
APPLE DISK BACKUP SYSTEM

• Completely automatic
• All parameters are stored on disk
• Finds sync bytes automatically
• Can copy 1/4 and 3/4 tracks
• Fast, two-pass copy on I /c
• DOS 3.3 utilities

CENTRAL POINT
Software, Inc.

COPYllPIDS

Written by:
Phil Thompson
Alan Silver
Michael Brown

APPLE DISK BACKUP SYSTEM

CENTRAL POINT
Software, Inc.

9700 SW Capitol Hwy., #100 • Portland, OR 97219 • 503/244-5782

(
SYSTEM REQUIREMENTS

Apple II Computer, 64K Memory
One or two disk drives

COPY][PLUS COPYRIGHT 1982-1985
Central Point Software, Inc.

9700 SW. Capitol Hwy., #100 I Portland, OR 97219
PHONE 503/244-5782

Disclaimer of all Warranties and Liability
Central Point Software Inc. makes no warranties, either expressed or
implied, with respect to the software described in this manual, its quality,
performance, merchantability or fitness for any particular purpose. This
software is licensed "as is". The entire risk as to the quality and performance
of the software is with the buyer. Should the software prove defective follow
ing its purchase, the buyer, and not Central Point Software, Inc., assumes the
entire cost of all necessary servicing, repair or correction and any incidental
or consequential damages. In no event will Central Point Software Inc. be
liable for direct, indirect, incidental or consequential damages resulting from
any defect in the software even if they have been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of
implied warranties or liabilities for incidental or consequential damages, so
the above limitation or exclusion may not apply to you.

Notice
Central Point Software reserves the right to make improvements in the
product described in this manual at any time and without notice.

The word Apple and the Apple logo are registered trademarks of Apple
Computer, Inc.

Apple Computer, Inc. makes no warranties, either expressed or implied,
regarding the enclosed computer software package, its merchantability or its
fitness for any particular purpose.

DOS 3.3 is a copyrighted program of Apple Computer, Inc. licensed to
Central Point Software, Inc. to distribute for use only in combination with
Copy II Plus. Apple Software shall not be copied onto another diskette
(except for archive purposes) or into memory unless as part of the execution
of Copy II Plus. When Copy II Plus has completed execution Apple Software
shall not be used by any other program.

DOS 3.3 Copyright 1980-81 Apple Computer, Inc.

TABLE OF CONTENTS

Chapter One: Introduction
Hardware Requirements
What You Need to Know
About This Manual
Starting Up
Differences with Copy] [Plus Version 4

Chapter Two: DOS Utilities
Status Display
NEW DISK INFO
CATAlDO

NORMAL
WITH FILE LENGTHS
WITH DELETED FILES
WITH HIDDEN CHARACTERS

COPY
COPY FILES
COPY DISK
COPY DOS

DELETE
DELETE FILES
DELETE DISK
DELETE DOS

IDCK/UNIDCK FILES
RENAME FILES
ALPHABETIZE CATAlDO
FORMAT DISK
VERIFY

VERIFY DISK
VERIFY FILES
VERIFY IDENTICAL FILES
VERIFY DRIVE SPEED

VIEW FILES
TRACK/SEC1DR MAP
SEC1DR EDI1DR

Reading Sectors
Moving the Cursor
Reading Again
Changing Bytes

1
2
2
3
4
5

7
8
9

10
10
11
11
11
11
12
15
16
16
16
17
17
18
18
19
20
21
21
22
23
24
25
26
28
29
31
32
32

Writing 33
How to Edit a Sector 33
Follow Files 34
Disassembly 34
Printer Dumps 35
Scan for Bytes 35
Patch 36
How to Set "Patched" Routines 38
Custom Patching 38

FIX FILE SIZES
CHANGE BOOT PROGRAM 40
UNDELETE FILES 41
QUIT 41

Chapter Three: Bit Copy 43
Overview: Parameters 43
Starting Bit Copy 44
AUlD COPY 45

Copy Status 47
Errors and Error Numbers 48
Comments 48
AUlD COPYing again 49
If a Program is Not Listed 49

PARTIAL AUlD COPY 50
MANUAL BIT COPY 51
MANUAL SEClDR COPY 55
NIBBLE EDilDR 56
HI-RES DISK SCAN 61
Parameter Entries 63

Sector Edit Parameters 66
WAD PARM ENTRY 68
EDIT PARM ENTRY 70
CREATE NEW PARM ENTRY 71
SAVE PARM ENTRY 71
RENAME PARM ENTRY 72
DELETE PARM ENTRY 72
Possible Parameter List Errors 72
®IT M

Appendix A: Disks and Disk Hardware 75
Apple DOS, Files, Tracks, Sectors - 75
Disk Hardware, Reading and Writing Bytes, Disk Speed 76

Contents of a Sector
Reading, Writing, and Formatting
Differences in DOS 3.2 Format

Appendix B: Protection Schemes
Protection?
Perfection?
Changed Address and Data Headers
Changed Sync Bytes
Synchronized Tracks
Half Tracks
An Extra Track?
Bit Insertion
Nibble Counting
Long Tracks
Write-Protect Check
"Non-sync Sync"
Spiral Tracks

Appendix C: Routines and Parameters

Appendix D: Summary of Parameters

Appendix E: Number Conversion Tables

Appendix F: Other Wonderful Products

79
81
84

85
85
85
87
87
88
89
89
90
90
91
91
92
92

95

103

111

119

CHAPTER ONE: INTRODUCTION

This manual describes Copy] [Plus Version 5, which includes
both a powerful DOS disk utility package and a sophisticated Bit
Copy program. The DOS utilities allow you to manipulate DOS
3.3 and DOS 3.2 files and disks quickly and easily. The Bit Copy
program can make backups of valuable software that has been
copy-protected.

With the utilities, you can:

Copy any 16 sector or 13 sector unprotected disk
Copy DOS onto a disk
Copy files
Catalog a disk
Catalog showing file lengths
Catalog showing any hidden control characters
Catalog showing deleted files
Delete files
Delete DOS to free up more space for files
Delete all information from a disk
Lock or unlock files
Rename files
Alphabetize the catalog
Format a disk
Verify that the disk is good
Verify that files are good
Verify whether or not two files are identical
Check disk drive speed
View the contents of files
See a map of what files are stored where on the disk
Edit any sector or any file
Fix file sizes, to free up wasted disk space
Change the boot program on the disk
Undelete files, to recover files that were accidentally deleted

Most of these options are for standard DOS 3.3 or DOS 3.2 disks.
However, the utility options COPY DISK, VERIFY DISK, and
SECTOR EDITOR can be used with any 13 or 16 sector
unprotected disks, including DOS 3.3, 3.2, ProDOS, SOS, CP/M,
and Pascal format disks.

Page 1

The Bit Copy program includes a new AUTO COPY feature.
Parameters for copying many programs are included on the Copy
] [Plus disk. All you need to do is type in the name of the pro
gram you want to back up, and Copy] [Plus does the rest!
Updated parameter disks will be available every 3 months from
Central Point Software. If you want, you can enter your own
parameters to copy a disk, or use the nibble editor or hi-res disk
scan options to examine how a disk is formatted.

(Note: Copy] [Plus is designed to work with standard 35-track
floppy disk drives. It doesn't support hard disks or RAM disks
because of the special software installation and other restrictions
these require to work. Copy] [Plus instead accesses the floppy
drives directly for best performance.)

Hardware Requirements

To use Copy] [Plus, you need a 64K Apple II series computer.
This can be:

Apple l [with 16K (or larger) memory card, or
Apple) [Plus with 16K (or larger) memory card, or
Apple I le, or
Apple I lc, or
Apple compatible computer with at least 64K or memory.

You need only one disk drive, though a second drive is helpful
when copying disks.

What You Need to Know

To use the DOS utilities, we assume that you are generally familiar
with DOS 3.3 and the standard DOS commands. If you want to
examine disks with the SECTOR EDITOR option, you will want
to be more familiar with the format of files and disks.

Using the Bit Copy program to copy most protected disks doesn't
require any technical knowledge, if the program you want to copy
is included in our list of parameter entries. If it is not, we provide
a few suggestions for how to copy new programs.

Page2

If these suggestions don't work, or if you want to learn more
about disk protection schemes, then you'll need to learn and
understand a number of uncomfortably technical concepts. Pro
tection schemes are an inexact and rather sneaky art, rather than a
science. Most reasonable people will not be interested in learning
it. We do, however, provide some reference material on disks and
disk protection in the appendices. (If you're having problems
backing up a disk, remember that we also have updated parameter
entries available every three months.)

Hexadecimal number notation is used throughout the Bit Copy
program and occasionally in the DOS utilities. (Following usual
computerese conventions, the hexadecimal numbers are preceded
with a dollar sign, as in "$D5".) Understanding hex numbers is
helpful, but not necessary. Appendix E contains a table that lets
you convert between decimal and hex.

For users interested in learning more, we recommend:

DOS Programmer's Manual, by Apple Computer, for information
on DOS commands, with an appendix on disk file storage.

Beneath Apple DOS, by Quality Software, for information on
DOS files and track and sector formatting,

Understanding the Apple II, also by Quality Software, with a
chapter of in-depth information on disk hardware.

About This Manual

This manual will show you how to use each option step-by-step. In
nearly every case, Copy] [Plus will show "reminder" prompts as
to what commands or menu options are valid. We encourage you
to carefully read through this manual to take advantage of all of
Copy] [Plus's features.

This manual is divided into three chapters and five appendices.

This chapter, Chapter One, is an introduction to Copy] [Plus,
and explains how to start up the utilities and the Bit Copy
program.

Page 3

Chapter Two describes the utilities in depth, with information on
how to use each utility option.

Chapter Three explains using the Bit Copy program to make
backups of protected disks.

Appendix A is a reference on disks and disk hardware.

Appendix B briefly explains many disk protection schemes.

Appendix C describes the methods that the Bit Copy program
uses to copy a protected disk, and discusses the various parameters
used.

Appendix D is a summary of the Bit Copy parameters.

Appendix E is a table of numbers from 0 to 255, with their
hexadecimal and binary equivalents, and the DOS 4-and-4
encoded equivalent. (Appendix A explains 4-and-4 encoding.)

Appendix F describes the other software backup and utility
products from Central Point Software.

Starting Up

To access either the DOS utilities or the bit copy program, begin
by booting the Copy] [Plus disk. In a few seconds, the DOS utili
ties menu will appear. (If you have two disk drives, the second
drive will whir for a moment. This is normal and will not hurt
any disk in the drive.) To use the utilities, read on to Chapter Two.

To go from the utilities to the bit copy program, next press the
[RETURN] key three times. The display will change each time,
and after the third time the disk will whir as the Bit Copy program
is loaded. Skip to Chapter Three for instructions on using Bit
Copy.

A few words need to be said about the Bit Copy program and
copy-protected software. Under the copyright law, you are entitled
to make backups of software for your own use, so that if a disk is
damaged or accidentally erased, the information is not lost. Some
software companies, in efforts to prevent illegal duplication,
"copy-protect" their disks so that they cannot be copied using
normal copy methods. The Bit Copy program is designed for

Page 4

copying these protected disks. It is provided only to help you make
backups of protected disks for your own use, not for illegal copy
ing. (Schools and institutions wishing to copy a program for
educational use on a number of computers should check with the
software publisher for their educational copying policy.)

The Copy] [Plus disk is a standard DOS 3.3 disk and is not copy
protected in any way. You can make a backup of Copy] [Plus
using the COPY DISK option in the DOS utilities, or with any
other standard disk copy program. We encourage you to back up
Copy] [Plus right away, then put the original disk in your bomb
shelter, in case anything happens to your copy.

Differences with Copy] [Plus Version 4

For users who are updating from Copy] [Plus Version 4, here is a
brief summary of the major differences in Version 5:

Version 5 requires 64K of memory, rather than 48K.

The Copy] [Plus disk is now a standard DOS 3.3 disk, and can
be copied using the COPY DISK option or any normal copy
program.

The Bit Copy program can copy more disks than before, and does
"nibble counting" more reliably.

An AUTO COPY feature has been added to the Bit Copy pro
gram. Rather than entering parameters from the Backup Book by
hand, just select the program you want to copy from the
"parameter entry" list. Copy] [Plus fills in the parameters for you.
It will even do sector editing automatically.

A SECTOR COPY option has been added to the Bit Copy pro
gram. This copies the protected programs which used to be copied
with the COPY DISK option from the utilities.

COPY DISK is more reliable and requires fewer passes to copy a
disk. On an Apple //e with 128K of memory or an Apple //c, the
entire disk is copied in two passes. It does not copy protected disks
anymore. Use the SECTOR COPY option from the Bit Copy
program instead.

Page 5

The ALPHABETIZE CATAIDG option has been added.

The Sector Editor is much more sophisticated yet easier to use.
You can edit absolute sectors on the disk, or follow a file sector by
sector. Other features include disassembly, scanning the disk or a
file for a pattern of bytes, and making specific changes to the
read/write routines for accessing many protected disks. Position
ing the cursor to a specific address is simpler.

Filenames and commands can now be entered using either upper
or lower case characters. Up and down arrow keys can be used (as
well as the left and right arrow keys) for scrolling through menus.

Track and sector numbers are always printed in hexadecimal.

Page6

CHAPTER TWO: DOS UTILITIES

When you boot Copy] [Plus, the disk will whir for several seconds
as the Copy] [Plus utilities are loaded into the computer. (If you
have two disk drives, the second drive will whir for a moment,
too. It does this to check if there is a second drive connected. It
won't hurt any disk that might be in the drive.)

The main utilities menu will appear next:

COPYJ[PLUSS.n
~kL12§'=~~~NIBAkEQ1NI~~£J~~B£LJ]~~
COPY USE ARROW KEYS
CATALOG DISK & [RETURN] TO
DELETE SELECT FUNCTION
LOCK/UNLOCK FILES
RENAME FILES
ALPHABETIZE CATALOG
FORMAT DISK
VERIFY
VIEW FILES
TRACK/SECTOR MAP
SECTOR EDITOR
FIX FILE SIZES
CHANGE BOOT PROGRAM
UNDELETE FILES
NEW DISK INFO
QUIT

DISKSLOTDRIVEDOSFREE&USED PRINTER
A 6 1 3.3 OFF
B 6 2 3.3

Along the left side of the screen are the 16 main options. With
some of these options are sub-menus to select specific functions.

Throughout Copy] [Plus, you can press the Escape key ([ESC])
to back safely out of the sub-menu or current option.

One of the menu items is always displayed using inverse (black-on
white) letters. If you want to select that option, just press
[RETURN]. If you want to select another option, pressing the

Page 7

arrow keys will move the inverse field to that option. Try pressing
the arrow keys a few times. The left arrow (and up arrow, if your
Apple has one) moves the inverse field up, and the right (and
down) arrow moves it down. Once the option you want is dis
played in inverse, then press [RETURN] to run it. Note the
prompt in the upper-right:

USE ARROW KEYS
& [RETURN] TO
SELECT FUNCTION

Status Display

At the bottom of the screen will be a display similar to the follow
ing. (The slot numbers shown will be the slot used to boot Copy] [
Plus.)

DISK SLOT DRIVE DOS FREE&USED
A 6 1 3.3
B 6 2 3.3

PRINTER
OFF

Copy] [Plus uses "names" for the disk drives being accessed. The
names are simply "A" and "B". In the above example, drive A
refers to the disk drive in slot 6, drive 1. Drive B is slot 6, drive 2.
Rather than asking for slot and drive numbers for every option,
Copy] [Plus allows you to quickly select drive A or B as a menu
option. Any time you need to (for example, if you have drives
connected to other slots), you can change drives A and B to be
different drives using the "NEW DISK INFO" option.

(Note: If you have an Apple //c, there are no "slots" for disk
drives. The built-in drive is the same as slot 6, drive 1 on other
Apples. If you have an external drive connected, it's the same as
slot 6, drive 2.)

If you have only one disk drive, then when you boot Copy] [Plus,
it will select drive 1 for both A and B. Then it doesn't matter
whether you use A or B. They're both the same drive.

You can also access disks in either DOS 3.3 or DOS 3.2 format. In
the example, both drives are selected to read DOS 3.3 disks. If you

Page 8

want to read a DOS 3.2 disk, simply choose the drive you will use
and select it as DOS 3.2 with "NEW DISK INFO".

The "FREE&USED" area shows how many free and used sectors
there are on disks A and B. If a disk has not been read, this area
will be blank.

NEW DISK INFO

To select the NEW DISK INFO option (second from the bottom),
press the arrow keys until this option is displayed in inverse, then
press [RETURN]. The slot number for drive A will begin flash
ing. If you want to change the slot number, you can type a new
number, and it will replace the old. If you want to keep the current
slot number, just press [RETURN]. (If you enter an invalid slot
number, the Apple speaker will beep.)

Next, the drive number for drive A will flash. You can enter a new
drive number or press [RETURN] to accept the one displayed.

The second digit of tlie DOS version will flash next. This allows
you to select between DOS 3.3 or DOS 3.2. You can enter a 3 to
select 3.3, a 2 to select 3.2, or press [RETURN]. If, for example,
you select drive A as DOS 3.2, then you will want to insert your
3.2 disks in drive A to be read. DOS 3.2 and 3.3 are not compati
ble with each other. This means that if a DOS 3.2 disk is in a drive
selected as DOS 3.3 (or vice versa), any disk access will cause 1/0
errors (Input/Output errors).

After selecting slot, drive, and DOS numbers for drive A, repeat
the process for drive B. If you have only one disk drive, you will
want to leave drive B selected as the same disk drive as A.

Next, the word "OFF" underneath the PRINTER label will
change to "Sl.DT 0" and the "0" will flash. Copy] [Plus will let
you print the displays from CATAlDO, VIEW FILES,
TRACK/SECTOR MAP and SECTOR EDITOR if desired. If
you intend to use the printer with Copy] [Plus, type the slot num
ber that the printer interface card is in. If you don't want to use
the printer, press [RETURN] or type "0". The zero is used to
designate "no printer", since printer cards cannot be used in slot 0.

Page 9

(Note: If you have an Apple //c with a printer connected to port
1, then you should select SlDT 1 if you want to use the printer
from Copy] [Plus.)

After selecting the printer slot, the main menu will become active
again. (If a printer was not selected, the slot number will change
back to "OFF".) You're now ready to use the drives you've desig
nated as A and B.

CATAWG

To get a catalog of the disk, select the CATAlDG option. A sub
menu will appear on the right of the screen. The options are:

Normal
With file lengths
With deleted files
With hidden characters

Once again, use the arrow keys and [RETURN] to choose the
option. Next you will be asked if the catalog is for disk A or B.
Select the drive with the arrow keys and [RETURN]. If the printer
is "off', the catalog will be displayed. If the printer is "on"
(selected with NEW DISK INFO), you will be asked whether or
not you want a printout of the catalog. Answer Y (yes) or N (no).

NORMAL

The "normal" catalog is similar to the standard DOS "CATAlDG"
command. The disk volume number is shown, then for each file,
the optional "locked" asterisk, the filetype letter, the file length (in
sectors), and finally the filename are shown, one line for each file.
The catalog pauses after every 20 files. You can continue by press
ing any key (except [ESC], which will stop the catalog and return
you to the main menu). If the catalog is being sent to the printer,
it will not pause.

Page 10

WITH FILE LENGTHS

The catalog "with file lengths" shows all the same information as
the normal catalog. For all Basic files, it also shows the actual
length of the program in bytes, using both decimal and hexa
decimal notation. For binary files, it shows both the starting
memory address of the file and its length. Here is an example
catalog listing for a couple of files:

*A 006 HELLO
L1137 (L$0471)

*B 003 CHAIN
A2056, L456 (A$0808, L$01 C8)

This shows that the Basic file HELLO is 1137 bytes long ($471 in
hex), and the binary file CHAIN has a starting address of
2056 and a length of 456 (with corresponding hex numbers in
parentheses.)

WITH DELETED FILES

The catalog "with deleted files" includes the files on the disk
which have been marked as deleted, but have not yet been over
written by a new file entry. Any deleted files are marked in this
display with the letter "D" to the left of the entry. (Note that in
some cases, deleted files can safely be recovered and made active
again using the UNDELETE FILES option, explained later.)

WITH HIDDEN CHARACTERS

A catalog "with hidden characters" allows you to see any imbedded
control characters, which are normally not printed by Copy] [
Plus. The control characters show up as inverse characters. If the
printer is on, control characters are translated to lower-case.

COPY

The main COPY option gives you four separate choices:

Page 11

Bit Copy
Copy files
Copy disk
Copy DOS

If you want to go to the Bit Copy program, select the BIT COPY
option. A prompt will appear. Insert the Copy] [Plus disk in the
appropriate drive and press [RETURN]. The Bit Copy program
will be loaded from the disk.

For the other three choices, COPY FILES, COPY DISK, and
COPY DOS, you can copy from disk A to disk B, or from B to A,
selected by the next menu:

SELECT DISK:

A TO B
B TO A

If you have only one disk drive and both A and Bare set to that
drive, then it doesn't matter whether you copy "A 1D B" or
"B 1D A".

COPY FILES

The copy files option allows you to copy standard DOS files from
one disk to another quickly and easily. You should have the disks
in the drives before finishing the menu selections. (If you have
only one drive, you should have the source disk, the one contain
ing the files to be copied, in the drive.) The source drive will whir
for a moment, then a "catalog display" for the source disk will
appear with a prompt below.

The catalog display is used in various ways throughout Copy] [
Plus for selecting files to be worked with. Here it is used to deter
mine which files to copy. Note that the first file in the catalog is
displayed in inverse. By using the arrow keys, you can cause any
file in the catalog to be in inverse. If you repeatedly press the
arrow keys, the display will scroll.

The prompt below the display reads:

Page 12

[RETURNJ-MARK, [DJELETE, [EJNTER
FILENAME, NUMBER-INSERT, [GJO,
[ESCJ-EXIT

These commands allow you to select not only which files to copy,
but in what order to copy them! This is a handy feature if you
want files to appear in a certain order on the catalog of a disk.

Pressing [RETURN] will place a number to the left of the current
(inverse) file. The first [RETURN] will place the number 1, the
second a 2, etc. These numbers represent the order the files will be
copied in. If you accidentally press [RETURN] to number a file
you don't want to copy, you can remove the number by moving
the inverse field to that file and pressing [D] for Delete Number.
You can also make insertions in the list of numbers by typing a
number directly, then pressing [RETURN].

In addition, you can select one or more files by pressing [E], for
Enter filename. You can type a single filename, and the program
will look for that name in the catalog display and mark it with the
next available number. You can also enter filename "patterns".

A pattern is a filename with one or more equals signs (" = ") in it.
The equals sign is a special "wildcard" character that will match
any number of characters in the catalog, as long as the rest of the
filename matches. For example, the pattern "AB =" will match the
files "AB", "ABCDE", and "ABRAHAM". The pattern " = N = "
will match the files "N", "OH NO", or any filename containing
the letter N. The pattern "=" will match anything, and can be
used when you want to copy every file on the disk.

In addition, patterns can specify what filetypes to match. If you
want a pattern to match only certain filetypes, finish the pattern
by typing a comma, followed by the filetype letters used in the
catalog:

A - Applesoft
I - Integer
B -Binary
T -Text

Page 13

For example, the pattern "=XYZ,BT" will match any file whose
name ends in "XYZ" and is a binary or text file. The pattern
"=,A" will match any Applesoft file.

After you enter the pattern and press [RETURN], the program
will scan through the display, marking all matching files. The
inverse field will then jump to the last file matched. If no files
match, the inverse field will return to the file that was in inverse
before you pressed [E].

When you've selected all the files that you want to copy, press [G]
for Go to begin the copy. If only one drive is being used, you will
be prompted to insert the proper disk.

The first file to be copied (or as much of it as will fit in memory)
will be read, then the catalog on the destination disk will be read.
At this point, the program will check to see if any of the files
being copied already reside on the destination disk. If not, copy
ing will continue. If there are duplicate filanames, you will be
prompted, as in this example:

FILE HELLO
ALREADY EXISTS. NOW WHAT?

[CJOPY ANYWAY I [NJEW NAME, [DJON'T COPY I

[ESCJ-EXIT COPY

(If the duplicate file is locked, the program will say "IS LOCKED"
instead of "ALREADY EXISTS".)

If you select to Copy anyway, the original will be deleted, then the
new file copied. If you select New name, you will be asked to type
in a new name for the file. Selecting Don't copy will simply not
copy this file, and pressing [ESC] will exit out of the entire copy
option.

Note that if several duplicate files are on the destination disk,
Copy] [Plus will ask about all of these files before doing any
copying. This means that once the questions have been answered,
the program will copy all of the files without requiring your
attention.

Page 14

As the files are being copied, they are displayed in the "file queue",
a straightforward list of the files, with the file currently being
copied displayed in inverse.

COPY DISK

Copy Disk is a fast, reliable routine for copying any standard 13
or 16 sector disks. (DOS 3.3, ProDOS, SOS, CP/M, and Pascal
disks all use a 16 sector format. To copy any of these disks, make
sure that drives A and B are set to DOS 3.3 before selecting
COPY DISK. DOS 3.2 disks use a 13 sector format.)

Copy Disk automatically formats as it copies, so disks do not
have to be formatted ahead of time. To copy a disk, simply select
the option, insert the disks, and press [RETURN]. If for some
reason you wish to stop the copying, pressing [ESC] will return
you to the main menu. If you're copying using only one drive,
Copy] [Plus will tell you when to insert each disk.

There are 35 tracks on a disk, numbered in hexadecimal from $00
to $22. As the Copy Disk option makes the copy, it first reads a
number of tracks from the "source" disk into memory, then writes
those tracks to the "destination" disk. It repeats this process until
all the tracks are copied. As it reads or writes each track, Copy] [
Plus displays the track number at the bottom of the screen. On a
128K Apple (an Apple //e with extended 80-column card, or an
Apple //c), it reads and writes 18 tracks at a time, and copies the
entire disk in just 2 "passes". On a 64K Apple, it reads and writes
7 tracks at a time, and copies the disk in 5 passes.

Copy Disk also checks for errors as it copies. If an error occurs, a
message will be displayed showing what kind of error it is (Read
error or Write error) and what track on the disk it occurred on.
The program will continue copying the rest of the disk. A read
error means that one or more sectors on the source disk are
unreadable. The disk media itself may or may not be damaged. If
a write error occurs, then the media on the destination disk is
most likely damaged. Double-check everything, then try again.

Even if the Copy Disk routine reads a bad sector, it will still write
a "good" sector to the destination disk. That is, some of the data

Page 15

in that sector may be inaccurate, but an l/0 error will usually not
occur if that sector on the destination disk is read.

If a disk is getting old and begins to create l/0 errors, the data
should be copied to a new disk using Copy Disk.

COPY DOS

Copy DOS is similar to Copy disk, but it copies only the first
three tracks of a disk. This is where the Disk Operating System is
stored on DOS 3.3 and 3.2 disks. You can use COPY DOS to add
DOS to a disk that was formatted with the Copy] [Plus
FORMAT option. (See FORMAT DISK below for more informa
tion.) You can copy a new DOS onto a disk that has somehow had
its DOS tracks damaged or erased. You can also convert an initial
ized, or "slave", disk into a "master" disk. (The difference between ·
initialized and master disks is not important in most applications.
See the Apple DOS manual for more information.)

To copy the DOS from one disk to another, insert a disk that con
tains the DOS into the source drive and the disk to "receive" the
DOS into the destination drive, then select the COPY DOS
option. The DOS will be copied onto the destination disk.

DELETE

The main DELETE option has four sub-options:

Delete files
Delete disk
Delete DOS

DELETE FILES

This option is equivalent to the standard DOS "DELETE" com
mand, except that a number of files can be deleted at one time.
After selecting the Delete Files option and drive A or B, a catalog
display appears, similar to the one used in Copy Files. The prompt
reads:

Page 16

[RETURN] TOGGLES MARKER, [EJNTER
FILENAME, [GJO, [ESCJ-EXIT

Pressing [RETURN] causes an arrow"->" to appear to the left of
the file entry. The arrow marks the file to be deleted. Repeatedly
pressing [RETURN] toggles the arrow on and off. A number of
files are marked by using the arrow keys and [RETURN]. A file
name or pattern can also be entered with [E]. The rules for the
pattern are the same as for Copy Files. Any file that matches the
pattern will be marked to be deleted.

To carry out the deletion, press [G] for Go. All files marked will
be deleted. The "file queue" display will show the filenames as the
files are deleted.

DELETE DISK

The Delete disk option cleanly erases all the "record-keeping"
information on the disk, including the names and locations of the
files, and the presence or absence of DOS. Deleting a disk is simi
lar to reformatting it to start over, but takes less time. (An unfor
matted disk, however, must be formatted before it can be used.)

An extra warning prompt will appear on the screen to prevent data
from inadvertently being destroyed:

INSERT DISK TO BE DELETED

READY TO DELETE DISK (Y /N)?

Answer "Y" to delete the disk.

DELETE DOS

As mentioned above, DOS uses the first three tracks on a disk.
The Delete DOS option "frees" two of those tracks so that files
can use them. The first track (track 0) is not accessible to files,
and is not freed. Deleting the DOS increases the storage capacity
of a disk by 8 kilobytes, but the disk cannot be booted, since there
is no longer any DOS to boot. If you try to boot a disk that has

Page 17

had its DOS deleted with Copy] [Plus, it will print this message
on the screen:

THIS DISK HAS NO DOS TO BOOT o

INSERT ANOTHER DISK AND
PRESS A KEY TO REBOOT o

LOCK/UNLOCK FILES

If you wish to lock or unlock one or more files, select this option
and select disk A or B. The drive will whir and a catalog display
for the disk will appear. As in a normal catalog, an asterisk to the
left of the filetype letter designates each file that is locked. A new
prompt is displayed:

[RETURNJ-TOGGLE ASTERISK, [EJNTER
FILENAME, [GJO, [ESCJ-EXIT

Use the arrow keys to select a file, then press [RETURN] to toggle
its 'locked' asterisk on or off. You can use these keys to set the
desired locked status for every file on the disk.

To lock or unlock a number of files automatically, press [E]. You'll
be prompted for a filename, with the same pattern capabilities as
discussed above. After entering a filename, you will see:

[LJOCK OR [UJNLOCK?

Press [L] to lock all of the files that match the pattern; press [U]
to unlock them.

After setting all of the desired files, press [G] for Go. The catalog
will be written back to the disk, with the proper files locked and
unlocked.

RENAME FILES

To rename files, select this option and select disk A or B. The
usual catalog display will appear, with yet another prompt:

Page 18

[RETURNJ-SELECT TO RENAME, [EJNTER
FILENAME, [GJO, [ESCJ-EXIT
(RENAMED FILES ARE MARKED)

To rename a file, move the inverse field to that file with the arrow
keys, then press [RETURN]. You will be asked what to rename the
file as. Enter a new name and press [RETURN]. This must be a
legal DOS filename; i.e. it must begin with a letter and cannot
contain a comma. If you enter a bad filename, the warning
message "INVALID FILENAME" will appear and you will be
prompted for another filename. If you decide that you do not
want to rename the file, press [ESC].

For every file that is renamed, an arrow("->") appears to the left
of the file. This simply serves as a reminder as to which files have
been renamed.

The Enter filename option is available, but since files must be
renamed manually, the [E] option stops at the first file that
matches the pattern, leaving that file displayed in inverse. From
here you can press [RETURN] to rename the file.

To make the changes permanent, press [G] for Go. The new file
names will be written to the disk.

ALPHABETIZE CATAWG

This option alphabetizes the file entries stored on the disk so that
when you do a CATAIDG, the files will appear in alphabetical
order.

Select this option and disk A or B. Copy] [Plus will read the cur
rent catalog, alphabetize it in the computer's memory, and show
you what the alphabetized catalog will look like. Press [RETURN]
if necessary to see the entire catalog, until you see:

[GJ-GO, [ESCJ-EXIT

If you want this alphabetized catalog made permanent on your
disk, press [G]. If you change your mind and don't want the
alphabetized catalog, press [ESC]. Copy] [Plus will return you to

Page 19

the main menu without changing the disk.

FORMAT DISK

This option formats a disk so that files can be stored onto it. A
blank disk must be formatted before it can be used. If a formatted
disk already contains information, then formatting it again will
completely wipe out the old information.

After you select the disk to be formatted (A or B), an extra
prompt message will appear, to verify that you want to format the
disk. The disk will format using whichever DOS is selected (from
New Disk Info) for that drive.

Formatting a disk is not quite the same as initializing one. If
you're unfamiliar with the differences between formatting and
initializing, here is some information that might be helpful:

The FORMAT DISK option:

1. Lays down track and sector marks so the disk can be written
to and read from (this is the actual formatting),

2. Writes the catalog track, which is a place to record the names
of the files that will go on the disk,

3. Writes a "boot sector", so that if you try to boot the disk, it
will print a message saying there is no DOS on this disk to
boot.

The DOS INIT command:

1. Lays down track and sector marks,
2. Writes the catalog track,
3. Puts a copy of DOS (Disk Operating System) onto the disk so

the disk will boot,
4. Saves whatever Basic program is in memory onto the disk,
5. Sets up DOS so that the Basic program will run automatically

(as the "greeting" program) whenever the disk is booted.

Using Copy] [Plus, you can make bootable DOS disks. You will
need another disk that already contains DOS and a greeting
program.

Page 20

1. Format the disk with the FORMAT DISK option.
2. Use the COPY DOS option to copy the DOS from another

DOS disk onto the new disk. {The Copy] [Plus disk is itself a
standard DOS 3.3 disk, and can be used for this.)

3. Copy a Basic greeting program onto the disk with the COPY
FILES option.

4. If necessary, use CHANGE BOOT PROGRAM (described
later) to change the name of the program DOS runs to the
name of the file you saved.

VERIFY

The Verify option is used to select one of four sub-options:

Verify disk
Verify files
Verify identical files
Verify drive speed

VERIFY DISK

This option is used to check if any sectors on the disk are bad. It
quickly reads each of the 35 tracks (numbered 0 to 34, or hexa
decimal $00 to $22) in turn. As it reads, the current track number
is displayed near the bottom of the screen:

VERIFYING TRACK $03

If bad sectors are found on any track, their track and sector num
bers will be displayed in hexadecimal in the middle of the screen,
as in this example:

ERROR TRACK $03
SECTOR $57 B

This message means there were errors on track $03, sectors $5, $7,
and $B.

When finished, the program will show the total number of errors.
If you want to exit out of the verify before it's finished, you can

Page 21

press [ESC] at any time.

VERIFY DISK will only work with standard 13 sector (DOS 3.2)
or 16 sector (DOS 3.3, ProDOS, SOS, CP/M, and Pascal) disks.
Blank (unformatted) disks will produce errors, since there are no
sectors written on the disk to verify. Most copy-protected disks will
also produce errors, since the formatting on these disks is often
different than the standard Apple 13 or 16 sector format.

If a normal DOS disk you're using is giving DOS 110 errors, it
can be one of three things: bad data, bad sectors, or a physically
damaged disk. Bad data means the catalog or file information is
wrong, for example, telling the DOS to look for a file on track
200! A bad sector is one that simply can't be read (possibly caused
by a "power glitch" or by opening the drive door or pressing Reset
while the drive was writing) even though the disk is still capable of
storing good data. A disk can also be permanently damaged from
improper handling, fingerprints, heat, spilled coffee, rabid
dogs, etc.

It's a good idea to verify suspect disks to see where the errors are.
If VERIFY DISK displays errors for a DOS disk, then you have
either bad sectors or a damaged disk. You should use COPY
FILES or COPY DISK to save as much of the information as you
can, then try to reformat the disk. If the formatting fails, then the
disk is most likely permanently damaged.

VERIFY FILES

Verify Files checks the data and sectors used by individual files.
After selecting disk A or B, the drive will whir and a catalog dis
play will appear. Here, the files to be verified can be selected with
[RETURN] the same way the files to be deleted were selected in
the Delete Files option. An arrow will appear by all selected files.
The Enter filename command can also be used to select files, with
the usual multi-file pattern capabilities. To begin verifying those
files, press [G].

The file queue display will show each file in inverse as it is veri
fied. If an error occurs, the track and sector number for the error
will appear. You can press [RETURN] to continue verifying the

Page 22

file, [SPACE] to move to the next file, or [ESC] to return to the
main menu.

VERIFY IDENTICAL FILES

This option determines whether or not two files are identical. This
is useful when you have files on different disks with a similar
name, and you don't know whether they are copies of the same
file or are different.

To use Verify Identical Files, insert the disks in A and B, and
select the Verify Identical Files option. Single drive users (who
have both A and B set to the same drive) should insert one of the
two disks in the drive. You will be prompted when to switch disks.

A catalog display for disk A will appear. To select the desired file
from this disk, use the arrow keys to move the inverse field to the
file, then press [G]. The file will be read into memory, then a cata
log display for disk B will come up. In the same way as for the
first disk, select the file to be checked. The two selected files will
then be compared.

A message will appear informing you of whether the files are
identical or different. If they are different, the message will say
how many bytes into the file the first difference was found. (If you
want, you can then use the View Files option, discussed below, to
see what the difference is.)

If the files have different filetypes (e.g. if one file is a Basic pro
gram and the other is a textfile) they cannot be compared, and the
following message will be displayed:

THE FILES HAVE DIFFERENT FILETYPES

You can also use VERIFY IDENTICAL FILES if you want to
verify that two files on the same disk are identical. First use NEW
DISK INFO to set disks A and B to the same drive, insert the disk
you want to verify, then select VERIFY IDENTICAL FILES.
When it asks you to insert the "other" disk, just press [RETURN].

Page 23

VERIFY DRIVE SPEED

To properly read the data on disks, the disk drive must spin at the
right speed. This speed is 5 revolutions per second, or 1 revolution
every 200 milliseconds. This speed was set at the factory, but with
time, the drive speed can drift. If the speed is too far from 200
milliseconds, 110 errors can occur, or data can be written that is
unreadable on a normal-speed drive.

The Verify Drive Speed option allows you to periodically check
the speed of your disk drives. Select the option and disk A or B,
then insert a blank or unused disk into the appropriate drive and
press [RETURN]. (Do not use a valuable disk. This option writes
over a part of the disk!) In a few seconds, the drive speed will be
displayed. Note that for normal use, the drive speed can vary from
198 to 202 milliseconds (ms.). Small fluctuations in the speed are
also normal. The speed will be displayed until you press [ESC].

If the speed is out of bounds, this procedure can be followed to
adjust the drive speed on Apple Disk II drives, or you can take the
drive to your Apple dealer for adjustment.

1. Turn off the power to your computer, and disconnect the drive
from the disk controller card.

2. Remove the drive cover. There are four screws on the bottom
of Apple drives or on the side of Micro-Sci A-2 drives. After
removing them, the cover may be slid off towards the back of
the drive.

3. Now reconnect the drive to the controller card, and reboot
your Copy] [Plus disk, selecting the VERIFY DISK SPEED
option.

4. The drive speed can be adjusted by turning the speed control
potentiometer. This is a small ceramic box with a tiny adjust
ment screw at one end. It can be found on the smaller circuit
board at the back of the drive (right side of the drive, far lower
corner). Turn the screw with a screwdriver or your fingernail
until the drive speed is correct.

5. Re-install the cover on your disk drive.

Page 24

(Note: In Franklin computers, the processor itself runs at a slightly
different speed. This affects both the optimal speed for the drives
and the timing of the VERIFY DISK SPEED option itself. Most
Franklin drives are preset so that the drive speed reads at about
198 ms. per revolution. If you have problems accessing or backing
up commercial disks on a Franklin computer, adjusting the speed
closer to 200 ms. may help.)

A more technical discussion of drive speed is included in Appen
dix A for interested readers.

VIEW FILES

The View Files option allows you to quickly and easily look at the
data in any file. This is useful for double-checking exactly what is
in a file before copying it, deleting it, etc. View Files has two sub
options, for viewing the data as values or as text. The values
option shows both the hexadecimal numbers and the ASCII
characters in the file. The text option prints just the characters in a
more readable form. In addition, if the printer is selected, the data
can be sent to the printer.

To view one or more files, select the View Files option, then the
Values or Text sub-option, then disk A or B. A catalog display for
the disk will appear. Use the arrow keys to select the file you want
to view, then press [G]. If the printer is selected (with NEW DISK
INFO), you'll be asked whether or not you want a print-out of
this file. Answer "Y" for Yes to get a print-out.

The file is displayed a page at a time. You can press [RETURN] to
see another page, or [ESC] to return to the catalog display.

When using the View Values option, the file is displayed as hexa
decimal bytes, 8 bytes per line, with the equivalent ASCII charac
ters to the right. Control characters are replaced with periods. In
the View Text mode, the characters are printed out in standard
40-character lines. Control characters are not printed, except for
carriage returns.

In the upper right portion of the screen is a running "byte count",
showing how many bytes in the file have been printed. This can be

Page 25

used to find the approximate locations of text strings or bytes in
the file.

At the end of the file, there may be a few funny characters, includ
ing inverse "@" signs. These are extra characters beyond the end of
the real end-of-file. They were not suppressed because random
access text files have end-of-file markers interspersed throughout
the file, before the file has actually ended. These files can still be
viewed. The View Files option stops reading when there are no
more data sectors to read.

When you've finished viewing one file, the program returns to the
catalog display. From here, you can select another file to view, or
press [ESC] to go back to the main menu.

Note for Apple //e and Apple //c users: The "rules" used to deter
mine when an ASCII number represents a character, an inverse
character, or a flashing character on an Apple are not always con
sistent from one program or file to another. Apple I /e and I /c
computers can display some of these values in two possible ways.
When using VIEW FILES or any DOS utilities option, you can
press [CTRL-@] to switch back and forth between these two ways.
You can see the difference if inverse lowercase or flashing characters
are on the screen.

TRACK/SECIDR MAP

The Track/Sector Map gives you an informative display showing
what sectors on the disk are used by which files, and which sectors
are free for use. It can also be used to spot potential disk
problems. For example, a bad disk may have a sector that is used
by a file but still marked as "free for use". That means the data
sector is in danger of being overwritten, and the file should be
copied to another disk.

To see the Track/ Sector Map, select the option and the desired
disk. A catalog of the disk will appear first. To the left of each file
is a letter of the alphabet. (If there are more than 26 files, then
inverse letters, then flashing letters, etc. are used.) The letters by
the files will correspond to the letters in the last display, as you'll
see in a moment.

Page 26

After the catalog, press [RETURN]. Now you will see a grid-like
map of all the sectors on the disk, with the track numbers ($0 to
$22) across the top row and the sector numbers ($0 to $C or $F)
along the left edge. In the grid, every sector on the disk that is
marked as "in use" is shown as a white rectangle (an inverse
space). If the disk is mostly full, large areas of the grid will be
filled in with white. You can see whether or not any given sector is
in use by following the track number down and the sector number
across and noting whether or not an inverse space is there.

After looking at this display, press [RETURN] again. Now the file
information on the disk will be read (i.e. the Track/ Sector Lists).
With each file, the letter that was shown for the file in the previ
ous catalog will be placed over every sector that the file uses. The
used sectors, the inverse spaces on the grid, will be overwritten
with the appropriate file letters. For example, if the file "HELLO"
was labeled "A" in the catalog, then every square in the grid that
contains the letter "A" represents a sector used by the file
"HELLO".

When finished, the grid should contain two areas that are still
white. The stripe in the middle, marking every sector in track $11,
represents the catalog track, where the file names and other data
are stored. There should also be a stripe along the left side. If the
disk contains DOS, then the stripe will cover tracks 0, 1, and 2. If
not, the stripe will cover only track 0. (Track 0 is unavailable for
file data storage.)

Possible problems:

If there are still inverse spaces in other portions of the grid, this
represents other sectors on the disk which are marked as "in use",
but are not being used by any file. If the disk is a commercial
product, it is possible that the sectors are being used for storing
some kind of special data. They are marked as in use to keep them
from being overwritten. This is rare.

If a file uses a sector that is not marked "in use", a plus sign
appears in that sector of the grid and the warning message "FREE
SEC1D R" and the filename are printed. This means that the sec
tor could be overwritten if more data is written to the disk. The
file should be copied to another disk. You have the option to con-

Page 27

tinue the Track/Sector Map or return to the main menu.

If two files reference the same sector, a plus sign will appear in
that sector, and the message "SEC1DR CONFLICT" will appear.
Since two files cannot (legally) use the same sector, at least one of
the files is damaged. You should copy both files to a new disk and
check them for accuracy.

If the error "INVALID NUMBER" occurs, with a track or sector
number out of bounds, this means that either the catalog infor
mation or a track/ sector list are damaged. If no letters for that file
appear yet on the grid, then it is the catalog information that is in
trouble, and the file is lost. Otherwise, the track/ sector list is bad,
and some of the file may still be readable.

The errors discussed above do not occur very often. The
Track/Sector Map can be used to help understand disk usage, and
catch possible errors before they crash a disk or destroy additional
data.

If you've selected a printer slot with NEW DISK INFO, you can
also print the Track/Sector Map to your printer. You'll be asked
"DO YOU WANT A PRINT-OUT?". Answer "Y" (yes). The cata
log and the two screens will be sent to the printer. Since printers
don't print inverse and flashing letters very well, the "in-use"
sectors are marked as asterisks instead of inverse spaces, and only
printable characters are used for the files.

SECTOR EDITOR

The Sector Editor allows you to directly view and change the data
on any sector of the disk. This is handy for people interested in
poking around files or Track/Sector Lists, etc. to learn more or to
fix problems. It can also be used with the Bit Copy program for
copying certain protected disks. You should use care when work
ing with the Sector Editor, to avoid accidentally erasing or modify
ing important data on the disk.

A good knowledge of hexadecimal, bytes, and ASCII is helpful
when using the Sector Editor. Information specifically on how
sector editing can help back up protected disks is provided in

Page 28

Chapter Three.

To use the Sector Editor, select the option and disk A or B. The
Sector Editor display will appear, with the sector buffer (256 bytes)
cleared to zeros. This display will be explained shortly.

Notice the help prompt at the bottom of the screen:

[?]-HELP SCREEN

Press [?] to see the help screen, which shows what commands are
available.

SECTOR EDITOR HELP SCREEN

I
J K MOVE CURSOR
M

B JUMP TO BEGINNING
E JUMP TO END
A JUMP TO ADDRESS
R READ SECTOR
+ READ NEXT SECTOR

READ PREVIOUS SECTOR
W WRITE SECTOR
F FOLLOW FILE
P PATCH READ/WRITE
H ENTER HEX VALUES

T ENTER TEXT
L LIST (DISASSEMBLE)
D DUMP TO PRINTER
S SCAN FOR BYTES

ESC QUIT

PRESS RETURN

Press [RETURN] to go back to the Sector Editor buffer display.

Reading Sectors

To read a sector on the disk, press [R] for Read. You will be

Page 29

prompted to enter the track and sector numbers of the sector you
want to read. Enter the hexadecimal track number and press
[RETURN], then enter the hex sector number and press
[RETURN]. (All numbers used in the Sector Editor are hexa
decimal.) An invalid character or an invalid number will cause the
speaker to beep. After you enter the track and sector numbers, the
sector will be read from the disk into the buffer.

As an example, insert the Copy] [Plus disk into the drive and
select to read track $11, sector $F. (This sector is part of the disk's
catalog information.)

Press [R] for Read,
Type "11" for the track number,
Press [RETURN],
Type "F" for the sector number,
Press [RETURN].

The disk will whir and you should see a display similar to:

SECTOR EDITOR

00-0011 OE 00 00 00 00 00
08-00 00 0012 OF 02 C8 C5
10- CC CC CF AO AO AO AO AO
18- AO AO AO AO AO AO AO AO
20- AO AO AO AO AO AO AO AO

DISK A

28- AO AO AO AO 02 0012 OD IB@RMI
3 0- 0 4 C 3 D 0 D3 A 0 C C C F C 1 [Q]C P S L 0 A
38- C4 C5 D2 AO AO AO AO AO DER
40- AO AO AO AO AO AO AO AO
48- AO AO AO AO AO AO AO 02 [ID
50-0012 OB 04 C3 DO D3 AO i@RKDICPS
58-D5D4C9CCC9D4C9C5 UTILITIE
60- D3 AO AO AO AO AO AO AO S
68- AO AO AO AO AO AO AO AO
70- AO AO 55 0017 07 04 C3
78- DO D3 AO C2 C9 D4 AO C3
80- CF DO D9 AO AO AO AO AO

IU@WFDIC
PS BIT C
OPY

TRACK$11, SECTOR$F DOS3.3

[?]-HELP SCREEN

Page 30

The track and sector number you just read is shown at the bottom
of the screen, along with the DOS "patched" option, which in this
example is "DOS 3.3". The Patch option is explained later.

Seventeen lines of the sector are displayed at a time, consisting of
a hex "address" followed by a dash, then 8 hex data bytes (each
byte is a two digit hexadecimal number), then the same 8 bytes as
ASCII characters on the right. The "double cursor" appears in in
verse over both the first hex value and the first character. The characters
on the right may or may not make sense. (In the example
above, the filenames for this disk can be read on the right, along
with other values that were never intended to be printed as
characters.)

To understand the address on the left, think of the data bytes
numbered from $00 as the first byte of the sector to $FF as the
last byte. The top line shows the first 8 bytes, bytes $00 through
$07; the next line shows bytes $08 through $OF; the next shows
bytes $10 through $17, etc. The address number before the dash
tells you how many bytes into the sector each line is ($00-, $08-,
$10-, etc.). The address number of a byte is not the same as the
value of that byte. In the example, the addresses of the first four
bytes on the first line are $00, $01, $02, and $03. The values of
those bytes are $00, $11, $0E, and $00.

Moving the Cursor

The inverse cursor can be moved through the buffer with the [1],
[J], [K], and [M] keys. [I] moves the cursor up, [J] to the left, [K]
to the right, and [M] down. (Notice that these four keys make a
diamond pattern on your keyboard. This will help you remember
which direction each key goes.) The buffer display will scroll up or
down to keep the cursor on the screen. [B] moves the cursor
directly to the beginning of the buffer; [E] moves the cursor to the
end.

You can also move the cursor to any address in the sector or find
out what address the cursor is currently at. Press [A] for Address.
You'll see:

ENTER ADDRESS: nn

Page 31

with an address number displayed. This address is simply how
many bytes into the sector the cursor is. If you don't want to move
the cursor, just press [RETURN]. If you want to move to a new
address, type the new address number, then press [RETURN]. The
cursor will immediately jump to the new position in the buffer.

Reading Again

If you want to read a different sector from the disk, you can press
[R] again, and enter new track and sector numbers. You can also
read the next higher numbered sector on the disk by pressing [+],
or read the previous sector by pressing [-].

Changing Bytes

You can change the data in the sector buffer by entering either
new hex values or new text characters. To enter hex values, move
the cursor to the appropriate place and press [H] for Hex. The
cursor over the hexadecimal value will flash. Now enter the new
value over the old. Pressing the space bar will advance you to the
next byte, and pressing [RETURN] will take you out of hex entry.

To enter characters, position the cursor and press [T] for Text. The
cursor over the text character will flash. Typing new characters will
enter those characters into the buffer and advance the cursor.
Press [RETURN] to finish text entry.

Note: While entering text, any control characters typed (including
the arrow keys but not including [RETURN] or [ESC]) will be
placed directly into the buffer.

Another Note: Quite often the text area on the right will contain
funny inverse or flashing characters. The text cursor, which is also
inverse or flashing, might blend right in so you can't tell where it
is. By looking at the position of the hex cursor in the eight data
bytes, however, you can judge the corresponding position of the
text cursor.

Page 32

Writing

To write a sector back to the disk, press [W] for Write. You will
again be prompted for track and sector numbers. If you want to
write back to the same sector, just press [RETURN] twice. If you
want to write to a different sector, enter new values. The disk will
whir as the sector is written.

How to Edit a Sector

With the options presented so far, you can do most sector editing.
Editing a sector consists of reading the sector, changing the appro
priate bytes, then writing the changed sector back to the disk.
Here's a step-by-step method for making a change to a sector on
the disk:

1. Do not sector edit a commercial disk! Make a copy of the disk
first, then sector edit the copy.

2. Select SECTOR EDITOR from Copy] [Plus, and insert the
disk you want to edit.

3. Press [R] for Read, and enter the track and sector numbers of
the sector you want to edit. Copy] [Plus will read the sector
into the memory buffer.

4. Position the cursor (using [1], [J], [K], [M]; and [B], [E], [A])
to the address where you want to make changes.

5. Press [H] and enter new hex values, or press [T] and type new
text characters, to replace the old. If you're entering several hex
values in a row, you can press [SPACE] after entering each
byte to advance to the next position. Press [RETURN] to
finish the entry.

6. Press [W] for Write, to write this changed sector back to the
disk.

Page 33

Follow Files

You can also instruct the Sector Editor to follow and read the sec
tors from a file, rather than the absolute sectors on the disk. (This
option is for normal DOS 3.3 and 3.2 disks.)

Press [F] for Follow Files. The disk will whir and a catalog display
will appear. Use the arrow keys to select the file you want to sector
edit, then press [G] for Go. Copy] [Plus will read the first sector
of the file, and provide the usual sector buffer display so you can
see and change the data. The name of the file is shown right
above the current track and sector numbers, to remind you that
the Sector Editor is following a file.

When following files, the [+] and [-] keys behave a little differ
ently. Pressing the [+] key will read the next sector from the file. If
you're already at the last sector, [+] does nothing. Pressing the
[-] key reads the previous sector from the file. If you're at the
beginning of the file, nothing happens. By using the [+] and [-]
keys, you can move to any sector of the file. If you want to change
the contents of any of the sectors, use [H] or [T] to modify the
buffer, then write it out by pressing [W], then [RETURN] twice.

If you want to follow a different file, press [F] again and select the
new file. If you want to go back to reading absolute sectors from
the disk, just press [R] for Read and enter the track and sector
numbers. The sector will be read, the filename will disappear from
the screen, and the [+] and [-] keys will act as before.

Disassembly

The Sector Editor can disassemble and list any 6502 machine lan
guage code that may be in a sector. Position the cursor on the first
byte you want to disassemble and press [L] for List Disassembly.
The sector buffer display will be replaced by 20 lines of disassem
bled code. The cursor also advances through the sector by the
number of bytes disassembled. Press [L] to disassemble another 20
lines, or [RETURN] to go back to the buffer display.

Page 34

Printer Dumps

Using the Printer Dump option, you can print either the buffer
display or a disassembly listing. The printer slot must be set with
NEW DISK INFO before you can use this option.

To print the sector buffer, press [D] for printer Dump. All 32 lines
(256 bytes) of the sector will be printed. To print a disassembly
listing, first press [L] to disassemble the code on the screen, then
press [D]. Twenty lines of disassembly listing will be printed. Press
either [L] or [D] to print another 20 lines. Press [RETURN] to
stop printing and return to the screen buffer display.

Scan for Bytes

An extra feature added to the Sector Editor is the ability to scan
for a pattern of bytes anywhere on the disk or within a file. If you
haven't read any sectors yet, this option will scan the entire disk. If
you have read a sector, it will scan from the current position to the
end of the disk. If you're following files, it will scan from the cur
rent position in this file to the end of the file.

To scan for Bytes, Press [S] for Scan. You can enter the bytes to
scan for as either hex values or text characters.

A question will appear:

SCAN FOR [HJEX OR [TJEXT?

Type [H] or [T]. If you select [H], it will then ask "ENTER
HEX:". Type in the hex values (one or two digits each) that you
want to scan for, separated by spaces. If you select [T], it will ask
"ENTER TEXT:". Type in the characters you want to scan for.

You can use the left-arrow keys to go back and correct mistakes,
and the right-arrow key to go over values already typed. Press
[RETURN].

The program will then rapidly scan the disk, looking for the bytes
you specified. If it finds them, it will stop and display that sector,
with the cursor over the last byte of the pattern. If it can't find the

Page 35

pattern, it will say "BYTES NOT FOUND".

If you want to scan for another occurrence of the same pattern,
just press [S], then press [RETURN] twice to accept the previous
answers you gave to the two questions. The program will continue
scannmg.

Patch

Another Sector Editor option is [P], for Patch Read/ Write Rou
tines. Normally the Sector Editor can read only standard DOS 3.3
or 3.2 sectors. Some protected programs use a slightly modified
sector format, so that the disk cannot be read with a normal
DOS. The Patch option lets you read or write these changes sec
tors. Other protected disks might use a very different disk format
that does not contain "sectors" at all! The Sector Editor cannot
read these disks.

We recommend that you use the Patch option only if (l) you're
sector editing a backup of a commercial program and you have
instructions on what Patch option to use, or (2) you're familiar
with disk and sector formatting. Appendices A and B provide
information about sector formats.

To show how the patch option works, remove the disks from your
drives (we're being safe here!) and press [P] for Patch. A screen
similar to the following will appear:

Page 36

SECTOR EDITOR PATCHER

DOS3.3
DOS 3.3 PATCHED
DOS3.2
DOS 3. 2 PATCHED

DISK A

~~~LQ~--------------------------
oos3.3 

ADDRESS DATA 

PROLOG: OS AA 96 DS AA AD 
WANTED EPILOG: DE AA DE AA EB FF FF 

READ EPILOG= DE AA DE AA EB FF ED 
CHECK CHECKSUM? YES YES 

CHECK EPILOG? YES YES 
CHECK TRACK? YES 

DATA ENCODING: 6&2 
CHECKSUM SEED: 00 

CHECKSUM RESULT= 00 

USE ARROW KEYS & [RETURN] TO SELECT 
PATCH OPTION, [ESCJ-EXIT 

The menu at the top of the screen lets you select what type of 
sector you can read or write. You can select normal DOS 3.3 or 
3.2 sectors, or DOS 3.3 PATCHED or DOS 3.2 PATCHED. The 
"PATCHED" items adjust the Copy ] [ Plus read/ write routines 
enough to read many protected disks, while still reading normal 
sectors almost as reliably. (For users who have upgraded from 
Copy] [Plus Version 4, this is the same as the old patch option.) 

Right below the dashed line, it shows which patch option is cur
rently selected (in the example, DOS 3.3). The rest of the display 
shows the internal values and settings that make up that particular 
patch option. 

If you want to select another patch option, use the arrow keys to 
display that option in inverse, then press [RETURN]. The display 
below the dashed line will change to reflect the new patch option. 
For this example, select "DOS 3.2 PATCHED". Notice that it now 
says "DOS 3.2 PATCHED" below the dashed line. 

Page 37 



Press [ESC] to go back to the Sector Editor screen. Beside the 
track and sector numbers, it now shows "DOS 3.2 PATCHED", 
which is the new patch option you just selected. 

Note: When you leave the Sector Editor, the Copy ] [ Plus 
read/ write routines become "un-patched", and work normally 
agam. 

How to Set "Patched" Routines 

1. Press [P]. 

2. Press the arrow keys until the option you want is in inverse. 

3. Press [RETURN]. The display below the dashed line will 
change to show the new option. 

4. Press [ESC] to go back to the Sector Editor screen. You can 
now read or write sectors using the new patch option. 

Custom Patching 

The fifth option in the Patch menu is CUSlDM. Custom patch
ing lets you tailor the read/ write routines to access a wide variety 
of possible protected-sector formats. A good technical under
standing of sector address and data fields is essential for what 
follows. 

The sector "parameters" on the screen are used by Copy ] [ Plus 
when either reading or writing sectors. The READ EPIWG and 
CHECKSUM RESULT fields give you information about the 
sector that was last read. They're blank if you haven't read any 
sector yet. You can change all of the other fields to determine 
what kind of sector to read. 

When you select CUSlDM from the patch menu, an inverse 
cursor appears over one of the data values. To move the inverse 
cursor forward through the list of values, you can press 
[RETURN], [SPACE], or the right-arrow key. To move backwards, 
press the left-arrow key. When the cursor is over any hex value, 

Page 38 



you can type a new value to change it. If the cursor is over a YES
NO response, typing [Y] will change it to YES and [N] to NO. If 
the cursor is at the DATA ENCODING question, you can type [5] 
to use 5&3 encoding, or [ 6] to use 6&2 encoding. Press [ESC] to 
leave CUS10M patching and go back to the patch menu. Press 
[ESC] again if you want to return to the Sector Edit buffer 
display. 

When reading, both address and data prologues must match the 
PROLOG fields. Volume is ignored. Track number is "partially" 
ignored if you answer NO to the CHECK TRACK question. That 
is, Copy ] [ Plus will seek to the proper track, but will not reseek if 
the track number in the address field differs. Sector number must 
match. Address and data field checksums and epilogs can be 
checked or ignored. If epilogs are checked, then the first two bytes 
of each epilog must match the first two bytes in the WANTED 
EPILOG fields. The actual epilog bytes read appear in the READ 
EPILOG fields. The CHECKSUM SEED value is the starting 
value used when exclusive-ORing the data field into memory. It 
can range from $00 to $3F for 6&2 encoding or $00 to $1F for 
5&3 encoding. For normal DOS sectors, this byte should be $00 to 
read the data correctly. The data CHECKSUM RESULT is 
formed by exclusive-ORing the running data checksum with the 
checksum byte on disk. If this byte is nonzero, the data checksum 
test fails. This means either the sector was written with a different 
CHECKSUM SEED value, or there's an error in the data field, or 
the data checksum byte on the disk is wrong. 

When reading a sector, Copy ] [ Plus tries to find an address and 
data field pair on the track that passes all the tests. If it fails after 
many tries, it gives up and prints an "I/ 0 ERROR" message. You 
can sometimes find out how far it got by checking the Patch dis
play after you get the error. If it can find a correct address prolog, 
it will finish reading the address field and the address READ 
EPILOG values will be filled in. If it finds a correct data prolog, it 
will read the rest of the data field and the data READ EPILOG 
and CHECKSUM RESULT values will be filled in. 

When writing, it must first read the appropriate address field, then 
write a new data field over the old. The address field parameters 
behave as described above. The new data field prolog is written 
using the data PROLOG bytes. The data is exclusive-OR'ed and 

Page 39 



written using CHECKSUM SEED as a starting value. This should 
be $00 to write normal sectors. If the data CHECK EPILOG field 
is set to YES, then the WANTED EPILOG bytes will be written as 
the data epilog. If CHECK EPILOG is set to NO, then the READ 
EPILOG bytes are used. This allows the routines to automatically 
write the same epilog it read. It writes 5 epilog bytes (rather than 2 
or 3) because a few protected disks check for these extra bytes. 

FIX FILE SIZES 

When a short program is saved over the top of a long one, Apple 
DOS does not free the extra sectors that are no longer used. They 
continue to use space on the disk. Usually, the only way to recover 
the space is to load the file, delete it, and save it back to disk. 

The Fix File Sizes option is also designed to recover unused space 
at the end of files. It will free extra space from Basic and Binary 
files, but not textfiles. As mentioned earlier, the true lengths of 
textfiles cannot readily be determined, because random access 
textfiles can have end-of-file markers anywhere in the file. 

To free up extra space, simply select Fix File Sizes and disk A or B. 
The "file queue" will show each file in turn as the program checks 
the file and recovers any extra space. The file queue will quickly 
skip over any textfiles on the disk, as they are not checked. 

CHANGEBOOIPROGRAM 

When a standard initialized DOS disk is booted, it automatically 
runs whatever Basic program the disk was initialized with. For 
example, a disk that was initialized with the command "INIT 
HELLO" will run the program "HELLO" whenever it is booted. 
Using the Change Booting Program option, you change the DOS 
to boot a different Basic program, or even BRUN a binary file or 
EXEC a textfile on boot-up! 

Select the Change Booting Program option and disk A or B. A 
catalog display for the disk will appear. At the bottom of screen, 
the name of the file that the disk currently boots up with will be 
printed. To select a new booting program, use the arrow keys to 

Page 40 



place the inverse field over the desired file. You can also Enter a 
filename or a pattern. The inverse field will stop at the first file
name that matches the pattern. 

Press [G] to save this file as the booting program. Copy] [Plus 
will automatically check the filetype of the file, and set either the 
RUN, BRUN, or EXEC command for boot-up. 

UNDELETE FILES 

When a file is deleted, it is not immediately erased. It is instead 
marked internally as a deleted file, and its sectors are marked as 
free to be re-used. If other data does not later overwrite part of 
the file, it can still be recovered and made an active file. If a file 
has just been accidentally deleted, and no other disk writing has 
occurred, the file can always be recovered, or "undeleted". That is 
what the Undelete Files option is for. 

To undelete one or more files, select the option and disk A or B. A 
catalog display will come on the screen, this time containing a list 
of all the deleted files still stored invisibly in the catalog. (If there 
are no deleted files in the catalog, the message "NO FILES" will 
appear.) Use the arrow keys, the Enter filename command, and 
[RETURN] to select the files to be undeleted. Press [G]. 

The file queue will show the files as the program attempts to 
undelete them. If a deleted file has already been partly or com
pletely overwritten with other data, Copy ] [ Plus will not undelete 
it, since the data is not recoverable. If any of the files cannot be 
undeleted, they will then be listed with the label "LOST FILES". 
The rest of the files will be active. 

QUIT 

When you want to exit Copy ] [ Plus and run another program 
without turning your Apple off, select the QUIT option. You will 
be prompted to insert a new disk to boot, using the same drive 
that Copy ] [ Plus was booted in. Press [RETURN] and the disk 
will be booted. 

Page 41 



Page 42 



CHAPTER THREE: BIT COPY 

The Copy ] [ Plus Bit Copy program is designed to allow you to 
make backups of software which, due to copy protection schemes, 
does not copy using standard disk duplication programs. The Bit 
Copy program is easy to use, yet is capable of being adjusted to 
handle nearly every type of protection scheme currently in use. 

Overview: Parameters 

Copy ] [ Plus can backup many protected disks automatically. 
However, with the increasingly complicated protection schemes 
used, no one automatic method can copy every disk. Some pro
tected disks can't be copied correctly unless certain "parameters" 
are changed first. These parameters are values that Copy ] [ Plus 
uses in deciding how to copy a disk. If you change one or more of 
the parameters, this in effect tells Copy ] [ Plus: "Don't copy the 
disk in the usual way; do it this way instead." 

Earlier versions of Copy ] [ Plus included a Backup Book, which 
listed many programs with the parameter changes needed to back 
them up. You would run the Bit Copy program and follow the 
instructions in the Backup Book for copying any particular disk. 
Entering parameters by hand was simple and easy, but it could be
come a little tedious after a while. 

With Copy ] [ Plus Version 5, the parameter entries are stored right 
on the disk. All you need to do is select the name of the program 
you want to back up. Copy] [Plus will look up the parameter 
changes for that program, make those changes for you, and copy 
the disk. If there is no parameter entry listed for a program you 
want to back up, we also provide a number of "try this" entries. 
Updated parameter entries are available on disk every three 
months from Central Point Software. The original "manual mode" 
is also included for typing in parameter changes yourself if you 
want. 

The first entry in the list is called ".PARAMETER FILE", with a 
date. If you select this special entry, comments will appear telling 
you how to keep up to date with the latest parameters. (See AU10 
COPY, below.) 

Page 43 



Starting Bit Copy 

To start up the Bit Copy program, first boot the Copy ] [ Plus 
disk. In a few moments, the DOS utilities menu will appear. Leav
ing the disk in the drive, press [RETURN] three times. The disk 
will whir as the Bit Copy program is loaded, and you will see the 
following menu: 

COPY J [PLUS BIT COPY PROGRAMS 5. 0 
t~tl282=2~fNIRALEDl~I~~JIWABE~J~~4 

AUTO COPY 
PARTIAL AUTO COPY 
MANUAL BIT COPY 
MANUAL SECTOR COPY 
NIBBLE EDITOR 
HI-RES DISK SCAN 
CREATE NEW PARM ENTRY 
EDIT PARM ENTRY 
LOAD PARM ENTRY 
SAVE PARM ENTRY 
RENAME PARM ENTRY 
DELETE PARM ENTRY 
PRINT PARM FILE 
QUIT 

USE ARROW KEYS & [RETURN] TO 
SELECT FUNCTION 

The AUTO COPY and PARTIAL AUTO COPY options 
are used when you want to select a parameter entry from the 
Copy ] [ Plus disk to back up a program. MANUAL BIT COPY 
and MANUAL SEClDR COPY provide two ways to copy a disk 
and let you change parameters and other options yourself. The 
NIBBLE EDilDR and DISK SCAN features are useful for peo
ple who want to investigate disk formatting and protection 
schemes themselves. The next six options on the menu let you 
change or add to the list of parameter entries on the disk. 
("PARM" is an abbreviation for "parameter".) The PRINT PARM 
FILE option can be used to print out some or all of the available 
parameter entries. The QUIT option is used when you want to 
leave the Bit Copy program and boot another disk. 
Page 44 



Selecting a Bit Copy option works the same way as in the DOS 
utilities. One of the options is always displayed using inverse 
(black-on-white) letters. Pressing the right and left arrow keys (and 
up and down arrow keys, if available) moves the inverse field to a 
different option. Once the option you want is displayed in inverse, 
press [RETURN] to select it. 

AU10COPY 

Select AUTO COPY when you want to copy a program from the 
Copy ] [ Plus parameter list. A new screen will appear: 

AUTO COPY 

NAME: 

Notice the help lines at the bottom of the screen: 

ENTER PARM ENTRY NAME OR 
PRESS [RETURN] FOR LIST OF ENTRIES 

If you know that the program you want to back up is included in 
the parameter list, type the name of the program and press 
[RETURN]. If you instead want to see the list of parameter 
entries, just press [RETURN]. 

If you press [RETURN] without entering a name, the disk will 
whir and a display of all available parameter entries will appear 
(similar to the "catalog display" from the DOS utilities). Note that 
the first entry name is displayed in inverse. By using the arrow 
keys, you can cause any name in the list to be in inverse. If you 
repeatedly press the arrow keys, the display will scroll to show you 
all of the entries. Pressing [B] will display the beginning of the list; 
pressing [E] will display the end of the list. Use these keys to move 
the inverse bar to the entry you want, then press [RETURN] to 
select it. 

You can also select to see just a part of the parameter entry list. 
This is especially helpful when you're not quite sure of the spelling 
for the entry you want. When you're asked for the name, type in 
just the first few letters of the entry name, then press [RETURN]. 

Page 45 



Copy ] [ Plus will show you only those entries that begin with the 
characters you typed. You can then use the arrow keys and 
[RETURN] to select from that list. 

Once you've selected the entry name - either by typing it in or by 
selecting it from the list - the disk will whir again as the 
parameters to copy that program are loaded from the disk. 

A new display appears now, for you to select which drives you'll be 
using for copying the disk. If you have two drives, you'll usually 
want to copy from the original disk in drive 1 to a duplicate disk 
in drive 2. You can change this if you like. If you have only one 
drive, you'll of course use drive 1 for both the original and dupli
cate disks. Copy ] [ Plus will then tell you when to insert each disk. 

On the screen you'll see: 

ORIGINAL DRIVE: 1 

If you want the original disk in drive 1, type "1" or just press 
[RETURN]. If you want to use drive 2, type "2". The next ques
tion is: 

DUPLICATE DRIVE: 2 

Similarly, press [RETURN] to accept drive 2 for the duplicate disk 
if you have two drives, or type a new drive number. 

After you've answered the DUPLICATE DRIVE question, a few 
other questions, along with the correct answers for copying this 
disk, will pop immediately onto the screen. The parameter entry 
you selected is filling in the answers for you. At the bottom of the 
screen you'll see: 

--INSERT DISKETTES--

RETURN TO BEGIN QTOQUIT 
ESC TO RESTART I TO MODIFY 

You don't need the "Q" or"/" commands here. They're explained 
later under MANUAL BIT COPY. If you decide you don't want 

Page 46 



to copy the disk, press [ESC] to go back to the main Bit Copy 
menu. 

To copy the disk, now insert the original disk you're copying into 
the "original drive", and insert a blank or "scratch" disk (one you 
don't mind writing over) into the "duplicate drive". Press 
[RETURN] to start copying. 

(Note: It's sometimes all too easy to insert the wrong disk in the 
wrong drive and end up copying a blank duplicate disk over your 
original! If you want to be extra safe, put a write-protect tab over 
the notch on your original disk before you copy the disk. The 
write-protect tab is an excellent safeguard; the electronics in the 
disk drive will prevent any program from writing onto a write
protected disk.) 

Copy Status 

Copy ] [ Plus uses the middle of the screen to give you detailed 
information about each track of the disk as it is read and ana
lyzed, and the bottom of the screen gives you status information. 
Copy ] [ Plus goes through several stages when copying each track. 
It must "read" each track into memory from the original disk, 
then it must "analyze" the track before "'Writing" it out to the 
duplicate drive. Lastly, it must "verify" that the track was written 
correctly, then it can go on to the next track. For some disks, the 
copy process will include "synchronizing" to each track before 
reading or writing. 

As the copy process continues, you will see the following letters 
appear on the track/status display on the lower portion of the 
screen. 

S Synchronizing track (doesn't always appear) 
R Reading track 
A Analyzing track 
W Writing track 
V Verifying track 

In some cases, the verifying takes only a fraction of a second, so 
you may or may not be able to see the "V" in the status display.) 

Page 47 



Errors and Error Numbers 

In addition, as each track is finished, a track status (error) number 
will be left on the display. The numbers, and their meanings, are: 

0 No error. Track copied correctly. 
2 Read error. Cannot read the track with these parameters. 
3 Track too long. 
4 Duplicate disk is write-protected. Remove the write-protect 

tab. 
5 Write verify error. 
6 Nibble count error. 
7 Sector edit 110 error. 

(Error number 1 is no longer used.) 

A couple of things to keep in mind: 1) Even if you get errors on 
one or more tracks, the duplicate disk may still work. 2) If you 
don't get any errors, it's still possible that the duplicate disk won't 
work. With protected software, remember that Copy ] [ Plus is try
ing to copy a disk that was designed not to be-copied. It may give 
an error copying a part of a disk that's ignored by the program 
anyway; or (without the correct parameters set) it may "miss" a 
piece of "hidden" formatting that the program does need in order 
to boot. The best test is always to boot the duplicate disk to see if 
it runs correctly. 

Comments 

When the AUlD COPY is finished, it will display the message 
"PRESS RETURN" at the bottom of the screen. AUlD COPY 
also has the capability to print a comment on the screen. If a 
comment was included in the parameter entry, then Copy ] [ Plus 
will print the comment. The comments are usually helpful hints in 
getting the backups to work. You might see comments like: 

PUT WRITE-PROTECT TAB ON BACKUP 
BEFORE USING. 

or 

Page 48 



IF BACKUP DOESN'T BOOT, TRY 
RE-COPYING TRACK 1. 

AU10 COPYing again 

If you select AUTO COPY again while still in the Bit Copy pro
gram, it behaves a little differently. Suppose you're making two 
backups of a program called "VIDEO GAME". The first time, 
you can either type the name VIDEO GAME or select it from the 
parameter list. After the first copy is made, though, the 
parameters for copying VIDEO GAME are already loaded. When 
you select AUTO COPY a second time, you'll see: 

AUTO COPY 

USE 'VIDEOGAME'?Y 

Press [Y] for Yes, or just press [RETURN], to use the VIDEO 
GAME parameter entry again. 

Whenever a parameter entry is already loaded in the computer, 
you'll be asked this question so that you can use the entry again 
without having to reload it. 

If you instead want to AUTO COPY a different program from the 
parameter list, you'll need to reinsert your Copy ] [ Plus disk so it 
can load the parameter list. Press [N] for No in response to the 
above question. Then you can select a new parameter entry name 
as you did before. 

If a Program is Not Listed 

You may want to back up a program that is not included in the 
Copy ] [ Plus parameter list. Or if the software publisher of the 
disk has changed the protection scheme, the parameter entry 
provided may not work with your new version. In either case, 
we've provided a few "sample" parameter entries that will copy 
many protected disks. Each entry begins with the word "TRY", as 
in "TRY SYNC" or "TRY HEADER". You should try backing up 
your disk using each of the "TRY" parameter entries, testing the 

Page 49 



duplicate disk after each copy. 

If these don't work, remember that updated parameter entries are 
available every three months from Central Point Software. The 
appendices also provide information which can help you figure 
out what parameter changes to try. (Many parameter entries are 
supplied by users who are kind enough to share their discoveries. 
These entries have not been verified by Central Point Software.) 

PARTIAL AU10 COPY 

It's just another aspect of Murphy's Law that with a few of the 
protected disks, you may need to try copying the disk a couple of 
times before you get a copy that works. Because of the critical 
disk timing (measured in millionths of a second) and other floppy 
factors, some disks will not copy exactly the same way every time. 

If a backup doesn't work, quite often it's only one track or one 
group of tracks that wasn't copied correctly. The rest of the disk 
may be fine. In this case, all you need to do is recopy those tracks 
on the same duplicate disk. The parameter entries for these disks 
will usually include a comment telling you what tracks will need to 
be recopied. (See "Comments" above.) 

Anytime you want to recopy just a range of tracks on a disk, 
select the PARTIAL AUlD COPY option from the main menu. 
PARTIAL AUlD COPY lets you choose what range of tracks to 
copy, but fills in the rest of the parameters for you, like AUlD 
COPY. 

To select PARTIAL AUlD COPY, use the arrow keys to display 
this option in inverse, then press [RETURN]. You'll be asked for 
the parameter entry name. Select the entry as you did in AUlD 
COPY. Next, answer the ORIGINAL DRIVE and DUPLICATE 
DRIVE questions. 

The next question is not filled in for you as it was before. The 
prompt reads: 

ENTER START TRACK: 0 

Page 50 



Type in the number of the track you want to start copying on. You 
can just press [RETURN] if you want to start with track 0. The 
next question is: 

ENTER END TRACK: 22 

Type the number of the last track you want copied, or press 
[RETURN] to copy up to track $22. If you enter the same num
ber for both start and end tracks, then only the one track will be 
copied. 

(Note: Some programs don't use every track on the disk, and the 
parameter entries for those programs won't copy the unused 
tracks. If the track range you enter is not found in the parameter 
entry at all, then nothing will be copied.) 

The last three questions are filled in for you as before. Insert your 
original and duplicate disks (or just the original if you have only 
one drive), then press [RETURN] to start copying. Copy] [Plus 
will copy just the range of tracks you specified, setting all the 
parameters that apply to those tracks. 

MANUAL BIT COPY 

MANUAL BIT COPY is the option to use if you want to set the 
parameters yourself before copying a disk. Perhaps you have 
parameters for backing up a program written down on paper, but 
not stored as a parameter entry on disk. Or if you're familiar with 
the Copy ] [ Plus parameters, you may want to experiment with 
changing them while copying disks. MANUAL BIT COPY lets 
you enter these changes. 

When you select MANUAL BIT COPY from the menu, the usual 
Bit Copy screen will appear. You'll be asked to enter: 

ORIGINAL DRIVE: 
DUPLICATE DRIVE: 

ENTER START TRACK: 
ENTEREND TRACK: 

Page 51 



TRACK INCREMENT: 

SYNCHRONIZE TRACKS? 

KEEP TRACK LENGTH? 

If you make a mistake when answering any of these questions, 
press [ESC]. You can then go through the questions again. 

The first four prompts have been discussed earlier. Select which 
drives you want to use for the original and the duplicate disks. 
Then enter the start and end tracks for the range you want to 
copy. To copy the entire disk, just press [RETURN] twice to 
accept a start track of $0 and an end track of $22. 

The next question, TRACK INCREMENT, determines what kind 
of spacing to use. Most disks use adjacent tracks (tracks 0, 1, 2, 3, 
etc.). These are copied with a track increment of 1. However, 
Apple drives can be positioned to read from any half-track or even 
quarter-track boundary. The only limitation is that in most cases, 
to work reliably, the tracks of information must be spaced at least 
one track increment apart. For example, a protected disk could 
use tracks 0, 1.5, 3, 4.5, etc. This would be copied with a track 
increment of 1.5. 

You can enter half-tracks and quarter-tracks in response to the 
START TRACK, END TRACK, and TRACK INCREMENT 
questions. Half-tracks are numbers that end in ".5"; quarter -tracks 
end in ".25" or ".75". 

The next question is SYNCHRONIZE TRACKS? If you answer 
[Y] for Yes, Copy ] [ Plus will maintain the track-to-track align
ment of the data from the original disk to the duplicate. Syn
chronizing tracks slows down the copying somewhat, so you'll 
probably want to use it only when you think the disk you're copy
ing requires it. 

The last question is KEEP TRACK LENGTH? This is also 
known as "nibble counting", and if selected, it will cause the 
duplicate disk to have the same number of "nibbles" per track as 
the original disk. Nibble counting will help back up disks that require 
it, but takes longer and can otherwise make the disk slightly 

Page 52 



less reliable. Answer [Y] for Yes if you want to keep the track 
length. 

(Note: For interested readers, more information on track spacing, 
synchronized tracks, and nibble counting can be found in 
Appendix B.) 

After you've answered all of these questions, you'll see the same 
prompt at the bottom as before: 

--INSERT DISKETTES--
RETURN TO BEGIN Q TO QUIT 
ESC TO RESTART I TO MODIFY 

Press [Q] if you want to quit out of the Bit Copy program 
altogether and boot another disk. Press [ESC] if you want to go 
back to the Bit Copy main menu. 

You may need to change one or more parameters before copying 
the disk. Every parameter has both a parameter number and a 
value. For example, parameter number $31 determines whether or 
not Copy ] [ Plus will fix "invalid" bytes on the disk. If the value 
of parameter $31 is 1, then Copy] [Plus will fix invalid bytes; if 
the value of parameter $31 is 0, then it won't. Other parameters have 
different effects. (Each parameter is explained in Appendix C.) 

To change parameters, press the [/ ] (slash) key. You'll see: 

--PARAMETER CHANGE-

CHANGE WHAT PARAMETER: 

Type the number of the parameter you want to change and press 
[RETURN]. Copy] [Plus then asks: 

TO WHAT VALUE: 

The current value of the parameter is displayed under the flashing 
cursor. To change it, type the new value and press [RETURN]. If 
you want to keep the current value, just press [RETURN]. 

Page 53 



After you've entered the new value, it will go back to the 
CHANGE WHAT PARAMETER question so that you can 
change another parameter. When you're finished changing the 
parameters you want, just press [RETURN] instead of typing a 
parameter number. 

Now you'll be back to this menu: 

--INSERT DISKETTES--

RETURN TO BEGIN 
ESC TO RESTART 

QTOQUIT 
/TOMODIFY 

Insert the disk you want to copy into the 'original drive' and insert 
a blank disk into the 'duplicate drive'. Press [RETURN] to begin 
copymg. 

As each track is copied, you'll see the copy status letters and error 
numbers appear across the bottom of the screen (described earlier 
under AUTO COPY). Additional technical information (see the 
appendices) appears in the middle window. It may look something 
like: 

TRACK: 00 START: 6C48 LENGTH: 1824 

FF FF FF FF FF FF FF FF 
D5AA96FF FEAAAAAA 
AAFFFEDEAAEBFFFF 
FF FF FF FF FF FF DS AA 
AD B6 DB DC F4 F3 BB BD 
C F 97 9 A A E A E 96 AD A C 
9A AB 97 B2 B2 AD AB 9A 

SOURCE: 1881 OBJECT: SYNC 

Page 54 



The TRACK number simply tells you which track is being copied. 
The START value is the address within the memory buffer that 
Copy ] [ Plus found the start of the track. The LENGTH value is 
how many bytes long (minus any "big gap") the track data is. 

Next is a block of hexadecimal bytes from the disk which Copy ] [ 
Plus determined to be the track start. "Sync" bytes are shown in 
inverse, and the actual track start is the first byte in the second 
row. 

On the last line, the SOURCE number is the total number of bytes 
on the original track, including a possible sync field before the 
data. A number will also appear for OBJECT, showing the num
ber of bytes that were written to the duplicate disk. When nibble 
counting is used (when you answer Yes to the KEEP TRACK 
LENGTH question), this number will change as Copy ] [ Plus 
adjusts the number of bytes being written to match the SOURCE 
byte count. On the right, you'll see either "HEADER", "SYNC", 
or "GAP" for each track. This describes which method Copy ] [ 
Plus used to determine the start of the track. 

MANUAL SEC10R COPY 

The MANUAL SECTOR COPY option provides an alternate way 
of copying some protected disks. Rather than reading an entire 
track at a time, MANUAL SECTOR COPY reads each sector 
from the track. It then formats and writes each sector on the 
duplicate disk. This option can back up normal, or "almost 
normal", disks more reliably, and can handle a few protection 
schemes more readily than MANUAL BIT COPY. However, 
MANUAL SECTOR COPY is not designed to copy disks whose 
formatting differs too greatly from DOS sectors. 

After selecting MANUAL SECTOR COPY, you need to tell Copy 
] [Plus which drives to use and what tracks to copy: 

ORIGINAL DRIVE: 
DUPLICATE DRIVE: 

ENTER START TRACK: 
ENTEREND TRACK: 

Page 55 



TRACK INCREMENT: 

You'll then see: 

USING SECTOR COPY 

followed by the usual - INSERT DISKETTES - display. If you 
need to change any parameters before starting the sector copy, 
press [/] to change them now. Otherwise, insert your disks into the 
appropriate drives, then press [RETURN] to start the copy. 

Note: When you use MANUAL BIT COPY or MANUAL 
SEC1DR COPY, Copy] [Plus does not change the parameters 
back to their original values. If you need to copy more than one 
range of tracks, the parameters you set for the first range will still 
be set unless you change them again. However, when you copy a 
program with AUlD COPY or PARTIAL AUlD COPY, Copy ] [ 
Plus restores all parameters to their original values before it reads 
the new parameter settings from the parameter entry. That way, 
you can AUlD COPY several disks in a row without worrying 
about the previous parameter settings. The entry you choose will 
also automatically select either Bit Copy or Sector Copy for you. 

If you want to restore all parameters from MANUAL BIT COPY 
or MANUAL SEClDR COPY, press[/] and select to change 
parameter $FF. This is a special parameter. Instead of asking 
CHANGE WHAT VALUE, it will display: 

--RESTORE PARAMETERS-

ARE YOU SURE? Y 

Press [Y] or [RETURN] to restore all parameters to their original 
values. 

NffiBLE EDI10R 

You can use the NIBBLE EDI1DR option to see the actual bytes 
stored on any track of the disk. This can be invaluable for learn
ing about disk formatting, or helping to determine what protec
tion scheme or schemes a disk uses. When you select the NIBBLE 

Page 56 



EDilDR option, you can view the track data, but you can't 
change it. Later we'll explain how to use the nibble editor from 
within a disk copy so that you can make changes to the disk itself. 
(By the way, it's called a nibble editor because the disk bytes are 
sometimes referred to as "nibbles".) 

When you select the NIBBLE EDilDR option from the main Bit 
Copy menu, you'll be asked: 

ORIGINAL DRIVE: 

ENTER START TRACK: 
ENTER END TRACK: 

TRACK INCREMENT: 

SYNCHRONIZE TRACKS? 

It doesn't ask for a duplicate drive since you're not doing any 
copying. It does ask for start track, end track, and track increment 
so that you can nibble edit several tracks in a row if you want. If 
you answer Yes to the SYNCHRONIZE TRACKS question, it will 
"align" the track immediately before reading the data. (See below.) 

After answering the above questions, you'll get the usual 
- INSERT DISKETTES - prompt. Insert the disk you want to 
examine into the appropriate drive and press [RETURN]. The 
disk will whir as the track is read into the memory buffer, or track 
buffer. 

The memory buffer is simply a large portion of the Apple's 
memory set aside for storing the bytes that are read in from the 
track. (In Copy ] [ Plus Version 5.0, this buffer is from address 
$5FOO to $BFOO.) The nibble editor reads two or three revolutions 
of the track into this buffer. In most cases it starts reading from 
any arbitrary point on the circular track. This means if you read 
the same track twice, the data will probably not be in the same 
place in the buffer each time. 

If you selected SYNCHRONIZED TRACKS, then the nibble 
editor will seek and synchronize itself to a point on another track 
(usually track 0), then immediately seek back and begin reading. 

Page 57 



If you read the same track twice using SYNCHRONIZED 
TRACKS, the data will appear within a few bytes of the same 
place eacp time. (This is also the same synchronizing that's done 
during a bit copy.) 

You'll then see a display similar to: 

COPY J [PLUS BIT COPY PROGRAMS 5. n 
~~L12§2=~~fNIBAbP~1NI~~£J~~B£LJ~~~ 

TRACK: 00 START: 5FOO LENGTH: 44FF 

5EEO: 80 80 80 80 80 80 80 80 VIEW 
5EE8: 80 80 80 80 80 80 80 80 
5EFO: 80 80 80 80 80 80 80 80 
5EF8: 80 80 80 80 80 80 80 80 
5FOO: 9E AE AE DC E6 AF AB B9 <-5FOO 
5F08: F5 E6 E6 DF DA F6 CF F9 
5F10: D3 DD FE EF F3 B5 F6 CF 
5F18: F7 B5 F3 CE D7 FC CE EA 
5F20: DE 96 FA BE F3 CE F7 B5 

A TO ANALYZE DATA 
? FOR HELP SCREEN 
Q FOR NEXT TRACK 

ESC TO QUIT 
I CHANGE PARMS 
SPACE TO RE-READ 

The first line of the nibble editor display indicates what track you 
are currently editing, its start address in Apple memory, and its 
length. Since no analysis has been done yet, this is the start 
address and length of the entire buffer, not of the track data. 
Beneath this is the actual track image. It is shown as the Apple 
memory address followed by 8 hexadecimal bytes per line. The 
word "VIEW" to the right lets you know you are in VIEW mode 
(there is also a CHANGE mode, described below), and you can 
scroll through the track buffer. The address at the right marked by 
"<-"is the actual memory address of the byte that's under the 
flashing cursor. 

Page 58 



Several options are displayed in the bottom window. You can ask 
Copy] [Plus to perform its track analysis by pressing [A]. The 
track analysis routines, using the current parameter settings, deter
mine the start and end of the track data, then move the cursor to 
the track start and change the START and LENGTH values at the 
top to reflect the track size rather than the memory buffer size. 

Pressing [Q] will quit this edit and move on to the next track. 
[ESC] will exit the editor and return you to the main Bit Copy 
menu, and [SPACE] will re-read the track. [/] operates just as it 
does when copying disks, allowing you to change parameters. 

If you press [?],you will be presented with a help screen which 
shows you what other commands are available from the nibble 
editor: 

NIBBLE EDITOR COMMANDS 

BEGINNING B 
UP 32 T 
UP I 
LEFT J K RIGHT 
DOWN M 
DOWN 32 V 
END E 
RESET BEG CTRL-B 
RESET END CTRL-E 

c 
F 
R 

CHANGE NIBBLE 
FIND NIBBLES 
REPEAT FIND 

S TOGGLE SYNC 
Q NEXT TRACK 
? HELP 
P PRINT TRACK 

RTN RETURN TO EDIT 

The cursor moving commands {B, T, I, J, K, M, V, and E) are 
quite straightforward, and let you move anywhere within the track 
buffer with a minimum of effort. [CTRL-B] and [CTRL-E] can 
be used to establish a new track beginning or track end at the cur
rent cursor position. The START and LENGTH values will 
change, so you can use these commands to calculate the "distance" 
(in bytes) between any two bytes in the buffer. 

[C] allows you to change nibbles, and you will notice the "VIEW" 
status becomes "CHANGE" when [C] is pressed. You may then 
enter any string of hex bytes separated by spaces and they will be 
placed at the current cursor position. 

[F] allows you to find a string of bytes in the buffer. You will see 
the prompt "FIND" appear in the lower right of the nibble edit 

Page 59 



display. You can enter any 1 to 3 byte sequence for the editor to 
find. Spaces are optional. If the string is found, the cursor is 
moved to the first byte of the string. If it is not found, the cursor 
is moved to the end of the track buffer. You can also enter the 
single byte "80" to find the next sync byte in the buffer. Pressing 
[R] will repeat the find command for the last specified string. 

[S] will toggle the byte at the current cursor position between sync 
(shown in inverse) and standard (normal), converting standard 
bytes to sync, and sync bytes to standard. 

[P] allows you to print a track. It will start printing at the current 
cursor location and extend to the end of the buffer if no analysis 
has been done, or to the track end if analysis has been performed. 
The printer slot number and page length are Copy ] [ Plus 
parameters and may be changed at any time. The sync bytes in the 
buffer are printed with their high bits cleared. (For example, a sync 
$FF will be printed as a $7F.) 

When examining a track with the nibble editor, using [/ ], 
[SPACE], and [A] in sequence allows you to view a track, make 
any parameter changes you wish, then re-read and analyze the 
track using the new parameters. This analysis is the same that 
Copy ] [ Plus uses when copying a disk. 

As mentioned earlier, if you select the NIBBLE EDI10R option 
from the main Bit Copy menu, you can read the track and make 
changes to it in memory, but you can't write those changes back 
to the disk. If you do want to make changes to the disk itself, 
there is a different method for entering the nibble editor. Select 
MANUAL BIT COPY, selecting the tracks you want to edit, then 
set parameter $0B to 2. This tells Copy ] [ Plus to "copy with 
nibble editor entry". It will read a track from the original disk, 
then pop you into the nibble editor so you can edit that track. 
When you're finished editing, press [Q] to quit out the editor. It 
will resume the copy process, writing the edited track to the dupli
cate disk. (If you want to read and write the same disk, then set 
both the original and duplicate drives to the same drive number.) 

When using the editor from MANUAL BIT COPY rather than 
the NIBBLE EDI10R option, the [A] to analyze, [/]to change 
parameters, and [SPACE] to re-read commands are not available. 

Page 60 



Copy ] [ Plus has already set parameters and read and analyzed 
the track as part of the copying process before entering the nibble 
editor. 

(If you're interested in better understanding disk formatting and 
protection schemes, we suggest you begin by using the nibble 
editor to examine a standard DOS disk, identifying the various 
address and data fields described in Appendix A. Then try exam
ining and comparing the formats of various protected disks.) 

HI-RES DISK SCAN 

The HI-RES DISK SCAN option is a quick graphical tool to help 
you determine which tracks or half-tracks on a disk contain useful 
data, and which tracks are "blank". It does this by showing you 
the general pattern of sync bytes and invalid bytes on any tracks 
you specify. 

HI-RES DISK SCAN reads each track into the track buffer, then 
divides it into groups of 41 bytes each. If there are any invalid 
bytes or sync bytes in the group, Copy ] [ Plus plots a dot on the 
high-resolution graphics screen. If there are no invalid or sync · 
bytes in the group, it leaves that point black. The dots for each 
track are plotted in a vertical line, from top to bottom of the 
screen. 

To use HI-RES DISK SCAN, select the option from the main Bit 
Copy menu, then answer the questions concerning drive, track 
range, and synchronized tracks. Insert the disk you want to scan, 
then press [RETURN]. The DISK SCAN screen will appear, with 
the hexadecimal track numbers ($00 to $23) at the bottom of the 
screen. Vertical lines or dots will appear above each track number 
as the track is scanned. Press [ESC] if you want to exit out before 
it's finished, or press any key to exit when it's done. 

Here is a picture of a DISK SCAN of a normal DOS 3.3 16-sector 
disk. 

Page 61 



.. . .... ' . i ... " 

. ~ " . • I 
• D • • • II! " • .. . - .. . .. ... 

" • • I • • • - I " • . .. ~ 

" " II II '' • . " . - :: .. - . . . .. . .. .. •• ft • . ... .... : : .. ,. " . .. 
II " 00 " .. .. .. .. .. 

I .. II .... " .. . " 
• • i • - " • I " • 

~ .. . ... 
• • • '1 .. .. "' .. 
• • II • " • • I •- . . . • I - • • " I • • .. • • " I • • _ • . .. - .. " .... :: .. · ··<>· ... _ .. :···::··· ..... -······ .. .. ..... 

.. • .. • it 
• • I - " I 

.... 'I ., 

-- --------- --- -- ------------------ ---

Each track is plotted in a vertical line over the track number. Any 
normal 16-sector disk will produce a display similar to this. The 
white dots are the sync fields between the sectors. The short stripe 
on each track is the longer sync field at the start of the track. 

If you scan a normal DOS disk on the (unwritten) half-tracks, 
you'll see irregular patterns of stripes and dots. This is caused by 
the drive trying to read bytes from the whole tracks on either side 
of the half-track, leaning toward one track or the other. 

(Note: The patterns will not line up from one track to the next. 
The timing used when stepping from track to track is not the same 
as when the disk was written, so each pattern begins at a different 
point around the circular track.) 

If you scan a disk that has never been formatted or written to, you 
will see a solid stripe for each track. This is because an unformat
ted disk contains many invalid bytes around each track, which 
show up as white. Unused tracks on a protected disk will also 
appear as white stripes. 

Page 62 



The HI-RES DISK SCAN option provides you with a quick way 
to see some of the peculiarities of a protected disk. You can use 
DISK SCAN to help locate the more "interesting" tracks, then use 
the nibble editor to examine those tracks more closely. 

Parameter Entries 

Several options in the Bit Copy menu are provided so that you can 
create and edit your own AU10 COPY parameter entries, and 
add these to the list of parameter entries already on the Copy ] [ 
Plus disk. You can also build new lists of parameter entries on 
other disks if you want to keep them separate from the Copy ] [ 
Plus disk. We suggest you make a "work copy" of your Copy ] [ 
Plus disk and make any changes to the work copy rather than the 
original. 

Each parameter entry is a set of special instructions which Copy 
] [ Plus can use when backing up a particular program with 
AU10 COPY. The instructions tell Copy] [Plus how to set start 
and end track, track increment, any parameter changes, etc., 
before copying the disk. 

Here are the main instructions used in parameter entries. Each 
instruction is described first, then followed by short examples 
where appropriate. 

Txx-Tyy 

T0-1'22 
Tll-TlB 
T1.5-T7.5 

T3.75-TE.75 

T4-T5 

Txx 

TO 
T21 

Copy from track xx to track yy. In other 
words, select a START TRACK of xx and an 
END TRACK of yy. 
copies from track $0 to track $22. 
copies from track $11 to track $lB. 
copies from track 1.5 to track 7.5. (These are 
half-tracks). 
copies from track 3.75 to track E.75 (quarter
tracks). 
copies tracks $4 and $5. 

Copy only track xx. Set both START TRACK 
and END TRACK to xx. 
copies only track $0. 
copies only track $21. 

Page 63 



STEP zz 
STEP2 

STEP 1.5 

SYNC 

KEEP 

xx=yy 
3E=2 
10=97 

RESIDRE 

SECIDR COPY 

"COMMENT" 

Select a track increment of zz. 
selects a track increment of 2 (which would 
copy every other track). 
selects a track increment of 1.5. 

Answer Yes to the SYNCHRONIZE TRACKS 
question. 

Answer Yes to the KEEP TRACK LENGTH 
question. 

Set parameter number xx to value yy. 
sets parameter $3E to 2. 
sets parameter $10 to $97. 

Restore all parameters to their original values. 
This command should always be on a line by 
itself. 

Do a sector copy rather than a bit copy. If no 
tracks are specified (see below), then it copies 
tracks $0 to $22. If tracks are listed, it only 
sector copies those tracks. 

Any comments in the parameter entry should 
be in quotes and on separate lines. The 
comments will be displayed on the screen 
during copying. You can have more than one 
line of comments, but each line should be 
enclosed in quotes. 

The instructions that do a copy need to be separated by commas. 
Here are a few examples of instructions alone or combined 
together: 

TO 
TO-T22 
TA-TE, SYNC 
TO-T22, KEEP 
T4-T5, SYNC, KEEP 
TO-T8, STEP 2 
T1.5-T7.5, STEP1.5 

Page 64 



T0 1 3E=2 
T2-T22 I E=D4 I F=AB I 1 0=97 
SECTOR COPY 
TO-T3 I SECTOR COPY 
TO-T3 I SECTOR COPY I 57=04 

Remember that some protected disks use different protection 
schemes on different tracks of the disk. These disks often require 
several "passes" through the bit copy, each pass selecting a different 
track range and setting different parameters. When Copy ] [ Plus 
reads a parameter entry to copy a disk, it reads all of the instruc
tions from one line of the entry, sets the appropriate track num
bers, parameters, etc., then does the copy. Then it reads the next 
line of the entry to do the next pass (if there is one). When creat
ing the entry, you need to remember that all the instructions for 
one pass should be together on a line, and different passes should 
be on different lines. 

Here is an example of a multi-pass parameter entry: 

T 0 First copy just track 0, no 
parameter changes. 

T 1 . 5 - T 7 . 5 1 3 E = 2 1 1 0 = 9 7 Then copy half-tracks 1.5 
to 7.5, after setting 
parameter $3E to $2 and 
$10 to $97. 

T 11 - T 21 1 S E C T 0 R C 0 P Y Then sector copy tracks 
$11 to $21. 

T 2 2 1 K E E P 1 9 = 1 Lastly copy track $22, 
keeping track length (do 
nibble counting), after 
setting parameter 9 to 1. 

Page 65 



The best examples can be found in the parameter entries stored on 
the Copy ] [ Plus disk. We'll explain shortly how you can load and 
see these parameter entries. 

Sector Edit Parameters 

The Bit Copy program can also do automatic sector editing to the 
duplicate drive, controlled by a parameter entry with AUlD 
COPY. Sector editing is a novel method used to help back up 
certain protected disks. 

On some protected disks, most of the program is stored using 
fairly normal DOS-type sectors, but one or two tracks contain 
special marks which a bit copy program may have trouble 
duplicating. When the program is loaded, it looks for these special 
marks on the disk. If it doesn't find them, it "knows" that this is a 
copy and not the original disk, and will refuse to run. 

The sector edit approach is to actually modify part of the pro
gram stored on the duplicate disk so that when it boots, it simply 
ignores the fact that the marks are absent. The modification can 
either remove the protection check, or ignore the results of the 
check after the test has been done. Determining what kind of 
change to make to a specific disk is usually a major programming 
task. If you already know what needs to be changed, though, it's 
fairly easy to make the change. (The SEC1DR EDilDR option in 
the Copy] [Plus DOS utilities lets you make changes by hand.) 

If an AUlD COPY parameter entry calls for sector editing, Copy 
] [ Plus will automatically do the sector edit to the duplicate disk. 
The only time you need to be aware of this is if you want to create 
your own parameter entries that include sector editing. 

The sector edit instructions need to specify: which track and sec
tor is to be modified, whether it is a DOS 3.3 or 3.2 type sector, if 
the read/write routines should be "patched" (see the SEC1DR 
EDilDR section in Chapter Two for a description of "patched"), 
any other parameters that may need to be set (for "custom" patch
ing), and lastly the addresses in the sector to be changed along 
with their new values. Here, in the correct order, are the parameter 
entry instructions needed to do sector editing: 

Page 66 



SECTOR EDIT, 

TRACKxx, 
SECTOR yy, 
DOS3.n, 

(optional) PATCHED, 

(optional parameter 
changes), 

aa:dd, 

aa:dd/dd/dd 

This starts the sector edit. 

Track number, 
Sector number, 
DOS 3.3 for 16 sector 
disks, DOS 3.2 for 13 
sector disks, 

PATCHED option if 
desired, 

Any other parameter 
changes, 

The position (address) in 
the sector to change, and 
the data to change it to, 

Changes to adjacent bytes 
in the sector. 

Here are a couple of examples to clarify this: 

SECTOR EDIT, TRACK 0, SECTOR 8,DOS 3.3,A0:60 

This example edits the sector at track 0, sector 8, which is a DOS 
3.3-type sector. The byte at address $AO is changed to a $60, then 
the sector is written back to the disk. 

SECTOR EDIT, TRACK22, SECTOR1, DOS3.2, 
PATCHED, 59=97, 14:00, D5:2F/AF/32 

This edits track $22, sector 1 as a DOS 3.2-type sector, using 
"patched" read/ write routines. Parameter $59 is set to $97. The 
byte at address $14 is changed to a $00, then the three bytes start
ing at address $D5 are changed to $2F, $AF, and $32. 

If an 110 error occurs while Copy ] [ Plus is trying to sector edit 
the duplicate disk, an error "7" will appear in the status display. 

Sector editing should always be done to a copy of a commercial 
disk, never to the original! 

Page 67 



WAD PARM ENTRY 

This Bit Copy option lets you select a parameter entry from the 
disk, load it into memory, then see and modify the instructions 
that make up the entry. When you select WAD PARM ENTRY, 
a new screen appears: 

LOAD PARM ENTRY 

NAME: 

Enter the name of the parameter entry you want to load, or press 
[RETURN] to see a list of all of the parameter entries. You can 
select the entry name from the list, just as in AU10 COPY. The 
disk will whir as the entry is loaded, then the "parameter entry 
edit screen" appears. Here is a sample edit screen: 

NAME: RASTER BLASTER 

~t~~u~~~~Q ______________________ _ 
TO 
T5-T11 I STEP 4 I A=2 I E=AD I F=DE I 55=3 I 4 
4=1 1 45=1 0 
T6-T12 I STEP 4 
T7.5-TF.5 1 STEP4 
T1.5-T3.5 STEP 2 
11 RETRY TRACK ZERO UNTIL BOOTS 11 

Page 68 



The first line shows the name of the parameter entry. The "BY" 
line shows the software publisher's name. (This line may be blank 
in some entries.) Below the dashed line are the bit copy instruc
tions that make up the entry. Notice that the second instruction 
line was too long and wrapped around to the next line on the 
screen. 

You can make changes to the parameter entry in memory if you 
want. If you press [RETURN] twice, that will keep the same entry 
name and "BY" name. You can also type new names over the old. 
This is handy if you want to create a new parameter entry by edit-· 
ing an old one. The original entry on disk will remain unchanged. 

The name and the BY line can be up to 29 characters long, and 
contain any characters except"*" and"_". After you enter a new 
entry name, a "*" will appear by the name. (Parameters on the 
Copy] [Plus disk that were submitted by users all have a"*" by 
the name. Parameters that were tested and verified by Central 
Point Software do not have a"*".) 

Once the cursor is down in the instruction area, it acts like a 
miniature word processor. Typing characters inserts those charac
ters into the line. The left-arrow key deletes characters, and the 
right-arrow key can be used to restore them if you deleted more 
than you wanted to. (You can also move the cursor then restore 
the deleted characters at the new cursor position.) 

To move the cursor, press [ESC]. The blinking underline cursor 
will change to a flashing plus-sign. Pressing [I], [J], [K], [M] will 
move the cursor up, left, right, down. (The diamond pattern these 
four keys make on the keyboard will help you remember which 
direction they move.) Press any other key to change back to a 
normal cursor. 

After you've pressed [ESC] to make the cursor a flashing plus
sign, you can also press [?] to see a help screen of "PARM 
ENTRY EDilDR COMMANDS". 

When you press [RETURN] to end a line or use [ESC] to move 
the cursor to another line, Copy ] [ Plus checks the line to make 
sure it contains only valid parameter entry instructions. If there is 
an error, Copy ] [ Plus will print an error message at the bottom of 

Page 69 



the screen and leave the cursor on the line with the error. Here are 
some examples of incorrect instructions with the error messages 
they produce: 

T6-T5 END TRACK< START TRACK 
The start track number needs to be less than the end track 
number. 

TQ BAD TRACK NUMBER 
"Q" is not a valid track number. 

99=66 ILLEGAL PARM NUMBER ( < 7F) 
The parameter number is too big. The largest valid parameter 
number is $7F. 

SA31 RPQ SYNTAX ERROR 
Copy ] [ Plus can't make sense of what you typed. It's not a valid 
parameter entry instruction. 

You can also print the parameter entry on your printer. Press 
[CTRL-P] anytime the cursor is in the instruction area. Copy] [ 
Plus will display the printer slot number (slot 1, unless you change 
it) and ask you to press [RETURN] to print the entry. Note: If 
you want to print some or all of the parameter entries, use PRINT 
PARM FILE, described later. 

Press [CTRL-Q] when you want to quit out of parameter editing 
and go back to the Bit Copy menu. 

EDIT PARM ENTRY 

Whenever you use AUTO COPY, PARTIAL AUTO COPY, or 
LOAD AUTO COPY, the parameter entry you last selected is 
stored in the computer, in case you want to use it again. With the 
EDIT PARM ENTRY option, you can look at or modify 
whatever parameter entry is currently stored in memory. When 
you select PARM EDIT ENTRY from the Bit Copy menu, Copy 
] [ Plus displays the parameter entry edit screen, the same one used 
in LOAD PARM ENTRY. As before, you can change the NAME 
and BY lines, or press [RETURN] to accept the current lines. 
Then you can use the editing keys to change the instructions that 
make up the parameter entry. Press [CTRL-Q] to exit. 

Page 70 



CREATE NEW PARM ENTRY 

Select this option when you want to create a new parameter entry 
from scratch. 

Copy] [Plus will show you a blank parameter entry edit screen 
with the cursor flashing on the NAME line. Type the name you 
want to give this new parameter entry. You must type at least one 
character for this field. Then fill in the BY line. This can be blank 
if you want. Now type in the copying instructions for the 
parameter entry, following the rules that were given earlier under 
"Parameter Entries" and "LOAD COPY". As before, press 
[CTRL-Q] to exit the editor. 

If you create a new parameter entry, you can use AUlD COPY to 
test it out if you want, before saving the entry to disk. 

SAVE PARM ENTRY 

After you've made changes to a parameter entry or create your 
own parameter entry, select SAVE PARM ENTRY if you want to 
save it back to the disk to make it permanent. The disk will whir 
as Copy ] [ Plus saves the parameter entry. 

If there is already a parameter entry with that name stored on the 
disk, Copy ] [ Plus will print: 

ENTRY ALREADY EXISTS 
REPLACE IT? 

Press [Y] or [RETURN] to replace the old entry with the new; 
press any other key if you don't want to save it. 

Note: You should normally save parameter entries onto your work 
copy of Copy ] [ Plus. The entries themselves are recorded in two 
files on the disk, called PARM.KEY and PARM.DATA. The Bit 
Copy program looks for these files when it saves an entry. If it 
can't find the files, then it creates them on the disk, then saves the 
parameter entry into them. This is handy if you want to store your 
own parameter entries onto another DOS disk or if the Copy ] [ 
Plus becomes full. However, if you always want to save the entry 

Page 71 



onto the Copy ] [ Plus disk, you need to be sure the disk is in the 
drive before you select SAVE PARM ENTRY. 

RENAME PARM ENTRY 

Select RENAME PARM ENTRY if you want to change the name 
of one of the parameter entries stored on disk. To choose which 
parameter entry to rename, you can either type in the old name or 
press [RETURN] and select the name from the entry list. Then 
Copy ] [ Plus will ask for NEW NAME. Type the new entry name. 
Remember that this can be 1 to 29 characters long, and can 
include any printing character except for an asterisk or underline. 
When you press [RETURN], the disk will whir as Copy ] [ Plus 
renames the entry. 

DELETE PARM ENTRY 

To delete a parameter entry from the entry list, select DELETE 
PARM ENTRY, then type the name of the entry to delete or press 
[RETURN] to choose from the parameter entry list. The entry 
then will be deleted. 

Possible Parameter List Errors 

If there is a problem when loading or saving a parameter entry, 
Copy] [Plus will print an error message. Here is a summary of 
possible errors: 

-WRITE PROTECT ERROR

PLEASE REMOVE 
WRITE PROTECT TAB 

FROM DISKETTE 

This error will occur if you're trying to save, rename, or delete a 
parameter entry on the disk. Remove the write-protect tab from 
the disk and try again. 

Page 72 



THE PARM ENTRIES ON 
THIS DISKETTE HAVE 

BEEN DESTROYED 

This not-very-pleasant message means that the files that contain 
the parameter entries are somehow damaged. The parameter entry 
you requested cannot be loaded. You should make a new work 
copy from your original Copy ] [ Plus disk, and use this new copy 
from now on. 

-WRONG DISKETTE

PLEASE INSERT A 
PARM FILE DISKETTE 

Copy ] [ Plus could not find the parameter entries on this disk. 
You probably have the wrong disk in the drive. 

- I/0 ERROR

UNABLE TO LOAD OR 
SAVE PARM ENTRY 

It can't read this disk. Either the information on the disk has been 
damaged, or the wrong disk is in the drive. 

-DISKETTE FULL

INSERT ANOTHER DISKETTE 
TO SAVE PARM ENTRY 

There is no more room on this disk for saving parameter entries. 
You'll need to either delete any entries that you don't want, or 
start saving new entries onto another DOS disk. (See "SAVE 
PARM ENTRY" for more information.) 

- PARM ENTRY DIRECTORY FULL-

Copy] [Plus can keep track of up to 752 parameter entries on a 
disk. You just tried to save the 753rd entry. Delete the entries you 
don't want anymore, or start saving new entries onto another 
DOS disk. 

Page 73 



- PARM ENTRY NOT FOUND-

You typed in a parameter entry name (or the first few letters of 
the entry name), and Copy] [Plus couldn't find it in the list. You 
may have misspelled the name of the entry. 

-ENTRY ALREADY EXISTS-

You're trying to rename a parameter entry, and the name you 
chose is already in the parameter entry list. You can't have two 
entries with the same name. 

PRINT PARM FILE 

The PRINT PARM FILE option will let you print out either the en
tire alphabetized list of parameter entries, or just a range of entries. 

When you select the PRINT PARM FILE option, Copy ] [ Plus 
will ask: 

STARTING ENTRY: 

ENDING ENTRY: 

You can type in either an entire entry name or the first few letters 
of a name, or just press [RETURN]. Copy] [Plus will print out 
every entry between (and including) the starting and ending entry 
you specify. For example, if you type "J" for a starting entry and 
"N" for an ending entry, it will print all the entries that begin with 
J, K, L, M, or N. If you type "TRY" for both starting and ending 
entries, it will print all the parameter entries that begin with TRY. 

If you press [RETURN] for the starting entry, the print-out will 
start with the first entry of the parameter list. If you press [RE
TURN] for the ending entry, it will print to the last entry of the 
parameter list. So to print the entire list, just press [RETURN] twice. 

QUIT 

Use the QUIT option from the main Bit Copy menu when you 
want to exit out of Bit Copy and boot another program. When 
you select QUIT, the following message appears: 

PRESS [RETURN] TO BOOT DISK, OR 
PRESS [SPACE] TO RE-ENTER BIT COPY 

Insert the disk you want to boot into drive 1, then press [RETURN]. 
If you don't want to exit the Bit Copy program, press the space bar. 
Page 74 



APPENDIX A: DISKS AND DISK 
HARDWARE 

This appendix is included as a concise reference on disks and 
disk hardware. It explains disk formatting and storage, and 
most of the terms needed before exploring disk protection 
schemes. It is, however, a reference rather than a tutorial. For 
more complete information and some useful examples, we sug
gest the book "Beneath Apple DOS" by Quality Software. 
Also, an appendix in Apple's DOS Programmer's manual 
describes DOS file formats, and "Understanding the Apple II" 
(also by Quality Software) describes the disk hardware in 
greater depth. 

This reference assumes that you are familiar with computer 
concepts such as hexadecimal, binary, bytes, bits, and 
subroutines. 

Apple DOS, Files, Tracks, Sectors 

The Apple Disk Operating System performs a number of 
tasks, including saving or writing files onto the floppy disk, 
loading or reading files from the disk, and keeping track of 
where on the disk the files are stored. 

Depending on what program is being run, DOS may need to 
access anywhere from one byte up to thousands of bytes from 
the disk at any one time. What is needed is a way to divide 
the information into manageable chunks. These chunks are 
called "sectors". 

The data on a normal DOS disk is stored in 35 circular 
tracks, numbered 0 through 34 ($00 through $22 in hex
adecimal). The outermost track is track $00; the innermost 
track is track $22. 

The disk drive, controlled by DOS, can position the read/ write 
head (similar to the tape head in a cassette deck) over any one 
of the tracks. As the disk spins underneath, the drive can read 
or write the information on that track. 

Page 75 



Each circular track is divided (like a pie) into 16 sectors. The 
sectors on each track are numbered 0 through 15 ($00 through 
$OF). Each sector stores 256 bytes of usable data. DOS always 
reads and writes information a sector at a time. 

There are (35 tracks * 16 sectors =) 560 sectors on a DOS 3.3 
disk. A disk can store a total of (560 sectors * 256 bytes per 
sector =) 143,360 bytes (140K). However, DOS itself takes up 
3 tracks (tracks $00-$02) and the catalog takes up another 
track (track $11). Therefore, on an initialized DOS disk, 
126,976 bytes (124K) are free for files. 

When a file is saved to disk, DOS breaks the file into 
256-byte chunks, looks on the disk for sectors that are not 
currently "in use", saves the chunks into the free sectors, 
makes a record on the disk of which sectors the file uses (so 
it can find the file later), and marks the sectors "in use". 

When you CATALOG a disk, the 3-digit number to the left of 
each filename is the number of sectors on the disk that the 
file uses. 

Apple DOS 3.3, Apple Pascal, Pro DOS, CP/ M, and Apple Ill 
SOS all use the same track and sector formatting. However, 
the way the sectors are used for file storage varies greatly with 
each operating system. 

Disk Hardware, Reading and Writing Bytes, Disk Speed 

The disk spins at about 5 revolutions per second, or .2 
seconds = 200 milliseconds per revolution. 

The bytes on the disk (and the bits that make up those bytes) 
must be written at evenly spaced intervals around the circular 
track. Since the disk media is passing under the read/write 
head at a fairly constant speed, that means each bit must be 
written onto the media at the right moment, in order to be 
placed onto the correct spot on the disk. 

The timing involved in accessing the disk, especially when 

Page 76 



writing, must be precise. This makes disk access very "timing 
critical". 

When writing a single byte to the disk, DOS sends the byte to 
a special "data latch" on the disk controller card. The hard
ware on the card then writes the 8 bits of the byte, one bit at 
a time, onto the disk media passing under the head. The 
hardware writes one bit every 4 usee (microseconds, or mil
lionths of a second). It takes 32 microseconds to write all 8 
bits of the byte (4 usee per bit * 8 bits per byte). 

To write many bytes, DOS sends bytes to the data latch at 
exact 32 microsecond intervals, so that when the hardware has 
finished writing one byte, it receives the next byte to write. 

If another byte isn't sent to the latch at the end of 32 
microseconds, then the hardware begins writing individual zero 
bits onto the disk, a zero bit every 4 microseconds, until 
another byte is sent to the latch. 

Any byte value can be written to the disk. However, only 
some values can be read back reliably, due to the Apple disk 
format and the nature of floppy disks in general. 

When reading, the disk hardware waits until it reads a one bit 
from the disk, then gathers the next 7 bits to form an 8-bit 
byte. This is one of the fundamental limitations. Every byte 
read from the disk has its high bit set. If a byte is to be read 
back correctly, it must be written to the disk with its high bit 
set. 

The other limitation is that the circuitry can't reliably read 
more than 2 zero bits in a row. If there are too many zeros in 
a row, the circuitry will begin reading some of them incor
rectly as ones. 

Bytes that have more than 2 consecutive zero bits are consi
dered "invalid bytes", because they cannot be read reliably. If 
an invalid byte stored on the disk is read back, it might be 
read correctly, or it might be read incorrectly as another 
invalid byte or as a valid byte. 

Page 77 



If a byte is read back as invalid, then some invalid byte is 
stored on the disk, though it may not be the byte that was 
read (since the circuitry may have read it wrong). 

Since not all possible byte values can be read correctly, infor
mation being written to the disk must usually be "encoded" in 
some way first, so that only valid bytes are written. DOS does 
this encoding for every sector it writes. 

Another problem in reading the disk is finding where one byte 
ends and the next byte begins. The data on the disk is stored 
simply as a long stream of bits. Here is an example bit 
stream: 

1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 

The hardware could read a byte starting with any of the one 
bits. If the starting point is wrong, then the bytes read will be 
completely wrong. What is needed is a way to "synchronize" 
the hardware to the correct byte boundaries. 

To synchronize the hardware to the bytes when reading, special 
bytes called "sync bytes" are written onto the disk with every 
sector. A sync byte is written by sending an $FF (binary 
11111111) to the disk data latch, then waiting 40 microseconds 
before writing the next byte. The $FF is written during the 
first 32 microseconds, then the hardware writes 2 zeros to the 
disk before a new byte is sent to the latch. Sync bytes are 
sometimes referred to as 10-bit bytes (8 bits for the $FF + 2 
zero bits). 

If several sync bytes are written one after another, the follow
ing pattern will be stored on the disk: 

11111111001111111100111111110 
0 etc. 

When reading this pattern from the disk, if the hardware is 
already "in sync", it will read 8 ones (to make an $FF byte), 
skip the 2 zeros (because it's waiting for another one bit), read 
the next 8 ones (to make another $FF), skip 2 more zeros, 
and so on. To DOS, sync $FF's look just like normal $FF's. 

Page 78 



Often, however, the hardware will be "out of sync" when it 
begins reading the sync bytes. (For example, it may begin with 
the fifth one bit of the above pattern, and read back binary 
1 1 1 1 0 0 1 1, or $F3.) Because of the 10-bit pattern being 
read 8 bits at a time, sync bytes have an interesting property. 
After reading at most 5 sync bytes, the hardware will always 
fall into sync with the bytes stored on the disk. 

Other 9 and 10 bit patterns can also be used to synchronize 
the disk hardware, but 10-bit $FF's are the most common. 

The total number of bits that can fit on a track is determined 
by how fast the disk is spinning when it is written to. If the 
disk is spinning at a slower than usual speed, then the bits 
will be written more closely together on the track. This means 
more bits are written before the track has completed a full 
revolution. 

Unfortunately, the quality of the disk media imposes limits on 
how closely the bits can be packed reliably on the disk. The 
standard disk speed of 200 milliseconds per revolution was 
chosen as a good compromise between reliability and high 
data storage. 

A standard disk speed also needs to be maintained for com
patibility from one disk drive to the next. For example, a drive 
spinning at the slow speed of 210 milliseconds per revolution 
might be able to format, read, and write its own disks reliably, 
but it will have great difficulties reading a disk that was made 
on a drive that spins at a correct 200 milliseconds. 

If a drive spins at the correct speed, 50000 bits will fit around 
the track. This can translate to 6520 ($1978) 32-usec bytes, or 
5000 ($1388) 40-usec sync bytes. 

Contents of a Sector 

In order to read any given sector, DOS must move the 
read/ write head to the right track then begin reading bytes, 
waiting for that sector to pass under the head. 

Page 79 



Every sector is made up of an address field and a data field. 
The address field contains information such as which sector 
this is and what the volume number of the disk is. The data 
field contains the actual information desired, such as a part 
of a file. 

Here is a breakdown of a sector: 

Sync field: between 5 and 40 sync $FF's. This guarantees that 
the hardware is in sync before reading the address field. 

Address Field: 

Prologue: D5 AA 96. These three bytes act as a marker that 
says, "A Sector Begins Here". The DOS read routines look for 
this pattern first. When it finds the pattern, it knows that the 
rest of the address field follows. 

Volume number: 2 bytes. The volume number of the disk is 
stored next (in every sector) in an encoded form that uses only 
valid disk bytes. The encoding used here is called "4-and-4 en
coding", and uses 2 bytes to store the 1-byte volume number. 
(A table of 4-and-4 encoded numbers is in Appendix E.) 

Track number: 2 bytes. The track number is also stored in the 
address field of each sector, using 4-and-4 encoding. It is in
cluded so that in case the read/ write head is "lost" and over 
the wrong track, DOS can find which track it's on by reading 
an address field, then move from there to the correct track. 

Sector number: 2 bytes. The "hard" sector number, 4-and-4 
encoded. (See below for hard and soft sectors.) 

Checksum: 2 bytes. Another 4-and-4 encoded number that is 
used to verify that the volume, track, and sector numbers are 
correct. 

Epilogue: DE AA. This marks the end of the address field. 

Possible glitch bytes: See below. 

Sync field: about 5 to 10 more sync $FF's. 

Page 80 



Data Field: 

Prologue: D5 AA AD. These three bytes mark the beginning 
of the data field. The encoded data always follows. 

Data: 342 bytes. The 256 bytes of information are stored here, 
encoded as 342 valid disk bytes. The encoding scheme used is 
called "6-and-2 encoding", and involves some rather complicat
ed bit rearranging, exclusive-ORing, and table look-ups. The 
part of DOS that does the encoding and decoding is fast and 
efficient, but the 342 disk bytes bear little resemblance to the 
256 data bytes they represent. 

Checksum: 1 byte. This byte is used to help verify that there 
are no errors in the 342 data bytes. 

Epilogue: DE AA. These bytes mark the end of the data field 
and the end of the sector. 

Reading, Writing, and Formatting 

When either reading or writing a sector, DOS must first find 
the correct sector. It calls a read address field routine that 
looks for and reads the next address field to pass under the 
read/write head. DOS then checks the track and sector num
bers from this address field to see if this is the desired sector. 
If it is not, DOS continues to look for the correct one. If it 
can't find the desired sector in a certain amount of time, it 
gives up and returns an error. 

When reading, after DOS finds the right address field, it calls 
a routine to read the data field, which will be passing under 
the read/ write head within a couple hundred microseconds. 

When writing, after finding the correct address field, DOS 
calls a routine to write a new data field over the old one. The 
calls themselves aren't timed exactly, so DOS might begin writ
ing the new data field a few bits earlier or later than the old 
data field. This produces a "glitch" on the disk where writing 
begins, since the new bits aren't in sync with the previous bits 
on the disk. 

Page 81 



Another glitch occurs at the end of the data field, when DOS 
stops writing new information. 

When DOS reads the disk, these glitches often throw the 
hardware out of sync with the bytes on the disk. That's why 
both address and data fields are preceded with sync fields, so 
that the hardware can get back into sync. 

Notice that during normal use, data fields are rewritten, but 
not address fields. When a disk is formatted, both address 
and data fields are written onto the disk. 

In formatting each track, DOS writes a very large initial sync 
field, then the 16 sectors in order from $0 to $F, in one 
revolution of the disk. This "wipes clean" any old information 
that might have been on the track. The data fields written are 
"empty". (When read and decoded, the sectors contain all zero 
bytes.) 

The initial sync field is large enough that the last sector put 
onto the track will overwrite the beginning of the sync field as 
the disk completes one full revolution. 

If the disk is spinning too fast, then the entire initial sync 
field (and possibly part of the first sector) will be overwritten, 
which means the formatting failed. 

If the disk is spinning more slowly than usual, then the 
remaining part of the sync field which was not overwritten 
will be very large. 

When DOS 3.3 begins formatting a disk, it writes and rereads 
the first track a few times, adjusting the sizes of the sync 
fields between each sector (changing the amount of data writ
ten onto the track) so that the remaining initial sync field is 
about the same size as the other sync fields. This certainly 
isn't necessary, but it spaces the sectors around the track a 
little more evenly. 

Before writing a sector, DOS must "pre-nibblize" the 256 data 
bytes into 342 disk bytes to be written. After reading a sector, 

Page 82 



DOS must "post-nibblize" the 342 disk bytes back into 256 
data bytes. Because of the time this takes, the next sector to 
read or write has already passed by before DOS is ready to 
access it. DOS is fast enough, though, to access every other 
sector as it passes under the head. 

To make disk access fast yet simple, DOS "re-maps" the sector 
numbers in memory so that if a program asks for consecutive 
sector numbers, DOS will actually access every other disk sec
tor for speed. The sector numbers asked for by a program (in
cluding the Copy ][ Plus DOS utilities) are called "soft 
sectors". The sector numbers actually stored on the disk are 
called "hard sectors". 

For example, if you access soft sectors $7, $6, $5, and $4 in 
that order, DOS will look on the disk for hard sectors $1, $3, 
$5, and $7. Here is a table for translating between hard and 
soft sectors: 

Soft Sector 
0 
7 
E 
6 
D 
5 
c 
4 
B 
3 
A 
2 
9 
1 
8 
F 

Hard Sector 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

To translate the hard sector number into the actual 4-and-4 
encoded sector number stored in the address field, see 
Appendix E. 

Page 83 



Differences in DOS 3.2 Format 

The original DOS 3.2 disk controller cards could not read 2 
consecutive zeros reliably. Because of this, there are a number 
of differences between DOS 3.3 and 3.2 disks. 

The sync bytes written are 9-bit $FF's under DOS 3.2 (8 one 
bits and a zero bit). The sync fields are generally longer. 

There are fewer possible valid bytes because the restrictions on 
consecutive zeros are greater. 

The address field begins with D5 AA B5. 

The encoding method used in the data field is called "5-and-3 
encoding" and stores the 256 data bytes as 410 valid disk bytes. 

Since the data fields are longer, only 13 sectors will fit on 
each track. The entire disk contains (13 sectors per track * 35 
tracks = ) 455 sectors. 

There is no hard - soft sector translation. The sectors are 
actually stored on the disk in this order: $0, $A, $7, $4, $1, 
$B, $8, $5, $2, $C, $9, $6, $3. 

Page 84 



APPENDIX B: DISK PROfECTION 
SCHEMES 

PROTECTION? 

What makes a disk "protected"? 

In Appendix A, the format of a normal DOS 3.3 or 3.2 sector 
was given. Standard disk copy programs look for this format 
on every track of the disk. If the prologs and epilogs can be 
found in the right places and the checksums match with the 
data, then the Disk Operating System can be "confident" that 
the data itself is correct. This helps to produce a very reliable 
copy. 

The simplest protection schemes simply change this format 
slightly. Since a normal DOS then can't find the byte patterns 
it's looking for, it doesn't know how to make sense of the disk 
data. It gives up and prints an enlightening message such as 
"110 ERROR". In other words, any change from a standard 
disk format, if it was put there to make copying more difficult, 
can be considered a "protection scheme". The sophistication of 
the changes varies greatly. Many protected formats bear no 
resemblance to standard sectors at all. 

There are two possible approaches to copy protection. The first 
is to store the program information on the disk in such a way 
that a bit copier can't reproduce all of it. When you try to 
boot the copy, the program is incomplete and won't run. The 
second approach is to store the program in a reasonably 
normal form, but also put special bytes or patterns which are 
difficult to copy somewhere on the disk. When you boot this, 
the program loads correctly, but then promptly begins by 
checking that the special bytes are still on the disk. If they are 
missing or incorrect, then the program "knows" that this is a 
copy, and will refuse to run. 

Perfection? 

Why can't a bit copy program just copy "everything" on the 
disk? 

Page 85 



There are a few reasons for this. The most pervasive one has 
to do with the fact that on a circular track, there is no defined 
"beginning" or "end". A bit copy program must begin reading 
at some arbitrary point around the track, and then make sense 
of what it reads. After reading two or three revolutions of the 
track into a memory buffer, the bit copy program can find any 
given byte from the track two or three times in the buffer. The 
number of bytes between these identical images is how many 
bytes were on the original track. 

If all drives spun at exactly the same speed, then the bit copier 
could, starting at any byte, write the correct number of track 
bytes onto the duplicate disk. These bytes would exactly fill the 
circular track on the duplicate disk. The last data byte written 
would fall just before the first one on the track. But if the 
duplicate drive spun too fast, then the end of the track image 
would overwrite the beginning, destroying part of the data. If 
the drive spun too slowly, then there would be a gap between 
the beginning and the end. This is unacceptable, since the gap 
or the overlap could end up in the middle of a data area. Disk 
drive speed varies too much (even on a given drive) to copy a 
track this way. 

Most disks are written with first a large sync field, then the 
data area. The end of the data area overlaps part of, but not 
all of, the sync field as the disk completes a full revolution. 
(See Appendix A.) The size of the remaining sync field is 
determined by how fast the drive that made the disk was 
spinning. If a bit copy program can identify the beginning and 
ending of the data area, it can also write a large sync field 
before the data area. The resulting sync field may be a slightly 
different size than on the original, but in most cases that 
doesn't matter. 

Therefore (take a deep breath!), one of the tasks for a bit copy 
program is to identify the start and end of the "useful" data 
area on each track. Then when it writes the track, it can let 
the "sloppiness" caused by varying drive speeds fall outside of 
this data area, where it can hopefully be ignored. Many 
protection schemes involve making it difficult for a bit copy 
program to find the start and end of the track data. 

Page 86 



The first protection schemes involved very simple changes, since 
there weren't any programs yet available that could copy these 
disks. When bit copy programs that could back up these disks 
were developed, more complicated protection schemes were 
invented. New copy programs were released to copy the new 
protection schemes, and new schemes were created to "beat" the 
bit copy programs. This cycle still continues. The following 
descriptions start off with the easier changes and progress to 
some of the state of the art schemes currently in use. 

Changed Address and Data Headers 

As mentioned earlier, standard disk copy programs expect to find 
normal sectors on the disk, with correct prologs, epilogs, check
sums, etc. These header values can also provide clues to a bit copy 
program to help it find the track start and end, since it knows that 
a sync field usually precedes every 05 AA 96 address prolog. 

Since Apple DOS looks for these bytes when reading a sector, 
changing these to new values (e.g. 05 AA 97) will cause any 
normal copy program to fail. Prologs, epilogs, track numbers, and 
checksums have all been changed in various schemes. This was 
one of the first and m9st simple disk protection schemes 
developed, but even today most disks employ this as one of their 
protection methods. 

Changed Sync Bytes 

The first bit copy programs didn't look for address prologs at all. 
Instead, they looked for the large sync $FF fields and determined 
that a track started right after one of these. Soon, many copy
protected disks used both changed address headers and changed 
sync fields. One of the most popular changes was to write sync 
$FE's rather than $FF's. The bit copiers responded by being able 
to recognize a range of values as sync bytes, including both $FE 
and $FF. 

Some disks instead had large gaps of invalid bytes (bytes with 
more than two consecutive zeros), followed by only the minimum 
number of sync bytes required by the hardware. Without familiar 

Page 87 



headers or large sync fields, the bit copy programs had nothing to 
use to reliably determine the start of a track. However, the invalid 
bytes couldn't be important data areas, since they can't even be 
read reliably, and so were probably part of the track-end gap. 
With this knowledge, new bit copy programs were written that 
included subroutines to convert invalid bytes to some known 
value, usually sync bytes. 

About this time, the concept of parameters was introduced to bit 
copy programs. It became obvious that no single set of algorithms 
would be able to automatically handle all types of copy protection. 
The user needed to be able to turn certain routines on or off, and 
to set the operating values for others. 

Synchronized Tracks 

Somebody got clever one rainy day and decided the real way to 
copy-protect a disk was to change nothing that is visible on the 
track, just change the alignment of the information from track to 
track. When DOS formats a disk, the tracks are always written 
with a certain circular alignment, due to the timing consistency of 
the formatting routine. As an example of this alignment, suppose 
a program reads sector 0 from track 0, then immediately steps to 
track 5 (which always takes the same amount of time), then begins 
looking for a sector. The first sector to pass under the head will 
always be sector $C, because sector $C just happens to lie in the 
right place for this to happen. 

Most copy programs and formatting programs all produce different 
alignments, because they spend varying amounts of time on each 
track before stepping to the next track. This usually doesn't hurt 
anything. However, a copy-protected disk can be created with a 
certain fixed alignment, then this alignment can be checked by the 
protected program whenever the disk is booted. If the alignment 
differs, then the program "knows" this is a copy and not the 
original disk, so it refuses to run. 

Bit copy programs began including an option to handle synchro
nized tracks. They copy not only the data, but whatever track 
alignment is on the original disk as well. 

Page 88 



Half Tracks 

This method appeared about the same time as synchronized 
tracks. The Apple disk drive can actually position to 70 different 
tracks, not 35. Unfortunately, the read/write head used in the 
drive is too wide to write complete tracks on every track boun
dary. It would overwrite the information stored on adjacent 
tracks. So DOS actually steps the head twice for every track on 
the disk, giving the familiar 35 tracks. But since it is possible to 
position the head to any of the 70 half-tracks, some disks shift the 
data and start using tracks on half-track boundaries. For example, 
rather than writing information on tracks 0, 1, 2, 3, etc., they 
might use 0, 1.5, 2.5, 3.5, etc. Any possible pattern can be used, as 
long as the increment is at least one whole track. 

There is no easy, foolproof way to determine what half-tracks are 
used by a protected disk. In general, if you try to read (with the 
nibble editor) a track or half-track that was never written to, you 
will see large areas of invalid bytes. If data was written to the half
tracks on either side, you may see a few areas that look like valid 
track data, as the wide read head occasionally picks up these bytes 
from either side. The HI-RES DISK SCAN option can help you 
find the half-tracks containing valid data. (Try using HI-RES 
DISK SCAN on a normal DOS disk, setting the track increment 
to .5 to see the invalid half-tracks along with the valid tracks.) 

Copy ] [ Plus can position the drive head over any half-track, or 
even quarter-track! To do quarter-tracking, the Bit Copy program 
instructs the drive to begin stepping from one half-track to the 
next, then it stops the positioning while the read/ write head is still 
moving. The head is left positioned about halfway between the 
two half-tracks. 

An Extra Track? 

The hardware can (on most drives) write one extra track after the 
last track on the disk. This would be track $23. Since a normal 
copy program doesn't suspect that an extra track exists, it won't 
try to copy it. This is part of the reason bit copy programs such as 
Copy ] [ Plus allow you to specify start and end tracks to copy. 

Page 89 



Bit Insertion 

Remember that sync bytes are bytes written with extra zero bits on 
the end. Groups of sync $FF's are written to ensure that the hard
ware will synchronize to the data on the disk. Well, nothing 
prevents you from putting an extra bit on the end of other bytes, 
as long as the maximum number of consecutive zeros is not 
exceeded. Whenever the program must access the disk frequently 
(for reading data files or other information), this scheme is easy, 
since it doesn't interfere with any DOS routines. This is why so 
much business software uses it. 

Whenever one of these programs is booted, it finds the spot on 
the disk where it knows these special "bit-insertedbytes" should 
be. It then uses a carefully timed routine to determine if the extra 
bits are there. (See Appendix A for the timing between bits and 
bytes.) If not, it knows this is a copy, and refuses to run. 

Earlier bit copy programs could not determine which bytes on the 
disk were sync (9 or 10 bit) bytes. The timing involved in reading 
and storing each byte into memory and checking for sync at the 
same time makes this very difficult. The early copy programs 
instead made "educated guesses" as to where the sync bytes were. 
The more recent versions of Copy ] [ Plus use a more sophisticated 
read routine and can determine sync with a fairly high degree of 
reliability. These bytes appear in the nibble editor as inverse. 

Nibble Counting 

You can adjust the speed of your Apple disk drives. They normally 
run at about 300 rpm (200 milliseconds per revolution), but this 
can vary significantly, even on a single drive. As mentioned earlier, 
this affects the number of bytes that will fit on a track. Some soft
ware publishers take advantage of this fact. When making a 
commercial disk, the duplication program will write a track, then 
re-read it to find out how many bytes (or nibbles- both terms are 
used) are on the track. It then writes this count on the disk some
where. When the disk boots, this count is compared to the actual 
number of bytes on the track and if they are equal (or within a 
specified tolerance), the program will run. However, even very 
small speed variations will affect the number of bytes on a track, 

Page 90 



so it is unlikely that your drives will produce the exact same count 
as the drive which was used to produce the original disk. 

Bit copy programs respond by varying the nibble count somewhat 
without adjusting the drive speed. (The method used is explained 
in Appendix C.) Note that the nibble count naturally comes 
closest if the speed of the duplicate drive closely matches the 
speed of the drive that the disk was originally made on. The speed 
of your original and duplicate drives do not have to exactly match 
each other to do accurate nibble counting. 

Long Tracks 

Some protected programs are written with a large amount of data 
on each track. The drives that make these disks are slowed down 
slightly so that the extra data will fit. If you try to copy the disk 
with a normal-speed duplicate drive, the end of the long track will 
overwrite the beginning, creating an unbootable disk. This is one 
possible cause of an error 5 (write verify error) when backing up a 
disk with Copy ] [ Plus. 

When this protection scheme is used, the best solution is to simply 
adjust your drive to a slightly slower speed so that the track will fit 
on the duplicate disk. Unfortunately, if you leave your drive at a 
slower speed, it may be slightly less reliable when accessing 
"normal-speed" disks (disks that were made on a drive that spins 
at the correct speed). If you have two drives, here is a compromise 
suggestion: Set drive 1 to spin at 200 milliseconds per revolution 
for greatest reliability. Then set 2 to spin at a slower 200.5 to 201.0 
milliseconds, which will help back up protected disks while still 
maintaining good reliability. 

Write-Protect Check 

When you use a disk that has a tab over the write-protect notch, 
this does two things. The electronics in the drive prevent any 
program from writing to the disk, and a "flag" is set which the 
program can check to see if the disk is write-protected. Some 
commercial disks have no notch, and so are permanently write
protected. 

Page 91 



Some protected programs (that have no notch in the disk) check 
the write-protect flag when they are booted. If the flag says "not 
write-protected", then the program knows that this is an ordinary 
notched disk, and must be a copy rather than the original disk. It 
will then hang, or reboot, or ask you to insert the original. (It 
could also trash the data on your backup.) If you put a write
protect tab over the backup before you boot it, then the program 
cannot use this to determine that a copy is running. 

There is no ready way to determine when this protection scheme is 
being used. If you want to be on the safe side, if the original disk 
is write-protected, always put a write-protect tab on your duplicate 
disk before you boot it. If the original is not write-protected, don't 
put a tab on the backup. 

"Non-sync Sync" 

A few protected programs use a pattern of normal 8-bit bytes to 
synchronize the hardware to the disk data. This pattern usually 
has to be fairly long and consist of the proper bytes in order to 
synchronize correctly. If this scheme is used, then 9 and 10 bit 
sync bytes are not needed, making it more difficult for bit copy 
programs to determine the track start and end. 

This covers the main schemes currently in use. It should be noted 
that several disks use combinations of the above schemes just to 
make things more complicated: radically different sector formats, 
with different headers on different tracks, short sync fields or 
almost no sync at all, half-tracks, etc. ad infinitum .... In some 
cases, the combinations form almost a new protection scheme in 
itself. Here is one example: 

Spiral Tracks 

This method combines synchronized tracks with half-tracks to 
store data in an unexpected way. Remember from the discussion 
of half-tracks that the Apple disk read/ write head is too wide to 
write complete tracks on every half-track boundary. But this 
doesn't prevent it from writing a smaller amount of information 

Page 92 



on each half-track Uust a portion of the circular track), as long as 
it won't interfere with the data on adjacent half-tracks. A disk 
with spiral tracks is created by writing about 114 the normal 
amount of information stored on a track, then stepping to the 
next half-track and doing the same. This process is repeated until 
all the information is written to the diskette. Since each track 
portion is short, it never overwrites or interferes with the track 
portion on the half-track before or after it. If you try to copy this 
disk without synchronizing, the half-track images will overwrite 
each other, and the copy will not work. Copying is made even 
trickier because the read/write head on the original drive may pick 
up some information from the adjacent half-tracks, making it 
harder to find the track start and end. 

One technique that helps to copy a disk that uses spiral tracks is to 
read and write on quarter-tracks, between two half-tracks. The 
drive can read the two track portions on either side in one revolution 
of the disk. 

Page 93 



Page 94 



APPENDIX C: ROUTINES 
AND PARAMETERS 

This appendix describes the methods Copy] [Plus uses to copy a 
disk, and how the various parameters affect the copy process. 
Each parameter has both a number and a name. The name pro
vides a quick way to remember what each parameter does. If a 
parameter represents a disk byte value, it can be stored normally 
(for example, $FF) to represent a normal 8-bit byte, or with its 
high bit clear ($7F) to represent a sync byte. If the byte is part of a 
byte pattern to search for in the buffer, a zero value in the 
parameter means "match anything for this byte". 

Bit copying is more complicated than sector copying, and it is 
explained first. 

When bit copying, Copy ] [ Plus begins with the READ A 
TRACK routine. This simply reads bytes from the original drive 
until it fills the buffer. Copy ] [ Plus uses one of two possible read 
routines. It normally uses the routine that checks if each byte is a 
sync (9 or 10 bit) byte as it reads it. However, if you change 
parameter 56 (OLD.READ) from 0 to 1, Copy] [Plus will use the 
old read routine which reads everything as nonsync (8 bit) bytes. 

Every byte read by the drive has its high bit set. If it is a normal 8 
bit byte, Copy ] [ Plus stores it in memory as it was read, with its 
high bit set. If it is a sync byte, Copy ] [ Plus clears the high bit 
(subtracts $80 from the number), and stores this new value in 
memory. When the track buffer is displayed, all numbers with 
their high bit clear are displayed in inverse with the high bit set 
again. For example, a sync $FF from the track is stored in 
memory as a $7F, and is displayed on the screen as an inverse $FF. 
This information is helpful when setting some of parameters dis
cussed below. 

If parameter 9 (CLEAN?) has been changed from 0 to 1, then the 
CLEAN SYNC FIELDS routine is called next. This routine looks 
for the areas between the end of each data field and the beginning 
of the next address field, and between the end of each address 
field and the beginning of the following data field, and sets all 
bytes within these areas to standardized sync (usually sync $FF's; 

Page 95 



the actual value is stored in STAND, parameter 7). To find the end 
of the address or data field, it usually looks for the epilog bytes 
DE AA XX, but these values are from parameters 19, lA, and 1B 
(ADDRESS.END) and can be changed. To find address or data 
start, it matches the first two bytes from either ADDRESS.START 
(parameters E and F) or DATA.START (parameters lC and 1D), 
which usually contain D5 AA. 

If parameter 31 (FIX.INVALID?) is changed from 0 to 1, then 
Copy ] [ Plus next calls the FIX INVALID BYTES routine. This 
routine scans the buffer for occurrences of invalid bytes. These are 
bytes that the hardware cannot read reliably (those with more than 
two consecutive zero bits). It will replace any invalid bytes with 
standardized sync bytes (from STAND, parameter 7). These are 
the bytes it will convert to standard sync: 

81 82 83 84 85 86 87 88 89 8A 
8B 8C 8D 8E 8F 90 91 98 AO AI 
A2 A3 BO Bl B8 CO C1 C2 C3 C4 
C5 C6 C7 C8 DO D1 D8 EO El E2 
E3 E8 FO Fl F8 

In addition, Copy ] [ Plus always looks for $80's in the track 
buffer and changes them to standard sync, whether or not 
parameter 31 is set to 1. 

If then calls the STANDARDIZE SYNC routine, if parameter 8 
(STANDF) has been changed from 0 to 1. This routine looks for 
nonstandard sync fields and changes them to standard sync. It is 
good for cleaning up sync fields that contain a mixture of sync 
bytes, and a few other "stray" values. 

It looks for fields of at least SYNC.# (parameter 6) bytes that have 
been marked as sync by the read routine. The field can contain up 
to GLITCH.SIZ (parameter 32) consecutive bytes that are not 
sync. The bytes are then all converted to standard sync, the value 
contained in parameter 7, STAND. If CHANGE (parameter 33) is 
1, the glitch bytes are also changed; if CHANGE is 0, they're left 
alone. 

The next task of Copy ] [ Plus is to find the start and end of the 

Page 96 



track data. There are three different methods it can use to deter
mine the track start. The methods it uses are controlled by 
parameter 55, FIND.START. If this is set to 3, Copy] [Plus will 
try first by "header". If this fails, then it will try by "sync". Lastly 
it will try by "gap" to find the track start. If parameter 55 is left at 
1, it will first try "sync", then "gap". If set to 2, it will try only "gap". 
When it finds the track start, it will display either "HEADER" 
or "SYNC" or "GAP" in the center window to show you which 
method it used. 

The FIND HEADER routine looks for an address header (part of 
or all of the address field) to determine the track start. It tries to 
find the pattern of bytes from ADDRESS.START up through 
ADDRESS.END (parameters E to lB) in the track buffer. If it can 
match the first MATCH bytes (parameter A), then this is the track 
start. The ADDRESS.START table contains 3 bytes for the 
address prolog, and 8 bytes for the encoded volume, track, sector, 
and checksum. ADDRESS.END immediately follows and con
tains the address epilog bytes. A zero byte in any of these 
parameters will match any value from the track buffer. The FIND 
HEADER routine often requires several parameter changes before 
it can find the track start, since many protected disks use changed 
headers. If no match is found, this routine "fails", and the FIND 
SYNC routine is tried. 

The FIND SYNC routine will attempt to find the track start by 
looking for the largest group of valid sync bytes in the first part of 
the track buffer. The sync field must be at least SYNC.# 
(parameter 6) bytes long. It can contain small glitches of non-sync 
or invalid bytes. The track start is set to the end of this field. Since 
most disks have a large sync field before the track start, this rou
tine will correctly find the track start most of the time. If no valid 
sync fields can be found, this routine "fails", and the FIND GAP 
routine is tried. 

If the track start is found by header or by sync, Copy ] [ Plus then 
must determine the end of the track data. It looks for a duplicate 
image of the track start later in the buffer, then moves back over 
the last sync field or other garbage that may be present. You can 
also instead have it set the track end as a fixed number of bytes 
after the track start. 

Page 97 



Normally, it first skips TRKMIN (parameter 3) pages past the 
track start. It then starts looking for at least EMATCH 
(parameter 50) bytes that match the track start. This is the repeat 
image of the track start later in the buffer. It then backs up over 
any sync field or other garbage that may be at the end of the 
track. The sync field can contain up to GLITCH.SIZ (parameter 
32) consecutive non-sync "glitch" bytes. This point is the track 
end. 

If you want to instead set the track end by cutting the track off a 
certain number of bytes from the track start, change parameter 44 
(CUT?) from 0 to 1. The number of bytes to cut from (the desired 
track length) should be stored as a two-byte number in 
CUT.HIGH (parameter 45) and CUT.LOW (parameter 46). 

The FIND GAP routine tries to determine the track start and end 
by first looking for the largest block of invalid bytes. This is most 
useful when only a portion of a track was written to the disk 
(rather than a full revolution), and part of the track is "blank". A 
blank track reads back as random, usually invalid, data. FIND 
GAP looks for the biggest block of "mostly invalid" data, then sets 
the track start to the beginning of the valid data that follows it. 

If parameter 4F (SDFLTR) is changed from 0 to 1, Copy] [Plus 
adds an extra check as it analyzes the data for track start and end. 
SDFLTR stands for Single Density FiLTeR. This check verifies 
that the data between track start and track end does not contain 
more than 1 consecutive zero in each byte. If it does, Copy ] [ Plus 
continues to look for another track start and end. This check is 
most useful when copying disks that use spiral tracks and contain 
4-and-4 encoded data; it helps keep spurious data in adjacent 
half-tracks from confusing the Bit Copy program. 

If the track data is more than TRKMAX (parameter 2) pages 
long, it assumes the analyze routines failed. If Copy ] [ Plus can
not find the track start using any of the methods selected by 
parameter 55, it re-reads and re-analyzes the track up to EREAD 
(parameter 0) times. If it still cannot find the track start, then a 
READ ERROR occurs. An error number 2 appears in the status 
display, and Copy ] [ Plus simply grabs a block of data from the 
buffer that would be about the correct length for a normal disk, 
and uses this for track start and end. 

Page 98 



If parameter 34 (BIT.FLAG) has been changed from 0 to 1, then 
the BIT INSERT routine is called next. This routine scans through 
the track data looking for a pattern of up to 5 bytes. If this 
pattern is found, the matching bytes in the buffer can be changed 
to either sync or non-sync bytes. This routine can be used when 
the protected program is checking that a certain byte on the track 
is a sync byte. However, note that in nearly all cases, Copy] [Plus 
will correctly identify all sync bytes automatically as it reads the 
track, so the BIT INSERT routine is not needed often. 

The 5 bytes that BIT INSERT tries to match are stored in the 
BITIABLE, parameters 35 through 39. The pattern matching 
ignores the high bits of each byte. The values in the table can have 
their high bits either cleared to 0 or set to 1. This indicates 
whether the bytes should be written as sync or normal bytes. 
When a match is found, the corresponding high bits in the track 
buffer are also set or cleared, which will cause the write routine to 
write them as normal (8 bit) or sync (9 or 10 bit) bytes. Any zero 
values in the BITIABLE will match anything. 

Copy ] [ Plus then calls the WRITE TRACK routine to write the 
track data in memory to the duplicate disk. It starts writing from 
a few bytes before the track start to include the preceding sync 
field (if there is one), and continues to the track end. It writes all 
sync as either 9 or 10 bit bytes, depending on the value of BITS, 
parameter 3E. If BITS is set to 1, 9 bit bytes will be written; if set 
to 2, 10 bit bytes are selected. If the value of parameter 4D, 
ERASE, is 1, then the entire track is erased to sync $FF's before 
the track data is written. If ERASE is changed to 0, or if the track 
increment is less than one, then the track is not erased first. 

It then immediately calls WRITE VERIFY to verify that the track 
just written is correct. This routine simply checks that the track 
start was not overwritten by the track end (track too long). If this 
test fails, Copy] [Plus first calls the TRACK CHOPPING rou
tine. This chops a track that is too long by shortening all the sync 
fields to a length specified in KEEP (parameter 3D). The chopped 
track is rewritten and verified again. If the verify still fails after 
EWRITE (parameter 2) retries, a write verify error (error 5) 
appears in the status display. WRITE VERIFY also fails if there is 
no disk in the duplicate drive. 

Page 99 



If you've answered Yes to the KEEP TRACK LENGTH question, 
or changed parameter 4B (DONIB?) from 0 to 1, Copy] [Plus 
next calls the NIBBLE COUNTING routine. This routine com
putes the number of bytes (nibbles) on the original disk and tries 
to maintain that count on the duplicate disk. It works by convert
ing some of the normal bytes to 9 or 10 bit bytes if there are too 
many bytes on the duplicate disk, or by converting sync bytes to 8 
bit bytes if there are not enough. (This works on the principle that 
by adding bits to some bytes, the bytes take up more space on the 
duplicate track, so fewer of them are needed to fill the track.) It 
calculates the number of bytes to convert based on the current set
ting of BITS (9 or 10 bit sync?), and the difference between the 
length of the original track and the length of the duplicate track. 
The difference is compared to lDLERANCE (parameter 4C) and 
if it is less than or equal to this number, the nibble count succeeds. 
Otherwise, it compares again and rewrites the duplicate track. It 
may take several tries before the nibble count matches. If there is 
more adjustment to do but no more bytes which can be changed, 
a nibble count error (error 6) is displayed for this track. 

If you've answered Yes to the SYNCHRONIZE TRACKS ques
tion or changed parameter D (DOSYNC) from 0 to 1, Copy] [ 
Plus also maintains SYNCHRONIZED TRACKS as it copies. 
This routine makes sure that the information on the duplicate disk 
has the same track-to-track alignment as on the original disk. 
SYNC.TRACK (parameter C) is the reference track to synchronize 
with (usually track 0). SYNC.START (parameters 22 through 2F) 
is a table of bytes to match to find the start of the reference track. 
It currently contains the address field bytes for sector 0. 
SYNC.MATCH (parameter 30) is the number of bytes in the table 
to match. If the SYNC.START bytes cannot be found on the 
reference track, Copy ] [ Plus will spin the disk indefinitely looking 
for them. This will only happen if you're trying to synchronize on 
a nonbootable disk. Press [RESET] to recover. 

If parameter 51 (DYNAM) is changed from 0 to 1, the DYNAMIC 
HEADER CHANGE routine is also used. Some disks change the 
address header for each track on the disk. They usually store the 
new header at the end of the current track. Using this routine, you 
can tell the Bit Copy program where to find the new header and it 
will dynamically update the address header table. 

Page 100 



The new header is found by adding the offset in parameters 52 
and 53 (DYNAM.LOW and DYNAM.HIGH) to the start of the 
track. Parameter A (MATCH) is used to determine the length of 
the header (number of bytes to fill into the header table). 
Parameter 54 (FILL.ORDER) determines whether to fill the 
header table forwards (0) or backwards (1). 

Sector copying is more straightforward than bit copying. The 
sectors from each track are read from the original disk, then for
matted and written onto the duplicate disk. Without any 
parameter changes, normal DOS 3.3 and 3.2 disks can be copied 
reliably. By changing a few parameters, many protected disks can 
also be copied. 

The parameters used in sector copying are very similar to the 
custom patch values that are used in the DOS utilities Sector 
Editor. A good knowledge of address and data field formats helps 
in understanding these parameters. 

When reading, Copy ] [ Plus looks for address prologue bytes that 
match APRO, parameters 57 through 59. The seed value to use 
when calculating the address field checksum is in parameter SA, 
ASEED. Address checksum errors are detected if parameter 5B, 
ACHKF, is nonzero. The first two address epilogue bytes are 
checked against AEPI (parameters 5C and 5E) if AEPIF 
(parameter 60) is nonzero. 

The three data prologue bytes must match DPRO, parameters 61 
through 63. The data checksum seed value is stored in parameter 
64, DSEED. The data field checksum is tested if DCHKF, 
parameter 65, is nonzero. The first two data epilogue bytes must 
match DEPI (parameters 66 and 67) if DEPIF (parameter 6B) is 
nonzero. 

If DOSFLG, parameter 77, is zero, then the sector copier will 
automatically try to copy using DOS 3.2 format first. If this fails, 
then it tries copying using DOS 3.3 format. If DOSFLG is non
zero, it tries only DOS 3.3 format. Note: If you're copying a DOS 
3.3 disk that has its third address prologue byte changed, 
DOSFLG must be nonzero. 

Page 101 



When writing, the three APRO bytes are used for the address pro
logue. The seed value in ASEED is used to determine the address 
checksum. If AEPIF is nonzero, then the 4 epilogue bytes from 
AEPI (parameters 5C through SF) are written. If AEPIF is zero, 
then the address epilogue bytes read from the original disk are 
used instead. 

The three data prologue bytes are used from DPRO. DSEED is 
used as a starting seed value in writing the data field and check
sum. If DEPIF is nonzero, the 5 epilogue bytes from DEPI 
(parameters 66 through 6A) are used. If DEPIF is zero, then the 
data epilogue bytes read from the original disk are used instead. 

During writing, if parameter 76, FNYFLG, is nonzero, then 5 
"funny" sync bytes are written before each address field. These 
bytes help copy some protected disks, including the older PFS ser
ies disks. Rather than writing the last 5 sync $FF's, the five bytes 
from FUNNY (parameters 6C through 70) are written. The num
bers of extra zeros to add to the funny bytes are stored in TIME, 
parameters 71 through 75. 

Page 102 



APPENDIX D: SUMMARY OF 
PARAMETERS 

Here is a summary of all the Bit Copy parameters. The parameter 
number is listed first, followed by the original (or "default") value 
for the parameter, the parameter name we've given, and a brief descrip
tion of what the parameter is for. A few parameter numbers 
are blank. These are parameters that were used in earlier versions 
of Copy ] [ Plus, but are no longer needed. 

Parm 
Num. 

00 

01 

02 

03 

04 
05 

Orig. 
Value 

01 

02 

1A 

1 0 

06 01 

07 7F 

08 00 

Parm 
Name 

EREAD 

EWRITE 

TRKMAX 

TRKMIN 

SYNC.# 

STAND 

STANDF 

Description 

Number of read retries if 
track can't be analyzed. 

Number of write retries if 
write verify fails. 

Maximum track length in 
pages (for error checking). 

Minimum track length in 
pages. 

Minimum number of sync 
to constitute a valid sync 
field for Standardize Sync 
routine. 

Standardized sync value to 
replace with, for Fix Invalid 
Nibbles, Clean Sync Fields, 
and Standardize Sync. 

Use Standardize Sync 
routine? 1 =yes, O=no. 

Page 103 



Parm Orig. Parm 
Num. Value Name Description 

09 00 CLEAN? Use Clean Sync Fields 
routine? l=yes, O=no. 

OA OB MATCH Number of bytes to match 
with ADDRESS.START 
table when finding track 
start by header. 

OB 01 DISPLAY 01 =see track display when 
copying, 02 =enter nibble 
editor each track, 00= no 
display. 

oc 00 SYNC.TRACK Track to synchronize to with 
Synchronize Tracks routine. 

OD 00 DOSYNC Synchronize tracks? 1 =yes, 
0 =no. This is also set by 
SYNCHRONIZE TRACKS 
question. 

OE DS ADDRESS.START Table of bytes to match with 
OF AA when finding track start by 
10 96 header. Zero bytes match 
1 1 00 anything. 
12 00 
13 00 
14 00 
15 AA 
16 AA 
17 00 
18 00 

19 DE ADDRESS.END Bytes to match in Clean 
1 A AA Sync Fields. 
1 B 00 

Page 104 



Parm Orig. Parm 
Num. Value Name Description 

1 c DS DATA.START Bytes to match in Clean 
1 D AA Sync Fields. 
1 E AD 

1 F DE DATA.END Bytes to match in Clean 
20 AA Sync Fields. 
21 00 

22 DS SYNC.START Bytes to match on reference 
23 AA track in Synchronize Tracks. 
24 96 
25 00 
26 00 
27 00 
28 00 
29 AA 
2A AA 
28 00 
2C 00 
2D DE 
2E AA 
2F 00 

30 08 SYNC.MATCH Number of bytes on refer-
ence track to match with 
SYNC.START table in 
Synchronize Tracks routine. 

31 00 FIX. INVALID? Use Fix Invalid Nibbles 
routine? 1 = yes, 0 = no. 

32 02 GLITCH.SIZ Number of consecutive 
non-sync bytes that are 
allowed in a sync field, for 
Standardize Sync routine. 

33 01 CHANGE In Standardize Sync routine, 
convert non-sync bytes to 
sync also? 1 =yes, 0 =no. 

Page 105 



Parm Orig. Parm 
Num. Value Name Description 

34 00 BIT.FLAG Use Bit Insert routine? 
1 =yes, O=no. 

35 DE BIT.TABLE Table of bytes to match with 
36 AA for Bit Insert routine. 
37 68 
38 00 
39 00 

3A 04 END.GLITCH Maximum number of con-
secutive non-sync bytes that 
are allowed in the last sync 
field before track start. 

38 
3C 

3D oc KEEP Number of bytes to shorten 
all sync fields to, in Track 
Chop routine. 

3E 01 BITS Number of zero bits to add 
to all sync bytes when 
writing. 

3F 
40 
41 
42 

43 00 PAGE.OVF Ignore sync fields longer 
than 256 bytes when look-
ing for track start? 1 =yes, 
O=no. 

44 00 CUT? Cut track end off a fixed 
number of bytes from track 
start? 1 =yes, O=no. 

Page 106 



Parm Orig. Parm 
Num. Value Name Description 

45 18 CUT.HIGH High byte: Number of bytes 
to cut from track start. 

46 1 F CUT.LOW Low byte: Number of bytes 
to cut from track start. 

47 

48 01 PRSLOT Printer slot number, for 
printing track buffer or 
parameter entry. 

49 

4A 39 PLINE Number of lines per page to 
print when printing track 
buffer. 

48 00 DONIB? Do nibble counting? 1 =yes, 
0 =no. This is also set by 
KEEP TRACK LENGTH 
question. 

4C 01 TOLERANCE How closely (number of 
bytes) nibble count must 
match. 

40 01 ERASE Erase entire track to sync 
$FF's before writing track 
data? 1 =yes, 0 =no. 

4E 

4F 00 SDFLTR Don't allow track data to 
contain bytes with more 
than 1 consecutive zero? 
(Continue analyzing?) 
1 =yes, O=no. 

Page 107 



Parm Orig. Parm 
Num. Value Name Description 

50 1 0 EMATCH Number of bytes to match 
to find repeat of track start. 

51 00 DYNAM Do Dynamic Header 
Change? 1 =yes, 0 =no. 

52 07 DYNAM.LOW Low byte: number of bytes 
from track start to find new 
header. 

53 08 DYNAM.HIGH High byte: Number of bytes 
from track start to find new 
header. 

54 01 FILL.ORDER Fill in header backwards (1) 
or forwards (0). 

55 01 FIND.START Find track start by (2) just 
gap, (1) sync then gap, (3) 
header then sync then gap. 

56 00 OLD.READ Use old Read Track routine 
that does not detect sync? 
1 =yes, O=no. 

Parameters $57 through $78 are used when sector copying a rlisk. 

57 D5 APRO Address prolog bytes to 
58 AA match. 
59 96 

SA 00 ASEED Checksum seed for address 
field. 

58 FF ACHKF Check for address field 
checksum error? FF =yes, 
OO=no. 

Page 108 



Parm Orig. Parm 
Num. Value Name Description 

5C DE AEPI Wanted address epilog 
50 AA bytes. Match epilog read 
5E EB against first two of these. 
SF FF 

60 FF AEPIF Address epilog flag: Check 
epilogs when reading? Use 
wanted epilog bytes rather 
than read epilog bytes when 
writing? FF=yes, OO=no. 

61 05 DPRO Data prolog bytes to match. 
62 AA 
63 AD 

64 00 DSEED Checksum seed for data 
field. 

65 FF DCHKF Check for data field 
checksum error? FF =yes, 
OO=no. 

66 DE DEPI Wanted data epilog bytes. 
67 AA Match epilog read against 
68 EB first two of these. 
69 FF 
6A FF 

68 FF DEPIF Data epilog flag: Check 
epilogs when reading? Use 
wanted epilog bytes rather 
than read epilog bytes when 
writing? FF=yes, OO=no. 

6C 93 FUNNY Funny sync bytes to write 
60 F3 before address field. 
6E FC 
6F FF 
70 FF 

Page 109 



Parm Orig. Parm 
Num. Value Name Description 

71 02 TIME Number of zero bits to add 
72 02 to each FUNNY byte when 
73 01 writing. 
74 02 
75 02 

76 00 FNYFLG Write FUNNY bytes rather 
than the last 5 sync $FF's 
before each address field? 
FF =yes, 00 =no. 

77 00 DOSFLG Try copying DOS 3.3 only, 
rather than trying DOS 3.2 
first? FF =yes, 00 =no. 

78 (Reserved parameters) 
79 
7A 
7B 
7C 
70 
7E 

FF RESTORE If you access this special 
parameter manually, it 
restores all parameters back 
to their original values. 

Page 110 



APPENDIX E: NUMBER 
CONVERSION TABLES 

The table below lets you convert between decimal, hexadecimal, 
and binary numbers. It also includes the Apple disk 4-and-4 
encoded values for each number. (See Appendix A.) 

A thorough tutorial on number systems is beyond the scope of 
this manual. Suffice it to say that decimal (base 10), hexadecimal 
(base 16), and binary (base 2) simply provide different ways of 
expressing any number. For example, decimal 11 is exactly the 
same as hex $0B and binary 00001011. A single hex digit is called a 
"nibble" or "nybble"; a binary digit is a "bit". Many computer 
concepts and disk values can be expressed more readily using hex 
or binary than with decimal. That's why Copy] [Plus uses hexa
decimal numbers for some values. 

Dec 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Hex 

$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$0A 
$08 
$0C 
$00 
$0E 
$OF 
$10 
$11 
$12 
$13 
$14 
$15 

Binary 

00000000 
00000001 
00000010 
00000011 
00000100 
00000101 
00000110 
00000111 
00001000 
00001001 
00001010 
00001011 
00001100 
00001101 
00001110 
00001111 
00010000 
00010001 
00010010 
00010011 
00010100 
00010101 

4-and-4 

AA AA 
AA AB 
AB AA 
AB AB 
AA AE 
AA AF 
AB AE 
AB AF 
AE AA 
AE AB 
AF AA 
AF AB 
AE AE 
AE AF 
AF AE 
AF AF 
AA BA 
AA BB 
AB BA 
AB BB 
AA BE 
AA BF 

Page Ill 



Dec Hex Binary 4-and-4 

22 $16 00010110 AB BE 
23 $17 00010111 AB BF 
24 $18 00011000 AE BA 
25 $19 00011001 AE BB 
26 $1A 00011010 AF BA 
27 $1B 00011011 AF BB 
28 $1C 00011100 AE BE 
29 $10 00011101 AE BF 
30 $1E 00011110 AF BE 
31 $1F 00011111 AF BF 
32 $20 00100000 BA AA 
33 $21 00100001 BA AB 
34 $22 00100010 BB AA 
35 $23 00100011 BB AB 
36 $24 00100100 BA AE 
37 $25 00100101 BA AF 
38 $26 00100110 BB AE 
39 $27 00100111 BB AF 
40 $28 00101000 BE AA 
41 $29 00101001 BE AB 
42 $2A 00101010 BF AA 
43 $2B 00101011 BF AB 
44 $2C 00101100 BE AE 
45 $20 00101101 BE AF 
46 $2E 00101110 BF AE 
47 $2F 00101111 BF AF 
48 $30 00110000 BA BA 
49 $31 00110001 BA BB 
50 $32 00110010 BB BA 
51 $33 00110011 BB BB 
52 $34 00110100 BA BE 
53 $35 00110101 BA BF 
54 $36 00110110 BB BE 
55 $37 00110111 BB BF 
56 $38 00111000 BE BA 
57 $39 00111001 BE BB 
58 $3A 00111010 BF BA 
59 $3B 00111011 BF BB 
60 $3C 00111100 BE BE 
61 $30 00111101 BE BF 

Page 112 



Dec Hex Binary 4-and-4 

62 $3E 00111110 BF BE 
63 $3F 00111111 BF BF 
64 $40 01000000 AA EA 
65 $41 01000001 AA EB 
66 $42 01000010 AB EA 
67 $43 01000011 AB EB 
68 $44 01000100 AA EE 
69 $45 01000101 AA EF 
70 $46 01000110 AB EE 
71 $47 01000111 AB EF 
72 $48 01001000 AE EA 
73 $49 01001001 AE EB 
74 $4A 01001010 AF EA 
75 $48 01001011 AF EB 
76 $4C 01001100 AE EE 
77 $40 01001101 AE EF 
78 $4E 01001110 AF EE 
79 $4F 01001111 AF EF 
80 $50 01010000 AA FA 
81 $51 01010001 AA FB 
82 $52 01010010 AB FA 
83 $53 01010011 AB FB 
84 $54 01010100 AA FE 
85 $55 01010101 AA FF 
86 $56 01010110 AB FE 
87 $57 01010111 AB FF 
88 $58 01011000 AE FA 
89 $59 01011001 AE FB 
90 $5A 01011010 AF FA 
91 $58 01011011 AF FB 
92 $5C 01011100 AE FE 
93 $50 01011101 AE FF 
94 $5E 01011110 AF FE 
95 $5F 01011111 AF FF 
96 $60 01100000 BA EA 
97 $61 01100001 BA EB 
98 $62 01100010 BB EA 
99 $63 01100011 BB EB 

100 $64 01100100 BA EE 
1 01 $65 01100101 BA EF 

Page 113 



Dec Hex Binary 4-and-4 

102 $66 01100110 BB EE 
103 $67 01100111 BB EF 
104 $68 01101000 BE EA 
1 OS $69 01101001 BE EB 
106 $6A 01101010 BF EA 
107 $6B 01101011 BF EB 
108 $6C 01101100 BE EE 
109 $60 01101101 BE EF 
110 $6E 01101110 BF EE 
1 1 1 $6F 01101111 BF EF 
112 $70 01110000 BA FA 
113 $71 01110001 BA FB 
114 $72 01110010 BB FA 
11 5 $73 01110011 BB FB 
116 $74 01110100 BA FE 
117 $75 01110101 BA FF 
118 $76 01110110 BB FE 
119 $77 01110111 BB FF 
120 $78 01111000 BE FA 
121 $79 01111001 BE FB 
122 $7A 01111010 BF FA 
123 $7B 01111011 BF FB 
124 $7C 01111100 BE FE 
125 $70 01111101 BE FF 
126 $7E 01111110 BF FE 
127 $7F 01111111 BF FF 
128 $80 10000000 EA AA 
129 $81 10000001 EA AB 
130 $82 10000010 EB AA 
131 $83 10000011 EB AB 
132 $84 10000100 EA AE 
133 $85 10000101 EA AF 
134 $86 10000110 EB AE 
135 $87 10000111 EB AF 
136 $88 10001000 EE AA 
137 $89 10001001 EE AB 
138 $8A 10001010 EF AA 
139 $8B 10001011 EF AB 
140 $8C 10001100 EE AE 
141 $80 10001101 EE AF 

Page 114 



Dec Hex Binary 4-and-4 

142 $8E 10001110 EF AE 
143 $8F 10001111 EF AF 
144 $90 10010000 EA BA 
145 $91 10010001 EA BB 
146 $92 10010010 EB BA 
14 7 $93 10010011 EB BB 
148 $94 10010100 EA BE 
149 $95 10010101 EA BF 
150 $96 10010110 EB BE 
1 51 $97 10010111 EB BF 
152 $98 10011000 EE BA 
153 $99 10011001 EE BB 
154 $9A 10111010 EF BA 
155 $9B 10011011 EF BB 
156 $9C 10011100 EE BE 
157 $9D 10011101 EE BF 
158 $9E 10011110 EF BE 
159 $9F 10011111 EF BF 
160 $AO 10100000 FA AA 
161 $A1 10100001 FA AB 
162 $A2 10100010 FB AA 
163 $A3 10100011 FB AB 
164 $A4 10100100 FA AE 
165 $AS 10100101 FA AF 
166 $A6 10100110 FB AE 
167 $A7 10100111 FB AF 
168 $A8 10101000 FE AA 
169 $A9 10101001 FE AB 
170 $AA 10101010 FF AA 
171 $AB 10101011 FF AB 
172 $AC 10101100 FE AE 
173 $AD 10101101 FE AF 
174 $AE 10101110 FF AE 
175 $AF 10101111 FF AF 
176 $BO 10110000 FA BA 
177 $B 1 10110001 FA BB 
178 $B2 10110010 FB BA 
179 $B3 10110011 FB BB 
180 $B4 10110100 FA BE 
181 $BS 10110101 FA BF 

Page 11 5 



Dec Hex Binary 4-and-4 

182 $B6 10110110 FB BE 
183 $B7 10110111 FB BF 
184 $B8 10111000 FE BA 
185 $B9 10111001 FE BB 
186 $BA 10111010 FF BA 
187 $BB 10111011 FF BB 
188 $BC 10111100 FE BE 
189 $BD 10111101 FE BF 
190 $BE 10111110 FF BE 
191 $BF 10111111 FF BF 
192 $CO 11000000 EA EA 
193 $C1 11000001 EA EB 
194 $C2 11000010 EB EA 
195 $C3 11000011 EB EB 
196 $C4 11000100 EA EE 
197 $C5 11000101 EA EF 
198 $C6 11000110 EB EE 
199 $C7 11000111 EB EF 
200 $C8 11001000 EE EA 
201 $C9 11001001 EE EB 
202 $CA 11001010 EF EA 
203 $CB 11001011 EF EB 
204 $CC 11001100 EE EE 
205 $CD 11001101 EE EF 
206 $CE 11001110 EF EE 
207 $CF 11001111 EF EF 
208 $DO 11010000 EA FA 
209 $D1 11010001 EA FB 
210 $D2 11010010 EB FA 
211 $D3 11010011 EB FB 
212 $D4 11010100 EA FE 
213 $D5 10010101 EA FF 
214 $D6 11010110 EB FE 
215 $D7 11010111 EB FF 
216 $D8 11011000 EE FA 
217 $D9 11011001 EE FB 
218 $DA 11011010 EF FA 
219 $DB 11011011 EF FB 
220 $DC 11011100 EE FE 
221 $DD 11011101 EE FF 

Page 116 



Dec Hex Binary 4-and-4 

222 $DE 11011110 EF FE 
223 $DF 11011111 EF FF 
224 $EO 11100000 FA EA 
225 $E1 11100001 FA EB 
226 $E2 11100010 FB EA 
227 $E3 11100011 FB EB 
228 $E4 11100100 FA EE 
229 $E5 11100101 FA EF 
230 $E6 11100110 FB EE 
231 $E7 11100111 FB EF 
232 $E8 11101000 FE EA 
233 $E9 11101001 FE EB 
234 $EA 11101010 FF EA 
235 $EB 11101011 FF EB 
236 $EC 11101100 FE EE 
237 $ED 11101101 FE EF 
238 $EE 11101110 FF EE 
239 $EF 11101111 FF EF 
240 $FO 11110000 FA FA 
241 $ F1 11110001 FA FB 
242 $F2 11110010 FB FA 
243 $F3 11110011 FB FB 
244 $F4 11110100 FA FE 
245 $F5 11110101 FA FF 
246 $F6 11110110 FB FE 
247 $F7 11110111 FB FF 
248 $F8 11111000 FE FA 
249 $F9 11111001 FE FB 
250 $FA 11111010 FF FA 
251 $FB 11111011 FF FB 
252 $FC 11111100 FE FE 
253 $FD 11111101 FE FF 
254 $FE 11111110 FF FE 
255 $FF 1 1 1 1 1 1 1 1 FF FF 

Page 117 





APPENDIX F: OTHER WONDERFUL 
PRODUCTS 

Central Point Software also sells these other software backup and 
disk utility products: 

Wildcard 2 is a hardware backup device for your Apple ] [, 1/e, or 
Apple compatible computer. It works by freezing the program as 
it runs, then saving the entire contents of the Apple's memory 
onto a fast booting disk. The disk will autoload the program back 
into memory and continue execution as if nothing had ever hap
pened. The view and print current screen options will allow you to 
examine or print the contents of the screen when the button was 
pressed. If you have a Grappler or other compatible graphics 
interface card, you can even print graphics screens. 

Copy II PC is the most complete copy program available for the 
IBM Personal Computer. It copies most protected diskettes with 
no parameter changes, and uses all available memory to make 
reliable copies- fast. You can also run popular software such as 
Lotus 1-2-3 and Symphony from your hard disk without inserting 
the original floppy diskette. Copy II PC includes a disk speed test 
to help keep your drives in top running order. For IBM PC, XT, 
AT, 256K jr. 

Copy II Mac is a disk backup and utility package for Macintosh 
computers. Combining all the most needed functions, Copy II 
Mac will let you make archival backups of your protected software 
easily. No parameters are needed. Copy II Mac also includes our 
powerful utility program "MacTools". MacTools can recover 
damaged diskettes and undelete files. It will also display all files 
on a diskette, including invisible files, and will let you make them 
visible again. You can mark any file as protected, unprotected, 
locked, or unlocked. Its block editor shows you what is inside of 
any Macintosh file, and allows you to change it. MacTools can 
even copy some protected programs onto a hard disk. 

Copy II 64 is our new disk copy program for the Commodore 64. 
Copy II 64 makes reliable backups of nearly all copy-protected 
Commodore software. It's fast- it can back up disks in under 3 Vz 

Page 119 



minutes- and it can handle numerous protections schemes 
automatically. 

Important Notice: The backup features of these products are 
provided for the purpose of enabling you to make archival copies 
only. Under the Copyright Law you, as the owner of a copy of a 
computer program, are entitled to make a new copy for archival 
purposes only and these products will enable you to do so. The 
disk copy capabilities are supplied for no other purpose and you 
are not permitted to utilize them for any use other than that speci
fied. By using these products, you agree to be bound by the terms 
of this notice. 

We update our software products (Copy II Plus, Copy II PC, 
Copy II Mac, and Copy II 64) regularly to handle new protec
tions; updates will always be available to you as a registered owner 
for Yz price! Protection schemes do change frequently so it's a 
good idea to doublecheck with us if you need to back up a brand 
new release of one particular program. For more information on 
our products, call or write: 

Central Point Software, Inc. 
9700 SW Capitol Hwy., #100 
Portland, OR 97219 
(503) 244-5782 

Page 120 



NOTES 



CENTRAL POINT 
Software, Inc. 

9700 SW Capitol Hwy., #100 • Portland, OR 97219 • 503/ 244-5782 


	Copy II Plus 5 Manual
	Table of Contents
	Chapter One: Introduction
	Chapter Two: DOS Utilities
	Chapter Three: Bit Copy
	Appendix A: Disks and Disk Hardware
	Appendix B: Disk Protection Schemes
	Appendix C: Routines and Parameters
	Appendix D: Summary of Parameters
	Appendix E: Number Conversion Tables
	Appendix F: Other Wonderful Products
	Notes

