree of compatibility with other members of the Apple II family.
The discussion will be limited to the //e’s built-in language and
operating system (Applesoft and the system monitor) and to the
two disk operating systems used with them, DOS 3.3 and ProDOS.

Apple Computer, Inc. is an interesting and exciting company. It
not only produces innovative products, it also ensures that im-
portant technical information concerning these products is di-
vulged to whoever needs it. This goes against every rule that the
computer industry was following back in 1977 when Apple first
made its presence felt. This “open-system” policy fuels software
development, and this is one of the main reasons Apple has been
so successful —after all, who wants to buy a computer for which
no software is available?

A CONDENSED HISTORY OF APPLE
COMPUTER, INC.

The history of Apple Computer, Inc. is a fascinating one and
represents a real rags-to-riches (or is that “garage-to-multina-
tional-corporation”’?) story. Let’s take a look at what Apple has
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been up to since it was first formed in 1976 and how the Apple II
slowly evolved into the Apple //e.

In the beginning, Apple was made up of just two individuals:
Stephen Wozniak (“Woz”’) and Steven Jobs. Woz provided the
hardware and software expertise and almost single-handedly de-
signed the company’s first two computers, the Apple I and the
Apple II (Rod Holt helped; he designed the Apple IT's power supply).
A patent application was subsequently filed with respect to the
Apple II on April 11, 1977, and U.S. patent #4,136,359 was even-
tually issued in early 1979. Jobs was largely responsible for mar-
keting and raising financing, and it was he who came up with the
“Apple” name (Jobs was apparently thinking of a job that he had
recently had in an Oregon orchard). In the early going, both part-
ners were still working for other computer companies in Califor-
nia’s Silicon Valley, Jobs with Atari and Woz with Hewlett-Pack-
ard. Fortunately for Apple, Hewlett-Packard was not interested in
Woz's design for a personal computer and gave him a release so
that he could deal with it as he saw fit.

The Apple I was designed to be sold to and used by hobbyists;
only about 175 were sold. The Apple II, however, was designed
with a much larger market in mind (although Woz claims he simply
wanted to build a computer with which he could play Atari’s
“Breakout” game). That market quickly materialized as a result
of the startling combination (for 1977) of excellent hardware, at-
tractive packaging, and superb documentation. The Apple //e, which
was released six years later, still resembles the original Apple II
and it still operates in much the same way.

Woz decided to use the MOS Technology 6502 microprocessor
to control the Apple II. This decision was dictated not by the 65@2’s
reliability, powerful instruction set, or any other design charac-
teristic, but rather by its price. Whereas other microprocessors
were selling for hundreds of dollars in 1976 and were difficult to
find, the 6502 was readily available and it cost only about $20.

Wozniak wrote all the software for the original Apple II that was
stored in its read-only memory (ROM). This included a version of
the BASIC programming language called Integer BASIC (which
can't handle decimal numbers but is great for games), a system
monitor for debugging and for handling fundamental input/output
operations, a set of mathematical subroutines, a mini-assembler
for entering programs in assembly language, and “Sweet 16,” a
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software-simulated 16-bit microprocessor (Woz was way ahead of
his time).

To raise a little money for their fledgling venture, Wozniak sold
his Hewlett-Packard pocket calculator and Jobs sold his Volkswa-
gen bus. Overhead expenses were cut to the bare minimum by
setting up operation in the garage of Jobs’ parents. As 1977 rolled
around, however, it became clear that more money, a lot more
money, was going to be needed.

Since Jobs was the partner responsible for marketing the Apple
II, it was he who began searching for venture capital. That search
eventually led him to Mike Markkula, a former marketing manager
at Intel, an integrated-circuit designing company. Markkula, Jobs,
and Wozniak quickly struck a deal whereby Markkula agreed to
put $250,000 into Apple in exchange for an equal partnership in-
terest. He then proceeded to use his expertise to line up bank fi-
nancing and additional capital funding. Apple was then finally
ready for the mass market!

The Apple II was formally announced for sale at the 1st West
Coast Computer Faire in early 1977 and it was an instant success.
The main reasons for its early success were that it was easily ex-
pandable (more memory could easily be added to it and eight slots
were available for peripheral devices when they became available),
it had a full-size keyboard, and it had color graphics. Oh, yes, it
also looked great!

Not that there weren’t any problems, however. For example,
lower-case characters could not be produced by the keyboard and
the video display was only forty columns wide. These shortcomings
officially persisted until the introduction of the Apple /e, although
several other sources of upper- and lower-case keyboards and 8-
column boards did pop up in the interim.

One software problem had to be remedied quickly. Integer BASIC
did not support decimal (floating-point) numbers or functions, and
so business and scientific use of the Apple II was necessarily lim-
ited. Apple began to take steps to remedy this in the summer of
1977 when it negotiated the purchase of about 10,000 lines of pro-
gram source code for a floating-point version of BASIC from Mi-
crosoft Corporation. This code was written in 6502 assembly lan-
guage and so could be readily adapted to run on the Apple II.

By this time Apple had a few employees, one of which was a
young programmer by the name of Randy Wigginton. Wigginton
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1979

reworked the Microsoft source code and came out with a prelim-
inary version of a floating-point BASIC that would run on the Apple
IL. This version was called “Applesoft - Extended Precision Floating
Point BASIC Language’ and was released in October 1977. Further
work was required to polish Applesoft into a final product and this
was done during the winter of 1977.

The final version of Applesoft, Applesoft ][, was finally released
in May 1978 and this same version is still in use today on the Apple
/le. It was first available on cassette tape only, but was later pro-
vided in ROM on a card that could be plugged into a slot on the
Apple II; it eventually replaced Integer BASIC on the motherboard
when the Apple II Plus was released in 1979.

Probably the most important new product released in 1978 was
the Disk II disk drive and controller card which are still used on
the Apple //e today. The disk drive revolutionized the software
business because for the first time it was feasible to develop so-
phisticated programs that could be easily loaded and that could
quickly and reliably access large data bases. Until the disk drive
was released, all programs had to be saved to and loaded from
cassette tape, which was invariably an exercise in frustration. Many
a cottage software business started up after the disk drive became
available.

The Disk IT was controlled by a program called the Disk Oper-
ating System (DOS), first written by Bob Shepardson and later
substantially modified by Randy Wigginton. DOS has undergone
several revisions throughout the years and the current version is
DOS 3.3. This version is still being shipped with the Apple //e
(together with a brand-new DOS called ProDOS).

Sales really ballooned for Apple in 1979. It was able to increase
sales by a total of forty million dollars (!) over the previous year,
to a total of forty-eight million dollars. By this time, the Apple II
was selling not only because it was an excellent hardware package
but also because an ever-increasing supply of software was avail-
able that could be run on it. One important piece of software,
VisiCalc, the very first financial spreadsheet program, is reputed
to have been directly responsible for stimulating the purchase of
tens of thousands of Apple II computers.
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The Apple I underwent a minor operation in 1979 and came out
of it with a new name, Apple II Plus. The Apple IT Plus is essentially
the same as an Apple II, except that its ROM chips contain Apple-
soft ][ rather than Integer BASIC and its system monitor has been
changed to support more powerful screen-editing commands and
to allow the Apple II to automatically run a program from diskette
whenever the power is turned on. At the same time, a couple of
handy debugging commands (step and trace) were taken out of the
system monitor, but they were not missed by many users. The
modifications to the system monitor were written by John Arkley.

Apple announced its Pascal Operating System in 1979 as well.
Because Pascal requires a huge amount of memory in which to
operate, Apple also released a new peripheral card, called a lan-
guage card, at the same time. The language card effectively added
another 16K of memory to the Apple II, which could “replace” the
Applesoft ROMs when Pascal was being used. The language card
was plugged into slot #0 of the Apple II but in the //e it is simulated
in the memory chips on the motherboard. These different imple-
mentations, however, are transparent to the user.

1980-1982

Apple’s sales continued to explode in the early eighties: $117
million in 1980, $334.8 million in 1981, and $583.1 million in 1982!
Most of these sales were generated by the Apple II Plus which
eventually set a record for monthly sales in December 1982.

The infamous Apple /// was released in 1980. For several reasons,
notably its early unreliability and high price, it never established
a significant market presence even though a modified version (known
as the Apple /// Plus) was still being produced in 1984. It comes
with an Apple II emulation mode that allows it to run most, but
not all, of the software that runs on the Apple II.

In the winter of 198@-81, Apple made a public offering of stock,
which was quickly snapped up. The proceeds were largely directed
into intensive (and expensive) research and development projects.
We'll see in a moment what those projects led to.

If imitation is the sincerest form of flattery, then Apple must
surely be crimson red. Since about 1980, tens of thousands of un-
official Apple II “clones” (euphemistically called “‘compatibles’’)
have been manufactured, mostly by Taiwanese concerns. To achieve
absolute compatibility with the Apple II, most of these clones con-
tain ROMs that are direct copies of the Applesoft and system mon-
itor ROMs. Not surprisingly, Apple considers this to be highly
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improper and has successfully instituted legal proceedings in the
United States and many other countries against several manufac-
turers in order to protect its copyrights and patent rights. The
importation of Apple II clones to the United States has also been
reduced because Apple has registered its copyrights with U.S. Cus-
toms. The Customs authorities have the power to confiscate ship-
ments of products that violate Apple’s copyrights.

At Apple’s Annual General Meeting on January 19, 1983, two
major announcements were made. First, the Lisa computer was
announced, a computer that was immediately recognized as a tech-
nological and innovative triumph because of its ease of use and
excellent operating system. Its retail price, however, was initially
too high for it to sell in the quantities that Apple would have liked.
Subsequent price reductions, coupled with increasing availability
of software, has helped to remedy this problem.

The more important announcement as far as we are concerned
was the introduction of the successor to the Apple II Plus, the Apple
/le. The Apple //e was carefully designed to maintain as high a
degree of compatibility with the Apple II Plus as possible so that
the thousands of software packages developed for the Apple II Plus
would not have to be rewritten. Several new features were added
to the //e, however, that make it a significantly different computer:
built-in support for an 80-column display, an upper- and lower-
case keyboard, self-testing subroutines, and enhanced editing ca-
pabilities.

In addition, Apple significantly simplified the construction of
the //e by reducing the number of integrated circuits on the moth-
erboard from 109 on the Apple II Plus to only 31! It did this by
designing two special integrated circuits, called the IOU (input/
output unit) and MMU (memory management unit), to replace
many of the discrete components used on the II Plus.

The manager of the team that designed the Apple //e was Peter
Quinn. The hardware was designed by Walt Broedner and most of
the modifications to the old system monitor were made by Rick
Auricchio and Bryan Stearns.

There was also a major change at the managerial level at Apple
in 1983. On April 8, Apple announced that Mike Markkula had
resigned as President and that John Sculley had been named to
succeed him. Sculley was formerly president of Pepsi-Cola and it
is reported that his salary is in excess of one million dollars per
year.
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1984

At its January 24, 1984, Annual General Meeting Apple an-
nounced the Macintosh computer (“Mac”’), a scaled-down version
of Lisa. Mac undoubtedly represents another mass-market best
seller for Apple because it is easy to use and it is priced affordably.
Within a month of its release, at least two Mac-specific magazines
and several books had been published. This is reminiscent of what
happened in 1979 when sales of the Apple II began to skyrocket.

On the //e front there was one major announcement at the Annual
General Meeting: the release of a successor to DOS 3.3 called ProDOS.
This disk operating system is significantly different from, but up-
wardly compatible with, DOS 3.3. Most Applesoft programs, when
transferred to ProDOS-formatted diskettes, will run without mod-
ification. Programs and other files can be transferred between DOS
3.3 and ProDOS by using a utility program supplied with ProDOS.
The main advantages of ProDOS are that it is faster, it is easier
for programmers to use, it supports a directory structure that is
more convenient for use with larger-capacity diskettes or hard
disks, and it creates files that can be read by the Apple ///.

On April 24, 1984, Apple announced a scaled-down, portable
version of the Apple //e called the Apple //c and made it known to
the world that it will be supporting the Apple II concept for a long
time to come. This was apparent from the theme of the event at
which the Apple //c was announced: “The Apple II forever.” As
expected, the Apple //c will run almost all software written for the
Ile.

UNDER THE HOOD OF THE APPLE //e

Although this book is primarily concerned with software, let’s
begin by taking a quick look at the hardware that makes up the
Apple //e. You can’t see much with its lid on, except the keyboard
at the front and the video, cassette, and game paddle connectors
at the back. So, turn off the power and take the lid off.

The biggest component under the hood is the power supply on
the left side. The main circuit board (called the ‘“motherboard’’)
contains only 31 integrated circuit packages; these include the 6502
microprocessor (see Chapter 2), the IOU and MMU, eight random-
access memory (RAM) chips, three read-only memory (ROM) chips
(which contain Applesoft, the system monitor, and the keyboard
decoder), and miscellaneous support chips.

Lined up at the back of the motherboard are seven 5@-pin con-
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nectors called slots. These slots are numbered consecutively from
1 through 7, with slot 1 being the leftmost slot. Peripheral cards
can be installed in these slots to allow the //e to control a variety
of input/output (I/O) devices. In fact, you undoubtedly have a pe-
ripheral card already installed that is connected by a ribbon cable
to a disk drive. There is an eighth slot, called the auxiliary con-
nector, that is located at the left center of the motherboard (or
directly in front of slot 3 if you are using a United Kingdom Apple
/fe). This 6@-pin connector is designed for use by an optional 80-
column text card available from Apple (and, now, from others).
This card permits the use of a video display mode in which 8@
characters may be displayed on one screen line instead of the stand-
ard 40. An extended 80-column text card is also available that
contains 64K of memory and that can be used to generate special
double-width graphics that were unavailable on the Apple IT and
Apple II Plus. The peripheral-card expansion slots will be discussed
in Chapter 11.

On the right near the back you will see the 16-pin game I/O
connector to which joysticks, push buttons, and other game-play-
ing paraphernalia can be attached. We'll see some examples of
how to attach these, and other, devices in Chapter 10.

The last item of interest is the //e’s built-in speaker. As we will
see in Chapter 9, the speaker can be used to produce both harsh
sound and beautiful music. It is mounted to the bottom plate of
the //e and is connected to the motherboard through a twisted pair
of wires.

So much for the //e’s hardware!

LEARNING THE FUNDAMENTALS

The purpose of this section is to introduce you to some of the
fundamental concepts and terminology that will be used in this
book. You should realize, however, that this book has not been
written for computer novices and that more general books should
be consulted if more background information is required.

Numbering Systems

We are all familiar with the decimal numbering system that
makes use of ten fundamental digits. This system, however, is not
sacred and we could, if we preferred, use other systems that use
fewer or more digits.
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When dealing with computers, it is often convenient to use the
binary numbering system and the hexadecimal numbering system.
The binary numbering system uses only two digits, @ and 1. The
hexadecimal system uses the following sixteen digits:

9,1.234,5,6,789ABCDEF

which represent decimal numbers @ through 15, respectively.

The //e’s 6502 microprocessor performs all its internal operations
using binary numbers because it has available to it thousands of
logic cells that can easily be turned either “on” or “off”’ to represent
the binary digits “1” or “@”, respectively. Binary numbers, how-
ever, are usually not used when writing a program because they
are difficult to read and are prone to transcription errors. Decimal-
number equivalents of binary numbers are often used instead, but
the pattern of binary ones and zeros to which they refer are often
not immediately obvious (quick now, what is the binary represen-
tation of 225?). The hexadecimal numbering system, however, is
an ideal alternative because each hexadecimal digit defines exactly
one of the sixteen four-digit patterns of binary ones and zeros,
making conversion between binary and hexadecimal very easy.

In this book, hexadecimal numbers will be preceded by “$” to
distinguish them from decimal numbers. They will be used when
referring to data values or to memory addresses.

Bit Numbering and “Significance”

As you undoubtedly know, the basic unit of storage in the Apple
/le, and most other microcomputers, is the byte. As far as the 6502
microprocessor is concerned, each byte is made up of eight bits,
each of which can be either on or off (a computer likes things that
can exist in only one of two states). This means that binary numbers
from 00000000 to 11111111 (@ to 255 decimal) can be stored in a
byte.

Each bit in a byte is associated with a certain binary weight
equal to the number that the byte would represent if that bit were
on and all the other bits were off. These binary weights are as
shown in Figure 1-1.

(Notice that the bits within the byte are numbered from @ to 7
and not from 1 to 8.) To determine the decimal representation of
the bit pattern, it is simply necessary to add up the binary weights
of all bits in the byte that are on. Since bit 7 contributes most, it
is called the most-significant bit or “high-order” bit. Conversely,
bit @ is referred to as the least-significant bit or “low-order” bit.
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7 6 5 4 3 2 1 0 ~«—bit numbers

128 64 32 16 8 4 2 1 <&—binary weights

Figure 1-1. Binary weights of each bit in a byte.

Bit 7 of a byte is also called the “sign bit” because it is often
used to indicate whether the number stored in the byte is positive
or negative (if it is 1, then the number is considered to be negative).
The 6502 microprocessor that controls the //e uses a special internal
status register which, among other things, holds a flag that rep-
resents the sign of any number being dealt with (see Chapter 2).
Special 6502 instructions are available that can change the flow
of a program depending on the state of this sign flag (they are
called “BPL,” branch on plus, and “BMI,” branch on minus). We
are going to see in later chapters that the //e uses bit 7 of several
special memory locations to hold information relating to the state
of the system. When these status locations are examined in an
assembly-language program, BPL can be used to transfer control
if the status is off (bit 7 is @) and BMI can be used to transfer control
if the status is on (bit 7 is 1). The same thing can be done from an
Applesoft program by using the PEEK command to read the num-
ber stored at the status location. If bit 7 is on, then the value read
will be greater than or equal to 128 (since the binary weight of bit
7 is 128).

We will also come across situations in this book where more than
one byte is required to store a number (i.e., the number is larger
than 255). In these cases, the byte that contains information on the
highest-weighted bits for the number is called the most-significant
byte or high-order byte, and the byte that contains information on
the lowest-weighted bits is called the least-significant byte or low-
order byte.

Pointers and VVectors

As we will see in Chapter 2, the 6582 microprocessor is capable
of controlling a memory space that is mapped to the addresses
from $0000 . .. $FFFF. Since one byte can hold exactly two hex-
adecimal digits, any address in the 6502’s memory space can be
stored in two bytes.

A pointer or “vector” is a pair of memory locations that contains
the address of another location to which the pointer is said to be
pointing. The least-significant byte of the pair is always stored in
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the first memory location and the other byte in the next higher
location. To determine the address stored in a pointer, you can use
the following Applesoft formula:

ADDR = PEEK(X)+256+PEEK(X+1)

where X represents the first memory location that the pointer oc-
cupies. The second byte in the pair is multiplied by 256 since it
represents the number of 256-byte units that make up the address.

The 6502 microprocessor makes extensive use of pointers to ac-
cess data arrays and to handle interrupts (see Chapter 2). Applesoft
also maintains a great many pointers for keeping track of its many
data areas (see Chapter 4).

Control Characters

Control characters are special characters that are entered from
the keyboard by using the CONTROL key. Although they do not
represent visible symbols, they often cause the //e to perform spe-
cial functions. Such characters will be denoted in this book by
<CTRL-X>, where X refers to any alphabetic character (A. . .Z) or
one of the following six special symbols: & [\] " —. The CONTROL
key acts just like another SHIFT key in that it and one other key
must be pressed at the same time in order to enter a control char-
acter from the keyboard. The procedure involves first pressing the
CONTROL key and then, while still holding it down, pressing the
other key (“X” in the above example).

6502 Assembly Language

Many of the programs presented in this book are written in a
programming language that can be used to generate a series of
bytes (which represent microprocessor instructions and data) that
can be interpreted and directly executed by the //e’s 6582 micro-
processor. This programming language is called “6502 assembly
language.”

There are two steps involved in developing an assembly-lan-
guage program. First, a source code for the program must be en-
tered that defines the program in a human-readable form using
symbolic labels for addresses and data, special three-character
mnemonics for the permitted 6502 instructions, and special sym-
bols to indicate the addressing modes used by the instructions (see
Chapter 3 for a detailed discussion of 6502 instructions and ad-
dressing modes).
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A typical line of source code looks something like this:
LABEL LDA ($28),Y 3sThis is a comment

and is made up of four distinct fields. The first field is the label
field and it holds the symbolic name (if any) for the current location
within the program. The next field is the instruction field and it
holds the three-character mnemonic for the 6502 instruction (“LDA”
in the example). It is immediately followed by the operand field,
which holds the addressing mode used by the instruction, that is,
information relating to the method the instruction is to use to
access the data or memory location on which it is to act (“($28),Y”
in the example). The last field is the comment field and is used for
documenting the program. Each field is separated from the other
by at least one blank space; in addition, most assemblers require
comments to be preceded by a semicolon.

The second step is to interpret or “assemble’ the program source
code using a 6502 assembler. This is done in order to produce a
file that contains the bytes defined by the program in a format
that the 6502 can directly execute (the “object code” or “machine
language”).

The assembly-language programs presented in this book were
all entered and assembled using the BIG MAC Macro Assembler
published by A.P.P.L.E. (21246 68th Ave. S., Kent, WA 98032). If
you want to modify and reassemble the programs presented in this
book and you are not using BIG MAC, then you will likely have to
make several changes to the program source codes to account for
any differences in syntax and command structure. Differences usu-
ally arise in the area of “pseudo-instructions’’; these are assembler-
specific commands that appear in the 6502 instruction field of a
line of source code, but that represent commands to the assembler
rather than 6502 instructions. They can be used to place data bytes
at specific locations within the program (DFB, DS, and ASC), to
define symbolic labels (EQU), to indicate the starting address of
the program (ORG), and for several other purposes.

Here are descriptions of some of BIG MAC’s more commonly
used pseudo-opcodes:

DFB-—Define a byte of data

DS —Define a data space

ASC—Define an ASCII string

EQU—Equate a symbolic label to a number or a memory lo-
cation

ORG—Specify origin (starting address) of object code
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Some of the more popular assemblers available for the //e are
listed in the references at the end of Chapter 2.

Running Assembly-Language Programs

To run an assembly-language program, two steps must take place.
The first step is obvious: the program must be loaded into memory.
This can be done by storing the bytes that make up the programs
into the appropriate area of memory by using Applesoft POKE
statements or by using the system monitor STORE command (see
Chapter 3). The easier method, however, is to load it from the
binary file on diskette in which it is contained (a “B” is displayed
to the left of a binary file’s name when a diskette is CATALOGued)
by using the DOS BLOAD command. The BLOAD command must
be entered while you are in Applesoft and is of the form

BLOAD FILENAME,Aaddr

where “FILENAME" represents the name of the binary program
and “addr” represents the memory location at which it is to be
loaded, in hexadecimal (if preceded by “$”') or decimal notation.
The “,Aaddr” suffix can be omitted if you wish; if it is, then the
file will be loaded into memory at the same position it was in when
the BSAVE command was used to save it to diskette.

The second step is to actually run the program. This can be done
by using the Applesoft CALL command, which is of the form

CALL start

where “start” represents the decimal starting address of the pro-
gram. For example, to run a program that begins at location $300
(768 decimal), you would enter the command CALL 768. The al-
ternate way of starting the program is to use the system monitor’s
GO command (see Chapter 3). This can be done by entering the
system monitor from Applesoft using a CALL -151 command and
then, for a program beginning at location $300, entering the com-
mand “300G”.

Some of the programs in this book will not operate properly if
they are loaded and called in this way (they will be specifically
noted). Instead, the DOS BRUN command must be used to load
and execute them directly from diskette. This command can be
entered as follows:

BRUN FILENAME
where “FILENAME” represents the name of the binary program.
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When the BRUN command is used, the program will be loaded
into memory at the location from which it was saved to diskette
using the DOS BSAVE command. To save a copy of a binary pro-
gram that you have already entered into memory to a diskette,
enter the command

BSAVE FILENAME,Aaddr,Lnum

where “addr” represents the starting address of the program and
“num’”’ represents the number of bytes in the program.

WHAT WON'T BE COVERED

There are a few topics that will not be discussed at length in this
book. Integer BASIC, the BASIC that was built into the first few
thousand Apple IIs, will not be discussed because it is rarely used
anymore and is fast becoming obsolete. In fact, the new ProDOS
operating system does not allow Integer BASIC programs to be
run at all.

The only language that will be discussed at length will be Ap-
plesoft. For more information on Apple Pascal or Apple Logo, you
will have to go elsewhere.

Although Apple produces a wide range of interface cards (super
serial card, parallel printer card, etc.) and peripheral devices
(printers, modems, graphics tablets, etc.), these will not be dis-
cussed. The general techniques used to interface these devices to
the //e, however, will be discussed in Chapter 11.

USING THE OPTIONAL DISKETTE

This book can be purchased either with or without a program
diskette, or the diskette can be purchased separately. The diskette
contains all the programs that are presented as examples in the
following chapters and will allow you to quickly load a program
into memory, or modify a program, without having to endure the
pleasure of typing it in from scratch.

As an added bonus, several useful programs are included on the
diskette that are not described in the main body of this book.
Instructions on how to operate these programs can be found in
Appendix V.

The diskette has been initialized in the Apple DOS 3.3 format
rather than the ProDOS format. If the programs are to be trans-
ferred to a ProDOS-formatted diskette, then the CONVERT pro-
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gram on the Apple ProDOS system diskette must be used. One of
the programs presented in this book, READ.BLOCK, can be run
only in a ProDOS environment.

The files on the diskette are either Applesoft programs (marked
by “A” in the catalog), text files (marked by “T”), or binary pro-
grams (marked by “B”’).

The text files on the diskette are the source-code listings for the
binary programs and are in the format expected by the BIG MAC
assembler (use the “R” command from BIG MAC to load them).
Most other assemblers are also able to read text files. Keep in mind
that the source-code formats used by different assemblers do vary
and it may be necessary to modify a source code file to take into
account any such differences before the file can be properly assem-

bled.

The Applesoft programs and binary programs can usually be run
by using the standard RUN and BRUN commands, respectively.
Some of the binary programs, however, are designed to be called
from an Applesoft program only and should simply be loaded into
memory using the BLOAD command. Such exceptions will be noted
in the discussions that relate to these programs in this book.

FURTHER READING FOR CHAPTER 1

Historical background . ..

“Photograph of Apple 1,” Apple Orchard, April 1983, front cover.
The original Apple product. ;

A.L. Taylor III, ““Striking it Rich,” Time, February 15, 1982, pp.
42-47. Apple makes the front cover of Time!

P. Lopiccola, “Core of a New Apple,” Popular Computing, March
1983, pp. 114-117. How the Apple II Plus was transformed into
the Apple //e.

Standard reference work . ..
Reference Manual for /le Only, Apple Computer, Inc., 1982. In-

cludes detailed information on the hardware and software that
make up the Apple //e.
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The 6502 Microprocessor

The “brains” of every microcomputer are represented by a com-
plex integrated circuit called a microprocessor that controls the
operation of the system as a whole. The microprocessor used in
the //e is called a 6502.

The 6502 is an example of what is usually called an “8-bit”
microprocessor. These types of microprocessors can handle data
only one byte at a time and they typically use 16 address lines.
Since each of these lines can be on or off, the 6502 is capable of
addressing 65,536 (2°16) memory locations at any given time. (Since
one “K” of memory is equal to 1,024 bytes, this represents a “64K”
memory space). This is in contrast to the newer wave of 16-bit
microprocessors that can manipulate two bytes of data at once and
have typical address spaces of one megabyte or more.

While the 6502 is operating, it is continuously interpreting a
stream of bytes in order to determine what it should do next. The
bytes in this stream are controlled by the computer program that
is being executed. This program contains instructions that enable
the 6502 to perform data transfers, input/output operations, logical
operations, simple arithmetic, and other fundamental control op-
erations.

In this chapter, we will take a brief look at the 6502 instruction
set and internal registers and describe how the 6502 has been
implemented on the //e. Note, however, that the purpose of this
chapter is not to teach you 6502 assembly-language programming,
but rather to review some of the more important principles relating
to the 6502 microprocessor. Consult the references at the end of
the chapter for a list of books that are available to teach you the
art of programming the 6502.

IMPORTANT 6502 CONCEPTS

The 65@2 forms only one part of a microcomputer system such
as the //e. The other important parts are the system memory (RAM

17
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and ROM) and the system input/output (I/O) devices. It is the 6502,
however, that is in charge of controlling both the accessing of
memory and the passing of data to and from the I/O devices.

The 6502 is told how and when to perform its chores by a series
of instructions that it is constantly interpreting. These instructions
will be discussed in the next section. In brief, they cause the 6502
to perform a variety of data-manipulation tasks using a set of six
internal registers that will be discussed below in the section en-
titled ‘6502 Registers.”

Zero Page and the Stack

This is a convenient time to introduce you to two rather impor-
tant areas of memory that are used in special ways by the 6502
microprocessor: zero page and the stack.

Each 256 bytes of memory that starts at an address that is an
integer multiple of $100 (256), i.e., $0000, $0100, $0200, . . ., $FF00
is called a “page” of memory. For example, the area of memory
from $BF@@ through $BFFF is referred to as page $BF. Zero page,
the page of memory from $0000 . . . $00FF, is treated in a special
way by the 6502. Generally speaking, whenever the address on
which a 6502 instruction acts is contained in zero page, the highest
two hexadecimal digits of the address do not have to be specified
(since they are always zero by definition). This not only reduces
the size of the program, it also allows the program to be executed
more quickly. No wonder, then, that zero page is prime real estate
as far as the 6502 is concerned.

Page one of memory ($16@ . .. $1FF) holds the 6502 stack. The
stack is used as a temporary data area by the 6502 and several
instructions can be used to implicitly read data from it or store
data to it. These instructions are executed very quickly because
they automatically calculate where to store the data or where to
read it from by examining a special internal 6502 ““stack pointer”
register. This register always points to the next free position avail-
able in the stack. When a byte is stored on the stack, it is stored
at the position within page one given by the stack pointer and then
the stack pointer is decremented by one. When a byte is removed
from the stack, it is taken from the position within page one given
by the stack pointer plus one and then the stack pointer is incre-
mented by one.

We will be discussing the stack pointer, and other registers, in
greater detail below.
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6502 INSTRUCTION SET

There are 56 general types of instructions that the 6502 is capable
of executing; they are listed in Table 2-1. (An enhanced version of
the 6502, called the 65C@2, supports all of these instructions and
a few more—the 65C@2 is used in the Apple //c.) Each instruction
is actually a binary number that can be interpreted by the 65@2
but is usually represented by a three-character mnemonic name
that is easier to remember. These mnemonics are used whenever
an assembly-language program is being developed. The assembler
that is used takes care of translating them into the corresponding

binary numbers (the “machine language”) that the 6502 can exe-
cute directly.

Table 2-1. 6502 instruction set mnemonics in alphabetical

order.

ADC Add to accumulator DEX Decrement X register by
AND “And” with accumulator one

ASL Arithmetic bit-shift left DEY Decrement Y register by
BCC Branch on carry clear one

BCS Branch on carry set EOR “Exclusive-or”’ with
BEQ Branch on result zero accumulator

BIT Test bits

INC Increment memory b
BMI Branch on result minus ne y by

one

BNE Branch on result not INX Increment X register by
zero one

BPL Branch on result plus INY Increment Y register by

BRK Software interrupt one

BVC Branch on overflow ]
clear JMP Jump to new location

BVS Branch on overflow set JSR Jump + save return

address

CLC Clear carry flag
CLD Clear decimal mode flag LDA Load accumulator
CLI Clear interrupt disable LDX Load X register

flag LDY Load Y register
CLV Clear overflow flag LSR Logical bit-shift right
CMP Compare with NOP No operation
accumulator

CPX Compare with X register ORA "“Or” with accumulator

CPY Compare with Y register PHA Push akccumulator on
stac

DEC Decrement memory by PHP Push status on stack

one

(continued)
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Table 2-1. 6502 instruction set mnemonics in alphabetical
order (continued).

PLA Pull accumulator from STA Store accumulator
stack STX Store X register

PLP Pull status from stack STY Store Y register

ROL Rotate left through TAX Transfer accumulator to
carry X

ROR Rotate right through TAY Transfer accumulator to
carry Y

RTI Return from interrupt TSX Transfer stack pointer to

RTS Return from subroutine X

SBC Subtract from TXA Tr:cr:lcsliirruﬁatt?)r

SEC Sez;c;:;rr;lyug;gr TXS Tran;.fer X to stack

SED Set decimal mode flag pointer

SEI Set interrupt disable TYA Transfer Y to

accumulator

flag

The 6502 instructions can be used to perform a wide variety of
functions. For example, they can be used to pass data between two
registers or between registers and memory, to perform simple
arithmetic, to increment and decrement index registers and mem-
ory locations, to pass data between registers and the stack, to per-
form logical functions, and so on. Figure 2-1 illustrates, in a general
way, how each of the 6502’s instructions affect memory and the
6502 registers.

As you might expect, it takes a finite period of time for any
particular instruction to be executed by the 6502. The time re-
quired to execute one instruction, however, is not necessarily the
same as the time required to execute another. In fact, the time it
takes to execute one general type of instruction will even vary
depending on how the instruction is told to access the data on
which it is to operate (i.e., its “addressing mode”).

Table 2-2 sets out the times required to execute each instruction
in units of 6502 machine cycles for each valid addressing mode
(addressing modes will be discussed in detail later in this chapter).
The length of a 6502 machine cycle is fixed by the frequency of the
clock signal fed into the 6562 microprocessor. On the /e, this clock
signal is 1.023 megahertz, which means that every machine cycle
takes 0.9775 (1/1.823) microsecond to perform.

It is often convenient to know exactly how long it will take to
execute a particular instruction when precise timing loops must
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6502 SYSTEM MEMORY

INC DEC
ASL LSR ROL ROR
i | 1 lcmeabpcssc :
LDX STX CPX LDA STA |AND.ORAEORBIT  LDY STY CPY
' | I B | { {
X-REGISTER|-TxA+{ ACCUMULATOR ~TYA—{Y-REGISTER
ASL LSR ROL ROR
LDXx  [“TAXT pa cwmp apc sec [ TAY™  LDvY
INX DEX CPX AND ORA EOR BIT INY DEY CPY
TXS Tgx PHA PLA
{ | y
e JSR
STACK POINTER 6502 STACK | rrsel PROGRAM
PHA PLA PHP PLP ($100...$1FF) < BRKA COUNTER
JSR RTS BRK RTI RTls
PI;P PII-CP RTI B?K NOP
BEQ BNE
STATUS BPL BMI
BCC BCS
CLC SEC CLD SED CLV BVC BVS
CLI SEI JMP

NOTE: Solid arrows indicate a transfer of data.
Dashed arrows indicate a transfer of information.

- Figure 2-1. Usage chart of 65682 instructions.
be generated in software. We will see an example of this in Chapter

9, where a program is presented that can generate musical notes
of specific frequencies.

6502 REGISTERS

While the 6502 is executing a program, it makes use of the six
internal registers that are shown in Figure 2-2. These registers are
used to manipulate data in the manner dictated by the program
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that is executing and also to make the 6502 aware of various aspects
of the status of the system: where the next instruction to be exe-
cuted is located, where the next free space in the stack is located,
and what the status of its seven internal flags is. A detailed under-
standing of these registers is important before a 6582 assembly-
language program can be written. We will now take a closer look
at each of the six registers.

Table 2-2. 6502 instruction set and cycle times.

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4
(zpage,X) 61 2 6
(zpage),Y 71 2 5*
abs 6D 3 4
abs,X 7D 3 4*
abs,Y 79 3 4*
AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4
(zpage,X) 21 2 6
(zpage),Y 31 2 5%
abs 2D 3 4
abs,X 3D 3 4*
abs,Y 39 3 4*
ASL [accumulator] 0A 1 2
zpage @36 2 5
zpage,X 16 2 6
abs OE 3 6
abs,X 1E 3 7
BCC disp 90 2 2%*
BCS disp B¢ 2 2%
BEQ disp Fo 2 2%%
BIT zpage 24 2 3
abs 2C 3 4
BMI disp 30 2 2%*
BNE disp D@ 2 2%*
BPL disp 10 2 2%*
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Table 2-2. 6502 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
BRK [implied] 090 1 7
BVC disp 50 2 2%
BVS disp 79 2 2%*
CLC [implied] 18 1 2
CLD [implied] D8 1 2
CLI [implied] 58 1 2
CLV [implied] B8 1 2
CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4
(zpage,X) C1 2 6
(zpage),Y D1 2 5%
abs CD 3 4
abs, X DD 3 4*
abs,Y D9 3 4*
CPX #num E@ 2 2
zpage E4 2 3
abs EC 3 4
CPY #num Co 2 2
zpage C4 2 3
abs CC 3 4
DEC zpage Cé 2 5
zpage, X Dé6 2 6
abs CE 3 6
abs, X DE 3 7
DEX [implied] CA 1 2
DEY [implied] 88 1 2
EOR #num 49 2 2
zpage 45 2 3
zpage, X 55 2 4
(zpage,X) 41 2 6
(zpage),Y 51 2 5%
abs 4D 3 4
abs, X 5D 3 *
abs,Y 59 3 4*

(continued)
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Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
INC zpage E6 2 5
zpage,X 2 6
abs EE 3 6
abs, X FE 3 7
INX [implied] E8 1 2
INY [implied] C8 1 2
JMP abs 4C 3 3
(abs) 6C 3 5
JSR abs 20 3 6
LDA #num A9 2 2
zpage A5 2 3
zpage,X B5 2 4
(zpage,X) Al 2 6
(zpage),Y Bl 2 5%
abs AD 3 4
abs, X BD 3 4*
abs,Y B9 3 4*
LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs)Y BE 3 4*
LDY #num A9 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4*
LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs, X S5E 3 7
NOP [implied] EA 1 2
ORA #num 29 2 2
zpage a5 2 3
zpage,X 15 2 4
(zpage,X) g1 2 6
(zpage),Y 11 2 5%
abs gD 3 4
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Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte  of Bytes Clock Cycles
abs, X 1D 3 4=
abs,Y 19 3 4%
PHA [implied] 48 1 3
PHP [implied] 08 1 3
PLA [implied] 68 1 4
PLP [implied] 28 1 4
ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage, X 36 2 6
abs 2E 3 6
abs,X 3E 3 7
ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 7
RTI [implied] 49 1 6
RTS [implied] 60 1 6
SBC #num E9 2 2
zpage ES 2 3
zpage, X F5 2 4
(zpage,X) El 2 6
(zpage),Y F1 2 5*
abs ED 3 4
abs, X FD 3 4*
abs,Y F9 3 4*
SEC [implied] 38 1 2
SED [implied] F8 1 2
SEI [implied] 78 1 2
STA zpage 85 2 3
zpage,X 95 2 4
(zpage,X) 81 2 6
(zpage),Y 91 2 5*
abs 8D 3 4
abs, X 9D 3 4*
abs,Y 99 3 4*

(continued)
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Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte  of Bytes Clock Cycles
STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4
STY zpage 84 2 3
zpage,X 94 2 4
abs 8C 3 4
TAX [implied] AA 1 2
TAY [implied] A8 1 2
TSX [implied] BA 1 2
TXA [implied] 8A 1 2
TXS [implied] 9A 1 2
TYA [implied] 98 1 2

*Add one clock cycle if a page boundary is crossed.

**Add one clock cycle if a branch occurs to a location in the same page;
add two clock cycles if a branch occurs to a location in a different page.

See Table 2-3 for a description of the assembler operand formats.

The Accumulator—A

The 6502 supports two simple arithmetic instructions: ADC (add
with carry) and SBC (subtract with carry). Both of them require
that the first of the two operands in the addition or subtraction be
contained in the accumulator register, A. After the arithmetic has
been performed, the result is stored in A, and this is how it gets
its name—it “accumulates” the results of arithmetic operations
that are performed. The accumulator is an 8-bit register and so
can hold numbers from @ to 255 only.

The accumulator is unique in that it is the only one of the 6502’s
registers that can be used to perform the logical instructions, namely,
EOR (logical “exclusive-or”’), ORA (logical “or”), and AND (logical
“and”), or any of the bit-shifting instructions, namely, ASL (arith-
metic shift left), LSR (logical shift right), ROL (rotate left), and
ROR (rotate right). (You should note, however, that the bit-shifting
instructions can also operate directly on memory locations.)
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Figure 2-2. The 6502 registers.

Here are the 6502 instructions that directly use and affect the
accumulator:

e Arithmetic : ADC, SBC

Logical : AND, ORA, EOR
Bit-shifting : ASL, LSR, ROL, ROR

Compare : CMP

Store in memory : STA

Load from memory or with data : LDA

Store on stack : PHA
Load from stack : PLA

Inter-register transfer : TAX, TAY, TXA, TYA

The Index Registers—X and Y

Like the accumulator, the X and Y index registers are eight bits
in size and can contain numbers from @ to 255.



28 [_1 Inside the Apple //e

The index registers are often used as counters because the 6502
contains special one-byte instructions that allow the index regis-
ters to be easily incremented or decremented. No such instructions
are available to increment and decrement the accumulator.

As their names suggest, however, the index registers are used
primarily to locate elements contained in data structures in mem-
ory, such as a series of elements in a one-dimensional array. This
is done by fixing the beginning address of the data structure and
then simply adjusting the index register so that the sum of the
beginning address and the index register is equal to the address
of the element that is to be accessed.

The 6502 supports several special instructions that directly use
and affect the index registers:

* Increment : INX, INY

* Decrement : DEX, DEY

« Inter-register transfer : TAX, TAY, TXA, TYA, TXS, TSX
* Store in memory : STX, STY

» Load from memory or with data : LDX, LDY

* Compare : CPX, CPY

Note that the logical instructions and bit-shifting instructions
that can be used with the accumulator cannot be used with the
index registers.

The Processor Status Register—P

The 8-bit processor status register holds the states of seven one-
bit flags or “status” bits that are referenced by the 6502 when it
is executing many of its instructions. (One bit in the processor
status register, bit 5, is not used by the 65@2.) Each of these flags
has a specific meaning and can markedly affect how instructions
are executed. For example, the 6502 supports a series of “‘branch
on condition” instructions (BCC, BCS, BPL, BMI, BEQ, BNE, BVC,
BVS), each of which can be used to examine the status of a par-
ticular flag and to cause the program to “jump”’ to a new location
if the condition is met or to continue on with the next instruction
in memory if it is not.

Although almost all instructions will cause flags in the processor
status register to be adjusted after they have been executed, the
following instructions explicitly affect them:

¢ Clear and set the carry flag : CLC, SEC
* Clear and set the decimal flag : CLD, SED
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* Clear and set the interrupt flag : CLI, SEI
* Clear the overflow flag : CLV

Let’s take a look at each of these seven flags right now.

Carry Flag (C)

The 6502 uses the carry flag in three quite different ways. First,
the carry flag represents the ‘“ninth” bit in any unsigned addition
(ADC) or subtraction (SBC) operation that is performed. (“Un-
signed”’ means that all eight bits of a byte are used to represent
the magnitude of a number.) It can be examined after the addition
or subtraction in order to determine whether the result is outside
the range of numbers that can be stored in the 8-bit accumulator.
This allows for easy manipulation of numbers that use more than
one byte.

The 6502 can perform arithmetic in one of two modes: binary
and decimal. The mode used depends on the setting of the status
register’s decimal mode flag (see below).

In binary mode, each byte is considered to represent a simple
unsigned binary number from @ . .. 255. When arithmetic opera-
tions are performed, the standard rules for adding or subtracting
two binary numbers are followed.

In decimal mode, however, each half of the byte is considered
to represent a single decimal digit from @ to 9; this means that
only those decimal numbers from @ ... 99 can be represented.
When arithmetic operations are performed on such numbers, the
result is always stored in the same decimal format.

In either mode, before any arithmetic is performed, the carry
flag must be cleared with a CLC instruction, in the case of addition,
or set with a SEC instruction, in the case of subtraction. (If mul-
tibyte arithmetic is being performed, then the carry is adjusted
only at the beginning of the sequence of additions or subtractions.)
If the state of the carry flag changes after an addition operation,
then the true answer is 256 (if in binary mode) or 100 (if in decimal
mode) more than the number in the accumulator. If the carry flag
changes after a subtraction, then the true answer is 256 (if in binary

mode) or 168 (if in decimal mode) less than the number in the
accumulator.

The second use of the carry flag is as a ninth bit that participates
whenever the ASL, LSR, ROL, and ROR bit-shifting instructions
are executed.

Third, the carry flag is used as a general-purpose flag that is
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acted on by the BCC (branch if C-flag is #) and BCS (branch if C-
flag is 1) instructions. As with all of the 6502’s “branch on con-
dition” instructions, BCC and BCS allow control of the program
flow to be manipulated by simply changing the state of a flag in
the processor status register (in this case, the carry flag).

Zero Flag (Z)

This flag is used to indicate whether the last data movement or
arithmetic operation involved a zero result. If it did, then the Z-
flag will be set (1); otherwise it will be cleared (9).

There are two branch instructions that examine the status of the
Z-flag to determine whether the branch should be performed: BEQ
(branch if Z-flag is 1) and BNE (branch if Z-flag is 0).

Interrupt Disable Flag (1)

This flag is used to control how the 6502 will react when the
electrical signal on its IRQ (interrupt request) pin is brought near
@ volts. Such an interrupt can be generated by certain peripheral
cards whenever they are ready to send information to, or receive
information from, the //e. If the I-flag is set using the SEI instruc-
tion, then all IRQ signals that may be generated will be ignored.
If, however, the I-flag is cleared using the CLI instruction, then the
6502 will respond to IRQ signals when they occur by beginning a
special interrupt sequence that is described in detail below in the
section entitled “6502 INTERRUPTS.”

Decimal Mode Flag (D)

This flag is used to control how the 6502 is to perform addition
and subtraction operations. If standard binary arithmetic is to be
performed using the ADC and SBC instructions, then this flag must
be cleared to @ using the CLD instruction. As we saw when dis-
cussing the accumulator, in binary mode bytes are treated as un-
signed binary numbers from @ to 255.

If, however, the D-flag is set to 1 using the SED instruction, all
arithmetic will be performed under the assumption that all num-
bers are stored in a special decimal format. In this format, one
byte is used to store exactly two decimal digits from @ to 9. The
first digit is stored in the high-order four bits and the other in the
low-order four bits and the maximum number that can be stored
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is 99. When arithmetic operations are performed, the results will
also be stored in this format.

Break Flag (B)

This flag is adjusted internally by the 6502 whenever an IRQ
(interrupt request) interrupt is recognized by the 6502 or a BRK
(break) instruction is executed. See the section below entitled 6502
INTERRUPTS” for more information on these types of interrupts.
When an IRQ interrupt is recognized, then the B-flag is cleared to
@; if a BRK instruction is executed, then it is set to 1.

Whenever an IRQ or a BRK interrupt is generated, the 6502
begins to execute the same program (its address is held at locations
$FFFE and $FFFF). It is often convenient, however, to determine
what the source of the interrupt was so that a different action can
be taken for each source. This is most easily done by having the
interrupt-servicing program examine the state of the B-flag.

Overflow Flag (V)

The overflow flag is used primarily when performing arithmetic
operations on signed numbers. Signed numbers are those that use
bit 7 of a byte to hold the sign of the number (1 for negative, @ for
positive). Bits @ . . . 6 are used to store the magnitude of the number
in a special “two’s complement” format that will be described in
Chapter 4. If the result of an addition or subtraction of two signed
numbers is outside the range of numbers that can be stored in this
format (—128 ... +127), then the V-flag will be set to 1; if the
number is in range, however, the V-flag will be cleared to @.

The V-flag can be explicitly cleared by using the CLV instruction.
Surprisingly, there is no corresponding instruction to explicitly set
the V-flag.

The state of the V-flag can also be affected by using the BIT
instruction. If you “BIT” any memory location, then a copy of bit
6 of the byte stored there will be placed in the V-flag.

Two branch instructions make use of the V-flag: BVS (branch if
V-flag is 1) and BVC (branch if V-flag is 9).

Negative Flag (N)

The negative flag is used to indicate the sign of the last value
that was directly transferred into the A, X, or Y register or that
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was put there by an instruction that performed an arithmetic op-
eration (DEX, DEY, INX, INY, ADC, SBC, and so on). The 6502
considers any byte that contains a one in bit 7 to be negative.

Two branch instructions make use of the N-flag: BPL (branch
on plus, i.e., N-flag is #) and BMI (branch on negative, i.e., N-flag
is 1).

A BIT instruction can also be used to directly affect the state of
the N-flag. When you “BIT” any memory address, a copy of bit 7
of the byte stored there will be placed in the N-flag. If bit 7 is used
to hold the status of some condition, then you can use BPL to
branch if the status is off (@) or BMI to branch if it is on (1). We
will see in later chapters that the //e uses bit 7 of several locations
to represent the status of different hardware switches that can be
controlled by software.

The Stack Pointer—S

As we saw earlier in this chapter, the 6582 uses the 256-byte area
from $100 to $1FF as a hardware stack. This is a ‘“last-in, first-
out” data area: the most recent information stored on the stack is
always removed first. Information is usually placed on the stack
by the “push” instructions, PHA and PHP, and removed from the
stack by the “pull” instructions, PLA and PLP. (Information does
not actually disappear after a pull, but it will be overwritten as
soon as more information is pushed on to the stack.)

The JSR (jumip-to-subroutine) instruction also causes informa-
tion to be placed on the stack. When the JSR instruction is exe-
cuted, the address of the next instruction in memory after the JSR,
minus one, is pushed on the stack (high-order byte first). When the
corresponding RTS (return-from-subroutine) instruction is exe-
cuted, this address is removed and the program resumes at that
address (plus 1).

The stack pointer register, S, is used to keep track of where in
the 256-byte stack area the bytes are to be pushed to or pulled
from; it always points to the next free space available in the stack
area. When the system is first initialized, S is set equal to $FF.
Then, whenever a byte is pushed on the stack, it is stored at location
$100 + S and then the stack pointer is decremented by one. Because
S is decremented, the stack grows downward in memory. When
bytes are pulled from the stack, they are taken from the top of the
stack (location $100+S+1). The stack pointer is automatically
incremented each time a byte is removed from the stack in this
way.
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Interrupt conditions and interrupt-related instructions also af-
fect the stack pointer (see the section below entitled “6502 IN-
TERRUPTS” for a detailed discussion of interrupts). When an in-
terrupt from a peripheral device is recognized (or one is generated
by a BRK (break) instruction), a two-byte address and a copy of
the processor status register is placed on the stack and the stack
pointer is decremented by three. When the corresponding RTI (re-
turn-from-interrupt) instruction is executed, the stack pointer will
be incremented by three, thus effectively ‘“removing” these bytes
from the stack.

Here are the 6502 instructions that directly affect the stack pointer
register:

¢ Inter-register transfer : TXS, TSX
» Push data on stack : JSR, PHA, PHP, BRK
» Pull data from stack : PLA, PLP, RTS, RTI

The Program Counter—PC

The program counter (sometimes called the instruction pointer)
is the only 16-bit register that the 6502 supports and is used to
hold the address of the next instruction to be executed. This address
will normally be that of the next instruction in the program, but
not necessarily. There are several instructions that can be used to
manipulate the flow of the program and to pass control to other
parts of the program by adjusting the program counter accord-
ingly. These are the JMP (jump) instruction, which acts like an
Applesoft GOTO, the JSR (jump-to-subroutine) and RTS (return-
from-subroutine) instructions, which act like an Applesoft GOSUB/
RETURN combination, and the branch-on-condition instructions
(BCC, BCS, BEQ, BNE, BPL, BMI, BVC, BVS). The program counter
is also affected by any hardware or software interrupt (BRK) and
by the RTI (return-from-interrupt) instruction.

6502 ADDRESSING MODES

A complete 6502 instruction is either one, two, or three bytes
long. The first byte always represents the operation code (“‘op-
code”) for the instruction itself and the remaining bytes (if any)
represent the operand; if an operand is specified, it is either an
address (one byte or two bytes) or immediate data (one byte). If
the operand represents a two-byte address, then the first byte is
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always the lower two digits of the four-digit hexadecimal address
(the allowable addresses are in the range $0000 to $FFFF).

An address that is specified after an opcode is not necessarily
the address from which the instruction will read data or to which
it will store data. In many instances, the 6502 uses this address to
calculate another address (called the “effective address’’) on which
it does operate. Exactly how this calculation is to be performed
depends on which of several addressing modes that can be used by
that instruction has been selected. The 6502 determines which
addressing mode has been selected by examining the value of the
opcode itself—each general type of instruction can have several
opcode values associated with it, one for each valid addressing
mode. The value of the opcode also dictates whether the operand
is to be interpreted as immediate data instead of an address.

We will now outline the various addressing modes that the 6502
supports. Before beginning, you should note that not all instruc-
tions are permitted to use each addressing mode. The ones that
are supported by each instruction are indicated by entries in Table
2-2. The names of each of the addressing modes that the 6502 uses,
and the operand formats used to represent these modes in an as-
sembly-language program, are summarized in Table 2-3 Note that
these operand formats are those used by the BIG MAC assembler
that was used to develop the examples presented in this book; other
assemblers may require that slightly different formats be used.

Immediate

Immediate addressing is used whenever you want an instruction
to act on a specific 8-bit number rather than on a byte stored
somewhere in memory. This 8-bit number is stored in the byte
immediately following the opcode itself and forms the operand for
the instruction.

The immediate addressing mode is most useful for initializing
a register to a constant value and for providing specific data on
which an instruction is to operate. To select this addressing mode
when using an assembler, the “#”’ symbol must be placed in front
of the number in the instruction’s operand:

LDA #49—load the accumulator with 49 (decimal)
LDX #$43—load X with $43 (hexadecimal)

It is often necessary to deal with the high-order or low-order byte
of a two-byte address as an immediate quantity. To do this, you
must use an assembler operand of the form “#<ADDRESS” (for
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Table 2-3. 6502 addressing modes and assembler operand

formats.
Assembler Operand Example of
Addressing Mode Format Instruction
Immediate #num LDA #$45
#<abs LDA #<$FD1B
#>abs LDA #>3$FD1B
Absolute abs LDX $FE44
zpage LDA $24
Accumulator [Not applicable] ASL
Implied [Not applicable] CLC
Indexed indirect (zpage, X) LDA ($E9, X)
Indirect indexed (zpage), Y STA ($28), Y
Absolute indexed abs, X LDA $20090, X
abs, Y STA $0400, Y
zpage, X LDA $28, X
zpage, Y STX $22,Y
Relative™ disp BNE $BEAF
Indirect (abs) JMP ($93EE)
Note: “num” = 1-byte number
“abs” = 2-byte address
“<abs” = low-order byte of a 2-byte address (or constant)
“>abs” = high-order byte of a 2-byte address (or constant)
‘“zpage’’ = 1-byte zero page address
“disp”’ = 1-byte signed displacement

*Relative addressing: An absolute address is usually specified in the
operand when the program is written; the assembler converts the operand
to a one-byte displacement to this address when the program is assembled.

the low-order byte) and “#>ADDRESS" (for the high-order byte),
where “ADDRESS” is the address being dealt with. Note, however,
that the form of this type of operand applies to the BIG MAC
assembler only; most other assemblers require that a different
method be used to specify which half of an address is to be dealt
with. One assembler, the Apple 6502 Editor/Assembler, uses the
same general method, but it reverses the meaning: “#>" is used
to specify the low-order byte and “#<" is used to specify the high-
order byte!

Absolute

The absolute addressing mode is used whenever the operand
itself contains the absolute address in memory on which the opcode
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is to operate. The two bytes required to store this address are stored
low-byte first.

Here are some examples of how to use the absolute addressing
mode:

LDA $FE43—load the accumulator with the number stored at
$FE43
STY $1238—store the Y register at location $1238

Some instructions support an important variant of the absolute
addressing mode, called zero page absolute, if the address specified
is in the 6502 zero page (the first 256 bytes of memory). In this
mode, the opcode is followed by a one-byte address only because
the high-order byte is implicitly zero. Most assemblers will rec-
ognize when a zero page location is being specified and will au-
tomatically select this addressing mode for you by changing the
value of the opcode byte used by the instruction when the program
is assembled.

Accumulator

Accumulator addressing is the mode used by all those opcodes
that act on the accumulator alone and that require no address or
immediate data on which to operate. These are the bit-shifting
opcodes LSR, ASL, ROL, and ROR. There are no operand bytes
for these instructions. Note, however, that some assemblers other
than BIG MAC (notably, the Apple 6502 Editor/Assembler) require
that the letter “A” be entered in the operand field before the pro-
gram source code can be properly assembled.

Implied

The 6502 supports many opcodes that do not act on immediate
data or on memory locations, but rather on internal registers and
status flags only. These opcodes require no operands because their
actions are implicitly defined by the opcode itself and so the ad-
dressing mode used is called implied.

Here are some examples of opcodes that use the implied ad-
dressing mode: PHA, PLA, PHP, PLP, CLD, CLI, BRK, DEX, INX,
NOP, RTS, TAX.

Indexed Indirect

When the indexed indirect addressing mode is used, the operand
is only one byte long and represents a location in zero page. The
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effective address on which the instruction acts is calculated by first
adding the contents of the X register to the zero page location
specified in the operand to obtain a resultant address. The effective
address is represented by the two bytes that are stored at the
resultant address and the very next address (low-order byte first).

You can select this addressing mode when using an assembler
by using an instruction of the form

STA ($E0,X)

where the parentheses indicate that the effective address is not
$E@ + X but rather the address stored at that location.

Indirect Indexed

Indirect indexed is a powerful addressing mode that is often used
to access a block of memory that may not always begin at the same
location in memory or that is longer than 256 bytes in length. The
operand is one byte long and represents a zero page location; this
zero page location, and the one immediately following it, contain
the address (low-byte first) of the beginning of a data block in
memory. These locations are said to ‘“point to” this data block.

When this addressing mode is used, the effective address on which
the instruction is to operate is calculated by first taking the address
of this data block from the zero page locations and then adding to
it the contents of the Y register.

Here is an example of how you would select the indirect indexed
addressing mode when using an assembler:

LDA ($26),Y

The parentheses around $26 mean ‘““contents of”’; it is the address
stored at $26 (and $27) that will be used to calculate the effective
address, and not $26 itself. If the Y-register contains $FE and the
address $400 is stored at $26/$27, then the accumulator will be
loaded with the contents of memory location $4FE ($4FE = $400
+ $FE).

Absolute Indexed

The operand for the absolute indexed addressing mode is two
bytes long and contains the absolute address of a memory location
called a “base address.” The effective address on which the in-
struction is to operate is calculated by taking this base address
and adding to it the contents of the X register (if X indexing is
selected) or of the Y register (if Y indexing is selected).
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Here are some examples of the use of this addressing mode:

LDA $400, X—Iload the accumulator with the contents of the
location specified by $400 + X.
STA $A032,Y—store the accumulator at the location specified by
$A032+Y

There is a special version of this addressing mode, called zero
page absolute indexed, that can be used by some instructions when
the base address is in page zero. In this case, the operand is only
one byte long and represents this zero page address. Most assem-
blers will automatically select this addressing mode for you if the
operand is, indeed, in page zero.

Relative

The 6502 supports a series of branch instructions that examine
the 6502 status register to determine whether a change in the flow
of the program should be made or not: BEQ, BNE, BPL, BMI, BCC,
BCS, BVC, and BVS. The first byte represents, as usual, the opcode
for the instruction. The second byte represents the number that
must be added to the address of the next instruction in memory
in order to calculate the destination address of the branch. Because
this byte represents a displacement from an instruction’s location
rather than an absolute location, this addressing mode is called
“relative.”

There are restrictions on how far you can branch using relative
addressing. In particular, you can only specify a relative address
that is at most 127 bytes higher in memory or 128 bytes lower in
memory (as measured from the address of the next higher instruc-
tion). Values from $0@ ... $7F represent the positive branches (@

. 127), and values from $80 . . . $FF represent the negative branches
(—128, —127, ...,—1). Note that the values for negative branches
are stored in a special “two’s complement” format; see Chapter 4
for a detailed description of this format.

If you must transfer control to a destination location that is
outside this range, you will have to use a JMP instruction instead.

Indirect

This addressing mode is used by only one instruction, JMP. A

~_-two-byte operand is used and these two bytes define a location in

memory that contains the low half of the address that is to be
jumped to; the high half is stored in the next memory location.
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If you are using an assembler, then you would select this ad-
dressing mode by entering an instruction that looks like this:

JMP ($1234)

The parentheses around the operand indicate that it is not $1234
that is being jumped to but rather the address stored at $1234 (and
$1235).

The indirect addressing mode is useful in situations where the
ultimate destination of the jump instruction may be changed, per-
haps by another program. Even if this other program places a new
address at the operand address, the main program itself need not
be changed. On the other hand, if the absolute addressing mode
were used instead, then it would be necessary to modify the pro-
gram and this may be difficult to do. The //e uses the indirect
addressing mode whenever it has to jump to its character input
or output subroutines. Whenever new input or output devices are
activated, all that need be done is to change the address stored at
the address specified in the operand—the main program will re-
main the same (see the discussion of the /e’s input and output links
in Chapters 6 and 7).

You should note that there is a serious hardware bug in the 6502
chip itself that affects the use of the indirect addressing mode. It
turns out that if the address specified in the operand begins at the
end of a page (that is, at $xxFF), then the effective address will not
be the one found at $xxFF and $xxFF+ 1 as expected but rather at
$xxFF and $xx@0. This bug has been eliminated in the 65C82 micro-
processor that controls the Apple //c.

6502 INPUT/OUTPUT HANDLING

Unlike those of some microprocessors, the 6502 instruction set
does not include any instructions that are specifically designed to
perform input/output (I/O) operations. Instead, all I/O operations
are performed by using standard instructions to read data from or
write data to addresses within the 6502’s standard 64K address
space to which I/O devices are “connected.” These addresses do
not usually represent real RAM or ROM memory locations (mem-
ory that holds video display information is one exception) but,
nevertheless, are accessed in exactly the same way as if they did.

This method of handling I/O is called “memory-mapped I/O”
because the I/0 devices form a logical part of the 6502’s 64K mem-
ory space itself and so no special instructions are required to make
use of them. The //e contains several addresses that are used to
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control various aspects of its hardware environment. As we will
see at the end of this chapter, except for those addresses that relate
to the video display, these addresses are all contained in locations
$CO00 ... $COFF. Note that some of these I/0O locations can be
accessed in order to switch between one of two hardware states,
for example, text or graphics display, primary or alternate char-
acter set, and 4@-column or 8d-column display. Thus, they are called
“soft switch”” I/O memory locations.

6502 INTERRUPTS

There are three input pins on the 6502 integrated circuit that
are called RESET, IRQ (interrupt request), and NMI (non-mask-
able interrupt). When the electrical signals at each of these three
pins is high (near +5 volts) the 6502 goes about performing its
normal functions. If, however, one of these pins is suddenly brought
low (near @ volts), one of three special interrupt sequences may
begin, depending on which pin has been affected. An interrupt
sequence can also be generated in software by using the BRK in-
struction.

One especially useful type of hardware interrupt, IRQ, is com-
monly generated by devices found on peripheral cards that are
plugged into one of the //e’s seven expansion slots (see Chapter 11).
These interrupts indicate to the 6502 microprocessor that an event
has taken place that should be dealt with before continuing to run
the main program. For example, a clock card may generate an
interrupt once per second to allow the new time to be displayed
on the video screen.

Each type of 6502 interrupt has associated with it a two-byte
vector that holds the address of the interrupt-handling subroutine
that will be called when the interrupt occurs. These vectors are all
stored in the high end of of the 6502 memory space from $FFFA
to $FFFF. The specific vector locations for each type of interrupt
and the addresses of the interrupt-handling routines to which they
point are shown in Table 2-4. Note that all of the vector addresses
(except the one for NMI) change when ProDOS is being used. Most
of ProDOS resides in a special “bank-switched RAM" area that
occupies the addresses from $D@09 ... $FFFF that are normally
occupied by the Applesoft and the system monitor ROMs (see Chap-
ter 8). Thus, the interrupt vectors within this RAM area (from
$FFFA to $FFFF) can be changed as desired and they will take
effect whenever bank-switched RAM is active. ProDOS takes ad-
vantage of the power to change the interrupt vectors by storing in
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Table 2-4. 6502-Apple //e interrupt locations.

Interrupt Interrupt Vector Address of Location of
Type Location Interrupt Handler User Vector
NMI $FFFA/$FFFB $03FB n/a
RESET $FFFC/$FFFD  §FA62 or $FFCB $03F2*
IRQ $FFFE/$FFFF $FA40 or $FF9B $03FE
BRK $FFFE/$FFFF $FA40 or $FF9B $03F0

when the ProDOS
bank-switched
RAM area is
active only

*Control is passed to the Reset user vector only if the number stored at
$3F4 (the powered-up byte) is equal to the logical exclusive-OR of the
number stored at $3F3 and the constant $AS.

them the addresses of routines that handle interrupts more safely
and efficiently than the normal subroutines that are pointed to by
the ROM interrupt vectors. We will see examples of this later in
this section.

The interrupt-handling routines on the //e ultimately pass control
to other addresses that are specified in user-definable vector lo-
cations. These user vector locations are also shown in Table 2-4.
Note that a user-defined interrupt subroutine that is used to handle
interrupts generated by an IRQ or NMI signal, or a BRK command,
must end by executing an RTI (return-from-interrupt) instruction
and that when it ends the 6502’s A, X, and Y registers must contain
the same values as when the subroutine was first called.

Interrupts are often generated by I/O devices whenever they have
information available to be read (input devices) or whenever they
are ready to receive information (output devices). Because the 6502
can be interrupted by the device, it is not necessary for the program
to continuously monitor (poll) the I/O devices to determine when
one is ready to be used. This means that the program is able to
execute much more efficiently.

The four basic types of interrupts supported by the 6502 will
now be discussed in detail.

Reset Interrupt

The reset interrupt is used to cause the system to stop executing
the current program and to begin a sequence of instructions that
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start at the address stored in the reset vector at $FFFC/$FFFD (low-
order byte first). On the /e, the reset vector points to a subroutine
beginning at $FA62 (the ProDOS reset vector actually points to
another subroutine that ultimately calls $FA62). This subroutine
takes care of initializing the //e to a known state and will pass
control to a user-definable subroutine whose address is stored at
$3F2 and $3F3 (low byte first) if the logical exclusive-OR of the
value stored at $3F3 and the constant $AS is the same as the value
stored at $3F4 (which is called the powered-up byte). If it isn't,
then the disk drive will start up just as it does when the //e is first
turned on.

The reset interrupt is automatically generated whenever the power
to the 6502 is first turned on. As we will see in Chapter 6, it can
also be generated by pressing the CONTROL and RESET keys on
the //e’s keyboard at the same time. Specific examples of ““trapping”
the reset interrupt by adjusting the user vector at $3F2/$3F3 and
the powered-up byte at $3F4 will also be given in Chapter 6.

A reset interrupt is normally used only in panic situations where
the program that is running must be stopped immediately.

Non-Maskable Interrupt (NMI)

If an NMI interrupt is generated, the 6502 always responds by
first completing the current instruction being executed. The fol-
lowing sequence of events then takes place:

1. The current program counter is stored on the stack (this will
be the address of the next instruction in the program to be
executed after the interrupt has been dealt with).

2. The processor status register is stored on the stack.

3. The I-flag in the processor status register is set to 1 (this
disables subsequent IRQ operations; see below).

After these operations have been performed, the program counter
is loaded with the address that is stored in the NMI vector at SFFFA/
$FFFB (low-order byte first), and then the interrupt-handling pro-
gram that begins at that address is executed. The address stored
in the NMI vector on the /e is $3FB. Thus, to properly trap an NMI
signal, a three-byte JMP (jump) instruction must be placed at this
address that passes control to the main body of the interrupt-
handling subroutine.

To end an interrupt-handling program, an RTI (return-from-in-
terrupt) instruction must be executed. This will cause the old pro-
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gram counter and flags to be restored (by pulling them from the
stack), thus allowing the main program to start up again where it
last left off.

As you might expect from its name, there is no way that you can
prevent an active NMI signal from being dealt with by the 6502,
that is, it cannot be ‘“masked.” This can cause serious difficulties
in situations where time-critical operations such as timing loops
and disk accesses are being performed, so devices do not generally
use the NMI signal except for the most important reasons (for
example, an anticipated power loss).

Interrupt Request (IRQ)

The maskable equivalent to the NMI signal is the IRQ signal.
When an IRQ signal is generated, the 6502 will take action on it
only if the I-flag in the processor status register is @ (this can be
achieved using the CLI instruction). If the I-flag is set to 1 (using
the SEI instruction), then the IRQ signal will be ignored and no
further IRQ interrupts will be dealt with until one occurs after the
I-flag is cleared to @ using a CLI instruction.

If the I-flag is @ and an active IRQ signal is generated, then the
65@2 will handle the interrupt by performing virtually the same
operations that take place when an NMI signal is generated. In
fact, the only differences are that the break flag in the processor
status register is cleared to @ before it is placed on the stack and
that the address of the interrupt-handling routine is loaded from
the IRQ vector at $FFFE/$FFFF (low-order byte first). The address
stored at the IRQ vector on the //e is usually $FA40 (unless ProDOS
is active; see below).

The subroutine beginning at $FA4# first stores the contents of
the accumulator at location $45 and then determines whether the
cause of the interrupt was an IRQ signal or a BRK instruction
(BRK is discussed in the next section). If it was caused by an IRQ
signal, then control will pass to the address stored at user vector
locations $3FE and $3FF. Thus, to properly handle an IRQ inter-
rupt, an interrupt-handling subroutine must be placed in memory
and its starting address must be stored at $3FE/$3FF. Alternately,
if ProDOS is being used, you can install your interrupt-handling
routine by using a special ProDOS interrupt function. See Apple’s
ProDOS Technical Reference Manual for more information on this
feature of ProDOS.)

The major shortcoming in the standard IRQ subroutine begin-
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ning at $FA44 is that it destroys the contents of location $45. This
location is used by DOS 3.3 as a temporary storage location and
if an interrupt occurs just before $45 is to be read, the results can
be disastrous.

If ProDOS is being used, however, then the $45 problem no longer
exists. When ProDOS is performing any instructions that may use
$45, the IRQ vector (in bank-switched RAM) points to $FF9B, which
is the location of a subroutine that first saves the contents of $45
in a safe place in memory and then stores the accumulator in $45
as usual. It then modifies the stack so that when the user-installed
interrupt-handling subroutine ends, control will return to another
ProDOS subroutine that will restore the original value of $45 before
finally returning control to the main program. Lastly, it passes
control to location $FA42, which is just past the “STA $45” in-
struction at the beginning of the standard IRQ subroutine that
begins at $FA440.

The BRK Instruction

One of the 6502’s instructions allows you to simulate the effect
of an IRQ signal in software. This is the one-byte BRK (break)
instruction represented by a “@0" byte. BRK is primarily used
when debugging a program because when a program encounters
it, control will be directed to a user-definable subroutine that can
display information relating to the state of the program at that
particular point. For example, the contents of important memory
locations and of the 6502 registers can be displayed. If the state is
not as expected, then you can start bug-hunting.

Whenever the 6502 encounters a BRK instruction, the B-flag in
the processor status register is set to 1 and then an interrupt se-
quence much like the one generated by an IRQ signal is started
(the main difference is that the address stored on the stack is the
address of the BRK instruction plus two). Since the interrupt-
handling routine used is the same one as that used for IRQ inter-
rupts, that routine should properly check the status of the B-flag
to determine how the interrupt was caused. In fact, this is what is
done on the //e. Once the //e determines that the interrupt was
caused by a BRK, control is passed to the address stored at the
user vector locations $3F@ and $3F1 (low-order byte first). This
vector usually contains $FA59, the address of the subroutine that
displays the current contents of all the registers, but can be changed
to point to any other interrupt-handling routine that you care to
use.
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THE 6502 MEMORY SPACE ON THE //e

In this section, we are going to take a look at the layout of the
memory space that is available to the 6502 as implemented on the
/le. This memory space can be thought of as being composed of
three parts: RAM, ROM, and input/output memory addresses. The
/le’s RAM memory map is shown in Figure 2-3. Its ROM and I/O
memory map is shown in Figure 2-4.

In the following sections, we will encounter several situations
where the same logical memory address is used by more than one
actual physical memory location. The /e uses a set of special ‘‘soft

$FFFF

$F0o00

$E000

$Dx BANK1 $Dx BANK?2

$D000

$BFFF

$6000

HIGH-RES
PAGE2

$4000

HIGH-RES
PAGE1

$2000

$oCoo
$0800 <« TEXT/LOW-RES PAGE2
$0400 < TEXT/LOW-RES PAGE1
$0200 <—ZERO PAGE and STACK

$0000
Figure 2-3. Memory map of internal RAM.
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$FFFF

STANDARD
srago | SYSTEM MONITOR
$Fo0o
APPLESOFT
$E000 INTERPRETER
$D0o0d
- F PERIPHERAL-CARD
o %?(%LAN&OJRQ&",{,,ARE EXPANSION ROM
Cc8oo
icm SLOT 7 PERIPHERAL ROM
$C600 SELF-TEST SLOT 6 PERIPHERAL ROM
5500 SUBROUTINES SLOT 5 PERIPHERAL ROM
$C400 SLOT 4 PERIPHERAL ROM
50300 | _2-COLUMN FIRMWARE SLOT 3 PERIPHERAL ROM
sC20g | EXTENSION TO STANDARD SLOT 2 PERIPHERAL ROM
$C100 | SYSTEM MONITOR SLOT 1 PERIPHERAL ROM
$C000 1/0_MEMORY
INTERNAL ROM PERIPHERAL-CARD ROM

Figure 2-4. Memory map of internal ROM and I/0 memory and
peripheral-card ROM.

switches” to select which of these locations is to be active at any
given time. (A “soft switch” is a memory location that, when ac-
cessed from a software program, causes a change in the //e’s hard-
ware environment.) This is necessary because the 6582 would be-
come hopelessly confused if several locations sharing the same
address were active at the same time. We will be looking at the
soft switches that the /e uses to manage its memory space in Chap-
ter 8.

RAM Memory

The area of RAM memory that is most often used on the //e
extends from locations $0000 to $BFFF and is contained in eight
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memory chips built in to the system motherboard. As indicated in
Figure 2-3, some regions within this range are dedicated for special
uses. Here is a summary of the usage of the internal (or “main”)
RAM memory locations:

+ $0000-$OOFF. This is the 6502 zero page and it is used exten-
sively by all parts of the //e’s operating system, including the
system monitor (see Chapter 3), the Applesoft interpreter (see
Chapter 4), and the disk operating system (see Chapter 5). Those

locations available for use by your own programs are set out
in Table 2-5.

$0100-$01FF. This is the 6502 stack area and is also used for
temporary data storage by the Applesoft interpreter (see Chap-
ter 4).

* $0200-$02FF. This area of memory is normally used as an input
buffer whenever character information is entered from the key-
board or from diskette (see Chapter 6).

+ $0300-$63CF. This area of memory is not used by any of the
built-int programs in the //e and so is available for use by your
own programs. It is an ideal location for storing small assem-
bly-language programs that are called from Applesoft and most
of the examples presented in this book are to be loaded here.

+ $83DP@-$03FF. This area of memory is used by the disk oper-
ating system, Applesoft, and the system monitor for the pur-
pose of storing position-independent vectors to important sub-
routines that can be located anywhere in memory (such as
interrupt-handling subroutines). See Appendix IV for a com-
plete description of how this area is used.

 $0400-$G7FF. This is pagel of video memory that is used for
displaying both the primary text screen and the primary low-
resolution graphics screen (see Chapter 7). It is also used for
displaying one-half of the text screen when in 80-column mode.

» $0800-$0BFF. This is page2 of video memory that is used for
displaying both the secondary text screen and the secondary
low-resolution graphics screen (see Chapter 7). Since page2 is
rarely used, this area of memory is normally used for program
storage; in fact, the default starting position for an Applesoft
program is $801.

» $0CO0-$1FFF. This area of memory is free for use.

 $2000-$3FFF. This is pagel of video memory that is used for
displaying the primary high-resolution graphics screen (see
Chapter 7).

» $4000-$5FFF. This is page2 of video memory that is used for
displaying the secondary high-resolution graphics screen (see
Chapter 7).
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+ $6000-$BFFF. This area of memory is normally free for use.
However, the upper part of it (above $9600) will be used if a
disk operating system is installed (see Chapter 5).

The motherboard also contains an additional 16K of RAM mem-
ory that is located from $D@@@ to $FFFF (the 4K block from $D@@0
to $DFFF is duplicated). The ProDOS disk operating system oc-
cupies most of this area but if DOS 3.3 is being used, this area is
free for use by a program. This 16K area is called bank-switched
RAM and will be discussed in detail in Chapter 8.

If you have a standard 8@-column text card installed in the aux-
iliary slot of the //e, another 1K of RAM memory suddenly becomes
available to the 6582. This memory extends from $40@ to $7FF and
is used to support the //e’s special 8@-column text display mode
and double-width low-resolution graphics mode (see Chapter 7).

If an extended 8@-column text card is in the auxiliary slot, then
a total of 64K of auxiliary RAM memory is added to the //e. This
memory occupies the same address spaces as the 64K of built-in
RAM memory and so can be thought of as a “twin”’ memory space.
There are slight differences, however, in how some of the areas
within this memory are interpreted. For example, the two memory
areas corresponding to the page2 video areas in main memory are
not reserved for those purposes in auxiliary memory. Furthermore,
the two areas corresponding to pagel video areas are not used for
video display purposes unless 8@-column text mode is active or
unless a double-width graphics mode is active. These differences
will be discussed in greater detail in Chapter 7.

Input/Output (1/0) Memory

The //e’s /O memory space corresponds to those addresses from
$CO00 to $CAFF. Although these addresses may be read from or
written to in exactly the same way as normal RAM or ROM memory
locations, there is no memory stored at these locations. Instead,
whenever these locations are accessed, a physical change in the
system can be effected (e.g., the graphics display can be turned on,
the character set can be changed, or the disk drive motor can be
turned on), the status of an I/O device can be read, or data can be
transferred to or from the I/O device. This method of handling
I/0 operations is called memory-mapped I/O.

For example, consider the //e’s keyboard. The keyboard has been
wired into the system in such a way that it can be be controlled
by using the locations $C@00 and $CA14 (see Chapter 6). To deter-
mine whether a key has been entered, address $C@00 is examined;
if bit 7 at this “location” (the keyboard strobe bit) is 1, then a key
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has indeed been entered. Address $C@10 is accessed to clear the
keyboard strobe bit. Even though an address is referred to in order
to read and clear the keyboard, there is no memory chip on the
/le that corresponds to this address.

All of the //e’'s /O memory locations will be discussed in later
chapters. A summary of the meaning of each of these locations is
contained in Appendix III.

ROM Memory

As you can see from Figure 2-4, ROM memory on the //e extends
from locations $C100 to $FFFF. However, part of this memory
space (from $C100 to $CFFF) is duplicated: one area represents
built-in internal ROM, and the other represents memory contained
on devices connected to the //e’s seven peripheral slots. Here is a
summary of ROM memory usage:

* $C108-$C7FF. This is the peripheral-card ROM space. One page
of ROM is reserved for use at each slot: $C100 . .. $C1FF for
slot 1, $C20@ . . . $C2FF for slot 2, and so on (see Chapter 11).

+ $C800-$CFFF. This is the peripheral-card expansion ROM space.
Each peripheral card can contain a block of memory that uses
these addresses (see Chapter 11).

* $C100-$CFFF. This is the internal 80-column firmware ROM
that contains extensions to the system monitor, subroutines to
support the 80-column text display, and self-test subroutines.

» $DOAG-SF7FF. This is the Applesoft ROM space (see Chapter
4).

+ $F800-$FFFF. This is the standard system monitor ROM space
(see Chapter 3).

Table 2-5. 6502 zero page locations not used by the
System Monitor, Applesoft, DOS 3.3, or ProDOS

Available Locations:

$06 $07 $08 $09
$19 $1A $1B $1C $1D $1E
$CE $CF
$D7
$E3
$EB $EC $ED $EE S$EF
$FA $FB $FC $FD $FE S$FF
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The permanent programs contained within these ROM areas are
often called “firmware” to distinguish them from “software” that
is loaded into RAM memory from a diskette.

Note that the addresses used by the Applesoft and system mon-
itor ROMs ($D@@0 . . . $SFFFF) are the same as the ones used by the
/le’s bank-switched RAM space.
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The System Monitor

The system monitor is a machine-language program that resides
in the //e’s ROM area and whose ““cold-start” entry point to a special
command interpreter is located at $FF59. It is called a “monitor”
because it supports several commands that allow you to quickly
and easily view and modify the contents of memory locations,
programs loaded into memory, or 65@2 registers. In addition, com-
mands are available that can be used to run programs, to assist in
the debugging of programs, and to perform general housekeeping
functions (such as data movement or data comparison).

The subroutines that make up the system monitor take up two
large parts of the //e’s internal ROM area. The first part resides
from $F800@ to $FFFF and the second part from $C100 to $CFFF.
Generally speaking, the first part is comparable to the standard
system monitor ROM that resided at the same locations in the
earlier Apple IT and Apple II Plus computers; the code is not iden-
tical, but virtually all of the starting addresses for its commonly
used subroutines are the same as on older models. The internal
ROM area from $C100 to $CFFF is found on the //e only and pro-
vides the additional space needed for the longer subroutines re-
quired to support the //e’s 8@-column video display mode and also
to hold its special self-test subroutines (see Chapter 5). The areas
used to support these two new functions are as follows:

$C100-$C3FF )—Contains extensions to standard system
$C800-$CFFF ) monitor subroutines and special subroutines
that are used when an 80@-column text card
has been installed.
$C400-$C4FF—Self-test subroutines

The subroutines contained within the system monitor perform
most of the fundamental input/output (I/0) tasks needed to support
programs running on the //e. Such tasks include reading a character
from the keyboard, displaying a character on the video display,
displaying graphics on the video display, and reading the game
paddle input. Other subroutines required to support the monitor
commands themselves are also found here, of course. In addition,

53
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there are numerous utility subroutines used by the code performing
these tasks and commands. In the last section of this chapter, we
will identify some of the more useful subroutines that can be ac-
cessed from Applesoft by using the CALL command or from as-
sembly language by using the JSR (jump-to-subroutine) or JMP
(jump) instructions.

The usefulness of the system monitor is greatly enhanced by the
fact that, being in ROM, its subroutines and command interpreter
are always easily accessible. There are three main entry points to
the system monitor command interpreter—OLDRST ($FF59), MON
($FF65), and MONZ ($FF69)—and control can be passed to them
from Applesoft direct mode by entering the commands “CALL
—167",“CALL —155", and “CALL — 151", respectively. (Note that
Applesoft considers a “negative” decimal address to be equivalent
to the standard positive address minus 65536; for example, $FF69
can be represented as 65385 or 65385 —-65536 = —151.) After this
has been done, the system monitor prompt symbol (the asterisk—
“«"") will appear and you can begin to enter any of the commands
that the system monitor supports (or, if DOS is active, any valid
DOS commands).

The //e reacts slightly differently to each of the above three CALLs
to its standard entry points. The cold-start entry point, OLDRST
(—167), will initialize “normal”’ video mode (white characters on
a black background), select the full-screen text video mode, and
then enable the standard keyboard input and video screen output
subroutines. It also deactivates the //e’s disk operating system (DOS)
so that it must be reactivated before returning to Applesoft (see
the discussion below of the BASIC and CONTINUE BASIC com-
mands). After this has been done, control passes to the primary
warm-start entry point, MON (— 155), where the 6502’s decimal
mode flag is cleared (to force binary arithmetic) and the speaker
is beeped. Control then passes to the secondary warm-start entry
point, MONZ (—151), which takes care of setting up the “+” prompt
symbol and interpreting commands that are entered from the key-
board. MONZ is the entry point that is most commonly used to
enter the system monitor command interpreter.

THE SYSTEM MONITOR COMMANDS

The commands that the system monitor supports are summa-
rized in Table 3-1. Before we take a detailed look at these com-

mands, let’s review the general command entry rules that must be
followed.
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First of all, the system monitor ‘“thinks” in hexadecimal. This
means that it displays all addresses or data in a standard hexa-
decimal format and that all information must be provided to it in
this format as well. Decimal numbers cannot be used.

Addresses (from $0000. . .$FFFF) must normally be specified as
four hexadecimal digits but leading zeros may be omitted if you
wish. If an address is entered that is longer than four digits, only
the last four digits specified are used. Similarly, byte values (from
$00. . .$FF) must normally be specified as two hexadecimal digits
but, again, a leading zero may be omitted. If more than two digits
are specified for a byte value, only the last two are used.

The DISPLAY Command : Displaying the
Contents of Memory

After you have entered the system monitor, you can quickly read
and display what is stored in any particular memory location by
simply entering the hexadecimal address of the location and press-
ing <RETURN>. For example, to display the number that has
been stored at $FD@C, you would enter

FDOC

(followed by <RETURN>, of course) and the system monitor will
respond with

FDOC- A4

where A4 is the hexadecimal value of the byte stored at $FD@C.
You can also just press <RETURN> by itself to display the con-
tents of the locations immediately after the last one acted on, up
to the edge of the next 8-byte boundary (i.e., locations ending in
“7"” or “F”).

The contents of an entire range of memory can be displayed at
once by typing in the first address, a period (““.”), and then the last
address. For example, to examine the 17 bytes of the system mon-
itor ROM area from $F801 to $F811, you would enter

F801.F811
and you would see the following values displayed (this is called a
“hex dump”’):

F801- 08 20 47 F8 28 A9 0OF
F808- 90 02 69 EO0 85 2E B1 26
F810- 45 30

After the first line, where only those bytes up to the edge of the
next 8-byte boundary are displayed, eight bytes will be displayed
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per line until the very last line where the last few remaining bytes
are displayed. The two-digit values after the dash in each line
represent the bytes stored at the address displayed immediately
before the dash and in succeeding memory locations.

Table 3-1. Summary of system monitor commands.

Command

Name Syntax Description

DISPLAY  addrl.addr2 Displays the contents of
memory from “addrl” to
“addr2”.

STORE addrl:bl1 b2 ... Stores the values of bytes

“bl1”, “b2”, ... into
memory locations
beginning at “addrl”.
MOVE addr3<addrl.addr2M Moves the block of
memory from ‘“addrl” to
“addr2” to the block
beginning at “addr3”.
VERIFY addr3<addrl.addr2V Compares the block of
memory from “addrl” to
“addr2” to the block
beginning at “addr3” and
displays any differences.

EXAMINE <CTRL-E> Displays the current values
stored in the 6502
registers.

GO addrlG Runs the program
beginning at “addrl”.

LIST addrlL Disassembles 20 lines of a

machine language program
beginning at “addrl”.

NORMAL N Set normal video.

INVERSE I Set inverse video.

ADD bl+b2 Adds the bytes “b1” and
“b2” and displays the
result.

SUBTRACT bl-b2 Subtracts byte “b2"” from
byte “bl” and displays the
result.

BASIC <CTRL-B> Causes the system to enter
Applesoft (cold).

CONTINUE <CTRL-C> Causes the system to enter

BASIC Applesoft (warm).
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Table 3-1. Summary of system monitor commands

(continued).

Command

Name Syntax Description

USER <CTRL-Y> Causes the system to jump
to location $3F8.

READ addrl.addr2R Reads data from cassette
tape into memory from
“addrl” to “addr2”.

WRITE addrl.addr2W Writes data from ‘“addrl”
to “addr2” to cassette tape.

KEYBOARD slot <CTRL-K> Causes the device in “slot”
to become source of input.

PRINTER slot <CTRL-P> Causes the device in “slot”

to become the current
output device.

“bl1”, “b2” represent byte values (in hexadecimal)

“addrl”, “addr2”, “addr3” represent addresses of memory locations (in
hexadecimal)

“slot” represents a peripheral expansion slot number (1 ... 7)

The STORE Command : Changing the Contents
of Memory

It is often handy to be able to quickly enter data into memory
locations. You may want to do this in order to provide data to a
program, or even to enter the program itself. The system monitor

makes this easy by providing you with a convenient command to
do this.

To change the contents of memory, you must first type in the
address of the first location to be changed, followed by the STORE
command (a colon), and then the values of the bytes to be stored
in that location and succeeding locations, separated by spaces. For
example, to place the values $3E, $22, $24, $00, and $29 into ad-
dresses $300 through $304, you would enter the command

300:3E 22 24 0 29
(The number of bytes that can be stored after the colon is limited
by the fact that only 255 characters can be entered on one line.
This allows about 83 data bytes to be specified.)

To continue entering values at this point, you can simply type
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a colon followed by more data bytes separated by spaces. The
address at which the first byte will be stored will automatically
be assumed to be the one after the last one that was accessed Thus,
if you entered the command

:44 33

immediately after entering the above command, address $305 would
contain $44 and address $306 would contain $33.

All of the machine language programs that will be presented in
this book can be entered using this technique. To understand how
to do this, first refer to Table 3-2, which sets out the assembler
source listing of a sample program after the assembly process has
been completed. This program doesn’t do anything really useful,
it just prints out all digits from @ to 9 on the video screen and then
stops. What we are really interested in is seeing how to interpret
this listing and how it can be used to allow you to enter the program
into memory.

First remember that the assembler-listing format used in this
book is that used by the BIG MAC assembler only and that if you
are using any other assembler the format may be different. For-
tunately, however, formats from one assembler to another are gen-
erally quite similar.

The assembler-listing format is made up of six general fields.
The first field is the address and data field and can be found at the
far left of the listing. Each line in this field contains an address
used by the program followed by the data byte stored at that ad-
dress and, in certain cases depending on the type of instruction,
at the following one or two addresses as well. This information is
all you need to be able to enter the program from the monitor
because it is in exactly the same format used by the STORE com-
mand. To enter the program, all you must do is enter the following
STORE commands:

300:A2 O
302:8A

303:9 BO
305:20 ED FD
308:E8
309:E0 A
30B:D0 FS
30D:60

Since the program is so short, you could also enter the whole
program using just one long STORE command:

300:A2 0 8A 9 BO 20 ED FD E8 EO0O A DO FS5 60

The rest of the fields in the listing simply relate to the source



Table 3-2. An example of a 6502 assembly-language program.

Page #01
ASM

0300: A2 00
0302: 8A
0303: 09 BO
0305: 20 ED
0308: ES8
0309: EO OA
030B: DO FS
030D: 60

\M/

Address and
data field

FD

1 2R RS SRR R R R R
2 * SAMPLE PROGRAM =

3 I ZEE RS R R R RER

4

5 couT EQU $FDED
6

7 ORG $300

8

9 LDX #0

10 DIGITOUT TXA

11 ORA #$BO

12 JSR COUT

13 INX

14 CPX #10

15 BNE DIGITOUT

16 RTS

17

T N N N -
Line Label Instruction Operand
number field field field
field

;Character output subroutine

;Put digit in A
;Convert to ASCII digit

;Go to next digit
;Done?
;No, so loop

\’\/\/

Comment field

6S [ Jonuop waishsg ay) £
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code that gave rise to the machine language bytes that make up
the program. These are, in order, the line number field, the label

field, the instruction field, the operand field, and the comment
field.

A faster way to enter a machine language program is, of course,
to load it directly from diskette using the DOS 3.3 or ProDOS
BLOAD command. This is done by entering the command

BLOAD FILENAME,Aaddr

where “FILENAME” represents the name of the binary file to be
loaded and “addr” represents the decimal starting address at which
it is to be loaded, or, if the address is preceded by “$”, the hex-
adecimal starting address. The ““,Aaddr” suffix is optional; if the
suffix is omitted, the program will be loaded at the position it was
in when it was originally saved to diskette using the BSAVE com-
mand.

The MOVE Command : Copying the Contents of
Memory

It is sometimes necessary to copy the contents of one block of
memory to another part of memory. Two common situations where
such a move would be performed are when an assembly-language
program is being relocated or when a data block is being duplicated
because it may be overwritten by subsequent operations and you
don’t want to lose it.

You could perform the move by examining the contents of all
the memory locations in question and then entering these values
at the new locations using the DISPLAY and STORE commands,
but there is an easier way: you can use the MOVE command. The
syntax of this command is as follows:

{destination}<{sourceS}.{sourceE}M

where {destination} represents the address to which the block of
memory is to be moved (the destination address), {sourceS} rep-
resents the starting address of the block to be moved (the source
starting address), and {sourceE} represents the ending address of
the block to be moved (the source ending address). For example,
to move the program that you just entered in the previous section,
which resides from $300 through $30D, to locations $100@ through
$100D, you would enter the command

1000<300.30DM
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To see that the move has, in fact, been performed, enter the fol-
lowing two commands:

300.30D

1000.100D

and compare the two hex dumps. They will be identical apart from
the address indicators.

When moving a block of memory, you must ensure that the des-
tination address is not within the range of addresses defined by
the source block. If it is, then the block will not be properly moved
because the area of the source block from the destination location
to the end of the block will be overwritten before it is actually
moved. This occurs because the byte stored at the lowest-addressed
location in the source block is moved first, followed by the rest of
the bytes in increasing order of address until the end of the block
is reached. For example, if the move command

301<300.30DM

is entered, the block of memory from $3@1 to $30E will not contain
an image of $300 to $30D before the move but rather will be filled
with the value of the byte stored at $30@. You can see why by
visualizing the steps that are followed to perform the move: first,
the byte at $300 is moved into $3@1, then the byte at $3@1 (which
has just been overwritten) is moved into $302, and so on. This type
of move is handy for quickly storing the same values at locations
throughout an area of memory, but not much else.

One important note on using the MOVE command to relocate
machine language programs: many programs will not operate
properly at their new locations unless they are modified first. Any
program that uses JMP (jump) or JSR (jump-to-subroutine) in-
structions to transfer control to areas that are within the block
being moved, or that read from or write to addresses within that
block, fall within this ‘“unrelocatable” category. This problem arises
because such instructions refer to absolute memory locations, lo-
cations that will not be meaningful after the program has been
moved. The easiest way to make a program operate at a new lo-
cation is to reassemble it at the new location and then enter the
new data bytes that the assembler generates. This can be done by
changing the operand of the ORG (for “origin”) statement in the
assembler source listing (see line 7 of the sample program in Table
3-2) to reflect the new starting address of the program. You could
also patch the program manually to fix up all such absolute ref-
erences in the program by replacing them with the new absolute
addresses (low-order byte first), but this is time consuming and
prone to error.
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The VERIFY Command : Comparing Ranges of
Memory

Another useful chore that can be performed by the system mon-
itor is the comparison of the contents of two blocks of memory.
Comparisons are commonly made for the purposes of determining
the locations at which two similar programs (usually related re-
visions) differ from one another.

You could perform the comparison manually by repeatedly using
the DISPLAY command but this would be tedious at best, espe-
cially for long data blocks. The process can be automated, however,
by using the VERIFY command. The syntax for this command is
as follows:

{block2}<{blockS}.{blockE}V

where {block2} represents the starting address of the block of mem-
ory to which comparisons will be made, {blockS} represents the
starting location of the main block, and {blockE} represents the
ending location of the main block. When the command begins to
execute, each byte in the main block will be compared with its
corresponding byte in the other block. If there are any differences,
then they will be printed out in the following format:

{address}-34 (EA)
where {address} is the address of the byte in the main block that
is different, the first (unbracketed) data byte represents the value
of that byte in the main block and the second number represents
the value of that byte in the other block.

The EXAMINE Command : Examining the 6502's
Registers

The system monitor reserves several locations in zero page for
temporary storage of the 6502’s internal registers, A, X, Y, P, and
S. All of these registers (except for the stack pointer, S) are loaded
with the values stored at these locations whenever the monitor’s
GO command is entered (see below). This allows you to properly
initialize the 6502 registers before executing any assembly-lan-
guage program.

The saved contents of the 6502’s internal registers can be ex-
amined at any time by using the EXAMINE command by entering
the following control character:

<CTRL-E>
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(Recall that this notation means ‘“‘press the CONTROL key and,
while it is being held down, press the E key.””) When the EXAMINE
command is entered, the currently saved values of each of the five
6502 registers will be displayed in the following format:

A=02 X=CC Y=D8 P=00 S=B7

In this list, A represents the accumulator, X and Y represent the
X and Y index registers, P represents the processor status register,
and S represents the stack pointer. The two-digit hexadecimal
number after each “equal” sign indicates the current value of the
corresponding register.

Immediately after the <CTRL-E> command has been entered
and the contents of the registers have been displayed, you can set
any of the register locations to any value that you want by entering
a colon followed by the new values for the contents of the registers,
separated by spaces. The new values must be entered in the order
in which the registers are displayed. If you want to change some,
but not all, of the registers, then you will have to enter the current
values for those of the other registers that are displayed before the
last one that you wish to change.

For example, if you want to set the X register to $33 and leave
the other registers unchanged, you would enter the command

:02 33
where 02 represents the current value of the accumulator.

The <CTRL-E> command is primarily used as a debugging tool
when developing an assembly-language program. Program sub-
routines that require certain registers to be initialized in certain
ways before they will perform properly can easily be tested by
setting up the registers after entering <CTRL-E> and then exe-
cuting the subroutine.

The GO Command : Running a Program

You can run any machine-language program that is contained
in memory by using the monitor’s GO command. To do this, you
must type in the starting address of the program followed by “G”
and then press <RETURN>. Before control is passed to the pro-
gram, the 6502’s A, X, Y, and P registers are loaded with the values
last set by the EXAMINE command (see above). When the program
stops running, you will usually return to the system monitor com-
mand interpreter and see the “+” prompt symbol once again.

For example, if you want to run a program that starts at location
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$300, then you would enter the command
300G

When the program stops running, the monitor’s prompt symbol
will reappear.

The LIST Command : Disassembling Assembly-
Language Programs

The LIST command can be used to translate bytes in any area
of memory into the assembly-language mnemonics they represent
and to display the listing on the screen. This command essentially
reverses the process performed by an assembler and so the function
it performs is called “disassembly.”

A disassembled listing of memory is much more comprehensible
and informative to a programmer than a simple hex dump that
only displays raw numbers. It is especially useful as an aid in
debugging assembly-language programs that have been loaded into
memory. The syntax associated with the LIST command is as fol-
lows:

{address}L

where {address} represents the address at which you want to begin
the listing. A total of twenty disassembled lines will be displayed
for each “L” specified after the address.

Let’s examine an area of the /e’s system monitor ROM to observe
the format in which the LIST command generates its output. As
we will see later, the basic character input routine used by the
monitor begins at location $FD@C and is called RDKEY. To disas-
semble the RDKEY subroutine, enter the command

FDOCL

and you will see the following 2@-line display:
*FDOCL
FDOC- A4 24 LDY $24
FDOE- B1 28 LDA ($28),Y
FD10- 48 PHA
FD11- 29 3F AND #$3F
FD13- 09 40 ORA #$40
FD15- 91 28 STA ($28),Y
FD17- 68 PLA
FD18- eC 38 00 JMP ($0038)
FD1B- A0 06 LDY #$06

FD1D- 4C B4 FB JMP $FBB4
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FD20- EA NOP

FD21- 20 0C FD JSR $FDOC
FD24- A0 07 LDY #$07

FD26- 4C B4 FB JMP $FBB4
FD29- 8D 06 CO STA $C006
FD2C- 28 PLP

FD2D- 60 RTS

FD2E- 60 RTS

FD2F - 20 21 FD JSR $FD21
FD32- 20 AS FB JSR $FBAS

Each line in this listing represents a starting address, the ma-
chine language bytes representing the 6502 instruction opcode and
its operand, the three-letter mnemonic for the instruction, and the
formatted operand. Note that operands that have a ““‘$” prefix rep-
resent an address and that those that have a “#$"’ prefix represent
immediate hexadecimal data. In addition, the operand after any
branch instruction (BEQ, BNE, BPL, and so on) is the absolute
address of the “branched-to” location rather than the relative ad-
dress of that location. The 65@2 uses relative addresses only, but
it is the absolute address that is usually more meaningful because
it allows a programmer to more easily follow the flow of the pro-
gram.

Note that you can continue to disassemble twenty more lines
beginning at the address immediately after the last disassembled
byte by entering the “L” command without an address. Multiple
“L”’s can also be entered to disassemble more than twenty lines
at once; for example, “LLLL" allows you to disassemble eighty
consecutive lines.

When you are disassembling an area of memory you may some-
times see a ‘‘???” indicator in the opcode field instead of a standard
6502 mnemonic. The system monitor’s disassembler subroutine
uses this triad of question marks whenever it is unable to convert
the contents of memory into a valid 6502 instruction. This might
happen if you are attempting to disassemble an area of memory
that contains program data or ASCII text rather than instructions,
or if you begin disassembling in the ‘“middle” of an instruction
(remember that 6502 instructions can be up to three bytes long).
If you suspect that you have started in the middle of an instruction,
try disassembling from a location that is one or two locations away
from the original starting location.

In many cases, a data area will erroneously be interpreted as a
series of valid instructions by the disassembler. For example, a
zeroed out data area would appear as a series of BRK instructions.
This is because the machine language byte for BRK is #0. Such
data areas are usually obvious, however, because the “program”
they appear to define is clearly meaningless or out of context.
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The NORMAL and INVERSE Commands :
Changing Video Display Modes

Monitor operations that affect the video display can be per-
formed either in normal video (white characters on a black back-
ground) or in inverse video (black characters on a white back-
ground). To select the inverse video format, enter the command

I <RETURN>
To select the normal video format, enter the command

N <RETURN>
You will probably not have to use these commands very often.

The ADD and SUBTRACT Commands : Simple
Arithmetic

You can perform simple one-byte hexadecimal arithmetic while
in the system monitor by taking advantage of its ADD and SUB-
TRACT commands. To add two numbers together, you would enter
the command

{number1}+{number2}

where {number1} and {number2} represent the two one-byte hex-
adecimal numbers to be added. The result of the addition will be
shown on the next video display line.

The subtraction command is similar. To subtract one number,
say {number2}, from another, say {numberl}, you would enter the
command

{number1}-{number2}
and the result will be calculated and displayed.

The result that either the ADD or SUBTRACT command displays

is a one-byte number only. This means that any overflow or un-
derflow in the arithmetic calculation is ignored.

The BASIC and CONTINUE BASIC Commands :
Entering Applesoft

The system monitor supports two commands that can be used
to transfer control from the monitor to Applesoft direct mode (as
indicated by the ‘1" prompt symbol). These are the <CTRL-B>
and <CTRL-C> commands. There are also subroutines that can
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be called to enter Applesoft that begin at $00@0 (with or without
DOS) and $43D#@ (only when DOS is being used).

The BASIC command, <CTRL-B>, is used to re-enter Applesoft
in such a way as to cause it to be reinitialized. This is called a
“cold start” and will cause any Applesoft program which may be
residing in memory to be destroyed.

The CONTINUE BASIC command, <CTRL-C>, is used to re-
enter Applesoft in such a way that the existing Applesoft program
and the values of its variables are not affected at all. This is called
a “warm start.” An alternate way to warm-start Applesoft is to call
a subroutine that begins at $0090 by entering the command “0G”.

The effect on the disk operating system, be it DOS 3.3 or ProDOS,
must also be considered when moving to Applesoft from the mon-
itor. If you are using DOS 3.3 and the monitor was entered with
either a CALL —151 or CALL —155 command (the warm-start
entry points), then DOS 3.3 will still be active upon the return to
Applesoft using <CTRL-B> or <CTRL-C>. If you are using ProDOS,
the <CTRL-C> command works fine, but the <CTRL-B> com-
mand will cause a NO BUFFERS AVAILABLE error message to be
displayed whenever a ProDOS I/O command is attempted. This
renders ProDOS useless and so you should never use <CTRL-B>
to return to ProDOS.

If the monitor was entered via its cold-start entry point with a
CALL —-167 command, both DOS 3.3 and ProDOS will be deac-
tivated after a <CTRL-B> and <CTRL-C> command is entered to
cause a return to Applesoft. In this situation, DOS 3.3 can be reac-
tivated by entering a CALL 1002 command and the program and
its variables will not be affected. Similarly, ProDOS can be reac-
tivated by entering a CALL 976 command, but this causes the
values of any active program variables to be cleared. Note, how-
ever, that even after the CALL 976 is entered, ProDOS will still be
rendered unusable if it was entered with a <CTRL-B> command
for the reasons given in the previous paragraph.

Applesoft can always be entered with the DOS active by using
a “3D@G” command ($3D@ is the address of a subroutine that
performs a warm-start of DOS 3.3 or ProDOS), but this method is
not recommended because of zero page memory conflicts between
DOS 3.3 or ProDOS and the system monitor. A further problem
arises if ProDOS is being used: a 3D@G re-entry will clear any active
program variables.

In summary, to ensure that you never deactivate DOS (either
DOS 3.3 or ProDOS) or clear the values of any active Applesoft
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program variables, you should always enter the monitor at one of
its two warm-start entry points (— 151 or — 155) and always return
to BASIC using the <CTRL-C> command.

The USER Command : User-Defined Commands

The system monitor is flexible enough to allow you to define the
actions to be taken whenever its special USER command, <CTRL-
Y>, is entered. The <CTRL-Y> command causes the monitor to
perform an unconditional jump to location $3F8. By placing a 65@2
JMP instruction there (which behaves like an Applesoft GOTO),
followed by the two-byte address (low byte first) of the start of the
subroutine that you want to execute, you can easily make the <CTRL-
Y> command execute any program you wish.

Let’s take a look at a simple example of how to take advantage
of the USER command. The first thing you have to decide is what
you want to happen when <CTRL-Y> is pressed—that’s easy. Then
you must write the program to perform what it is you want to
do—not so easy. We can, however, make use of subroutines that
already exist in the //e’s ROM areas to perform many useful chores.
For example, there is a subroutine beginning at $FC58 that can be
called to clear the video screen and a subroutine beginning at
$FD@C to read a key from the keyboard. To set things up so that
when the USER command is entered, the system pauses until a
key is pressed and then clears the screen, a “JMP $030@" instruction
must be set up at $3F8 and then “JSR $FD@C” and “JMP $FC58”
instructions must be stored beginning at $30@. This can be done
by using two STORE commands as follows:

3F8:4C 00 03
(“4C” is the opcode for the JMP instruction and “@@ 03" is the
address of the user-defined subroutine—low-order byte first) and
300:20 0C FD 4C 58 FC
where “20 0C FD’’ are the data bytes for “JSR $FD@C” ($20 is the
opcode for the JSR instruction) and “4C 58 FC” are the data bytes
for “JMP $FC58”. Now when you enter <CTRL-Y> the //e will wait
until you press a key and then the screen will be cleared!

Note that you cannot simply place the entire subroutine at $3F8,
because only locations $3F8 to $3FA are reserved for use by the
USER command. Locations after that are reserved for other pur-
poses and must not be overwritten.

Parameters can be passed to the USER command by storing
them in memory just before the monitor executes the USER com-
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mand. This can be done by using the STORE command. If the
parameters to be passed represent addresses, there is a much more
convenient way to pass up to three of them. For example, if the
USER command is entered as follows:

addr1<addr2.addr3<CTRL-Y>

then “addrl” will be stored at monitor locations A4L ($42) and
A4H ($43), “addr2” will be stored at A1L ($3C) and A1H ($3D), and
“addr3” will be stored at A2L ($3E) and A2H ($3F). Each of these
addresses is stored with its lower two digits in the first of the two
memory locations specified for each parameter. Two addresses can
be passed (in A1L/A1H and A2L/A2H) by removing the “addr1<”
part in the above command line and one address can be passed
(in A1L/A1H) by removing the “addrl<addr2.” part.

The READ and WRITE Commands : Cassette
Tape /0 Commands

The system monitor also supports two commands that can be
used to save a block of data on cassette tape or to read a block of
data from cassette tape.

The WRITE command is used to to save a block of bytes to tape
and is used by entering the following command:

{address1}.{address2}W

where {address1} represents the starting address of the block and
{address2} represents the ending address of the block. Just before
you press <RETURN> to enter this command, the tape recorder
must be properly connected to the /e and placed in record mode.

The READ command is used to retrieve a block of bytes from
tape and is used by entering the following command:

{address1}.{address2}R

where {address1} and {address2} represent the starting and ending
addresses of the block of data to be read in. Of course, just after
you press <RETURN> you must begin playing the tape by pressing
the PLAY button on the recorder.

You should note that if the block size specified in the READ com-
mand is not the same size as the block you are attempting to read
from the tape, then an error message will be displayed. To avoid
this type of error, you should always write down the starting and
ending locations of a block of memory whenever it is saved to tape.
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The KEYBOARD and PRINTER Commands :
Redirecting Input and Output

The system monitor provides two simple commands that allow
you to easily redirect the source of character input and output to
a program that resides on any one of the //e’s seven expansion slots.
These are the KEYBOARD, <CTRL-K>, and PRINTER, <CTRL-
P>, commands, respectively. They perform exactly the same func-
tions as Applesoft’s IN# and PR# commands.

The syntax associated with both of these commands is similar:
{slot number}<CTRL-K>

for the KEYBOARD command and
{slot number}<CTRL-P>

for the PRINTER command, where {slot number} is a digit from
1 to 7 representing the peripheral expansion slot to which you wish
to pass control. You can also specify a slot number of @; if you do
this when entering the KEYBOARD command, the keyboard will
become the source of character information. If you do this when
entering the PRINTER command, the video screen will become
the current output device.

The KEYBOARD command is usually used to ‘““connect” alter-
nate input devices such as an external keyboard or a modem to
the //e by vectoring all requests for input to them. The PRINTER
command is usually used to activate a printer so that you can
obtain a hardcopy printout of your activities while in the monitor.
To turn on a printer that is connected to an interface card in slot
1, you would enter the command

1<CTRL-P>

After this is done, all outputted characters will be sent to the
printer instead of the video screen.

Another common use for the PRINTER command is to “boot”’
the disk drive. If your disk drive is connected to a disk interface
card in slot 6, then the command to be entered is

6<CTRL-P>

Note that whenever the KEYBOARD or PRINTER command is
entered, the monitor jumps to location $Cs@0 (where ‘s’ is the slot
number specified), which is the first address of a program located
in a ROM area dedicated to the particular slot in question (see
Chapter 11). Thus, it is the program in the ROM that dictates
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exactly how the I/O is to be redirected and it is conceivable that
I/0O may not be redirected at all.

I/0 is redirected on the //e by changing the addresses stored in
two vectors in zero page, the input link and the output link. The
use of these links will be discussed in detail in Chapters 6 and 7.

Note that because of the way DOS 3.3 and ProDOS operate, the
KEYBOARD and PRINTER commands may not work properly in
a DOS environment. This is because DOS is forever storing the
addresses of its input and output subroutines in the I/O links; as
soon as this is done, the new input or output device is disconnected.
Methods of avoiding these problems will also be discussed in Chap-
ters 6 and 7.

MULTIPLE COMMANDS ON ONE LINE

All of the examples that we have given so far have contained
only one monitor command per line. The monitor is not fussy about
this, however, and you can actually put as many commands on

one line as that line can hold (a line must be less than 256 char-
acters long).

There are a few syntactical rules to follow, however. First of all,
each command on the line must be separated from the next one
by a space unless both adjacent commands are one of the letter
commands (L, G, W, R, M, V, I, N), in which case they can be
jammed together.

Second, any command that immediately follows the data bytes
after the STORE command must be a letter command without a
preceding address. A convenient command to use for this purpose
is the NORMAL command (“N”) since it is really a “do-nothing”
letter command.

Let’s look at a few examples of multiple command entry to see
how it works.

1. 300LLL will disassemble 60 lines of a program at once.

2. 300:4C 3A FF N 300G will enter a short program beginning
at $300 to beep the speaker and then execute it (note the
“N” after the data bytes of the STORE command).

3. 300.320 800.830 will display two separate blocks of memory,
one after the other.

4. 3F8:4C 90 93 N 300:4C 58 FC N <CTRL-Y> will set up the
USER command jump address, enter the program to be
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jumped to, and then execute the USER command (which
causes the screen to clear).

SYSTEM MONITOR SUBROUTINES

As we have already seen, the system monitor is made up of sev-
eral useful subroutines. Most of these subroutines can easily be
accessed from Applesoft or assembly-language programs.

Direct access from Applesoft is achieved by using the Applesoft
CALL command. Note, however, that only those monitor subrou-
tines that require no initialization of the 6502 registers can be
CALLed in this way because there are no Applesoft commands
available to you to set up these registers directly.

One way to access subroutines that require register initialization
would be to CALL a RAM-based program that would set up these
registers explicitly and then call the requested subroutine. An al-
ternate method makes use of the monitor’s GO command and the
fact that GO initializes the 6502’s registers to the values stored in
zero page by the EXAMINE command before control is passed to
the subroutine whose address is stored at $3A and $3B (low-order
byte first). The values of the registers A, X, Y, and P are stored at
locations $45, $46, $47, and $48, respectively. To execute the sub-
routine, you must first use the Applesoft POKE command to store
the address of the subroutine to be executed at $3A/$3B and to
store the appropriate register values at locations $45-$48. The final
step is to execute the GO command by entering it at the point
where it sets up the registers before passing control to the address
at $3A/$3B. This is location $FEB9 (65209).

For example, you can set up a simple decimal-to-hexadecimal
conversion program from Applesoft by calling a monitor subrou-
tine called PRINTYX ($F940). This subroutine prints out the Y and
X registers as four hexadecimal digits (the two most-significant
digits are held in Y). To get the converter to work, all you have to
do is take your decimal number, divide it by 256, and put the
quotient in Y (this represents the decimal value of the two high-
order digits) and the remainder in X (this represents the decimal
value of the two low-order digits). Here is an example of such a
program:

DEF FN MD(Z) = Z2 - 256 * INT(Z / 256)
INPUT "ENTER A NUMBER: ";N
ADDR = 63808 : REM ADDRESS OF '"PRINTYX"™ ($F940)

POKE 70,FN MDCN):REM SET UP 'X"
POKE 71,INT (N/256):REM SET UP "y"

-
HAWNH—~O
oo ocoo
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150 POKE 58,FN MDCADDR) : REM SET UP ADDR LOW
160 POKE 59,INT (ADDR/256) : REM SET UP ADDR HIGH
170 CALL ©5209 : REM CALL "GO" AT $FEB9

Line 104 in this program defines a ‘““‘modulo 256" function that can
be used to calculate the decimal value of the lower two digits of a
hexadecimal number (@ . .. 255).

These complications do not really arise when calling monitor
subroutines from an assembly-language program because the 6502
has explicit commands for initializing registers (LDA, LDX, LDY,
and so on). Once the registers have been properly set up, you can
execute the subroutine by using a JSR instruction (like an Applesoft
GOSUB) or a JMP instruction (like an Applesoft GOTO).

Some of the more useful subroutines available in the system
monitor are set out in Table 3-3. These subroutines are presented
in increasing order of address and the symbolic name for each
address (as published by Apple in ‘“Reference Manual Addendum:
Monitor ROM Listings”) is shown immediately after the address.

Table 3-3 by no means represents a complete list of the monitor’s
subroutines. To examine all the subroutines for yourself, you should
consult Apple’s published source listing of the monitor ROM in
‘“Reference Manual Addendum: Monitor ROM Listings.”

Table 3-3. Apple //e system monitor subroutines.

Address Symbolic
Hex (Dec) Name Description

$F940 (63808) PRINTYX Prints out the number held in X
(low) and Y (high) as four hex-
adecimal digits.

$FB1E (64286) PREAD Reads the current value of the
game paddle input. On entry,
X =game paddle number (@ . . . 3).
On exit, Y=game paddle value
(@ ...255) and A is destroyed.

$FBC1 (64449) BASCALC Calculates the address of the first
location used by the current video
line. On entry, A=video line
number (@ ... 23). On exit, the
address is stored in BASL ($28)
and BASH ($29), low byte first,
and A is destroyed.

$FC22 (64546) VTAB Moves the cursor to the video dis-
play line indicated by CV ($25).



74 [ Inside the Apple //e

Table 3-3. Apple //e system monitor subroutines
(continued).

Address

Hex

(Dec)

Symbolic
Name

Description

$FC42

$FC58

$FC62

$FC9C

$FCAS8

$FDOC

(64578)

(64600)

(646109)

(64668)

(64680)

(64780)

CLREOP

HOME

CR

CLREOL

WAIT

RDKEY

$FD1B (64795) KEYIN

On entry, CV must contain the line
number required (@ ... 23). On
exit, the base address for the line
is set up in BASL ($28) and BASH
($29) and A is destroyed.

Clears the screen display from the
current cursor position to the end
of the screen without changing the
position of the cursor. On exit, A
and Y are destroyed.

Clears the screen display and po-
sitions the cursor at the left of the
first line on the screen. On exit, A
and Y are destroyed.

Moves the cursor to the first po-
sition of the next video display
line (and scrolls if required). On
exit, A and Y are destroyed.

Clears the screen display from the
current cursor position to the end
of the line without changing the
cursor position. On exit, A and Y
are destroyed.

Causes a delay of
0.5«(26+27+A+5+A*A) micro-
seconds. On exit, A is destroyed.

Receives a character of informa-
tion from the currently active in-
put device (the address for the in-
put subroutine for this device is
held in KSWL ($38) and KSWH
($39)). On exit, A contains the in-
putted character and Y is de-
stroyed; other registers may be
destroyed, depending on the in-
put subroutine for the input de-
vice.

Receives a character of informa-
tion from the keyboard. On exit,
A contains the inputted character
and Y is destroyed.
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Table 3-3. Apple //e system monitor subroutines
(continued).

Address Symbolic
Hex (Dec) Name Description

$FD35 (64821) RDCHAR Receives a character of informa-
tion from the currently active in-
put device and handles any valid
escape sequences. On exit, A con-
tains the inputted character and
Y is destroyed; other registers may
be destroyed, depending on the
input subroutine for the input de-
vice.

$FD6A (64874) GETLN Receives a line of information
(terminated by RETURN) from
the currently active input device
and places it into the input buffer
at $200 ... $2FF. On entry, the
prompt symbol to be used must
be stored in PROMPT ($33). On
exit, the line is stored in the input
buffer beginning at $20@, X con-
tains the number of characters in
the line, and A and Y are de-
stroyed.

$FDDA (64986) PRBYTE Displays a byte as two hexade-
cimal digits. On entry, A contains
the byte to be displayed. On exit,
A is destroyed.

$FDED (65085) COUT Sends a character of information
to the currently active output de-
vice (the address for the output
subroutine for this device is held
in CSWL ($36) and CSWH ($37)).
On entry, A contains the byte to
be sent. On exit, registers may be
destroyed, depending on the out-
put subroutine for the output de-
vice.

$FDF@ (65008) COUTI1 Displays a character of informa-
tion on the video display screen
at the current cursor position. The
display mode is set by logically
ANDing the byte with INVFLG
($32). On entry, A contains the byte
to be displayed (with its high bit
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Table 3-3. Apple //e system monitor subroutines

(continued).
Address Symbolic
Hex (Dec) Name Description

set to one). On exit, all registers
are preserved.

$FF69 (65385) MONZ Enters the //e’s system monitor.
On exit, all registers are de-
stroyed.

FURTHER READING FOR CHAPTER 3

On system monitor subroutines . ..

Reference Manual Addendum: Monitor ROM Listings, Apple Com-
puter, Inc., 1982. All the source code for the system monitor
except from $C401 ... $C7FF (self-test subroutines).

W.E. Dougherty, The Apple II Monitors Peeled, Apple Computer,
Inc., 1981. A detailed look at the system monitors for the Apple
IT and Apple II Plus.



Applesoft BASIC

Applesoft BASIC is a high-level programming language inter-
preter that occupies 10K of the //e’s ROM space from location
$D@AP through location $F7FF. (BASIC is an acronym for Begin-
ner’s All-Purpose Symbolic Instruction Code.) It is yet another ver-
sion of the “basic” BASIC developed by Microsoft Corporation of
Bellevue, Washington, and so is structurally similar to Microsoft-
developed BASICs running on many other personal computers,
including those manufactured by Tandy, Commodore, and IBM.

What exactly is ‘the Applesoft programming language, anyway?
Well, it’s really just another 6502 assembly-language program, but
one that has a special goal: to allow you to easily write your own
programs using straightforward, English-like commands. These
commands can be used in such a way as to allow you to manipulate
various types of data and to perform input/output functions. In
addition, Applesoft comes with a built-in editing environment that
facilitates creation of its programs.

Applesoft is actually a language interpreter and a program is
simply a set of data that the Applesoft code in ROM is continuously
analyzing (interpreting) to determine what commands are to be
executed and in what order. Other types of BASICs, called “com-
pilers,” are also available. Compilers are simply preprocessors that
convert your program source code into directly executable ma-
chine language that can then be run just like any other machine
language program. Since directly executable code is generated, no
interpretation is necessary when the code is actually executed (ex-
cept, of course, by the microprocessor) and so the program will
run much faster than its interpreted counterpart. Although Apple-
soft compilers have been written for the //e, none have been offi-
cially released by Apple itself.

The purpose of this chapter is not to teach you how to program
in the Applesoft language. In fact, you will be presumed to be
familiar with Applesoft already. What we are going to do is take
a close look at the internals of Applesoft to see how the interpreter
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performs its various duties. This will include a look at how an
Applesoft program and its variables are stored and arranged in
memory and how the program is actually executed by the Applesoft
interpreter. We will also take a look at how Applesoft can be linked
to machine-language subroutines to improve program speed and
efficiency.

The study of the internal structure of Applesoft is difficult and
frustrating because no official source listing for its code has been
made available by Apple. Such a study is not totally futile, how-
ever, because it is possible to disassemble the contents of the Ap-
plesoft ROM (using the monitor’s “L” command) to view the lan-
guage in a convenient assembler-language form that can sometimes
be made intelligible (if you're lucky). In addition, at least two
“unofficial”’ source listings of Applesoft have been published (see
the references at the end of this chapter).

Knowledge of the internal structure of Applesoft is important
for three main reasons. First, by analyzing the work of the profes-
sional programmers who wrote the language you might develop
better personal programming practices. Second, you can generally
write much more elegant and efficient assembly-language routines
to be used in conjunction with Applesoft programs if the routines
use the standard routines found in Applesoft because this spares
you from having to redevelop the same code from scratch. Third,
it is possible to write much more efficient Applesoft programs if
you understand how they are being executed.

APPLESOFT MEMORY MAP

The Applesoft interpreter makes use of most of the RAM space
located from $00@@ to $95FF on the //e for program and variable
storage and for work areas. The area of RAM memory above this,
from $9600 to $BFFF, is reserved for use by DOS 3.3 or ProDOS.

Much of the 65@2 zero page ($0000. . .$300FF) is used by Applesoft
to hold short subroutines, temporary data areas, and several two-
byte pointers that contain the addresses of important data areas
used by the program. For example, there are pointers that indicate
the starting and ending addresses of the program itself, of the space
reserved for simple variables and array variables, and of the space
reserved for string data. We'll be looking at these pointers in greater
detail later on in this section.

(To review, a pointer is a pair of bytes that are positioned in
adjacent memory locations and that contain the base address of
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an area in memory to which they are said to be pointing. The lower
half of this address is stored in the byte that is lower in memory.
To calculate the absolute address of the area being pointed to, take
the number held in the first location and add it to 256 times the
number in the second location.)

Page one of memory ($100. . .$1FF) is implicitly used by Apple-
soft since the 6502 microprocessor uses this page as its stack. In
addition, Applesoft uses the stack area for temporary storage of
information when it executes instructions such as FOR/NEXT, GO-
SUB/RETURN, and ONERR GOTO that need space to hold trans-
fer-of-control information and when it converts binary numbers
into decimal numbers.

Applesoft uses page two of memory ($204. . .$2FF) as its char-
acter input buffer. For example, whenever an Applesoft program
executes the INPUT command to read a line from the keyboard, it
initially stores the response in this buffer and then processes it and
moves it up into a space reserved for string data near the end of
the RAM space reserved for use by Applesoft.

The lower part of page three of memory from $300. . .$3CF is not
used by Applesoft and so is a good place to store short assembly-
language programs or other data. However, the entire upper part
of this page, from $3D@. . .$3FF, is reserved for use by the disk
operating system (DOS 3.3 or ProDOS), the system monitor (to
handle the USER command and the 6502 RESET, IRQ, NMI, and
BRK interrupts), and by Applesoft. Applesoft reserves the three
bytes beginning with $3F5 for use with its & (ampersand) com-
mand. Thus, the upper part of memory should not be overwritten
unless it is for the specific purpose of modifying the information
stored there. Appendix IV contains a complete memory map of the
area in page three from $3D@. . .$3FF.

Pages four through seven ($400. . .$7FF) are used for the //e’s
primary text display screen. (A secondary text display screen can
also be enabled that uses pages eight through eleven ($809. . .$BFF),
but it is rarely used.) See Chapter 7 for more information on how
the //e interprets these pages.

The rest of the RAM space, from $800 up to $95FF, is usually
available for storage of the Applesoft program itself and of any
variables that it may use. Figure 4-1 shows a generalized Applesoft
memory map that indicates the relative positions of the program
and its variable spaces. The pointers to these areas are all held in
zero page and are summarized in Table 4-1.

The Applesoft program itself is usually stored beginning at lo-
cation $801, which is the default value of TXTTAB ($67), the start-
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of-program pointer. The byte stored at the location immediately
before this location (usually $800) must always be zero. The space
used to store information relating to program variables usually
starts immediately after the end of the program at the location
pointed to by VARTAB ($69), the start-of-simple-variables pointer.
The position of the start of variable space, however, can be selected
by using the Applesoft LOMEM: command before any variables
have been defined in the program. This allows you to create a free
space between the end of the program and the beginning of the
variables that will not be overwritten and that could be used to
hold, for example, a machine-language subroutine that is called
by the Applesoft program.

Applesoft supports two fundamental classes of variables: array
variables and simple variables. Array variables can hold real num-
bers, integer numbers, or strings; simple variables can hold any
of these three types of variables and a special function variable as
well (more on this later). An array variable is one that is a member
of a collection of variables that are referred to by the same name
but that are distinguished from one another by specifying a sub-
script for each dimension of the array. For example, the variable
AB(3,4,2) is the “3,4,2” element of a three-dimensional array called
“AB”. A simple variable is simply one that is not an element of
such an array and that is specified by name only and not by a
subscript.

Applesoft keeps information relating to simple variables in a
contiguous block of memory that begins at the address pointed to
by VARTAB ($69) and ends at the address just before the one pointed
toby ARYTAB ($6B). Information relating to array variables begins
at the address pointed to by ARYTAB and ends at the address
pointed to by STREND ($6D).

After the end of the array variable space comes a free space that
ends at the address pointed to by FRETOP ($6F), the start-of-string-
space pointer. Generally speaking, the contents of string variables
are stored from here to the highest available location in memory
(usually $95FF). The MEMSIZ ($73) pointer contains this address
plus 1. Strings grow down in memory, so that when more strings
are defined, they are placed in memory just below the value con-
tained in FRETOP and then FRETOP is reduced by the length of
the string. The value of MEMSIZ can be lowered by using the
Applesoft HIMEM: command. This is usually done to provide a
safe area for the storage of machine-language programs, but it is
also commonly done to avoid storing variable data within either
of the //e’s two 8192-byte high-resolution graphics screen areas (if
this happens, the data could be destroyed when a graphics com-
mand is executed). These areas are located from $2000 . . . $3FFF
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$BFFF

SET BY HIMEM:J

~

DISK
OPERATING
| SYSTEM
-

L
<«MEMSIZ ($73)

<—FRETOP ($6F)

<-STREND ($6D)

< ARYTAB ($6B)

<—VARTAB ($69)

<—PRGEND ($AF)

(USUALLY S
$9600) —
STRING DATA l
< FREE SPACE .
$6000
HIGH-RES
PAGE2
$4000
HIGH-RES
PAGE1
$2000
FREE SPACE
ARRAY 4
VARIABLES
SIMPLE
SET BY | VARIABLES
LOMEM: ™" coFE SPACE
TOKENIZED
APPLESOFT
PROGRAM
$0801

<—TXTTAB ($67)

Figure 4-1. Applesoft memory map and data pointers.

and from $4000 . . . $5FFF, respectively. For example, to set MEM-
SIZ to just below the first high-resolution graphics screen, you
would enter the command HIMEM:8192. There are some impor-
tant rules to keep in mind when changing HIMEM: in a DOS 3.3
or ProDOS environment; they will be discussed in Chapter 5.

Note that the free space between the end of the array variables
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Table 4-1. Applesoft pointer locations.

Pointer Location

Hex (Dec) Symbolic Name Description

$67 (193) TXTTAB (low) Start of Applesoft program

$68 (104) (high) (normally $801).

$69 (185) VARTAB (low) Start of simple variable

$6A (106) (high) space. This space usually
begins right after the end of
the program. However, it can
be set higher by using the
Applesoft LOMEM: com-
mand.

$6B (197) ARYTAB (low) Start of array space. This

$6C (198) (high) space begins right after the
end of simple variable space.

$6D (199) STREND(low) End of variable space.

$6E (119) (high)

$6F (111) FRETOP (low) Start of string space.

$70 (112) (high) Applesoft strings are stored
from here to just before the
address pointed to by
MEMSIZ ($73).

$73 (115) MEMSIZ (low) End of string space plus 1

$74 (116) (high) and last location available to
Applesoft plus 1. Applesoft
strings are stored from
FRETOP ($6F) to this
location. This location is
usually $9600 (when using
DOS) but can be set lower
by using the Applesoft

. HIMEM: command.
$AF (175) PRGEND(low) End of Applesoft program
$BO (176) (high) plus 1 or 2. The end of an

Applesoft program is
signified by three
consecutive “@" bytes. The
first “@” is the end-of-line
marker for the last line in
the program and the next
two “@" ’s are the “address”
of the next line.
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and the beginning of the string data will become smaller and smaller
as more variables are defined and as more strings are defined.
When all of the free space has been used up, an OUT OF MEMORY
error message will be generated.

In the next few sections, we will discuss the data spaces used by
Applesoft in greater detail.

TOKENIZATION OF APPLESOFT
PROGRAMS

An Applesoft program is simply the data the Applesoft inter-
preter acts on in order to determine exactly what instructions it
is to execute and in what order. This data is put into memory with
a LOAD or RUN command or is simply typed in from the keyboard.

You might think that an Applesoft program is stored in memory
in exactly the same format in which it is displayed when it is listed.
To save valuable memory space (an Applesoft program and its
variables cannot use up more than about 36,000 bytes when DOS
is being used), and to speed up program execution, however, each
line of an Applesoft program is analyzed and compressed before it
is actually inserted into the proper area of memory. This process
is called “tokenization’ because it involves, among other things,
substituting one-byte tokens for Applesoft keywords. For example,
if you enter the line

100 HGR2

it is not stored as nine bytes in memory as it would be if you used
a standard line editor to create the source file (eight bytes of text
plus one byte for the carriage return that follows the line). Rather,
it is stored as six bytes: two for the line number, one for the token
for the HGR2 keyword, and three for overhead information (these
overhead bytes will be described below).

It is the tokenized program that is analyzed by the Applesoft
interpreter and not the original source listing. By the way, listing
a program is the same as ‘“detokenizing” it because the LIST com-
mand essentially converts tokens back into their full keywords.

Let’s take a detailed look at what happens when you add a new
line to an Applesoft program while in direct mode (that is, when
the program is not running and the “]” prompt symbol is being
displayed).

When you type in a line of characters (each line can be up to 239
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characters in length) and then press the RETURN key to enter it,
Applesoft scans the input line and checks to see whether it begins
with a valid line number. If it doesn’t, then Applesoft thinks that
this is a direct command and attempts to execute it right away; if
it does begin with a line number, then Applesoft interprets it as a
deferred command (that is, one that is to be executed only when
the program is executed) and will tokenize it and store it in the
proper position in memory.

The line is placed in memory in such a way that the ascending
numeric sequence of the line numbers in the program is main-
tained. The lowest-numbered line is stored lowest in memory at
the location pointed to by the beginning-of-program pointer,
TXTTAB ($67), and the higher-numbered lines are stored sequen-
tially upward in memory.

The bytes that make up a tokenized line are arranged in memory
as follows:

XX yy XX yy XX yy zz ... 00

addresé this 7 tbkens and ASCII end of

of next line characters for the line
line number contents of line marker

The “address of next line” and “this line number” fields are
stored as two bytes, with the least-significant byte coming first.
The three bytes of overhead that were mentioned above are made
up of the two bytes allocated for the address of the next line and
the 00 byte that marks the end of the line.

Keyword Tokens

We will now take a closer look at what the tokenized part of the
line (the part between the line number and end-of-line marker)
looks like. We will begin with a description of the tokens used to
replace the Applesoft keywords in a program line. These keywords
represent the Applesoft commands, functions, and mathematical
and logical operators.

Each Applesoft keyword is assigned by the interpreter to a one-
byte quantity called a token. This is done for two main reasons:
first, to conserve memory space and, second, to improve the exe-
cution speed of the program.

The tokens that Applesoft assigns to each of its keywords are
presented in Table 4-2 together with the addresses of the subrou-
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Table 4-2. Applesoft keyword tokens.

Address of
Token Keyword Subroutine
$80 END $D870
$81 FOR $D766
$82 NEXT $DCF9
$83 DATA $D995
$84 INPUT $DBB2
$85 DEL $F331
$86 DIM $DFD9
$87 READ $DBE2
$88 GR $F390
$89 TEXT $F399
$8A PR# $F1E5
$8B IN# $F1DE
$8C CALL $F1D5
$8D PLOT $F225
$8E HLIN $F232
$8F VLIN $F241
$90 HGR2 $F3D8
$91 HGR $F3E2
$92 HCOLOR = $F6E9
$93 HPLOT $F6FE
$94 DRAW $F769
$95 XDRAW $F76F
$96 HTAB $F7E7
$97 HOME $FC58
$98 ROT= $F721
$99 SCALE= $F727
$9A SHLOAD $F775
$9B TRACE $F26D
$9C NOTRACE $F26F
$9D NORMAL $F273
$9E INVERSE $F277
$9F FLASH $F280
$AQ COLOR= $F24F
$A1 POP $D96B
$A2 VTAB $F256
$A3 HIMEM: $F286
$A4 LOMEM: $F2A6
$AS5 ONERR $F2CB
$A6 RESUME $F318
$A7 RECALL $F3BC
$A8 STORE $F39F
$A9 SPEED = $F262
$AA LET $DA46
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Table 4-2. Applesoft keyword tokens (continued).

Address of
Token Keyword Subroutine
$AB GOTO $D93E
$AC RUN $D912
$AD IF $D9C9
$AE RESTORE $D849
$AF & $03F5
$B0o GOSUB $D921
$B1 RETURN $D96B
$B2 REM $D9DC
$B3 STOP $D86E
$B4 ON $D9EC
$B5 WAIT $E784
$B6 LOAD $D8C9
$B7 SAVE $D8B@
$B8 DEF $E313
$B9 POKE $E77B
$BA PRINT $DADS
$BB CONT $D896
$BC LIST $D6AS
$BD CLEAR $D66A
$BE GET $DBA@
$BF NEW $D649
$Co TAB(
$C1 TO
$C2 FN
$C3 SPC(
$C4 THEN
$C5 AT
$Co6 NOT
$C7 STEP
$C8 +
$C9 -
$CA *
$CB /
$CC "
$CD AND
$CE OR
$CF >
$D@ =
$D1 <
$D2 SGN $EB9¢g
$D3 INT $EC23
$D4 ABS $EBAF
$D5 USR $000A

$D6 FRE $E2DE
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Table 4-2. Applesoft keyword tokens (continued).

Address of

Token Keyword Subroutine
$D7 SCRN( $D412
$D8 PDL $DFCD
$D9 POS $E2FF
$DA SQR $EE8SD
$DB RND $EFAE
$DC LOG $E9%41
$DD EXP $EF@9
$DE COS $EFEA
$DF SIN $EFF1
$EQ TAN $FA3A
$E1 ATN $FA9E
$E2 PEEK $E764
$E3 LEN SE6D6
$E4 STRS $E3C5
$ES5 VAL $E707
SE6 ASC $E6ES5
$E7 CHRS$ $E646
$E8 LEFTS$ $E65A
$E9 RIGHTS$ $E686
$EA MID$ $E691

tines within Applesoft that are used to deal with the keyword com-
mand or function that they represent (where applicable). You will
notice that all of these tokens are greater than or equal to $80@. If
the tokenized part of a program line contains bytes that are less
than $80, then these bytes are simply the ASCII codes for the char-
acters that were typed in when the line was entered (see Appendix
I for the ASCII codes used to represent characters). This will include
all digits (other than those entered for the line number), all text
between quotation marks after a PRINT statement and after DATA
and REM statements, and all characters of variable names.

Before you get hopelessly confused, let’s look at an example.
From Applesoft direct mode, enter NEW, and then enter the fol-
lowing line:

100 PI = 4 » ATN (1): PRINT "PI = ";PI: END

The bytes used to store this line in memory are as follows:

1D 08 64 00 50 49 DO 34 CA E1 28 31 29 3

address line P I token 4 token tokem ( 1 )
of next number for for for
line = * ATN
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BA 22 50 49 20 3D 20 22 3B 50 49 3A 80 00
token " P I = ", P 1 token end of
for for line
PRINT END marker

(You can see these bytes for yourself by first entering CALL -151
to enter the system monitor, and then entering 801.81C to display
the first few bytes of the program. As we saw earlier, an Applesoft
program is usually stored in memory beginning at location $801.)

Notice that the five keywords in this line, =, *, ATN, PRINT,
and END, have been replaced by their tokens, $D@, $CA, $E1, $BA,
and $86, respectively. Also notice that each character that is not
part of a keyword is not tokenized and is represented by its ASCII
code.

STORAGE OF APPLESOFT VARIABLES

Now that we have seen how an Applesoft program is stored in
memory, let's take a more detailed look at how and where the
program’s variables are stored during program execution. Not only
is the knowledge of the data structures used to store variables
fundamentally interesting, it will undoubtedly be invaluable to
those who wish to manipulate Applesoft variables from within 6502
assembly-language subroutines that are called from Applesoft.

Applesoft supports four fundamental variable types. There are
three numeric types, integer, real, and function, and one alpha-
numeric type, string. Integer numbers are made up of all positive
and negative whole numbers and zero, that is, all numbers that
have no fractional parts. Real numbers, also called floating-point
numbers, are made up of all numbers, including those that do have
fractional parts. Strings are simply sequences of ASCII character
codes. Functions are special variables that are defined by the Ap-
plesoft DEF FN command and that are evaluated using a user-
specified mathematical expression. For example, if a function is
defined as follows:

DEF FN MD(X)=X-256*INT(X/256)

then whenever the value of MD(aexpr) is requested (where “aexpr”’
represents an arithmetic expression) it is evaluated by substituting
the value of “aexpr’ wherever “X” appears in the “X-256+«INT(X/
256)” formula and then calculating the result.

The first character of an Applesoft variable name must begin
with an upper-case letter from A...Z; subsequent characters can
be either upper-case letters or a digit from @. . .9. The variable name
can be up to 239 characters in length, but only the first two char-
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Table 4-3. Applesoft variable identifier symbols.

Variable Identifier

Symbol Variable Type Example
<none> real AB
% integer AB%
<none> function FN AB ()
$ string AB$

acters are significant (the rest are simply ignored). This means that
Applesoft considers the variables LESS and LESSEN, for example,
to be equivalent.

A variable name cannot be used that contains the names for any
of the keywords shown in Table 4-2. For example, the variable
name “LETTER” is illegal because it contains the LET keyword.

If an integer or string variable is being defined, a special variable
identifier symbol must be added to its name so that Applesoft can
properly interpret it and store its value. The variable identifier
symbol for integer variables is “%’’ and for string variables it is
“$”. No special identifier symbol is needed to identify real or func-
tion variables. Table 4-3 sets out the variable identifier symbols
used by Applesoft.

When a variable is defined in a program, Applesoft stores its
name and value at the end of one of two memory spaces located
after the end of the program. One space is reserved for simple
variables and functions and is pointed to by VARTAB ($69). The
other space is reserved for array variables and is pointed to by
ARYTAB ($6B). In the following sections, we will take a look at
how variables are represented in these two variable spaces.

Storage of Simple Variables

Whenever Applesoft has to make use of a certain variable, it has
to locate it within its variable space. It does this by searching the
variable space beginning with the first entry and continuing until
it finds a match. Thus, the farther into the space a variable is
located, the longer it will take Applesoft to find it. Since Applesoft
stores variables in its variable space in the order in which they are
encountered when the program is executed, you can improve pro-
gram execution speed by ensuring that more frequently used var-
iables are defined before less frequently used ones. This is most
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easily done by defining all the variables in the desired order as
soon as the program starts executing. For example, if your program
uses four variables, say I, J, K, and L$, but you would like K to be
accessed as quickly as possible, then you should execute a line such
as

10 K=0:1=0:J=0:L¢=""
before any other line that defines or uses any variables.

Each entry in the simple variable space is exactly seven bytes
long and consists of two parts: the name header, which is used to
store the variable’s name and type, and the data field, which con-
tains the encoded value of the variable or a pointer to its location.
The storage format used for each type of variable is summarized
in Figure 4-2.

(a) Real variables. (b) Integer variables.
First name byte le—high bit OFF First name byte le—high bit ON
Second name byte (e-high bit OFF | Second name byte le—high bit ON
Exponent + 128 Value (high)
Mantissa (highest) Value (low)
Mantissa [Not used]
Mantissa [Not used]
Mantissa (lowest) [Not used]
(c) String variables. (d) Function variables.
First name byte <-high bit OFF First name byte —high bit ON
Second name byte <—high bit ON Second name byte le—high bit OFF
Length of string Pointer to function (low)
Pointer to string (low) Pointer to function (high),
Pointer to string (high) Pointg;tt: (zlitl;a’u)ment
[Not used] Pointde;ttao(girgﬁwem
o e
FN definition

Figure 4-2. Storage formats for Applesoft simple variables.
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The Name Header

The name header contains all the information related to the
variable’s type and name so that it can be quickly located and
accessed whenever it is referred to during execution of the Apple-
soft program. The name header for a simple variable is always
exactly two bytes long. Stored in these two bytes are the 7-bit ASCII
codes for the the first two characters of the variable’s name; if
there is only one character used in the name, then the second
character is assumed to be the ASCII null character, $8@. The high-
order bits of each of the two bytes are used to indicate the type of
simple variable being referred to. For example, for a string vari-
able, these bits will be OFF (@) and ON (1), respectively. For real
and integer variables, they will be OFF-OFF and ON-ON, respec-
tively. Lastly, the bits will be ON-OFF if the name refers to a
function defined by the DEF FN command.

The Data Field

The encoded data that relates to the value of the simple variable
is stored in five bytes just after the end of the two name header
bytes. Despite the fact that five bytes are always reserved for data
storage, however, only real variables and functions make use of
them all. The number of bytes required for the data for each type
of variable is as shown in Table 4-4, as are the restrictions on the
values for each type of Applesoft variable.

Let’s take a look at the storage formats used for each type of
variable.

Table 4-4. Storage requirements and limitations for
Applesoft variables.

Number of
Data Bytes
Variable Type Required Restrictions on Variable Value

Integer 2 —32767 ... +32767
Real 5 29E-39 ... 1.7E+ 38 (pos. or neg.)
String 3 Length of string is @ . .. 255

5 One argument only

Functions
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INTEGER. The data for integer variables is stored in a signed
“two’s complement” format and occupies two bytes (most-signif-
icant byte followed by least-significant byte). See the section below
entitled “REPRESENTATION OF INTEGER NUMBERS” for a
detailed description of the two’s complement storage format. The
high bit of the most-significant byte can be read to determine the
sign of the number. If this bit is 1, then the number is negative; if
it is @, then the number is positive. The last three bytes of the data
field are not used.

REAL. The data for real numbers is stored in all five bytes. The
first byte is related to the exponent of the number and the next
four bytes represent its signed mantissa, most-significant byte first.
The sign bit is the high bit of the second byte of the five. See the
section below entitled “REPRESENTATION OF REAL NUM-
BERS” for a detailed description of the method Applesoft uses to
store real numbers.

STRING. The data for string variables is really made up of two
parts. The first part is stored in the variable table itself and is a
three-byte ‘“descriptor” that represents the length of the string
(first byte) followed by a two-byte pointer (low-order byte first) to
a sequence of ASCII-encoded characters that defines the string
itself. The second part is, in fact, made up of those characters that
define the contents of the string.

The contents of strings are normally stored in the high end of
memory in a string space beginning at a location pointed to by
FRETOP ($6F) and ending lower in memory just before the location
pointed to by MEMSIZ ($73). Whenever a new string is entered
from the keyboard or a diskette file, or an old one is manipulated
using any of Applesoft’s string-handling commands, it is placed in
memory just before the address to which FRETOP points in such
a way that the first character in the string is located lowest in
memory and the last character is located at the location pointed
to by FRETOP. After this is done, FRETOP is adjusted downward
so that it points to the byte immediately before the beginning of
the string just stored.

When a string variable is redefined using Applesoft’s string-han-
dling commands, its new definition is placed in the string space
in the upper part of memory as if it were a newly defined variable;
however, its former characters are not immediately removed from
the string space even though it is no longer used. This means that
if strings are continuously being redefined, then a lot of unused
information will accumulate in the string space and eventually the
address stored in FRETOP will come very close to the address
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stored in the end-of-variable pointer, STREND ($6D). When this
happens, Applesoft initiates a procedure that maximizes its avail-
able free space by removing the unused string characters, packing
the currently active string characters up to the high end of memory,
and resetting FRETOP. This procedure is called “garbage collec-
tion” or, more euphemistically, “house-cleaning,” and can last
anywhere from a few seconds to a few minutes, depending on the
number of string variables that have been defined in the program.

Note, however, that if a string is explicitly defined within the
program itself, for example, in a program line that looks like this:

100 A$="THIS IS A TEST"

then the string pointer in the variable table’s data field will point
to this definition inside the program itself and not to a location
within the string space. Such a string will be moved into the string
space only if it is operated on by an Applesoft string-handling
command.

FUNCTIONS. The data for functions is stored in five bytes. The
first two bytes act as a pointer to the body of the function’s defi-
nition within the program (that is, the part after the “="" sign in
the DEF FN definition). The next two bytes contain the address of
the data field for the variable representing the function’s argument.
The last byte contains the first byte in the function definition.

End of Simple Variables

ARYTAB ($6B) points to the Applesoft array variable space lo-
cated immediately after the end of the simple variable space.
Whenever a new simple variable is defined, the whole of the array
variable space is moved up in memory by seven bytes to make
room for the new simple variable definition and the end-of-vari-
ables pointer, STREND ($6D), is adjusted accordingly. The name
header and data bytes for the variable are then stored beginning
at ARYTAB. ARYTAB is then increased by seven so that it equals
the new starting position of the array space.

Storage of Array Variables

Each entry in the array variable space is made up of a name
header, special dimensioning bytes that indicate the size of the
array and how it is indexed, and a data field. The storage format
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(a) Real variables.

Header used by all three array variable types:

Exponent + 128

Mantissa (high)

Mantissa

Mantissa

Mantissa (low)

A\

A\

—A\

Exponent + 128

Mantissa (high)

Mantissa

Mantissa

Mantissa (low)

First name byte

Second name byte

Offset to next
array variable
(low byte first)

Number of dimensions

Size of last
dimension
(high byte first)

)\

Size of first
dimension
(high byte first)

(b) Integer variables.

Value (high)
Value (low)
first |
element—2 fr
Value (high)
Value (low)
last
element

first
element

last
element

(c) String variables.

Length of string

Location of string (low)

Location of string (high)

w
g

J
1

ALY

Length of string

Location of string (low)

Location of string (high)

NOTE: Array elements are stored in such a way that
the right-most dimensioning index increases slowest (see text).

Figure 4-3. Storage formats for Applesoft array variables.

first,
element

last
element

used for each type of array variable is summarized in Figure 4-3.
Note that arrays are permitted for each Applesoft variable type
except functions.

The Name Header

Just as for simple variables, entries for array variables begin
with a name header. The name headers for array variables are
identical to those for the corresponding simple variables discussed
in the previous section (for example, the header for an array di-
mensioned as AB(5,6) is the same as for AB).
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Dimensioning Bytes

When array variables are stored, a series of bytes that describe
the number of dimensions of the array and their sizes are placed
in memory just after the header.

First, two bytes are used to store a number that is equal to the
number of bytes that the array occupies in the array variable space.
This number is simply the offset from the name header of this
array to the next array and is stored here so that the address of
the next array variable in the array space can be quickly and easily
calculated when Applesoft is searching for an array. The number
is stored with the low-order byte first.

The next byte is equal to the number of array indexes (or “di-
mensions”’) and can be from 1 to 255. For example, an array di-
mensioned as AB(3,5,2) would have a value of 3 stored in this byte.

Pairs of bytes follow this last byte that indicate the size of the
indexes of the array, with the number of elements in the last index
being stored in the first pair and the number of elements in the
first index being stored in the last pair. The high-order byte is
stored first in each pair. The numbers stored here will be one higher
than the number used when the array was first dimensioned (using
the DIM statement) since it starts counting the elements from one
rather than zero.

Let’s look at an example. The name header bytes and dimen-
sioning bytes for an array dimensioned as AB(3,5,2) would be as
follows:

41 42 73 01 03 00 03 00 06 00 04

L1t 1 1 ]

name offset to # of size of size of size of
(AB) next array indexes 3rd index 2nd index 1st index

The Data Field

After the dimensioning bytes come the actual data bytes for each
array element. They are stored in exactly the same formats used
by the corresponding simple variables except that, in the case of
integer and string arrays, the data bytes are packed. This means
that the unused bytes that are stored in the simple variable data
space for these two types of variables are not stored.

The array elements are stored in memory in such a way that the
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rightmost dimensioning index ascends most slowly. Thus, if an
array is dimensioned as A(1,1), then A(@,0) is stored first, followed
by A(1,0), A(@,1), and then A(1,1).

End of Array Variables

STREND ($6D) points to one byte past the end of the array
variable space. It also points to the beginning of Applesoft free
space. When a new array variable is defined, its header and data
are stored beginning at this location and then the value STREND
is increased by the size of the entry for the array.

REPRESENTATION OF INTEGER
NUMBERS

Applesoft stores the data for its integer variables in a special
two-byte format called “two’s complement.” As we will see, the
advantage of using this format is that it allows both negative and
positive numbers to be represented in a way that greatly simplifies
the execution of the two basic signed arithmetic operations, ad-
dition and subtraction.

The most-significant byte of the pair of data bytes reserved for
an integer is stored first (note that this is just the opposite of how
two-byte quantities are usually stored). The high-order bit of this
byte is used to indicate the sign of the number. If it is 1, then the
number is negative; if it is @, then it is positive. The remaining 7
bits of this byte, and the 8 bits of the least-significant byte, are
used to represent the magnitude of the integer. For a positive in-
teger, the 15-bit magnitude is simply represented by the standard
unsigned binary pattern for the integer. For example,

00000001 00000011
is used to represent +259 ($0103).

The 15 bits used to represent a negative integer are determined
somewhat differently. To determine what they are, you must first
take the binary pattern for the absolute value of the integer (that
is, its positive counterpart), complement it by changing all its 1
bits to @ and vice versa, and then add one to the result. The most-
significant bit will then be 1, indicating that the number is neg-
ative. For example, the representation for the integer —11 would
be calculated as follows:
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0000000 00001011  (+11)
1111111 11119100 (complement)
+ 1 (add 1)
1111111 11110161 (—11 in two’s complement)

Using the two-byte two’s complement format, it is possible to
hold integers that range from —32768 (10000000 00000000) to
+32767 (01111111 11111111). Note, however, that even though the
number —32768 can be represented in the two-byte two’s com-
plement format, Applesoft does not allow its integer variables to
take on this value. The lowest value that is allowed is —32767.

Applesoft stores its integers in this apparently strange format to
simplify the way in which binary arithmetic can be performed. By
using the two’s complement format, positive and negative numbers
can be easily added and subtracted without having to perform the
complicated adjustments needed to account for the different signs
of the numbers if any other representation is used. (Another rep-
resentation may be the conventional “sign plus magnitude” (S + M),
where a positive integer and its negative counterpart are identical
except for the value of the sign bit.). When using the two’s com-
plement representation, it is only necessary to add the 16-bit rep-
resentations of the two integers (be they positive or negative) as if
they were just two standard unsigned binary numbers. The result,
and its sign, will then automatically be correct if the result is
viewed as another two’s complement integer (which it is).

Let’s take a look at an example to see what we mean by this.
Consider the problem of adding the integer + 8 to the integer —5.
If these numbers were stored in their normal binary representa-
tions with the sign bit being the most-significant bit, then the
calculation to be performed would be

00000000 00001000 (+8)
+ 10000009 00009101 (-5 in S+M binary)
10000000 00001161 (—13 in S+ M binary)

This result is, of course, wrong. Thus, if this representation is
used, special programs must be written to avoid these erroneous
results. On the other hand, if the integers are represented in the
two’s complement format, then the calculation becomes

00000000 V0001000 (+8)

+ 11111111 11111611 (-5 in two’s complement)
00000000 00000011 (+3)

This result is, of course, correct. If you experiment with other
integers, you will see that the signed result is always correct (unless
the result is out of the allowable range).
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REPRESENTATION OF REAL NUMBERS

As we have seen, Applesoft real numbers are stored in the simple
variable space and array variable space in a binary floating-point
format. This special format will be described in detail now.

Knowledge of this format will be of use mainly to those who
write 6502 assembly-language programs that access Applesoft nu-
meric variables. However, even if you never intend to write such

a program, the following information should prove to be interest-
ing.

Number Theory

Even though numbers are commonly entered into a computer
in a “decimal’ or “‘base 10" format, they are generally stored in-
ternally in some sort of compressed binary format to reduce data
storage space and to make it easy for programs to manipulate them.

Decimal integer numbers can be stored in a binary form without
loss of accuracy due to rounding or truncation (provided that the
integers are within the numeric range supported by the computer)
because they do not contain fractional parts. On the other hand,
floating-point numbers (that is, real numbers), which do have frac-
tional parts, can only be approximated by a binary representation
unless the decimal number is exactly equal to a sum of powers of
two. Because approximations have to be made in most cases, you
will sometimes find that if you multiply a number by its reciprocal
in Applesoft that the number calculated is not equal to one!

Floating-point real numbers are often expressed in “scientific
notation”’ that looks like this:

134.56 x 10”6

The first part of this representation is called the mantissa and
the second part is called the exponent (the exponent is actually the
number to which the number base being used has been raised). An
understanding of scientific notation is important because it turns
out that it is the binary mantissa and exponent that are stored by
Applesoft when real numbers are stored in its variable spaces.

Binary Floating-Point Format

Real numbers are stored in the variable spaces of Applesoft in
a “‘binary floating-point” format. As indicated in Figure 4-4, this
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is a five-byte format in which one byte is reserved for exponent
information and four bytes for mantissa information. The mantissa
contains the binary representation of the fractional part of the
number.

The lowest-addressed byte in the fivesome is the exponent byte.
The value stored here is actually not the exponent itself but rather
the value of the exponent plus 128. Because this method is used to
store the exponent, the exponent is said to be “biased” by 128.

Before a number is stored in the binary floating-point format, it
is “normalized.” Normalization is the process whereby the binary
point of the binary number (as opposed to a decimal point for a
decimal number) is adjusted so that thereis a ““1” to its immediate
right and no “1”’s to the left of it. Thus, after normalization, the
mantissa of the number will be between 6.1 and #.11111111 ...
(in binary). For each movement of the binary point to the left, the
exponent is increased by one; for each movement to the right, the
exponent is reduced by one. For example, consider the binary num-
ber “1101.11”. To normalize this number, the binary point must
be moved four places to the left; thus, the initial exponent (@) must
be increased by four.

In the binary floating-point representation, the high-order bit of
the second byte represents the sign of the number. If this bit is 1,
then the number is negative; if it is @, then the number is positive.

The remaining 7 bits of the second byte and the remaining three
bytes are used to represent the mantissa of the number, most-
significant byte first. Within a particular byte, the 7th bit is the
most significant and the Oth bit the least significant. As has been
explained, the mantissa has been normalized so that thereisa “1”
to the immediate right of the decimal point; this “1” is implicit
and is not stored. Thus, a floating-point number has 32-bit preci-
sion (about nine decimal digits) even though only 31 bits are ac-
tually used to hold the mantissa.

Any number whose exponent byte is equal to zero is considered
to be zero by the Applesoft interpreter even though its mantissa
bytes may be nonzero.

The decimal range of numbers that is allowed using the five-
byte binary floating-point format is as follows:

+/— 2.9387355E—-39 to +/— 1.70141183E + 38

To calculate a decimal number from its binary format, multiply
the value of each mantissa bit by its corresponding binary weight,
add the implied 8.5 (which is the decimal equivalent of binary 4.1),
and then multiply the total by 2 raised to the value of the exponent
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byte minus 128. The binary weight of a particular mantissa bit is
given by (1/2)"(32-BN), where BN is the bit number. The bit num-
bers range from the most-significant bit 3@ (bit 6 of byte 2) to the
least-significant bit @ (bit @ of byte 5).

For example, consider the decimal number '8.67’. It is stored by
Applesoft as the following five bytes:

BYTE1 BYTE?2 BYTE3 BYTE4 BYTES
$84 $0A 8B $51 $EB
and the corresponding binary number is

+.10001010 10111000 01010001 11101011 * 2 ($84- $80)
I byte2  byte3 byte4 byte5 bytel

implicit
To convert this binary number to its corresponding decimal
number, you must add the implicit 0.5 to the sum of each binary

digit multiplied by its binary weight. The resultant calculation is
as follows:

0.5+€1/2)75+(1/2)%7+C1/2)%9+(1/2)"11+(€1/2)"12+(1/2)"13+(1/2)"18
+(1/2)720+€1/2)724+(1/2)725+(C1/2)"26+(1/2)"27
+(1/2)729+(€1/2)"*31+(1/2)"32

If you calculate this quantity, you will get 8.541875. It then must
be multiplied by the exponential part (which is 2°4 or 16) in order
to yield the final result: 8.67.

Note that the high bit of BYTE2 in the above example is zero
indicating that the number is positive.

If you wish to look at the bytes that Applesoft uses to store other
numbers, use the program found in Table 4-5. When you RUN this
program, you will be asked to enter a number to be analyzed (X).
The program locates the data bytes used to store this number by
recognizing the fact that since X is the first simple variable defined
in the program, its five data bytes must be stored two bytes from
the beginning of the simple variable space (remember that the first
two bytes are reserved for the name header). The address of the

BYTE #1 BYTE #2 BYTE #3 BYTE #4 BYTE #5
Exponent Mantissa Mantissa
+ 128 (highest) (lowest)
sign
bit

Figure 4-4. Applesoft binary floating-point format.
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beginning of this space is simply PEEK(105)+256+PEEK(106) since
the pointer to the beginning of the simple variable space is located
at $69 and $6A.

Table 4-5. REAL NUMBER DATA STORAGE. A program
to display the data bytes for an Applesoft real variable.

ILIST

0 REM "“REAL NUMBER DATA STORAGE"™

100 TEXT : HOME : PRINT "DECIMAL
---> BINARY FLOATING-POINT®"

110 VTAB 5§

120 INPUT "ENTER NUMBER TO BE CO
NVERTED: ;X

130 DIM HX$C15) : FOR I = 0 TO 15
: READ HX$CI) : NEXT

140 XD = PEEK (105) + 256 * PEEK
(106) + 2: REM LOCATION OF
DATA FOR X

150 PRINT : PRINT "THE FLOATING-
POINT REPRESENTATION IS:'": PRINT

160 FOR I = XD TO XD + 4

170 D = PEEK (I>:D1 =D

180 PRINT "BYTE #";1 - XD + 1;":

190 FOR J = 7 TOD 0 STEP - 1

200 T = INT (D /7 (2 ~ J)) : PRINT
T;

2190 D =D - T * (2 ~ J)

220 NEXT J: PRINT "™ ($";HX$C INT
(D1 / 16));HX$(D1 - 16 * INT
(D1 / 16));") ',

230 READ DS$: PRINT DS$

240 NEXT I: PRINT

250 PRINT "BIT 7 OF BYTE #2 IS T
HE SIGN BIT"™: PRINT "(0 -->
POSITIVE, 1 --> NEGATIVE)"™

260 DATA 0,1,2,3,4,5,6,7,8,9,A,B
,C,D,E,F

270 DATA EXPONENT + 128,MANTISSA

HIGH,.,.,MANTISSA LOW

HOW AN APPLESOFT PROGRAM RUNS

Right after you enter the RUN command to begin execution of
an Applesoft program, at least two important things happen. First,
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all the pointers to the variable spaces are initialized, effectively
destroying any variables that may have been active when the pro-
gram last stopped running. Then, just before the program starts
to be executed, a special pointer, called TXTPTR ($B8/$B9), is
initialized so that it contains the address of the beginning of the
program. This address is usually $801.

TXTPTR is an important pointer as far as the interpreter is con-
cerned because it always contains the address of the location within
the program that the interpreter is acting on. Whenever the inter-
preter wants to examine the next byte of the tokenized program,
it simply increments this pointer and then reads the new byte to
which it points.

The CHARGET Subroutine

Since TXTPTR must be incremented by many different subrou-
tines in the interpreter, one special subroutine is used to take care
of it. This subroutine is called CHARGET (for CHARacter GET)
and is located in page zero from location $B1 to location $C8. A
source listing of CHARGET appears in Table 4-6. Another subrou-
tine, called CHARGOT, is contained within CHARGET; this sub-
routine reads the current byte being pointed to without incre-
menting TXTPTR. An image of the CHARGET subroutine is loaded
into its page zero locations from the Applesoft ROM area by the
Applesoft interpreter when Applesoft is first initialized. It must be
placed in a RAM area because, as we will see, it contains self-
modifying code.

TXTPTR is actually located within this subroutine at location
$B8/$B9 and it forms the operand of an LDA instruction that re-
trieves the value of the byte pointed to by TXTPTR.

When CHARGET is called, TXTPTR is incremented, the 6502
accumulator is loaded with the byte located at the new address it
points to, certain processor flags are set, and then the routine ends.
Exactly how the flags are set depends on the value of the byte
loaded into the accumulator. If it is an end-of-line marker (@) or
end-of-statement byte ($3A), then the zero flag (Z) is set; otherwise,
it is cleared. In addition, if the byte is a digit (that is, its ASCII
code is between $30 and $39), then the carry flag (C) will be clear;
otherwise, it will be set. The reason for testing for these conditions
in the CHARGET subroutine is that many of Applesoft’s internal
subroutines are constantly checking for end-of-line conditions or
for the presence or absence of numbers and this is an efficient way
of providing that information. If it wasn’t done this way, then



Table 4-6. CHARGET. Applesoft’s internal locator subroutine.

Page #01
ASNM
00B1: E6
00B3: DO
00BS5: E6
00B7: AD
00BA: C9
00BC: BO
00BE: C9
00CO0: FO
00C2: 38
00C3: E9
00CS5: 38
00C6: E9
00C8: 60

--End assembly--

24 bytes

Errors: 0

ONONDWN =

m_‘_s_\__‘_h_\_l_s_.;_s(_o
cWONIONAWN—-O

21
22

R R

* CHARGET =«

AR R EE R R EEXR]

TXTPTR

CHARGET

CHARGOT

EXIT

$B8
$B1

TXTPTR
CHARGOT
TXTPTR+1
$FFFF
#$3A
EXIT
#$20
CHARGET

#$30
#$DO0

; (NOTE: This is CHARGOT+1)

;Bump the text pointer
; by one position

;Get the byte pointed to
; and compare it to ":"
sBranch if >= ":"

3;Is this a blank?

;Yes, so get next byte

;I1f digit, carry will be
;clear

€0L [ Jisvg yoss|ddy 1
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wasteful duplication of code would be required because every sub-
routine that needed the information would have to perform its own
separate testing procedures.

Let’s get back to our program, which was just starting to run
with TXTPTR set to $801 when we last left it. Since the first four
bytes of the program ($841 ... $803) are simply the line number
and the address of the next line, they are skipped over by increasing
TXTPTR by four so that the next time CHARGET is called the first
byte in the token field of the program line will be read.

The next step, of course, is to call CHARGET and get that first
byte and analyze it. This is where Applesoft really starts its inter-
pretation chores. If the byte happens to be an end-of-line marker
(@), then TXTPTR is bumped by four positions so that it points to
the byte just before the token field of the next line. If it’s a colon
separator ($3A), then CHARGET is called again to load the next
byte (which will be the first byte in the token field of the next
statement on that line).

If the byte is a keyword token (that is, it is greater than or equal
to $80), then, assuming it is not out of context, the appropriate
subroutine in the interpreter that handles that command or func-
tion to which it refers will be called. That subroutine will, among
other things, evaluate numerical or string expressions and perform
syntax checking; it will do this by making extensive use of CHAR-
GET to analyze the bytes “surrounding” the keyword. When the
keyword has been dealt with, CHARGET will point to the next byte
to be interpreted.

If the byte is not a keyword token or an end-of-line or end-of-
statement marker, then, depending on the context, it may be con-
sidered to be a variable name, a piece of data, or maybe nothing
at all (in which case you will see the dreaded SYNTAX ERROR).
As long as no syntax errors are detected, TXTPTR will keep being
changed and new bytes interpreted until such time as the token
for END or STOP is encountered or until the last line in the pro-
gram has been executed.

Changing Program Flow

Because Applesoft always relies on the value of TXTPTR to de-
termine what part of the program to execute next, you can easily
cause Applesoft to skip certain parts of the program and to continue
executing elsewhere merely by adjusting TXTPTR. In fact, this is
exactly how the Applesoft GOTO and GOSUB commands work.
When the interpreter encounters either of these commands, it per-
forms a number of tasks, the most important of which are to de-
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termine the target line number, to find that line number in mem-
ory, and then to store the address of the line’s token field in TXTPTR.
Then, when Applesoft continues interpreting the program by call-
ing CHARGET, the commands there will begin to be executed.

Finding Line Numbers

We have just seen how TXTPTR is adjusted when either a GOTO
or GOSUB command is executed. What we did not explain is how
the interpreter determines where the line to which control is to be
passed by either of these commands is located.

There are two different methods Applesoft uses, depending on
whether the high-order byte of the destination line number is greater
than the high-order byte of the current line number. If it is, then
the interpreter starts looking for a line with the proper number
beginning with the next line in memory. If it is not, then the in-
terpreter begins with the first line of the program. The interpreter
can quickly skip over lines whose numbers don’t match by ex-
amining the link field address (the first two bytes of the tokenized
line) to determine the address of the next line of the program.

What this means is that GOTO and GOSUB commands that
transfer control to line numbers just before the current line will
execute more slowly than those that transfer control to lines nearer
the start of the program or to lines just after the current line.

In should be obvious, then, that to increase program execution
speed, “backward” GOTO and GOSUB statements should transfer
control to lines that are as close to the beginning of the program
as possible. By placing commonly used subroutines near the be-
ginning of a program in decreasing order of activity, program speed
can be noticeably increased.

LINKING APPLESOFT TO ASSEMBLY-
LANGUAGE SUBROUTINES

The execution speed of an Applesoft program can be improved
dramatically by linking it to assembly-language subroutines. This
is because the code generated by the assembly process is directly
executable by the microprocessor and does not have to be inter-
preted first. Such subroutines can be accessed from Applesoft by
using one of three Applesoft commands: CALL, USR, and & (am-
persand). These three commands are summarized in Table 4-7.

Assembly-language subroutines often need to make use of zero
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Table 4-7. Applesoft to assembly-language commands.

Command Description

CALL aexpr Transfers control to the memory location
specified by “aexpr”.

X = USR (aexpr) Evaluates “aexpr’ and places the result in the
floating point accumulator (see text) and then

transfers control to $800A. On return, the value

of the function is set equal to the value in the
FAC.

& Transfers control to $3F5.

Note: “aexpr’” represents an arithmetic expression.

page locations to take advantage of some of the 6502’s more pow-
erful addressing modes. As we have seen, however, several loca-
tions in zero page are reserved for use by Applesoft pointers. Others
are used by Applesoft, the system monitor, or DOS for other pur-
poses. Table 2-5 at the end of Chapter 2 contains a complete list
of those zero page locations that are not used and that are available
for use by an assembly-language program.

The CALL Command

The CALL command is the one that is usually used to link Ap-
plesoft programs with assembly-language subroutines. If such a
subroutine begins at a memory location represented by “‘aexpr”,
then you would use the command

CALL aexpr
to invoke the subroutine. The value of “aexpr’ that you use must

be a literal decimal number (not hexadecimal) or, alternately, a
mathematical expression that evaluates to a number.

For example, to execute a subroutine from Applesoft that begins
at location $300 (768 decimal), you would use the command

CALL 768

When the subroutine finishes executing, you will normally return
to Applesoft and the next statement in the Applesoft program will
be executed.

You can try using the CALL command without even writing any
assembly-language subroutines simply by accessing subroutines
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that are already contained in the system monitor ROM. For ex-
ample, to clear the screen you would use the command CALL 64600
since $FC58 is the address of the screen clear command. As ex-
plained in Chapter 3, there are many other subroutines in the
monitor, some of which require that data be provided to them first
or that registers be set up in certain ways.

If the subroutine that you are calling requires that data be pro-
vided to it before it can perform its duties, you would normally
precede your CALL with several POKE commands that would place
the appropriate information at the locations expected by the sub-
routine. Similarly, you will usually have to use the PEEK command
to examine any numerical results that the program may store in
memory.

It is possible, however, using more advanced techniques, to pass
the values of named variables to and from your called subroutines.
These techniques will be described below in the section entitled
“USING APPLESOFT’S BUILT-IN SUBROUTINES.”

The & Command

The & (ampersand) command is similar to the CALL command
and is used for similar purposes. Whenever the Applesoft inter-
preter comes across the & command, it immediately causes the
system to transfer control to location $3F5, thus causing the sub-
routine that is located there to be executed. In the usual case, a
6502 JMP (jump) instruction is stored at this location that passes
control to some other location where the main body of the sub-
routine begins.

If you want to use the & command to access assembly-language
subroutines, you must first set up the jump at location $3F5 (1613)
so that it points to the desired subroutine. This can be done by
using the following three POKE commands:

POKE 1013,76 : REM 76 ($4C) is the 6502 JMP opcode
POKE 1014,YY : REM YY is the low address of the subroutine
POKE 1015,XX : REM XX is the high address of the subroutine

To calculate the high and low halves of the address of the sub-
routine, you can use the following formulas:

XX INTCADDRESS/256)
YY ADDRESS - 256#*XX

After you install the subroutine at the proper location, you can
then execute the & command to access it.

As with the CALL statement, no built-in provisions have been
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made for the passing of variables to and from & subroutines. How-
ever, the program that is called can be written to do this for itself.

See the section below entitled “USING APPLESOFT’S BUILT-IN
SUBROUTINES.”

The USR Function

The USR function can also be used to link Applesoft to assembly-
language subroutines. The syntax of the USR function is as follows:

Y = USRCaexpr)

where “aexpr” represents a mathematical expression that is called
the argument of the function. When the USR function is encoun-
tered by the interpreter, the formula is evaluated, the result of the
evaluation is placed in an internal floating-point accumulator (FAC)
in zero page and a jump to location $0@0A is performed. By setting
up a 6502 JMP instruction at $800A, you can transfer control to

the beginning of an assembly-language program that has been loaded
anywhere in memory.

After the program has finished executing, control will return to
Applesoft and the “Y” variable in the above equation will be set
equal to the current value of the FAC. This is why USR is called
the “user-defined function.”

Let’s take a look at a specific application involving the USR
command. In particular, let’s calculate the sine of the argument
by using Applesoft’s internal sine evaluation subroutine located at
$EFF1. As we shall see later in this chapter, this subroutine cal-
culates the sine of the number in the FAC and returns the result
there. The subroutine required to perform the conversion is simple:
JMP $EFF1. You can install it at location $30@ by entering CALL
— 151 to enter the system monitor, and then entering the command

300:4C F1 EF

To link this subroutine to the USR command, a JMP $300 in-
struction must be placed at the USR locations from $A to $C. This
can be done by entering the following monitor command:

A:4C 00 03

where 4C is the JMP opcode and 00 @3 represents the address of
the subroutine (low-order byte first). Note that you could have also
entered all this information using Applesoft POKE statements.

To try out the USR routine, enter and RUN the following short
program:

100 X = 3

200 PRINT USR X)
300 PRINT SIN (X)
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As you will see after the program has stopped RUNning, USR is
indeed calculating the sine of X.

USR is not a popular Applesoft function for two main reasons.
First, only a single numeric expression can be passed to the USR
subroutine. Second, the structure of the internal floating-point ac-
cumulator has never been officially described by Apple. However,
as we shall see in the section below entitled “USEFUL APPLESOFT
BUILT-IN SUBROUTINES,” there are many built-in subroutines
in Applesoft that can be used to facilitate manipulation of the FAC.

APPLESOFT'S BUILT-IN SUBROUTINES

The Applesoft interpreter is made up of many subroutines that
are used to perform many different functions: evaluating functions,
performing arithmetic operations, locating variables, handling er-
rors, and so on. Many of them make use of the previously described
CHARGET subroutine and the TXTPTR ($B8) pointer to perform
their duties. Table 4-8 describes some of the more useful and com-
monly used Applesoft subroutines. The addresses of these subrou-
tines are called “‘entry points.”

Many of the Applesoft subroutines make use of special locations
in the //e’s zero page. The locations that are referred to in connec-
tion with the subroutines in Table 4-8 are shown in Table 4-9.

Many of the subroutines contained in Table 4-8 deal with float-
ing-point real numbers. Applesoft uses two seven-byte areas in zero
page, one from $9D to $A3 and the other from $AS5 to $AB, to store
binary floating-point numbers whenever mathematical operations
are being performed on real numbers or functions are being eval-
uated. These areas are called the primary floating-point accumu-
lator (FAC) and argument register (ARG), respectively. Note that
despite the use of the words ““accumulator’” and ‘“‘register,” these
are not 6502 registers, but merely special data storage areas. Al-
though the format Applesoft uses to store numbers in either FAC
is not quite the same as the five-byte format used to store real
numbers in the Applesoft simple and array variable spaces, it will
not be described here since knowledge of it is not necessary to
make use of Applesoft’s built-in floating-point mathematical sub-
routines.

The FAC is used by Applesoft to hold the argument for those
calculations that require only one argument (for example, the cal-
culation of a sine). If two arguments are required, however, the
first argument is kept in the ARG and the second is kept in the
FAC. In either case, the answer is returned in the FAC.

Remember the Applesoft USR command? The argument that is
evaluated when this command is executed is stored in the FAC, as
is the returned result.
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Table 4-8. Applesoft built-in subroutines.

(a) Locating Variables, Data, and Line Numbers

Description

Address Symbolic
Hex (Dec) Name
$90B1 (177) CHARGET
$00B7 (183) CHARGOT

$DFE3 (57315) PTRGET

$F7D9 (63449) GETARYPT

$D61A (54819) FNDLIN

Increments TXTPTR by one po-
sition and returns the next byte
in the program in the A-register.
Certain flags are also set: if A is
a colon (“:”) or a zero, then the
zero flag is set; otherwise, it is
cleared. If A is an ASCII digit (9"
to “9”), then the carry flag is
cleared; otherwise it is set.

Returns the current byte in the
program pointed to by TXTPTR
in the A register. The flags are set
in the same way as for CHAR-
GET.

Finds the address of the begin-
ning of the data field within the
variable space for any Applesoft
variable. On entry, TXTPTR must
be pointing to the first character
of the variable’s name. On exit,
the address can be found in
VARPNT ($83/$84) and in Y (high)
and A (low).

Finds the address of the name
header for any array variable. On
entry, TXTPTR must be pointing
to the first character in the vari-
able’s name. On exit, the address
can be found in LOWTR ($9B/$9C).

Locates the line in the program
whose number is in LINNUM ($5@/
$51). On exit, if the line is found,
the carry flag is clear and LOWTR
($9A/$9B) points to the start of the
line. If the line was not found, then
the carry flag will be set and
LOWTR will point to the next
higher line.
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(b) Evaluating Formulas

Address Symbolic
Hex (Dec) Name

Description

$DD67 (56679) FRMNUM

$E6F8 (59128) GETBYT

$DD7B (56699) FRMEVL

Evaluates a mathematical for-
mula and stores the result in the
FAC. On entry, TXTPTR must be
pointing to the first character in
the formula. On exit, the result is
placed in the FAC unless a syntax
error is detected in which case an
appropriate error message is dis-
played.

Evaluates a mathematical for-
mula that will yield a result in the
ranged . ..255.Onentry, TXTPTR
must be pointing to the first char-
acter in the formula. On exit, the
result is stored in the X-register
and FACLO ($A1).

Evaluates a mathematical or
string formula and stores the re-
sult in the FAC. On entry, TXTPTR
must be pointing to the first char-

"acter in the formula. On exit, if a

strong formula is being evalu-
ated, $A0 (low) and $A1 (high)
points to the 3-byte string de-
scriptor.

(c) Converting Numbers

Address Symbolic
Hex (Dec) Name

Description

$E2F2 (58098) GIVAYF

$E6FB (59131) CONINT

Converts the 2-byte signed inte-
ger in A (high) and Y (low) into
floating-point format and stores
it in the FAC.

Converts the number in the FAC
to a single-byte integer. On entry,
the number to be converted must
be in the FAC. On exit, the single-
byte integer is contained in the
X-register and FACLO ($A1) un-

(continued)
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Table 4-8. Applesoft built-in subroutines (continued).

(c) Converting Numbers

Address
Hex

Symbolic

(Dec) Name Description

less the résult is not in the range
@ ... 255 in which case an “IL-
LEGAL QUANTITY ERROR”
message is displayed.

Converts the number in the FAC
into an unsigned 2-byte integer (@
...65535) in LINNUM ($50/$51).
If the number is negative, then
65535 is added to its value.

Converts the unsigned hexadeci-
mal number in X (low) and A
(high) into a decimal number and
displays it.

$E752 (59218) GETADR

$ED24 (60708) LINPRT

$ED2E (60718) PRNTFAC Prints the number contained in
the FAC (in decimal format). The

FAC is destroyed by this process.

(d) Applesoft Real-Number Mathematics

Before executing any of the following subroutines, a number must
be loaded into the FAC. All of these subroutines first move the
number in memory pointed to by Y (high) and A (low) into the
ARG and perform the mathematical operation. The result is placed

in the FAC.
Address Symbolic
Hex (Dec) Name Description

$E7A7 (59303) FSUB
$E7BE (59326) FADD
$E97F (59775) FMULT
$EA66 (60006) FDIV

Subtract the FAC from the ARG.
Add the FAC to the ARG.
Multiply the ARG by the FAC.
Divide the ARG by the FAC.

(e) Applesoft String Handling

Address
Hex

Symbolic
(Dec) Name

Description

$E452 (58450) GETSPACE

Reduces the start-of-strings
pointer, FRETOP ($6F), by the
number specified in the A-regis-
ter (the string length) and sets up
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(e) Applesoft String Handling (continued)

Address Symbolic
Hex (Dec) Name

Description

$E484 (58500) GARBAGE

$ESE2 (5885¢0) MOVESTR

$ED34 (60724) FOUT

$DB3A (56122) STROUT

$DB3D (56125) STRPRT

FRESPC ($71) so that it equals
FRETOP. After this has been done,
A remains unaffected and Y (high)
and X (low) point to the begin-
ning of the space. The string can
then be moved into place in up-
per memory by using MOVESTR.

Clears out old string definitions
that are no longer being used and
adjusts FRETOP ($6F) accord-
ingly. (Each time that a string is
redefined, its old definition is kept
in memory but is not used.) This
process is called “garbage collec-
tion” and is performed automat-
ically whenever the start-of-
strings address, FRETOP, comes
close to the end-of-variables ad-
dress, STREND ($6D).

Copies the string that is pointed
to by Y (high) and X (low) and
that has a length of A to the lo-
cation pointed to by FRESPC
($71).

Converts the FAC into an ASCII
character string that represents
the number in decimal form (like
Applesoft’s STRS function). The
string is followed by a $00 byte
and is pointed to by Y (high) and
A (low) so that STROUT can be
used to print the string.

Prints the string pointed to by Y
(high) and A (low). The string must
be followed immediately by a $00
or a $22 byte. All of these condi-
tions are set up by FOUT.

Prints the string whose 3-byte de-
scriptor is pointed to by $A@/$A1.
FRMEVL sets up such a pointer
when calculating string formu-
las.

(continued)
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Table 4-8. Applesoft built-in subroutines (continued).

(D) Applesoft Real-Number Functions

In executing the following subroutines, Applesoft expects the ar-
gument to be in the FAC. After the result has been calculated, it

will be placed in the FAC.

Address Symbolic
Hex (Dec) Name

Description

$E941 (59713) LOG
$EBAF (60335) ABS
$EESD (61069) SQR
$EFP9 (61193) EXP
$EFEA (61418) COS
$EFF1 (61425) SIN
$FA3A (61498) TAN
$FO9E (61598) ATN

Calculate the natural logarithm
Calculate the absolute value
Calculate the square root
Calculate “e to the power of”
Calculate the cosine (in radians)
Calculate the sine (in radians)
Calculate the tangent (in radians)

Calculate the arctangent (in ra-
dians)

(g) Miscellaneous Subroutines

Address Symbolic
Hex (Dec) Name

Description

$DAGC (55820) LINGET

$D412 (54290) ERROR

$DEBE (57022) CHKCOM

Loads a line number into LIN-
NUM ($50/$51). On entry,
TXTPTR must point to the first
digit of the line number.

Handles any Applesoft error con-
ditions that may occur during the
running of a program. The sub-
routine first checks ERRFLAG
($D8) to see if an ONERR GOTO
statement is in effect; if ERR-
FLAG >=3%80, then error han-
dling has been enabled and con-
trol passes to the appropriate line
number. If ERRFLAG <$80, then
an error message is printed (the
error-number code is in X) and
the program stops.

Checks that TXTPTR ($B8) is
pointing to a comma and, if it is,
bumps TXTPTR by one. If
TXTPTR is not pointing to a
comma, then a syntax error will
be generated.
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(g) Miscellaneous Subroutines (continued)

Address Symbolic
Hex (Dec) Name

Description

$EO00 (57344) COLD

$E@93 (57347) WARM

Performs an Applesoft cold start
(the program in memory is de-
stroyed).

Performs an Applesoft warm start
(the program in memory remains
intact).

Table 4-9. Some important zero page locations used by
Applesoft’s built-in subroutines.

Address

Hex (Dec) Symbolic Name

Description

$5¢0  (80) LINNUM (low)
$51  (81) (high)

$71  (113) FRESPC (low)
$72  (114) (high)

$83  (131) VARPNT (low)
$84  (132) (high)

$9B (155) LOWTR (low)
$9C (156) (high)

$A1 (161) FACLO

$B7 (183) TXTPTR (low)
$B8  (184) (high)

$D8 (216) ERRFLAG

These are the locations, used
by GETADR, that contain the
result of the conversion of the
FAC to a 2-byte integer.

This is a temporary pointer,
used by GETSPACE and
MOVESTR, that contains the
address of the location to which
a string is to be moved.

This is a temporary pointer,
used by PTRGET, that con-
tains the location of the data
bytes for the last variable that
was found using PTRGET.

A pointer used by FNDLIN and
GETARYPT.

This is a byte in the FAC that
contains the result of CONINT
and GETBYT.

This is a pointer to the position
within the program that is cur-
rently being acted on by the in-
terpreter. It is part of the
CHARGET subroutine.

This is the ONERR GOTO flag.
If it's >=%80, then ONERR is
active.
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USING APPLESOFT'S BUILT-IN
SUBROUTINES

Applesoft’s built-in subroutines can be used in conjunction with
your own assembly-language programs to greatly simplify those
programs and to allow you to dispense with having to rewrite
programs that have already been written. In most cases, it is not
even necessary to understand exactly how the Applesoft subroutine
operates as long as you understand what the entry conditions are
and what effect the subroutine has on the system.

There are literally hundreds of useful subroutines within the
Applesoft interpreter that can be usefully accessed, but only a few
of them have been listed in Table 4-8. Three of the more important
classes of subroutines will be discussed in detail here: those used
to locate variables, those used to evaluate formulas, and those used
to convert numbers between different formats.

Locating Variables

We have already seen how Applesoft keeps track of its variables
and how it stores them. Using that information, it would be a fairly
simple chore to write a program to locate and retrieve any partic-
ular one. All you would have to do would be to check the name
bytes of each variable in the variable table that begins at the start
of simple variable space until a match was found. Applesoft already
contains a program to do this, however, so why bother? This pro-
gram is called PTRGET and begins at $DFE3.

To find the location of a variable, all you must do is adjust
TXTPTR ($B8/$B9) so that it points to the first character in the
variable name, and then execute a JSR PTRGET instruction. When
the subroutine ends, VARPNT ($83/$84) will contain the address
of the beginning of the variable’s data field.

PTRGET can be used to simplify the passing of Applesoft vari-
ables to and from an assembly-language program. Variables are
usually passed by tacking their names, separated by commas, on
to a CALL or & command. For example, to pass two variables, say
F% and L%, to a program starting at $300, you could use the
following command:

CALL 768,F%,L%
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JSR
LDY
LDA
INY
LDA

Immediately after the CALL 768 command is executed, TXTPTR
is pointing to the location occupied by the comma separator. Before
we can use PTRGET, TXTPTR must be advanced by one position.
This is done at the beginning of the subroutine being called by
using a subroutine called CHKCOM ($DEBE) that ensures that the
current character is indeed a comma, and then increments TXTPTR.
Once this has been done, everything is ready for a call to PTRGET.
After it has been called, VARPNT ($83/$84) can be examined to
determine where the data for that variable is located. Since the
storage format of the data is known, it is a simple matter to read
and interpret it. In summary then, the method to be used to locate
a variable is as follows:

CHKCOM ;Skip over the "," separator
PTRGET ;Find the variable and put ptr in VARPNT
#0

(VARPNT),Y ;Get first byte of variable’s data

(VARPNT),Y ;Get second byte of variable’s data

After PTRGET has been called, TXTPTR points to the byte after
the last character of the variable’s name. This means that you
would perform another

JSR CHKCOM
JSR PTRGET

sequence to retrieve the next variable specified after the CALL
statement.

Let’s look at a complete example to see how to use these sub-
routines. Table 4-10 shows a program called UPPER that is de-
signed to convert any lower-case characters in a string variable to
their corresponding upper-case characters. Once the program has
been installed, it can be called from Applesoft as follows:

CALL 768,A$

where AS$ is the string variable to be modified.

Notice how the program works. The first step is to skip over the
comma by calling CHKCOM. After that has been done, TXTPTR



Table 4-16. UPPER. A program to convert lower-case strings to upper-case.

Page #01
ASM
1 I E A EREE R EEREEREEEEEREERERERNENRZJEZSES ZS]
2 * UPPER *
3 * *
4 + CALL 768,A% *
5 * Convert A% to upper case *
6 I E R R E R EEREEEEESEEREEREEEEREEREERNEXRE]
7
8 STRING EQU $6 ;Pointer to string elements
9 VARPNT EQU $83 ;Pointer to variable’s data
10 CHKCOM EQU $DEBE ;Check for comma and move on
11 PTRGET EQU $DFE3 ;Find address of variable
12
13 ORG $300
14
0300: 20 BE DE 15 JSR CHKCOM ;Skip over comma separator
0303: 20 E3 DF 16 JSR PTRGET ;Locate string variable
0306: A0 00 17 LDY #0
0308: B1 83 18 LDA (VARPNT),Y ;Get length of string
030A: AA 19 TAX ; and put it in X
030B: C8 20 INY
030C: B1 83 21 LDA (VARPNT),Y ;Get string pointer (low)

8// 8|ddy ay3 episu| ] 8LL




030E: 85 06 22 STA STRING

0310: C8 23 INY
0311: B1 83 24 LDA (VARPNT),Y ;Get string pointer C(high)
0313: 85 07 25 STA STRING+1
26
0315: 8A 27 TXA
0316: A8 28 TAY ;Put length in Y
0317: CO 00 29 CPY #0 ;Null string?
0319: FO 16 30 BEQ ALLDONE ;Yes, so done
031B: 88 31 SCAN DEY ;Move to previous element
031C: CO FF 32 CPY #$FF sAt the end?
031E: FO 11 33 BEQ ALLDONE
0320: B1 06 34 LDA (STRING),Y ;6et string element
0322: C9 61 35 CMP #'’a 3Is it less than '"a"?
0324: 90 FS 36 BCC SCAN ;Yes, so branch
0326: C9 7B 37 CMP #'2z+1 ;1s it greater than "z"?
0328: B0 F1 38 BCS SCAN s;Yes, so branch
032A: 29 DF 39 AND #$DF ;Convert to u.c.
032C: 91 06 40 STA (STRING),Y ; and put it into string.
032E: 4C 1B 03 41 JMP SCAN
0331: 60 42 ALLDONE RTS
43

--End assembly--
S0 bytes

6LL [121Svg 34ossjddy 1
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will be pointing to the “A” in A$ and PTRGET can be called to
locate the three data bytes used to describe the string (one byte
for the length and two bytes representing its location). The pointer
to the first of these three bytes is automatically stored in VARPNT
($83/$84), so that the three bytes can be examined by using indirect
indexed instructions as follows:

LDA (VARPNT),Y

where Y=#,1,2. After the length and pointer have been determined,
it is a simple task to scan through the bytes in the string to see
whether their ASCII codes are between those for “a”’ and ‘“z”” and,
if they are, to convert them to upper-case by performing an AND
#$DF operation. (This essentially subtracts 32 from the lower-case
ASCII code, thus converting it to the corresponding upper-case
ASCII code.) If you print A$ after calling UPPER, you will see that
all of its lower-case characters have, indeed, been converted to
upper-case.

Evaluating Formulas

Not surprisingly, there are also several built-in Applesoft sub-
routines that can be used to evaluate mathematical formulas. Again,
you could write such programs yourself, but they would need to
be exceedingly complex and would be difficult to develop.

The main Applesoft subroutine for evaluating a mathematical
formula is called FRMNUM and is located at $DD67. To use it,
you must first ensure that TXTPTR is, as usual, pointing to the
location of the first character in the formula. Once this has been
done, FRMNUM can be called; after this subroutine has finished
executing, the result of the calculation will be stored in the FAC.
You can then use other built-in subroutines to massage this number
as you see fit, for example, to print it out or to convert it to an
integer.

Let’s look at an example of the use of FRMNUM. The program
in Table 4-11, called FORMULA, evaluates any mathematical for-
mula that is passed to it and displays the result. To CALL it from
Applesoft, you must enter the command

CALL 768,aexpr

where “aexpr’ represents the Applesoft formula that is to be eval-
uated.

The first part of the program should look familiar. It is the
“standard” JSR CHKCOM instruction that skips over the comma
after the CALL statement. Once this has been performed, the for-
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mula can be evaluated by a JSR FRMNUM and the result will be
placed in the primary FAC. To see the result it is simply necessary
to perform a JSR PRINTFAC ($ED2E).

Converting Numbers

Number conversion plays an important role in the Applesoft
interpreter. Numbers are normally handled internally in a binary
format, but whenever they are to be displayed they must be con-
verted to more recognizable decimal numbers. Conversely, num-
bers that are inputted, say from the keyboard by a user, are nor-
mally inputted in decimal form and must be converted to binary
form before they can be processed.

In addition to the above types of conversions, it is often necessary
to convert an integer number to a floating-point number and vice
versa. This is handled by the Applesoft GIVAYF subroutine and by
the CONINT or GETADR subroutines, respectively. The latter two
subroutines are especially useful because quite often only integer
quantities are being manipulated and, as we have seen, whenever
a formula is evaluated by performing a JSR FRMNUM, the result
is placed in the FAC, which is difficult to interpret. By using CON-
INT or GETADR, the FAC can be quickly converted to an easy-to-
handle one- or two-byte integer format.

The program in Table 4-12, CONVERT, shows how the CONINT
subroutine can be used to convert the contents of the FAC to a one-
byte integer in the range @ . . . 255. As usual, CONVERT is designed
to be called from Applesoft, using the command

CALL 768,aexpr

where “aexpr’”’ represents a mathematical formula that will eval-
uate into an integer within the @ ... 255 range.

The first step is to skip over the comma with a JSR CHKCOM.
Then, the formula is evaluated and placed in the primary FAC with
a JSR FRMNUM. At this stage, we would like to convert the FAC
into an easier format to handle: a one-byte number. This is done
by executing a JSR CONINT; after CONINT has been executed,
the one-byte number will be found in the X register. CONVERT
then stores the value in the X register at location $6 where it can
be read with an Applesoft PEEK (6) command.

If the integer result is going to be larger than 255, then GETADR
must be used instead of CONINT. After a JSR GETADR, the value
of the integer will be contained in LINNUM ($50/$51), so that the
decimal result will be PEEK(80) +256+PEEK(81).
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Table 4-11. FORMULA. A program to add two integers together.

Page #01
ASM

1 IR E R REREERERXRRERRERJERJEJRJEJRJEJR®EJEJRJEJRJEJE ]
2 FORMULA *
4 * *
g * CALL 768,[formulal *
g *This program evaluates *
2 *and displays an Applesoft =«
8 *mathematical formula. *
9 LR E R R R E X EREERREJRJEJRJEJERJEXEJEJEJEJZEJEJXJEJE ]
10
11 FRMNUM EQU ¢DD67 sEvaluate formula
12 CHKCOM EQU $DEBE s;Check for comma and move on
13 PRINTFAC EQU $ED2E ;Display the result
14
18 ORG $300
16

0300: 20 BE DE 17 JSR CHKCOM ;Skip over comma separator
18




0303: 20 67 DD

0306: 20 2E ED 29

0309: 60

19 AR R R RS R RS SRR EEEEEREE R R RESEERE:R,]

20 *+ Evaluate the fomula and put *
21 » it in the FAC. *
22 % 3 I I I I I I I I I I I I I I I I I I EEH KN
23 JSR FRMNUM

24

25 ER R X IR R K K I K K I X I I R I I K IR I K K K K R R K R

26 * Convert the number in FAC =*

27 * to decimal and display it.«

28 LR E X E R XXX XXX E X X XX XX EJZEJEJZSJEHJEJEJEZ:Z]

JSR PRINTFAC

30

31 RTS

32

--End assembly--

10 bytes

Errors:

0

g2L [101Svg 3joss|ddy ¢



Table 4-12. CONVERT. A program to evaluate a formula.

Page #01
A M
0300: 20
0303: 20
0306: 20
0309: 86
030B: 60

--End assembly--

12 bytes

Errors:

M- aaaaaa0ONOOAWN —

_oc0oOoONOUNAWND 2O

I EE R R R SRR R EREEEERESRSESESSE)]

* CONVERT *

* *

* CALL 768,[formulal =+

A E R R R R EEE R EREEEE SRR RRSESE.]

RESULT EQU $6 sStore the answer here

CHKCOM EQU $DEBE ;Check for comma and move

FRMNUM EQU $DD67 ;Evaluate a formula

CONINT EQU $EGFB ;Convert FAC to integer
ORG $300

JSR CHKCOM ;Skip over comma
JSR FRMNUM sEvaluate the formula
JSR  CONINT ;Put one-byte answer in X

STX RESULT ;Store the answer
RTS

a// aiddy aya spisu| ] p2L
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FURTHER READING FOR CHAPTER 4

Standard reference works . ..

Applesoft BASIC Programmer’s Reference Manual, Volumes 1 and
2, Apple Computer, Inc., 1982.

All About Applesoft, Call -A.P.P.L.E., 1981. A useful source of in-

ternal information about Applesoft.
On Applesoft entry points . . .

J. Crossley, “Applesoft Internal Entry Points”’, Apple Orchard,
March/April (1980). The seminal work on Applesoft entry points.
Unfortunately, it contains numerous typographical errors and
incorrect addresses — these corrections have been made in a
reprint of the article which appears in “All About Applesoft,”
above.

R.M. Mottola, “Applesoft Floating Point Routines,” Micro, Au-
gust 1980, p. 53. A detailed look at Applesoft’s built-in sub-
routines that support real-number mathematics.

C. Bongers, “In the Heart of Applesoft,” Micro, February 1981,
p- 31. A comprehensive look at the internals of the Applesoft
interpreter.

“Using Applesoft ROMs from Assembly Language,” Apple Assem-
bly Line, November 1981, pp. 2-13. More on accessing Apple-
soft’s built-in subroutines.

C. Bongers, “Applesoft’'s CHARGET Routine,” Call -A.P.P.L.E.,
March 1982, p. 21. Suggestions for improvements to CHAR-
GET.

B. Sander-Cederlof, “All About PTRGET & GETARYPT,” Apple
Assembly Line, March 1983, pp. 2-9. A look at two useful entry
points to Applesoft.

On Applesoft data storage . ..

V. Golding, “Applesoft From Bottom to Top,” Call -A.P.P.L.E.,
March 1979, p.3. A look at the internal structure of Applesoft.

G.A. Lyle, “Float, Float, Float Your Point (F.P. Representation),”
Apple Orchard, Winter 1980, pp. 37-39. A description of how
Applesoft stores real variables.

E.E. Goez, “Real Variable Study,” Call -A.P.P.L.E., January 1981,
pp. 8-23. A detailed look at how Applesoft deals with real var-
iables.

C.K. Mesztenyi, “Applesoft Internal Structure,” Call -A.P.P.L.E.,
January 1982, p.9

A. Moss, ‘“Playing With Program Pointers,” Nibble, Vol. 4, No. 3
(1983), pp. 69-81. A look at the various Applesoft pointers.
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On linking to assembler language . ..

B. Sander-Cederlof, “Using USR for a WEEK,"” Apple Assembly
Line, October 1982, p. 3. A program is presented which uses
USR to calculate the value of a two-byte pointer.

D. Lingwood, “The Return of the Mysterious Mr. Ampersand,”
Call -A.P.P.L.E., May 1988, p.26. Examples of uses for the &
command.

Source Code for the Applesoft interpreter . ..
Available from:
(1) Roger Wagner Publishing, P.O. Box 582, Santee, CA 92671
(comes with and requires Merlin Assembler).
(2) S-C Software Corporation, P.O. Box 280300, Dallas, TX
75228 (requires S-C Macro Assembler)



Disk Operating System

The first peripheral device that users of the /e add to their sys-
tems is invariably a disk drive. There are two main reasons for
this. First, the alternative low-cost mass storage device, a cassette
recorder, is extremely awkward to use since it is slow, unreliable,
and does not allow for random access of information. Second, vir-
tually all commercially available software for the //e is available
on diskette only.

Information is passed to and from a diskette by using special
disk operating system (DOS) commands that are available for use
by an Applesoft program after a DOS diskette is first started up
(or “booted”). The purpose of this chapter is not to teach you how
to use these commands but rather to explain the methods used by
DOS to organize information on diskettes and to provide you with
an insight into the internal operation of DOS. The two operating
systems used by Applesoft programs will be covered: DOS 3.3 and
ProDOS.

Before a diskette can be used by either DOS 3.3 or ProDOS it
must be initialized. This is done by using the DOS 3.3 INIT com-
mand or a command in the ProDOS FILER program. The initial-
ization process formats the diskette into 35 “tracks” on the diskette
(numbered from @ to 34), each of which can hold 4096 bytes of
information. These tracks are arranged in concentric rings around
the central hub of the disk, with track @ being located at the outside
edge and track 34 at the inside edge.

Each of the 35 tracks that are formatted on a diskette are sub-
divided into sixteen smaller units called “sectors.” The sectors that
make up a track are numbered from @ to 15 and each can hold
exactly 256 bytes of information. If you do the mathematics, you
will quickly determine that a diskette can hold 560 sectors (140K)
of information.

Note that although DOS 3.3 and ProDOS both subdivide each
track into 256-byte sectors, only DOS 3.3 uses the sector as the
basic unit of file storage. That is, the smallest unit of disk space

127
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that can be allocated to a file is one sector. ProDOS uses the ‘“‘block”
as the basic unit of file storage; each block is made up of two
sectors.

We are now ready to take a look at where DOS 3.3 and ProDOS
are loaded into memory and how they organize and store infor-
mation on a formatted diskette. We will begin with a description
of DOS 3.3 and then move on to a description of ProDOS.

THE INTERNAL STRUCTURE OF DOS 3.3
DOS 3.3 Memory Map

DOS 3.3 occupies the upper part of built-in internal RAM mem-
ory from locations $9D@0 to $BFFF. However, it also reserves a
space just below this for diskette file work areas, called “file buff-
ers.” When DOS 3.3 is first activated, three such file buffers are
reserved, and they occupy the area from $9600 to $9CFF in mem-
ory.

To ensure that an Applesoft program does not overwrite the areas
used by DOS 3.3, DOS 3.3 ensures that Applesoft’s HIMEM pointer
at $73/$74 (see Chapter 4) is set equal to the lowest address reserved
for the file buffers (usually $960@). Thus, the data for Applesoft
string variables will be stored at locations below this memory
location and DOS 3.3 and its file buffer areas will be protected.

Note, however, that the starting location of the file buffer area
reserved by DOS 3.3 can be changed by using the MAXFILES com-
mand. The syntax associated with the MAXFILES command is

MAXFILES n

where “n”’ represents an integer from 1 to 16 that is equal to the
number of DOS 3.3 files permitted to be open at the same time.
Each of these files has associated with it a 595-byte buffer that is
used for input/output operations. The first of these buffers begins
at location $9AA6 and successive buffers begin every 595 bytes
lower in memory than the previous one. Since the default setting
for MAXFILES is 3, the lowest file buffer begins at $9604.

Whenever MAXFILES is changed, not only does the start of the
file buffer area change, but so also does the Applesoft HIMEM
location (in fact, it is set equal to the start of the file buffer area).
Because of this, MAXFILES should always be changed at the very
beginning of an Applesoft program, before any string variables are
defined.
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After MAXFILES has been set to the desired value, the Applesoft
HIMEM command can be used to set the highest memory location
that Applesoft strings can use (this must be lower in memory than
the start of the lowest DOS 3.3 file buffer). By moving HIMEM
lower in memory, a space can be freed up between HIMEM and
the beginning of the DOS 3.3 file buffers that can be used as a safe
place to store machine-language programs.

DOS 3.3 Page 3 Vectors

DOS 3.3 also reserves for its own use a block of memory in page
3 of memory beginning at location $3D@ and ending at location
$3EE. This area contains several subroutines that can be called to
transfer control to commonly used DOS 3.3 subroutines; for this
reason, these subroutines (most of which are simply 6502 JMP
instructions) are called vectors. The reason for placing these vec-
tors at fixed locations in page 3 is to allow a program to auto-
matically maintain compatibility with future versions of DOS 3.3.
If a program accesses DOS 3.3 only through these vectors, then it
need not be modified even if the absolute locations within DOS
3.3 to which these vectors point are changed.

The memory map of the DOS 3.3 page 3 vector area is set out
in Table 5-1.

DOS 3.3 also initializes most of the system vectors that appear
in page 3 from $3F@ . .. $3FF. This includes the interrupt vectors
for BRK, Reset, IRQ, and NMI (see Chapter 2), as well as the vector
for the system monitor’'s <CTRL-Y> USER command (see Chapter,
3). Descriptions of the vector addresses set up by DOS 3.3 are given
in Table 5-2.

Volume Table of Contents (VTOC)

One of the 56 sectors on a DOS 3.3-formatted diskette is reserved
for use as the volume table of contents (VTOC). The VTOC is used
to hold the following important information:

* The location of the start of the diskette’s catalog (see next sec-
tion)

» Numeric constants that relate to the characteristics of the dis-
kette

+ A bit map that is used to indicate which sectors on the diskette
are in use.
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Table 5-1. DOS 3.3 page 3 vectors.

Address Description of Vector

$3D0-$3D2 A JMP instruction to the DOS 3.3 warm-start entry
point. A call to this vector will reconnect DOS with-
out destroying the Applesoft program in memory.
Use the “3D@G” command to move from the system
monitor to Applesoft.

$3D3-$3D5 A JMP instruction to the DOS 3.3 cold-start entry
point. A call to this vector will initialize DOS 3.3
to the state it was in when it was first loaded and
will clear the Applesoft program in memory.

$3D6-$3D8 A JMP instruction to the DOS 3.3 file manager. See
Note 1.

$3D9-$3DB A JMPinstruction to the DOS 3.3 RWTS subroutine.
See Note 2.

$3DC-$3E2 A subroutine that loads the A register with the high-
order address and the Y register with the low-order
address of the DOS 3.3 file manager parameter list.
See Note 1.

$3E3-$3E9 A subroutine that loads the A register with the high-
order address and the Y register with the low-order
address of the DOS 3.3 RWTS parameter list (called
I0B). See Note 2.

$3EA-$3EC A JMP instruction to the DOS 3.3 subroutine that
causes it to accept new I/O links and reconnect it-
self. This subroutine must be called to properly in-
stall new I/O subroutines without affecting DOS 3.3
(see Chapters 6 and 7).

Note 1. The DOS 3.3 file manager is the intermediary between the DOS
3.3 commands and the fundamental disk I/O subroutine (RWTS). It is
responsible for ensuring that the parameters for a DOS 3.3 command have
been correctly specified and that the correct disk operations that must be
executed for that command are performed.

Note 2. The RWTS subroutine is discussed in detail later in this chapter.

The VTOC is located at track 17, sector @ on the diskette. Table
5-3 sets out the meaning of each of the 256 bytes in the VTOC
sector.

The track bit map that begins at location $38 in the VTOC sector
and ends at location $C3 represents the most important part of the
VTOC. It is referred to by any DOS 3.3 command that writes in-
formation to a diskette so that the command can determine which
sectors on the disk are free and which are already in use by a file.
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Table 5-2. Initialization of page 3 system vectors by DOS
3.3.

Vector Name Address Contents Description

BRK $3F0-3$3F1 $FA59 Address of a subrou-
tine to display the
6502 registers and en-
ter the system moni-
tor.

RESET $3F2-$3F3 $9DBF Address of the DOS
3.3 reset-handling
subroutine (recon-
nects DOS 3.3).

USER $3F8—$3FA “JMP Jump to the system
$FF65” monitor’s warm-start
entry point.
NMI $3FB-$3FD “JMP Jump to the system
$FF65” monitor’s warm-start
entry point.
IRQ $3FE-$3FF $FF65 Address of the system
monitor’s warm-start
entry point.

Note: The addresses stored at each vector location are stored with the
low-order byte first.

You will see from Table 5-3 that four bytes in the track bit map
are allocated to represent the usage of each track on the diskette;
however, it turns out that only the first two are used (the other
two bytes are always #0). As shown in Figure 5-1, each of the 16
bits in these first two bytes corresponds to one of the 16 sectors
that make up the track. Track 15 corresponds to bit 7 of the first
byte in the pair, track 14 corresponds to bit 6, track 13 corresponds
to bit 5, and so on. Whenever the bit corresponding to a particular
sector is @, then that sector is in use. Conversely, if that bit is 1,
then that sector is free.

Note that when a diskette is first initialized, all of tracks @, 1, 2,
and 17 are marked “in use” by DOS 3.3. This is because tracks 0,
1, and part of 2, are used for storage of DOS 3.3 itself and track
17 is used for storage of catalog and VTOC information. When a
file is saved to diskette, the sectors it occupies will be marked in
use as well. When a file is deleted from the diskette, DOS 3.3
determines which sectors that file was using and changes the zeros
in the track bit map corresponding to those sectors to ones.
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Table 5-3. Map of the DOS 3.3 Volume Table of Contents
(VTOC) sector.

Byte number

in VTOC Description (Usual values in parentheses)
$00 <Not used>
$01 Track number of first catalog sector (17)
$02 Sector number of first catalog sector (15)
$03 DOS version number (3 for DOS 3.3)
$04—$0@5 <Not used>
$06 Volume number of diskette (1 ... 254)
$07-326 <Not used>
$27 Maximum number of track/sector pairs in each sec-
tor of a file’s track/sector list (122)
$28-$2F <Not used>
$30-3$31 Used by DOS 3.3 when allocating sectors
$32-$33 <Not used>
$34 Number of tracks per diskette (35)
$35 Number of sectors per track minus 1 (15)
$36 Number of bytes/sector low (@)
$37 Number of bytes/sector high (1)
$38-$3B Track bit map for track #0
$3C-$3F Track bit map for track #1
$40-%43 Track bit map for track #2
$44-%$47 Track bit map for track #3
$BC-$BF Track bit map for track #33
$CO-$C3 Track bit map for track #34
$C4-3$FF <Not used>

All manipulations of the track bit map are handled automatically
whenever a DOS 3.3 command is entered and it is usually not
necessary to deal with it directly. There is one particularly useful
utility program, however, that necessitates analyzing the track bit
map directly: a program that calculates the free space remaining

Bits of first byte —_— 7 6 5 4 3 2 1 0
Sector number  —  §O0F §0E $0D $OC $0B $OA $09 $08

Bits of second byte —» 7 6 5 4 3 2 1 0

Sector number —_— $07 $06 $05 $04 $03 $02 $01  $00

Figure 5-1. Correlation of track bit map byte pairs to sectors.
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on a diskette. Such a program works by scanning through all the
track bit map bytes and counting the number of “1” bits that are
detected. A program that will do this will be presented later in
this chapter, when we discuss how to read into memory individual
sectors of the diskette using the RWTS subroutine.

Diskette Catalog

Up to 105 files of information can be stored on a diskette. DOS
3.3 keeps track of these files by asking you to assign names to each
of them when they are created (the names of all files on the diskette
are displayed whenever the CATALOG command is entered). DOS
3.3 reserves 15 sectors in track 17 of the diskette (sectors 15 down
to 1) to store these file names; these sectors comprise the diskette
catalog. The diskette catalog also holds information relating to the
size and type of each file, as well as the locations of the sectors on
the disk that contains the list of sectors used to hold the data for
each file.

The first catalog sector is actually found at the location stored
in byte 1 (track number) and byte 2 (sector number) of the VTOC;
the values stored here are 17 and 15, respectively. This first catalog
sector at track 17/sector 15 is the first in a linked list of sectors;
the next link in the chain is always contained in byte 1 (which
contains the track number) and byte 2 (which contains the sector
number) of a catalog sector. The last catalog sector will contain
zeros in byte positions 1 and 2. If DOS 3.3 has not been modified,
the catalog sectors used will be sectors 15 through 1 of track 17.

The layout of a typical catalog sector is shown in Table 5-4. As
can be seen, each catalog sector reserves 35 bytes of information
for each of seven different files. Since 15 different catalog sectors
are used by DOS 3.3, a total of 105 different files can be stored on
the diskette.

Each 35-byte catalog entry in a catalog sector contains infor-
mation relating to the name of a file, its size and type, and the
location of its track/sector list (TSL). The structure of the TSL will
be discussed in the next section. The meanings of each of the bytes
in a catalog entry are set out in Table 5-5.

It may be that a particular catalog entry refers to a file that has
been deleted. If this is the case, then byte $00 of the catalog entry
will be set to $FF and the original value stored there (which rep-
resents a track number) will be stored at byte $20.

If a file has been accidentally deleted from a diskette, it is pos-
sible to resurrect it if no other file has been saved to disk since the



134 [ Inside the Apple //e

Table 5-4. Map of a DOS 3.3 catalog sector.

Byte
number in
Catalog
Sector Description
$00 <Not used>
$01 track number of next catalog sector
$02 sector number of next catalog sector

$03-$0A <Not used>

$9B—$2D Catalog entry for file #1
$2E-$50 Catalog entry for file #2
$51-$73 Catalog entry for file #3
$74-%96 Catalog entry for file #4
$97-$B9 Catalog entry for file #5
$BA-$DC Catalog entry for file #6
$DD-$FF Catalog entry for file #7

Note: Bytes 1 and 2 are both @ for the last catalog sector.

deletion. This is done by restoring byte $00 in the file’s catalog
entry to its original value (which is stored in byte $20) and then
changing byte $20 to an ASCII blank (code $A#). This can be done
using the READ SECTOR program presented later in this chapter.
This program allows you to easily modify the contents of any sector
on a diskette.

After the modified catalog entry has been saved to the diskette,
the deleted program will once again appear in a CATALOG listing.
One more important step must be performed, however: the file
must be immediately copied to another diskette using the FID
program on the DOS 3.3 system master diskette and then deleted
from the original diskette once again. It is not enough simply to

Table 5-5. Description of catalog entry.

Relative
Byte
Number Description
$00 Track number of first TSL sector
$01 Sector number of first TSL sector
$02 File type code (see Table 5-6)
$03-$20 File name (in ASCII with bit 7 = 1)
$21 Number of sectors occupied by file (low)

$22 Number of sectors occupied by file (high)
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restore the catalog entry, because the track bit map will not mark
as “‘in use” those sectors used by the accidentally deleted file. Thus,
the file could be overwritten the next time any information is saved
to the diskette.

File Types

The file type code (relative byte $82 of a catalog entry) can be
one of sixteen values, depending on the file type and whether the
file is locked or not (a locked file cannot be renamed, deleted, or
written to). A code letter for each file type is displayed to the
immediate left of the file name whenever a diskette is catalogued
and is preceded by an asterisk if the file is locked. Table 5-6 sets
out the numeric file type codes and code letters for each permitted
DOS 3.3 file type.

Track/Sector List (TSL)

The first two bytes of a catalog entry point to an important sector
that is associated with each file. This is the track/sector list (TSL)
sector and it contains an ordered list of all those sectors on the
diskette that contain the file’s data. Without this list, it would be
impossible to determine where the contents of a file were stored
on the diskette.

The layout of a TSL sector is shown in Table 5-7. Each such
sector contains up to 122 track/sector pairs that indicate where on
the diskette the file data is located. If more track/sector pairs are
used, then another TSL sector is allocated; its location is pointed

Table 5-6. DOS 3.3 file type codes.

Code File Type Code
File Type Letter  Unlocked Locked
Text T $00 $80
Integer BASIC program I $01 $81
Applesoft program A $02 $82
Binary B $04 $84
[Reserved but undefined] S $08 $88
Relocatable EDASM R $10 $90
[Reserved but undefined] A $20 $A0Q
[Reserved but undefined] B $40 $Co

Note: EDASM files are created by the Apple 6502 Editor/Assembler.
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Table 5-7. Map of a DOS 3.3 Track/Sector List (TSL)
sector.

Byte Number Description

$00 <Not used>
$01 Track number of next TSL sector
$02 Sector number of next TSL sector

$03-$04 <Not used>

$05-$06 Number of T/S pairs defined in previous TSL sec-
tors (low byte first)

$07-$0B <Not used>

$aC Track number of 1st data sector
$0D Sector number of 1st data sector
$0E Track number of 2nd data sector
$OF Sector number of 2nd data sector
$FE Track number of 122nd data sector
$FF Sector number of 122nd data sector

to by bytes 1 and 2 in the preceding TSL sector. If these bytes are
zero, then no further TSL sectors have been allocated.

If a particular track/sector pair in a TSL is 0/@, then that data
sector is undefined. With one exception, the #/@ pair also indicates
an end-of-file condition, that is, there are no more track/sector pairs
in the TSL that have been allocated to the file.

The only exception arises when random-access textfiles are being
used. When these types of files are created, only those track/sector
pairs within the TSL that correspond to random-access records
that have actually been used will contain track/sector information.
A 0/0 will be stored at the other TSL locations. Thus, if a high
record number is used before any lower ones, several #/@ pairs will
appear in the TSL before the one corresponding to the record that
was used.

Storing File Data

Generally speaking, the contents of each sector referred to in the
TSL for a particular file contains the data that makes up that file:
the tokenized program for an Applesoft or Integer BASIC file, the
binary data for a binary file, and the ASCII codes (with the high
bits set to 1) for the characters in a text file.
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In the case of an Applesoft or Integer BASIC file, however, the
first two bytes in the first data sector allocated to it are not program
tokens but rather the length of the stored program (low-order byte
first). The DOS 3.3 LOAD and RUN commands use this information
to determine how many bytes in the file are to be transferred into
memory.

In the case of a binary file, the first four bytes in the first data
sector allocated to it are not part of the binary image that was
saved to diskette. The first two bytes represent the default loading
address for that image (low-order byte first) and the next two bytes
represent the length of that image (low-order byte first). The DOS
3.3 BLOAD and BRUN commands require this information to prop-
erly load the image into memory.

Note that every byte in a sequential text file is significant since
no overhead bytes are stored with it. The end of the file is indicated
by a $80 byte and when this byte is encountered when a READ
operation is being performed, no further information is read from
the file. For random-access textfiles, the unused portion of each
record contains $00@ bytes, and there is no end-of-file indicator.

RWTS—Accessing the Diskette Directly

So far, we have only described how information is organized on
the diskette and not how DOS 3.3 physically stores it there. It turns
out that all diskette I/O operations performed by DOS 3.3 are ex-
ecuted by a single subroutine called RWTS (Read or Write a Track
and Sector) that can be invoked by calling the RWTS page 3 vector
at location $3D9 (see Table 5-1). It is this subroutine that is re-
sponsible for loading a 256-byte sector into a memory area (called
an I/0 buffer) and also for storing the contents of an I/O buffer to
any particular sector on the diskette.

RWTS expects two data blocks to be set up before control is
passed to it. These blocks are called the I/O block (IOB) and the
device control table (DCT). The information in these data blocks
provides all the information RWTS requires in order to perform
its chores: the disk drive slot and drive number, the type of op-
eration to perform, the location of the I/O buffer, and so on. The
meanings of each of the bytes in these blocks is shown in Table
5-8.

Just before the RWTS subroutine is called, the accumulator must
contain the high-order address of the IOB and the Y register must
contain the low-order address. You can set up your own IOB and
DCT data blocks or use the ones already set up by DOS 3.3. If
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Table 5-8. Map of DOS 3.3 RWTS data blocks—IOB and
DCT.

(a) 1/0 Block (IOB)
Byte Number Description

$00 Type code of IOB (must be $d1)

$01 Slot number x 16 (e.g., $6@ for slot 6)

$02 Disk drive number ($01 or $82)

$03 Expected volume number ($00 will match any-
thing)

$04 Track number (0—-34)

$05 Sector number (@-15)

$06 Address of DCT (low order)

$07 Address of DCT (high order)

$08 Address of data buffer (low order)

$09 Address of data buffer (high order)

$0A <Not used>

$9B <Not used>

$0C Command codes:

$00 (turn on drive/position head)
$01 (read sector into data buffer)
$02 (write to sector from data buffer)
$04 (initialize the diskette)
$0D Error code that is returned:
$00 (no error)
$10 (write-protected)
$20 (wrong volume number)
$30 (formatting error)
$40 (disk I/O error)

$OE Actual volume number found on diskette
$0F Disk slot times 16 last accessed
$10 Drive number last accessed (381 or $02)

(b) Device Characteristics Table (DCT)
Byte Number Meaning

$00 Device type (must be $00)
$01 Phases per track (must be $@1)
$02-$03 Motor on-time count, low-order byte first (must
be $EFDS)

DOS’s IOB and DCT blocks are to be used, the accumulator and Y
register can be properly set up by a call to the page 3 vector at
$3E3.

If you are going to make use of DOS 3.3’s own IOB, then all the
necessary parameters must be stored in it before calling RWTS.
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This can be done by calling $3E3 to get the address of the IOB in
Y (low) and A (high), storing this address in two consecutive zero-
page locations, and then using the 65@2’s indirect indexed address-
ing mode to access the IOB. For example, to locate the IOB and
place the value $64 (slot 6 times 16) at location $81 and the value
$01 (drive number) at location $82, the following program would
be used:

JSR $3E3 ;Get address of IOB in A/Y

STY $6 ;Put address in zero page

STA $7

LDY #1 ;Set index for slot*16

LDA #$60

STA ($6),Y ;Store slot*16 at position $01
LDY #2 ;Set index for drive #

LDA #$01

STA ($6),Y ;Store drive # at position $02

After all the applicable parameters have been stuffed into the
IOB, another call to $3E3 must be made to ensure that A and Y
again contain the address of the IOB, and then RWTS can be called
by executing a JSR $3D9 command (RWTS requires that A and Y
contain the IOB address). If an error occurs while RWTS is per-
forming diskette I/O, the carry flag will be set when the subroutine
ends (otherwise it will be clear). If an error occurs, the type of error
can be deduced by looking at byte $0D of the IOB. The error codes
stored here are listed in Table 5-8.

The program in Table 5-9, called DISK FREE SPACE, is a good
example of a program that makes use of the RWTS subroutine.
DISK FREE SPACE determines the number of free sectors on a
diskette by using RWTS to load the VTOC sector into memory
(track 17, sector @) and then counting the number of “1” bits in
the track bit map. Parameters are put into the same I0B that DOS
3.3 uses by setting the Y register equal to that parameter’s position
within the IOB and then using an indirect-indexed store instruction
of the form “STA (IOBPTR),Y”’, where IOBPTR is the first of two
zero page locations containing the address of the IOB.

DISK FREE SPACE stores its two-byte result in zero page lo-
cations $8 and $9, low-order byte first. To convert this to a decimal

number from Applesoft, it is necessary to calculate the quantity
PEEK(8)+256+«PEEK(9).



Table 5-9. DISK FREE SPACE. A program to calculate the number of free sectors on a DOS 3.3

diskette.
Page #01
ASM
1 IE E R EEEERREREENERNEHXRSZESZSZ;
2 * DISK FREE SPACE =+
3 R IR R R
4
5 BUFFPTR EQU $0 sPointer to data buffer
6 I0BPTR EQU $6 sPointer to location of 10B
7 FREE EQU ¢$8 sNumber of free sectors
8 BUFFER EQU $200 ;Sector will be loaded here
9
10 STATUS EQU $48 sMonitor status location
11 RWTS EQU $3D9 ;RWTS entry point
12 GETIOB EQU $3E3 ;Get DOS 3.3’s I0B location in A/Y
13
14 ORG $300
15
0300: 20 E3 03 16 JSR GETIOB sFind DOS’s I0B
0303: 84 06 17 STY IOBPTR ; and store low address
0305: 85 07 18 STA I0BPTR+1 ; and high address
0307: A0 01 19 LDY #1
0309: A9 60 20 LDA #%$60 ;(Slot 6 * 16)
030B: 91 06 21 STA (IDBPTR),Y
030D: C8 22 INY
030E: A9 01 23 LDA #1 ;(Drive 1)
0310: 91 06 24 STA C(IOBPTR),Y
0312: C8 25 INY
0313: A9 00 26 LDA #0 ;(Any volume number will do)
0315: 91 06 27 STA (IOBPTR),Y
0317: C8 28 INY

a// aiddy aya spisu| ] ObL




0340:
0342:
0344:

0346:
0348:
034A:
034C:
034D:

03
03

#17 3CTrack 17)

(IOBPTR),Y

#0 ;(Sector 0)

(IOBPTR),Y

#8

#<BUFFER ;(Low part of buffer address)
(IOBPTR),Y

BUFFPTR ;(Set up 0-page pointer too)
#>BUFFER ;(High part of buffer address)
C(IOBPTR),Y

BUFFPTR+1 ;(Set up 0-page pointer too)
#$0C

#1 s (READ command code)
(IOBPTR),Y

GETIOB 3;Get address of I0OB in A/Y
RWTS ; and call RWTS to get VTOC
#0

STATUS s(Clear monitor status)

* Determine the number of ‘1’ bits in track bit map:

COUNT
COUNT1

LDA
STA
STA

- LDY

LDX
LDA
ROL
BCC

#0 ;Zero the free-space counter
FREE
FREE+1
#$38 ;Track bit map starts here
#8 38 bits to examine
(BUFFPTR),Y ;Get bit map byte

;Put high bit into carry
NEXTBIT sBranch if bit was 0

(continued)
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Table 5-9. DISK FREE SPACE. A program to calculate the number of free sectors on a DOS 3.3
diskette (continued).

034F: E6 08 61 INC FREE ;Bump 2-byte counter by one
0351: DO 02 62 BNE NEXTBIT
0353: E6 09 63 INC FREE+1
0355: CA 64 NEXTBIT DEX s;Decrement bit count
0356: DO F4 65 BNE COUNT1 sBranch if not done
0358: C8 66 INY ;Move on to next byte in bit map
0359: C0 C4 67 CPY #$C4 ;At end of bit map?
035B: DO EB 68 BNE COUNT ;No, so keep counting
035D: 60 69 RTS
70

--End assembly--
94 bytes

Errors: 0

8// 3|ddy aya apisu| [] bl
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Table 5-16. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette.

ILIST

0 REM "READ SECTOR"™
1 REM (FOR DOS 3.3 ONLY)
100 FOR I = 768 to 937: READ X: POKE

I,X: NEXT

110 DEF FN MDC(X) = X - 16 * INT
X /7 16)

120 TS 5: REM TRACKS/SECTOR

1
130 TR 34: REM NUMBER OF TRACKS
140 IN# 0: PR# 0
150 TEXT : HOME : PRINT TABC 16
);: INVERSE : PRINT '"READ SE
CTOR'": NORMAL : PRINT TABC
11);"(C) 1984 GARY LITTLE"™
160 VTAB 10: CALL - 958: PRINT
“ENTER BASE TRACK NUMBER (0
-";TR;: INPUT "™): *;T$: IF T
$ = ““THEN 160
170 T = INT € VAL (T$)): IF T =
0 AND T$ < > "0'" THEN 160
180 IF T <« 0 OR T > TR THEN 160
190 VTAB 11: CALL - 938: PRINT
"“"ENTER BASE SECTOR NUMBER (0
-*;TS;: INPUT "): ";S$: IF S
$ = "" THEN 190
200 S = INT ¢ VAL (S$)): IF S =
0 AND S$ < > "0'" THEN 190
210 IF S ¢ 0 OR S > TS THEN 190
220 POKE 0,T: REM TRACK#
230 POKE 1,S: REM SECTOR#
240 POKE 2,1: REM READ=1 WRITE=2

250 CALL 7e8

260 IF PEEK (8) < > THEN PRINT
: INVERSE : PRINT "DISK 1/0
ERROR*": NORMAL : PRINT "PRES
S ANY KEY TO CONTINUE: *';: GET
A$: PRINT A$: GOTO 150

1000 VTAB 4: CALL - 958: PRINT
" CONTENTS OF TRACK '";T;
', SECTOR ";S: PRINT : POKE

34,5: HOME ,
1010 CALL 823: IF PR = 0 THEN GET
AS

1020 HOME : CALL 924
1030 PR = 0: PR# 0:B = 0:P

[}
—_

(continued)
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Table 5-16. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

1040 HTAB 1: VTAB 23: CALL - 95
8: PRINT "ENTER COMMAND (B,C
,D,E,N,P,Q,W,HELP); ';: GET
A$: IF A $ = CHR$ (13) THEN

A$ = v u
1050 PRINT AS
1060 IF A$ = "D" AND P = 0 THEN
P = 1: HOME : CALL 924: GOTO
104

1070 IF A$ = D" AND P = 1 THEN
P = 0: HOME : CALL 823: GOTO

“H'* THEN 5000

"Q'" THEN 1230

“E"™ THEN 1240

THEN 1190

“N* THEN 1210

“B'" THEN 140

“C'" THEN VTAB 23: CALL
- 958: PRINT TABC ©6);: INVERSE
: PRINT '"TURN ON PRINTER IN

SLOT #1'": NORMAL :PR = 1: PR#

1: PRINT : GOTO 1000
IF A$ ¢ > "W'" THEN 1180
POKE 0,T: POKE 1,S: POKE 2,

2: VTAB 23: CALL - 958: PRINT

“PRESS ‘Y’ TO VERIFY WRITE:

“.: GET A$: IF A$ = CHR$ (1

3) THEN A$ = * *

1170 PRINT A$: IF A$ = "Y' THEN
CALL 768:RW = 1: VTAB 23: CALL
- 958: PRINT "WRITE COMPLET

ED. PRESS ANY KEY: ";: GET A

$: GOTO 1040
GOTO 5000

S =656 -1: IF S = -1 THEN

S = 15:7 T-1: IF T = -

1 THEN T TR
GOTO 220

S + 1: IF S =

=T+ 1: IF T

0

1220 GOTO 220

1230 TEXT : HOME : CALL 1002: END

_ e e s
P e e Y = N =
PWNV—=0CO®
OCOO0OOOCOoOOo
—
-
>
L4
LU | A R | B [ 1]
Y

RN
—_
o ul
(e o)

non

16 THEN S =

S
0: TR + 1 THEN
1

n—un

1240 V = 8:H = 3: VTAB 5: PRINT TAB(
6);: INVERSE : PRINT "I=UP M
=DOWN J=LEFT K=RIGHT'": NORMAL
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Table 5-16. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

1250 HTAB 1: VTAB 23: CALL -95
8: PRINT TABC 6);"PRESS ";:
INVERSE : PRINT "ESC"™;: NORMAL
: PRINT " TO LEAVE EDITOR"™
1260 REM
1270 GOSUB 1410: GET AS$
1280 LC = 16384 + 128 * P + 8 * V
+ H:Y = PEEK (LC): X = ASC
(A$) '
1290 IF A$ = CHR$ (27) THEN HTAB
1: VTAB 5: CALL - 868: GOTO
1040
1300 IF A$ = "I" THEN B = 0:V =
vV - 1: IF V= -1 THEN V =
15: IF P = 1 THEN P = 0: HOME
: CALL 823: GOTO 1250
1310 IF A$ = "J" THEN B = 0:H
H-1: IFH=-1THEN H =

1320 IF A$ = "K" THEN B = 0:H
H+ 1: IF H =8 THEN H =
1330 IF A$ = "M" THEN B = 0:V
V +1: IF V = 16 THEN V =
IF P =0 THEN P = 1: HOME
CALL 924: GOTO 1250
1340 IF B = 0 THEN Y = FN MDCY)
+ 16 % (X - 48) *» (X < = §
7) + 16 % (X - 55) » (X > =
65) ‘
1350 IF B = 1 THEN Y = 16 * INT
(Y /7 16) + (X - 48) * (X < =
§7) + (¥ - 55) * (X > = 65)

0
0:

1360 X = ASC (A$): IF (X > = 48
AND X <« = §7) OR (X > = 6
S AND X ¢ = 70) THEN PRINT
A$;: POKE C PEEK (40) + 256 =+
PEEK (41) + 31 + H),Y: POKE
LC,Y: IF B = 0 THEN CALL 64
500:B =
1370 IF X =
0
1380 IF X = 21 AND B = 0 THEN B =
1
1390 GOTO 1270
1400 CALL - 167
1470 VTAB V + 16: HTAB 3 * H + 7 +
B: RETURN

1
8 AND B = 1 THEN B =

(continued)
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Table 5-16. READ SECTOR. A program to examine
sectors on a DOS 3.3 diskette (continued).

5000 HOME : PRINT TABC 10);"SUM
MARY OF COMMANDS™"™: PRINT TAB(C
10);"===:===============": PRINT

5010 PRINT "B -- RESET BASE TRAC
K AND SECTOR"

5020 PRINT "C -- COPY SECTOR CON
TENTS TO PRINTER™

5025 PRINT "D -- DISPLAY THE OTH
ER 1/2 SECTOR"™

5030 PRINT "E -- EDIT THE CURREN

T SECTOR"™

5040 PRINT "N -- READ THE NEXT S
ECTOR"™

5050 PRINT "P -- READ THE PREVIO
US SECTOR"™

5060 PRINT "Q -- QUIT THE PROGRA
Mll

5080 PRINT "W -- WRITE THE SECTO
R TO DISK"

5090 PRINT : PRINT "PRESS ANY KE
Y TO CONTINUE: ";: GET A$: PRINT
A$: GOTO 1020

6000 DATA 169,0,133,8,32,227,3,1
33,7,132,6,169,0,160,3,145,6

,165,0,200,145,6,200,165,1,1
45,6,169,0,160

6010 DATA 8,145,6,169,64,200,145
,6,165,2,160,12,145,6,32,227
,3,32,217,3,144,2,102,8,96,1
69,0,133,25,169

6020 DATA 64,133,26,162,0,160,0,

169,0,32,218,253,165,25,32,2
18,253,169,186,32,237,253,16
9,160,32,237,253,177,25,32

6030 DATA 218,253,169,160,32,237
,253,200,192,8,208,241,169,1
60,32,237,253,160,0,177,25,1
40,169,3,164,36,145,40,230,3
6

6040 DATA 172,169,3,200,192,8,20
8,237,169,141,32,237,253,232
,24,165,25,105,8,133,25,165,
26,105,0,133,26,224,16,208

6050 DATA 170,169,141,76,237,253
,169,128,133,25,169,64,133,2
6,162,0,76,65,3,255
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DOS 3.3 READ SECTOR Program

Table 5-19 shows an extremely useful program called READ
SECTOR that can be used to examine any sector on a DOS 3.3
diskette, to edit the contents of a sector, and to write a modified
sector back to the diskette. With this program, you can easily look
at real examples of the types of sectors we have been discussing
in this chapter, for example, the VTOC, the catalog sectors, the
TSL sectors, and the file’s data sectors themselves. You should be
careful when writing a sector to a diskette, however, as it is easy
to accidentally render the diskette unreadable.

When READ SECTOR is first run, you will be asked to enter a
base track and sector number. After this information has been
provided, the sector corresponding to that location on the diskette
will be read into memory and displayed on the screen in a special
format. Because of 40-column screen size limitations, only one-half
of the sector can be represented at once (you have to press the “D”
key to display the other half).

The contents of a sector are displayed in 32 rows, each of which
contains an offset address from the beginning of a sector followed
by the hexadecimal representations of the eight bytes stored from
that location onward in the sector. At the far right of each row are
the ASCII representations of each of these eight bytes. Note that
only the first 16 or last 16 rows are displayed at any one time.

After both halves of the sector have been displayed, you will be
asked to enter one of eight commands. The meanings of each of
these commands are as follows:

“B” —reset the base track and sector

“C” —copy the contents of the sector to the printer (in slot 1)
“D” —display the other half of the current sector

“E” —edit the current sector

“N”’—read and display the next sector on the diskette

“P” —read and display the previous sector on the diskette
“Q"” —quit the program

“W” —write the sector back onto the diskette

The functions that most of these commands perform are obvious.
The only “tricky” one is the “E” (Edit) command. When the Edit
command is entered, the cursor will move into the middle of the
8 x 16 array of hexadecimal digits that represent the contents of
one-half of the sector. To change any of these digits, use the I, J,
K, and M keys to move the cursor up, left, right, and down, re-
spectively, and then enter the new two-digit hexadecimal entry for
that position. You can leave editing mode at any time by pressing
the ESC key. Once you have left editing mode, you can save the
changes to diskette by using the “W” (Write) command.
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THE INTERNAL STRUCTURE OF ProDOS

ProDOS was first released by Apple in January 1984 as a suc-
cessor to DOS 3.3. Actually, it does not represent another version
of DOS 3.3, but rather a whole new disk operating system for the
/le. ProDOS organizes information on a diskette in a completely
different way than does DOS 3.3, and so neither DOS can directly
use files that have been created by the other. A utility program
called CONVERT is included with ProDOS, however, which allows
most files to be transferred between DOS 3.3 and ProDOS for-
matted diskettes so that they can be used by either operating sys-
tem. Unfortunately, CONVERT will not work properly with ran-
dom-access textfiles; such files must first be converted to sequential
textfiles. ProDOS is compatible with the SOS operating system for
the Apple ///, however. This means that files stored on a diskette
using ProDOS can be read by SOS and vice versa.

Apple has made great efforts to ensure that virtually all DOS 3.3
commands available to an Applesoft program are also available
when ProDOS is being used. ProDOS has enhanced many of these
commands, however, and has added several new ones. In addition,
ProDOS commands perform disk I/O operations significantly faster
than DOS 3.3 commands.

As you might expect, ProDOS supports several useful features
that the older DOS 3.3 does not. For example, the CATALOG com-
mand displays not only the file name and type, but also the exact
size of the file in bytes, the date and time that the file was created
and last modified (if a clock card has been installed), the default
starting locations of a binary file, and the record length of a ran-
dom-access textfile.

ProDOS also allows user-defined commands to be added to the
standard ProDOS commands that are available to an Applesoft
program. In addition, a well-defined group of diskette file I/O sub-
routines can be easily accessed from a machine-language program
by making requests through a special ‘““machine-language inter-
face” handler. This handler can be used to perform all basic disk-
ette file operations: open, read, write, close, and so on.

One useful new feature supported by ProDOS is the ability to
use the 64K of auxiliary memory contained on Apple’s extended
8@-column text card as if it was a disk drive. The volume name
given to this “RAM-disk” is /RAM and it is treated as if it were an
actual disk drive residing in slot 3, drive 2. The RAM-disk can be
used to load and save programs extremely quickly since “disk” I/
O operations do not involve using any slow-moving mechanical
parts that degrade the data transfer rate considerably. Remember,
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however, that any information stored in the /RAM volume will

disappear as soon as the //e is turned off or when ProDOS is re-
booted.

Probably the most noticeable difference between ProDOS and
DOS 3.3 is the method used to organize files on a diskette. In DOS
3.3, all files on the diskette are contained within one main catalog
that is capable of holding the names of up to 105 files. ProDOS
supports a hierarchical directory structure, however, that allows
several separate directories to coexist on the same diskette. Any of
these directories can contain standard disk files like those that
appear in a DOS 3.3 catalog, but they can also contain files that
themselves define directories (called subdirectories). Any nondi-
rectory file in any directory can always be accessed by specifying
its unique pathname. The pathname is of the form

VOLUME/DIRECTORY1/.../DIRECTORYn/FILENAME

where VOLUME represents the name of the first directory on the
diskette (the volume directory), and DIRECTORY1 through DI-
RECTORYn represent the names of all the directories that must
be passed through to reach the file being accessed, FILENAME.
Each of the directories in this pathname must be contained within
the previously specified directory.

If all files of interest are contained in the same subdirectory, it
becomes annoying to have to specify the same chain of directory
names leading up to the filename every time one is to be used. To
circumvent this problem, ProDOS supports a PREFIX command
that can be used to set the chain of directory names to which any
name specified in a ProDOS command will be automatically ap-
pended. For example, if PREFIX is set by entering the following
ProDOS command:

PREFIX VOLUME/DIRECTORY1/.../DIRECTORYn/

then any file contained in the directory at the end of this path can
be referred to by its filename only. (A continuation of the prefix
could also be entered to access files in lower-level subdirectories.)

The advantage of subdirectories is often not readily apparent to
users of floppy diskettes, but becomes obvious when a hard disk
system is used where there is enough room to hold thousands of
files. If all the files were held in one directory you might have to
wait a long time to spot your file when the disk was catalogued,
and even then you could well miss it amidst the multitude of other
files. Fortunately, the hierarchical directory structure provided by
ProDOS allows related files to be grouped within the same sub-
directory for easy access.

As far as organization of files on the diskette is concerned, ProDOS
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deals with 512-byte blocks rather than 256-byte sectors. An ini-
tialized diskette is considered to be made up of 280 blocks (num-
bered from @ ... 279), and it is rarely necessary to know where
these blocks are actually located on the diskette since ProDOS
performs all necessary conversions.

ProDOS Memory Map

When a ProDOS diskette is first booted, a system file called
PRODOS is loaded into memory and executed. This file contains
the fundamental I/O subroutines that are used to read and write
blocks of data from and to the diskette. PRODOS then loads and
executes another system file into memory; the one loaded is in the
volume directory and it has a name of the form xxxx.SYSTEM (the
first file having such a name when the disk is catalogued will be
used). If an Applesoft programming environment is to be sup-
ported, this file must be BASIC.SYSTEM (it is found on the ProDOS
system diskette). BASIC.SYSTEM contains the subroutines that
“add” the standard ProDOS commands to Applesoft. It also takes
care of parsing these commands, doing syntax checking, and call-
ing the PRODOS subroutines when required. For convenience, we
will be referring to the resultant PRODOS/BASIC.SYSTEM pro-
gram combination as “ProDOS” even though this is technically
not the case.

After ProDOS has been loaded as described, it will occupy the
following memory locations:

» SE@PP-$FFFF in internal bank-switched RAM

« $DPPP-SDFFF in Bank! of internal bank-switched RAM
* $9APP-$BFFF in internal RAM

« $D100@-$D3FF in Bank2 of internal bank-switched RAM

(See Chapter 8 for a discussion of bank-switched RAM.) In ad-
dition, a general-purpose file buffer will be set up from $9600 to
$99FF and the Applesoft HIMEM location will be set equal to $9600
(HIMEM refers to the value of the Applesoft end-of-string pointer
at $73/$74).

The $400-byte buffer just above Applesoft HIMEM is always used
by ProDOS as a buffer for directory blocks whenever the diskette
is CATALOGued. This buffer does not always begin at $966@, how-
ever, since HIMEM could be changed in the following instances:

* By using the Applesoft HIMEM: command

» By opening and closing diskette files using the ProDOS OPEN
and CLOSE commands.
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It’s obvious how the HIMEM: command affects the position of
HIMEM, but why do the OPEN and CLOSE commands affect it?
The answer is that whenever a file is opened, ProDOS creates a
$400-byte file buffer by moving HIMEM down in memory by that
number of bytes and then reserving the $400 byte area beginning
at the original HIMEM position for use by the file. Whenever a file
is closed, HIMEM is moved up by $40@ bytes. While doing all this,
ProDOS takes all steps necessary to ensure that Applesoft’s string
variables are not overwritten.

Earlier in this chapter, we saw how a safe area of memory be-
tween HIMEM and the beginning of the DOS 3.3 file buffers could
be reserved for use by assembly-language programs. Unfortu-
nately, because ProDOS is forever changing HIMEM when files are
opened and closed, it is not possible to use this same technique
with ProDOS. There is a way, however, in which a safe area can
be reserved above ProDOS'’s file buffers. The steps that must be
followed to do this are as follows:

* Close all files using the ProDOS CLOSE command

» Lower HIMEM by a multiple of 256 bytes using the Applesoft
HIMEM: command.

These steps must be performed before any Applesoft variables
have been defined, since the Applesoft string space will be over-
written. After these two steps have been completed, the area from
HIMEM + $400 to $99FF can be used for storage of machine-lan-
guage programs without danger of having them overwritten by
ProDOS operations.

Keep in mind one important restriction that applies when using
ProDOS: if HIMEM is being changed (that is, the $73/$74 end-of-
string pointer is being changed), it must be changed in multiples
of 256 bytes only!

ProDOS Page 3 Vectors

You will recall that DOS 3.3 uses the entire area from $3D9 . ..
$3EE to hold several subroutines that can be called to perform
special DOS 3.3 functions. Although ProDOS also reserves this
entire area, only the first six locations are actually used (at present).
As indicated in Table 5-11, these six locations hold two JMP in-
structions to the warm-start entry point of ProDOS (location $BE@0).

ProDOS also initializes all of the system vectors that appear in
page 3 from $3F@ ... $3FF. These are the interrupt vectors for
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Table 5-11. ProDOS page 3 vectors.

Address Description of Vector

$3DB-$3D2 A JMP instruction to the ProDOS warme-start entry
point. A call to this vector will reconnect DOS with-
out destroying the Applesoft program in memory.
Use the “3D@G”’ command to move from the system
monitor to Applesoft. ‘

$3D3-$3D5  Another JMP instruction to the ProDOS warm-start
entry point.

BRK, Reset, IRQ, and NMI (see Chapter 2), the vector for the system
monitor’s <CTRL-Y> USER command (see Chapter 3), and the
vector for the Applesoft & command (see Chapter 4). Descriptions

of all the vector subroutines installed by ProDOS are given in Table
5-12.

Volume Bit Map

Of the 280 blocks on a ProDOS diskette, the first seven (numbered
from @ to 6) are reserved for specific purposes. Blocks @ and 1
contain a program that is loaded into memory by the ROM sub-
routine on the disk controller card whenever the system is booted.
This program is called the bootstrap loader and is responsible for
loading and executing the PRODOS system file. Blocks 2 through
5 represent the four blocks that contain the volume directory in-
formation and will be described in the next section. Block 6 con-
tains the volume bit map for the diskette.

The volume bit map is used for the same purpose as DOS 3.3’s
track bit map, namely, to keep track of which areas of the diskette
are in use and which are free. Only the first 35 bytes (280 bits) in
the volume bit map block are actually used and each bit in each
byte corresponds to a unique block number. The byte number (from
@ to 34), and the bit number within that byte (from @ to 7), that
corresponds to any given block number (from @ to 279) can be
calculated using the following Applesoft formulas:

BYTENUM = INTC(BLOCKNUM/8)
BITNUM = 7- BLOCKNUM - 8 »* BYTENUM

If the bit associated with a particular block is one, then that
block is free. If it is zero, then it is being used by a file on the
diskette.
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Table 5-12. Initialization of page 3 system vectors by

ProDOS.
Vector Name Address Contents Description
BRK $3F3-$3F1 $FA59 Address of a subrou-
tine to display the 6502
registers and enter the
system monitor.
RESET $3F2-$3F3 $BE®@0 Address of the ProDOS
warme-start entry point
(reconnects ProDOS).
& $3F5-$3F7 “JMP Jump to ProDOS’s ex-
$BE@3” ternal entry point for
command strings (see
Apple’s ProDOS Tech-
nical Reference Man-
ual).
USER $3F8—$3FA “JMP Jump to ProDOS’s
$BE@Q”’ warme-start entry point.
NMI $3FB-$3FD “JMP Jump to the system
$FF59” monitor’s cold-start
entry point.
IRQ $3FE-$3FF $BFEB Address of the special

ProDOS interrupt han-
dler (see Chapter 2).

Note: The addresses stored at each vector location are stored with the
low-order byte first.

Diskette Directory

As was explained earlier, ProDOS allows multiple directories to
be created on one diskette. With the exception of the volume di-
rectory (the one through which all the others must be accessed),
these directories can be stored just about anywhere on the diskette
since they are treated similarly to standard files. The volume di-
rectory, however, is always located in blocks 2 through 5 of the

diskette.

Each block used by any directory can hold up to thirteen 39-
byte file entries. (This means that the four-block volume directory
can hold a total of 52 entries, one of which is the volume name
entry.) These entries completely describe the files by specifying the
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Table 5-13. Map of a ProDOS directory block.

Byte number in
Directory Block Meaning of Entry

$000—3$001 Block number of the previous directory block (low
byte first). This will be zero if this is the first
directory block.

$002-$003 Block number of the next directory block (low
byte first). This will be zero if this is the last
directory block.

$004—$02A Directory entry for file #1 OR, if this is the first
block of the directory (bytes $8@ and $@1 are 0),
the directory header.

$92B-$051 Directory entry for file #2

$052—-$078 Directory entry for file #3

$079-$09F Directory entry for file #4

$0A0-$0C6 Directory entry for file #5

$0C7-$OED Directory entry for file #6

$OEE-$114 Directory entry for file #7

$115-$13B Directory entry for file #8

$13C-$162 Directory entry for file #9

$163-$189 Directory entry for file #10

$18A-$1B@ Directory entry for file #11

$1B1-$1D7 Directory entry for file #12

$1D8-$1FE Directory entry for file #13

$1FF <Not used>

name, type, and size of the file. The map of a directory block is
shown in Table 5-13.

The first block used by a directory (or subdirectory) is called the
key block and is configured slightly differently than the others. The
39-byte entry that normally describes the first file in the block is
instead used to describe the directory itself. This entry is called
the directory header.

The meaning of each of the 39 bytes that make up a directory
header are shown in Table 5-14. Notice the differences between the
header for a volume directory and the header for a subdirectory.

All directory entries that do not represent directory headers rep-
resent either standard data files (for example, binary files, text
files, and Applesoft programs) or subdirectory files. The formats
of the directory entries for both of these two types of files are
virtually identical and are as shown in Table 5-15.

The only way to determine what type of file a particular file
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Table 5-14. Map of a ProDOS directory header.

Byte number
in Key Block

Description (usual entries in parentheses)

$04

$05-%13

$14-51B
$1C-$1D

$1E-$1F
$20
$21

$22
$23

$24
$25-%26

$27-$28

$29-§2A

$29

$2A

High four bits: storage type
—$0F for a volume directory
—$0E for a subdirectory
Low four bits: length of directory name

Directory name (in ASCII). The length of the name
is contained in the low half of byte $04.

<Reserved>

The date on which this directory was created (for-
mat: MMMDDDDD YYYYYYYM)

The minute (byte $1E) and hour (byte $1F) at which
this directory entry was created.

The version number of ProDOS that created this
directory.

The lowest version of ProDOS that is capable of
using this directory.

Access code for this directory (see Figure 5-2).
The number of bytes occupied by each directory
entry (39).

The number of directory entries that can be stored
on each block (13).

The number of active files in this directory (not
including the directory header).

VOLUME DIRECTORY: The block where the vol-
ume bit map is located (6).

SUBDIRECTORY: the block in which the entry de-
fining this subdirectory is located (this is in the
parent directory of the subdirectory).

VOLUME DIRECTORY: The size of the volume in
blocks (280).

SUBDIRECTORY: The directory entry number
within the block given by $27/$28 that defines this
subdirectory (1 to 13).

SUBDIRECTORY: The number of bytes in each
directory entry of the parent directory (39).
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Table 5-15. Map of a ProDOS directory file entry.

Relative

Byte Number Meaning of Entry

$00

$01-$0F
$10
$11-812

$13-314
$15-317
$18-$19

$1A-§1B
$1C
$1D

$1E
$1F-$20

$21-%22
$23-$24

$25-$26

High four bits: storage type (see text)
—$00 for an inactive file
—$01 for a seedling file
—$02 for a sapling file
—$03 for a tree file
—$0D for a subdirectory file
Low four bits: length of file name

File name (in ASCII with bit 7 = 0)
File type code (see Table 5-16)

Key pointer. If a subdirectory, the block number
of the key block of the subdirectory. If a standard
file, the block number of the index block of the file
(or the data block if this is a seedling file).

Size of the file in blocks.
Size of the file in bytes (low-order bytes first).

The date on which this file was created (format:
MMMDDDDD YYYYYYYM).

The minute (byte $1A) and hour (byte $1B) at which
this file was created.

The version number of ProDOS that created this
file.

The lowest version of ProDOS that is capable of
using this file.

Access code for this file (see Figure 5-2).

For a binary file, the load address of the file; for
a random-access textfile, its record length.

The date on which this file was last modified (for-
mat: MMMDDDDD YYYYYYYM).

The minute (byte $23) and hour (byte $24) at which
this file was created.

The block number of the key block of the directory
that holds this file entry.

entry corresponds to is to examine the file type code that appears
at relative position $16 within the entry. Although 256 different
codes are possible, only a few are commonly used by ProDOS, and
it is these which are shown in Table 5-16. The three-character
mnemonics used to represent these file types in a CATALOG listing
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Table 5-16. ProDOS file type codes.

File Type CATALOG

Code Mnemonic Type of File

$04 TXT ASCII text file (with bit 7 = @)
$06 BIN Binary file

$OF DIR Directory file

$Fo CMD ProDOS added command file
$FC BAS Applesoft program file

$FD VAR Applesoft variable file

$FE REL Relocatable code file (EDASM)
$FF SYS ProDOS system file

are also shown in Table 5-16. For a list of all ProDOS file types,
even the obscure ones, refer to the ProDOS Technical Reference
Manual.

“Protecting” Files

Both DOS 3.3 and ProDOS allow files to be protected using the
LOCK command. If a file is locked, then it cannot be altered or
renamed unless it is first unlocked. If a file is locked, then an
asterisk will appear at the far left of the line in which the file name
appears when the directory is catalogued.

ProDOS reserves a one-byte access code in its directory entries
to indicate the write status of the file (at relative byte $1E in each
directory entry). Four bits in this byte are used to individually
control the read, write, rename, and delete status of the file. A fifth
bit acts as a flag to indicate whether the file has been modified
since the last time it was backed up (it is the backup program'’s
responsibility to clear this bit to @ when the file is backed up).
These bits are described in Figure 5-2.

Unfortunately, there is no ProDOS command that can be used
from Applesoft to adjust these bits individually. The LOCK com-
mand turns off the write, rename, and delete bits together and the
UNLOCK command turns them all back on again. The bits can be
changed, however, by directly reading the block that contains the
directory entry, changing the access code, and then writing the
block back to diskette. The READ.BLOCK program listed in Table
5-18 will allow you to do this (this program will be described later
on).
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<«— DELETE (1=enabled)

<— RENAME (1=enabled)

<«— BACKUP (1=make a backup)
<«— (RESERVED)

<— (RESERVED)

<— (RESERVED)

<— WRITE/SAVE  (1=enabled)
<— READ/LOAD (1=enabled)

[s[=[rlels]ofo]~]

Figure 5-2. ProDOS access codes bit map.

Storing File Data

The method ProDOS uses to keep track of where a standard file’s
data is stored on the diskette varies depending on the size of the
file. ProDOS uses the following ‘“woodsy” file classifications:

Seedling file : 1 to 512 bytes
Sapling file : 513 to 131,072 (128K) bytes
Tree file : 131,073 to 16,777,215 (16M-1) bytes

ProDOS determines what type of file it is dealing with by ex-
amining the four highest bits of relative byte $00 in the directory
entry for the file: the number stored here is 1 for a seedling file, 2
for a sapling file, and 3 for a tree file.

ProDOS uses these three different file structures to reduce the
amount of space needed to manage a file on the diskette to the
absolute minimum. This permits ProDOS to deal with a file as

quickly as possible and frees up valuable disk space for the storage
of other files.

The directory entry’s key pointer (relative bytes $11 and $12)
points to the key block on the diskette for the file. Let’s take a look
at how ProDOS interprets this key block for each of the three types
of files.

SEEDLING FILE. A seedling file, which, by definition, cannot
exceed 512 bytes in length, obviously uses only one block on the
diskette for data storage. It is this block that is pointed to by the
key pointer. This means that the key block is, in.fact, also the sole
data block for the file.
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SAPLING FILE. The key pointer in the directory entry for this
type of file points to an index block that contains an ordered list
of the block numbers on the diskette that are used to store that
file’s data. Table 5-17 shows what an index block for a sapling file
looks like. Since block numbers can exceed 255, two bytes are
needed to store each block number. The low part of the block
number is always stored in the first half of the block and the high
part is stored 256 bytes further into the block. The maximum size
of a“sapling file is 128K; it cannot be larger than this since only
256 blocks (of 512 bytes each) can be pointed to by the index block.

TREE FILE. If the file is a tree file, then the key pointer points
to a master index block that contains an ordered list of the block
numbers of up to 128 sapling-file-type index blocks. The structure
of a master index block is shown in Table 5-18. Just as for sapling
files, each of the index blocks pointed to by the master index block
contains an ordered list of block numbers on the diskette that the
file uses to store its data. The maximum size of a tree file is 16
megabytes (less one byte, which is reserved for an end-of-file marker)!

ProDOS takes care of all conversions that might become nec-
essary if a file changes its type because it has either grown or
shrunk. All this happens invisibly and it is not necessary to know
what type of file is being dealt unless special programs are being
used that do not use the standard ProDOS commands to access
files.

Table 5-17. Map of the ProDOS index block for a sapling
file.

Byte Number Meaning

$000 Block number of @th data block (low)
$001 Block number of 1st data block (low)
$002 Block number of 2nd data block (low)
$0FF Block number of 255th data block (low)
$100 Block number of @th data block (high)
$101 Block number of 1st data block (high)
$102 Block number of 2nd data block (high)

" 14

" 4

$1FF Block number of 255th data block (high)
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Table 5-18. Map of the ProDOS master index block for a
tree file.

Byte Number Meaning

$000 Block number of @th index block (low)
$001 Block number of 1st index block (low)
$002 Block number of 2nd index block (low)
$O7F Block number of 127th index block (low)
$100 Block number of @th index block (high)
$101 Block number of 1st index block (high)
$102 Block number of 2nd index block (high)
$17F Block number of 127th index block (high)

MLI—Accessing the Diskette Directly

ProDOS supports a special machine-language interface (MLI)
protocol that makes it extremely simple for assembly-language
programs to perform standard diskette I/O commands. The MLI is
explained in detail in Chapter 4 of the ProDOS Technical Reference
Manual. (In contrast, DOS 3.3 is poorly suited to such use because
there is no standard interfacing protocol to allow standard diskette
file operations to be performed.)

The same general type of subroutine is used to invoke all MLI
commands. The code used to invoke an MLI command looks like
this (to review, “DFB” is a BIG MAC assembler directive that causes
the byte in the operand to be stored in memory):

JSR $BFO00 ;Call the MLI

DFB CMDNUM 3 and execute this command #
DFB #<CMDLIST ;Low part of address

DFB #>CMDLIST ;High part of address

BCS ERROR sError if carry flag set

where $BF@0 represents the entry point to the MLI, CMDNUM is
the command number that ProDOS has assigned to the requested
command, and CMDLIST is the address of the parameter list as-
sociated with the command. (Recall from Chapter 2 that if you are
using the Apple 6502 Assembler/Editor rather than BIG MAC, then
you should replace “#>"" with “#<" and vice versa in the above
example.) The parameter list contains the values of variables that
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the command needs in order to execute properly; result codes are
also stored in the parameter list.

After the command is executed, control passes to the code that
begins immediately after the three bytes stored after the “JSR
$BF@@" instruction. If an error occurs, then both the carry and zero
flags are set and the error code number is placed in the accumu-
lator. You can transfer control to an error-handling subroutine by
using a BCS instruction (as shown in the example) or a BNE in-
struction.

There are two MLI commands that can be used to read from and
write to individual blocks on the diskette directly. The command
numbers for these commands are $80 (READ_BLOCK) and $81
(WRITE_BLOCK). The parameter lists for these commands are
identical and are constructed as follows:

1st byte: number of parameters (always $03)

2nd byte: disk slot and drive to be accessed

3rd byte: 512-byte data buffer address (low part)

4th byte: 512-byte data buffer address (high part)
5th byte: block number to be accessed (low part)

6th byte: block number to be accessed (high part)

The second byte in the parameter list contains information re-
lating to the slot and drive number of the diskette to be accessed.
The number stored here is equal to 16 times the slot number if the
diskette is in drive 1, or 16 times the slot number plus 128 if the
diskette is in drive 2.

For example, if a diskette is in slot 6 and drive 2 and you want
to read the contents of block number 264 on that diskette into a
buffer beginning at location $20@@, you would use a program that
looks like this:

JSR $BFO00
DFB $80 ;(Code for READ)
DFB #<CMDLIST
DFB #>CMDLIST
BCS I0ERROR

3 (Got it!)
RTS
I0ERROR . ;(Didn’t get it!)
RTS
CMDLIST DFB $03
DFB $EO 3Slot 6/Drive 2
DFB $00 s;Buffer address $2000
DFB $20
DFB $04 s;Block 260 ($0104)
DFB $01

The same program can be used to write a block to the diskette
simply by changing the command code from $80 to $81.
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ProDOS READ.BLOCK Program

Table 5-19 contains the program listing for the READ.BLOCK
program. This program is the ProDOS counterpart of the DOS 3.3
READ SECTOR program in Table 5-10 and can be used to read
and display any of the 280 blocks of data on a ProDOS-formatted
diskette. It makes use of the MLI READ_BLOCK and WRITE_
BLOCK commands and is useful for examining any block on a
ProDOS-formatted diskette.

The instructions for using READ.BLOCK are virtually the same
as those for READ SECTOR. The two main differences between
READ.BLOCK and READ SECTOR are as follows: first,
READ.BLOCK asks you to enter block numbers rather than track
and sector numbers; second, only one-quarter of the 512-byte block
is displayed on the screen at one time. The “D” command can be
used to flip between the four display pages.

Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette.

ILIST

0 REM "“READ BLOCK"
1 REM (FOR PRODOS ONLY)
100 FOR I = 768 TO 892: READ X: POKE

I,X: NEXT

110 DEF FN MD(X) = X - 16 * INT
(X /7 16)

120 DEF FN M2C(X) = X - 256 * INT
(X /7 256)

130 D$ = CHR$ (4)

140 BM = 279: REM NUMBER OF BLOCK

S

150 TEXT : PRINT CHR$ (21): HOME

: PRINT TABC 16);: INVERSE

PRINT '"READ BLOCK': NORMAL
: PRINT TABC 11);"(C) 1984
GARY LITTLE"

160 VTAB 10: CALL - 958: PRINT
“ENTER BASE BLOCK NUMBER (0-
“"sBM;: INPUT "™): ";T$: IF T$
= "" THEN 160

170 BL = INT C VAL (T$)): IF BL =
0 AND T$ < > *"0'" THEN 160

180 IF BL < 0 OR BL > BM THEN 16
0

190 RW = 128

200 POKE 782, FN M2(BL): REM BLO
CK# CLOW)
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Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

210 POKE 783, INT (BL / 256): REM
BLOCK# C(HIGH)

220 POKE 771 ,RW: REM READ=128 /
WRITE=129

230 CALL 768

240 IF PEEK (8) < > 0 THEN PRINT
: INVERSE : PRINT "DISK 1/0
ERROR'"™: NORMAL : PRINT "PRES
S ANY KEY TO CONTINUE: ';: GET
A$: PRINT A$: GOTO 150

1000 VTAB 4: CALL - 958: PRINT

TABC 11);"CONTENTS OF BLOCK

*;BL: PRINT "™ POKE 34,5

Q =1

HOME : GOSUB 2000: CALL 794

:@ = Q@+ 1: IF @ = 5 THEN 10

50

1030 IF PR = 0 THEN GET A$: IF
A$ = CHR$ (27) THEN 1050

1040 GOTO 1020

1050 @ = @ - 1:PR = 0: PRINT Ds$:"
PR#0":B = 0

1060 HTAB 1: VTAB 23: CALL - 95
8: PRINT "ENTER COMMAND (B,C
,D,E,N,P,Q,W,HELP): ";: GET
A$: IF A$ = CHR$ (13) THEN
A$ = " (1]

1070 PRINT AS$

1080 IF A$ < > "D" THEN 1110

1090 @ = @ - 1: OF @ = 0 THEN Q =

—_
oo
oo

N =

4

1100 HOME : GOSUB 2000: CALL 794
: GOTO 1060
= “H" THEN 5000

"Q" THEN 1260

“E*" THEN 1270

“pP'" THEN 1220

“N" THEN 1240

“B" THEN 150

“C'" THEN VTAB 23: CALL

- 958: PRINT TABC 6);: INVERSE

: PRINT "TURN ON PRINTER IN

SLOT #1': NORMAL :PR = 1: PRINT

D$;"PR#1'": PRINT : GOTO 1000

—

-n

>

©»
[

— -
RPN N QN
NoOuLwWND =
cocoocococoo

——

mm

> D

@®» &
[ T T T T

IF A$ < > "W" THEN 1210

POKE 782,BL: PUKE 771,129: VTAB
23: CALL - 958: PRINT "PRES
S ‘Y’ TO VERIFY WRITE: ";: GET
A$: IF A$ = CHR$ (13) THEN

A = ¢ (continued)

—_
JETQUN
o O
oo
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Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

1200 PRINT A$: IF A$ = "Y' THEN
CALL 768:RW = 128: VTAB 23:
CALL - 958: PRINT "WRITE C
OMPLETED. PRESS ANY KEY: ";:

GET A$: GOTO 1060

1210 GOTO 5000

1220 BL = BL - 1: IF BL = - 1 THEN
BL = 279

1230 GOTO 190

1240 BL = BL + 1: IF BL > 279 THEN
BL = 0

1250 GOTO 190

1260 TEXT : HOME : END

1270 V = 8:H = 3: VTAB 5: PRINT TAB(
6);: INVERSE : PRINT "I=UP M
=DOWN J=LEFT K=RIGHT'": NORMAL

1280 HTAB 1: VTAB 23: CALL - 95
8: PRINT TABC 6);"PRESS '";:
INVERSE : PRINT "™ESC'";: NORMAL
PRINT ' TO LEAVE EDITOR"

1290 REM
1300 GOSUB 1500: GET As$
1310 LC = 16384 + 128 * (Q - 1) +

8 » V + H:Y = PEEK (LC):X =
ASC (A$)
1320 IF A$ = CHR$ (27) THEN HTAB
1: VTAB 5: CALL - 868: GOTO
1060
1330 IF A$ <
1340 B = 0:V

> "I THEN 1370
V-1 1IF V> =20

THEN 1300

1350 V = 15:@ = @ - 1: IF Q@ < 1 THEN
Q = 4

1360 GOSUB 2000: HOME : CALL 794
: GOTO 1280

1370 IF A$ = "J" THEN B = 0:H =
H-1: IF H=-1THEN H =
7

1380 IF A$ = "K' THEN B = 0:H =

H+ 1: IF H=8THEN H = 0
1390 IF A$ < > "M"™ THEN 1430
1400 B = 0:V =V + 1: IF V < 16 THEN

1300
1410 V = 0:Q = @ + 1: IF Q@ = 5 THEN
Q =1

1420 GOTO 1360

1430 IF B = 0 THEN Y = FN MDCY)
+ 16 *» (X - 48) * (X < = §
7) + 16 * (X - §5) * (X > =

65)
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Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

1440 IF B = 1 THEN Y = 16 * INT
(Y /7 16) + (X - 48) * (X < =
57) + (X - 55) * (X > = 65)

1450 X = ASC (A$): IF (X > = 48
AND X < = 57) OR (X > = 6
S AND X < = 70) THEN PRINT
A$;: POKE ¢ PEEK (40) + 256 «
PEEK (41) + 31 + H),Y: POKE
LC,Y: IF B = 0 THEN CALL 64
500:B

1460 IF X
0

1470 IF X = 21 AND B = 0 THEN B =
1

1480 GOTO 1300

1490 CALL - 167

1500 VTAB V + 6: HTAB 3 * H + 7 +

1
8 AND B = 1 THEN B =

B: RETURN
2000 IF Q@ = 1 THEN POKE 795,0: POKE
799,64

2010 IF Q@ = 2 THEN POKE 795,128
: POKE 799,64 :
2020 IF Q@ = 3 THEN POKE 795,0: POKE

799,65
2030 IF Q@ = 4 THEN POKE 795,128
POKE 799,65

2040 RETURN

5000 HOME : PRINT TABC 10);"SUM
MARY OF COMMANDS"™: PRINT TABC
10);“===================": PRINT

5010 PRINT "B -- RESET BASE BLOC
Kll

5020 PRINT *"C -- COPY BLOCK CONT
ENTS TO PRINTER"™

5030 PRINT "D -- DISPLAY PREVIOU

S 1/4 BLOCK"

5040 PRINT "E -- EDIT THE CURREN
T BLOCK*"

5050 PRINT "N -- READ THE NEXT B
LOCK"

5060 PRINT "P -- READ THE PREVIO
US BLOCK"

5070 PRINT "Q -- QUIT THE PROGRA
Mll

5080 PRINT "W -- WRITE THE BLOCK
TO DISK"

S090 PRINT : PRINT "PRESS ANY KE
Y TO CONTINUE: '";: GET A$: PRINT
A$: GOTO 1100 (continued)
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Table 5-19. READ.BLOCK. A program to read blocks on a
ProDOS diskette (continued).

8000 DATA 32,0,191,128,10,3,144,
8,176,11,3,96,0,64,0,0,169,0
,133,8,96,169,1,133,8,96,169
,0,133,6

8010 DATA 169,64,133,7,162,0,160
,0,56,165,7,233,64,32,218,25
3,165,6,32,218,253,169,186,3
2,237,253,169,160,32,237

8020 DATA 253,177,6,32,218,253,1
69,160,32,237,253,200,192,8,
208,241,169,160,32,237,253,1
60,0,177,6,9,128,201,160,176

8030 DATA 2,169,174,32,237,253,2
00,192,8,208,238,169,141,32,
237,253,24,165,6,105,8,133,6
,165,7,105,0,133,7,232

8040 DATA 224,16,208,168,96
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Character Input and the
Keyboard

The //e, like most other microcomputers, usually deals with in-
formation that is delivered to it in one-byte (8-bit) chunks (from a
keyboard or a disk drive, for example). This information is com-
monly referred to as “‘character input” because the bytes usually
represent the encoded representations of letters of the alphabet,
numbers, and other printable characters. Although any encoding
scheme that the input device cares to use could be dealt with by
the //e, it is the American National Standard Code for Information
Interchange (ASCII) standard that is usually used to encode char-
acters. Two other incompatible encoding schemes, Extended Bi-
nary-Coded Decimal Interchange Code (EBCDIC) and Baudot, are
also in widespread use, the first by all large IBM computers and
compatibles and the second by some older TeleType machines.

ASCII is a seven-bit code and is used by virtually all microcom-
puters. A total of 128 (2°7) codes are defined by the ASCII standard.
Table 6-1 contains a list of these codes, their standard names or
symbols, and the keys on the keyboard (or combination of keys)
that must be pressed to enter them.

When the //e performs character input/output operations, the
ASCII code for the character is stored in bits @ through 6 of the
byte being inputted or outputted and bit 7 of the byte is normally
set equal to ““1”. Since a “1” in bit 7 is often used to indicate that
the value stored in that byte is negative, this “variant” of ASCII
is called “negative ASCII"; if bit 7 is @, then “positive ASCII” is
being used.

Note that all but the first 32 ASCII codes and ASCII code 127
(rubout) are used to represent visible symbols. The first 32 codes
are called “control characters” and are usually sent to a video
display or a printer controller to cause it to perform some special

169
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Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes.

ASCII Code

Hex Dec Symbol Keys to Press

$00 000 NUL (Null) CONTROL @

$01 991 SOH (Start of header) CONTROL A

$02 002 STX (Start of text) CONTROL B

$03 003 ETX (End of text) CONTROL C

$04 004 EQT (End of transmission) CONTROL D

$05 005 ENQ (Enquiry) CONTROL E

$06 206 ACK (Acknowledge) CONTROL F

$07 007 BEL (Bell) CONTROL G

$08 008 BS (Backspace) LEFT-ARROW or
CONTROL H

$09 0209 HT (Horizontal tabulation) TAB or CONTROL I

$0A 010 LF (Line feed) DOWN-ARROW or
CONTROL J

$9B 011 VT  (Vertical tabulation) UP-ARROW or
CONTROL K

$9C 012 FF  (Form feed) CONTROL L

$9D 0413 CR (Carriage return) RETURN or CONTROL M

$OE 014 SO  (Shift out) CONTROL N

$OF @15 SI (Shift in) CONTROL O

$10 g16 DLE (Data link escape) CONTROL P

$11 017 DC1 (Device control 1) CONTROL Q

$12 018 DC2 (Device control 2) CONTROL R

$13 @419 DC 3 (Device control 3) CONTROL S

$14 020 DC4 (Device control 4) CONTROL T

$15 921 NAK (Negative acknowledge) RIGHT-ARROW or
CONTROL U

$16 0922 SYN (Synchronous idle) CONTROL V

$17 923 ETB (End of transmission CONTROL W

block)

$18 024 CAN (Cancel) CONTROL X

$19 925 EM (End of medium) CONTROL Y

$1A 926 SUB (Substitute) CONTROL Z

$1B 927 ESC (Escape) ESC or CONTROL [

$1C 028 FS  (Field separator) CONTROL\

$1D 929 GS (Group separator) CONTROL ]

$1E 030 RS (Record separator) CONTROL *

$1F @31 US  (Unit separator) CONTROL _

$20 932 (Space) SPACE BAR

$21 933 ! SHIFT 1

$22 0934 " SHIFT ’

$23 @35 # SHIFT 3

$24 0936 $ SHIFT 4
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Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code

Hex Dec Symbol Keys to Press
$25 937 % SHIFT 5
$26 938 & SHIFT 7
$27 @939 ° '

$28 040 ( SHIFT 9
$29 941 ) SHIFT ¢
$2A @942 % SHIFT 8
$2B 943 + SHIFT =
$2C 444 s ,

$2D 945 - -

$2E 046 .

$2F @47 / /

$30 048 0 0

$31 049 1 1

$32 @50 2 2

$33 @51 3 3

$34 052 4 4

$35 @53 5 5

$36 054 6 6

$37 055 7 7

$38 @56 8 8

$39 057 9 9

$3A 458 : SHIFT ;
$3B 059 ; ;

$3C G608 < SHIFT ,
$3D 961 = =

$3E @62 > SHIFT .
$3F 063 ? SHIFT /
$40 064 @ SHIFT 2
$41 @65 A SHIFT A
$42 066 B SHIFT B
'$43 967 C SHIFT C
$44 068 D SHIFT D
$45 069 E SHIFT E
$46 0970 F SHIFT F
$47 971 G SHIFT G
$48 972 H SHIFT H
$49 973 1 SHIFT I
$4A 074 J SHIFT J
$4B @75 K SHIFT K
$4C @976 L SHIFT L
$4D 077 M SHIFT M
$4E 978 N SHIFT N

(continued)
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Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code

Hex Dec Symbol Keys to Press
$4F 979 O SHIFT O
$50 980 P SHIFT P
$51 081 Q SHIFT Q
$52 982 R SHIFT R
$53 983 S SHIFT S
$54 084 T SHIFT T
$55 0285 U SHIFT U
$56 @86 V SHIFT V
$57 @87 W SHIFT W
$58 @88 X SHIFT X
$59 089 Y SHIFT Y
$5A 990 Z SHIFT Z
$5B 991 [ [

$5C 092\ \

$5D 993 ] ]

$5E 094 SHIFT 6
$5F 0995 — SHIFT —
$60 09 )

$61 @97 a A

$62 @998 b B

$63 099 C

$64 100 d D

$65 191 e E

$66 192 f F

$67 103 g G

$68 194 h H

$69 105 i I

$6A 106 ] J

$6B 197 k K

$6C 108 1 L

$6D 199 m M

$6E 119 n N

$6F 111 ) 0]

$76 112 p P

$71 113 g Q

$72 114 r R

$73 115 s S

$74 116 t T

$75 117 u U

$76 118 v \

$77 119 w w

$78 120 x X

$79 121 vy Y
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Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII Code

Hex Dec Symbol Keys to Press
$7A 122 z Z

$7B 123 { SHIFT [

$7C 124 | SHIFT \

$7D 125 } SHIFT ]

$7E 126 ~ SHIFT °

$7F 127 | (Rubout) DELETE

action. Some of the more important control characters on the //e
are as follows (in negative ASCII):

$87 (bell)—causes the speaker to beep

$88 (backspace)—causes the cursor to move back one position

$8A (line feed)—causes the cursor to move down one line

$8D (carriage return)—causes the cursor to move to the begin-
ning of the current line

Some of the names associated with the other control characters
(see Table 6-1) are somewhat archaic in that they refer to various
aspects of the operation of old TeleType terminals. Other names
relate to the codes used by certain standard data-interchange pro-
tocols that the /e does not normally use (for example, Start of Text
(STX), End of Text (ETX), and Cancel (CAN)).

In this chapter, we will take a look at how the //e requests and
reads character input from any device interfaced to it, including
the keyboard. In doing so, we will examine the built-in ROM sub-
routines that the //e normally uses whenever it requires character
input.

You will be able to follow this chapter a lot more easily if you
have by your side a copy of the Apple Reference Manual Addendum:
Monitor ROM Listings. This publication contains the source code
listing for all of the ROM subroutines we will be examining.

STANDARD CHARACTER INPUT
SUBROUTINES

There are three special, general-purpose character input sub-
routines in the //e’s system monitor that are used to fetch characters
so that they can be used and interpreted by other parts of the
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system, including Applesoft and the system monitor. These rou-
tines are usually referred to by the symbolic names of RDKEY,
RDCHAR, and GETLN. They, in turn, usually make use of two
other subroutines that are used to read information from the key-
board; these are called KEYIN and BASICIN. Each of these sub-
routines are briefly described in Table 6-2. Let’s take a closer look
at them.

Reading One Character

RDKEY ($FDBC)

RDKEY is the most important of the three fundamental char-
acter input subroutines since it is the one that is eventually called
by the other two. This subroutine is used to scan any input device
that has been designated as being active (usually, but not neces-
sarily, the keyboard) until a character has been entered, and to
return the ASCII code for that character (with its high bit set to
one) in the 6502’s accumulator. The Applesoft GET command calls
RDKEY directly.

As soon as RDKEY is called, it attempts to display a visible
cursor by causing the character at the currently active video po-
sition (as calculated from the values of CH ($24) and CV ($25), the
horizontal and vertical cursor coordinates) to begin to flash. The
code that does this looks like this:

LDY CH ;Get horizontal position

LDA (BASL),Y ;Get the screen byte

PHA ; and save it.

AND #$3F ;Adjust byte for flash video
ORA #$40 ; (see Chapter 7)

STA (BASL),Y ;Replace screen byte

PLA ;Restore the screen byte in A

where BASL ($28) is the first of two zero page locations that to-
gether contain the base address for the line number held in CV
(see Chapter 7). As we will see shortly, this cursor is quickly “re-
moved’’ by the //e’s standard 4@-column and 8@-column input sub-
routines and replaced by another one (either a blinking checker-
board or a nonblinking inverse square). This removal is not absolutely
necessary when in 4@-column mode, but becomes necessary when
in 8@-column mode because CH no longer contains the true hori-
zontal cursor position (it is held in OURCH ($57B) instead).
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Table 6-2. Built-in input subroutines.

Symbolic
Name

Description

Address
Hex (Dec)
$FD@C (64780)
$SFD35 (64821)
$FD1B (64795)
$C305 (51446)
$FD6A (64874)

RDKEY

RDCHAR

KEYIN

BASICIN

GETLN

Reads a character from the
currently active input de-
vice and places its negative
ASCII code in the accumu-
lator.

Uses RDKEY to read a char-
acter from the currently ac-
tive input device. Handles
escape sequences if the 80-
column firmware is not being
used.

Keyboard input routine used
when 8@-column firmware
is not being wused. The
negative ASCII code for the
character is returned in the
accumulator.

Keyboard input routine used
when 8@-column firmware
is being used. The negative
ASCII code for the character
is returned in the accumu-
lator. This subroutine han-
dles all escape sequences and
the right-arrow “pick.”

Reads a line of information
into the input buffer at $200
by making repeated calls to
RDCHAR.

After the initial blinking cursor is set up, the following code is

executed:

JMP  (KSWL)

which effectively passes control to the body of a user-selectable
input subroutine whose address is held at KSWL ($38) and KSWH
($39). This input subroutine is responsible for returning the ASCII
code for an inputted character as soon as the input device being
used makes one available. For the purposes of this discussion, we
will assume that the input device is the //e’s keyboard. We will see
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later how other input devices can be linked into the RDKEY sub-
routine instead by simply storing the address of the input subrou-
tine for the alternate input device at KSWL and KSWH.

The //e’s disk operating system (DOS 3.3 or ProDOS) is integrated
into the system by storing the address of its special input subrou-
tine at KSWL and KSWH. This input subroutine will read input
from either a diskette file or the keyboard, depending on whether
a DOS READ command is in effect. It will also cause special disk
operations to be performed if a valid DOS command is entered
from the keyboard (for example, LOAD a file and CATALOG the
diskette). When it reads information from the keyboard, it uses one
of the //e’s two built-in subroutines available for this purpose.

The keyboard input subroutine that is used will depend on whether
the //e’s internal 8@-column firmware ROM (that uses addresses
between $C300 . . . $C3FF and $C80@0 . . . $CFFF) is being used. This
firmware is not used when you first turn on the //e but can be
selected by entering a PR#3 command from Applesoft. (If you do
not have an 8@-column text card installed, you must enter a POKE
491620 command before entering the PR#3 command — see Chap-
ter 11.) Once you have selected the 80-column firmware in this
way, you can flip between an 8@-column display and a 46-column
display (if you are using an 8@-column text card) by using the two-
keystroke “‘escape sequence”’

ESC 4

to go from 8@-column mode to 40-column mode and
ESC 8

to go from 4#-column mode to 80-column mode. (An escape se-
quence is entered by pressing the ESC key, releasing it, and then
pressing the second key; the RETURN key must not be pressed.)
Note that there is a bug in the 8@-column firmware that may cause
you to ‘“lose” the cursor and/or overwrite the area reserved for a
tokenized Applesoft program if ESC 4 is entered when the cursor
is in the right-hand half of the 80-column screen. Because of this,
always make sure that the 8@-column cursor is in the first forty
columns before entering ESC 4.

You can usually tell whether the 8@-column firmware is being
used by looking at the cursor. If it’s a blinking ‘‘checkerboard,”
then the 8@-column firmware is not in use; if it’s a nonflashing,
inverse-video square, then it is. The 8@-column firmware can be
deactivated by entering an ESC <CTRL-Q> sequence from the
keyboard or printing a <CTRL-U> character; this returns you to
standard 4@-column mode.

We will be looking at the video display modes in considerably
more detail in Chapter 7.
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Keyboard Input (8@-Column Firmware Off)

If the 8@-column firmware on the //e is not being used, then the
/le usually uses a subroutine called KEYIN ($FD1B) to handle key-
board input. The important part of this subroutine really begins
at B KEYIN ($C288) in the //e’s built-in internal ROM space. The
first thing that it does is to remove RDKEY'’s cursor and change
it to a blinking checkerboard. This blinking effect is generated
totally in software by alternating between the display of the check-
erboard character (ASCII code $FF) and the true screen character
at fixed intervals. When a key that generates an ASCII code is
entered, the screen character is put back on the screen, the ASCII
code representing the entered key is placed in the 6502’s accu-
mulator (with the high bit set to one), and the subroutine finishes
with the X and Y registers preserved.

Keyboard Input (8@-Column Firmware On)

If the 8@-column firmware has been selected, then another sub-
routine to handle keyboard input, called BASICIN ($C3@5), is used
instead. The important part of this subroutine really begins at
BINPUT ($C8F6). This subroutine also removes the cursor that
RDKEY sets up and changes it to a nonflashing, inverse video block
by calling the INVERT ($CEDD) subroutine. INVERT simply re-
verses the video attribute of the character at the current cursor
position (as set by OURCH ($57B) and OURCV ($5FB), the 80-
column firmware’s horizontal and vertical cursor coordinates). That
is, if the screen character is displayed in normal video, it is changed
to inverse video, and vice versa. Once this has been done, the sub-
routine calls GETKEY ($CB15), a subroutine that waits for a key
corresponding to an ASCII code to be entered from the keyboard,
and then returns that code in the accumulator (with its high bit
set to one).

After a key has been entered, BINPUT removes the cursor by
calling INVERT once again and then takes one of two paths, de-
pending on whether the ESC key was pressed. If a key other than
ESC was pressed, then control passes to NOESC ($C9B7), which
performs two main chores. First, it examines the key to see if it
was a right arrow (CTRL-U) and, if it was, replaces it with the
character on the video display “below” the cursor. This allows the
right arrow to be used to “pick” characters off the screen without
retyping them. If the key was not a right arrow, then a block of
code is executed that takes care of handling the //e’s upper-case
restrict mode (see the next section). This may involve converting
a lower-case character to upper-case if upper-case restrict mode is
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active. When NOESC finishes, BINPUT does some housekeeping
and then returns with the ASCII code for the keyboard character
in the accumulator (with the high bit set to one) and with the X
and Y registers preserved.

Escape Sequences

If, however, the ESC key is pressed, then BINPUT does something
quite different: control passes to ESCAPING ($C918), which causes
the cursor to change to an inverse “ + " sign and escape mode to be
turned on. Whenever the //e is in this mode, it reads the keyboard
once again and then executes a special function dictated by the
key that is read. This two-key combination is commonly referred
to as an ‘“‘escape sequence.” A list of all of the valid escape sequences
and the functions they perform are listed in Table 6-3.

Most of the escape sequences that have been defined on the //e
are used to move the cursor around the screen or to affect the video
display in some way and are self-explanatory. Two of them are
somewhat unusual, however, and will now be described; they are
ESC R and ESC T. ESC R is used to turn on “‘upper-case restrict”
mode, and ESC T is used to turn it off again. When upper-case
restrict mode is on, any lower-case alphabetic characters that are
entered from the keyboard will automatically be converted to their
upper-case equivalents unless the characters are entered between
successive quotation marks. This feature facilitates the entry of
Applesoft programs where all the keyword commands and DOS
commands must be in upper-case but any phrases to be displayed
with a PRINT command (that appear within quotation marks
after the PRINT command) can be in any combination of upper-
and lower-case characters.

In general, escape mode ends immediately after the key after
ESC has been pressed and, if you want to re-enter escape mode,
you must press ESC once again. The I,J,K,M and arrow-key se-
quences, however, behave a little differently. If you enter any of
these sequences, then escape mode remains active until any other
key that generates an ASCII code that is not part of an escape
sequence is pressed. This means that you can quickly move the
cursor around the screen by pressing ESC once and then pressing
any combination of cursor-movement keys until the cursor is prop-
erly positioned. You can then press another key (the space bar is
convenient) to leave escape mode.

Due to a bug in the //e’s 8@-column firmware, there is one other
“unofficial” escape sequence that is supported: ESC <CTRL-L>.
When this sequence is entered, control passes to location $4CCE.
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Table 6-3. Escape sequences.

Escape
Sequence

Description

ESC @

ESCA
ESCB
ESCC.
ESCD

ESCE

ESCF

ESC I
ESC 1

ESCJ
ESC «

ESC K
ESC —

ESCM
ESC |

ESC R*
ESC T*
ESC 4*
ESC 8*

ESC CTRL-Q*

Clears the video screen window and places the
cursor in the top left-hand corner.

Moves the cursor one position to the right.
Moves the cursor one position to the left.
Moves the cursor down one line.

Moves the cursor up one line (if not already at
top).

Clears the screen from the current cursor position
to the end of the line. The cursor position does
not change.

Clears the screen from the current cursor position
to the end of the window. The cursor position does
not change.

Moves the cursor up one line and keeps escape
mode active.

Moves the cursor one position to the left and keeps
escape mode active.

Moves the cursor one position to the right and
keeps escape mode active.

Moves the cursor down one line and keeps escape
mode active.

Turns on upper-case restrict mode. This forces all
lower-case alphabetic characters to be displayed
in upper-case, except between quotation marks.

Turns off upper-case restrict mode.

Switches to 40-column mode from 8@-column
mode.

Switches to 8@-column mode from 40-column
mode.

Deselects the 80-column firmware and returns to
standard 4@-column mode.

*Note: The last five escape sequences are available only when the 80-
column firmware is being used.

Unfortunately, this location is right in the middle of the memory
area reserved for page2 of the //e’s high-resolution graphics screen
and could also be within Applesoft’s tokenized program space or
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variable spaces, depending on the size and type of program. If you
can ensure that this location (and the few bytes just past it) will
not be used by your program, however, you could place a subrou-
tine here that will take control whenever ESC <CTRL-L> is en-
tered. This odd escape sequence is available because the ESCAP-
ING ($C918) subroutine improperly assumes that the table in ROM
that contains the valid escape sequences has eighteen entries rather
than seventeen.

After escape mode ends, the keyboard is immediately scanned
again for another keypress. Thus, BINPUT does not finish until an
ASCII code is generated that is not part of an escape sequence.
Since ESC is handled internally to BINPUT, the Applesoft GET
command cannot be used to detect ESC when the 80-column firm-
ware is being used. Similarly, a right-arrow key (CTRL-U) cannot
be detected with GET since it is also processed before BINPUT
finishes. .

RDCHAR ($FD35)

The RDCHAR subroutine is almost identical to the RDKEY sub-
routine. In fact, it first calls RDKEY and then, after the inputted
character has been entered from the keyboard, it checks to see
whether it is the ESC key. If it is, then another escape mode is
entered into beginning at ESCNEW ($FBAS5), which is similar to
the one described above. In fact, the only differences are that the
cursor does not change to an inverse “+" sign and that the last
five escape sequences set out in Table 6-3 will not be available.

Note, however, that if the 8d-column firmware is being used,
then a call to RDCHAR turns out to be identical to a call to RDKEY.
This is because RDCHAR calls RDKEY to get a keyboard character
and it checks for an ESC character only after RDKEY has finished.
As we have seen, however, when the 80-column firmware is in use,
RDKEY itself handles the ESC key and so it will never return the
ASCII code for ESC to RDCHAR. Therefore, RDCHAR'’s escape
mode will never be activated unless the 84-column firmware is not
in use.

Reading a Line of Characters

RDKEY and RDCHAR read only one character at a time. A much
more useful and general subroutine is one that allows you to enter
a whole line of information at once (a line being defined as a series
of characters that is entered before RETURN is pressed). Such a
subroutine does exist on the //e and is called GETLN ($FD6A).
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The GETLN subroutine is used by the /e whenever you are en-
tering commands in the system monitor or in Applesoft direct
mode. In addition, the Applesoft INPUT command uses this sub-
routine directly.

As soon as GETLN is called, a special symbol, called a prompt
symbol, is displayed. The code for this symbol is always read from
PROMPT ($33). This symbol serves two purposes: it tells you what
part of the /e is currently active (the system monitor or Applesoft,
for example) and it reminds you that the //e is expecting you to
enter a line of information. Table 6-4 sets out the various prompt
symbols commonly used by the //e.

After the prompt symbol has been displayed, GETLN calls
RDCHAR again and again until the RETURN key is pressed. The
characters returned by the series of RDCHAR calls are stored in
consecutive locations in a 256-byte character input buffer located
in page two of memory beginning at IN ($200). When RETURN is
pressed, the subroutine ends and the number of characters in the
buffer is returned in the X register.

When a line is entered using GETLN, all those escape sequences
that are normally available can be used. In addition, GETLN sup-
ports several simple editing commands that can be used when the
line is being entered. These editing commands will now be dis-
cussed.

LEFT-ARROW KEY. This key allows you to backspace over
the previous item in the input buffer and, thus, to remove it from
the buffer. The cursor moves one position to the left on the video
screen when the left-arrow key is pressed.

Table 6-4. //e prompt symbols.

Prompt
Symbol Meaning

* the system monitor is waiting for a command.

] - Applesoft is waiting for you to enter a command or
a program line.

> Integer BASIC is waiting for you to enter a com-
mand or a program line (not available under
ProDOS).

? Applesoft is waiting for you to respond to an INPUT
statement.

Note: The ASCII code for the prompt symbol is kept
in PROMPT ($33).




182 [_1 Inside the Apple //e

RIGHT-ARROW KEY. This key allows you to copy the char-
acter on the video screen beneath the cursor into the input buffer.
Note that GETLN itself deals with the right-arrow key only if the
80-column firmware is not being used, because when the 8@-col-
umn firmware is in use, BASICIN handles the right-arrow key
internally (though in much the same way).

CTRL-X. This key allows you to erase everything that is cur-
rently in the input buffer. When it is pressed, a backslash (‘“\"’) will
be displayed after the characters that have already been typed in
and the cursor will be placed at the far left of the next line on the
screen. Note that the line will automatically be canceled like this
if you attempt to enter more than 255 characters before pressing
RETURN. Beeps will be sounded after every character entered
after the 248th one to remind you that the buffer is almost full.

RETURN. This key indicates to GETLN that the current line is
completed and is to be entered.

CHANGING INPUT DEVICES :
THE INPUT LINK

The most common source of character input to the //e is the
keyboard. It is possible, however, to interface many other sources
of such input to the //e through any of the expansion slots located
at the rear of the //e’s motherboard. A familiar example of such a
source is the //e’s disk drive.

The //e uses a flexible and powerful method for handling the
problems associated with having many possible sources of char-
acter input. Even though the source of the input may vary, calls
are still always made to the RDKEY subroutine whenever a char-
acter from any device, in general, is required. To activate a par-
ticular device, the destination of a jump instruction that RDKEY
uses to locate the character input subroutine is set to the address
of the device’s input subroutine. This means that your program'’s
input commands (for example, INPUT and GET in Applesoft) can
always be used regardless of the source of input.

Let’s take a closer look at the mechanics of this procedure. We
saw earlier that whenever RDKEY is called to obtain another char-
acter, control ultimately passes to an instruction that looks like
this:

JMP ($0038)

The addressing mode used by the jump instruction here is called
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“indirect.” This means that the destination of the jump is not
location $38 itself but rather the address stored at locations $38
(low byte) and $39 (high byte). This address is normally a subrou-
tine within DOS that ultimately calls KEYIN ($FD1B) or BASICIN
($C305), the system monitor’s standard keyboard input routines
(unless input is being requested from a diskette file). By simply
changing the address stored at $38/$39, however, you can force the
/le to execute any subroutine that you want whenever input is
requested, including one associated with an alternative input de-
vice.

The symbolic name for locations $38/$39 is KSW (for keyboard
switch); $38 by itself is called KSWL and $39 is called KSWH.
Since these locations are used to incorporate new input routines
into the system, KSW is commonly referred to as the “input link”
or “input hook.”

The address of the input subroutine for a peripheral input device
is usually placed in KSWL and KSWH by using the Applesoft
“IN#s” command. This command causes the /e to transfer control
to a program beginning at location $Cs@@ (where “‘s” is the pe-
ripheral slot number) that is the first location in a ROM area re-
served for that slot. Typically, the program in the new input de-
vice’s ROM will modify KSW so that it will point to a new input
routine also contained in that ROM. Note that if an IN#0 command
is entered, then the address of KEYIN ($FD1B), the //e’s standard
4@-column input subroutine, will be stored at KSWL and KSWH.

You can also change the input hook by using the Applesoft POKE
command to store the address of the new input routine directly
into KSW at $38 and $39; this address can be in a ROM area or a
RAM area. Caution should be exercised when carrying out these
changes, however, since the slightest error could easily cause the
system to crash.

How About Output?

You may well be wondering whether the /e uses the same method
to handle its output that it uses to handle its input. The answer is,
you guessed it, “yes,” but we're going to defer discussion of output
until Chapter 7. For those of you who just can’t wait, the //e uses
an output link called CSW ($36/$37) to point to the output sub-
routine that is to take control whenever the standard output sub-
routine, COUT ($FDED), is called. The PR# command can be used
to transfer control to a peripheral slot in much the same way that
IN# can be.
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Designing a KSW Input Subroutine

A KSW input subroutine must be designed carefully to ensure
that it adheres to certain rules that restrict its usage of 6502 reg-
isters, The most important rule is that when the subroutine ends,
the inputted character must be contained in the accumulator with
its high-order bit set to one. Furthermore, the X and Y registers
must contain the same values they held when the subroutine was
first entered. Thus, if X and Y are to be changed by the KSW
subroutine, they must first be saved in a safe place (such as the
stack) and then restored just before the subroutine ends.

The KSW subroutine must also properly handle the screen cur-
sor. As we saw earlier, before RDKEY ($FD@C) calls the KSW sub-
routine, it displays a cursor by reading the byte at the current
screen position defined by CH ($24) and BASL ($28) and then
changing it into its flashing video representation. When the KSW
subroutine takes over, the original screen byte is contained in the
accumulator and the value in CH ($24) is in the Y register.

If this original cursor is to be “removed” so that it can be replaced
by one generated by the KSW subroutine, the contents of the A
register must be immediately stored at the address given by
BASL+Y. This can be done with a “STA (BASL),Y" instruction.
Note that if the 8@-column firmware is being used, then you must
remove the cursor in this way because it will not be properly po-
sitioned. This is because CH is not used to store the cursor’s hor-
izontal position when the 80-column firmware is being used; in-
stead, it is stored at OURCH ($57B).

Whatever cursor is used, it must be removed just before the KSW
subroutine ends.

Replacing the Keyboard Input Subroutine

As we saw earlier, the //e comes with a built-in keyboard input
subroutine called KEYIN ($FD1B). This subroutine takes care of
setting the cursor flash rate and of scanning the keyboard until a
key has been pressed. There is nothing magic about this particular
subroutine, however, and you could easily replace it with another
program that would still get input from the keyboard, but would
do it differently. In fact, this is essentially what is done whenever
you enter a PR#3 command to turn on the //e’s 8¢-column display.
As we have seen, when this is done, RDKEY uses a new keyboard
input routine called BASICIN which changes the type of cursor
used and supports more escape sequences.
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You can use your own imagination to dream up some useful
features that could be added to a keyboard input subroutine. Some
interesting ones to think about are as follows:

+ The ability to prevent certain characters from being entered
« Allowing additional escape sequences
« Displaying a different cursor

+ Allowing for macro keys (a macro key is one that, when pressed,
causes a whole string of characters to be entered).

Later in this chapter, after we have seen how to read the key-
board, we will present some examples of modifying the keyboard
input subroutine to meet special requirements such as these.

It is simple to redefine the keyboard input subroutine so that it
operates properly when standard 40-column mode is active. In fact,
only three basic steps need be performed:

1. Wait for a key to be pressed
2. Remove the cursor
3. Return with the key code in the accumulator.

Complications arise, however, when the subroutine is to work
when the //e’s 80-column firmware is being used. The following
seven steps must be performed by such a subroutine:

Remove the “RDKEY” cursor
Set up a new cursor
Wait for a key to be pressed

If ESC is pressed, handle any escape sequence and wait for
another key

5. If right-arrow (CTRL-U) is pressed, pick character off screen
6. Remove the new cursor
7. Return with the key code in the accumulator.

BN

The input subroutine has suddenly become much more compli-
cated, for two main reasons. First, as we saw in the previous sec-
tion, the cursor that the RDKEY ($FD@C) subroutine sets up before
calling the input subroutine is valid in standard 46-column mode
only. Thus, it must be immediately removed (with a “STA (BASL),Y”
instruction) and replaced by one that appears in the proper column
position on the 8@-column screen. A suitable cursor can be set up
by calling a subroutine called INVERT ($CEDD) to toggle the video
attribute of the character at the cursor position (from normal to
inverse or vice versa). Note that since INVERT is located within
the //e’s internal ROM space (a space shared with peripheral-card
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ROM), it can only be used by first activating this ROM area by
writing to INTCXROMON ($C@07) — see Chapter 8. The cursor
can subsequently be removed by calling INVERT once again.

Second, all escape sequences and right-arrow (CTRL-U) entries
must be handled within the input subroutine itself. If the ASCII
code for an ESC character was permitted to be returned to the
subroutine that requested input (which is usually RDCHAR if a
line is being read), then RDCHAR would attempt to handle it by
calling ESCNEW ($FBAS). Unfortunately, ESCNEW will not prop-
erly handle those escape sequences designed to move the cursor
left-or right. This is because ESCNEW assumes that the horizontal
cursor position is stored in CH ($24), whereas it is actually stored
in OURCH ($57B) when the 8@-column firmware is being used.
Writing the subroutines necessary to handle all the 84-column es-
cape sequences is not simple. The chore can be simplified, however,
if the standard 8@-column firmware subroutines are referred to as
models. One simple alternative, which we will use in later exam-
ples, is simply to ignore the ESC key and wait for another keypress
if an attempt is made to enter it.

The new input subroutine must also handle the right-arrow key
internally; because if it doesn’t, GETLN ($FD6A), the subroutine
that is called to read a line of information, would try to replace it
with the character below the flashing cursor that RDKEY ($FD@C)
first sets up. As we have already seen, however, this is usually not
the proper cursor position and so the “wrong” character would be
copied over by the right-arrow key. The new input subroutine can
easily handle the right-arrow key itself by loading the current cur-
sor horizontal position stored at OURCH ($57B) into the Y register
and then calling PICK ($CFd1) to get the character from the screen
and put it in the accumulator. You must then set the character’s
high-order bit to one by executing an “ORA #$80@" instruction.

Just before the 8@-column input subroutine ends, it must turn
off its internal ROM so that the the peripheral-card ROMs will be
active once again. This is done by writing to INTCXROMOFF ($C@06).
See Chapter 8 for a discussion of the INTCXROM switches.

The ideal input subroutine is one that works equally well whether
the 8@-column firmware is active or not. Unfortunately, there is
no definitive way to determine the state of the 8@-column firmware.
One method, which will be used in later examples, is to read the
status of the ALTCHARSET ($C@1E) switch. As we will see in Chap-
ter 7, this switch indicates which of two character sets is active
and is normally on (greater than 127) when the 8@-column firm-
ware is being used and off when it is not. This method is not
foolproof, however, and will fail if the state of ALTCHARSET is
changed from its expected value.
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Table 6-5 lists a simple keyboard input subroutine that dem-
onstrates how to implement some of the techniques referred to
above so that it will be usable whether the 8@-column firmware is
being used or not. To use it, you must BRUN it directly from
diskette.

DOS 3.3, ProDOS, and the Input Link

The ability to change the KSW input link is somewhat restricted
if either DOS 3.3 or ProDOS is active. (Similar restrictions apply
if the CSW output link is to be changed.) When either DOS is first
activated, the address stored in the KSW input link is placed in
another input link located within DOS itself. A special KSW input
subroutine is then installed that is responsible for detecting and
executing any DOS commands that are entered (when Applesoft
direct mode is active) and for redirecting the source of input to a
diskette file if a DOS READ command is in effect. If a READ com-
mand is not in effect, then DOS uses the subroutine whose address
is stored in its own input link to get input. The address stored here
is initially that of one of the standard keyboard input subroutines.

If standard attempts are made to modify KSW, then DOS could
be temporarily disconnected. With two exceptions, this means that
you must not use any of the following methods to install a new
input subroutine:

* Using an Applesoft IN# command (as opposed to the DOS IN#
command) from within a program

 Using Applesoft POKE commands to place new values directly
into KSWL and KSWH

» Using the Applesoft CALL command or the system monitor GO
command (as opposed to the DOS BRUN command) to execute
an assembly-language program that stores values directly into
KSWL and KSWH.

The first exception to these rules applies if you are using DOS
3.3 (but not ProDOS). You are permitted to use POKE to store a
new address into KSW, or CALL an assembly-language program
that modifies KSW, if immediately thereafter (and before any I/0
operations are performed) you execute a CALL 1002 command or
a JSR $3EA instruction. At location 1802 ($3EA) is a subroutine
that takes the address stored in KSW, moves it into the DOS 3.3
input link, and then places the address of the standard DOS 3.3
input subroutine back into KSW. This procedure effectively re-
connects DOS 3.3 and keeps your new subroutine active at the
same time. Although there is no corresponding subroutine at $3EA



Table 6-5. MODIFY KEYBOARD INPUT. A program to illustrate how to modify the keyboard input

subroutine.
Page #01
ASM

1 IR E R R R R ERRERERRERERREREN®RERNESXENERE]
2 * MODIFY KEYBOARD INPUT =«
3 IEEEEEEEEEEEREEERERRERJEZRZEZRZ ]
4
5 * (BRUN this program from disk)
6
7 BASL EQU $28
8 KSWL EQU $38
9 ;
10 OURCH EQU $57B sHorizontal position (80-column)
11
12 KBD EQU $C000 ;Keyboard data + strobe
13 KBDSTRB EQU $C010 ;Clear keyboard strobe
14
15 CXROMON EQU $C007 ;Turn on internal ROM
16 CXROMOFF EQU $CO006 s;Enable slot ROMs
17 ALTCHAR EQU $CO1E ;2=$80 if 80-column firmware on
18
19 * 80-column firmware subroutines:
20 GETKEY EQU $CB15 ;Get character from keyboard
21 INVERT EQU $CEDD sInvert character on screen
22 PICK EQU $CFO01 sPick character off screen
23
24 ORG $300
25
26 * Set up new input link:

0300: A9 09 27 LDA #<NEWIN

0302: 85 38 28 STA KSWL

0304: A9 03 29 LDA #>NEWIN

0306: 85 39 30 STA KSWL+1
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0308: 60
0309: 2C
030C: 30
030E: 2C
0311: 10
0313: 91
0315: AD
0318: 2C
031B: 60
031C: 91
031E: 8D
0321: 20
0324: 20
0327: C9
0329: FO
032B: C9
Page #02
032D: DO
032F: AC
0332: 20
0335: 09
0337: 20
033A: 8D
033D: 60

--End Assembly--

62 bytes

Errors: 0

Cco
Cco

Cco

Co
CB

05

CE
Cco

RTS

* This is the new input subroutine:

NEWIN
GETKBD

NEWIN1

INPUT

CLRCURS

BIT
BMI
BIT
BPL

BNE
JSR
ORA
JSR

RTS

ALTCHAR
NEWIN1
KBD
GETKBD
(BASL),Y
KBD
KBDSTRB

(BASL),Y
CXROMON
INVERT
GETKEY
#$9B
INPUT
#$95

CLRCURS
OURCH
PICK
#$80
INVERT
CXROMOFF

;80-column firmware in use?
sYes, so branch

;Key pressed?

sNo, so branch

;Remove cursor

;Get the keyboard character
;Clear keyboard strobe

;Replace RDKEY’s cursor
sTurn on internal $C800 ROM
;Set up new cursor

;6et a keystroke

sIs it an ESC?

;1f so, ignore it

;Is it a right arrow?

sNo, so branch

;Get horizontal cursor position
;Grab character from screen

; and set its high bit

sRemove the cursor

s;Re-enable slot ROMs

681 [__1 pueoghAay aya pue anduj yajoedeyn g
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that is available when using ProDOS, you can install a new input
subroutine by storing its address directly into the ProDOS input
links found at $BE32 and $BE33 instead of into KSW.

The second exception relates to the use of the BRUN command
and applies to both DOS 3.3 and ProDOS. If an assembly-language
program is loaded and executed directly from diskette by using
the BRUN command, then the program is permitted to modify the
contents of KSW and both DOS and the new input subroutine will
still remain active. This is because just before the program which
is BRUN ends, DOS checks to see whether the input link has changed.
If it has, it moves the link address into its own input link and places
the address of its input subroutine back into KSW.

If you want to use an IN# command within an Applesoft program
in order to redirect input to a particular slot, you must use the
DOS 3.3 or ProDOS “version” of that command by printing a <CTRL-
D> character (ASCII code 4), immediately followed by “IN#s”
(where ““s” is the slot number) and a carriage return. The <CTRL-
D> signifies to DOS that a DOS command is about to be presented;
it can be generated using the Applesoft CHR$ function. For ex-
ample, to redirect input to slot 2 when DOS is being used, execute
the following statement:

PRINT CHR$(4);"IN#2"

instead of the Applesoft “IN#2” command. After this is done, both
DOS and the new input subroutine will be active.

ProDOS supports a special form of the IN# command that DOS
3.3 does not. This special IN# command can be used to properly
install an input subroutine that is located anywhere in memory
and not just to pass control to a program located at a slot. The
only restriction on its use is that the first byte of the new input
subroutine must be a 6502 “CLD” (clear decimal flag) instruction.
To install any such input subroutine, you must execute the state-
ment

PRINT CHR$C(4);"IN# Aaddr"

where “addr” represents either the decimal starting address of the
new input subroutine or, if preceded by “$”, the hexadecimal start-
ing address. For example, if your new input subroutine begins at
$300 (decimal 768), then you would execute either of the following
two statements:

PRINT CHR$C(4);"IN# A$300"

or
PRINT CHR$C4);"IN# A768"
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and the new input subroutine will be properly installed in the
ProDOS input link.

THE KEYBOARD

The keyboard is probably the most important input/output de-
vice attached to the //e. It is one of three primary sources of input
(the disk drive and the cassette port being the other two) and
without it you would not be able to interact conveniently with any
program running on the //e.

We are now going to take a close look at the keyboard. We will
explain how it is used to enter information and present examples
of how to modify the handling of keyboard input to meet special
requirements.

Encoding of Keyboard Characters

The //e’s keyboard is made up of 62 typewriter-like keys and one
special recessed RESET button. These keys include most of the
ones that you would see on a standard typewriter as well as a few
more special ones. They are spatially arranged in the standard
QWERTY configuration familiar to all typists.

All of the keys on the keyboard, except for th