
! .

A CodeWriter w Progra

Now your personal computer becomes your PERSONAL PROGRAMMEF
FileWriter lets you create YOUR OWN PROGRAMS on YOUR OWN DISKS.
No tricky computer jargon to learn. Just draw your screens EXACTLY

the way you need them — for checks, credit cards, medical
records, tax information, team sports records, church, ANYTHING!

Needed: Apple II+, lie, or He, one or two disk drives, 80-column card, printer optional
Item H-300

fCodeWrite*\
\^ Corporation J

FileWriter
A CodeWriter m Program

Now your personal computer becomes your PERSONAL PROGRAMMER/
FileWriter lets you create YOUR OWN PROGRAMS on YOUR OWN DISKS.
No tricky computer jargon to learn. Just draw your screens EXACTLY

the way you need them — for checks, credit cards, medical
records, tax information, team sports records, church, ANYTHING*

/ r , ! i i A l . / ^ ^ < £ -

FileWriter.
for the IBM and Apple Computers

CpdeWriterW Corporation

Copyright 1984, CodeWriter Corporation

Acknowledgments

M a r k T a n a k a W a r r e n S h o r e
S t e v e n R u t h e r f o r d J i m L i u
J o h n B l u m e C h r i s t o p h e r R i d e r
K e v i n R u t h e r f o r d T o n y T h o m e

TABLE OF CONTENTS

Introducing Your FileWriter
R e a d T h i s F i r s t 2
T h a t ' s E n o u g h T h e o r y 2
A b o u t S o f t w a r e P r o t e c t i o n 3

Taming It On
G e t t i n g S t a r t e d 4
F i l e W r i t e r ! M a i n M e n u 5
D e s i g n i n g T h e S c r e e n 6
T h e P r o m p t 8
D a t a E n t r y 9
N u m b e r s 1 0
M o n q y 1 1
F i l e W r i t e r C o n c e p t 1 3

Multiplying Its Power
F i l e W r i t e r P o w e r 1 4
S c r e e n R e a d i n g 1 6

Creating Your Program
C r e a t e D a t a E n t r y S y s t e m 2 0
T h e G r a n d T o t a l F i e l d s 2 2
C o m p u t e d F i e l d s 2 4
F i l e W r i t e r C o n c e p t 2 5
S e l f - R e f e r e n c i n g F i e l d s 2 6
H o w M a n y R e c o r d s N e e d e d ? 2 7
T h e K e y F i e l d 2 8
K e e p i n g O u t G a r b a g e 3 0
P r o g r a m D e s i g n C r e a t i v i t y 3 2

Running Your Program
T h e M a i d e n V o y a g e 3 5

F i l e P r e p a r a t i o n 3 5
E n t e r D a t a 3 6
U p d a t e D a t a 3 6
L o o k U p R e c o r d 3 8
S e a r c h R e c o r d s 3 8
D e l e t e R e c o r d 4 0
V e r i f y G r a n d T o t a l s 4 0
E x i t 4 0

A F i n a l W o r d 4 0
A p p e n d i x A 4 1

Index

READ THIS FIRST

This manual is intended for use with the IBM (PC & XT)
and the Apple Computers. The instructions for using
FileWriter with both systems are virtually the same;
however, when variations between the IBM and Apple
are encountered, they will be noted in the manual.

A sample program "invoice" is provided in this manual
as a tutorial for learning how to use FileWriter. This
example assumes the use of two disk drives. If you are
using one drive, your screen will tell you when you
must swap disks. Follow these screen instructions.

APPLE CURSOR MOVEMENTS

Depending on which Apple Computer you are using, the
keys for cursor movement will vary:

He use cursor keys as marked

11 plus & Franklin Cursor keys for Left/Right
Ctrl k = Up
Ctrl j = Down

When a reference is made to the ESCAPE (ESC) key for
the IBM, all Apple systems will instead use the control
key in conjunction with the letter "e":

ESC (IBM) = CTRL e (Apple)

□

This manual was written to be as unique and useful as the
FILEWRITER SYSTEM itself. That is a tall order. Please believe us when
we say that everyone at CodeWriter Corporation has
worked to make FILEWRITER among the most valuable programs you
can own.
There has been a great deal written about "Program Generation", both
good and bad, pro and con. Let's begin with a simple statement about
why THE FILEWRITER SYSTEM was developed over the last two years

There is only one reason for computers. To allow people to control the
information around them. But computers deal in code while people deal
in ideas. As personal computers become available to more and more
people, programming" in arcane and unforgiving code gets in the way
more and more. The same people who understand the information a
computer holds must be able to control that information directly. In
this way, ideas can dominate rather than hardware.

THE FILEWRITER SYSTEM allows the non-programmer with an idea for
ordering information to see that idea take shape on a personal
computer. If the idea has elements which can be put on a screen or
written on paper, FILEWRITER will structure those elements so a
computer can accept them, retrieve them, re-order them and create a
pattern for understanding.

Of course, none of this is magic. FILEWRITER only substitutes
'programming" with "Program Design". But the difference is critical.
The programmer has two problems at all times; One is the idea at hand
and the second is the job of reducing that idea to a 'language" vastly
more primitive than human thought.
While Program Design is a great deal easier, it is hardly trivial The
simplicity of FILEWRITER Program Design comes from dealing with a
problem directly in the designer's own language.

THAT'S ENOUGH THEORY

FILEWRITER will create all the computer code needed to get a program
up and running on your computer. Once you're done "designing", you'll
see the code written out on your computer screen as it is automatically
recorded onto your disk.
For the most part, THE FILEWRITER SYSTEM is "self documented"—
that is most of what you need to know to design a program is written
on the screen for you and will re
appear each time you use the

□

But use this manual anyway! There is very little more "theory"
inside. We have designed an example program—complete with
every single keystroke needed to create that program using only
human language.

Naturally, our example program is unlikely to do exactly the
things you bought FILEWRITER to do. For now, that's not
important. The example will show a great number (but not all) of
the features of the FILEWRITER system.

More importantly, the example program will show how these
features work together to solve a complex problem one step at a
time.

Put the manual in front of your computer where you can read it
comfortably. Turn your computer on and begin a process you'll not
soon forget.

You're about to increase your dominion over the single most
stimulating invention of the twentieth century. Have fun. We envy
you and wish you well.

A WORD ABOUT SOFTWARE PROTECTION

At CodeWriter Corporation we have some very definite ideas
about protecting software. We feel that both the software
developer and the software customer have rights which must be
protected. The developer must be protected from "unauthorized
use" of his work. After all, if the market place does not reward
the developer for his work the work will not be produced, not be
supported, and not be improved.

But workable software protection cannot exclude the customer's
rights. The paying customer makes all new software possible.
Thus, the customer should be able to use the software freely and
with confidence. A 'back-up' copy of your Apple or IBM
FILEWRITER disk is available at a small cost (See the coupon
included with your system). Also, a free one year guaranty is
part of your system cost. If your FILEWRITER disk fails to
operate for any reason during this period, we'll replace it free.
Once your purchase is registered, you'll be notified of our toll-free
help line for any problems you might have with your
FILEWRITER system.

□

GETTING STARTED
Throughout this manual, we'll need to tell you where your
FILEWRITER disks should be in the computer you're using.
Different computer manufacturers use different methods to
number a disk drive; Check your COMPUTER MANUAL to check on
which drive is considered the PRIMARY DISK DRIVE or first drive
in the system. This is the disk drive your computer EXPECTS any
new software disk to load
In the FILEWRITER manual we'll call your computer's PRIMARY
DRIVE the "first drive". If you're using a second disk drive with
FILEWRITER, and need to have a disk there, we'll call that drive
simply the "second drive".
All CODEWRITER systems need TWO DISKS (though not always
two disk drives); the CODEWRITER disk and your own disk. The
program designed with CODEWRITER will always be written on
YOUR DISK.
Place your FILEWRITER Disk 1 in your computer's first drive.
(Caution. Some computers prefer the main power switch ON
BEFORE inserting a disk and others only AFTER inserting a disk.
Check your computer manual so you won't damage your new disk.
Some need a 'DDS' disk loaded first—Check your manual)
Once the FILEWRITER disk is loaded, you'll be offered a screen
option to 'format a disk'. This simply prepares the disk to receive
program information. Remember—formatting will ERASE a disk.
Any disk you have ALREADY FORMATTED for your computer will
work fine. Some computer systems use the word 'initialized'
instead of 'formatted'. The meaning is the same.
You should now be looking at the Mowing screen:

□

We'll call YOUR disk the 'program disk'. Just to be safe, it's best
to format TWO DISKS to work through the examples in this
manual
When working through this manual, you'll see we've tried to keep
things clear by marking your way. When you're supposed to type
something on your computer keyboard, you'll see a 'keyboard' in
the left margin. What you type will then appear in the shaded box
to the right of the 'keyboard'. When your screen is supposed to
look a certain way, you'll see a 'screen' in the left margin.
Most FILEWRITER entries end with RETURN—meaning press the
key marked 'RETURN' to complete the entry. However your
computer may use another word, like 'enter', etc. where you see
RETURN in this manual, just remember we mean 'the key your
computer uses to complete entries'.
Once formatting is complete, you're reaty to create your first data
entry system. That's the first option on the screen.

Press b" and then RETURN m

□

rasas!

FILEWRITER SYSTEM MAIN MENU

Once back at the main menu with a formatted disk, we're reaty to
create a data entry system. Press 'd' from the menu selection and
then RETURN.

Each FILEWRITER data entry program begins with a SCREEN
LAYOUT. This is simply a form created on the screen which shows
what kind of information (data) the program operator is to enter
and how much space is allowed to do so. FILEWRITER makes this
process as easy as possible.

Press's' and then RETURN

□

^SBSl

We'll look at all the options on this menu before we're done, but
for now the task is to CREATE A SCREEN so:

Press V and then RETURN

You should be looking at a screen full of instructions on how to
accomplish writing a screen. This is for future reference in using
FILEWRITER. For now the screen instructions might make the job
look more complex than it really is. Let's examine the instructions
to sort things out:

m

FILEWRITER allows you to type anywhere on the screen to create
the entry form you want. The screen instructions will show which
keys on your computer allow you to move the cursor around the
screen.
Your FILEWRITER system allows you to make printed copies of
your screen designs. You must have a Commodore (or compatible)
printer connected to your system to do this. You'll see a line
at the bottom of your work screen which reads:

Press ft to read screen f3 hardcopy

The 'hardcopy' refers to printed copy. Simply press the f3 function
key on your Commodore 64 to send an image of your screen design
to your printer.

That's really all there is to writing on the FILEWRITER screen. We
will cover all of the information on the current screen as we
proceed with the example program. For now, just remember the
instruction screen is there to help you. Press RETURN. You'll see
another instruction screen. This, too, will be covered in our
example program. Again, remember the screens are there and
press RETURN.

DESIGNING THE PROGRAM SCREEN
You should now be looking at an almost blank screen, the
FILEWRITER screen is 80 columns across and 22 rows top to
bottom. You should see the cursor at the upper left and two lines
at the bottom of the screen:

□

The Col/Row line will TRACK the cursor position on the screen.
Try using the cursor keys we described earlier. Watch the
numbers on the Col/Row line change as the cursor moves. This
FILEWRITER feature helps in counting positions when designing
your screen and is very valuable when you're trying to copy an
existing form to the screen for use in a program.
Before we begin our example program, we need to understand a
few terms about the way computers handle information. The
terms are FILE, RECORD, and FIELD: m

FOB—A FILE is a collection of information on a single subject,
thus a receivable file is a collection of information on who owes
money to a particular company. A stamp collection file contains all
the information about a certain stamp collection, etc.

RECORD-As we get more specific, we use the term RECORD.
Thus, within a stamp collection FILE, information about a certain
stamp would appear in a RECORD for that stamp. Within a
receivables FILE we would find RECORDS of the individual
companies or people who owe money.

FIELD—The FIELD is the most specific information. Within the
stamp collection FILE, the RECORDS for individual stamps would
contain FIELDS of information like; the color of the stamp, the
country of origin, etc.
Don't be discouraged if everything you read is not clear the first
time through We have tried to keep computer jargon to a
minimum in this manual, but a little is bound to creep in. If you
work through the example program, things will begin to come
together.
Your FILEWRITER form screen is a remarkably flexible tool.
Getting information into your program, in the order you want and
the language clearest to you should be easy. Don't be afraid to
experiment. You may use as many as 100 fields on a screea Just
type anywhere-YOU CAN'T HURT FILEWRITER OR YOUR
COMPUTER FROM THE KEYBOARD.
A SALES/INVOICE PROGRAM
Our example program is intended to keep track of sales. We chose
this program idea because it gives a good indication of what the
FILEWRITER system will do. To use our new vocabulary, we wish
to build and keep track of a FILE of sales over a certain period of
time. Each sale will be entered to a screen RECORD known,
naturally enough, as an invoice; Each invoice will contain FIELDS
to put the most specific information like; customer name, item
purchased, date, price paid, etc.
We should give our invoice form some kind of heading or label to
show what its use will be. The example in the shaded box below
uses an up arrow (|) as a SPECIAL MARKER on either side.
Your computer may use another character. Check the screen
instructions.

~TZ&&\ { ABC COMPANY SALES INVOICE |

What you have typed is known as a LABEL to the FILEWRITER
System. A LABEL is something written which is NOT associated
with information to be entered Things like our title (just
entered), copyright information on the screen, instructions for
the program operator, dotted lines and the like are all LABELS to
the system because they DON'T ASK ANYONE TO REACT BY
ENTERING INFORMATION. CD

As you see our label example has the up arrow (|) symbol on
either side. This identifies screen information as a LABEL. Even if
screen material is simply a line as:

4 * be sure to
use UP ARROWS on BOTH SIDES. By the way, don't be concerned if
the invoice label you just typed is not centered exactly as you wish.
We'll take care of things like that later.

THE PROMPT
Now for the part of our sales invoice screen that IS concerned
with information handling. Let's add some customer information
PROMPTS to our form. A PROMPT asks for INFORMATION TO BE
ENTERED. A PROMPT is always followed by at least one dot (.) or
a dotted line () to indicate HOW MUCH SPACE is
available to enter the information requested by the PROMPT.
Thus we could add customer information PROMPTS to our sales
invoice screen and it would look as follows: (Don't worry about
typing exactly.)
In creating these example screens you will not be able to
enter all of the dots shown in the examples. Please adjust
the number of dots to fit on your 40 column screen.

□
There are several things we should notice about PROMPTS. As you
can see, there are no UP ARROWS. For the FILEWRITER syBtem
to recognize your PROMPTS as the requests for information they
are, never use UP ARROWS. Also while each PROMPT must have a
dot (.) or dotted line () following it, the dots DON'T have
to come IMMEDIATELY AFTER the letters or numbers in the
PROMPT.
Look at the PROMPT 'Customer name'. After the final 'e' in 'name',
there are TWO SPACES BEFORE the line of dots begins. This allows
you to create screen forms which are easier to read because the
PROMPT for information needn't bump right against the
information itself.
In any of your screen designs, the number of DOTS which follow
the PROMPT determines HOW MANY characters of information
(letters, numbers, symbols or spaces) may be entered to answer
that prompt.

m

CODEWRITER CONCEPT

THE PROMPT—A PROMPT is a request for information \jy the
program designer. It is always followed by a dot or dots to indicate
length of entry. It NEVER contains up arrows. The FILEWRITER
syBtem will search for the FIRST DOT following a PROMPT and
store the information which follows as the response to the
PROMPT. The total number of dots Mowing a PROMPT should
never be more than 79.

There is one more tip concerning PROMPTS: Never put a dot (.)
into the PROMPT itself. This can happen where a PROMPT involves
an abbreviation as in—
Max. amount needed? (y or n)
This is simply a PROMPT asking for a yes or no (one letter)
response to the question 'Maximum amount needed?' Can you see
what's wrong? The FILEWRITER system will see the dot after
'Max' and consider 'Max' alone to be the PROMPT with a one-dot
response (Max.) FILEWRITER would then read further (from
'amount needed', etc.) and consider this to be a second PROMPT.
Abbreviation is O.K. Simply leave out the period as in—
Max amount needed? (y or n)
This will work fine.
DATE ENTRY
The FILEWRITER system handles dates as a special kind of
response to a PROMPT. You may use either the American date
format or the European and FILEWRITER will automatically write
code to check for the appropriate format and a valid date entry,
i.e. no July 40 or February 29 (when not a leap year), Formats
are as follows: To express the 15th day of June, 1983

American
06/15/83

European
15/06/83

For now simply enter the empty date format. FILEWRITER will
ask for the American/European choice later.

. . / . . / . .
Added to our current screen this would be:

D
□

Add the date PROMPT to your screen. Whenever you wish date
information to be entered into your FILEWRITER created
programs, use the ../../.. format. The PROMPT may be
whatever you wish as:

Order Date ../../..
Member since ../../..
Date to Close ../../.. etc.

Only the actual date entry format need be the same. When the
operator of your program enters a date, it will be as 02/05/81—
(You may type SPACES instead of leading zeros.) Later on in
program development you will be offered the choice by
FILEWRITER as whether you wish American or European format
date handling.
NUMBERS
Up to now the information required by the PROMPTS on our sales
invoice screen has been what your computer considers
ALPHANUMERIĈ —jargon meaning IDEAS expressed in letters
and numbers. For example a name, an address, and a date are all
ALPHANUMERIĈ because of two things; They can be expressed in
letters and numbers AND they are NOT USUALDT part of any
CALCULATION—you don't add, subtract, multiply or divide them
even though they MAY include numbers.
NUMERICS, to your computer, are different. In the FILEWRITER
System NUMERICS have two meanings of their own; They involve
NUMBERS ONIY, never letters, and they can be included in
CALCULATIONS. As we promised to avoid jargon, let us begin here
to refer to NUMERICS as simply numbers.
As we add a new line to our sales invoice screen you'll notice a
change:

□

See the new symbol? After the 5 dots following 'Quantity ordered',
we've added the # sign. This does two things; The # sign takes the
place of a dot, making the space for information total 6, and the #
sign tells the FILEWRITER system that the information to be
entered will be NUMBERS and ONIY NUMBERS. Thus the numbers
may be part of a calculation—if the program designer wishes.

DO

By now your program screen should look like the one above and
include the new NUMBERS field for 'Quantity ordered'. Let's add
another field to the screen.

□

As you see, we've added another ALPHANUMERIC field called
'ITEM' and given it 16 spaces for operator entry. Again, we didn't
need any symbol after the row of dots. Add the new field yourself.
Now it's time for a little 'housekeeping'. As we look at the latest
line on our sales invoice screen, it looks as though space is
running out too soon. Most invoice forms allow for 'Quantity',
'Item', 'price each', and 'total' all on a SINGLE LINE. The
FILEWRITER system allows ANYTHING on your form to be
retyped as often as you like until it's just as you wish. Why not
take advantage?

□

There. We've abbreviated 'Quantity ordered' to 'Quan' (no period)
and added space to the 'ITEM' PROMPT, allowing for a better
description of ITEM.
MONEY
The last type of PROMPT field FILEWRITER offers is for MONEY.
This field type simply stores numbers for all DECIMAL TYPE
CURRENCIES for a maximum of 2 places to the right of the
decimal point. The FILEWRITER program designer adds the $ sign
(the meaning here being 'money' rather than the American
dollar) to the end of the dotted entry line.

We can now complete our sales invoice form:

CD

I ABC Company Sales Invoice |

□

C u s t o m e r n a m e D a t e . . / . . / .
Street address
City

Q u a n # I T E M Price $ Total
Tax

Invoice Total $

Look at the four new PROMPT fields before you type them onto
your screen. The PROMPTS 'Price', 'Total', and 'Tax' are simple
MONEY fields. 'Price' calls for an entry of 7 characters (6 dots
and the $ sign). 'Total' allows for a 7 character entry (6 dots and
the $ sign), and so does 'Tax'. The PROMPT for 'Invoice Total'
may be confusing. Here the PROMPT ITSELF ends in the $ sign.
This is perfectly O.K. as long as you're careful.

For 'Invoice Total $' the trailing $ sign in the PROMPT simply
allows the final form of the MONEY entry to read

Invoice Total $ 125.75 instead of
Invoice Total 125.75

This is a purely cosmetic option for the program designer. As a
trailing sign, of course, the $ symbol could be ANY symbol
appropriate to the currency you are using. Only the $ sign at the
END of the dotted line MUST be the $ sign as this is what tells
FILEWRITER it's handling MONEY.

As you can imagine, you need to be especially wary of accidental
dots in your PROMPTS where MONEY is involved.

00

FILEWRITER CONCEPT

PROMPT FIELD TYPES

ALPHANUMERIC (letters, numbers, symbols)—need NO special
sign at the end of the dotted line. Ex. Name They
CANNOT be a part of a calculation.

DATE—may use ANY PROMPT but MUST use the input form
../../.. as in Member since ../../.. They CANNOT be part of
a calculation.

NUMERIC (numbers only)—may use ANY PROMPT but MUST
use the # sign at the end of the dotted line. Ex. Amount

They CAN be part of a calculation.

MONEY (numbers only)—may use ANY PROMPT but MUST use
the $ sign at the end of the dotted line. Ex. Price $ They
CAN be part of a calculation.

BOTH A NUMBER AND A MONEY field need at least two
characters to define their length. For example, the fields CASH
PAID .$ or NUMBER USED .# both have two characters (the dot
and the sign) following the prompt. Use at LEAST two.

[H

SOME REAL FILEWRITER POWER

Our sales file can be much more than an electronic
invoice system. Let's get down to some real PROGRAM
DESIGN. By adding six additional fields to our screen,
the FILEWRITER sales program can become a very
efficient CREDIT JOURNAL while giving up to date
reports on both TOTAL ACCOUNTS RECEIVABLE and
TOTAL SALES. (Not bad for a first effort!)

Here is our screen with the six new fields:

□

The six new fields each have a specific job. Here's a look at them
one by one:

Acct#

This allows each ABC Company customer to have his own
identity—even if names are alike. We have allowed for 5 places.
Notice there is no # sign after the dotted line. There are two
reasons for this; First the # sign would limit us to NUMBERS
ONDT. Some account numbers use both letters and numbers
(as T1450 etc.) to give greater variety using the fewest places.
Secondly, using the # sign requires a bit more computer memory.
Whenever FILEWRITER sees this sign (or the $), it holds extra
computer memory space aside in case the information in the field
would be needed for use in a CALCULATION. Since we aren't likely
to use account numbers in any calculation, why not save
computer memory?

CO

Invoice #

This five-place field identifies a PARTICULAR SALE to our ABC
Company Customer. By using BOTH the Acct # AND this Invoice #,
we allow our FILEWRITER program to group together, in its
memory, ALL the sales to the SAME Account number. We'll show
later why this helps. Again, we left off the # sign (for the same
reasons as the Acct # example above).

PAID ON INVOICE

This seven-place $ field will be used to record customer payments
against the particular invoice which is on the screen. We used the
$ sign because money is involved AND because this field WILL be
used in a calculation. We'll explain the calculation function later.

INVOICE BALANCE

This field will hold the DIFFERENCE between the amount shown
on screen as 'Invoice Total' and 'PAID ON ACCOUNT'. Again, the $
sign is used because this field will always involve money. Also
we'll use 'INVOICE BALANCE' as part of a calculation. Our
FILEWRITER program will be designed to calculate this amount
automatically.

TOTAL ACCOUNTS RECEIVABLE

This $ field is intended to give a RUNNING GRAND TOTAL of all
the balances carried in the field 'INVOICE BALANCE'. We have
placed this field on the screen below the ===== header line to
help show that the amount is a total of ALL the invoices in the file
rather than the particular invoice on the screen.

TOTAL SALES

Again, this $ field is a FILE WIDE GRAND TOTAL of ALL sales
rather than relating to the invoice on the screen. We'll show later
how to design FILEWRITER programs to perform the grand total
function.

Our sales invoice is now complete. Of course a real sales invoice
would have more lines to enter sales items and prices, but for our
example this is enough. You are perfectly free to acyust the screen
until your invoice form looks as close to our example as you wish
to follow the manual.

{W}

Now the real magic of FILEWRITER will come clear. You may have
been asking yourself "What does drawing a screen form have to do
with writing a program?" The answer in the FILEWRITER syBtem
is "almost everything". FILEWRITER will "read" the screen we
have just created and develop AUTOMATICALIY the entire file
structure needed to make our program run. All the PROMPTS will
be saved in the right places. The 'dates' will be saved as 'dates',
'money' as 'money', etc. Most of the program designer's work in
creating this program is overl

SCREEN READING

Once you're satisfied with the screen on your computer, press ESC
to begin the "reading" we just spoke about. The screen will go
blank for a moment and our sales invoice form will be replaced by
the words "READING SCREEN". In a moment our screen will
return.

Certain PROMPT fields on the screen will be HIGHLIGHTED in
REVERSE and a question will appear at the bottom of the screen.
FILEWRITER will skip over any LABEIfi, date and ALPHANUMERIC
fields we've created and ask questions only about fields which
contain NUMERIC and MONEY information.

The program designer is asked here whether a particular
PROMPT field is to be "keyboard entered" or "program calculated".
This simply means: "Do you wish to have the program operator
enter the information the PROMPT requests or do you wish to
have FILEWRITER itself calculate the response?"

NOTE: The third choice, g for GLOBAL, allows your FILEWRITER
program to accumulate TOTALS from ALL the records in the file.
More about this later.

In our sales invoice example answer the following as the fields are
HIGHLIGHTED in REVERSE:

Quan enter 'k' The operator must enter this
from the (k)eyboard

Price

Total

enter 'k'

enter 'p'

Tax enter p'

The FILEWRITER (p)rogram can
calculate this amount by
multiplying "Quan" times
"Price". Why make extra work
for the operator.

As long as the sales tax rate is
constant for all items, your
FILEWRITER created program
will recall the rate as a
percentage and multiply this by
the "Total"

DO

Invoice Total $

PAID ON ACCOUNT

INVOICE BALANCE

TOTAL ACCOUNTS
RECEIVABLE

TOTAL SALES

enter 'p' FILEWRITER will write program
lines to direct the adding of
"Total" to "Tax"

enter k'

enter 'p'

The program operator will enter
this amount.

Your FILEWRITER (p)rogram
will calculate this

enter 'g' for this (g)rand total.

enter 'g' | FILEWRITER will ACCUMULATE
the Invoice Total amounts and
show the TOTAL whenever the
operator looks in the SALES FILE

Once all the appropriate fields have been designated either "k",
"p'\ or "g" ty the program designer, FILEWRITER will return to
the Screen Format Generator menu where the following choices
are offered

□

-fejdit screen format
(c)hange screen format
(s)ave screen /
(l)oad screen
(x) Exit to System Creation Menu

For now, do NOTHING. Here is what the menu options mean:

EDIT SCREEN FORMAT—If the program designer wished to make
ENTRY CHANGES in the screen, he would use this option. By
ENTRY CHANGES we mean changes in the KIND of information to
be entered, such as adding or subtracting a PROMPT, or in the
SPACE allowed to respond to a PROMPT.

Jtoce the! 'eLtelditiJs^elected, the current screen in memory will
re-appear. FILEWRITER will then allow ANY changes to be made
to the screen as though it had just been typed in. All 'k' or 'p'
choice information needs to be RE-ENTERED before leaving the
Edit Screen option.

CHANGE SCREEN FORMAT—This option is strictly for MOVING
existing screen information around. No new fields may be added or
existing fields or labels removed More about "Change Screen"
later.

DO

ggggss

SAVE SCREEN—This option allows the CURRENT screen in
memory (the one we just created) to be saved to the disk in the
drive. More about "Save Screen" later.

LOAD SCREEN—This option allows a previously saved screen to
be loaded from the disk in the drive. Thus ALREADY CREATED
programs made with FILEWRITER could be modified later by
loading just the screen with this option and then going back to the
Edit Screen Format option to continue creating a NEW program. To
simply VERIFY proper screen save, Change Screen can work
better. More later.

EXIT TO SYSTEM CREATION—This option starts things over from
the beginning. BE CAREFUL HERE! If you choose the exit option
BEFORE saving your screen, the screen will be LOST.

Even though our current sales invoice screen shouldn't need any
changes, let's choose the CHANGE SCREEN option anyway—just
to watch how well it works.

type 'c' here

You should see an instruction screen to explain the workings of
"Change Screen". This is for future reference. Read over the
screen and then press RETURN.

Once again the sales invoice form should appear. The LABEL
I ABC COMPANY SALES INVOICE | should have the cursor at the
FIRST POSITION. Let's say you weren't satisfied with the way the
LABEL was centered on the screen. Press the RETURN key and
the LABEL should change to REVERSE screen image.

A field SHOWN REVERSE this way is ready to be MOVED. Simply
use the cursor keys and move the LABEL anywhere on the screen
you wish! Should your moving label bump into another field on its
journey around the screen, FILEWRITER will automatically JUMP
the label to the next empty area in the direction it was being
moved Once you're satisfied with the position of the moving field,
simply stop and press the RETURN kqy. The field will revert to the
normal print mode from REVERSE. ALL screen fields can be moved
in the same way.

Press ANY key (except RETURN) and you'll skip to the next field
where the process can be repeated as often as you like. With each
pressing of a key the cursor will move to the beginning of the next
field The cursor will move over the fields in the SAME ORDER in
which the fields were FIRST ENTERED. Check your screen
instructions for the correct method to BACK UP through
proceeding fields.

» • • • •s

•̂ m*

Making "Changes" can lead to some confusion. Remember the
Change Screen routine does NOT alter any of the logic of the
screen FILEWRITER has already read Thus, if you move the
fields all over the screen, your FILEWRITER program will
continue to prompt for the operator information in the SAME
ORDER in which you FIRST typed the fields in. If you'd like the
NEW screen positions to dictate the NEW order of operator entry
of data, you'll need to "read the screen" AGAIN with the Edit
Screen option.
To make permanent changes with Change Screen, one should
1. Move the fields around any way you wish from Change Screen.
2. Once changes are complete, press ESC to return to Screen

Format Generator.
3. Choose Edit Screen and your NEWIY ALTERED screen will

appear.
4. Make any ENTRY CHANGES (see Edit Screen) you wish to

further alter the screen if needed
5. Step through the 'k\ 'p', or 'g* choices again. Once complete,

you'll be back to the Screen Format Generator menu.
6. Choose "Save Screen" to save your new form permanently to

the FILEWRITER disk work space. NOTE: If you have already
saved a screen in an OLD order and now wish to save the
screen with NEW field positions, give the NEW screen a NEW file
name.

As we don't require any permanent changes to our example
program, press ESC to leave the Change Screen option. Here
FILEWRITER warns us to be sure to save the screen. Once back
at Screen Format Generator, we are ready to save our sales
invoice screen.

Press 's' here

/
FILEWRITER will ask the program designer to give a NAME to the
screen. A maximum of 10 characters is allowed and, as usual,
simple, appropriate names are best. In this case, the name of the
screen becomes the name of the PROGRAM to be created by
FILEWRITER. Do NOT use a slash (/) or a dot (.) as part of a
screen name. Also, a screen file name must be lower case.

enter 'invoice' and press RETURN

It would be nice to VERIFY that our screen has been saved
correctly. Since we are now back to the familiar Screen Format
generator menu, we can VERIFY quite simply.

press T for load and RETURN

0D

rasas!

SSBS

(Ms
#

>

D
« r

[^ • M J L M J i» • • • •21

The "load" option will ask for the 'screen file name'. We chose
'invoice' so:

type 'invoice' and press RETURN

The disk in the drive should spin and stop. Next the screen format
Generator menu appears. We could choose Edit screen to see our
newly loaded screen, but this would force the 'k' and 'p' choices
again. Instead we choose Change Screen:

press C and RETURN

From Change Screen we are shown our sales invoice form again
which proves it has been saved correctly. To exit Change Screen
we press the ESC key
Screen creation is complete and we may now continue with
FILEWRITER program design.

press 'x' and RETURN

We get one last warning to save our screen. Quite a worrier, that
FILEWRITER!
CREATE DATA ENTRY SYSTEM
From the current menu we have the choices:

press 'a' and RETURN

FILEWRITER now announces that it will "produce the basic code
for a program you design". You may now enter a name (maximum
25 characters) and press RETURN. (The name will follow the
credit: PROGRAM Design by

You are next asked for the name of the screen file. Be EXACT here
so the system can find our much maneuvered screen-

enter 'invoice' and press RETURN

00

□

'Rgffl

After a bit of whirring from the: drive, the sales invoice
screen should re-appear with a few changes; The arrows around
the LABEL ABC COMPANY SALES INVOICE should be gone. Also,
any fields we designated (p)rogram calculated should have only a
single dot following the PROMPT. You'll be asked:

If the screen you see is correct

Press Y and RETURN

If you press 'n\ you'll be returned to the request for "screen file
name" for another try at finding the screen file.

WHICH DRIVE FOR DATA

You should now see a question asking whether you wish the DATA
for your input program saved in the first drive or the second
drive. (NOTE: single disk drive CODEWRITER systems will omit
this question.)

The choice is important. Remember, you are now creating a data
entry program to control information. The information itself (the
data) need NOT be on the same disk as the program which
controls it. Keeping the control program on one disk and the data
on another MAXIMIZES the amount of data you can control. On
the other hand, where disk capacity is enough and the
convenience of both program and data on a single disk is
important, a one-disk system works fine.

Remember, the question means "which drive for data" when your
PROGRAM IS COMPLETE AND RUNNING. (Users with two-drive
CODEWRITER systems will NOW have their program disk in the
second drive, but it will RUN in the first drive when its finished
The "data" can be on either the first or second drive.)

For our example program, enter the appropriate number for the
FIRST DRIVE.

rjT]

THE GRAND TOTAL FIELDS

The next FILEWRITER request will be to define what kind of
GRAND T0TAI5 we want in the program being designed In our
example, the prompt screen will say:

□

What does all that mean? When we first designed the screen for
our sales invoice, we included a total of 14 different FIELDS. We
then specified which of the information inputs would be
(k)eyboard entered, which would be calculated by the (p)rogram,
and which would be a (g)rand total of some other field

The FILEWRITER syBtem is now ready to learn how the program
designer wishes to CALCULATE the information on the screen. To
make things easier, FILEWRITER has ABBREVIATED the names of
the screen fields. Thus the FIRST field on the screen to be
designated (k)eyboard (e)ntered becomes kel, the second becomes
ke2, and so on. Naturally enough, the first field we chose to
designate (p)rogram (Calculated becomes pel to FILEWRITER.

Now, back to Grand Totals. FILEWRITER is asking which screen
field is to be accumulated and displayed as a Grand Total after the
prompt "Total Accounts Receivable". Inside the parentheses are
the choices: kel to kelO, pel to po4. or 'list'.

Since it's difficult to remember WHICH field we designated as the
FIRST program calculated (pel), etc. FILEWRITER offers the 'list'
option to display all our choices.

AV/.V& Type 'list' and RETURN

22

□

VAVAV

D

You should now see the following on the screen:

Again, back to the FILEWRITER prompt we're trying to answer.
We want our program to make it easier to get useful information.
Which of the screen prompts we designed will ADD UP TO a
GRAND TOTAL we can call "TOTAL ACCOUNTS RECEIVABLE"?
Study the list. "Invoice Total"? Maybe, but what if we receive a
payment from a customer? The "Invoice Total" would, of course,
remain the same after a payment, but the amount the company is
owed (its receivables) would go down.

The correct answer is INVOICE BALANCE. Obviously, if we had a
Grand Total of the INVOICE BALANCE amounts from ALL invoices
we could call this figure our TOTAL ACCOUNTS RECEIVABLE.

The 'list' should still be on your screen We can see that INVOICE
BALANCE is abbreviated by FILEWRITER to pc4.

press RETURN

Again we see prompt:

23

« g l

g»»2l

n

type pc4' and press RETURN

This tells our FILEWRITER program to accumulate ALL the
INVOICE BALANCE amounts from the entire file of invoices and
show the total in TOTAL ACCOUNTS RECEIVABLE on the screen.
Whenever the operator of our program looks at ANY invoice in the
ABC Sales file, he or she will always see this grand total on
display.

The next FILEWRITER prompt asks for the field to accumulate as;

TOTAL SALES

This should now be easy. Type 'list' again This time, of course,
'Invoice Total' is correct as the amount to be accumulated as
TOTAL SALES. Press RETURN to go back to the prompt.

type 'pc3' and press RETURN

COMPUTED FIELDS

The FILEWRITER screen now requests the computations for 4
computed fields. You'll be given an entire second screen of
information as to what this means and an entire screen as to
what is meant by 'self referencing' fields.

As before, these screens are reminders for later. We'll explain the
procedures here in detail. Read the two screens and press
RETURN.

The screen now shows:

This is where you learn to be a Program Designer. Designing the
screen was the most creative aspect of the job. Now comes the
real power.

GO

rs^i

sg/*y«r*

f s M
AVAVA

T^pe 'list' to see your choices. As you look at the list of prompt
fields and their FILEWRITER abbreviations, think. What is the
DEFINITION of 'Total'? In our invoice design, 'Total' (pel) means
'Quan' (ke7) multiplied by 'Price' (ke9).

We "design" this definition with FILEWRITER by saying:

pd=ke7*ke9

============ FILEWRITER CONCEPT============

As with most computers, the four basic arithmetic functions are:

+ means add
- means subtract
* means multiply
/ means divide

FILEWRITER also allows the use of (
components.

) to isolate formula

Parentheses are used to ISOLATE the calculations inside them for
SEPARATE COMPUTATION within a formula. An easy example
would be: pcl*pc2+(ke3-ke5) which means—First multiply pel
by pc2 and then add to this result the difference between ke3 and
ke5.

While FILEWRITER will detect SOME mathematical errors (such
as forgetting a closed parentheses after using an open
parentheses), it CANNOT prevent all instances of incorrect math
from getting into a program. You'll be offered a chance to VERIFY
a formula after you type it in. Once verified, however,
FILEWRITER will try to audit what it can and then ACCEPT what
you wrote. Please be careful.

Here are the remaining program calculations for our Sales Invoice
design and an explanation of each Follow the screen commands to
enter these:

program calculation meaning

„pc2=pd*.06

pc3=pc1+pc2

pc4=pc3-ke10

Tax (pc2) is 6% of the Total
(pel) to the invoice. Thus, we
multiply pel try .06 to find Tax.

Invoice Total (pc3) is simply
Total (pel) PLUS Tax (pc2)

Invoice Balance (pc4) is the
result of Invoice Total (pc3)
MINUS PAID ON INVOICE (kelO).

25

As usual there are a few rules to keep in mind. We'll try to be
concise:

L Calculation definitions must deal in KNOWN IDEAS. Thus, you
cannot enter pc2=pc6-ke3. Can you see why? Calculations are
defined in the SAME ORDER in which they appear on the
screen (top to bottom, left to right). Thus, if you are defining
pc2 you CANNOT have defined already pc6—making pc6 an
UNKNOWN DBA. This quandry is easier to avoid than you may
think. Simply design your screen so that your input prompts
PROGRESS in logical order (price before total, payment before
balance, etc.). FILEWRITER will handle things from there.

2. Program calculations are the HEART of a good design. Use them
well They may contain ANY combination of pc fields, ke fields
and even gt fields (subject to rule 1). They should be limited to
25 characters in overall length.

SELF REFERENCING FIELDS

There is a bit more power in FILEWRITER calculations. The Self
Referencing field may seem abstract and confusing at first, but
it's JUST PERFECT for some jobs. Where the program designer
wishes to HOLD a PREVIOUS value while calculating a new one, he
needs a Self Referencing field.

An example is in order. In an inventory program, a field named
BALANCE ON HAND will usually be designed to depend on two
others like QUANTITY IN and QUANTITY OUT.

Lets assume that QUANTITY IN is kel and QUANTITY OUT is ke2,
while BALANCE ON HAND is pel

If we used a formula like pcl=kel-ke2 (which might seem
logical), our inventory would be a disaster. Can you see why? The
field of BALANCE ON HAND would always contain ONLY the
LATEST results of the CURRENT difference between QUANTITY IN
and QUANTITY OUT.

What's needed for a field like BALANCE ON HAND is a way to
REMEMBER the current value, hold it, and then COMBINE it with
a new value. Though many methods for doing an inventory exist,
one approach might be:

'BBS* pel =pc1 +(ke1 -ke2)

FILEWRITER sees this as Self Referencing since the pel appears
on BOTH sides of the = sign.

Another use for self referencing is in a pure "counting" field.
Since all 'pc' fields are automatically calculated EACH TIME a
record is looked up by the operator, a field named "Record Access
Times" (as pc5 for instance) could be designed to count the
number of times a records was looked up by defining it as: m

asas pc5=pc5+1

FILEWRITER will automatically create a special file for self
referencing fields whenever it sees a, calculation with the SAME pc
on BOTH sides of the = sign. The program designer needn't do
anything but write the formula.

Because the self referencing file will take extra space on the
program disk, FILEWRITER will ask the designer to "confirm"
that this unique field is what the designer truly wishes. Simply
type 'c' to confirm as directed.

REMEMBER—The self-referencing field is for Program Calculated
(pc) fields only. The FILEWRITER system contains special
features for AUTOMATIC UPDATING of Keyboard Entered (ke)
fields. These features are explained later, under "UPDATE DATA",
in the instructions for using ANY FILEWRITER designed data
entry program. Don't worry if "self-referencing" is not quite clear
yet. Just keep in mind the following:

L "self-referencing" means holding an existing value while
combining it with a new one.

2. A self referencing field is ALWAYS program calculated

3. A keyboard entered field can do ALMOST the same thing
another way.

One last thing. Once defined, a self referencing field MUST have
some opening value (even zero) to function. This needn't be done
by the designer, but must be done the FIRST time the program
operator encounters the field on the screen. FILEWRITER
anticipates this. Should a program operator pass a self referencing
field the first time WITHOUT entering a value, the prompt "You
must enter something" will appear at the bottom of the screen.
Again, a zero entry is fine.

THE NUMBER OF RECORDS NEEDED

If you have an Apple, once field calculations are
completed, FILEWRITER will ask:
"What is the maximum number of records you want in the data
file (1 to)?"

If you have an IBM, you will be asked how many
records you want when you are running your created
program.

GO

r e» i

gasa

FILEWRITER calculates the maximum for you and asks how many
you're likely to need in your file. FILEWRITER will then reserve
the correct amount of space on your program disk. Remember
that specifying the maximum here will FILL the program disk.
Where you would like MORE than one program on the same disk,
ask for the FEWEST records practicable for your use.

For our Sales Invoice example, a small record file will do.

enter '50' and press RETURN

Next, we are directed to "Type in the program title" and are
allowed 30 characters to do so. The program 'title' is NOT THE
SAME as the 'Screen file name' we chose earlier. This 'title' is
cosmetic only and will merely be printed above the menu
FILEWRITER will automatically create for your programs. The
'title' should simply describe what your program DOES.
Enter something like

'ABC SALES RECORDS'

and press RETURN
THE KEY FIELD
You should now see on the screen the following questions:

"Which field is the key field (type 1 to — or 'list' to list fields)"
The "key field" is more computer jargon for a not too difficult idea.
The program which FILEWRITER is creating from our design will
store records in a file and then get them back as we need them. To
find a particular record (screen), the program conducts an
electronic 'search'. The program can simply look at every record
in file until it finds what we need, or it can go MUCH MORE
DffiECTIZ to the record in question.
The difference is having a "key" field to search for. Where one field
on our screen record is designated the "key", the FILEWRITER
created program can go to a SPECIAL INDEX of "keys" it had
previously set up. In a flash the needed screen appears.
There is no need for special computer knowledge to choose the
"kqy" field. The "kqy" is simply the one piece of information
(field) MOST LKEiy TO BE LOOKED UP when searching a file.
As an example, in a sales invoice file it is very likely that records
will be searched by 'Customer name' most often. Perhaps, in
another case, the screen form for the invoice contained a
'customer number' or 'account number'. Certainly either of these
would make a good "kqy" field as well.

28

For the moment, type 'list' and press RETURN

You should see a screen like this:

□

Keyboard entered fields:

1. Customer name 2. Acct #
3. Date 4. Street Address
5. City 6. Invoice
7. Quan 8. Item
9. Price 10. Paid on Invoice

«sn

Our choice* is limited to the 10 fields designated 'keyboard entered'.
A 'program calculated' field can NEVER be a "key". The
FILEWRITER syBtem has numbered our fields from 1 to 10 and
has kept track of the numbers. Thus we can choose the "key" by
entering the number only. Let's make 'Acct #' the key.

enter '2' and press RETURN

MORE ABOUT KEY FIELDS

You may search by ANY field on a record screen. The key field is
simply the fastest and most direct way to search. To design the
BEST POSSIBLE key field, keep one rule in mind; The best key in a
record is the most unique key.

For instance, in our invoice example the 'Acct #' key may be
REPEATED in many records (where the same customer buys
many different times, for instance). Since the 'Acct #' entered is
the SAME for many records, each time a 'search' on the key field
is done many records will 'qualify' in the search. This will work,
but is not the MOST EFFICIENT way.

Try to devise a key which will be unique to a SINGLE record. In
our example, the Invoice# is best. This number wil be DIFFERENT
for each record entered.

Again, any keyboard entered field may be the 'key' and a key
which can refer to multiple records is O.K., but unique is best.

Since many FILEWRITER applications will involve money, we can
use a bit more advice on the subject. Here are a few tips:

L FILEWRITER will allow an operator to enter simply 23. and
this will print as 23.00

29

2. An amount with NO numbers to the left of the decimal place as
in .10 will be printed later as 0.10

3. Where the program designer wishes to make sure that money
amounts line up top to bottom with the decimal points EVEN,
care should be taken to see that the DOTTED LINES for money
justify TO THE LEFT. For example:

left
$ (7 places)

$ (9 places)
. . . $ (4 p l a c e s)

will result in a column of money amounts with the decimals in
line TOP TO BOTTOM even though the $ signs vary. The fact
that the dotted entry lines are justified LEFT will accomplish
this.

KEEPING OUT GARBAGE

We are almost finished with program design. This last section is
really optional, but it can be quite important.

Any collection of information can be made most valuable to the
extent it can be kept PURE. That is a file on stamps should not
contain an occasional recipe and a PROMPT field for price should
not allow letters to be typed in, etc.

Without some attempt at keeping out 'garbage' entry, a file can
become an awful mess and lose a lot of its value.

You should now be looking at the first of two screens which show
how the FILEWRITER system allows the program designer TRAP
OUT ERRORS in operator entry.

E]

rem

like the other instruction screens on the FILEWRITER disk, these
are for future reference. Let's go through them now for more
detailed understanding.
Once past the two screens, FILEWRITER will bring our sales
invoice screen back into view and begin to HIGHLIGHT each of the
KEYBOARD ENTERED fields. At the bottom of the screen there is a
prompt line saying: Reject if: at the same time as ONE FIELD is
HIGHLIGHTED above.

The program designer is being asked, "What will not be accepted?"

FILEWRITER offers a complete arsenal of weapons to keep out
nonsense and a very good system for letting a program operator
know when something is wrong.

In order to best use your Reject if: weapons, we'll go through the
entry process together. Remember, you can always type 'help' to
see all the types of data traps again on the 2 screens. You
SHOULD study the screens as we go.

You'll see HIGHLIGHTED on the screen 'Customer name
etc.' and 'Reject if:' below.

enter 'no entry' and RETURN

This means that we have DEMANDED SOME ENTRY by the
operator of our program. Since 'Customer name' is quite
important, the operator musn't leave it blank or the sales record
could be confusing.

Once 'no entry' is typed and RETURN pressed, you'll see:

□

r — l
■ E r r o r M e s s a g e ? ■

FILEWRITER is asking the program designer to write a message
to the program operator EXPLAINING that the mistake 'no entry'
was made. The "cr= *** you must enter something ***" means
that if the program designer wishes, the message "you must enter
something" will be entered AUTOMATICALIY by FILEWRITER as a
response to the 'no entry' error, (the cr means (c)arriage
(r)eturn or just RETURN)
Let's write our own error message:

00

rrasgi

(^M\

{^M\

enter 'You must enter customer's name.' and RETURN

As you'll see the SAME field will remain HIGHLIGHTED and the
Reject if: message will appear again. Why? Because MORE than
one error could be made in the same field entry.
Let's say we want to prevent an entry which is TOO LONG. The
'name' field is 29 spaces. We can use the edit feature of
FILEWRITER to automatically reject an entry longer than 28(in
this case). The rule is; Where you wish to restrict length, allow
the space involved to be at least ONE SPACE MORE than the entry
you wish to reject.

enter length)28 and RETURN

Your FILEWRITER program will then reject all entries MORE
THAN 28 spaces in length. (The symbol after 'length' above means
'greater than'.) This prevents an operator from typing more
information than your screen form can accept. Regardless of any
edits you provide, your FILEWRITER program will automatically
sound a BELL when an operator tries to type PAST THE BOUNDS
of your screen format size for a given field (i.e. more than 10
spaces in a 10 space field).

enter 'customer name cannot be over 28 spaces'
and RETURN

CREATIVITY IN PROGRAM DESIGN
The choosing of edits and operator messages to trap out errors is
where the personality of the program designer really comes
through. The "attitude" of the created program toward its user,
and the general need for accuracy, is built at this point.

Rather than go through all of the fields in our example program,
we'll offer, instead, some suggested "edits" and messages. Once
you feel comfortable with the process of edit control, by all means
devise your own.

Field Name Reject if: (syntax) Meaning

Acct # contains ab'

Acct # length<5

INVOICE # no entry

Quan

Price

not numeric

10000

Invoice #CANN0T
contain ab'
Acct #'s MUST have
5 digits
As KEY FIELD, it
MUST be entered
A quantity MUST be
entered as a number
No number OVER
10.000 will be
accepted

"ab accounts only
in file 5."
"The Acct # entered
is too short"
"Please include
the invoice #."
"Please express
quantity as a number"
"Items costing over
$10,000 use form 3"

32

(Note: Though the following aren't in our example program, they
help to illustrate the edit process.)

Last Name > D

Par t # =300

SEX < > male"

No name beginning
with D or later will
be accepted

Don't accept 300

MUST be male

"This form for A to C
names only"

'Item 300 has been
dropped-see note 10"
"Use male only for this
survey"

WARNING: While edits can be COMBINED to test the SAME field for
different kinds of operator errors, some combinations are
LETHAL-as they allow no entry at all (or eliminate a range of
entries by mistake). For instance, >"a" rules out EVERY lower
case letter entry. (Can you see why?) And > 100, when combined
with <50, allows ONIZ 50 to 100 to be entered.

By studying these examples as well as the two edit screens, you
should be getting a good idea of the editing process. Remember,
FILEWRITER will process as many or as few information edits as
you wish. Don't leave edits out entirely, though, as they can be
the "soul" of a good information file.

PLEASE NOTE: If the "reject if:" syntax is still not clear, see
Appendix A at the end of the data entry section in this
manual.

Once the edit section is complete, FILEWRITER asks if you would
like a special "end of data entry" message to be used in your
program. This message allows the program operator to either get a
new blank screen form to fill in or return to the program menu.

The Program Designer is free to choose his own language here, but
ONE bit of program LOGIC is automatic: If the operator presses the
RETURN key at the end of filling in a screen, a NEW SCREEN will
appear. And if uy" or 'yes' is entered, the program STOPS DATA
ENTRY and returns to the menu. Examples of "legal" messages
are:

"Are you ready to stop data entry y or n (RETURN = n)"
or

"To return to the Main Menu press "y", to continue press
RETURN"

If you'd rather not bother to compose any special message, simply
press the RETURN key and FILEWRITER will write its own
message as shown on the screen.
This final FILEWRITER design choice is for date format.

* » » ! •
Enter an 'a' for American or 'e' for European date

format in your program.

33

Any field you designated 'date' (by entering ../../.. to the
screen) will automatically be evaluated by FILEWRITER for legal
date entries.

THAT'S IT!

Once the correct date format is selected, your system is reaty to
create a separate program disk to contain your new appliction.
The procedures to do this will vary depending on which computer
you're using.
Check your USER NOTES CARD and be sure to follow the SCREEN
MESSAGES that are offered by your FileWriter system.

E]

rs«
'&?#£

D

MAIDEN VOYAGE
You may now run your invoice program
independently. The FILEWRITER disk is no longer
needed.

First you must load the "screen file name." Any time
you create a program with FILEWRITER, you can
always check your screen file name in BASIC by typing
"files" (with the IBM) or "catalog" (with the Apple).
This will call up your directory.

If you followed the example in this manual, the screen
file name used is "invoice." Note the slight variation in
load commands for the IBM and Apple:

If using the IBM, type: load"invoice.t

If using the Apple, type: load invoice.t
Once the flashing cursor returns to the screen:

type 'run' and press RETURN

After a bit of disk activity, the Main Menu of your first
FILEWRITER program should appear. Except for your name being
used instead of ours, it should look like this:

Program Design by Dynatech Microsoftware

ABC SALES RECORDS

F i l e P r e p a r a t i o n (F i r s t t i m e o n l y !) , f

E n t e r d a t a e
U p d a t e d a t a u
L o o k u p r e c o r d I
S e a r c h r e c o r d s s
D e l e t e r e c o r d d
V e r i f y g r a n d t o t a l s v

E x i t . . . (A f t e r e a c h s e s s i o n) x

Let's go through the menu options one at a time.

File Preparation—This is the FILEWRITER utility which
prepares the disk designated to hold the data for the program. The
File Preparation utility will create enough disk space on the data
disk to hold the file the designer had requested. REMEMBERI This
utility is used 0N1Y the FIRST TIME a program is run. Once there
is data on a disk, the File Preparation utility will ERASE it to
'Prepare' a new file. Beware!

35

□

Enter data—This gives the program operator a new and empty
screen form to fill in. At this point ONLY the KEYBOARD ENTERED
fields are displayed (not program calculated, grand total or
labels). To stop the 'Enter data' sequence mid-screen, press the
ESC kqy. Once a screen is complete, the operator will see a line
showing how many records have been entered into the file and
how many are left. Next the operator is asked whether the data
entry session is complete. If not a new screen is shown. If so, the
program returns to the MENU.

Update data—This program routine gives the operator a chance
to change any information already entered into a screen record.
The operator is asked to give the "key" information-that is the
data entered in the field designated "kqy" by the program
designer. Here's an example:
In our ABC SALES program, the "key" field is 'Acct #'. Thus, on
Update the operator first sees a prompt asking for the 'Acct #' of
the record to be 'Updated'. Once the Acct # of the record (invoice)
is entered and RETURN is pressed, the program searches the disk
for the record and displays it on the screen.

At the bottom of the screen, the prompt line displays:

If the record displayed is correct, press RETURN. You'll notice
that now ALL FIELDS and LABEI5 are displayed. The results of
program calculations appear and grand totals are listed where
they were designed. (NOTE: If the record displayed is not correct,
type 'n' and the program will continue to search)
A new prompt now appears at the bottom of the screen. Using our
Invoice Program as an example, the prompt reads:
Which field to update (1-10, 'list', ESC to cancel, RETURN to save)
The prompt choices, inside the parentheses separated by commas,
mean the following:
1-10—This is a choice of field numbers to UPDATE from field #1 to
field #10. All are KEYBOARD ENTERED fields (the ONLY ones
intended by the program designer for the program operator to be
involved with).

list—Naturally, this gives the operator a list of the KEYBOARD
ENTERED fields showing which FIELD LABELS belong with each of
the 10 numbers. Once the operator sees which field # needs to be
UPDATED, RETURN is pressed, the record screen returns, and the
update is reaxfy for a choice.

en

ESC—At any time during UPDATE, the operator my press ESC and
cancel the update process. This returns the main menu.

RETURN—To COMPLETE and SAVE the update to disk file, press
RETURN.

This sequence illustrates the update process on our example
program:

L The operator notices that an incorrect price was used in a
customer invoice already on file.

2. The UPDATE routine is called with "u" and RETURN.

3. The Acct #, 1005, is entered as called for.

4. The first record displayed is the right Acct # but the WRONG
invoice, so 'n' and RETURN get a second invoice—which is
correct.

5. 'List' is called to get the field # for 'Price', which is 9. The 9 is
entered and the cursor appears at the 'Price' field—now erased
and waiting for a new entry.

6. As soon as the new price is entered and RETURN is pressed,
the screen action begins! Not only is 'Price' updated, but ALL
the program calculated fields and grand total fields which in
some way depend on the price amount are also updated and
can be saved by pressing RETURN again once the revised
screen appears.

Before we leave the UPDATE routine, there is one more valuable
feature called "(m)ore and (l)ess". Here's an example from our
ABC SALES program:

L A customer wishes to make a payment on one of his open
invoices. The operator goes through the update routine and
finds that the field (#10) PAID ON INVOICE already contains a
payment amount. The customer is making a second payment on
the same open invoice.

2. Since in this case we don't want the amount NOW in PAID ON
INVOICE to be ERASED and replaced with the current payment,
the normal update won't do. (Let's say the amount currently in
PAID ON INVOICE is $15.00)

3. The operator chooses field #10 which places the cursor at PAID
ON INVOICE and OVERWRITES the $15.00 amount. Since the new
payment is $10.00 and we wish to ADD this amount to PAID ON
INVOICE, the payment is entered as 10.00m for more. The 'm'
ADDS the 10.00 to the previous 15.00 so when RETURN is
pressed, the new PAID ON INVOICE amount reads 25.00 and
once again all fields which relate to this change automatically.

Obviously, entering T (for less) as in 35.001 would SUBTRACT
35.00 from the amount already entered.

[U

One last point; The m and 1 feature at first seems the same as a
self referencing program calculated field, which holds an old value
while calculating a new one. The two are different. The m and 1
feature works ONLY on KEYBOARD ENTERED fields while self
referencing is ONIY for PROGRAM CALCULATED fields.

Keep "(m)ore and (l)ess' in mind for your future FILEWRITER
applications. The feature is invaluable for inventory type
programs especially.

Look up record—When the T is used from the main menu, the
user first sees the key field alone on his screen. The ENTIRE key
field entry should be typed and then RETURN is pressed. Once a
full screen appears, the user is offered a choice; If the screen
record is correct, simply view as long as needed and then type x
and RETURN. This will return to the main menu. If the first
screen seen is NOT correct (there may be several with the same
key), press RETURN and the program will search for another
screen record with the same key.

Search records—This feature has two main purposes. One is to
find screen records where the "key" field information is unknown.
The second is to give the program operator a chance to view an
entire SERIES of screen records which are LINKED by search
boundaries the operator has chosen. Here's another example from
our ABC SALES program:

L The operator wishes to find the invoice to "Abbott Jewelers"
but does not know the Acct # to find "Abbott Jewelers" with
the Look up command. The Search command is chosen instead.

2. After 's' and RETURN are pressed, the operator sees the
prompt:

□

Since the operator doesn't want to see "aH" of the invoices to find
"Abbott", the's' is pressed for 'selected' records.

3. Next the operator sees the prompt:

GO

□

Here the operator types 'list' and sees a list of all 14 fields
(except grand totals). The operator wants to search
alphabetically so field #1, Customer Name, is selected for the
search

4. The next prompt reads:

□

Here 'Smallest' means lowest in the alphabet. Notice that the
prompt offers 30 dots to fill in? That's because your FILEWRITER
program "remembered" that field #1 was designed to have 30
characters maximum. The operator types 'Ab' which means that
records with 'Customer Name' beginning lower in the alphabet
range than "Abbott" (say Aaron, for instance) would be omitted
from the search. Remember a lower case letter is 'lower' than its
UPPERCASE counterpart (i.e. 'a' is lower than 'A').

5. The next prompt:

□

is answered; 'Abbott' so that nothing above 'Abbott' will be
searched. The records within the range will be displayed one at a
time along with the prompt:

39

□

and so the operator simply presses RETURN until the desired
record is displayed and then types x to halt the search.

A few more items concerning 'Search':

L On an alphabetic search of, say. A to D remember that a lower
limit of A is fine but D alone as the upper limit will leave out
everything beyond D by itself. To search a file A through D,
enter Aa or A and DZ as the two limits.

2. Remember that to a computer A is different from a. If you used
capital letters in your fields, use capitals in your search limits.

3. Where a search field is a date, you'll be offered ../../..
instead of dotted entries. You may search through a range of
dates.

Delete record—This menu option removes records from the file
disk. It works by asking the operator for the entry to the "key"
field and then displays the screen record in question, by
answering the "is this it" prompt with RETURN, the record is
deleted.

Verify grand totals—Because of occasional instances of computer
"rounding off" certain sums, the 'Verify' option is included. Simply
enter V and RETURN. No other entry is needed. All of the 'grand
total' fields on the screen will be checked for accurate mathematic
sums. The Verify option appears ONLY when a file contains grand
totals.
Exit—This is simple, but can be easy to forget. After EACH
session of data entry is complete, exit the program with THIS 'x'
RETURN option. Do NOT simply turn the computer off. The 'Exit'
routine in your program performs a number of very important
"computer housekeeping" tasks which keep the data file reaty for
reliable use.
A FINAL WORD
We have tried in this manual to show the major features of
FILEWRITER and how these features work interactively to allow
the Program designer to control information. We've shown some
things in detail and only hinted at others—all by design.
FILEWRITER is a tool, to be discovered rather than explained.
This CODEWRITER product is the first of a series aimed at making
PROGRAM DESIGN more powerful and capable a function. We hope
never to lose sight of the fact that your growth is our growth.

ED

Appendix A - The "Reject if:" rules

We thought it would be helpful to have the two "reject if:" help
screens for your FILEWRITER program reproduced here for
easier reference.

screen one

GENERAL TESTS

Test name example meaning to operator

no entry'
not numeric'
numeric'

- some entry required
use only numbers here
don't use numbers here

DATA SIZE TESTS

Test name example meaning to operator

length >'
length <'
length='
length O'

length > 4 no more than 4 keystrokes allowed
length < 7 no less than 7 keystrokes allowed
length=2 must NOT be 2 keystrokes
length O 3 must be 3 keystrokes

screen two

Test name

NUMBER TESTS

example meaning to operator

•>•
<

<>•

> 100 must NOT be greater than 100
< 20 must be 20 or higher

=631 must NOT equal 631
< > 1 7 m u s t e q u a l 1 7

CHARACTER TESTS (note single quotes)

Test name example meaning to operator

•>•
•<•

<> *

>'d'
<io '= bill'
<> male'

contains' contains abc

must NOT be after "d" in the dictionary
must NOT precede "jo" in the dictionary
must NOT be "bill"
must be "male"
must NOT contain 3-letter group "abc"

The various symbols used in "reject if:" syntax may not be
familiar. Here's a detailed explanation. We'll take the tests in
order.

El

[H
u9<> qq?uet

:jj *09f9J„ H*im p9*S9* 9q pjnoM atTia ONELLON P™ S93[OJ*sJfeTi
9 jo jCj*u9 try "pesn si ̂ 89̂ spq* 4ss9i HO worn 9ujq*ou pue jCj*uo

jo HJ.ONSTI OLDOadS V £INO S9qs?M J9ufts9p -b 9J9qM '«rBnb9
*ou 89op„ joj 9S9J9*nduioo si pronto u <> „ oqj— < > HXDNS1

•jnjesn 9q Atera 4*S9* j9q*o eraos q*ui aaNIflHOO
*nq 4uo*jo jCjoa p9sn *ou si *so* sjqj, -̂ q*̂ :JJ V>9[9J„ &

H10N31 HVTflDLLHVd aTONIS * V® H09J0S np* *so* 9q,L -ltSTBnb9
Tfljftraj,, sj Shnrregra 9qj, vrBBra iftJTBj si sjq* 'utb?v—=HX0N31

*joqs oo) si qq̂ uoi 9SoqM joqumu s <ftrjJ9*u9 mô g jo*BJ9do
ue *uoA9Jd \m 4*9 > TtfDBL, *S9* 9q* 49tdurex9 joj 4s*jSpp g isvai

Q» 3AVH iSflH Joqnmu *JBd jernowjed « 9J9qM 'snqj, \txreq̂
889i„ 8cre9m loqrn ŝ u > „ oqj *9«ieq esijdjns on— > HXONin

•*so* *09jjoo 9q* sb ug iraq* j9*B9jS qqjftrai,, 5urxrB9m ug < q*Su9i„
9sn tfj*u9 eiq̂ deoo-e si J9qnmu ̂ î ip g v flVHiL 3H0H ON s«raqw

'snqj, tfj*u9 joj peMOiTB (sjsqoarcqp pro sooBds q*oq) S93tf>j*sife3[
jo joqumu oq* sj 8mirB9ui u:jj *09f9J„ 9q* \4q*3u9i„ jo 9SB0 9q* ui

•J9?JBI JO J9*B9Jj 81 u i „ 9q* JO 9pi8 30HV1 ™ 1MI WR
o) si *BqM 4jC[tbj9*fi ̂ treq* j9*B9jg„ joj require jo*ndraoo oq* m?is

4» < i. 9^ \F&1% WW& TOftBLi si wotl 3uiirB9ra 9UjL— < HIONai

•*se* sjq* Jepnn 6 q?no jq* o s9T[oj*sjBm[*<feoo,B *ou mm unload
HaJLlMaiM em • ojjeumurjj *09(ej tsj. x»*uife 9m *pi9g * o*

peje*ue eq o) mi ATNO soqsjM jeuftsBp * 9J9uaa—nntgranw

'̂ jom *ou ipft- uoj*ounj uoirernoreo oq* 4ug„ jo pB9*sm; uom*„ q̂ pn
uonsonb ̂ nirenb « s j9msitb jo^ J9do ue ji ̂ snoiAqo 'uoĵ noreo

v jo ̂ d oq ipa. J9qumu 'B 9 j9qM ̂ ire ĵodnn ifrjeonuo si srqj,

'jô jodo 9q) iCq ̂ J)U9 uoiJ9nmu ̂ ou„
*e U 9̂[9J„ ppioqs J9û is9p 9q̂ ('0̂ 9 'J9qnmu ixed 'sitep jo joqumu

tfwirenb '9*0 iCruo uoî maojui eM% J9qumu joj p9u îs9p si
PI9Q e 9J9xim '89)]80ddo ui wm isnra 0^ urBgv—niwrnnw ION

•)89!|
siq̂ 9sn *pct « 0) AHiNa 3H0S ONVFiaa 0) qspm nô exinaiftiv

•xnê siCs wJXJLWnA «W W ̂ soi oq pinom OHOOaH
N33H0S aHUM om T?I0U M WW UJ Jom ôu q!HM '̂ tireiq Pioij ifen

9iw gA î ppioo jô ejodo oq̂ 4̂ S9̂ tiCĵ U9 out oq* ̂ noqî M 'OiaLi
xsra 9tr si uoî sonb ui pieg 9q* u9qM ̂ sê (̂ J*U9 ou(oq* esn

Û J-JU9 OU 81 9J9q* Jl p9)09f9J 9q ipi
(W—pi9g siq* J9A0 dp[8 *tuoa„ -Si Jujireoui eq* uiCj)U9 ou„ q̂ iM u:ji

q09f9J„ 'B SJ9MSITB J9Û 89p UTBĴ OJd 9̂ U9qM '̂ lA 8J ̂ 89* 'B SB
ÛJ«;U9 0U„ 4ifJ)U9 p9!}d900B ĴON SJ ̂M MOUTl JÔJOdO UTBĴOJd
oq* *9i 0) si ŝ sei (i:ji ̂ 09f9J„ jo osodjnd oq* 9oms—AUNS ON

•ifeM 9q* uo 81 d|9H
89op oq !yeqM iroq jgq̂ j *itbm xqN ssop ô W^ o WS o* poifro

si J9û iS9p 9q* :*dmoJd oq* jo 9 jn*Bu 9*isoddo jo pjB^OBq oq*
si u9|89p u:ji *09[9J„ 9q* jo *ood8B 9ui8njuoo *som oq* u9*jo i£j9A

QUANTITY and TEXT

Where the four symbols," > ", " <", "=", and " <> " are used
WITHOUT "length" and WITH numbers, they evaluate the
QUANTITY INVOLVED rather than the number of keystrokes.

> —This still means "greater than". Where you wish to prevent
an entry of ANY HIGHER QUANTITY than 100, for example, the
test is "reject if: >100".

< —As you'd expect, the "less than" symbol works to prevent
ANY LOWER QUANTITY than the designer wishes from being
entered. To reject any lower entry than 50, for instance, the test
is "reject if: < 50".

=—As before "equals" seeks out a SINGLE QUANTITY ONLY to
reject. Where, as an example, the ONLY wrong amount is 200, the
designer tests for this with "reject if: =200".

< > —The symbol means "does not equal" as before. Used
without "length", the test is to SEEK OUT A SINGLE CORRECT
QUANTITY. Where the designer wants, say, only part 400 as a field
entry, the test is "reject if: < > 400".

Be careful with "does not equal" as a test. Since it accepts ONIZ
ONE quantity as correct, it cannot be combined with other
quantity tests.

LETTER TESTS

When used with quotation marks and letters, the " > ", " i ", "=",
and " <> " test for POSITION IN THE ALPHABET OR DICTIONARY.

> ' ' —In the example > 'p', the meaning is "greater than
p" or "past p" in the alphabet. Using a SINGLE LETTER as we did
limits the test to the FIRST LETTER in an entry. Thus the test
'reject if: > 'p'' would TRAP OUT all words beginning with r or
any other FIRST letter LATER THAN p in the alphabet.

Where MORE than one letter is used, dictionary position
determines the "greater than" or "later than" test. The test
'reject if: > 'mac'' would eliminate ALL WORDS later in the
dictionary than a word beginning with 'mac'.

< ' ' —Here the meaning becomes "lower than" a FIRST
letter or group of FIRST letters in the alphabet or dictionary. To
trap out ALL "d" words or lower in the alphabet, the test is
'reject if: < "e"'. Thus, only "e" words or higher could be entered.

=' ' —As before "equals" looks for ONE THING only. Where,
for some reason, the designer does not wish "frog" as an answer,
the correct test would be "reject if: = 'frog*. Several of these tests
can be combined on a single field to trap out a LIST of words or
letters not wanted.

GO

< > « » _as before, the "does not equal" symbol is used to
trap out ONE SINGLE ITEM. Therefore if "tractor" is the only
response the designer wishes to allow, it is demanded with "reject
if: < > 'tractor'. Also as before the "does not equal" test
CANNOT be combined with others on the same field. It is seeking a
single acceptable response.
CONTAINS « • —The "contains" test is used OMY with
words and letters within the CODEWRITER system. If, for
instance, a particular letter or group of letters is to be tested for,
"contains" will do the job.
Let's assume that a part number entry in some inventory
analysis is "B1200" and the designer wishes to allow NOTHING
from the "C" series (C1200, etc.) to get into the data by mistake.
The correct test for the 'Part Number' field would be 'reject if:
contains"c". All numbers and other letters would be ignored, but
any entry containing "C" would be reftised.
The "contains" test can also trap a CONTINUOUS GROUP of letters
ANYWHERE in a word or sentence. Thus the test 'reject if:
contains 'me'' would trap out 'me' as well as 'men' BUT AI50
"some" and "stammer" (because they contain the 2-letter group
'me'). 'Contains' is a powerful test. Be careful.
Keep in mind that with all the letter and word tests, an UPPER
CASE letter is not the same as its lower case counterpart. You
may have to test for BOTH kinds of entry to really be sure you
keep out what you want out.
We hope this appendix makes the "reject if:" idea more clear.
Remember, while your program designs will be made more
powerful by using these tests, they are optional. Use them as you
are comfortable with them.

ED

CODEWRITER INDEX

A l p h a n u m e r i c P r o m p t F i e l d s 1 0 , 1 3 , 1 6
A m e r i c a n D a t e F o r m a t k 1 0
A r r o w s 8
C o l u m n / R o w L i n e 6
C u r s o r (C R S R) 6 , 1 8
D a t e F o r m a t 9 , 1 0 , 3 3 , 3 4
D a t e s (D a t a E n t r y) 9
D e l e t e R e c o r d 4 0
D i s k F o r m a t t i n g 4
D i s k N a m e 4
D i s k S p a c e 3 5
D o l l a r F i e l d s 2 9 , 3 0
E d i t s 3 2 3 3
E r r o r M e s s a g e s 3 1
E r r o r M e s s a g e s — U s e r W r i t t e n 3 2
E r r o r T r a p e s 3 0 , 3 2
E u r o p e a n D a t e F o r m a t 1 0
F i e l d L e n g t h L i m i t 3 2
F i l e — D e f i n i t i o n 6 - 7
F i l e P r e p a r a t i o n 3 5 , 3 6
F i l e - W i d e G r a n d T o t a l 1 5
FileWriter

B a c k u p D i s k s 3
C o n c e p t s 9 , 1 3 , 2 6
L o a d i n g 4
M a n u a l 2
S a f e k e e p i n g 3
S u p p o r t 3

F o r m a t t i n g — C a u t i o n 4
G a r b a g e 3 0
G r a n d T o t a l D i s p l a y 2 4
G r a n d T o t a l s 1 4 - 1 7 , 2 3 , 2 6 , 3 6 , 4 0
K e y F i e l d s 2 8 - 2 9 , 3 6 , 3 8
K e y b o a r d - E n t e r e d F i e l d s 1 6 , 1 7 ^ ^ 6 , 3 8
L a b e l s 7 - 8 , 2 1
L a r g e s t I t e m — D e f i n e d 3 9
L e t t e r T e s t s 4 3
L i s t (C o m m a n d O p t i o n) 2 2 , 2 4 , 2 6 , 3 9
M a i n M e n u 4
M e s s a g e s — E r r o r / O p e r a t o r 3 2
M o d u l e 3
M o n e y F i e l d s 1 1 , 1 2 , 1 4 , 1 6 , 2 9
N u m b e r F i e l d s 1 0 - 1 1
N u m e r i c P r o m p t F i e l d 1 3
O p e r a t o r M e s s a g e s 3 2
Program Calculated Fields, or

P C F i e l d 1 5 - 1 6 , 2 2 - 2 6 , 2 9 3 0 , 3 6 3 7
P r o g r a m D e s i g n 2
P r o g r a m G e n e r a t i o n 2

GO

CODEWRITER INDEX (oon't.)

P r o g r a m N a m e 1 9 , 3 5
P r o g r a m T i t l e 2 8
P r o m p t s 8 - 1 0 , 2 1 , 2 3
P r o m p t F i e l d s 1 2 - 1 3 , 1 6
Record

A s S c r e e n 2 7
D e fi n e d 6 , 7

Records
S e a r c h / D e l e t e 3 8 4 0
M a x i m u m / F e w e s t N u m b e r o f 2 7 - 2 8

R e j e c t - I f S t a t e m e n t s 3 2 3 3
R q) e c t - I f S t a t e m e n t s R u l e s 4 1 , 4 2 , 4 4
Screen

A s R e c o r d 7 , 2 7
C r e a t i o n 8
D e s i g n 5 - 6
E d i t i n g 1 7
F i e l d s 1 4
F i l e N a m e 1 9 , 3 5
F o r m a t 1 7
F o r m a t G e n e r a t o r 1 7 - 2 0
L a b e l 7
L a y o u t 5
L o a d 1 7 - 1 8
O p t i o n s 8
S a v e 1 7 , 1 9
S p a c e 5

S e l f - R e f e r e n c i n g F i e l d s 2 6 - 2 7 , 3 8
S i n g l e F i l e P r o g r a m s 7
S m a l l e s t I t e m — D e f i n e d 3 9
S o f t w a r e P r o t e c t i o n 3
S p a c e - S c r e e n 5
S p a c e - M a x i m u m i n P r o m p t s 8
S u p p o r t - M a n u f a c t u r e r 3

46

Let FileWriter write all
your information programs for you.

ly pay for separate programs for home budgets, tax records
credit cards, etc. — when you can CREATE THEM ALL YOURSELF.

There's no programming to learn. It's easy — the first time you try:

Wt + Harper Family Credit Cards | ,-■' C o N a m e Y r '

Acct#
B a l l a s t m o $ C u r r M o . . .

P u r c h a s e d t h i s m o n t h $
I n t e r e s t t h i s m o n t h $
P a y m e n t t h i s m o n t h $

■ ■ N E W B A L A N C E $.
P u r c h a s e s t h i s y e a r $
I n t e r e s t t h i s y e a r $

Add any 'help messages' you want — in your own
WORDS. For example: "Don't skip this entry" or
"Use numbers here,"

1 rem 'program name is Credit/f
2 rem 'data file name is Credit/d'
A rem 'number of records is 200 '
10 clr:gosub52210:gosub 33000
37 dim f$(nf),dt%(nf),ss%<nt*nc)
55 tt$="Finished with data entry^(Y/N}"
60 open4,8,4,"0:Credit/d,1 ,"+chr${80)
100 prmttab(20-(9+ 11 /2));,,Program
Design by John Harper"
110 printtab(20-(16/2,);"Credit Card"

o

? !
8

Simply "draw" your screen any way you'd like it
to look — just like a piece of paper. Enter words,
numbers, dates — whatever you need.

r. ^ H a r p e r F a m i l y C r e d i t C a r d s 4 , 1
' C o N a m e Y r '

Acct*
B a l l a s t m o $ C u r r M o

P u r c h a s e d t h i s m o n t h $
I n t e r e s t t h i s m o n t h $
P a y m e n t t h i s m o n t h S

, N E W B A L A N C E $,
P u r c h a s e s t h i s y e a r $
I n t e r e s t t h i s y e a r s

If you need automatic calculations, it's easy.
Just use the screen you designed to describe what
you need. For example: new balance'= bal last mo
+ purchased this month + interest this month —
payment this month. Be as simple or as complex
as you'd like!

D.

ileWriter can do all this
nd more!
Recipe Files
Club Records
Name and Address Book
Checkbook Program
Auto Maintenance Information
Album/Book Library
Sports Record
School Report Card System

When you're finished, FileWriter writes all the
"computer code" for you! In minutes you have a
BRAND NEW PROGRAM on your own disk. You may
enter, search, change, cancel, and update any
information you like — at computer speed! There
is no limit to the number of programs you can create.

Harper Family Credit Cards
Co Name... Master Charge Yr 1983
Acct# 54201799 3443 2338.
Bal last mo 327.58 Curr Mo.. Aug

Purchased this month 121.32
I n t e r e s t t h i s m o n t h 5 . 3 6
P a y m e n t t h i s m o n t h 2 5 0 . 0 0
N E W B A L A N C E 2 0 4 . 2 6

Purchases th is year 3244.32
I n t e r e s t t h i s y e a r 1 1 2 . 6 3

FileWriter
Complete, easy-to-follow, step-by-step instructions enclosed.

S1
ZT
(D

> CD"° 3

rv, u

