
The· Graphics
magician

Programming
Tutorial byMarkPelczarski

�� -._! · -_

This manual contains information about a few neiN f�atures added to the ori
ginal Graphics Magician package along with short program examples that show
how various options available through the Graphics Magici·ari can be controlled
from your own software. We weren't kidding when we said this was a powerful
package. Several arcade and adventure games are already commercially avail
able that use the routines from Graphics Magician for animation and picture
retrieval. The regular manual tells how to use the editors in the Magician package
and outlines ali the options available for programmers. This manual will show
some specific ex"ampl'es ot'how programmers have used the routines in their own
software, and should be of help to you when you are writing your programs. You
should use this in conjunction with your regular manual.

New options
How do you tell which version you have?

With the newer versions, we started putting a number in the lower left corner
· of the menu screen (the one you see when you boot the Magician disk). The cur
rent version at the printing of this tutorial is V5.82. If no number appears there,
you have an earlier version. The number corresponds to the month and year of
the revision, you'll be able to identify future revisions by date. If we have your

. registration card, you will receive notices of further updates if they occur.
We will update to any new revision if you send your original disk, registration
number (see the inside front cover of your manual), and $5. If the update cannot
be shipped U PS surface, you must additionaly include enough to cover shipping
expense.

Faster PICDRAW

An extra version of the PIC DRAW subroutine, P ICDRAW F, has been added.
P IC D RAW F redraws pictures about 20% faster than the original P ICDRAW. The
tradeoff is RAM space, as PICDRAWF takes 512 more bytes. To put P ICDRAW F
on your disk, use the binary transfer utility. The new starting address in RAM is
$8COO, or 35840 decimal. All POKEs, CALLs, and JSRs are e,xactly the same,
however.

This tutorial is copyrighted, 1982, by Penguin Software. It may not be reproduce
'
d

without permission, as we feel that the documentation included with our packages
is one of the reasons we can safely not copy protect our software. Please help us
maintain that policy, as we strongly feel that you deserve software that is easy to
use, backup, and modify, if desired.

Disk Access

A new option 'C' has been added to the master menu that allows you to change
the disk drive specifications for the master and data disks. You will be asked
for the location of each. If you have a one drive system, use '01' for both. If
you have a two drive system with one controller .card (the most common set-up
for two drives), use '01' for the master and '02' for the data disk. You may also
use the S and V specifications for slot and volume. If you are using two controlle�
cards, you may use 'S6' and 'S5', for example. Certain hard disk systems use
specifications like '015' or 'V23'. Check with your dealer if you are unsure of
what to use with your particular system.

Collision Detect Subroutine

A machine language subroutine, COLLISION DETECT, has been added to the
disk. Its use is described in the tutorial.

Shape Starter

For those who want to convert existing shapes from Applesoft shape tables
to pre-shifted shapes for animation, a SHAPE START routine has been added.
To use it, RUN SHAPE START, then insert the disk with your shape table and type
in your shape table's name. You will then be asked for the number of the shape
you wish to convert, and .the size of the border you wish to leave around it. A bor
der line will be put on the screen, and you will have to position the upper left
shape flush against the border using the IJKM keys for direction. When the shape
is positioned properly, insert the Graphics Magician disk and press'S'. The Shape
Editor program will then be run, with your shape positioned properly on the
screen. You may modify it, or compile it immedately for saving. Pressing 'N' in
the SHAPE START program allows you to load in a new shape before running the
Shape Editor.

Saving in .PIC format

An extra option has been added to the Picture Editor that lets you save any
screen in standard screen format (.PIC) instead of the sequential format. This is
handy if you want to use pictures from the Picture Editor for backgrounds in
the animation system.

The Animation Routines
Most questions we receive concern the various options in the animation part

of the system. A lot of options were built into the animator that even we didn't
have definite uses for when created. The attitude, when written, was that "Gee,
it would be neat to let the programmer access this ... ", or that, or whatever.
The manual reflects that, basically saying "Here are the options that you can
access." Well, here are some specific examples of using those options.

Path Tables and Controlled Paths

Page 19 of the regular manual discusses how a path can technically be modi
fied for each movement. Here we'll go through some specific examples. To thor
oughly control the path, you'll have to learn some binary. Each byte in a path
gives the information for one move. The diagram on page 19 shows that two
bits are used. for each direction, Y- (up), Y + (down), X- (left), and X+ (right).

2 For now, we'll stick with 2 unit moves, since they preserve color. You can ac-

tually move 0-3 dots in any direction (or combination), but we'll leave that to
binary specialists.

The number 2 in binary is 10. To move in units of 2, you need to put the binary
number 10 in one or more of the pairs or bits that specify direction. For example,
if you want to move up two units, you'd put 10 in the leftmost pair, giving
10 00 00 00, which translated from binary gives the number 128. To move down
two units, you'd use 00 10 00 00, or 32 in decimal. Left two units would be
00 00 10 00, or 8, and right two units would be 00 00 00 10, or 2.

Now the trick is to locate where the path should be in memory. Create a path
on your data disk called ONE MOVE. You should create that path with the Path
Editor by making one move in any direction, then saving the path. Whichever
objects you want to control in your program, you should assign a path of ONE
MOVE from the Animation Editor, followed by a repeat (255). Remember the
object numbers.

The Path Lists tell where in memory an object's paths are located (p.18).
A path list can contain up to 3 paths, but most of the time they'll only contain
one and a repeat command. The path list for each object is 7 bytes long, and the
path list table starts at decimal location 38144. Look at listing #1, Joystick Ani·
mation. Line 40 has the formula for finding the location, P, of an object's path,
where N is the object number. During animation, if you POKE that location with
a new direction value, that object will start moving in the new direction.

Listing #1 is an example of controlling an object's moves with a joystick.
The animation file JOYSTICK.ANM contains one object with a path of ONE MOVE
(we used block animation). Line 10 loads the animation file, and line 20 sets full
screen page one graphics. Line 30 sets· N, the object number, to 0 (since we had
only one object). It can actually be any object you want. Line 40 finds the lo·

: cation of object N's path. The animation loop starts at line 50 with both paddles
(or joystick readings) being read.

The path computation is in line 60. Notice that the four multiplying factors
are 128, 32, 8, and 2, which correspond to the movement numbers for up, down,
left, and right. Looking at the first part of the equation, ('i<-80) gives a value of
one if true, zero if false. That means that if the joystick Y setting is less than 80
(of 0-255), an upward movement will register (1 *128). Likewise, if the joystick Y
setting is greater than 160, a downward move will reqister. Between 80 and
160, no up-down movement registers. Following through the equation, similar
computations are made for left·right movements. Finally, if the result is 0
(no movement), it is changed to 255 (also no movement). Why? Zero designates
the end of a path.

Line 70 POKEs the new path value into its location and CALLs the animator.
Line 80 loops back.

5 RE" liSTINS 11

10 PRINT CHR$ <4>;"BlOAD JOYSTICK.AN""

20 HSR : POKE - 16302,0

30 N = 0

40 P = PEEK 138144 + 7 a N> t 256 + PEEK 138145 + 7 t N>
50 X= PDl IO>:Y = PDl 11)

60 " = <Y < 80) l 128 + <Y > 160) a 32 + IX < 80) t 8 + <X > 160) t 2: IF

" = 0 THEN " = 255

70 POKE P,": CAll 36928

80 SOlO 50 3

Alternately, listing #2 gives a similar example with .keyboard instead of joy
stick control. Using the same. animation file, line 50 checks for a keypress. If there
was none, the program jumps to line 100 and loops. The keys affecting move
ment (lines 60-80) are space (stop movement; path = no move), 'A' (up), 'Z' (down),
left arrow (left), and right arrow (right). For each the variable M is assigned
the proper path value and then M is POKEd into the path. One note is the
HIM EM statement in the beginning that sets the upper limit for string variable
use. Since the program uses a string variable (A$) we want to make sure the
values don't interfere with the animation routine. If you set HIMEM less than the
bottom address listed in the animation editor, you won't have any problem.

1 REn liSTING 12
5 HinEn: 3oooo
10 PRINT CHR$!4l ; "BlOAD JOVSTICK.ANn"
20 HSR : POKE - 16302,0
30 N = 0
40 P = PEEK !38144 + 7 * Nl * 256 + PEEK (38145 + 7 * Nl
45 POKE P,255
50 IF PEEK (- 16384! < 128 THEN 100
60 GET Atr IF A$ = • • THEN n = 255: GDTO 95
65 IF A$ = "A" THEN n = 128: GOTO 95
70 IF A$ = •z• THEN n = 32: GOTO 95
75 IF A$ = CHR$ (8) THEN n = 8: GOTO 95
80 IF A$ = CHR$!21l THEN n = 2
95 POKE P,n
100 CAll 36928: GOTO 50

Collisions

Listing #3 shows an example of using the collision table to tell when two ob
jects collide. 'COLLIDE.ANM' for our e.?<ample has two objects. Object 0 has a
path of ONE MOVE and will be controlled with the joystick. Object 1 has a path,
any path, that will move it around the screen by itself. We used XDRAW anima
tion, although you can also use 'Draw with Background Save'.

The program is very similar to the joystick animation example, except that line
45 does the initial draw for the animation (both XDRAW and DRAw· WITH
BACKGROUND require this initial CALL), and lines 80 and 90 check for col
lisions. Note that the collision table starts at location 38368, so the collision
value for object 0 is in location 38368, for object 1 is at 38369, and so on. Line
80 prints the actual collision values on the screen. Line 90 stops the· program
if either value is non-zero, until a key is pressed. Note when running this example
that sequence determines whether one or both of the collision counters are
set. One object may move with no collision, and then the other may move on top
of the first, causing a collision flag on the second.

1 REn liSTING 13
5 HinEn: 3oooo

4 }10 PRINT CHRS (4l ;"BlOAD COlliDE.ANn"
---.....

20 HSR
30 N = 0
40 P = PEEK !38144 + 7 t Nl t 256 + PEEK !38145 + 7 t Nl
45 CALL 37284
50 X= PDL !Ol :Y = PDL 111
60 H = (Y < 80) t 128 + IY > 1601 t 32 + !X < 801 t 8 + !X > 1601 t 2: IF

H = 0 THEN. H = 255
70 POKE P,H: CALL 36928

·SO PRINT PEEK !383681, PEEK 1383691
90 IF PEEK !383681 OR PEEK !383691 THEN SET A$
100 SOTO 50

The fourth example shows how you can detect collisions with the back
ground. This can be used with BLOCK WITH BACKGROUND, XDRAW, or DRAW
W ITH BACKGROUND SAVE. We use BLOCK W ITH BACKGROUN D for the
example, with one object with path ONE MOVE, controlled by joystick. New are
the two lines that load the background picture on page 1, then on page 2
(XDRAW and DRAW WITH BACKG ROUN D only need load the picture on page 1).
For a picture, we created a maze with the Picture Editor and saved it in .PIC
format (standard screen image). You can use whatever background you want.
Lines 80 and 90 print the collision value for your object and pause if a collision
is detected.

1 REH LISTING 14
5 HIHEH: 30000
10 PRINT CHR$!4l ;"BLOAD BLOCKBACK.ANH"
20 HSR
22 PRINT CHR$!4l ;"BLOAD HAZE.PIC,A8192"
24 PRINT CHR$!4l ;"BLOAD HAZE.PIC,A16384"
30 N = 0
40 P = PEEK !38144 + 7 t Nl t 256 + PEEK !38145 + 7 t Nl
50 X= PDL !Ol :Y = PDL !11
60 H = !Y < 801 t 128 + !Y > 1601 t 32 + !X < 80) t 8 + !X > 1601 t 2: IF

H = 0 THEN H = 255
70 POKE P,H: CALL 36928
80 PRINT PEEK !383681
90 IF PEEK !38368) THEN SET A$
100 SOTO 50

Using the Object List

This example uses an animation file that is already on your disk, LETTERS.ANM.
This animation file already has each of the animated alphabet letters, stored as
shapes 0-25. It also has a blank character as shape number 26, and each object
is assigned a location along a single rectangular path. The x,y location and path
location were figured before running the animation editor by placing each object
at a specific location on the screen and counting which step along the path would
put the object there. That way, the letters in the end result will move in single
file, since each is slightly ahead of the next in the path.

Worth noting here is that with all the letters, and all your shapes, the first
definition of the shape (upper left shape) will appear when the object is in col
umns that are multipies of sevens. Therefore, to get a non-distorted letter, it 5

should be put in column 0, 7, 14, 21, and so on. The objects in the rectangular
path are arranged so that the vertical movements will be on such columns, so
the letters will appear normal. Of course, if your shape does not animate within
itself, the column doesn't matter.

Listing #5 shows how the object list is used to specify and change which
shapes are animating. Lines 5-20 initialize the routines, lines 30 and 40 allow
you to enter a group of letters, and line 50 sets the hi-res graphics mode. The lines
from 60 to 90 then POKE in the proper shapes to the path list. This is done by
finding the ASCII value of each character (line 65), and subtracting 65. Since the
letter 'A' is ASCII 65, the result for 'A' would be 0, corresponding to its shape
number. 'B' would result in a 1, 'C' in a 2, etc. That number is then POKEd into
next position in the object list. The object list starts at 37888, and contains one
byte for each object, giving the shape number of that object. After the string is
decoded, line 90 fills the rest of the objects with blank shapes (shape #26). Line
100 does all the animation by CALLing the routine and looping back until a key is
pressed. Note that BLOCK WITH BACKGROUND was used, so if you want to use
a background you can load it into page 1 and page 2 and it will be preserved.

1 RE" LISTING 15
5 HI"E": 26139
10 PRINT CHR$!4l;"BLOAD LETTERS.AN""
15 HGR2
20 TEXT : HO"E
30 PRINT "TYPE SO"ETHING 28 CHARACTERS OR LESS.": INPUT A$
40 IF LEN !A$l > 28 THEN 30
50 HGR : POKE - 16302,0
60 FOR l = 1 TO LEN !A$l
65 A= ASC ! "IDS !AS,I,1ll - 65
70 IF A < 0 OR A > 25 THEN POKE 37888 + I - 1,26: GOTO 80
75 POKE 37888 + I - 1,A
SO NEXT I
90 FOR J = I TO 28: POKE 37888 + J - 1,26: NEXT : POKE 37916,255
100 CALL 36928: IF PEEK ! - 16384> < 127 THEN 100
110 GET A$: GOTO 20

Deactivating Objects

You can also use the Object List for activating and deactivating objects. Listing
#6 is a crude game of sorts, in which you control one object with a joystick while
five others move around randomly until you collide with them, at which time they
freeze. First, create an animation file with the animation editor that has six
objects with shapes of your own choosing. Use XDRAW animation, since we'll
want to tell when objects collide with each other by looking at the collision
table. The first object (#0) will be the one you control. Load the path ONE MOVE
six times, as you'll need it in six separate locations. Assign path 0 to object 0,
path 1 to object 1, all the way to path 5 to object 5. Save the animation file as
'COLLGAME'.

The program sets HIMEM (check to see that it's low enough for the file you
created), then loads the animation routine and a COLLISION DETECT subroutine
that we added to the disk. The collision detect routine is very short (15 bytes),
and sits in the low part of memory at address 768 (hex $300). When you CALL
the routine at 769, it will qulck)y search the collision table until it finds a non-

6 zero value, put the obje�t number that collided in location 768, and return. If there

was no collision, the value 255 is put in location 768. As is, the routine searches
through all 32 objects for a collision, in reverse order (from 31 to 0). If you have
fewer objects, you can POKE the number of the last object in location 770. In our
case, with 6 objects, 0-5, we'll POKE 770,5. See line 50.

To make the other objects move at random, first we'll·assign the movement
values to a direction array, D, in line 25. Then we set up an array, P, that holds
the path locations of each of the six objects' paths (lines 30-45). Line 50 does
the initial draw for the XDRAW routine and tells the collision detector how many
objects to check. Then lines 60-75 assign random directions to each of objects
1-5. The stuff in the parentheses after D in line 70 selects a random number
from 1 to 4.

The set of lines from 80 to 150 repeat 15 times before each of the other objects
are assigned new random directions. You should recognize lines 90-110 from the
joystick control example.

The last set of lines that need explaining are 120-140. Line 120 CALLs the
collision detector, puts the object number of the collision in C, and checks if
there is no collision (C = 255) or if 1-5 didn't collide, but you (C = 0, your object)
did. (It is possible for only one of two colliding objects to register a collision.
It depends if one moved last, on top of one that had already moved and oc
cupied a point.) If there was no collision, the loop continues at line 150. If there
was a collision, the object is deactivated by POKEing 254 in the object list (line
130), and the collision flag for that object is set back to zero (line 135). In case
there was more than one collision, the program then jumps back up to line 120
to check the collision tabl.e again.

1 REK LISTING 16
5 HI11EI1: 30000
10 PRINT CHR$ (41;"BLOAD COLLSAKE.ANK"
15 PRINT CHR$ (41;"BLOAD COLLISION DETECT"
20 HSR : POKE - 16302,0
25 D(OI = 128:0(11 = 32:D(21 = 8:Dl31 = 2
30 FOR N = 0 TO 5
40 PlNI = PEEK !38144 + 7 l Nl l 256 + PEEK !38145 + 7 l Nl
45 NEXT N
50 CALL 37284: POKE 770,5
60 FOR I = 1 TO 5
70 POKE PW,D< INT (RND (1) l 411
75 NEXT I

80 FOR I = 1 TO 15
90 X= PDL !OI:Y = PDL !11
100 11 = tV < 80) l 128 + tV > 160) l 32 + !X < 80) l 8 + !X > 160) l 2: IF

11 = 0 THEN 11 = 255
110 POKE P<O>,K: CALL 36928
120 CALL 769: C = PEEK !768): IF C = 0 OR C = 255 THEN 150
130 POKE 37888 + C,254
135 POKE 38368 + C,O
140 SOTO 120
150 NEXT I
160 SOTO 60 7

Switching Shapes Midstream :

You can also use the object list to change the shape of an object in middle
of animation.The only caution is to have the shapes that you are switching the
same size. If they are different sizes (specifically, if the new one is smaller), you
may leave a trail. Listing #7 has a short example using the LETTERS.ANM file.
After each fifty moves, the letter is changed by POKEing the next shape number
into the object list. Note that all objects after #0 are deactivated by POKEing
object #1 with a 255.

1 RE" LISTING 17

5 HI"E": 2b139
10 PRINT CHR$ (4l;"BLOAD LETTERS.AN""

15 H6R2

20 POKE 37889,255
50 HSR : POKE - lb302,0

bO FOR L = 0 TO 25

70 POKE 37888,L
80 FOR I = 1 TO 50

90 CALL 3b928
100 NEXT 1: NEXT l
110 SOTO bO

A Word about HI,LO and LO,HI
Address Formats

It takes two bytes to save an address in your computer. There are various path
and shape pointers throughout the animation tables, and they have their address
es in one of two f.ormats, HI,LO or LO,HI. LO,HI is the usual method used in
machine language, but in a few cases we were able to gain some speed in re
versing the format. To convert a decimal address to either format, you need to
divide by 256 and save the integer result in the HI byte, and the remainder in the
LO byte. A quick formula for computing these is:

HI = I NT(A/256)
LO =A· Hl*256
where A is the address to be split.

If an address is to be saved in HI,LO format, use POKE L,HI:POKE L + 1 ,LO, where
L is the first of t�e two address locations. Reverse HI and LO for LO,HI format.

Plotting and not Animating

If you want to plot a shape at a location and leave it there instead of ani
mating it, you can directly CALL the plot subroutine explained on pages 19 and
20 of the regular manual. You need to POKE in the x location, y location, and
shape number before CALLing the routine. With DRAW WITH BACKGROUND
SAVE, you need to also specify a buffer number for the background. We use the

8 object number, but you can use any value from 0 to 31, as long as you don't

interfere with one of your currently animating objects. If X and Y are the screen
locations for plotting, and S is the shape number, use the following:

POKE
POKE
POKE
POKE
CALL

O,INT(X/7)
1 ,X-I NT(X/7) * 7
2,Y
3,S
36608

For DRAW WITH BACKGROUND, if B is the buffer number you want used, insert:

POKE 4,B

To erase the object, except in XDRAW mode, use CALL 36770 after the same
POKEs. In XDRAW, use CALL 36608 again.

Finding Object Locations
To find the screen location of any object, use the Object Location table des

cribed on page 17 of the regular manual. As an example, if the object number
is N, its location is:

X= PEEK(38048+ N*3)*7+ PEEK(38049+ N*3)
Y = PEEK(38050 :+- N*3)

If you are using the object locations for collision checking, try to limit the op
tions. If you have a lot of objects and try to check every object against every other
one, you'll use a lot of time. Check specifically those objects that can possibly
collide, or those that you suspect may collide and your program will run faster.

Using Pictures from the Picture
Editor in your Programs

The commands necessary for· redrawing a sequential picture created with the
picture editor are few. The trick· within your program will be memory manage
ment. In other words, you'll have to (a) set aside the memory space from $8EOO
to $95FF _(decimal 36352 to 38399), and (b) set aside a buffer area (a place to
load the binary files that contain the picture/object commands) for loaded
pictures and objects. Depending on your application and the size of your pro
grain, you may want to set aside a single buffer for every picture and object
that you load, or you may want to be able to load several pictures and objects
at a time. The key to determining the size of your buffer is to use the size, in· bytes,
of your longest picture or object. That number is displayed as you work with
your picture in the picture editor, or, if you forgot the size, you can find the
length with the binary transfer utility.

Say, for example, your longest picture/object file is less than 3000 bytes. You
could safely set the memory area above $8000 (decimal 32768) as your buffer.
PICDRAWF starts at $8COO (35840), giving you a 3,072 byte buffer. If you need
more room, you could either move the starting address of the buffer lower in
memory, or use PICDRAW, which starts at $8EOO (decimal 36352) and gives a
3,584 byte buffer.

If 3,072 bytes is long enough, you can use the program in listing #8 to load
and redraw a picture. Substitute the actual name of your picture for 'PNAME'. 9

1 RE" LISTING 18
5 HI"E": 32768
10 PRINT CHRS (4l;"BLOAD PICDRAWF"
20 PRINT CHRS (4l;"BLOAD PNA"E.SPC,A32768"
30 HGR
35 RE" LINE 40 CONTAINS 32768 PRE-CO"PUTED IN LO,HI FORKAT
40 POKE 36352,0: POKE 36353,128
50 CALL 36400

Note that the address of the starting location of the buffer is used in the
BLOAD statement of the picture, and is POKEd in LO,HI format into locations
36352 and 36353 before the redraw routine is CALLed.

Putting an Object over a Picture

Listing #9 can be added to listing #8, and shows the extra commands needed
for putting an object on the picture. Substitute the name of your object for
'ONAME'. Note that the x and y location where the object should be drawn is
POKEd into 36354-36356. If part of the object goes off the screen, you may get
a bit of a mess, so position it so that it will be within the screen boundaries. Some
trial and error is necessary, occasionally. In the POKEs for the x location,
(X>255) is 1 if true, 0 if false. Since the division by 256 will never result in a
number greater than one (since the screen goes from 0 to 279), this is a shortcut
over using division and the I NT function. ' ' '"

59 RE" LISTING 19
60 PRINT CHRS (4l;"BLOAD ONA"E.SPC,A32768"
70 POKE 36352,0: POKE 36353,128
80 X = 100:Y = 80
90 POKE 36354,X - (X > 255) l 256: POKE 36355,X > 255: POKE 36356,Y
100 CALL 36361

PICDRAWF vs. PICDRAW

The only differences between using PICDRAW and PICDRAWF are the speed
and amount of memory used. All POKEs and CALLS are identical. If there is no
conflict of memory locations between $8COO and $8DFF with a program, anything
designed to use PICDRAW may also use PICDRAWF. Any program designed to
use PICDRAWF can also later be changed to use PICDRAW, freeing 512 extra
bytes.

BLOADing Groups of Pictures in One File
It's also easy to load many pictures in a single binary file. This was done for

the DEMO program, and many more could have fit in that particular example.
The first step is to find the exact length of each picture file you want in your
combined file. Use the binary transfer utility for that. Suppose you had the results:

NAME

House.SPC
Tree.SPC

10 Rhinoceros.SPC

LENGTH

1254
·879
2318

You first need to choose a starting location. For the most pictures, use the end
of the first hi-res page, $4000 (or 16384). This leaves room for 19,456 bytes of pic
tures for P ICDRAWF; 19,968 for P ICDRAW.

The next step is to BLOAD each picture sequentially in memory. For the first,
you'd use the following from Applesoft (square bracket prompt):

BLOAD HOUSE.SPC,A16384

which loads the first piCture at 16384. Then add its length to 16384 for the next
address for loading. In our example, 16384 + 1254 = 17638, so we'd follow with:

BLOAD TREE.SPC,A 17638

Remember the location that each is loaded at, since that's the number you'll
have to POKE into the address locations before CALLing the PICDRAW routine
for any individual picture. If you forget the number, you'll have to recompute it, or.
CALL the P ICDRAW routine for each preceding picture first.

The third file would be loaded at 17638+879= 18517, in our example, so we'd
use:

BLOAD RH INOCEROS:SPC,A18517

Finally, once all the pictures are BLOADed, compute the total length by adding
each individual length together. For us, it would be 1254 + 879 + 2318 = 4451.
Then BSAVE the entire file with:

BSAVE P ICTURE GROUP,A 16384,L4451

substituting the desired name for P ICTURE GROUP and the appropriate starting
address and length for 16384 and 4451.

Using a Group of Sequential Pictures

Listings #10 and #11 give examples of using the picture group we just saved in a
program. Listing #10 cycles through the three pictures in order, waiting for a key
press between changes. Listing #11 uses the addresses we noted to allow you to
select which picture is drawn, and when. Pressing 1, 2, or 3 draws the ·appro
priate picture.

Interesting to note in listing #10 is that the starting addresses do not have to
be POKEd in when the pictures are shown sequentially. That is because the
address locations you POKE the values in is also used as a counter by the machine
language P ICDRAW subroutine. As it executes each command in your picture,
the counter is incremented for the next command. When the end of the picture
is reached, the counter is automatically pointing at the next byte! If you used the
method described above for saving pictures one right after another, that next
byte is the first location of the next picture!

1 RE" LISTING 110

5 HI"E": 8192

10 PRINT CHRf !4l;"BLOAD PICDRANF"

15 HGR

20 PRI NT CHR$!4l;"BLOAD PICTURE SROUP,A16384"

25 RE" LINE 25 CONTAINS 16384 PRE-CO"PUTED IN LO,HI FORftAT

30 POKE 36352,0: POKE 36353,64

40 FOR I = 1 TO 3
50 CALL 36400: GET A$

60 NEXT

12

1 REK LISTING 111
5 HIKEK: 8192
10 PRINT CHRS 14l;"BLOAD PICDRANF"
15 HSR
20 PRINT CHRS

.
!.41; "BLOAD PICTURE GROUP 1A16384"

25 DIK Ll3l: REK L CONTAINS THE LOCATIONS OF EACH PICTURE
30 FOR I = 1 TO 3: READ LIII: NEXT : DATA 16384,17638118517
40 SET AS: IF AS< "1" OR AS > "3" THEN 40
45 V = Ll VAL IASll
50 POKE 36352,V- INT IV I 2561 t 256: POKE 36353, INT IV I 2561
55 CALL 36400
60 60TO 40

Using Super Shapes
Listings #12 and #13 show examples of using the super shape subroutine in

short arid long form. Since the routine is relocatable (you can load it at any free
area of memory), the two CALLs are relative to the location at which the routine
is loaded.

The only requirement for where you load your table is that the address at
which it's loaded must be an exact multiple of 256. When the regular manual
refers to the starting page of a table, it's asking for the multiple of 256 at which
it was loaded, i.e. , the address divided by 256 (it must not have a remainder).

In listing #13, note that the x location is POKEd in exactly the same way �hat
we used for objects with the picture editor. Also note that all parameters only
need to be POKEd when they are to be changed. If they are to stay the same,
most POKEs can be left out

1 REK LISTING 112
· 10 PRINT CHRS !4l;"BLOAD SST/"L,A16384"

15 HSR •

20 PRINT- CHRS_ 141;"BLOAD NA"E.SST,A24576"
25 SH = 1:P6 .= 24576 I 256
30 POKE 253,SH: POKE 254,P6
35 CALL 16384

1 REK LISTING 113
10 PRINT CHR$ 141;"BLOAD SST/"L,A16384"
15 HGR
20 PRINT CHRS 14l;"BLOAD NA"E.SST,A24576"
25 SH = 1:PS = 24576 I 256
30 POKE 2531SH:.POKE 254,PS
35 RO = O:CS = O:D = 1:SO = O:X = 100:Y = 80
40 POKE 252,RO: POKE 255,CS: POKE 410: POKE S,SO
45 POKE 2491X- IX > 2551 t 256: POKE 2501X > 255:'POKE 251,V
50 CALL 16400

