
Apple'" . sos
Reference Manual, Volume 1

I I .y ~ + ~

t
1

r t ,.-+ t + ++ +

+ t- ~ ~

,.+ + t ,. ~

+ t- +r
,. Apple 111

t- t
T

+ SOS Reference Manual

~ + Volume 1: How 50S Works

+ + t +

t +~ + +

t- t- + + + +t
t- + 0

,.+
,. +

t- t- + + + l-
t- t- t+ + + l !

+

+ + +

· Ii SOS Reference Manual •

Acknowledgements
Knuth, Fundamental Algorithms: The Art of Computer Programming, Vol. I, 2/e.@ 1981 .
Reproductiof'l of book cover. Reprinted with permission .

Writer ' Don Reed

Contributions and assistance: Bob Etheredge, Tom Root, Bob Martin, Dick Huston, Steve
Smith, Dirk van Nouhuys, Ralph Bean, Jeff Aronoff , Bryan Stearns, Russ Daniel's, Lynn
Marsh, and Dorothy Pearson

• Contents iii

Contents

Volume 1: HowSOS Works

Figures and Tables xi

Preface xvii

xvii Scope Of This Manual

xviii Using this Manual

xviii About the Examples

xviii Notation and Symbols

xviii Numeric Notation

xix Special Symbols

1 The Abstract Machine 1

2 1.1 About Operating Systems
2 1.1 .1 An Abstract Machine
2 1.1.2 A Resource Manager
3 1.1.3 A Common Foundation for Software
3 1.2 Overview of the Apple III
5 1.2.1 The Interpreter
5 1.2.2 SOS
6 1.2.3 Memory
7 1.2.4 Files
8 1.2.5 Devices
8 1.2.6 The 6502 Instruction Set

9

iv SOS Reference Manual •

2 Programs and Memory

10 2.1 Addressing Modes
10 2.1. 1 Bank-Switched Memory Addressing
13 2.1.2 Enhanced I ndirect Addressing
16 2.2 Execution Environments
17 2.2.1 Zero Page and Stack
18 2.2.2 The Interpreter Environment
19 2.2.3 SOS Kernel Environment
20 2.2.4 SOS Device Driver Environment
22 2.2.5 Environment Summary
23 2.3 Segment Address Notation
25 2.3.1 Memory Calls
27 2.4 Memory Access Techniques
27 2.4.1 Subroutine and Module Addressing
29 2.4.2 Data Access
30 2.4.2.1 Bank-Switched Addressing
31 2.4.2.2 Enhanced Indirect Addressing
32 2.4.3 Address Conversion
33 2.4.3.1 Segment to Bank-Switched
33 2.4.3.2 Segment to Extended
34 2.4.3.3 Extended to Bank-Switched
36 2.4.4 Pointer Manipulation
36 2.4.4.1 Incrementing a Pointer
37 2.4.4.2 Comparing Two Pointers
38 2.4.5 Summary of Address Storage

• Contents v

3 Devices 39

40 3.1 Devices and Drivers
40 3.1.1 Block and Character Devices
40 3.1.2 Physical Devices and Logical Devices
41 3.1.3 Device Drivers and Driver Modules
41 3.1.4 Device Names
43 3.2 The SOS Device System
43 3.3 Device Information
45 3.4 Operations on Devices
46 3.5 Device Calls

4 Files

50 4.1 Character and Block Files
50 4.1 .1 Structure of Character and Block Files
52 4.1 .2 Open and Closed Files
53 4.1.3 Volumes
54 4.1 .3.1 Volume Switching
55 4.1.3.2 Volume Names
56 4.2 The SOS File System
57 4.2.1 Directory Files and Standard Files
58 4.2.2 File Names
59 4.2.3 Path names
61 4.2.4 The Prefix and Partial Pathnames
62 4.3 File and Access Path Information
62 4.3.1 File Information
64 4.3.2 Access Path Information
67 4.3.3 Newline Mode Information
68 4.4 Operations on Files
69 4.5 File Calls

49

- -

75

vi SOS Reference Manual •

5 File Organization on Block Devices

77 5.1 Format of Information on a Volume (SOS 1.2)
78 5.2 Format of Directory Files
79 5.2.1 Pointer Fields
79 5.2.2 Volume Directory Headers
82 5.2.3 Subdirectory Headers
85 5.2.4 File Entries
89 5.2.5 Field Formats in Detail
89 5.2.5.1 The storage_type Field
89 5.2.5.2 The creation and last mod Fields
90 5.2.5.3 The access Attributes
91 5.2.5.4 The file_type Field
91 5.2.6 Reading a Directory File
92 5.3 Storage Formats of Standard Files
92 5.3.1 Growing a Tree File
95 5.3.2 Seedling Files
95 5.3.3 Sapling Files
96 5.3.4 Tree Files
97 5.3.5 Sparse Files
98 5.3.6 Locating a Byte in a Standard File
99 5.4 Chapter Overview

6 Events and Resources 103

104 6.1 Interrupts and Events
108 6.1.1 Arming and Disarming Events
108 6.1.2 The Event Queue
109 6.1.3 The Event Fence
110 6.1.4 Event Handlers
112 6.1.5 Summary of I nterrupts and Events
112 6.2 Resources
112 6.2.1 The Clock
113 6.2.2 The Analog Inputs
114 6.2.3 TERMINATE
114 6.3 Utility Calls

vii • Contents

1177 Interpreters and Modules

118 7.1 Interpreters

119 7.1.1 Structure of an Interpreter

121 7.1 .2 Obtaining Free Memory

125 7.1.3 Event Arming and Response

125 7.2 A Sample Interpreter

131 7.2.1 Complete Sample Listing

143 7.3 Creating Interpreter Files

143 7.4 Assembly-Language Modules

144 7.4 .1 Using Your Own Modules

145 7.4.2 BASIC and Pascal Modules

146 7.4.3 Creating Modules

8 Making SOS Calls 147

148 8.1 Types of SOS Calls
148 8.2 Form of a SOS Call
148 8.2.1 The Call Block
150 8.2.2 The Required Parameter List
152 8.2.3 The Optional Parameter List
154 8.3 Pointer Address Extension
155 8.3.1 Direct Pointers
155 8.3.1.1 Direct Pointers to X-Bank Locations
156 8.3.1.2 Direct Pointers to Current Bank Locations
156 8.3.2 I ndirect Pointers
157 8.3.2.1 I ndirect Pointers with an X-Byte of $00
158 8.3.2.2 Indirect Pointers with an X-Byte Between $80

and $8F

159 8.4 Name Parameters

160 8.5 SOS Call Error Reporting

Index 163

vii

viii SOS Reference Manual •

Volume 2: The 50S Calls

Figures and Tables

Preface ix

9 File Calls and Errors 1

2 9.1 File Calls
53 9.2 File Call Errors

10 Device Calls and Errors 57

58 10.1 Device Calls
71 10.2 Device Call Errors

11 Memory Calls and Errors 73

74 11.1 Memory Calls

88 11.2 Memory Call Errors

12 Utility Calls and Errors 89

90 12.1 Utility Calls

104 12.2 Utility Call Errors

• Contents ix

A SOS Specifications 105

106 Version

106 Classification

106 CPU Architecture

106 System Calls

106 File Management System

107 Device Management System

108 Memory/ Buffer Management System

108 Additional System Functions

109 Interrupt Management System

109 Event Management System

109 System Configuration

109 Standard Device Drivers

B ExerSOS

114 B.1 Using ExerSOS
117 B.2 The Data Buffer
118 B.3 The String Buffer
119 B.4 Leaving ExerSOS

C Makeinterp

D Error Messages

124 D.1 Non-Fatal SOS Errors

126 D.2 Fatal SOS Errors

128 D.3 Bootstrap Errors

113

121

123

131

x SOS Reference Manual 	 •

E 	Data Formats of Assembly-Language
Code Files

132 E.1 Code File Organization

134 E.2 The Segment Dictionary

135 E.3 The Code Part of a Code File

Bibliography 	 141

Index 	 143

Figures and Tables
-+

Volume 1: HowSOS Works

Preface xvii

xix Table 0-1 Numeric Notation

1 The Abstract Machine 1

4 Figure 1-1 The Apple IIIISOS Abstract Machine

2 Programs and Memory 9

11 Figure 2-1
12 Figure 2-2
14 Figure 2-3
14 Figure 2-4
18 Figure 2-5
20 Figure 2-6
21 Figure 2-7
23 Figure 2-8
24 Figure 2-9
36 Figure 2-10

Bank-Switched Memory Addressing
Switching in Another Bank
X-byte Format
Enhanced Indirect Addressing
Interpreter Memory Placement
SOS Kernel Memory Placement
SOS Device Driver Memory Placement
Free Memory
Segment Address Notation
Increment Path

xii SOS Reference Manual

13 Table 2-1 Addresses in Bank-Switched Notation
16 Table 2-2 Extended Addresses
19 Table 2-3 Interpreter Environment
20 Table 2-4 SOS Kernel Environment
21 Table 2-5 SOS Device Driver Environment
22 Table 2-6 Environment Summary
24 Table 2-7 Addresses in Segment Notation
25 Table 2-8 Addresses in Segment Notation, S-Bank

3 Devices 39

42 Figure 3-1 Device Name Syntax

43 Figure 3-2 The SOS Device System

4 Files 49

51 Figure 4-1 Character File Model
51 Figure 4-2 Block File Model
52 Figure 4-3 Open Files
55 Figure 4-4 The SOS Disk Request
57 Figure 4-5 Top-Level Files
58 Figure 4-6 The SOS File System
59 Figure 4-7 File Name Syntax
60 Figure 4-8 Pathname Syntax
61 Figure 4-9 Pathnames
65 Figure 4-10 Automatic Movement of EOF and Mark
66 Figure 4-11 Manual Movement of EOF and Mark

xiii Figures and Tables

5 File Organization on Block Devices 75

77 Figure 5-1 Blocks on a Volume

78 Figure 5-2 Directory File Format

80 Figure 5-3 The Volume Directory Header

83 Figure 5-4 The Subdirectory Header

86 Figure 5-5 The File Entry

90 Figure 5-6 Date and Time Format

90 Figure 5-7 The access Attribute Field

95 Figure 5-8 Structure of a Seedling File

96 Figure 5-9 Structure of a Sapling File

96 Figure 5-10 The Structure of a Tree File

98 Figure 5-11 A Sparse File

99 Figure 5-12 Format of mark

100 Figure 5-13 Disk Organization

102 Figure 5-14 Header and Entry Fields

6 Events and Resources 103

106 Figure 6-1 Queuing An Event
106 Figure 6-2 Handling An Event: Case A
107 Figure 6-3 Handling An Event: Case B
109 Figure 6-4 The Event Queue
110 Figure 6-5 The Event Fence
111 Figure 6-6 System Status during Event Handling

- - -

xiv SOS Reference Manual

7 Interpreters and Modules 117

119 Figure 7-1 Structure of an Interpreter

144 Figure 7-2 Interpreter and Modules

8 Making 50S Calls 147

149 Figure 8-1 SOS Call Block

151 Figure 8-2 The Required Parameter List

153 Figure 8-3 Optional Parameter List

155 Figure 8-4 A Direct Pointer

157 Figure 8-5 An I ndirect Pointer

159 Figure 8-6 Format of a Name Parameter

• 	 Figures and Tables xv

Volume 2: The 50S Calls

Preface 	 ix

x Figure 0-1 Parts of the SOS Call
xi Figure 0-2 TERMINATE Call Block

10 	 Device Calls and Errors 57

60 Figure 10-1 Block Device Status Request $00
60 Figure 10-2 Character Device Status Request $01
61 Figure 10-3 Character Device Status Request $02
64 Figure 10-4 Character Device Control Code $01
64 Figure 10-5 Character Device Control Code $02

E 	 Data Formats of Assembly-Language
Code Files 131

133 Figure E-1 An Assembly-Language Code File
134 Figure E-2 A Segment Dictionary
135 Figure E-3 The Code Part of a Code File
137 Figure E-4 An Assembly-Language Procedure

Attribute Table

xvi SOS Reference Manual •

• Preface xvii

Preface

For your convenience and ease of reference, this manual is divided into
two volumes. Volume 1: How SOS Works describes the operating system
of the Apple III. Volume 2: The SOS Calls defines the individual SOS calls.
l\lotice that the sequence of chapter numbers in Volume 1 continues
unchanged into Volume 2.

Scope of this Manual

This manual describes SOS (pronounced "sauce"), the Sophisticated
Operating System of the Apple III. With the information in this manual
you'll be able to write assembly-language programs that use the full
power of the Apple III.

However, this manual is not a course in assembly-language programming.
It assumes that you can program in assembly language and know the
architecture of the 6502 microprocessor upon which the Apple '" is
based; it will explain how the architecture of the Apple III processor goes
beyond that of the standard 6502. If you need more information on 6502
assembly-language programming, refer to one of the books listed in the
bibliography of this manual.

The companion volume to this manual, the Apple III SOS Device Driver
Writer's Guide, contains the information you may need about me Interface
hardware of the Apple III, and tells how to create device drivers to use that
hardware. If you wish to create custom interface software or hardware for
the Apple '", read the present manual before turning to the Apple III SOS
Device Driver Writer's Guide.

- - - --

xviii SOS Reference Manual 	 •

Using this Manual

Before you begin with this manual, you should prepare yourself by
reading the following :

• 	 the Apple III Owner's Guide introduces you to some of the

fundamental features of the Apple III-features that you will

be exploring more deeply in this manual ;

• 	 the Apple III Standard Device Drivers Manual describes the

workings of the Apple Ill's video screen, keyboard, graphics,

and communications interfaces;

• 	 the Apple III Pascal Program Preparation Tools manual explains
the use of the Apple III Pascal Assembler, which is the only
assembler that works with SOS.

You should also finish reading this preface, to learn about the notation and
examples used in this manual.

About the Examples

Included in this manual are many sample programs and code fragments.
These are intended as demonstrations only. In order to illustrate their
concepts as well as possible, they are written to be clear and concise,
without necessarily being efficient or comprehensive.

Notation and Symbols

Some special symbols and numeric notations are used throughout this
manual.

Numeric Notation

We assume that you are familiar with the hexadecimal (hex) numbering
system. All hexadecimal numbers in the text and tables of this manual are
preceded by a dollar sign ($) . Any number in the text, a table, or
illustration that is not preceded by a dollar sign is a decimal number.

re ace XIX

Program listings from the Apple III Pascal Assembler, however, do not
prefix hex numbers with dollar signs. In such listings, you can distinguish
decimal numbers from hex by the fact that decimal numbers end with a
decimal pOint (.). You can distinguish hex numbers from labels by the fact
that hex numbers always begin with a digit from 0 to 9, and labels always
begin with a letter.

Type Notation in Text Notation in Listings

Decimal 255 255.

Hexadecimal $3A5 3A5

Hexadecimal $BAD1 0BAD1

Label BAD1 BAD1

Table 0-1. Numeric Notation

Additional notations are introduced in Chapter 1.

Special Symbols

Four special symbols are used in this manual to emphasize information
about helpful or unusual features of the system.

This symbol precedes a paragraph that contains especially useful
information.

Watch out! This symbol precedes a paragraph that warns you to
be careful.

Stop! This symbol precedes a paragraph warning you that you
are about to destroy data or harm hardware.

Q This symbol precedes a paragraph that is specific to versions 1.1,
~ 1.2, and 1.3 of SOS. Note especially that, although the symbol

indicates version 1.2, it is also applicable to versions 1.1 and 1.3.

e s rac ac ne

The Abstract Machine

2 1.1 About Operating Systems
2 1.1.1 An Abstract Machine
2 1.1 .2 A Resource Manager
3 1.1.3 A Common Foundation for Software
3 1.2 Overview of the Apple III
5 1.2.1 The Interpreter
5 1.2.2 SOS
6 1.2.3 Memory
7 1.2.4 Files
8 1.2.5 Devices
8 1.2.6 The 6502 Instruction Set

2 SOS Reference Manual

1. 1 About Operating Systems

An operating system is the traffic controller of a computer system. A
well-designed operating system increases the power and usefulness of a
computer in three important ways. First, an operating system establishes
an abstract machine that is defined by its concepts and models, rather
than by the physical attributes of particular hardware. Second, it acts as
a resource manager, to ease the programming task . Finally, it provides
a common foundation for software.

If you are an experienced programmer of small computers,
such as the Apple II, but you have never written large programs
for a machine with an operating system, you should pay
particular attention to this section.

1.1.1 An Abstract Machine

The low-level programming language of a computer is determined
not only by its central processor, but by its operating system as well.
The operating system is thus an essential part of the programming
environment: knowing how it works lets you write programs that use

. the full power of the machine.

Most importantly, the combination of hardware and operating system

software creates an abstract machine that is neither the hardware nor

the operating system, but a synthesis of both . This is the machine you

program.

The major advantage of the abstract-machine concept is that a program
written for the abstract machine is not bound by the current configuration
of the hardware. The operating system can compensate for expansions,
enhancements, or changes in hardware, making these changes invisible
to the programs. Thus programs properly written for an abstract machine
need not be modified to respond to changes or improvements in the
hardware.

1.1.2 A Resource Manager

An operating system also controls the flow of information into, out of,
and within the computer. It provides standard ways to store and retrieve

3 • 	 The Abstract Machine

information on storage devices, communicate with and control
input/output devices, and allocate memory to programs and data. It also
provides certain "housekeeping" functions, such as reading and setting>
the system clock.

The operating system saves you work. You don't have to write your own
procedures for disk-access, communications, or memory-management:
the operating system performs such functions for you .

1. 1.3 A Common Foundation for Software

An operating system also provides a common base on which to build
integrated applications. This, above all, promotes compatibility between
programs and data. If two programs use the same file structure and the
same memory-management techniques, it's much easier to make the
programs work with each other and share data. If all mass storage devices
support a common file structure, it is much easier for a program to expand
its capacity by substituting a larger device.

Any service provided by SOS is provided only by SOS. The ~ continued correct operation of your program under future
versions can be assured only if you use the services provided
and make no attempt to circumvent SOS.

1.2 Overview of the Apple III

The Apple III /SOS Abstract Machine has six principal parts
(see Figure 1-1):

• 	An interpreter, which is the program executed at boot time;

• 	The operating system, SOS;

• 	Memory;

• 	A set of files, for the storage and transfer of information;

• 	A set of devices and drivers, for the communication of
information; and

• 	The 6502 instruction set, with extended addressing capabilities.

All of these rest on a base created by the hardware of the machine.

-

4 SOS Reference Manual •

DRIVERS

,....L--l----L-L---J.--------J-,.- - _-\ SOS

FILE MEMORY
MANAGEMENT MANAGEMENT

6502 BR K IN STRUCTI ON SET

~_________________IN_T_ER_P_R_E_T_E_R______________~--_~---_~US"
MEMORY

Figure 1-1 . The Apple IIII SOS Abstract Machine

The rest of this section describes these parts in brief.

5 • 	 The Abstract Machine

1.2.1 The Interpreter

An interpreter is an assembly-language program that starts automatically
when SOS boots. I nterpreters include the Business BASIC and Pascal
language interpreters, as well as the application program Apple Writer III.

Only one interpreter can reside in the system at a time. An interpreter
is loaded each time the system is booted; the system cannot operate
without an interpreter. In addition, language interpreters such as Pascal
and BASIC allow separate assembly-language routines, called modules,
to be loaded and executed.

An interpreter consists of 6502 assembly-language code, including SOS
calls. The construction and execution of interpreters and modules is
described in Chapter 7.

1.2.2 SOS

SOS is the operating system of the Apple III. It provides a standard
interface between the interpreter and the computer's hardware.
An interpreter communicates with SOS by making subroutine-like
calls to SOS. SOS returns the results of each call to the interpreter.
SOS calls are of four types:

• 	 File management calls read, write, create, and delete files.

• 	 Device management calls read the status of a device or
control the device.

• 	 Utility management calls provide access to the system clock,
joystick, and event fence.

• 	 Memory management calls allocate and deallocate memory for
the interpreter.

SOS also controls all asynchronous operations of the computer, through
the mechanisms of interrupts and events, as described in Chapter 6. An
interrupt from a device is detected by SOS and handled, under the control
of SOS, by an interrupt handler in that device's driver. An event is detected
by a device driver and handled, under the control of SOS, by an event
handler subroutine in the interpreter.

6 SOS Reference Manual •

SOS is always resident in the system and is loaded from the boot disk's
SOS.KERNEL and SOS.DRIVER files when the system is booted . The
SOS.KERNEL file contains that part of the operating system that must
always be present for the Apple III to function and which does not change
from machine to machine: file management, memory management, utility
management. Some device management functions, such as translating
file calls into calls to device drivers, are aliso in the SOS kernel. The Disk III
driver is included in the SOS kernel because the Apple III system always
has a built-i ll Disk III.

The SOS.DRIVER file includes other device management functions.
This file, which is also loaded at boot time, contains the drivers you can
reconfigure or remove. The device drivers provide a way for a specific
dev'ice to support the general concept of a file. For example, you can write
a program to send output to the driver .PRINTER . The program contains
no information about individual printers: it merely tells SOS to print so
many bytes on the printer represented by .PRINTER . The driver
.PRINTER translates the SOS calls into the control codes for the specific
printer it is written for. To use a different printer, you need only configure
a different .PRINTER driver into the operating system .

You can find more information about the standard device drivers
that control the text and graphics displays, the keyboard, and the
communications ports in the Apple III Standard Device Drivers Manual;
information about other drivers is in the manuals for their devices;
information about creating your own device drivers is in the Apple III
SOS Device Driver Writer 's Guide.

1.2.3 Memory

Although the standard addressing space of the 6502 microprocessor is
64K bytes, the Apple III machine architecture and SOS provide efficient
access to a maximum of 512K bytes of memory through the use of two
enhanced addressing modes. These modes are described in Chapter 2.

® Current hardware supports up to 256K bytes.

7 • The Abstract Machine

Several SOS calls create a memory management and allocation system.
An interpreter can cause SOS to find an unused segment of memory, and
return that segment's size and location. SOS keeps track of all allocated
segments, so that a program that uses only SOS-allocated segments
cannot accidentally destroy programs or data used by other parts of
the system.

The memory management system also allows an interpreter to acquire
additional memory. This means that an interpreter need not be restricted
to the use of a specific area of memory, so that the interpreter will run
without modification on machines of different memory sizes: the only
difference will be in performance.

SOS acts as a memory bookkeeper, keeping track of memory allocated
to the interpreter, its modules, and the operating system. This bookkeeper
notes whether memory allocation ever violates the rules (that is, whether
the same memory space is ever allocated to two programs at the same
time); but it does not halt a program that breaks the rules, so the
programmer must exercise care. An executing program has access to
all memory within its own module. Any time it requests additional space,
it should release it as soon as it is not needed.

1.2.4 Files

Files are the principal means of data storage in the Apple III. A file is simply
a standardized means by which information is organized and accessed
on a peripheral device. All programs and data (even the operating system
itself) are stored in files. All devices are represented as files.

The way a file is used is independent of the way the hardware actually
accesses that file. Files can be either on random-access devices (such as
disk drives) or on sequential-access devices (such as communications
interfaces); files on the Apple Ill's built-in disk drive are accessed in exactly
the same manner as files on a large remote hard-disk drive. SOS lets you
perform simple operations on files (such as read, write, rename) that are
actually complex operations on the devices that store your information.

8 SOS Reference Manual 	 •

SOS uses a hierarchical structure of directories and subdirectories to
expedite file access. As described in the Apple III Owner's Guide, related
files can be grouped together in directories and subdirectories, and
special naming conventions make it easier to specify groups of files.

1.2.5 Devices

The Apple III can support a variety of peripheral devices. Some of these
devices are built into the Apple III itself; others must be plugged into
peripheral interface connectors inside the Apple III .

SOS supports operations on two types of devices: block devices and
character devices. Block devices read and write blocks of 512 bytes in
random-access fashion ; character devices read and write single bytes
in sequential-access fashion : both support the concept of a file to which
you read and write single bytes. SOS defines the ways in which you can
control and read the status of both kinds of devices.

1.2.6 The 65@2lnstruction Set

The 6502 is the processor in both the Apple II and the Apple III, but in the
Apple III its power is extended in two ways:

• 	 Additional hardware gives it two enhanced addressing modes,

allowing it to address efficiently far more than 64K bytes

of memory.

• 	 The BRK instruction is used to execute SOS calls. SOS calls can
be thought of as an extension of the 6502 instruction set: that
is, a set of 4-byte 6502 instructions that are emulated in software
by the operating system.

• Programs and Memory 9

Programs and Memory

10 2.1 Addressing Modes
10 2.1.1 Bank-Switched Memory Addressing
13 2.1.2 Enhanced Indirect Addressing
16 2.2 Execution Environments
17 2.2.1 Zero Page and Stack
18 2.2.2 The Interpreter Environment
19 2.2.3 SOS Kernel Environment
20 2.2.4 SOS Device Driver Environment
22 2.2.5 Environment Summary
23 2.3 Segment Address Notation
25 2.3.1 Memory Calls
27 2.4 Memory Access Techniques
27 2.4.1 Subroutine and Module Addressing
29 2.4.2 Data Access
30 2.4.2.1 Bank-Switched Addressing
31 2.4.2.2 Enhanced Indirect Addressing
32 2.4.3 Address Conversion
33 2.4.3.1 Segment to Bank-Switched
33 2.4.3.2 Segment to Extended
34 2.4.3.3 Extended to Bank-Switched
36 2.4.4 Pointer Manipulation
36 2.4.4.1 Incrementing a Pointer
37 2.4.4.2 Comparing Two Pointers

38 2.4.5 Summary of Address Storage

10 SOS Reference Manual 	 •

This chapter describes the methods an interpreter uses to obtain and
manipulate memory. The actual writing and construction of an interpreter
is described in Chapter 7.

2. 1 Addressing Modes

Since the 6502's address bus is only 16 bits wide, it can directly address
only 64K bytes. This is not enough memory for many of the applications
the Apple" I is intended for, so the Apple" I/SOS system has been
designed with new addressing techniques to allow you to efficiently
access up to 512K bytes of memory.

The Apple 1111's memory is subdivided into banks of 32K bytes each. The
architecture of SOS can support up to 16 such banks, or a system with
512K bytes.

~ The current Apple III hardware supports up to eight banks, or
~ 256K bytes.

Certain regions of memory are reserved for use by SOS and its device
drivers; the rest is available for use by an interpreter and its data.

Two methods are used to specify locations in the Apple Ill's memory:

• 	 bank-switched addressing, which specifies locations with a

bank-plus-address form ; and

• 	enhanced indirect addressing, which specifies locations with

a three-byte pointer form.

2.1.1 Bank-Switched Memory Addressing

The bank-switched method is the standard memory-addressing technique
used to execute interpreter code; it can also be used for data access. In
bank-switched ad~ressing (see Figure 2-1) , the 6502's addressing space
is filled by two banks at a time.

__

11 • Programs and Memory

$0000

$2000 ~
bank

$1
1.:1 r-=l
~ ~~

$A000

$FFFF

"~--~v~---'/

switchable current switchable banks
bank address

space

key :

"-1 = current bank

Figure 2-1 . Bank-Switched Memory Addressing

One bank (called the "808 bank", or 8-bank) is always present. This
unswitched bank occupies locations $0000 through $1 FFF and locations
$A000 through $FFFF in the standard 6502 addressing space. The larger
region contains 808. The smaller region contains data areas used by
808, as well as the interpreter's zero page and stack page, described in
section 2.2.1 .

Locations $2000 through $9FFF are occupied by one of up to 15
switchable banks, numbered $0 through $E. Normally, the highest bank in
the system (bank $2 for a 128K system, bank $6 for a 256K system, bank
$E for a 512K system) is switched into this space: this bank contains the
interpreter. But the interpreter can cause any of the other banks to be
switched in, either to execute code or to access data. To switch another
bank into the address space (see Figure 2-2), the interpreter changes the
contents of the bank register (memory location $FFEF), as explained in
section 2.4.1 .

12 SOS Reference Manual 	 •

$0000

$2000 I::-llo:-l
bank
$2

... r-::I
L:j~ ~ $A000

$FFFF

switch able banks current
address
space

switchable banks

key:

1....-.__.....1 = current bank

Figure 2-2. Switching in Another Bank

Locations within the S-bank or the currently selected bank may be
specified by a two-byte address, notated here as four hexadecimal digits:

$nnnn $0000 to $1 FFF S-Bank Address
$2000 to $9FFF Current-Bank Address
$A000 to $FFFF S-Bank Address

where each n is a hexadecimal digit. This address uniquely identifies
any location within the current address space.

Locations in bank-switched memory (all banks but the S-bank) are
specified by their four-digit address, plus the number of the bank they
reside in. The addresses of these locations are in the form:

$b:nnnn 	 $0:2000 to $0:9FFF Bank-Switched
$1 :2000 to $1 :9FFF Addresses

$E:2000 to $E:9FFF

13 • Programs and Memory

where $b is a hexadecimal digit from $0 to $E, and each n is a
hexadecimal digit.

® Addresses in the current bank can be specified with or without
the bank number: that is, in current-bank form or in bank
switched form. The addresses $E:2000 and $2000 are equivalent
if bank $E is switched in.

Note that bank-switched address specifications such as $0:FFDF and
$2:01 FF are not standard: these addresses, being in S-bank space and
unaffected by bank-switching, are normally specified without the bank
number.

Address Specifies

$0:2000 First location in bank 0
$2:9FFF Last location in bank 2
$F:32A4 Invalid: there is no bank $F.
$1:B700 Non-standard: use S-bank specification $B700

Table 2-1. Addresses in Bank-Switched Notation

2.1.2 Enhanced Indirect Addressing

The second memory-addressing method, enhanced indirect addressing,
uses a three-byte extended address to access each memory location.
This method lets a program in one bank access data in other banks.
Enhanced indirect addressing lets any 6502 instruction that allows
indirect (-X or -V) addressing to access data within any pair of adjacent
memory banks. (For example, banks $0 and $1, and banks $1 and $2,
constitute bank pairs.) This addressing method is considerably more
efficient than bank-switching, since the bank register need not be altered
in order to access data in other banks.

Enhanced indirect addressing is used for data access only.
Programs cannot execute in the memory space defined by this
method.

14 SOS Reference Manual •

An extended address specification consists of a two-byte address and
one extension byte, or X-byte, which has no relation to the 6502's X
register. The address is in standard 6502 form (low byte followed by
high byte), and may be from $0000 to $FFFF, with some restrictions
ex p lained late r. The X-byte is of the form shown in Figure 2-3.

B it 7 6 5 4 3 2 0

E unused ~
Figure 2-3. X-byte Format

Bit 7 of the X-byte is the enhanced-addressing bit, or E-bit; bits 0 through
3 are the bank-pair field, or B field. If the E-bit is 0, normal indirect address
ing takes place, using the S-bank and current bank. If the E-bit is 1,
enhanced indirect addressing (see Figure 2-4) takes place, and the B field
determines which of several bank pairs are mapped into the address space.

$0000

S-bank

bank $2000
$0E

bank
$0

$00FF$0000 '"""===:=::::::::j,...

bank
$0

$8000 1------1

bank
$1

$FF00
$FFFF t::==:=1

X-byte = $80

Key:

bank
$1

bank
$2

$A000
empty

S-bank

$FFFF

X-byte = $81 X-byte = $8E X-byte = $8F

'--__---'I =avoid

Figure 2-4. Enhanced Indirect Addressing

The X-byte selects one of up to 16 pairs of banks to fill the 64K memory
space, and the two-byte address selects a specific location within the
bank pair. Extended addresses have this form:

15 • 	 Programs and Memory

$8x:nnnn 	 $80:0100 to $80:FFFF Banks 0 and 1
$81 :0100 to $81 :FFFF Banks 1 and 2

$8m:0100 to $8m:7FFF Bankm
$8F:0000 to $8F:FFFF S-bank and Bank 0

where x and each n are hexadecimal digits, and m is the number of the
highest switchable bank.

Extended address notation differs from bank-switched address notation
in the number of digits before the colon. An extended address begins
with a two-digit X-byte, whose first digit is always $8; a bank-switched
address begins with a one-digit bank number.

The X-byte can range from $80 (banks 0 and 1) to $8m (bank m), where
m is the number of the highest bank: $2 for a 128K system; $6 for a 256K
system; or $E for a 512K system. The highest bank pair is not really a pair:
it ends at $8m:7FFF, and higher addresses will produce undefined results.
The X-byte has a singular value, $8F, which pairs the S-bank with bank $0
(see hand paragraph below).

® Note that the addresses $8n:0000 to $8n:00FF are not accessible
via enhanced indirect addressing. Any reference to these
addresses will give you a location on the currently selected zero
page. To address these locations ($8n:0000 to $8n:00FF) you
can use the equivalent address in the next-lower bank pair: that
is, $8(n-1):8000 to $8(n-1):80FF. (See fourth example below).
This trick does not work for the addresses $80:0000 to $80:00FF:
for these addresses, you can use the equivalent addresses
$8F:2000 to $8F:20FF (see hand, below) .

In addition, the addresses $8n:FF00 through $8n :FFFF should generally
be avoided , as indexing these addresses by the value in the V-register
may cause a carry and produce an address in the range $8n :0000
through $8n:00FF-this address is on the zero page. The locations
$8n:FF00 through $8n:FFFF may be addressed with the equivalent
addresses in the next-higher bank pair: that is, $8(n+1):7F00 through
$8(n+1):7FFF.

16 SOS Reference Manual •

The invalid and risky regions are shown in color in Figure 2-4.

Address Specifies

$80:8000 First location in bank $1
$81:7FFF Last location in bank $1
$03:2215 Not an extended address: X-byte ignored
$81 :002E Invalid: use $80:802E
$81 :FF2E Risky: use $82:7F2E

Table 2-2. Extended Addresses

The X-byte $8F is unique: it causes the S-bank and bank $0 to be
switched into the 6502's address space in their standard bank
switched arrangement. Bank $0 is mapped to the locations
$8F:2000 to $8F:9FFF, so no part of it conflicts with the zero
page. The X-byte $8F is used primarily !by graphics device drivers
to access the graphics area at the bottom of bank $0. (See the
eye paragraph in section 2.4.2.2.)

2.2 Execution Environments

An Apple III program's execution environment defines the state of the
machine while that program is running. The two major programs, SOS
and your interpreter, run in different environments; assembly-language
modules run in an environment much like the interpreter environment;
and device drivers run in part of the SOS environment.

The environment defines the location of the program being executed,
the location and type of memory that program can access, the processor
speed, and the kinds of interrupts the program can handle. (Interrupts are
explained in Chapter 6 and in the Apple III SOS Device Driver Writer's
GUide.) The environment also determines whether and how one program
can communicate with another. The environment also specifies which
zero page and stack the executing program will use, as explained in the
next section.

17 • 	 Programs and Memory

2.2.1 Zero Page and Stack

The 6502 microprocessor reserves the first two pages in memory for
special access. The zero page (locations $0000 through $00FF) is used
by several 6502 addressing modes for indirect addressing and to save
execution time and code space.

But the zero page has only 256 locations, and if both the interpreter and
SOS are trying to save data in that page, it quickly fills up. The Apple III
resolves this contention by allocating separate zero pages to the
interpreter ($1A00 through $1AFF) and SOS ($1800 through $18FF).
Thus when an interpreter accesses a zero-page location (by executing
an instruction followed by a one-byte address), it's accessing an area
of memory completely separate from the zero-page storage of SOS.

Similarly, page one (locations $0100 through $01 FF) is used as a 256
byte push-down stack for temporary data storage and subroutine and
interrupt control. Programs that call many nested subroutines and save
many temporary values on the stack can quickly fill it up. Again, the
Apple III resolves this contention by allocating separate stacks to the
interpreter ($1 B00 through $1 BFF) and to SOS ($0100 through $01 FF) .

Each zero page and stack is accessible from other environments as a
different page in memory. The SOS kernel, for example, can access
locations in the interpreter's zero page by using the addresses $1 A00
through $1AFF.

An interpreter should access only its own zero page and stack.~	An interpreter that writes into the SOS zero page or stack will
generally come to an untimely and untidy end.

18 SOS Reference Manual •

2.2.2 The Interpreter Environment

The interpreter is in the highest switchable bank of memory (bank $n):
for a 128K system, this would be bank $2; for a 256K system, bank $6;
for a 512K system, bank $E. Figure 2-5 shows the interpreter placement

in memory.

interpreter

$0000

DD }$2~::t
bank

$A000

$8800

$FFFF

Figure 2-5. Interpreter Memory Placement

An interpreter shorter than 6K bytes is located entirely in
locations $A000 through $B7FF of the S-bank. An interpreter
longer than 6K ($1800) bytes begins in the highest bank (the
first byte is between $n:$2000 and $n:$9FFF), and ends in the
S-bank (the last byte is at location $B7FF). For example, an
interpreter that is 10K ($2800) bytes 'long in a 128K system would
reside from $2:9400 to $B7FF.

Although the maximum size of an interpreter is 38K ($9800) bytes, we
recommend that interpreters be restricted to 32K ($8000) bytes, for
compatibility with future versions of SOS. A longer interpreter can be
split up into a main unit and one or more separately-loaded modules.

I

• Programs and Memory 19

An interpreter runs at a nominal 2 MHz clock rate. In practice, execution
speed is approximately 1.4 MHz if the Apple Ill's video display is on ;
turning off the video display (using the .CONSOLE driver's CTRL-5
command) raises execution speed to 1.8 MHz. (The remaining 0.2 MHz is
consumed by memory refresh .) An interpreter must be fully interruptable,
so no timing loop in an interpreter will be reliable, except to provide a
guaranteed minimum time.

The interpreter's zero and stack pages, always accessible by normal
zero-page and stack operations, can also be addressed as pages $1 A and
$1 B. Page $16 is used as the extension page for enhanced indirect
addressing (see section 2.1.2).

Environment Attribute SeHing

IRQ Interrupts Enabled
NMllnterrupts Enabled or Disabled
Processor Speed Full speed
Zero Page Page $1A
Stack Page Page $18
Extend Page Page $16
Bank Highest

Table 2-3. Interpreter Environment

Of the above environment attributes, only the bank register
(location $FFEF) should be changed by an interpreter.
Adherence to this rule is essential for correct system operation.

An assembly-language module operates in the same environment as the
interpreter, except that it may reside in a different bank (see section 7.4).
An assembly-language module must share the interpreter's zero page
and stack.

2.2.3 SOS Kernel Environment

The SOS kernel (SOS without its device drivers) resides in the upper
regions of S-bank memory, and uses the lower areas of the S-bank for
data and buffer storage (see Figure 2-6) .

20 SOS Reference Manual •

SOSkernel

interpreter

SOSkernel

$0000

DD }$21::~
bank

$AQ)00

$BS00

$FFFF

Figure 2-6. SOS Kernel Memory Placement

The SOS kernel uses no bank-switched memory.

SOS uses its own zero page and stack (pages $18 and $01 , respectively) .
It can be interrupted by both IRQ and NMI interrupts.

Environment Attribute Setting

IRQ Interrupts Enabled
NMllnterrupts Enabled
Processor Speed Full speed
Zero Page Page $18
Stack Page Page $01
Extend Page Page $14
Bank S-bank

Table 2-4. SOS Kernel Environment

2.2.4 SOS Device Driver Environment

Device drivers are placed directly below the interpreter (that is, in memory
locations with smaller addresses) , in the highest-numbered bank in the
system (see Figure 2-7) . Any drivers that do not fit into that bank are
placed in the next lower bank. beginning at $9FFF and moving down to
lower-numbered addresses.

21 • Programs and Memory

$0000

D ... I----driv------ier

driver

SOS kernel

driver

interpreter

SOS kernel

}
$2~:

bank

$A000

$8800

$FFFF

Figure 2-7. SOS Device Driver Memory Placement

Drivers share the SOS zero page and stack. A driver must reserve space
within itself for all buffers that it uses: it cannot claim any memory outside
itself.

Environment Attribute Setting

IRQ Interrupts Enabled or Disabled
NMllnterrupts Enabled or Disabled
Processor Speed Full Speed or Fixed 1 MHZ
Zero Page Page $18
Stack Page Page $01
Extend Page Page $14
Bank Interpreter's or Lower

Table 2-5. SOS Device Driver Environment

A device driver can alter the execution speed; it can disable interrupts for
up to 500 microseconds to run timing loops: for more information, see the
Apple III SOS Device Driver Writer's Guide.

22 SOS Reference Manual •

2.2.5 Environment Summary

The environment determines what actions a program can perform and
what other programs it can communicate with . The following table
summarizes the capabilities of each environment.

Function

Can perform a SOS call

Can call SOS subroutines

Can be interrupted

Can respond to IRQ

Can respond to NMI
Can disable interrupts

Can detect and queue an event

Can respond to an event*'*

Can access interpreter memory

Can access free memory

Interpreter· Kernel Driver

Yes No No

No Yes Yes

Yes Yes Yes '*

No Yes Yes

No Yes No
No Yes Yes

No Yes Yes

Yes No No

Yes Yes Yes

Yes Yes Yes

• An assembly-language module runs in the same environment as its interpreter.

** A device driver can contain a special section , called an interrupt handler, designed
specifically to handle IRQ interrupts .

••• Events, or software interrupts, are defined in Chapter 6.

Table 2-6. Environment Summary

23 • Programs and Memory

2.3 Segment Address Notation

When an interpreter is loaded into memory, it occupies part of the S-bank
and part of the highest-numbered bank. The region below the interpreter
is occupied by the device drivers; the region below the drivers is free
memory, as shown in Figure 2-8.

SOS kernel

driver

interpreter

SOS kernel

$0000

B
free memory

driver

driver

}~last...
memory bank

$A000

$B800

$FFFF

Figure 2-8. Free Memory

The interpreter has access to its own space. If it needs more memory, it
can gain access to free memory by using the SOS memory calls. These
calls use segment address notation, to define segments of memory for
allocation (see Figure 2-9) . Segment address notation resembles bank
switched address notation, except that it defines addresses of segments,
not bytes, of memory in either the S-bank or a switchable bank. A page is
a group of 256 contiguous bytes with a common high address byte. A
segment is a set of contiguous pages. The lowest page in a segment is
called the base; the highest page is called the limit . Each bank of memory
contains 128 pages, numbered $20 through $9F.

24 SOS Reference Manual 	 •

$0 F:00I
$0 F:1 F . S-bank

$0020[] $01 :20[] $02:20[] []
bank bank bank bank

$0 $1 $2 ••• $E

$009F $019F $02:9F

$10:A0 B

S-bank

$10:FF

Figure 2-9. Segment Address Notation

Each page of memory has a corresponding segment address, which is
very similar to that page's starting address in bank-switched memory.
The format is:

$bb:pp 	 $00:20 to $00:9F Segment
$01 :20 to $01 :9F Addresses

$0E:20 to $0E:9F

where bb is the bank number (one byte) and pp is the page number
(one byte) in that bank. Notice that for segment addresses in bank
switched memory the page part of the segment address is always between
$20 and $9F.

Segment Address Specifies

$01 :30 Page beginning at $01 :3000
$04:62 Page beginning at $04:6200
$00:9F Page beginning at $00:9F00

Table 2-7. Addresses in Segment Notation

A segment address specifies an entire page, not just the first
location in that page. A base segment address and a limit
segment address together specify a segment.

25 • 	 Programs and Memory

Segment addresses can also specify pages in S-bank memory: the format
then is slightly different. For segments in the lower part of the S-bank,
the bank part of the segment address is always $0F; for segment addresses
in the upper part of the S-bank, the bank part of the segment address is
always $10. In either case, the page part (as above) is the same as the
high byte of the memory address.

$bb:pp 	 $0F:00 to $0F :1 F Segment

$10:A0 to $10:FF Addresses

Segment Address 	 Specifies

$0F:14 Page beginning at $1400
$0F:02 Page beginning at $0200
$10:88 Page beginning at $B800

Table 2-8. Addresses in Segment Notation, S-Bank

Before segment addresses can be used by an interpreter, they must be
converted into bank-switched or extended addresses. These conversions
are explained in section 2.4.3. The SOS memory calls that use segment
addresses are explained below.

2.3. 1 Memory Calls

Interpreters use these SOS calls to allocate and release memory.

The name of each call below is followed by its parameters (in boldface) .

The input parameters are directly-passed values. The output parameters

are all directlyJpassed results. The SOS call mechanism is explained

in Chapter 8; the individual calls are described fully in Chapter 11 of

Volume 2.

REQUEST SEG

[base, limit, seg)d: value; seg_ num: result]

This call requests the allocation of the contiguous region of memory

bounded by the base and limit segment addresses. A new segment is

allocated if and only if no other segment currently occupies any part of

the requested region of memory. If a segment is allocated, an entry for

it is made in the segment table.

26 SOS Re erence anua •

FIND SEG

[search_mode, seg_id, pages: value; pages, base, limit, seg_num: result)

This call searches memory from the highest memory address down, until
the first free space of length pages that meets the search restrictions in
search_mode is found. If such a space is found, this free space is allocated
to the caller as a segment (as in REQUEST_ SEG): both the segment
number and the location in memory of the segment are returned. If a
segment with the specified size is not found , then the size of the largest
free segment which meets the given criterion will be returned in pages. In
this case, however, error SEGRQON will be returned, indicating that the
segment was not created.

CHANGE SEG

[seg_num, change_mode, pages: value; pages: result]

This call changes either the base or limit segment address of the specified
segment by adding or releasing the number of pages specified by the
pages parameter. If the requested boundary change overlaps an adjacent
segment or the end of the memory, then the change request is denied,
error SEGRQON is returned, and the maximum allowable page count is
returned in the pages parameter.

GET SEG INFO

[seg_num: value; base, limit, pages, seg_id: result)

This call returns the beginning and ending locations, size in pages, and
identification code of the segment specified by seg_num.

GET SEG NUM

[seg_address; value; seg_num: result]

This call returns the segment number of the segment, if any, that
contains the segment address.

27 • Programs and Memory

RELEASE SEG

[seg_nurn: value]

This call releases the memory occupied by segment seg_nurn by
removing the segment from the segment table. The memory space
formerly occupied by segment seg_nurn can now be allocated to another
program. If seg_ nurn equals zero, then all non-system segments (those
with segment identification codes greater than $0F) will be released .

2.4 Memory Access Techniques

The Apple III augments the eleven addressing modes of the 6502 in two
ways: bank-switching and enhanced indirect addressing. Bank-switched
addressing is used for executing code segments residing in bank
switched memory. Enhanced indirect addressing is used for access to
data in memory. These techniques give your programs efficient access
to all of memory.

In addition, SOS uses segment address notation to allocate free memory
for programs. Segment address notation is reserved for the SOS memory
management calls, which the interpreter uses to obtain and release
memory.

This section discusses the most common modes of access to program
and data storage areas in the Apple III. It shows how the memory
addressing methods introduced in section 2.1 and 2.3 are used in
performing various operations, and how these methods can be used
in a program . It also presents sample algorithms that convert the address
of a location from one form to another.

2.4.1 Subroutine and Module Addressing

The 6502's JMP and JSR instructions affect the flow of control within
an interpreter. As the interpreter resides in the S-bank and the highest
switchable bank, the destination for these instructions is specified in
S-bank or current-bank notation. The JSR and JMP instructions should

28 SOS Reference Manual •

be used in the normal 6502 absolute addressing mode. Here are three
examples of such instructions.

AA401 4C 3A85 JMP 853A

8B801 205022 JSR 2250

23BBI 4C 52B6 JMP 0B652

; Jump to location $853A
; in interpreter

; Jump to subroutine at
; location $2250

; Jump to location $B652,
; in the S-bank

All assembly-language listings in this manual were made with
the Apple III Pascal Assembler. This is the only assembler
supported for the Apple III.

If an interpreter wishes to transfer control to a module residing in another
bank, the normal addressing mode will not work: the interpreter must
switch in the proper bank before performing the JMP or JSR.

® Bank-switching can be performed only by code residing in
S-bank (that is, unswitched) memory. An interpreter that
performs bank-switching should use a single dispatching
routine, located between locations $A000 and $B7FF in the
S-bank, for all bank-switching.

The interpreter switches in a given bank by storing the number of the bank
in the bank register (location $FFEF). Once this is done, the JMP or JSR
instruction can be executed normally. Here's a valid jump:

00001 FFEF BREG

A0501 A901
A0521 80 EFFF
A0551 4C 6B32

Here's a jump into oblivion:

0000[FFEF BREG

88401 A902
8842180 EFFF
88451 4C 4440

.EQU 0FFEF

LOA #01
STA BREG
JMP 326B

.EQU 0FFEF

LOA #00
STA 8REG
JMP 4044

; Define bank register

; Jump to location $1 :326B

; Define bank register

;This program will crash,
; as it is not located
; in the S-bank.

29 • Programs and Memory

The module, once switched-in, can use current-bank addresses to
jump around inside itself, and can JMP or RTS back to the part of the
interpreter in S-bank memory, without bank-switching. The interpreter
must, however, switch the highest bank back in before any interpreter
code below S-bank memory can be executed. To do this the interpreter
must save its own bank number before calling the module. The interpreter
can read the contents of the bank register to find the number of its bank,
then call a module and, upon returning, restore the proper bank. The
following subroutine demonstrates how an interpreter would call a
module located at $1 :3300.

00001 FFEF BREG .EQU 0FFEF ; Define bank register

A7001 AD EFFF LOA BREG ; Get the current bank
A703 1 48 PHA ; Save it on the stack
A704 1 A901 LOA #01 ; Switch in
A70618D EFFF STA BREG , bank $1
A7091 20 0033 JSR 3300 ; Call the module
A70C168 PLA ; Upon return, restore
A70DI8D EFFF STA BREG , the bank number.
A710160 RTS ; Return to main code.

~ Only the lower four bits of the bank register contain the current bank
~ number; the upper four bits should be zero.

2.4.2 Data Access

An interpreter can access data in three places:

• In the interpreter's zero page;

• I n a table within the interpreter itself;

• In a segment allocated from free memory.

Data can be accessed in locations $0000 through $00FF, the interpreter's
zero page, by instructions in absolute, zero-page, or zero-page indexed
mode. For example,

6BA71 A554 LOA 54 ; Value on zero page

747FI8D E300 STA 00E3 ; Also on zero page

00001

30 SOS Reference Manual •

To access data in a table within itself, the interpreter must use the
absolute address of the table (in current-bank or S-bank notation) in
absolute or indexed addressing mode.

70751CD 9BAB CMP 0AB9B ; Compare location $AB9B
; to accumulator

58501 BO 5022 LOA 2250,X ; Load accumulator from
; byte $2250 +X

Data in free memory can be accessed by an interpreter in two ways: by
bank-switching or by enhanced indirect addressing. All data used by an
interpreter must be stored in SOS-allocated segments (see section 11 .1 of
Volume 2) . To begin storing data in free memory, an interpreter must first
request a segment of free memory from SOS, using a REQUEST _ SEG or
FIND_ SEG call. SOS will return a segment address, which the interpreter
can change into an address more suitable for data access. Conversion
algorithms are described in section 2.4.3.

2.4.2.1 Bank-Switched Addressing

Bank-switching for data access operates just like bank-switching for
module execution (described in section 2.4.1). To perform an operation
on location $b:nnnn, store $b in the bank register and perform the
operation on absolute location $nnnn. For instance,

00001 FFEF BREG..EQU 0FFEF ; Define bank register

.ORG 0A3AA ; Code starts here

A3AAI AD EFFF LOA BREG ; Save current bank register
A3AOl48 PHA

A3AEI A000 LOY #00 ; Perform a loop to
A3B01 8C EFFF STY BREG ; zero all locations
A3B3198 TYA ; from $0:9800 to
A3B41 990098 LOOP STA 9800,Y ; $0:98FF.
A3B71C8 INY
A3B81 00 FB BNE LOOP

A3BAI68 PLA ; Store bank register
A3BB 1 80 EFFF STA BREG

31 • Programs and Memory

Just as in module execution, the code to perform bank-switched data
access must reside in the part of the interpreter that is located in S-bank
memory, and you must remember to restore the original contents of the
bank register before returning to the main part of the interpreter.

2.4.2.2 Enhanced Indirect Addressing

Enhanced indirect addressing allows an interpreter to access any location
in bank-switched memory without having to switch in the proper bank
and then switch back. Any 6502 instruction that supports indirect-X or
indirect-Y addressing (ADG, AND, GMP, EOR, LOA, ORA, SBG, STA) can
use enhanced indirect addressing.

To perform a normal (not enhanced) indirect operation on location
$hilo, you store $10 in a location $nn on zero page, and store $hi in the
following location. You must also store $00 in location $nn+1 of the
X-page: the $00 turns off extended addressing. Then you perform the
operation in an indirect mode on location $nn . The two bytes at $nn
are a pointer: you can increment, decrement, and test them to move the
pointer through your data structure.

Enhanced indirect addressing merely adds one step to this process. To
perform an enhanced indirect addressing operation, in the interpreter
environment, on location $xx:hilo , you store $10 in $nn , $hi in $nn+1,
and $xx in location $16nn+1. Then perform the operation in an indirect
mode on location $nn. The location $16nn+1 is the extension byte, or
X-byte , of the pointer.

Enhanced indirect addressing takes effect whenever you execute an
indirect-mode instruction and bit 7 of the pointer's extension byte (X-byte)
is 1: that is, whenever the extension byte is between $80 and $8F. If you
wish to perform normal indirect operations, using bank-switched
addressing rather than enhanced indirect addressing, you should store
your pointer in bank-switched form in the zero page, and set its extension
byte to $00, which will make sure bit 7 is 0. For instance,

32 SOS Reference Manual •

61EEIA989 LOA #89 ; Perform a LOA $82:3289 :
61 F01 8557 STA 57 ; To set up, first put
61F21 A932 LOA #32 , $Iohi in zero page
61F418558 STA 58 locations $57 and $58;

61 F61 A982 LDA #82 ; then put $xx into
61F81805816 STA 1658 , location $1658.

61FBI A000 LOY #00 ; Index by 0.
61 FOI B1 57 LOA (57),Y ; Perform the operation .

Once the three bytes are stored, you can manipulate them almost as
easily as a two-byte pointer, and you can use one pointer to access data
in al115 switchable banks (a total of 480K). This makes it easy to handle
large data structures.

® Remember that enhanced indirect addressing is different from
bank-switched addressing. For a description of the two
methods, see section 2.1.

If you are using the enhanced indirect-Y addressing mode and
are using the V-register to index from an extended address, we
strongly recommend that you avoid using addresses $8n:FF00
through $8n:FFFF. Adding a Y value to one of these addresses
may cause a carry and create an address in the range $8n :0000
through $8n:00FF, which will access a location on the zero
page. If you keep your pointer below $8n :FF00 whenever you
are using a non-zero Y register in the enhanced indirect-Y
addressing mode, you will avoid this problem.

2.4.3 Address Conversion

Most interpreters deal mainly with addresses in segment and extended
form : bank-switched addresses are used only when an interpreter must
execute code in a different bank. But bank-switched addresses are a
convenient intermediate form between segment and extended addresses:
they can be readily converted to either of the other forms.

The following algorithms describe the basic conversions between
addresses in segment, bank-switched, and extended forms.

33 • Programs and Memory

2.4.3.1 Segment to Bank-Switched

A segment address specifies a page in bank-switched memory.
When you convert a segment address to a bank-switched
address, the result is the address of the first byte in that page.

To convert a segment address $bb:pp to a bank-switched address
$B:NNNN,

if (bb = 0F) or (bb = 10)

then B :=0

else B:= bb;

NNNN:= pp00

For example, the following segment and bank-switched

addresses are equivalent.

Segment Bank-Switched

$04:63 $(4) :(6300) $4:6300

$07:89 $(7) :(8900) $7:8900

$10:1 F $(0) :(1 F00) $0:1 F00

The bank part, bb, of the segment address is converted to $0 if it indicates
the S-bank, or truncated if it indicates any other bank. It then becomes
the bank part of the bank-switched result. The page part, pp, of the
segment address becomes the high part of the bank-switched address,
and the low part is set to $00.

2.4.3.2 Segment to Extended

When converting to extended form, you must be careful to make
sure that the result is in the valid range of extended addresses. You
must also handle the special cases of S-bank segment addresses
and the segment address $00:20.

34 SOS Reference Manual •

To convert a segment address $bb:pp into an extended address
$XX:NNNN,

if ((bb = $00) (zero bank)
or (bb = $0F) (low S-bank}
or (bb = $10)) {high S-bank)

then
begin

XX := $8F ;

NNNN := pp00

end

else {general case)

begin

XX := $80+bb-1 ,

NNNN := pp00+$6000

end;

For example, the following segment and extended addresses are
equivalent:

Segment Extended

$09:2A $(80+9-1):(2A00+6000) $88:8A00
$02:94 $(80+2-1):(9400+6000) $81 :FF00
$0F:1 E $(8F):(1 E00) $8F:1 E00

If the segment address specifies a page in S-bank memory, the bb part is
ignored, and the pp part is converted to the address of the beginning of a
page in the S-bank/bank 0 pair of the enhanced indirect addressing space.

If the segment address is in bank-switched memory, the bb part is
converted to the xx byte that selects a bank pair with the specified bank
in the top half of the pair. The pp part is then converted to the address of
the beginning of the proper page in that bank pair.

2.4.3.3 Extended to Bank-Switched

When changing an extended address to bank-switched form, you must
handle the special case of an S-bank extended address. You must also
determine whether the extended address points to a location within the
upper or lower bank in its bank pair.

35 • Programs and Memory

To convert an extended address $xx:nnnn to a bank-switched
address $B:NNNN,

if (xx = $8F) then
begin

B := $0
NNNN := nnnn

end
else

if (nnnn < $8000) then
begin

B := xx-$80
NNNN := nnnn+ $2000

end
else

begin
B := xx-$80+1
NNNN := nnnn-$6000

end;

For example, the following extended and bank-switched addresses
are equivalent:

Extended Bank-switched

$86:4365 $(86-80) :(4365+2000 $6:6365
$82:EFB4 $(82-7F) :(EFB4-6000) $3:8FB4
$8F:2000 $($0): (2000) $0:2000

If the extended address refers to a location in the S-bank, the bank part of
the bank-switched address is set to $0 and the address part is used
directly.

If the extended address refers to bank-switched memory, then the xx part
specifies a bank pair. If the address part is less than $8000, the extended
address refers to a location in the lower bank in the pair; otherwise, it
refers to a location in the upper bank. The bank part is set to the bank
number, and the address part is adjusted to the proper location within
the specified bank.

36 SOS Reference Manual •

2.4.4 Pointer Manipulation

Most data structures you use are accessed by three-byte pointers in
extended-address form. The preceding section described how to create
an extended-address pointer from a segment address; this section
describes how to increment and test such a pointer.

® These algorithms are designed for ease of explanation, not for efficiency.
They work, but are not intended to be incorporated verbatim into real
applications.

2.4.4.1 Incrementing a Pointer

An increment operation defines successive values of a pointer, and thus
traces a path through successive locations in memory (see Figure 2-10).
This path covers all switchable banks, but omits the S-bank. The path
traced by the algorithm below begins at the first location in bank 0,
extended address $8F:2000. It continues through the first page in this
bank, then proceeds to the second page in the same bank with the
extended address $80:0100. This path is chosen to avoid the invalid
address range $80:0000 to $80:00FF.

$FEFF 1;---'---;

$0000

+

$0000

$0100

$2000
$2FFF

$7F00

$8000
$A000

$FFFF $FFFF

$0000------,

$0100

$7F00
$8000 1----\- ---\

$ FEFF 1-----'_---\
$FFFF '--__---'

$0100

••• $7F00

$0000------,

$8000 I----jf-----\

$FEFF 1----''-----\
$FFFF '--__---'

X-byte = $8F X-byte = $80 X-byte = $81 X-byte = $80

Figure 2-10. Increment Path

The path then continues through the last location in bank 1, extended
address $80:FFFF. The path switches to the next bank pair and continues

37 • Programs and Memory

with the first location in bank 2, $81 :8000. The path continues in this
manner to the last location in the last bank in memory, at which point
it terminates.

The following algorithm increments an extended address $xx:nnnn .

repeat

nnnn := nnnn +1 [Move to next location.

if (xx = $8F) and (nnnn > $20FF)
then begin

xx := $80 ; {If beyond location $8F:2100,)
nnnn : = nnnn-$2000 [move to location $80:0100)

end;

if (nnnn > $FEFF) [If near end of a bank pair,
then begin

nnnn := nnnn-$8000 {switch to middle
xx := xx + 1 {of next bank pair.

end;
until xx> $80; [If no next pair, then stop.

Notice how this algorithm switches from one bank to the next when
its address part reaches $FF00. This is to prevent the pointer from
ever taking a value between $8n:FF00 and $8n:FFFF, which can
cause problems when used in an instruction in the indirect-Y
addressing mode.

2.4.4.2 Comparing Two Pointers

Two pointers can be considered equal under three conditions. When
you compare two pointers for equality, you must test all three
conditions.

You can reduce the number of tests by comparing tile two extension

bytes first, then ordering the two numbers according to their
extension bytes if they are unequal.

The following algorithm compares $xx:nnnn to $XX:NNNN for
equality, assuming that xx <=XX.

--

38 SOS Reference Manual 	 •

if (((xx = xx) and (nnnn = NNNN) (1J
or ((xx = XX-i) and (XX <> $8F) and (nnnn = NNNN + $8000) (2J
or ((xx =$00) and (XX = $8F) and (nnnn =NNNN - $2000)) (3J

then equal : = true

The three condi tions are as follows:

{1 J The two pointers are expressed identically;

{2J 	 The two pointers are expressed in terms of adjacent bank pairs;

(3) 	The first pointer is expressed in bank-switched form, and the second
is expressed in extended form.

Note that without the preliminary sorting of the two pointers according
to their extension bytes, two more cases (a total of 8 more byte
comparisons) are necessary to test for equality.

2.4.5 Summary of Address Storage

Addresses in the three forms given above are stored in memory in
these ways:

• 	S-bank and current bank addresses are stored in normal 6502
style: as two consecutive bytes, low byte followed by high byte.
Heed the warnings on bank-switched addressing given in section
2.4.1.

• 	 Segment addresses point to pages and are stored as two

consecutive bytes , bank part followed by page part.

• 	 Extended addresses are stored in the zero page and X-page The
address is stored in the zero page as two consecutive bytes, low
byte followed by high byte. The X-byte is stored in the X-page
(page $0F:16, in the interpreter environment) at the byte position
parallel to the high byte of the address in zero page. An extended
address is referred to by the location of the low byte of the
address part: for instance, the pointer at location $0050 has its
low part at $0050, high part at $0051, and X-byte at $1651 (in
the interpreter environment).

• Devices 39

Devices 1

40 3.1 Devices and Drivers
40 3.1.1 Block and Character Devices
40 3.1.2 Physical Devices and Logical Devices
41 3.1.3 Device Drivers and Driver Modules
41 3.1.4 Device Names
43 3.2 The SOS Device System
43 3.3 Device Information
45 3.4 Operations on Devices
46 3.5 Device Calls

-- -

40 SOS Reference Manual •

3.1 Devices and Drivers

A device is a part of the Apple III, or a piece of external equipment, that
can transfer information into or out of the Apple Il k Devices include the
keyboard and screen, disk drives, and printers.

Devices provide the foundation upon which the SOS file system is
constructed. In general , your program will talk to devices only through
the SOS file system.

3. 1. 1 Block and Character Devices

SOS recognizes two kinds of devices: character devices and block
devices. A character device reads or writes a stream of characters, one
character at a time: it can neither skip characters nor go back to a
previous character. A character device is usually used to get information
to and from the outside world: it can be an input device, an output device,
or an input/output device. The console (screen and keyboard) , serial
interface, and printer are all character devices.

A block device reads and writes blocks of 512 characters at a time; it can
access any given block on demand. A block device is usually used to
store and retrieve information: it is always an input/output device. Disk
drives are block devices.

3.1.2 Physical Devices and Logical Devices

A physical device is a physically distinct piece of hardware: if an external
device, it usually has its own box. A logical device is what SOS and the
interpreter regard as a device: it has a name. For example, the keyboard
and the screen are separate physical devices; but SOS regards them
as one logical device-the console. On the other hand, if a disk drive
contained two disks, each could be a separate logical device.

41 • Devices

3.1.3 Device Drivers and Driver Modules

Programs called device drivers provide the communication link between
the SOS kernel and input/output devices: they take the streams of
characters coming from SOS and convert them to physical actions of the
device, or convert device actions into streams of characters for SOS to
process. Device drivers for the standard Apple III devices are included in
the SOS.DRIVER file: you can change or delete these, or add new ones,
by using the System Configuration Program (SCP) option on the Utilities
disk , as explained in the Apple III Owner's Guide and the Apple III
Standard Device Drivers Manual.

The Disk III driver is included in the SOS.KERNEL file. It cannot
be removed or changed by the user, except to specify the number
of drives in the system.

Each logical device connected to the system has its own device driver:
SOS can access the logical device through its driver. Related device
drivers, such as drivers for separate logical devices on one physical
device, can be grouped into a driver module. The drivers in a module can
share code or system resources, such as interrupt lines. A driver module
must be configured into the system as a package: unneeded drivers
cannot be deleted from it. Each driver in the module is named separately.

® The 50S kernel and the interpreter only deal with logical devices
and their drivers. Whether the logical device is one physical
device, several physical devices, or part of a physical device, is
academic to the interpreter writer: ,it ,is only necessary to know
that all three cases are possible. Similarly, SOS and the interpreter
communicate with a device driver in precisely the same way
whether or not the driver is part of a driver module.

3. 1.4 Device Names

A logical device and its driver are both identified by a device name.

If a driver module has several drivers, each has a different device name,

by which it can be separately addressed. The driver module itself has

no name, as it is never addressed as such. (The SCP refers to a module

by the name of the first driver in it.)

- - - -

42 SOS Reference Manual •

A device name is up to 15 characters long: the first is a period; the second
is a letter; the rest can be either letters or digits, in any combination (see
Figure 3-1).

----0 letter

letter

digit

Figure 3-1. Device Name Syntax

Some legal device names are

.01

.PRINTER

.BLOCKDEVICE

Some illegal device names are

PRINTER (the first character is not a period)
.BLOCK.DEVICE (only the first character can be a period)
.BLOCK DEVICE (a device name cannot contain a space)
.BLOCK/ DEVICE (a device name cannot contain a /)

A logical block device also has a volume name, discussed in section
4.1.3.2, which is the name of the medium (for example, a flexible disk) in
the device. In general, the volume name, rather than the device name,
should be used for communicating with the device.

- -

43 • Devices

3.2 The SOS Device System

Since SOS accesses all devices through their drivers, the devices can be
organized as a single-level tree, as illustrated by Figure 3-2):

character
device

character
device

Figure 3-2. The SOS Device System

This system of devices underlies the system of files that will be developed
in the next chapter.

3.3 Device Information

Certain information about a logical device and its driver is stored in
the driver's Device Information Block (DIB) , which is broken into the
DIB header and the DIB configuration block. The header contains
information that SOS uses to distinguish between block and character
devices and between devices in each class. It can be read by the
GET_DEV_NUM and D_INFO calls, but cannot be changed. The
configuration block contains data that can be changed by the SCP, such
as the baud rate of a device. The size and contents of the configuration
block differ for each device. Some information in the DIB header can be
used only by SOS; the information that can be read by the interpreter is
described below.

dey name and dey nurn

A device name is up to 15 characters long: the first is a period; the second
is a letter; the rest can be either letters or digits, in any combination. The
device name can be changed only by the SCP.

- -

44 SOS Reference Manual •

Linked with every device name is one and only one device number.
Access to information in the DIBis usually gained via the device
number, which can be obtained from the device name through the
GET_ DEV_NUM call. Access to data stored or transmitted by a device
is gained via the device name by accessing a similarly-named file, as
explained in Chapter 4.

slot nurn and unit nurn

A device can use an interface card plugged into one of the four peripheral
interface connectors (called slots) inside the Apple III : such devices have
a slot number, which indicates which of the four slots the card is plugged
into. A device that does not use an interface card has a slot number of zero.

Related device drivers can be grouped into a driver module: each such
driver has a unit number that indicates the placement of that driver, and
its device, in its group. Each driver in a driver module has a separate DIB,
but the drivers may share code. For example, the formatter drivers on the
Utilities disk have separate DIBs but share the same code: they can be
called separately via their unit numbers.

~ The SOS unit number has nothing to do with the logical unit
~ number that the Apple III Pascal System assigns to devices.

For more information about the internal operation of devices, see the
Apple III SOS Device Driver Writer's Guide.

dey _type and sub_type

Apple assigns two identifiers to each device indicat ing the device's
functions. The device type lets you determine whether a given device
is a printer, a communications interface, a storage device, a graphics
device, or whatever; the device subtype distinguishes between devices
of the same type (to separate letter-quality printers from line printers,
for example) .

An interpreter that wishes to communicate with a certain type of device,
but does not know the name or number of a device of that type, can
examine these identifiers to find a suitable device.

- -

45 • 	 Devices

manuf id and version num

Apple assigns two identifiers to each device and device driver: one to
identify the manufacturer of the device and driver, and one to indicate
their version number. An interpreter can use these identifiers to ensure
compatibility with different versions of the same device.

total blocks

This field indicates the total number of blocks on a block device.

If you wish a dev_type, sub_type, manuUd, orversion_num to be
assigned to a device and driver, contact the Apple Computer
pes Division Product Support Department This will ensure that
the identifiers of each device and driver are unique and are
available to interpreter-writers.

3.4 Operations on Devices

An interpreter can perform these operations on any device:

• 	 Find the device number associated with a given device name,
using a GET _ DEV_ NUM call, or find the device name associated
with a given device number, using aD_ INFO call;

• 	 Obtain the slot number, unit number, device type, device subtype,
manufacturer's identification, and version number of a device,
using aD_INFO call.

An interpreter can perform these operations on a character
device:

• Receive device status information, using a D _STATUS call;

• Send device control information, using a 0 CONTROL call.

-

46 SOS Reference Manual 	 •

Using the System Configuration Program, you can

• 	 Add a new device to the system;

• 	 Remove a device from the system;

• 	 Alter the configuration block of a device;

• 	 Change the name, device type or subtype, or slot number of

a device.

See the Apple III Standard Device Drivers Manual, for information on
device and control requests for specific devices, and the Apple III SOS
Device Driver Writer's Guide for a complete specification on the
SOS/driver interface.

3.5 Device Calls

The calls summarized below all operate on devices directly. The name
of each call below is followed by its parameters (shown in boldface) .
The input parameters are directly-passed values and pointers to tables.
The output parameters are al·1 directly-passed results. The first list is of
required parameters; the second, present only for 0 _INFO, is of optional.
parameters. The SOS call mechanism is explained in Chapter 8; the
individual calls are described fully in Chapter 12 of Volume 2.

o STATUS

[dev _ nurn, status_code: value; status -,isl: pOinter]

This call returns status information about the specified device by passing
a pointer to a status list. The information can be either general or device
specific information. 0_STATUS returns information about the internal
status of the device or its driver; 0 _INFO returns information about the
external status of the driver and its interface with SOS.

Devices 47

D CONTROL

[deY_num, control_code: value; control)ist: pointer]

This call sends control information to the specified device by passing a
pOinter to a control list. The information can be either general or device
specific information. D _ CONTROL operates on character devices only.

GET DEV NUM

[deY_name: pointer; dey_num: result]

This call returns the device number of the driver whose name is specified
by deY_name. The file associated with the device need not be open. The
device number returned is used in the D_READ, D_WRITE, D_STATUS,
D_CON-mOL, and D INFO calls.

o INFO

[dey_num: value; deY_name, option_list: pointer; length: value)

[slot_nurn, unit_ nurn, dey_type, sub_type,
total_blocks,manufJd, yersion_nurn: optional result]

This call returns the device name (and optionally, other information)
about the device specified by dey _ num. The file associated with the
device need not be open . D INFO returns information about the device's
external status and interface to SOS; 0 _STATUS returns information
about the internal status of the device and its driver.

48 SOS Reference Manual

• Files 49

Files

50 4.1 Character and Block Files
50 4.1.1 Structure of Character and Block Files
52 4.1.2 Open and Closed Files
53 4.1.3 Volumes
54 4.1.3.1 Volume Switching
55 4.1 .3.2 Volume Names
56 4.2 The SOS File System
57 4.2.1 Directory Files and Standard Files
58 4.2.2 File Names
59 4.2.3 Pathnames
61 4.2.4 The Prefix and Partial Pathnames
62 4.3 Fi le and Access Path Information
62 4.3.1 File Information
64 4.3.2 Access Path Information
67 4.3.3 Newline Mode Information
68 4.4 Operations on Files
69 4.5 File Calls

- - - - -

50 SOS Reference Manual •

4. 1 Character and Block Files

A file is a named, ordered collection of bytes, used to store, transmit, or
retrieve information. A file is identified by its name; a byte within the file
is identified by its position in the ordered sequence.

SOS recognizes two types of files: character files and block files . A
character file is treated by SOS as an endless stream of characters, or
bytes. SOS can read or write the current byte but cannot go back to a
previous byte or forward to a later byte. A character file is an abstraction
used to represent a character device. A character file can be read-only,
write-only, or read/ write, as determined by the device it resides on . A
character file is identified by its device name, which is defined in the
previous chapter.

A block file is treated by SOS as a finite sequence ot bytes, each one
numbered. Any byte, or group of bytes, in a block file can be accessed
by a call to SOS. A block file is so called because it resides in a volume
on a block device: the volume is formatted into 512-byte blocks, also
numbered. The blocks themselves are of concern only to SOS: the
interpreter only reads or writes bytes.

® The interpreter need only ask for the particular bytes it wants,
using the file READ and WRITE calls.SOS translates these
byte-oriented calls into block-oriented device requests executed
by the device driver. SOS moves the requested bytes between its
I/O buffer and the interpreter's data buffer; the driver moves
whole blocks containing these bytes to and from the I/O buffer.
Device requests are described in the Apple 1/1 SOS Device Driver
Writer's Guide.

4. 1. 1 Structure of Character and Block Files

Character and block files are quite different in implementation , but are
treated similarly. In fact, sequential read and write operations are the
same: an interpreter reads a sequence of bytes from its current position
in a block file in the same way as it reads a sequence of bytes from a
character file.

51 • Files

The bytes in a character file are not numbered and must be accessed
sequentially. Each read or write operation can handle a single byte or a
sequence of up to 64K bytes. The next operation starts where the last
left off. Figure 4-1 shows the structure of a character file.

current byte

t
~ I I I I I I 1\

preVious) l next
byte byte

Figure 4-1. Character File Model

The bytes in a block file are numbered from $000000 up to $FFFFFE.
A block file can contain up to 16,772,215 bytes (one less than 16
Megabytes). Each read or write operation can handle a single byte
or a sequence of up to 64K bytes. The next operation can start anywhere
in the file, with no reference to the last. For this reason , a block file is a
random-access file. Figure 4-2 shows the structure of a block file .

mark EOF

~~~~~~~~~~~~~~~~ 

~...L-.::--L--~I I I ~~I I-~J~~I I 
012 

Figure 4-2. Block File Model 

A block file's size is defined by its end-of-file marker, or EOF, which is 
the number of bytes that can be read from the file. The interpreter's place 
in the file is defined by the cu rrent position marker, or mark, which is the 
number of the next byte that will be read or written. 

Both of these may be moved automatically by SOS or manually by 
the interpreter. 



- -

52 SOS Reference Manual • 

4.1.2 Open and Closed Files 

A file can be open or closed: an open file can be read from or written to; 
a closed file cannot. 

Initially, a file is closed: access to a closed file is through its pathname, 
defined in section 4.2.3. 

When SOS opens a file in response to an OPEN call from an interpreter, 
SOS creates an access path to the file by placing an entry into the File 
Control Block (FeB) , which is a table in memory containing information 
about all open files , and returns a reference number (ref_num) to the 
program that opened the file . This access path determines the way the file 
may be accessed (read from, written to, renamed, or destroyed) . Every 
time that program accesses that file, it must use that access path and 
ref_num. Some files may have more than one access path, as shown in 
the Figure 4-3. 

Character File 

.. \1 1 1\ ... 
. RS232 

Block File 

reI num = m 

mark = p 

reI num = n 
mark = q 

01 2 p q 

Figure 4-3. Open Files 



53 • Files 

The character file above has two access paths, along each of which a 
program can read or write at the current byte, or character. The block file 
has two access paths, each of which can have a different current position, 
or mark, in the file. Each access path can move its own mark, and can 
read at the position it indicates. Both access paths share a common end
of-file marker, or EOF. 

I n general , a block file can have either (a) one access path open for 
reading and writing or (b) one or more read-only access paths: it cannot 
have more than one access path if any access path can write to the file. A 
character file may have several access paths with write-access. 

Q SOS allows a maximum of 16 block-file access paths and 16 
~ character-file access paths to be open at one time. 

Each OPEN call to a file creates a new access path (with its own ref_num) 
to that file, which is separate from a" the file's other access paths. 

When an access path to a file is closed, its FCB entry is deleted and its 
ref_num is released for use by other files. 

Certain operations, such as reading and writing, can only be performed on 
open files; others, such as renaming, can only be performed on closed 
files . 

4.1.3 Volumes 

A volume is a piece of random-access storage medium formatted to hold 
files. A volume is mounted on a block device, and is accessed through 
that device. Both flexible disks and hard disks are volumes. 

Each logical block device corresponds to one volume at any time. If the 
device uses removable media (like flexible disks), it can access different 
volumes at different times. 



54 SOS Reference Manual • 

However, a single physical device can correspond to multiple logical 
devices, each with its own driver and device name. Each of these logical 
devices would have a volume with a different name. For example, if a disk 
drive contains a fixed disk and a removable disk, it would normally be 
treated as two logical devices, each with its own volume. It would have a 
driver module containing two drivers. The two logical devices would have 
different names and unit numbers; and the two volumes would have 
different names. 

It is even possible for a single medium to be divided into multiple volumes: 
a disk holding more than 64K blocks might be so divided, as SOS cannot 
support volumes larger than 64K blocks. I n this case, the physical device 
is treated as multiple logical devices: the physical device has a single 
driver module, and each logical device has a uniquely named driver and 
volume. 

On the other hand, a driver for a disk drive containing several fixed disks 
might treat the disks as one large volume with one name. 

Having noted these special cases, we need not discuss them further. They 
are discussed in the Apple III SOS Device Driver Writer's Guide, as the 
relationships between logical devices and physical devices are 
established by device drivers. Since SOS and the interpreter deal only 
with volumes and logical devices, we can ignore physical devices without 
losing generality. From now on, the word device will mean logical device. 

Every volume must have two special items, each in a fixed place on the 
medium: a volume directory file and a bit map. The volume directory file 
contains information about the volume (such as its name and size) , and 
information about files on the volume. The bit map represents every block 
on the volume with a bit indicating whether the block is currently allocated 
to a file, or is free for use. 

4.1.3.1 Volume Switching 

Some devices (such as flexible-disk drives) have removable media. These 
devices can access several volumes, though only one at a time. This leads 
to problems, however, when a file has been opened on one volume in a 



55 • Files 

device, and subsequently that volume has been removed and another 
substituted for it. If SOS needs to access the open file on the original 
volume, it will not be able to find the volume it needs. 

When this happens, SOS will request that you restore the volume to its 
original drive. It halts all operations of the computer and displays a 
message 011 the screen (see Figure 4-4) 

Figure 4-4. The SOS Disk Request 

naming the volume it needs and the device into which it should be 
placed. The system will wait until you replace t'he volume and press the 
CAPS LOCK (on some keyboards called ALPHA LOCK) key on the 
keyboard twice. 

The volume-switching capability is very useful when you need to use 
many files on various volumes: it allows you to exchange volumes at 
will (when the device is idle), and still have all files accessible when they 
are needed. 

4.1.3.2 Volume Names 

A block device is accessible by two names. The first is the device name, 
defined in Chapter 3. The second, more useful, name is the volume name. 
The volume name of a block device is the name of the volume currently in 
the device: the volume name of a flexible-disk drive will change as you 
insert and remove flexible disks. A block device containing no volume 
(such as an empty flexible disk drive) has no volume name and, to SOS, 
does not exist. 



56 SOS Reference Manual 	 • 

A volume name is up to 15 characters long: the first is a letter; the rest 
can be letters, digits, or periods, in any combination. A volume name is 
always preceded by a slash ( I ), but the slash is not part of the name. 
SOS automatically converts all lowercase letters in a volume name 
to uppercase. The syntax of a volume name is identical to that of a 
file name: a diagram is shown in section 4.2.2. 

Here are a few legal volume names, with slashes: 

I PROGRAMS 

I BILOCK. FI:LES 

I CHAP.2B 


Here are some volume names that will not work, and the reasons why: 

IBADNAME (contains a space) 

11.TO.10 (first character is a number) 

I STEVE'S.PROGRAM (contains an apostrophe) 

IANTHROPOMORPHOUS (more than 15 characters) 


We strongly recommend using the volume name, rather than the 
device name, whenever you refer to a block file. This has two 
advantages: 

• The user is protected against volume-swapping . 

• 	 The program is more general: it can be used with new mass
storage devices without modification. 

4.2 The SOS File System 

SOS organizes all files it can access into a hierarchical tree structure, 
called the SOS file system. The top level of this system is shown in 
Figure 4-5. 

http:11.TO.10
http:ICHAP.2B


57 

l I 

• Files 

1 1 1 1 

device device 

character character 
fil e fi le 

'--

Figure 4-5. Top-Level Files 

The top level contains character files and volume directories. Each 
character file represents one character device; each volume directory 
represents a volume on a block device, and can directly or indirectly 
access all files on the volume. Each character file is referred to by its 
device name; each volume directory is referred to by its volume 
(preferably) or device name. 

By comparing this diagram with that of the SOS device system, you can 
see that the file system is built on top of the device system: each file 
overlays a device. 

4.2.1 Directory Files and Standard Files 

Since a volume on a block device can contain many files, SOS provides a 
special type of file , the directory file , to keep track of them . A directory is a 
file listing the names and locations of, as well as other information about, 
other files on the volume. The main directory on the volume is the volume 
directory, whose name is the same as its volume. The volume directory 
lists both standard files, which are block files containing data, and 
subdirectory files , which list other files. (A subdirectory file might not list 
any files: for example, if you have created a subdirectory file to list a 
series of future text f iles but have not yet created them.) If a directory lists 
a file, we may also say that it "owns" that file, or that is the "parent" of 
that file. 



58 SOS Reference Manual • 

Now we can fill in our model of the file system, by adding subdirectories 
and the files they list (see Figure 4-6) : 

device device 

character character 
file file 

B BB 
B 

BG 
G 

Figure 4-6. The SOS File System 

We now have the whole tree: each node is a directory, and each leaf is a 
character or block file . We will give them names in a minute. 

4.2.2 File Names 

Each entry in a directory is listed by its file name, which distinguishes it 
from the other entries in that directory. For this reason, each file name in a 
directory must be unique. A file name is up to 15 characters long: the first 
is a letter; the rest are letters, digits. or periods, in any combination (see 
Figure 4-7) . SOS automatically converts all lowercase letters in a file name 
to uppercase. 



59 • Files 

leiter 

leiter 

digit 

Figure 4-7. File I\lame Syntax 

Here are a few legal file names: 

MIKE.2.JULY.80 

SORTPROGRAM 

LETTERTO.SLlE 


Here are some file names that will not work, and the reasons why: 

BAD NAME (contains a space) 
1.TO.10 (begins with a number) 
STEVE'S.PROGRAM (contains an apostrophe) 
ANTHROPOMORPHOUS (more than 15 characters) 

In earlier editions of the Apple III Owner's Guide, file names are 
called local names. 

4.2.3 Pathnames 

A pathname is a sequence of names that defines a path from the root of 
the file system, through a volume directory and possibly subdirectories, 
to a specific file. 

A pathname uniquely identifies a file. Even if two files with the same 
file name appear in the system, they can be distinguished by their 
pathnames. 



60 SOS Reference Manual • 

Figure 4-8. Path name Syntax 

A pathname is composed of names and slashes (see Figure 4-8) . A 
pathname begins with a slash and a volume name; a device name; or a 
file name; more file names may follow. One slash must separate any two 
successive names, and the 'ast component of a pathname must be a 
name. As always, a volume name is preceded by a slash, and a device 
name begins with a period. 

Paths always begin at the root of the file system. The first component of 
the pathname determines the nature of the path. 

Ivai name If the first component is a slash followed by a volume name, 
the path proceeds from the volume directory. 

dev name If the first component is the name of a block device (which 
begins with a period) , SOS automatically replaces the 
device name with the name of the volume directory of the 
volume in that device, and the path proceeds from that 
directory. 

dev name If the sole component is the name of a character device, 
the pathname specifies its character file. No further file 
specifications are allowed after a character device name. 

file name If the first component is a file name, SOS appends the 
prefix (see below) to the pathname, and the new pathname 
is evaluated again. 



• Files 61 

Here is our file system tree again (see Figure 4-9) , this time with the file 
names filled in : 

1 1 
r 

.CONSOLE .GRAFIX 

ISYSTEM. PASCAL I 
Figure 4-9. Pathnames 

The valid pathnames in this file system are 

.CONSOLE IBASICSTUFF 

.GRAFIX IBASICSTUFF/SOS.DRIVER 
I PASCAL 1 I BASICSTU FFfTEMPLATES 
I PASCAL 1/S0S.DRIVER I BASICSTUFF fTEMPLATES/PHONES 
I PASCAL 1/ SYSTEM.PASCAL I BASICSTUFFfTEMPLATES/EXPENSES 

If the volume IPASCAL 1 were installed in the device.D1 , then every 
pathname that included the volume I PASCAL 1 would have a synonymous 
pathname using .01 : for example, I PASCAL 1/S0S.DRIVER would 
specify the same file as .D1 /S0S.DRIVER . 

4.2.4 The Prefix and Partial Pathnames 

The prefix is a pathname that specifies a volume directory or subdirectory 
file. When SOS boots, the prefix is set to the volume directory of the boot 
volume. 

http:device.D1


62 SOS Reference Manual • 

A partial pathname is a pathname that begins with a file name, whereas a 
full pathname begins with a volume or device name. In other words, a 
partial pathname begins with a letter, whereas a full pathname begins with 
a slash or period. When SOS receives a partial pathname, it concatenates 
the prefix to that pathname with a slash , forming a full pathname. The 
effect is to allow you to specify a "current directory", or prefix , and refer to 
files owned by that directory without having to specify the directory's 
pathname each time. For example, the prefix I PASCAL 1 and the partial 
pathname SOS.DRIVER form the full pathname IPASCAL 1/S0S.DRIVER. 

The prefix always specifies a volume directory or subdirectory file. The 
prefix never specifies a standard or character file. 

~ The SOS prefix is not the Pascal prefix. The two mayor may not 
~ have the same value. 

4.3 File and Access Path Information 

An interpreter often needs information about a file or an access path . 
Information about a block file is stored in the file's directory entry. 
Information about a block file access path is stored in its FCB entry. This 
section describes file information and access path information for block 
files only. Information about a character file is stored as the device 
information of its respective character device (see section 3.3). No 
corresponding information about an access path to a character file is 
available through SOS. 

The various items of information about a file will be named in boldface, 
and the same names will be used when these items appear as fields in 
directories (in Chapter 5) and as parameters for SOS calls (in Chapter 8 
and in Volume 2) . 

4.3.1 File Information 

Certain information about a bl'ock fi re, such as a file's name, belongs to the 
file itself rather than to any of its access paths. This information is stored 
in that file's directory entry (see section 5.2.4) . 



63 • Files 

An interpreter can read the file information in the directory entry with a 
GET_FILE_INFO call or change it with aSET_FILE_INFO call, both 
described in Chapter 10 of Volume 2. No change, however, can be made 
to any of the file information if the file is open: a SET FILE_INFO call to 
do so will have no effect until the file is closed. 

This information about a file is kept in the directory entry: 

file name 

A closed block file is accessed by its file_name. The file name of a block 
file can be changed, but only when the file is closed. Only the last file 
name in a pathname can be changed, because the preceding names are 
the names of open directory files, which are shared with other files. 

~ All access to information about a closed block file is through its 
~ file name. 

access 

Every block file has an access attribute field, which determines the ways in 
which you may use that file. The access attributes can be set to prevent 
you from reading from, writing to, renaming, or destroying a file. It can 
also tell you whether a file's contents have been changed since the last 
time a backup copy of the file was made. 

EOF and blocks_used 

The number of bytes in a block file is specified by the end-of-file pointer, 
or EOF. The number of blocks physically used by the file is specified by 
the blocks_ used item. In sparse files, which we will see later, the EOF and 
blocks_used numbers may not correspond as you might expect. 

® GET FILE INFO returns the current value of EOF and 
blocks used only if the file is closed. If it is open, GET EOF 
returns-the correct value of EOF. GET FILE INFO returns the 
values EOF and blocks_used had whenthe fiiewas opened. 



64 SOS Reference Manual • 

storage_type, file_type, and aux_type 

Three items describe the external and internal arrangement of each block 
file . The storage type indicates whether the file is a directory file or a 
standard file, and how the file is stored on its block device: this item is 
used only by SOS. The file_type classifies the contents of the file; and the 
aux_ type can be used by an interpreter as an additional description of the 
contents of the file: these two items are used only by the interpreter. 

A description of the identification codes and their meanings is given later 
in this chapter. 

creation and last mod 

These items record the dates and times at which a block file was initially 
created and last updated. These values are drawn from the system clock 
or the last known time. 

4.3.2 Access Path Information 

Other information about a block file, such as an interpreter's position in a 
file, belongs to the access path rather than the file itself. This information 
is stored in the access path's entry in the File Control Block. 

Access path information can be changed only while that access path is 
open. When the access path is closed, certain items, such as the mark, 
disappear, and others, such as the EOF, update the file information in the 
directory entry. 

This information about the access path is kept in the FCB entry: 

ref num 

When an access path to a file is opened, SOS assigns that access path a 
unique reference number, or ref_num. All subsequent references to that 
access path must be made with that ref_num. 

EOF and mark 

Each access path to an open block file has one attribute defining the end 
of file, the EOF, and another defining the current position in the file, the 
mark. Both of these may be moved automatically by SOS or manually by 
the interpreter. 



• Files 65 

The EOF pointer is the number of bytes in the file. This is equivalent to 
pointing one position beyond the last byte in the file, since the first byte is 
byte number 0: in an empty file (containing zero bytes), EOF points at byte 
number 0. The value of the mark cannot exceed the value of EOF. 

The EOF is peculiar in that it appears both in the file's directory entry and 
in the access path's FCB entry. When a file is open for writing, the two 
values of the EOF may differ. The current EOF is stored in the access 
path's FCB entry: this EOF is returned by a GET _ EOF call to the ref_num. 
The value of EOF in the file's directory entry is updated only when the 
access path is closed: this EOF is returned by a GET _FILE_'NFO call to 
the file name. 

It is impossible for two access paths to have different EOF values, for in 
order to change the EOF, an access path must have write-access. If it 
does have write-access, it must be the only access path to that file. 

The mark automatically moves forward one byte for every byte read from 
or written to the file. Th us, the mark always indicates where the next byte 
will be read or written. 

If, during a WRITE operation, the mark meets the EOF, both the mark and 
the EOF are moved forward one position for every additional byte written 
to the file. Thus, adding bytes to the end of the file automatically moves 
the EOF up to accommodate the new information. Figure 4-1 0 shows the 
automatic movement of EOF and mark. 

EOF EOF EOF 

~-,-------,--,- ~ ~...,.----r---r ~ ~ ~ 
'---'---.......1 ....1.....1 --L.-....LI-] I I I I 1--] I I--J 

t t t f i 
mark mark mark 

beginning position after reading 2 bytes after writing 2 bytes 

Figure 4-10. Automatic Movement of EOF and Mark 

An interpreter can manually move the EOF to place it anywhere from the 
current mark position to the maximum byte position possible (see Figure 
4-11) . The mark can also be placed anywhere from the first byte in the file 
to the current position of the EOF. 



- - - -

66 SOS Reference Manual • 

range of EOF .. 
EOF 

I-+-JI~~I I~~I1 

t 
mark file limit .. .. 

range of mark 

Figure 4-11. Manual Movement of EOF and Mark 

The EOF IS read by the GET EOF call and manually set by the 
SET _ EOF call; the mark is read by the GET_MARK call and manually 
set by the SET_ MARK call. 

level 

Each access path is given a level when it is opened. The level of the 
access path is the value of the system file level at the time the access path 
was opened. An interpreter can group files by file levels (for example, have 
user files open at one level , while system files are open at another) , and 
perform group operations on files of like levels. 

The system file level has the value 1, 2, or 3. When the system is booted, 
the level is set to 1. It can be changed by the SET_LEVEL call , and read 
by the GET _ LEVEL call . One use of the file level is to close all files 
opened by a user program when the interpreter exits that program. 

This is done as follows: When the interpreter enters the program, it 
raises the system file level. Thus all files opened by the program will have 
a higher level than, say, .CONSOLE or the interpreter file . When the 
interpreter exits the program , it issues a FLUSH call or CLOSE call with a 
ref_"um of $00, which closes all files at a level equal to or higher than the 
system file level. Then the interpreter lowers the system file level. 



- -

• Files 67 

4.3.3 Newline Mode Information 

Certain information about a file, called newline-mode information , is 
associated either with the file itself or with an access path to the file, 
depending on the kind of file. A character file's newline-mode information 
is associated with the file and its device; a block file's newline-mode 
information is associated with an access path to the file, and can differ 
from one access path to another. 

When SOS reads from an open file, it can read input as a continuous 
stream of characters or as a series of lines. In the first case, you ask SOS 
to read a specific number of bytes: when this number have been read or 
when the current position has reached the end of file , the READ operation 
terminates. In the second case, called newline mode, the READ will also 
terminate if a specified character, the newline character, is read. The 
newline character is usually the ASCII CR ($00), but can be any hex value 
from $00 to $FF. The newline character is called the termination character 
or line-termination character in the Apple III Standard Device Drivers 
Manual. 

Newline mode is supported on both character and block files, so that file 
input/output can be device independent. For example, a program that 
reads a line of text from a file can treat the keyboard and a disk file exactly 
the same way. 

is newline and newline char 

Newline mode is controlled by two values: is_newline turns newline mode 
on or off; newline_char sets the newline character. These two values are 
set by the NEWLINE call to the access path's ref_num. 

® For a block file, each access path can have separate is_newline 
and newline_char values. A character file also has is_newline and 
newline_char values, which are also changed by a NEWLINE call 
to an access path's reCnum, but they are the same for all access 
paths. If either value is changed for one access path, it is 
changed for all. 



- -

68 SOS Reference Manual 	 • 

4.4 Operations on Files 

These operations can be performed on all files: 

• 	 OPEN and CLOSE to control access, and READ and WRITE (if its 
access attributes allow) to transfer information from or to the file. 

• 	 Change is_newline and newline_char for an access path, using the 
NEWLINE call. 

These operations can be performed only on block files: 

• 	 Examine or change file information, including the name, access, 
file type, and modification date, using the GET _FILE_INFO and 
SET FILE INFO calls. 

These operations can be performed only on closed block files: 

• 	 CREATE a new file; 

• 	 DESTROY an existing file; 

These operations can be performed only on standard files open for 
writing: 

• 	 Set and read the EOF pointer, using the SET _EOF and 

GET EOF calls. 


• 	Set and read the current position mark, using the SET_MARK 
and GET MARK calls. 

These operations can be performed on directory files: 

• 	 OPEN and CLOSE the file. 

• 	 READ the file, if it is open. 

• 	 DESTROY the file, if it is empty and closed. 



• Files 69 
I 

4.5 File Calls 

These calls deal with files: the calls CREATE through OPEN operate on 
closed files; the calls NEWLINE through GET_LEVEL operate on open 
files. The name of each call below is followed by its parameters (in 
boldface) . The input parameters are directly-passed values and pointers 
to tables. The output parameters are all directly-passed results. The first 
list is of required parameters; the second list, present for some calls, is of 
optional parameters. The SOS call mechanism is explained in Chapter 8; 
the individual calls are described fully in Volume 2, Chapter 9. 

CREATE 

[pathname, option_list: pointer; length: value) 

[file_type, aux_type, storage_type, EOF: optional value] 

This call creates a standard file or subdirectory file on a block device. 
A file entry is placed in a directory, and at least one block is allocated. 

DESTROY 

[pathname: pointer] 

This call deletes the file specified. by the pathname parameter by marking 
the file 's directory entry inactive. DESTROY releases all blocks used by 
that file back to free space on that volume. 

The file can be either a standard or a subdirectory file. A volume directory 
cannot be destroyed except by physically reformatting the medium. A 
character file can be removed from the system by the System 
Configuration Program. 

RENAME 

[pathname, new_pathname: pointer] 

This call changes the name of the file specified by the pathname 
parameter to that specified by new_pathname. Only block files may be 
renamed ; character files are "renamed" by the System Configuration 
Program. 



70 SOS Reference Manual • 

SET FILE INFO 


[pathname, option_list: pointer; length: value] 


[access, file_type, aux_type, last_mod: optional value) 


This call modifies information in the directory entry of the file specified by 

the pathname parameter. Only block files' information can be modified; 
character files have no such information associated with them. 

You may perform a SET _FILE_INFO on a currently-open file, but the 
new information will not take effect until the next time the file is OPENed. 

GET FILE INFO 


[pathname, option_list: pointer; length: value) 


[access, file_type, aux_type, storage_type, EOF, blocks, 

last_ mod: optional resu It) 


This call returns information about the block file specified by the 

pathname parameter. 


VOLUME 


[dev_name, vol_name: pointer; blocks, free_blocks: result) 


When given the name of a device, this call returns the volume name of the 
volume contained in that device, the number of blocks on that volume, 
and the number of currently unallocated blocks on that volume. 

SET PREFIX 


[pathname: pointer) 


This call sets the operating-system path name prefix to that specified in 

pathname. 


GET PREFIX 


[pathname: pointer; length: value) 


This ca ll returns the current system path name prefix. 




71 • Files 

OPEN 


[pathname: pointer; ref_num: result; option_list: pointer; length: value] 


[req_ access, pages: optional value; io_buffer: optional pointer] 


This call opens an access path to the file specified by pathname for 
reading or writing or both. SOS creates an entry in the file control block 
and an I/O buffer. 

NEWLINE 

[retnum, is_newline, newline_char: value] 

This call allows the caller to selectively enable or disable "newline" read 
mode. Once newline mode has been enabled, any subsequent read 
request will immediately terminate if the newline character is encountered 
in the input byte stream. 

READ 

[ref_num: value; data_buffer: pointer; request_count, 
transfer_count: value] 

This call attempts to transfer request_count bytes, starting from the 
current pOSition (mark), from the file specified by ref_num into the buffer 
pointed to by data_buffer. If newline read mode is enabled and the 
newline character is encountered before request_count bytes have been 
read, then the transfer_count parameter will be less than request_count 
and exactly equal to the number of bytes transferred, including the 
newline byte. 

WRITE 

[ref_num: value; data_buffer: pointer; request_count: value] 

This call transfers request_count bytes, starting from the current file 
pOSition (mark) , from the buffer pointed to by data_buffer to the open file 

specified by ref_num. 



72 SOS Reference Manual • 

CLOSE 

[ref_num: value] 

This call closes the file access path specified by ref_num . Its file-control 
block is released, and if the file is a block file that has been written to, its 
wrHe buffer is emptied. The directory entry for the file , if any, is updated . 
Further file operations using that ref_ num will fail. If ref_num is $00, all files 
at or above the system file level are closed. 

FLUSH 

[ref_num: value] 

This call flushes the file access path specified by ref _num. If the file is a 
block file that has been written to, its I/O buffer is emptied. The access 
path remains open. If ref_num is $00, all files at or above the system file 
level are flushed. 

SET MARK 

[ref_num, base, displacement: value] 

This call changes the current file position (mark) of the file access path 
specified by ref _num. The mark can be changed to a position relative to 
the beginning of the file, the end of the file, or the current mark. 

GET MARK 

[ref _ num: value; mark: result] 

This call returns the current file position (mark) of the file access path 
specified by ref_num . 

SET EOF 

[ref_num, base, displacement: value] 

This call moves the end-of-file marker (EOF) of the specified block file to 
the indicated position. The EOF can be changed to a position relative to 
the beginning of the file , the end of the file , or the current mark. 



Files 73 

If the new EOF is less than the current EOF, then empty blocks at the end 
of the file are released to the system and their data are lost. The converse 
is not true: if the new EOF is greater than the current EOF, then blocks 
are not allocated, creating a sparse file; reading from these newly created 
positions before they are written to results in $00 bytes. 

GET EOF 

[ref_num: value; EOF: result] 

This call returns the current end-of-file (EOF) position of the file specified 
by ref_num. 

SET LEVEL 

[level: value] 

This call changes the current value of the system file level. All subsequent 
OPENs will assign this level to the files opened. All subsequent CLOSE 
and FLUSH operations on multiple files (using a ref_num of $00) will 
operate on only those files that were opened with a level greater than or 
equal to the new level. 

GET LEVEL 

[level: result] 

This call returns the current value of the system file level. See 
SET LEVEL, OPEN, CLOSE, and FLUSH. 



74 50S Reference Manual 



• File Organization on Block Devices 75 

I File Organization on Block Devices 


77 5.1 Format of Information on a Volume (SOS 1.2) 
78 5.2 Format of Directory Files 
79 5.2.1 Pointer Fields 
79 5.2.2 Volume Directory Headers 
82 5.2.3 Subdirectory Headers 
85 5.2.4 File Entries 
89 5.2.5 Field Formats in Detail 
89 5.2.5.1 The storage _type Field 
89 5.2.5.2 The creation and last mod Fields 
90 5.2.5.3 The access Attributes 
91 5.2.5.4 The file_type Field 
91 5.2.6 Reading a Directory File 
92 5.3 Storage Formats of Standard Files 
92 5.3.1 Growing a Tree File 
95 5.3.2 Seedling Files 
95 5.3.3 Sapling Files 
96 5.3.4 Tree Files 
97 5.3.5 Sparse Files 
98 5.3.6 Locating a Byte in a Standard File 
99 5.4 Chapter Overview 



76 SOS Reference Manual • 

When a program accesses a block device, it actually accesses the volume 
that corresponds to that device. You have already learned of the 
hierarchical tree structure used by SOS in its file organization, of the 
naming conventions used to access any file within the tree structure, and 
of the logical structure of a file as a sequence of bytes; this chapter 
explains the physical implementation of these structures on any volume. 

The first part of the chapter (section 5.1) discusses what is on a volume, 
the second (section 5.2) describes directory files, the third part of the 
chapter (section 5.3) discusses standard files, and the final part of the 
chapter (section 5.4) provides a graphic summary of the organization of 
information on volumes. 

The focus of this chapter is on how SOS works, not on how to use it. For 
this reason, we have chosen to explain details of implement ion that are 
not strictly necessary for an interpreter writer to know, in order to make 
the working of SOS more concrete. The only section that is of immediate 
practical use to an interpreter writer is section 5.2 on the formats of 
directory files. The rest of the chapter explains the implementation of the 
file system: these sections should be regarded as examples, not as 
specifications. 

In this manual, we will distinguish the SOS interface, which is supported , 
and the SOS implementation, which is not. We will support the 
hierarchical tree structure of the file system and the logical structures of 
character and block files. We will also support the storage formats of 
directory headers and entries, although they may be expanded by 
appending new fields. However, we may change volume formats and the 
storage formats of standard files. 

@) Programmers should not rely on the details of implementation, as 
we may change the storage formats of files in order to improve 
performance. An interpreter that uses the READ and WR ITE calls 
to access files, and interprets directories as we explain here,will 
work with future versions of 808. An interpreter that relies on the 
current disk-allocation scheme or index-block structure may not 
work with future versions. 



•• • • • 

77 • File Organization on Block Devices 

5. 1 Format of Information on 

a Volume (SOS 1.2) 


This section explains how SOS 1.2 organizes information on a 280-block 
flexible disk: it should be regarded as an example, not a general 
specification for volume formats. 

In accessing a volume, SOS requests a logical block from the device 
corresponding to that volume. Logical blocks may be supported physically 
by tracks and sectors, or cylinders and heads, or other divisions. This 
translation is done by the device driver: the physical location of 
information on a volume is unimportant to SOS. This chapter discusses 
the organization of information on a volume in terms of blocks, numbered 
starting with 0. 

When the volume is formatted, information needed by SOS is placed in 
specific logical blocks. A bootstrap loader program is placed in blocks 0 
and 1 of the volume. This program loads SOS from the volume when 
CONTROL-RESET is pressed. Block 2 of the volume is the first block, or 
key block, of the volume directory file: it contains descriptions and 
locations of all the files in the volume directory, as well as the location of 
the volume bit map. The volume directory occupies a number of 
consecutive blocks (4 for SOS 1.2). and normally is immediately followed 
by the volume bit map, which records whether each block on the volume 
is used or unused. The volume bit map occupies consecutive blocks, one 
for every 4,096 blocks (or fraction thereof) on the volume. The rest of the 
blocks on the disk contain either subdirectory file information, standard 
file information, or garbage (such as parts of deleted files). The first 
blocks of a volume look something like this (Figure 5-1): 

block 2 
block0 
loader 

block 1 
loader 

volume 
directory 

(key block) 

block n block n +1 
volume volume 

directory bit map 
(last block) (first block) 

• 

Figure 5-1. Blocks on a Volume 

block p 
volume Q; (/)

.c Q)
bitmap -0-== 

(first block) 

The precise format of the volume directory, volume bit map, subdirectory 
files and standard files are explained in the following sections. 



••• 

••• 

••• 

c an a • 

5.2 Format of Directory Files 

The format of the information contained in volume directory and 
subdirectory files is quite similar. Each directory file is a linked list of one 
or more blocks: each block contains pointers to the preceding and 
following blocks, a series of entries, and unused bytes at the end. The first 
block, called the key block, has no preceding block, so its preceding-block 
pointer is zero; the last block has no following block, so its following-block 
pointer is zero. 

Most entries in a directory describe other files, which can be either 
standard files or directories: these entries are called file entries. The first 
entry in the key block of a directory contains information about the 
directory itself, not about another file: this entry is called the directory 
header. 

The format of a directory file is represented in Figure 5-2. 

Key Block Any Block Last Block 

0 
pointer 

header 

entry 

more 

4-- ••• 4----

one 

pOinter 
pointer 

entry 

entry 

l-- more l--
entries .

entry 

entry 

unused 

(

pointer 

0 

entry 

entry 

l-- more 
entries 

entry 

entry 

unused 

..-block 

... 

... 

entries 

entry 

entry 

unused 

Figure 5-2. Directory File Format 



79 • File Organization on Block Devices 

The header entry is the same length as all other entries. As will be 
described below, the only organizational difference between a volume 
directory file and a subdirectory file is in the header. 

5.2.1 Pointer Fields 

The first four bytes of each block used by a directory file contain pointers 
to the preceding and succeeding blocks, respectively, of the directory file . 
Each pointer is a two-byte logical block number, low byte first, high byte 
second. The key block of a directory file has no preceding block: its first 
pointer is zero. Likewise, the last block in a directory file has no successor: 
its second pointer is zero. If a directory occupies only one block, both 
pointers are zero. 

® A pointer of value zero causes no ambiguity: no directory block 
could occupy block 0, as blocks 0 and 1are reserved for the 
bootstrap loader. 

All block pointers used by SOS have the same format: low byte first , high 
byte second. 

5.2.2 Volume Directory Headers 

Block 2 of a volume is the key block of that volume's directory file . One 
finds the volume directory header at byte position 0004 of the key block, 
immediately following the block's two pointers. 

Figure 5-3 illustrates the structure of a volume directory header: following 
the figure is a description of each field. If you compare Figure 5-3 with 
Figure 5-4, you will notice that the two header types have the same 
structure for the first 12 fields, from storage_type to file_count; after that, 
the two diverge. However, similarly named fields have different meanings 
for the two types, so we have described each type separately. 



80 SOS Reference Manual 	 • 

Field Byte of 
length Block 

1 byte storage_type name)ength $04 

$05 

file name 1 
creation 

version 
min version 

access 

entry length 

entries _per_block 

IiIe_count 

bit_map_pointer 

total blocks 

;.,-

$1B 
$1C 
$10 

~-----I 	$13 
$14 

reserved;.,

4 bytes 
$1E 
$1F 

1 byte $20 

1 byte $21 

1 byte $22 

1 byte $23 
1 byte $24 

$25 
2 bytes 

$26 
$27 

2 bytes 
$28 
$29 

2 bytes 
$2A 

Figure 5-3. The Volume Directory Header 

storage _type and name_length (1 byte): 

Two four-bit fields are packed into this byte. A value of $F in the high four 
bits (the storage)ype) identifies the current block as the key block of a 
volume directory file. The low four bits contain the length of the volume's 
name (see the file_name field, below). The name_length can be changed 
by a RENAME call. 

file_name ( 15 bytes) : 

The first name_length bytes of this field contain the volume's name. This 
name must conform to the file name (or volume name) syntax explained 
in Chapter 4. The name does not begin with the slash that usually 
precedes volume names. This field can be changed by the RENAME call. 



81 • File Organization on Block Devices 

reserved (8 bytes) : 

This field is reserved fo r future expansion of the file system. 

creation (4 bytes): 

This field holds the date and time at which this volume was initialized. The 
format of these bytes is described in section 5.4.2.2. 

version (1 byte): 

This is the version number of SOS under which this volume was initialized. 
This byte allows newer versions of SOS to determine the format of the 
volume, and adjust their directory interpretation to conform to older 
volume formats. 

@ For SOS 1.2, version = 0. 

min_version (1 byte): 

This is the minimum version number of SOS that can access the 
information on this volume. This byte allows older versions of SOS to 
determine whether they can access newer volumes. 

@ For SOS 1.2, min_version = 0. 

access (1 byte): 

This field determines whether this volume directory may be read , written, 
destroyed, and renamed. The format of this field is described in section 
5.4.2.3. 

entry_length (1 byte): 

This is the length in bytes of each entry in this directory. The volume 
directory header itself is of this length. 

@ For SOS 1.2, entry_length = $27. 



82 SOS Reference Manual • 

entries _per_block (1 byte) : 

This is the number of entries that are stored in each block of the 
directory file. 

8 For SOS 1.2, entries_per _block = $0D. 

file_count (2 bytes): 

This is the number of active file entries in this directory file. An active file 
is one whose storage_type and name_length are not 0. See section 5.2.4 
for a description of file entries. 

bit_map_pointer (2 bytes) : 

This is the block address of the first block of the volume's bit map. The bit 
map occupies consecutive blocks, one for every 4,096 blocks (or fraction 
thereof) on the volume. You can calculate the number of blocks in the bit 
map from the total_ blocks value, described below. 

The bit map has one bit for each block on the volume: a value of 1 means 
the block is free; 0 means it is in use. 

total_blocks (2 bytes): 

This is the total number of blocks on the volume. 

5.2.3 Subdirectory Headers 

The key block of every subdirectory file is pointed to by an entry in 
another directory (explained below) . A subdirectory header begins at 
byte position $0004 of the key block of that subdirectory file, immediately 
following the two pointers. Its internal structure is quite similar to that of a 
volume directory header. Figure 5-4 illustrates the structure of a 
subdirectory header. A description of all the fields in a subdirectory 
header follows the figure. 



83 • File Organization on Block Devices 

Field Byte of 
Length Block 

1 byte storage_type name_length $04 

$05 

15 bytes II--___fi_le_-n_a_m_e___{ $13 

$14 
8 bytes ;, reserved 

$lB 

$lC 

..

creation 

version 
min version 

access 
entry)ength 

entries_per _ block 

file count 

parent _pOinter 

parent_entry _ number 

parent_entry _length 

$104 bytes 
$lE 

$lF 

1 byte $20 
1 byte $21 

1 byte $22 

1 byte $23 

1 byte $24 

$25 
2 bytes 

$26 

$27 
2 bytes 

$28 
1 byte $29 

1 byte $2A 

Figure 5-4. The Subdirectory Header 

storage_type and name )ength (1 byte): 

Two four-bit fields are packed into this byte. A value of $E in the high four 
bits (the storage_type) identifies the current block as the key block of a 
subdirectory file. The low four bits contain the length of the subdirectory's 
name (see the file_name field, below) . The name_length can be changed 
by a RENAME call. 

file_name (15 bytes): 

The first name-length bytes of this field contain the subdirectory's name. 
This name must conform to the file name syntax explained in Chapter 4. 
This field can be changed by the RENAME call. 



- -- - -- -

84 SOS Reference Manual • 

reserved (8 bytes) : 

This field is reserved for future expansion of the file system. 

creation (4 bytes) : 

This is the date and time at which this subdirectory was created. The 
format of these bytes is described in section 5.4.2.2. 

version (1 byte): 

This is the version number of SOS under which this subdirectory was 
created. This byte allows newer versions of SOS to determine the format 
of the subdirectory, and to adjust their directory interpretations 
accordingly.

8 For SOS 1.2, version =0. 

min version (1 byte) : 

This is the minimum version number of SOS that can access the 
information in this subdirectory. This byte allows older versions of SOS to 
determine whether they can access newer subdirectories. 

§ For SOS 1.2, min_version = 0. 

access (1 byte) : 

This field determines whether this subdirectory may be read, written, 
destroyed, and renamed . The format of this field is described in section 
5.4.2.3. A subdirectory's access byte can be changed by the ' 

SET FILE INFO call . 


entry)ength (1 byte) : 

This is the length in bytes of each entry in this subdirectory. The 
subdirectory header itself is of this length. 

§ For SOS 1.2, entry_length = $27. 



85 • File Organization on Block Devices 

entries _per_block (1 byte) : 

This is the number of entries that are stored in each block of the directory 
file . 

S For SOS 1.2,entries_per_block = $0D. 

file_count (2 bytes) : 

This is the number of active file entries in this subdirectory file. An active 
file is one whose storage)ype and name_length are not 0. See the next 
section for more information about file entries. 

parent_pointer (2 bytes) : 

This is the block address of the directory file block that contains the entry 
for this subdirectory. This two byte pointer is stored low byte first, high 
byte second. 

parent_ entry_number (1 byte): 

This is the entry number for this subdirectory within the block indicated 
by parent_pointer. 

parent_entry-,ength (1 byte): 

This is the entry_length for the directory that owns this subdirectory file. 
Note that with these last three fields one can calculate the precise position 
on a volume of this subdirectory's file entry. 

@ For SOS 1.2, parent_entry_length =$27. 

5.2.4 File Entries 

Immediately following the pointers in any block of a directory file are a 
number of entries. The first entry in the key block of a directory file is a 
header; all other entries are file entries. Each entry has the length specified 
by that directory's entry_length field , and each file entry contains 
information that describes, and points to, a single subdirectory fi le or 
standard file. 



-

86 SOS Reference Manual • 

An entry in a directory file may be active or inactive; that is, it mayor may 
not describe a file currently in the directory. If it is inactive, the 
storage_type and name_'ength fields are zero. 

The maximum number of entries, including the header, in a block of a 
directory is recorded in the entries_per_block field of that directory's 
header. The total number of active file entries, not including the header, is 
recorded in the file_count field of that directory's header. 

-::~ 

Figure 5-5 describes the format of a file entry. 

Field 
Length 

storage_type I name_'ength1 by te 

15 bytes lile name;:::l 
1 byte 


2 bytes 


2 by tes 

3 bytes 

4 bytes 

1 byte 

1 byte 

1 byte 


2 by1es 

4 bytes 

2 bytes 

;.

file_type 

key_pointer 

blocks used 

EOF 

creation 

version 

min version 

access 

au x_type 

last mod 

header_pointer 

En try 

Offset 


$00 
$0 1 

$0F 

$10 
$11 

$12 
$13 

$14 
$15 

$17 
$1 8 

$18 
$1 C 

$1D 
$1 E 
$1F 

$20 
$21 

$24 
$25 

$26 

Figure 5-5. The File Entry 



87 • File Organization on Block Devices 

storage_type and name_length (1 byte): 

Two four-bit fields are packed into this byte. The value in the high-order 
four bits (the storage_type) specifies the type of file this entry points to. 
The values $1 , $2, $3, and $D denote seedling, sapling, tree, and 
subdirectory files, respectively. Seedling, sapling, and tree files, the three 
forms of a standard file, are described later in this chapter. The low-order 
four bits contain the length of the file's name (see the file_name field, 
below). If a file entry is inactive, the storage_type and name_length are 
zero. The name_length can be changed by a RENAME call. 

file_name (15 bytes): 

The first name_length bytes of this field contain the file's name. This 
name must conform to the file name syntax explained in Chapter 4. This 
field can be changed by the RENAME call. 

file_type (1 byte) : 

This specifies the internal structure of the file . Section 5.4.2.3 contains a 
list of the currently defined values of this byte. 

key_pointer (2 bytes) : 

This is the block address of the key block of the subdirectory or standard 
file described by this file entry. 

blocks_used (2 bytes) : 

This is the total number of blocks actually used by the file. For a 
subdirectory file , this includes the blocks containing subdirectory 
information, but not the blocks in the files pointed to. For a standard file, 
this includes both informational blocks (index blocks) and data blocks. 
Refer to section 5.3 for more information on standard files. 

EOF (3 bytes): 

This is a three-byte integer, lowest bytes first, that represents the total 
number of bytes readable from the file . Note that in the case of sparse 
files, described later in the chapter, EOF may be greater than the number 
of bytes actually allocated on the disk. 



- -

88 SOS Reference Manual • 

creation (4 bytes) : 

This is the date and time at which the file pointed to by this entry was 
created. The format of these bytes is described in section 5.4.2.2. 

version (1 byte) : 

This is the version number of SOS under which the file pointed to by this 
entry was created . This byte allows newer versions of SOS to determine 
the format of the file, and adjust their interpretation processes accordingly. 

8 For SOS 1.2, version = 0. 

min_version (1 byte): 

This is the minimum version number of SOS that can access the 
information in this file. This byte allows older versions of SOS to determine 
whether they can access newer files. 

§ For SOS 1.2, min_version = 0. 

access (1 byte) : 

This field determines whether this file can be read , written, destroyed, 
and renamed. The format of this field is described in section 5.4.2.3. The 
value of this field can be changed by the SET _F'LE_'NFO call. 

aux_type (2 bytes): 

This is a general-purpose field in which an interpreter can store additional 
information about the internal format of a file. For example, BASIC uses 
this field to store the record length of its data files . This field can be 
changed by the SET _F'LE_'NFO call. 

last_mod (4 bytes): 

This is the date and time that the last CLOSE operation 'after a WRITE 
was performed on this file. The format of these bytes is described in 
section 5.4.2.2. This field can be changed by the SET _F'LE_'NFO call. 



89 • File Organization on Block Devices 

header_pointer (2 bytes) : 

This field is the block address of the key block of the directory that owns 
this file entry. This two byte pointer is stored low byte first, high byte 
second. 

5.2.5 Field Formats in Detail 

Several of the fields above occur in more than one kind of directory entry. 
Therefore, we have pulled them out for more detailed explanation here. 

5.2.5.1 The storage_type Field 

The storage_type, the high-order four bits of the first byte of an entry, 
defines the type of header (if the entry is a header) or the type of file 
described by the entry. 

$0 indicates an inactive file entry 
$1 indicates a seedling file entry 

( 0 <=EOF<=512bytes) 
$2 indicates a sapling file entry 

(512 < EOF <= 128K bytes) 
$3 indicates a tree file entry 

(128K < EOF < 16M bytes) 
$0 indicates a subdirectory file entry 
$E indicates a subdirectory header 
$F indicates a volume directory header 

SOS automatically changes a seedling file to a sapling file and a sapling 
file to a tree file when the file's EOF grows into the range for a larger type. 
If a file's EOF shrinks into the range for a smaller type, SOS changes a 
tree file to a sapling file and a sapling file to a seedling file. 

5.2.5.2 The creation and lastmod Fields 

The date and time of the creation, and of the last modification, of each file 
and directory are stored as two four-byte values (see Figure 5-6): 



- -

90 SOS Reference Manual • 

byte 1 byte 0 

byte 3 byte 2 

Figure 5-6. Date and Time Format 

The values for the year, month, day, hour, and minute are stored as 
unsigned binary integers, and may be unpacked for analysis. Note that 
the SOS calls GET_TIME and SET_TIME represent dates and times 
differently. 

5.2.5.3 The access Attributes 

The access attribute field determines whether the file can be read from, 
written to, deleted, or renamed. It also tells whether a backup copy of the 
file has been made since the file's last modification (see Figure 5-7) . 

Write-enable 

Read-enable 

I D IRN IB I RESERVED Iw I R I 
Backup

I I I Ren ame-enable 

Destroy-enable 

Figure 5-7. The access Attribute Field 

A bit set to 1 indicates that the operation is enabled; a bit cleared to 0 
indicates that the operation is disabled. The reserved bits are always 0. 

SOS sets bit 5 (the backup bit) of the access field to 1 whenever the file is 
changed (that is, after a CREATE, RENAME, CLOSE after WRITE, or 
SET_FILE_INFO operation). This bit is cleared to 0 whenever the file is 
copied by Backup III. This lets Backup III selectively back up files that 
have been changed since the last backup was made. 



91 • File Organization on Block Devices 

~
Only SOS may change bits 2-4. Only SOS and Backup III may 
~ change bit 5. 

5.2.5.4 The file_type Field 

The file_type field within an entry identifies the type of file described by 
that entry. This field should be used by interpreters to guarantee file 
compatibility from one interpreter to the next. The values of this byte are 
defined below: 

$00 = Typeless file (BASIC "unknown" file) 
$01 = File containing all bad blocks on the volume 
$02 = Pascal or assembly-language code file 
$03 Pascal text file 
$04 = BASIC text file; Pascal ASCII file 
$05 = Pascal data file 
$06 = General binary file 
$07 = Font file 
$08 = Screen image file 
$09 = Business BASIC program file 
$0A = Business BASIC data file 
$0B = Word Processor file 
$0C = SOS system file (DRIVER, INTERP, KERNEL) 
$0D,$0E = SOS reserved 
$0F = Directory file (see storage)ype) 
$10-$BF = SOS reserved 
$C0-$FF= ProDOS reserved 

5.2.6 Reading a Directory File 

Reading a directory file is straightforward, but your program must be 
written to allow for possible changes in the entry length and the number of 
entries per block: future versions of SOS may change these by adding 
more information at the end of an entry. Since these values are in the 
directory header, this flexibility is not difficult to achieve. 



92 SOS Reference Manual • 

The first step in reading a directory file is to open an access path to the 
file, and obtain a ref _ nurn. Using the ref _ nurn to identify the file, read the 
first 512 bytes of the file into a buffer. The buffer contains two two-byte 
pointers, followed by the entries: the first entry is the directory header. 
Bytes $1 F through $20 in the header (bytes $23 through $24 in the buffer) 
contain the values of entry_length and entries _per _block. 

Once these values are known, an interpreter can read through the entries 
in the buffer, using a pOinter to the beginning of the current entry and a 
counter indicating the number of entries examined in the current block. 
Any entry whose first byte is zero is ignored. When the counter equals 
entries _per_block, read the next 512 bytes of the file into the buffer. When 
a READ returns a bytes _read parameter of zero, you have processed the 
entire directory file. 

5.3 Storage Formats of Standard Files 

Each active entry in a directory file points (using its key_pointer field) to 
the key block of another directory file or to the key block of a standard file. 
An entry that points to a standard file contains information about the file: 
its name, its size, its type, and so on. 

Depending on its size, a standard file can be stored in any of the three 
formats explained below: seedling, sapling, and tree. An interpreter can 
distinguish between these three (using the file entry's storage_type field), 
but it need not, for an interpreter reads every standard file in exactly the 
same way, as a numbered sequence of bytes. Only SOS needs to know 
how a file is stored . Nevertheless, we think it is useful for programmers to 
understand how SOS stores data on a volume. 

The storage formats in this section apply to SOS 1.2. They may 

change in future versions of SOS. 


5.3.1 Growing a Tree File 

As a tree file grows, it goes through three storage formats, as explained in 
the following scenario. In the scenario, we start with an empty, formatted 
volume, create one file, then increase its size in stages. 



93 • File Organization on Block Devices 

This scenario is based on the block-allocation scheme used by 
SOS 1.2 on a 280-block flexible disk, which contains four blocks 
of volume directory, and one block of volume bit map. This 
scheme is subject to change in future versions of SOS. 

Larger capacity volumes might have more blocks in the volume bit map, 
but the process would be the same. 

A formatted, but otherwise empty, 280-block SOS disk is used like this: 

Blocks 0-1 Bootstrap Loader 
Blocks 2-5 Volume Directory 
Block 6 Volume Bit Map 
Blocks 7-279 Unused 

If you open a new standard file, one data block is immediately allocated 
to that file . An entry is placed in the volume directory, and it points to 
block 7, the new data block, as the key block for the file. The volume now 
looks like this: 

Blocks 0-1 Bootstrap Loader 
Blocks 2-5 Volume Directory 
Block 6 Volume Bit Map 

-+ Block 7 Data Block0 
Blocks 8-279 Unused 

This is a seedling file: its key block contains up to 512 bytes of data. If you 
write more than 512 bytes of data to the file, the file grows into a sapling 
file . As soon as a second block of data becomes necessary, an index 
block is allocated, and it becomes the file's key block: this index block 
can point to up to 256 data blocks (two-byte pointers). A second data 
block (for the data that won 't fit in the first data block) is also allocated. 
The volume now looks like this: 



94 SOS Reference Manual • 

Blocks 0-1 Bootstrap Loader Key Block Pointer 

Blocks 2-5 Volume Directory 
Block 6 Volume Bit Map 
B lock 7 Data B lock 0 

- Block 8 Index Block 0 
Block 9 Data Block 1 
Blocks 10-279: Unused 

This sapling file can hold up to 256 data blocks: 128K of data. If the file 
becomes any bigger than this, the file grows again, this time into a tree 
file . A master index block is-allocated, and it becomes the file 's key block: 
the master index block can point to up to 128 index blocks, and each of 
these can point to up to 256 data blocks. Index block 0 becomes the first 
subindex block, which is an index block pointed to by the master index 
block. In addition, a new subindex block is allocated, and a new data 
block to which it points. Here's a new picture of the volume: 

Blocks 0-1 Bootstrap Loader 
Blocks 2-5 Volume Directory 
Block 6 Volume Bit Map 
Block 7 Data Block 0 
Block 8 Index Block 0 
Blocks 9-263 Data Blocks 1-255 

- Block 264 Master Index Block ./" 
Block 265 I ndex Block 1 /' 
Block 266 Data Block 256 
Blocks 267-279: Unused 

As data are written to this file, additional data blocks and index blocks are 
allocated as needed, up to a maximum of 129 index blocks (one master 
index block and 128 subindex blocks), and 32,768 data blocks, for a 
maximum capacity of 16,777,215 bytes of data in a file. If you did the 
multiplication, you probably noticed that we lost a byte somewhere. The 
last byte of the last block of the largest possible file cannot be used 
because EOF cannot exceed 16,777,215. If you are wondering how such a 
large file might fit on a small volume such as a floppy disk, refer to the 
section on sparse files, later in this chapter. 



95 • File Organization on Block Devices 

This scenario shows the growth of a single file on an otherwise empty 
volume. The process is a bit more confusing when several files are 
growing (or being deleted) Simultaneously. However, the block allocation 
scheme is always the same: when a new block is needed, SOS always 
allocates the first unused block in the volume bit map. 

5.3.2 Seedling Files 

A seedling file is a standard file that contains no more than 512 data by1es 
($0 < = EOF < = $200). This file is stored as one block on the volume, and 
this data block is the file's key block. 

~ One block is always allocated for a seedling file, even if no data 
~ have been written to the file. 

The structure of such a seedling file looks like this (Figure 5-8): 

key_ pointer --_.. c;u
data Data Block 

$(1) s EOF S $200 block 51 2 bytes long. 

Figure 5-8. Structure of a Seedling File 

The file is called a seedling file because, if more than 512 data by1es are 
written to it, it grows into a sapling file, and thence into a tree file. 

The storage type field of an entry that points to a seedling file has the 
value $1 . 

5.3.3 Sapling Files 

A sapling file (see Figure 5-9) is a standard file that contains more than 
512 and no more than 128K bytes ($200 < EOF < = $20000) . A sapling file 
comprises an index block and 1 to 256 data blocks. The index block 
contains the block addresses of the data blocks. 



96 SOS Reference Manual • 

key_pointer -----l.......---,--r---,----r------, 
 Index Block: 

up to 256 2-byte 

pointers to data blocks. 


;-------,~,..-----, 

Figure 5-9. Structure of a Sapling File 

The key block of a sapling file is its index block. SOS retrieves data blocks 
in the file by first retrieving their addresses in the index block. 

The storage_type field of an entry that points to a sapling file has the 
value $2. 

5.3.4 Tree Files 

A tree file (see Figure 5-10) contains more than 128K bytes, and less than 
16M bytes ($20000 < EOF < $1000000) . A tree file consists of a master 
index block, 1 to 128 subindex blocks, and 1 to 32,768 data blocks. The 
master index block contains the addresses of the subindex blocks, and 
each subindex block contains the addresses of up to 256 data blocks. 

key_pOinter --..... r----,--,---.:--=-r-:---, Master Index Block: 
up to 128 2-byte pointers 
to index blocks. 

Figure 5-10. The Structure of a Tree File 



97 • File Organization on Block Devices 

The key block of a tree file is the master index block. By looking at the 
master index block, SOS can find the addresses of all the subindex 
blocks; by looking at those blocks, it can find the addresses of all the 
data blocks. 

The storage_type field of an entry that points to a tree file has the value $3. 

5.3.5 Sparse Files 

A sparse file is a sapling or tree file in which the number of data bytes that 
can be read from the file exceeds the number of bytes physically stored in 
the data blocks allocated to the file. SOS implements sparse files by 
allocating only those data blocks that have had data written to them, as 
well as the index blocks needed to point to them. 

For example, we can define a file whose EOF is 16K, that uses only three 
blocks on the volume, and that has only four bytes of data written to it. 
Create a file with an EOF of $0. SOS allocates only the key block (a data 
block) for a seedling file, and fills it with null characters (ASCII $00) . 

Set the EOF and mark to position $0565, and write four bytes. SOS 
calculates that position $0565 is byte $0165 ($0564 - $0200 * 2) of the 
third block (block $2) of the file . It then allocates an index block, stores 
the address of the current data block in position 0 of the index block, 
allocates another data block, stores the address of that data block in 
position 2 of the index block, and stores the data in bytes $0165 through 
$0168 of that data block. The EOF is $0569. 

Set the EOF to $4000 and close the file. You have a 16K file that takes 
up three blocks of space on the volume: two data blocks and an index 
block. You can read 16384 bytes of data from the file. but all the bytes 
before $0565 and after $0568 are nulls. Figure 5-11 shows how the file 
is organized: 



98 SOS Reference Manual • 

key pointer 

- ~M0n12,----_--, 
Key Block IIII I 

EOF = $4000

I1. b~ blook $2 block $3 block $1 F 
r---------,
I , 
IL ________ .JI~~~kS 1 1 ,-I--I'r'-I---I[~_-_------] 

$0 $1FF $400 ! $5FF $3FFF 

bytes $565 .. $568 

Figure 5-11. A Sparse File 

Thus SOS allocates volume space only for those blocks in a file that 
actually contain data. For tree files, the situation is similar: if none of the 
256 data blocks aSSigned to an index block in a tree file have been 
allocated, the index block itself is not allocated. 

On the other hand, if you CREATE a file with an EOF of $4000 (making it 
16K bytes, or 32 blocks, long), SOS allocates an index block and 32 data 
blocks for a sapling file, and fills the data blocks with nulls. 

~ The first data block of a standard file, be it a seedling, sapling, or 
~ tree file, is always allocated. 

If you read a sparse file, then write it, the copy will not be sparse: 
all the phantom blocks will be written out as blocks full of nulls. 
The Apple III System Utilities program, on the other hand, can 
distinguish between sparse files and non-sparse files and make a 
sparse copy of a sparse file. Backup III also handles sparse files 
correctly, but it should not be used to make copies, because 
when it backs up a file, it clears the file's backup bit, so that a 
backup of all modified files will overlook the sparse file. 

5.3.6 Locating a Byte in a Standard File 

The mark is a three-byte pointer that is normally used to specify a logical 
byte position within a standard file, using the standard model of a block 
file . It can also be used to pinpoint the block number and byte number 



99 • 	 File Organization on Block Devices 

within that block where that byte can be found on a volume. To do so, the 
mark is divided into three fields, shown in Figure 5-12: 

Bit 23 17161 8 	 7 '" 

mark I : i~d+_ : ~al~_~/Oik: I +~k: I : : : :by~e: : : I 
Used by Tree only Tree, sapling All three 

Figure 5-12. Format of mark 

index_ block (7 bits): 

If the file is a tree file, this field tells which subindex block points to the 
data block. If i = index_block, the low byte of the subindex block address 
is at byte i of the master index block; the high byte is at byte (i+$100) . 

data_block (8 bits): 

If the file is a tree file or a sapling file, this field tells which data block is 
pointed to by the selected index block. If j = data_block, the low byte of the 
data block address is at byte j of the index block; the high byte is at byte 
U+ $100). 

byte (9 bits): 

For tree, sapling, and seedling files, this field tells the absolute position of 
the byte within the selected data block. 

@ This format for mark applies to SOS 1.2. Future versions of SOS 
may use indexing schemes that divide the 24 bits differently. If an 
interpreter uses mark as a three-byte pointer to a logical byte 
position in a file, it will be unaffected by such changes; if it 
meddles with index blocks, it may fail catastrophically, trashing 
your disk in the process, under some future version of SOS. 

5.4 Chapter Overview 

The following figures summarize the information in this chapter . 

• 	 Figure 5-13, Disk Organization, shows disk layout and directory 
structure. 

• 	 Figure 5-14, Header and Entry Fields, explains the individual 
fields in the preceding figure. 



- - -

100 SOS Reference Manual 	 • 

BLOCKS ON A VOLUME 

block 2 
block 0 block 1 volume 
loader loader directory 

(k~y block ) 

block n block n • t 
vo lume volume 

directory bit map 
{Iasl b lockl (I irst blOCk ) 

block p 
volume ~]l 
bitmap 0:'= 

(l~rSI block) 

BLOCKS OF A DIRECTORY FILE 

VOLUME DIRECTORY OR SUBDIRECTORY 


Field 
length 

, bY" 

15 bytes 

8 bytes 

4 bytes 

1byte 

, byte 

1 byte 

1 byte 

\ byte 

2 bytes 

2 bytes 

2 byles 

one 
b'OCI< 

HEADER 

VOLUME DIRECTORY 


Found in key block 

of volume directory. 


Byte 01 
Block 

1'''''·1ype I nome".ng"1:; 
tie AlUM 

",....ed 

c,~.Uon 

,onion 

rrW'I.vtrlkm 

IICCOU 

en'ry "eng'h 
_"Irift.per_block 

'''-.cOIA'lI 

bli.map.potnter 

lotal. blocks 

5'3 

$'4 

$,B 

5 ' C 

5'0 
5,E 

5,F 

520 

52' 
522 

$23 

524 

525 

$26 
527 

528 
529 

S2A 

Key Block Any BlOCk Last BlOck 

0 
pomter 

header 

efllry 

entries 

enl'Y 

entry 

unused 

Blocks of • d6reclory: 

Not necessarily contiguous. 

linked by polnte>..... 


Header describes the 
directory file and its 
contents 

/ 	 Entry descnbes 
and points 10 a lila 
(subairectory or 
standard) In thaI 
directory. 

FILE ENTRY 

pointer 

poq1ler 

entry 

en"y 

more 
entries 

entry 

entry 

unused 

HEADER 

- ..... 

/ 

pennle r 

0 

enl ry 

entry 

more 
entries 

en,ry 

entry 

unused 

SUBDIRECTORY SUBDIRECTORY OR 
Found in key block STANDARD FILE 

of subdirectory. Found in any directory file block. 
Field By1eof Field Enlry 


Length BlOCk Length Offset 


storage_type name_~nglh 

file.name 

reserved 

creation 

venlon 
mAn.verslon 

acceu 
enlry-,ength 

en'nn per_block 

fh.count 

parent.poInter 

parent.entry_runber 
parent_~try_~ngth 

$04 1 byle1 byte storage_type ".me_length 

;: lite_name 

lilt_type 

key_potnler 

blocks_uted 

EOF 

cruUon 

version 
min_version 

access 

aux}ype 

'all_mod 

'header_pointer 

$00 

$05 50' 
IS by1es ~15by1es ~ 

5 ' 3 $0F 
5,4 t by1e 5'0 

•S11 
2 bytes 

$'2 
5,3 

2 by1es 
5'4 
S'5 

8 bytes J by1es 
$,B 517 
S,C S'8 
510 

4 bytes 4 bytes 
5'E 
51> 5'B 

, byte $20 5 , C 1 byte 
1 byte $2' 1 by1e 5ID 

$22 1 by1e1 byte 5,E 
5,F, byte $23 

2 by1es 
1 byte 52' 520 

525 52 ' 
526 

2 bytes 

£1 bytes 
527 

2 byles 
$28 524 

$25loyte $29 
2 bytes 

1 byte S2A 526 



101 • File Organization on Block Devices 

SUBDIRECTORY FILE: storage_type = $0 
Key Block Any Block Last BlOCk 

-0 
pointer 

header 

I--- pointer 

pointer 

en try 

-~ - pOln fer 

0 

entry 

entries entries entnes 

1 f { f 1: 1: 

SEEDLING FILE: storage_type =$1 
key_pointer -r-------, 

Data Block 
512 bytes 101"9 

S'''' EOF " S2Il0 

SAPLING FILE: storage_type = $2 
key_pOinter - - - 'rc.,..,.,,,,,-=== Index 8 lock: 

up 10 256 2-bylo 

TREE FILE: storage_type = $3 

S20000 . 

IV.aslar I ndex Block 
up \0128 2-byle pOlntel!> 

tol1lOe)C bl oc; ks 

I 
~ 
~ .... 

Figure 5-13. Disk Organization 



102 SOS Reference Manual • 

byte 1 byle0 

76543210 76543210 

1 

"-crea-----'Uon ---------1 : : ~ea~ : : 1 ~+h: 1 : ~a~ : 1 

last mod 
teS 

L-(4b'Y---I _____ •••_1<0:01 : ~o+ : 1<01 : ~in~te: : 1) 

byte3 byte 2 

Write-enable 

Read-enable 

ID I RNI B I RESERVED I wi R I 

Backup 
$0 = inactive file entry I I I Rename-<lnable 
$1 = seedling file entry 

Destroy-enable$2 = sapling file entry 
$3 = tree file entry name,length = length of file_name ($1,$F)
$D = subdirectory file entry 
$E = subdirectory header file_name =$1-$F ASCII characters: lirst = leiters 

$F =volume directory header rest are leiters, digits, periods. 

key _pointer = Block address ollile's key block 

blocks_used = total blocks lorlile 

EOF =byte number for end 01 Ii Ie ($O-$FFFFFF)
$00 = type less file 

version, min _version = 0 lor SOS 1.2 
S01 = bad block file 

entryJenglh =$27 lor SOS 1.2 
$02 = Pascal or assembly code file 

enlrles ,per_block = $0D lor SOS 1.2 
$03 = Pascal text lile aux_lype =delined by Interpreter 
$04 = Basic lext: Pascal ASCII file file _count':" total files In dIrectory 

$05 =Pascal data file bit,map _poinler = block address 01 bit map 

$06 =General binary file lolal,blocks =lola I blocks on volume 

$07 = Font file parent,pointer = block address conlaining entry 

$08 = Screen image file parent,entry _number =number in that block 

S09 = BASIC program file parent,entry _Ienglh = $27 lor SOS 1.2 

header,poinler = block address 01 Key block$0A =BASIC dala file 
01 entry's directory. 

S0B =Word Processor file 

$0C =SOS system file (DRIVER, INTERP, KERNEL) 

S0D = Reserved 

$0E = Reserved 

$0F = Directory file 

$10'$BF =SOS reserved 

$C0-SFF = ProDOS reserved 

Figure 5-14. Header and Entry Fields 



Events and Resources 

108 6.1 .1 Arming and Disarming Events 
108 6.1.2 The Event Queue 
109 6.1 .3 The Event Fence 
110 6.1.4 Event Handlers 
112 6.1 .5 Summary of I nterrupts and Events 
112 6.2 Resources 
112 6.2.1 The Clock 
113 6.2.2 The Analog Inputs 
114 6.2.3 TERMINATE 
114 6.3 Utility Calls 



104 808 Reference Manual • 

6. 1 Interrupts and Events 

An interrupt is a signal from a peripheral device to the CPU. When the 
CPU receives an interrupt, it transfers control to 80S, which saves the 

current state of the executing program and calls an interrupt handler, 
located in the driver of the interrupting device. After the interrupt is 
handled, control is returned to the program that was interrupted. 

Interrupts allow device drivers to operate their devices asynchronously. 
By using interrupts, a device can operate more efficiently and allow the 
interpreter to continue running while a long I/O operation is in progress. 
For example, when you send a long buffer of text to the .PRINTER driver, 
the driver does not process the text all at once; instead, it immediately 
returns control to the interpreter, and the interpreter can do something 
else while the interrupt-driven .PRINTER driver processes the buffer 
for output. 

The Apple III/80S system fully supports interrupts from any internal or 
external peripheral device capable of generating them. To use the system 
efficiently, an interpreter must be designed to work properly even if 
interrupted. Thus, the interpreter cannot contain any time-dependent 
code (such as timing loops), except to provide a guaranteed 
minimum time. 

Interrupts are discussed in detail in the Apple III SOS Device Driver 
Writer's Guide. 

Interrupts are ranked in priority by the priorities of the devices on which 
they occur. Each device has a unique priority, assigned at system 
configuration time. In addition, when an interrupt occurs on a device, all 
further interrupts from that device are locked out until that interrupt has 
been fully processed. For these reasons, SOS never has to deal 
simultaneously with two interrupts of equal priority. Conflicts between 
interrupts of different priorities are resolved in favor of the higher priority: 
a higher-priority interrupt can suspend processing of a lower-priority 
interrupt, but not vice versa. 



105 • Events and Resources 

SOS also supports the detection and handling of events. An event is a 
signal from a device driver to an interpreter that something of interest to 
the interpreter has happened. When an event of sufficient priority occurs, 
SOS suspends the interpreter and saves its state, then calls an event 
handler to process the event, then returns control to the portion of the 
interpreter that was suspended. By using events, an interpreter can 
respond to outside occurrences without spending all its time watching 
out for them. 

The most common kind of event is triggered by a software response to a 
hardware interrupt: a device driver (such as the .CONSOLE driver) defines 
a certain occurrence (such as a press of the space bar) as an event, and 
allows interpreters or assembly-language modules to respond to that 
event. In principle, however, events need not be triggered by interrupts: an 
event can signal, for example, an overflow on a communication card, a 
"message received" condition on a network interface, or a "new volume 
mounted" condition on a mass-storage device. Any occurrence or 
condition a driver can detect can be signaled as an event. 

S SOS currently supports two events, both detected by the 
.CONSOLE driver: the Any-Key Event and the Attention 
Event. Both of these are produced by interrupts from the 
keyboard. These events are described in the Apple III Standard 
Device Drivers Manual. Additional events may be defined 
by a device driver: for details, see the Apple III SOS Device Driver 
Writer's Guide. 

The most common event sequence is illustrated below. An event is 
armed when the interpreter prepares a device driver to Signal a certain 
occurrence (in this case, a keypress) as an event. The interpreter supplies 
the address of a subroutine to be called when the expected event occurs. 

When the device driver detects the event (in this case, by means of an 
interrupt), the driver places the event into a queue and returns to the 
interrupted process, whether interpreter or SOS. This is illustrated by 
Figure 6-1 . 



renee anua • 

interpreter event 
handler 

driver interrupt 
handler 

detect 

interrupt 


queue 

event 


case A or B 

Figure 6-1. Queuing An Event 

Any time SOS is ready to return control to the interpreter, such as after 
executing a call or processing an interrupt, it checks the event queue. If 
it finds an event of a priority above the preset event fence (see Figure 6-2) , 
SOS calls an event-handler subroutine within the interpreter. When the 
event has been processed, SOS returns control to the main body of the 
interpreter. 

case A: priority )fence 

interpreter event 
handler 

driver interrupt 
handler 

process 
event 

return to 
interrupted code 

Figure 6-2. Handling An Event: Case A 



• Events and Resources 107 

If SOS finds no event above the fence (see Figure 6-3), the event remains 
queued until the fence is set (by a SET_FENCE call) below the event's 
priority. Then, the event will be processed as soon as the call is 
completed. 

case B: priority ::; fence 

return to 
interrupted code 

event remains 
queued, but 
is not 
processed 

SOS call set fence <: priority 

process 
event 

return to code 
following SOS call 

Figure 6-3. Handling An Event: Case B 

An event need not be triggered by an interrupt: it can occur 
as a result of any operation within a device driver. But events are 
detected only by device drivers. and are handled only by an 
event-handler subroutine within an interpreter. An event handler 
will be called only after a SOS call or an interrupt is processed. 

interpreter event 

handler 


driver interrupt 
handler 



e erence anua • 

6.1.1 Arming and Disarming Events 

SOS has not defined a uniform mechanism for arming and disarming 
events: this is left up to the device driver that supports the event. The two 
existing events are armed and disarmed by D _ CONTROL calls to the 
.CONSOLE driver. 

An interpreter arms an event by passing three items to the device driver: 
the address of the event handler, a one-byte event identifier (ID), and a 
one-byte event priority. The event ID indicates the nature of the event, and 
allows the event handler to distinguish different events. For example, the 
event ID for the Any-Key Event is 1; the event ID for the Attention Event is 
2. The event priority indicates the importance of the event, and determines 
when, or whether, the event will be processed. 

An interpreter disarms an event by arming it with a priority of zero: this 
ensures that it will be ignored. 

6.1.2 The Event Queue 

More than one event can be armed at once, and more than one event can 
occur during a driver's operation . SOS has a priority-queue scheme for 
keeping simultaneous events in order. 

When a driver detects an event, it assigns an ID, a priority, and an event
handler address to the event. (These are the values the interpreter passed 
to the driver when the event was armed .) The ID, priority, and address are 
placed in an event queue (see Figure 6-4) maintained by SOS. 



• Events and Resources 109 

$FF $20 $1F $1F ) Priority 

Identifier 

} 
) 

Address 

.. 
First Second Third Last 

Figure 6-4. The Event Queue 

The queue is arranged in order by priority: an event of higher priority will 
be handled first. The highest priority is $FF: this priority guarantees that 
an event will be handled before any other event. Events of equal priority 
are queued first-in, first-out (FIFO): an event with the same priority as 
another event already in the queue is placed after the other event. Events 
of priority $00 can never be handled, so they are not queued. 

6.1.3 The Event Fence 

The priority ordering of the event queue determines not only when an 
event will be handled, but also whether it will be handled at all. SOS 
maintains an event fence (see Figure 6-5) that determines which events 
will be processed and which will not. 

The fence is a value from $00 to $FF that is compared to the priority value 
of each event in the queue. Only those events whose priority is greater 
than the fence will be handled: setting the fence to $FF ensures that no 
events will be handled. 



110 SOS Reference Manual • 

$FF $20 $1F $0F $09 

.. 
First Second Third Not Processed 

fence = $10 

Figure 6-5. The Event Fence 

All events above the fence are handled, in order, and removed from the 
queue before SOS returns control to the suspended portion of the 
interpreter. Events below the fence remain in the queue, and may be 
handled when the fence is lowered. 

Two SOS calls, SET_FENCE and GET FENCE, allow an interpreter to set 
and read the value of the fence. If the interpreter lowers the fence while 
events are in the queue, previously queued events whose priority values 
are greater than or equal to the new value of the fence will be handled 
immediately after the call is completed. 

6.1.4 Event Handlers 

An event handler is a subroutine in the interpreter that is called by SOS in 
response to an event, under certain conditions. An event can only be 
processed when the interpreter is executing. If a SOS call is being 
executed when an event occurs, the event is queued; after the call is 
executed, SOS will call the interpreter's event handler if the event's priority 
is higher than the event fence. When the event handler is called, the 
previous state of the machine is stored on the interpreter's stack, and the 
event 10 byte is stored in the accumulator; then the event is deleted from 
the queue. 



• Events and Resources 111 

Among the items saved on the stack is the current value of the event 
fence. The fence is then raised to the level of the current event until the 
event has been processed: this ensures that no event of lower priority will 
preempt the current event, now that the current event is no longer in the 
queue. Figure 6-6 illustrates the system status during event handling. 

A event Id 

x 

1,-----------,1
y 

s ~I-------s-------.I ~~-----f~--c-e----~ 
s + 2 SOS 

return 

plL..-___---..I 

: ~ : I--_-_-_-_-~'-~------__-~ d':~"__ ___-_-I t:: 
Figure 6-6. System Status during Event Handling 

The event handler uses the event ID to determine the reason it was called 
and to take appropriate action. 

When the event handler is finished , it returns control to SOS via an RTS; 
SOS then restores the system to its previous state, and returns control to 
the suspended portion of the interpreter. Since the previous state included 
the event fence, any fence set by the event handler will be lost, unless that 
fence value is passed to the body of the interpreter and reestablished 
by it. 



-

112 SOS Reference Manual 	 • 

6.1.5 Summary of Interrupts and Events 

• 	 Interrupts are generated by hardware; events are generated by 

software. 


• 	 Interrupts are ranked by the priorities assigned to the devices 

they occur on; events are ranked by the priorities assigned to 

them by the drivers that detect them. 


• 	 Interrupts are stacked; events are queued. 

• 	 Interrupts are handled by an interrupt handler in a device driver; 
events are detected and queued by a device driver, and 
processed by an event handler in the interpreter. 

• 	 Interrupts can preempt the interpreter or SOS; events can only 

preempt the interpreter. 


• 	 I nterrupts cannot be disabled by the interpreter; events can be 

disabled by setting the event fence to $FF. 


6.2 Resources 

The Apple III has two resources accessible by special SOS calls: the 
system clock and the analog ports. 

6.2.1 The Clock 

The Apple III system clock runs continuously: when the computer is 
turned off, the clock runs on batteries. It keeps time down to the 
millisecond, and can be read and set by SOS. 

The clock is set and read by two calls: SET_TIME and GET_TIME. To set 
the time, the calling program writes it as an ASCII string into an 18-byte 
buffer in memory, then passes SOS the address of the buffer: SOS then 
sets the clock to the specified time. To read the time, the calling program 
passes SOS the address of an 18-byte buffer: SOS then writes the cu rrent 
time into this buffer. 



• Events and Resources 113 

If the computer has no functioning clock, SOS responds to a SET_TIME 
call by saving the time it receives. SOS returns this time unchanged upon 
a subsequent GET_TIME call. 

Both calls express the time as an 18-byte ASCII string of the following 
format: 

YYYYMMDDWHHNNSSUUU 

The meaning of each field is as below: 

Field Meaning Minimum Maximum 

YYYY: Year 1900 1999 
MM: Month 00 12 December 
DO: Date 000r01 28, 30, or 31 

W: Day 01 Sunday 07 Saturday 
HH: Hour 00 Midnight 23 11:00 p.m. 
NN: Minute 00 59 
SS: Second 00 59 

UUU: Millisecond 000 999 

For example, Monday, December 29, 1980, at 9:30 a.m. would be specified 
by the string "198012290093000000". 

On input, SOS replaces the first two digits of the year with "19" and 
ignores the day of the week and the millisecond . SOS calculates the day 
from the year, month, and date. 

SOS does not check the validity of the input data. The clock rejects any 
invalid combination of month and date. February 29 is always rejected. 

The clock does not roll over the year. 

6.2.2 The Analog Inputs 

The GET_ANALOG call reads the analog and digital inputs from an 
Apple III Joystick connected to port A or B on the back of the Apple III . It 
can also read compatible signals from other devices. 



114 SOS Reference Manual • 

6.2.3 TERMINATE 

The TERMINATE call provides a clean exit from an interpreter. 
It clears memory, clears the screen, and displays the message INSERT 
SYSTEM DISKETTE AND REBOOT on the screen. The TERMINATE call 
is useful as part of a protection scheme that locks out the NMI. Such a 
scheme allows only one way of leaving the program, and erases it 
completely afterward. 

~ Before using this call , an interpreter must close all open files. This 
~ will ensure that no half-written buffers are left in limbo . 

6.3 Utility Calls 

These calls deal with the system clock/ calendar, the event fence, the 
analog input ports, and other general system resources. The name of 
each call below is followed by its parameters (in boldface) . The input 
parameters are directly-passed values and pointers to tables. The output 
parameters are all directly-passed results. The SOS call mechanism is 
explained in Chapter 8; the individual calls are described fully in Chapters 
9 through 12 of Volume 2. 

SET FENCE 

fence: value 

This call changes the current value of the user event fence to the value 
specified in the fence parameter. Events with priority less than or equal to 
the fence will not be serviced until the fence is lowered. 

GET FENCE 

fence: result 

This call returns the current value of the user event fence. 



• Events and Resources 115 

SET TIME 

time: pointer 

This call sets the current date and time. SET_TIME attempts to set the 
hardware clock whether it is operational or not. It also stores the new time 
in system RAM as the last known valid time: this time will be returned by 
all subsequent GET_TIME calls if the hardware clock is absent or 
malfunctioning. 

GET TIME 

time: pointer 

This call returns the current date and time from the system clock. If the 
clock is not operating, it returns the last known valid date and time from 
system RAM. If the system knows no last valid time, GET_TIME returns a 
string of 18 ASCII zeros. 

GET ANALOG 

joy_mode: value; joy_status: result 

This call reads the analog and digital inputs from an Apple III Joystick 
connected to port A or B on the back of the Apple III. 

TERMINATE 

This call zeros out memory, clears the screen, displays INSERT SYSTEM 
DISKETTE & REBOOT in 40-column black-and-white text mode on the 
screen, and hangs, until the user presses CONTROL-RESET to reboot the 
system. This call uses no parameters. 



116 SOS Reference Manual • 



Interpreters and Modules 

• Interpreters and Modules 117 

118 7.1 Interpreters 
119 7.1.1 Structure of an Interpreter 
121 7.1 .2 Obtaining Free Memory 
125 7.1.3 Event Arming and Response 
125 7.2 A Sample Interpreter 
131 7.2.1 Complete Sample Listing 
143 7.3 Creating Interpreter Files 
143 7.4 Assembly-Language Modules 
144 7.4.1 Using Your Own Modules 
145 7.4.2 BASIC and Pascal Modules 
146 7.4.3 Creating Modules 



- --

118 SOS Reference Manual 

This chapter describes the two kinds of assembly-language programs that 
you can use: interpreters and modules. It discusses their structures, 
operating environments, and special characteristics; it explains how to 
create them and how to get them successfully loaded into the system. 

7. 1 Interpreters 

The interpreter is the assembly-language program that SOS loads into 
memory from the file SOS.INTERP and executes at boot time. The 
interpreter can be a stand-alone interpreter, like Apple Writer III, or it can 
be a language interpreter, like the BASIC and Pascal interpreters. A 
stand-alone interpreter, normally an application program, provides the 
interface between you and SOS. A language interpreter can either provide 
this interface directly, as does BASIC, or support a program that does, as 
does Pascal, or both. A language interpreter can load and run your 
program in response to your command, or it can load and run a greeting 
program at boot time. 

The interpreter is stored in its entirety in the file SOS.INTERP in the 
volume directory of the boot diskette. Additional functions can be added 
to the interpreter by use of assembly-language modules (see section 7.4) . 

An interpreter can 

• Make SOS calls; 

• Store and retrieve information in memory; and 

• Handle events. 

The SOS calls made by an interpreter can interact with you through 
devices, store or retrieve data, or request memory segments in which to 
store data. The memory accesses made by an interpreter can manipulate 
any information in the memory segments owned by the interpreter. The 
events handled by the interpreter can let it respond to special 
circumstances detected by device drivers. 



• Interpreters and Modules 119 

7.1.1 Structure of an Interpreter 

An interpreter is stored in a file named SOS.INTERP in the volume 
directory of a boot diskette. The data in this file consists of two parts: 
a header and a part containing code-as shown in Figure 7-1. 

label 1 
2 bytes 

/ 
/ 

opt_header)ength =m 

header 
part

opt_headerm bytes 

2 bytes 

2 bytes 

"byt" 1L-_____cO_de_p_a_rt_____J 

loading_address 

code_length =n 

Figure 7-1. Structure of an Interpreter 



120 SOS Reference Manual • 
The header consists of five fields, described below: 


label (8 bytes): 


This field contains eight characters 


SOS NTRP 

including the space. This is a label that identifies this file as an interpreter. 
The letters are all uppercase ASCII with their high bits cleared. 

opt_ header_length (2 bytes): 

The next field contains the length of an optional header information 
block: if no optional header block is supplied, these bytes should 
be set to $0000. The length does not include the two bytes of the 
opt_ header_length field itself. 

optheader (opt _ header_length bytes) : 


If the previous field is nonzero, the optional header block comes here. 


loading_address (2 bytes): 


This field is the loading address (in current-bank notation) of the code 

part that must go into the highest bank of the system. 


code-,ength (2 bytes): 


This field is the length in bytes of the code part, excluding the header. 


For example, an interpreter that begins at location $9250 in the highest 
bank of the system, is $25AF bytes long, and has no optional header 
would have a header part like this: 

.ASCII "SOS NTRP" ; label forSOS.INTERP 

.wORD 0000 ; opt_headerJength =0 

.wORD 9250 ; loading_address 

.wORD 25AF ; codeJength 

Interpreters are always absolute code, and must start at a fixed 
location. A program in relocatable format cannot be used as an 
interpreter. 



• Interpreters and Modules 121 

The header is immediately followed by the code part of the interpreter. 
During a system bootstrap operation, the code part is placed at the 
address given in the header, so that the first byte of code resides in the 
location specified by loadin9_ address (location $2:9250 for the above 
example, in a 128K system). When loading is completed, execution 
of the interpreter begins at this location: the header part is discarded. 

SOS requires only that the first byte of the code part be executable 
interpreter code; the rest of the code part of the interpreter may 
be in any format. 

Z 1.2 Obtaining Free Memory 

An interpreter can use any and all memory that is not al ready allocated 
to SOS or device drivers, but first it must request this memory from SOS. 
The REQUEST _ SEG and FIND _ SEG calls to SOS can be used by an 
interpreter to request an area of memory in which to store data. 

By allocating a segment of memory for its exclusive use, the interpreter 
ensures that no other code-the SOS file system, a device driver, an 
invocable module-will use that segment for another purpose. SOS 
allocates by an honor system: it protects allocated memory from conflict, 
but cannot prevent the use of unallocated memory. You can avoid 
memory conflict entirely by always allocating memory before use and 
deallocating it after use. 

@ Using unallocated memory can have dramatic results. When an 
interpreter overwrites a file's I/O buffer, the system crashes. It 
does so to avoid trashing a disk: since the buffer contains block
allocation information as well as the interpreter's data, SOS would 
compromise the entire disk if it wrote out a buffer altered by the 
interpreter. To avoid this, SOS comes down with a SYSTEM 
FAILURE 16 message. When this happens, the data in the I/O 
buffer, as well as the data in memory, are lost. 

The piece of interpreter code given below uses the FIND _ SEG call 
(described in Chapter 12 of Volume 2) and the segment-to-extended 
address conversion described in section 2.2.3.1. It requests a 1 K segment 
of memory (consisting of four adjacent memory pages) and fills that 
segment w ith zeros. 



122 SOS Reference Manual 	 • 

The first part of this procedure is the call to SOS to find a segment of the 
appropriate size. This is done with a FIND _ SEG call. 

FINDSEG 	 .EQU 041 

FINDIT 	 BRK Perform the SOS call 
.BYTE FINDSEG FIND_SEG 
.wORD FSPARAMS with the required parameters here. 
BEQ CONVERT IF successful, THEN process addresses. 
LOA PAGES ELSE see how big it can be. 
BNE FINDIT IF any free memory exists, THEN ask again. 
JMP ERRORHALT ELSE stop execution. 

FSPARAMS 
.BYTE 06 ; Six parameters for FIND_SEG: 

SRCHMOD .BYTE 00 ; Seg must be in one bank 
SEGID .BYTE 11 ; I'll call it seg, 11 , 
PAGES .wORD 04 ; Ask for 1 K of memory 
BASE .wORD 0000 ; "base" result parameter 
LIMIT .wORD 0000 ; "limit" result parameter 
SEGNUM ,BYTE 00 ; "seg_num" result parameter 
EXTLIMIT ; Place to store (extended form of) 

.wORD 00 ; limit bank and page, 

Once the FIND _ SEG call succeeds, the values at BASE and LIMIT contain 
addresses in segment-address form of the first and last pages in the 
segment. Now the base and limit addresses must be converted into 
extended form to be used in clearing the memory in that segment. The 
first part of this process is determining where the segment is located: in 
the S-bank, in bank 0, or in another bank in bank-switched memory. 

CONVERT 	 LOA BASE Get bank number of segment 
BEQ SZBANK Is it in bank 0? 
CMP #0F Is it in low S-bank? 
BEQ SZBANK 
CMP #10 Is it in high S-bank? 
BEQ SZBANK 

For the general case (any bank but S or 0), the conversion involves 
calculating the proper X-byte and creating the two-byte address 
for the pointer. 



Interpreters and Modules 123 

ANYBANK CLC ; Turn bank number into X-byte 
AOC #7F ; XX = $80 + bb - 1 
STA 1651 ; Store it in X-page for pointer. 
LOA BASE + 1 ; Get page number in bank 
CLC ; Turn into high part of address 
AOC #60 ; NNNN := pp00 + $6000 
STA 51 ; Store into zero-page pointer 
LOA #00 ; Create low part of $00 
STA 50 ; Store into zero-page pointer 
LOA LIMIT ; Get bank number of segment. 
CLC ; Turn into X-byte. 
AOC #7F ; XX = $80 + bb - 1 
STA EXTLIMIT ; Store it in X-page for pOinter. 
LOA LIMIT + 1 ; Get page number of limit. 
CLC ; Turn into extended form for 
AOC #60 later comparison with page 
STA EXTLIMIT + 1 being zeroed, 
.IMP CLEARIT ; and proceed to clear the segment. 

For the case where the segment resides in bank 0 or the S-bank, the 
conversion is much easier: just use an X-byte of $8F and create the proper 
two-byte address. 

SZBANK 	 LOA #8F ; Use an X-byte of $8F 
STA 1651 
LOA BASE + 1 ; Get page number in bank 
STA 51 
LDA #00 ; Create low part of $00 
STA 50 
LOA #8F ; Use limit X-byte of $8F 
STA EXTLIMIT 
LOA LIMIT + 1 ; Convert page number of limit 
STA EXTLIMIT + 1 to extended form. 

Now an extended pointer has been created and is stored in locations 
$0050, $0051, and $1651 . This pointer indicates the beginning of the 
memory range allocated by SOS in the FIND SEG call. 

A process similar to the above can be used to convert the limit segment 
address into another extended pointer to define the end of the segment. 

® Remember that the limit address specifies the last page in the 
segment. Converting the limit address into a pointer using the 
method shown above will give you a pOinter to the beginning of 
this page, not the end. Keep this in mind when comparing two 
pOinters derived from base and limit segment addresses. 



- -

124 SOS Reference Manual 	 • 

Once the pointers are set up, a simpler form of the increment loop 
described in section 2.4.2.1 can be used to scan through every location 
in the segment and, in this example, set each byte to $00. Because the 
FIND _ SEG call requested that the entire segment reside in one bank, 
the increment loop does not need to increment the X-byte of the pointer, 
or compare the base X-byte to the limit X-byte. 

LOY #00 	 ; Use Y as an index in each page. 
STORE 	 LOA #00 ; Value to put in each location. 

STA (50),Y ; Extended-address operation. 
INY ; 00 next byte in page. 
BNE STORE 
INC 51 ; Move to next page. 
LOA 51 ; Get high part of address. 
CMP EXTLIMIT + 1 ; Compare with high part of limit. 
BCC STORE ; If pointer.high < = limit.high, 
BEQ STORE clear another page. 

A program that wishes to use more than 32K bytes of memory must 
handle the incrementing and comparing of X-bytes in a loop like this: 

LOY #0 	 ; Use Y as an index in each page 
STORE 	 LOA #0 ; Value to put in each location. 

STA (50),Y ; Extended-address operation. 
INY ; 00 next byte in page 
BNE STORE 

INC 51 ; Move to next page 
BNE CHECK ; If same bank, check limit 
LOA #80 else 
STA 51 set page to $80 
INC 1651 and increment X-byte 

CHECK 	 LOA 1651 ; Compare X-byte to 
CMP EXTLIMIT limit X-byte 
BCC STORE ; If less than, clear page 

LOA 51 else compare page 
CMP EXTLIMIT + 1 to limit page 
BCC STORE ; I f less than 
BEQ STORE ; or equal, clear page 



• Interpreters and Modules 125 

7.1.3 Event Arming and Response 

To arm an event, an interpreter may pass the starting address of its event 
handler to a device driver that can detect the event. When the event 
occurs, the interpreter's event handler will be called. One way to arm an 
event is by a 0_CONTROL call to a device driver. 

For example, assume that the .CONSOLE device driver defines a certain 
keypress as an event. An interpreter that wishes to use this feature would 
include a subroutine that is to be called each time that key is pressed. The 
interpreter would make a 0_CONTROL call to the .CONSOLIE driver, 
passing it the ASCII code of the keypress to detect and the address of the 
event handler. When the key is pressed, the console queues the event 
handler's address, and SOS calls the event handler to handle the 
keypress. 

The 0 CONTROL calls that arm an event for a given device driver are 
described in the documentation accompanying that driver. For the 
.CONSOLE events, see the Apple III Standard Device Drivers Manual. 

7.2 A Sample Interpreter 

This section illustrates the design and construction of a very simple 
interpreter. The example is simple, but has all the parts an interpreter 
must have. It shows how SOS calls are made (see Chapter 8 for a full 
explanation), and how events are handled. The complete listing of the 
interpreter is shown in the next section; in this section we explain 
portions in detail. 

® This model is intended for demonstration only. It does not fully 
show all features of SOS (such as memory allocation) available to 
an interpreter, nor does it contain comprehensive error-checking 
and debugging aids. Use this model only to gain insight into the 
construction of an interpreter; please do not base your own 
designs upon it. 

This program, SCREENWRITER, reads a byte from the keyboard, then 
writes it out to the screen, without filtering out control characters. It writes 
explicitly, without using screen echo. 



126 SOS Reference Manual 

The interpreter contains an event mechanism. When CONTROL-Q is 
read, the console driver detects it as an event. The event is processed 
when control next returns to the interpreter. If the character typed before 
the CONTROL-Q is ESC, the event handler beeps thrice and issues a 
TERMINATE call ; if not. the event handler just beeps thrice. 

This interpreter is deliberately inconsistent in style, in order to show 
different ways of coding SOS calls. Some calls are coded in line; some, 
as subroutines. Some are coded with a macro, SOS; some are not. The 
macro itself can use the SOS call number, or the number can be given 
the name of the call , via an .EQUate statement. 

The syntax for a SOS call using the SOS macro is 

SOS call_num, parameter_list pointer 

For example, the call 

SOS READ, READLIST 

uses the label READ, which has been defined as $CA by an .EQUate. This 
call could also have been coded as 

SOS 0CA, READLIST 

READLIST is a pointer to the required parameter list. In this sample 
interpreter, the required list precedes the call, as the Apple III Pascal 
Assembler accepts backward references more readily than forward 
references. 

Here is the macro definition for a SOS call block: 

. MACRO SOS ; Macro def for SOS call block 
BRK ; Begin SOS call block 
.BYTE %1 ; call_num 
WORD %2 ; parameter Jist pointer 
.ENDM ; end of macro definition 



• Interpreters and Modules 127 

After the header and parameter lists for various calls (shown in the 
complete listing, but not in this section), comes t,he main interpreter 
program, which is in two sections. The first section, the initialization 
block, opens the console and gets its dev num; turns off screen echo; 
passes its ref num and dev num to subroutines; arms the attention 
event; and sets the fence. 

BEGIN .EQU 
JSR OPENCONS ; Open .CONSOLE 
JSR GETDNUM ; Get dev_num 
JSR SETCONS ; Disable echo 
JSR ARMCTRLQ ; Arm attention event 
SOS 50, FENLIST ; Set event fence to 0: 

here we coded "60" directly 

LDA REF ; Set up reCnum 
STA RREF for reads 
STA WREF and writes 

The main program loop uses a two byte I/O buffer, the second byte of 
which is always a line feed (LF). The main program reads a byte from the 
keyboard into the first byte of the I/O buffer, then checks whether that 
byte is a carriage return (CR): if so, both bytes in the buffer will be written ; 
if not, only the f irst byte will be written. This is done by setting the value of 
the write count (WCNT in the listing, or bytes in the call definition) to 2 or 
1, respectively. The loop repeats indefinitely; the only exit from the 
program is through the event-handler subroutine, HANDLER. 

The numbers preceded by a dollar sign, like $010, are local labels. The 
numbers are decimal, not hex. 

$010 SOS READ, ReliST ; Read in one by1e: 
here we used READ for 0CA 

LDA RCNT ; IF no by1es were read 
BEQ $010 THEN go read again 

STA WCNT ; Set up write count 
LDA BUFFER 
CMP #0D ; IF first by1e in buffer is CR 
BNE $020 THEN write out LF also 
INC WCNT 

$020 SOS WRITE, WPLIST ; Write out 1 or 2 by1es 

JMP $010 ; Repeat ad infinitum 



128 SOS Reference Manual 	 • 

The first subroutine is OPEN CONS, which opens the .CONSOLE file for 
reading and writing . It consists of a single SOS OPEN call , and is coded 
with the parameter lists preceding the can block, which here is coded 
without a macro. 

COLIST .BYTE 04 ; 4 required parameters for OPEN 
WORD CNAME path name pointer 

CREF .BYTE 00 reLnum returned here 
WORD COPLIST optionJist pointer 
.BYTE 01 length of opt parm list 

COPLIST .BYTE 03 ; Open for reading and writing 

OPENCONS ; Here we didn't use a macro. 
BRK ; Begin SOS call block 
.BYTE 0C8 ; Open the console. 
WORD COLIST ; Pointer to parameter list 
LOA CREF ; Save the result ref_num 
STA REF for READs and WRITEs. 
RTS 

The next subroutine, GETDNUM, which returns the dev num of 
.CONSOLE, is coded similarly, except that it has no optional 
parameter list. 

The SETCONS subroutine suppresses screen echo on the .CONSOLE 
file . This is a very simple example of a D CONTROL call, as the control 
list is only one byte long; the next is more complex. 

SETLIST 	 .BYTE 03 ; 3 required parms for D_CONTROL 
CNUM 	 .BYTE 00 dev_num of .CONSOLE 

.BYTE 0B control_code = 0B: screen echo 
WORD CON LIST controUist pointer 

CON LIST 	 .BYTE FALSE Disable screen echo 

SETCONS 
LOA CONSNUM ; Set up device number 
STA CNUM of.CONSOLE 
SOS D_CNTL, SETLIST 
RTS 



• Interpreters and Modules 129 

The ARMCTRLO subroutine arms the Attention Event for CONTROL-O. 
The 0 CONTROL call in this subroutine sends the event priority, event 
10, event-handler address, and the attention character code to the 
.CONSOLE driver. 

DCLIST 
DNUM 

CLiST 

BANK 

ARMCTRLQ 

.BYTE 

.byte 

.BYTE 

.wORD 

.BYTE 

.BYTE 

.wORD 

.BYTE 

.BYTE 

LOA 
STA 
LOA 
STA 
SOS 
RTS 

03 
00 
6 

CLiST 

0FF 
02 
HANDLER 
00 
11 

BREG 
BANK 
CONSNUM 
DNUM 
D_CNTL, DCLIST 

; 3 required parms for D_CONTROL 
dev_num of .CONSOLE goes here 
control_code = 06: 

Arm Attention Event 

controUist pointer 


; Control list 
Event priority 
Event 10 
Event handler address 
Event handler bank 
Attention character = CTRL-Q 

; Set up bank number 
of event handler 

; Set up device number 
; for control request 
;0_CONTROL call macro 

The next subroutine, HANDLER, is the attention event handler. It reads 
the attention character (CONTROL-O) from .CONSOLE, then beeps 
thrice. If the previous character was ESCAPE, the program terminates. 
A buffer separate from the main I/O buffer is used for reading the attention 
character, as otherwise the attention character would sometimes clobber 
the character in the buffer before it could be written to the screen. 

The buffer BELLS contains three BEL characters, separated by a number 
of SYNC characters. When written to the console, these cause a total 
delay of about 150 ms. HBLK1 and HBLK2 are required parameter lists 
for the READ and WRITE calls. HBUF1 is a one-byte buffer for the 
attention character. 



-

130 SOS Reference Manual 	 • 

BELLS .EOU ; Buffer with BELs and delay: 
.BYTE 07 ; BEL 
.BYTE 16,16,16,16,16,16,16,16,16 ; SYNCs 
.BYTE 07 ; BEL 
.BYTE 16,16,16,16,16,16,16,16,16 ; SYNCs 
.BYTE 07 ; BEL 

BELLEN .EOU '-BELLS ; Calculate buffer length 

HBLK1 .BYTE 04 ; 4 required parameters for READ 
HREF1 .BYTE 00 retnum 

WORD HBUF1 data_buffer pointer 
WORD 0001 request_count 
WORD 0000 transfer_count 

HBUF1 .BYTE 0 ; Buffer for reading attention char 

HBLK2 .BYTE 03 ; 3 required parameters for WRITE 
HREF2 .BYTE 00 retnum 

WORD BELLS data_buffer pointer 
WORD BELLEN request_count 

HBLK3 .BYTE 01 ; 1 required parameter for CLOSE 
.BYTE 00 retnum = 0: CLOSE all files 

HBLK4 .BYTE 00 ; 0 required parms for TERMINATE 

These data structures are followed by the actual code of the event 
handler. Here the SOS calls are coded using macros. 

HANDLER 
LDA REF ; Set up reference numbers 
STA HREF1 for console READ 
STA HREF2 and console WRITE 

SOS READ, HBLK1 ; Read attention character 

SOS WRITE, HBLK2 ; Write three BELs to .CONSOLE 

LDA BUFFER 
CMP #1B IF last keystroke was ESCAPE 
BNE $010 

SOS 0CC, HBLK3 THEN CLOSE all files 
SOS 065, HBLK4 and TERMINATE 

$010 	 JSR ARMCTRLO ELSE re-arm attention event 
RTS and resume execution 



Interpreters and Modules 131 

The TERMINATE cali could have been coded in the following 
perverse way: 

TERM BRK ; Begin SOS call 
.BYTE 065 ; call_num for TERMINATE 
WORD TERM ; parameteUist pointer 

Since the TERMINATE call has no parameters, the required parameter list 
need be only an ASCII null ($00) . Thus TERM, the parameter_list pointer, 
points to the BRK that begins the call. 

A simpler coding , using a macro, is this: 

TERM SOS 065, TERM ; Pointer to BRK 

The following pages contain a complete listing of the program, including 
all subroutines and parameter lists, as well as the code necessary to 
generate a valid header. 

7.2. 1 Complete Sample Listing 

PAGE - 0 
Curr ent memory avail abl e: 17 406 

0000 I .AB SOLUTE 
0000 • NOPATCHL 1ST 
0000 .NOMACROL 1ST 
2 bl oc ks f o r proce du r e code 16 13 6 words l e f t 



132 SOS Reference Manual 

PAGE - SCREEN"'R FILE: 

0000 1 .PROC SCREENlJRITER 
Current memory avai lable: 16881 
0000 
0000 ; ***** ****#111111'1 II II II 'It********* ***** *. *** *. * * ** *** #I *'If ****** *** *It-It#! *#I #I" 
0000 
0 000 SCfccowriccr Prog r a m 
0000 
0000 Sample Interpreter for 50S Refe rence Hanual 
0000 
0000 Do n Reed and Thomas Roo t, 11 August 1982 
0000 
0000 ::::::::::::::::::::::::: :::::::::::::::::::: 

0000 
0000 This program re:1ds bytes from the ke yboard, the n writ es 
0000 them out to the screen, without filt e ring o ut contro t 
0000 chara c ters. It ",dtes explicitly, without us ing screen 
00001 echo. 

00001
0000 The i nt erpreter contains an event mechanism. I,.Jhen 
0000 COfffROL-Q is read, the console driv er detects it as ao 

000°1
0000 

event. 
t o the 

The event is 
interpreter. 

proces se d ..,hen cont rol 
If the c hA.racter t y ped 

next ret urns 
before the 

0000 CONTROL-Q is ESC. the event hand le r bc~ ps thri c e n nd 

0000 1 issues a TERMINATE ca ll; if not, the vent ha ndl er just 
0000 bee ps thric e. 
0000 1 

0000 1
0000 

, .. ::::::: : :: :::: ::::::::::::: 

0000 Not e on progr amming sty le: the style of t his program is 

00001
0000 

del i berately inconsistent, to 
50S CA. tls. They can be coded 

show several ways 
in line; they CAll 

t o 
be 

co de 
coded 

0000 as subrout ines. They ca n be code d wit h o r wit hout a 
0000 ma cro, SOS. The macro itself ca n use the SOS ca ll number, 
0000 or it can use the n;Lme, v ia an .E OUate. In genera l, 
0000 data structures appear bef o re the code using them: th is 
0000 i s recommended practice wi th the Apple tIl Pascal 
0000 Assembl er. 
0000 
0000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0000 
0000 The source file f or t he Screenwritt:!r program is replicated 
0000 a s SCREENWRIT.TF. XT on the EKerSOS disk. . 
0000 
0000 ;** ***** *** ******** ** * * * * * * * ******** **** ***** * * * ** ***** * * ********* 



• 	 I nterpreters and Modules 133 

PAGE 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
8Fn 
8FF2 
8H9 
8FFA 
8FFC 
8FFE 

9000 
9000 
900) 
900) 

- SCREENIIR FILE: 

.PAGE 
; ••• *•• til •• *** *** •••••• #I ....... ***** •• *****••• **1IJ1r 1111 •• '/1/,*11* ***** .'It ••• 


Header Part of File 

.. . ..... :::::::::::::::: ::::: :::::::::::::::: .. ... ........ . .. . 


9000 START 	 . EQU 9000 Code besins at S9000 

. ORG START-OE Leave 12 bytes for hend r 


5) 4F 5) 20 4E 54 52 • ASCll "50S NTlU''' label for SOS.lNTERI) 

50 

0000 .YORD 0000 opt heade r l engt h • 0 

0090 .WORD STA RT loading adaress 

..... . YORD CODELEN code_ lengt h 


4C .... JMP BEGIN Jump to beginnin g of code 




134 SOS Reference Manual • 

PAGE - SCREENIIR FlLE: 

9003 
9003 

.PAGE 
;•••••••••••• .,. ••* **A- •••••••••• lflflf. If If If ••• * * *... 1f.1f*1f •••••••••••••• * * 

9003 
9003 Hacros, Equates, and Global Data Area 
9U03 
9003 The syntax for a 50S call using the macro below is 
9003 
9003 SOS call_num. parameter_list pointer 
9003 
9003 The macro definition for a 50S call block using the above 
9003 format Is below: 
9003 
9003 1 j::::::::::::::::::::: : ::::;:::::::::::::::::::::::::::: :::::::::: 
9003 
9003 .MACRO 50S Macro def for 50S call block 
9003 BRK Begin SOS call blo c k 
9003 .BYTE %1 call num 
9003 • WORD %2 parameter 11st pointer 
9003 .ENOM end of macro definition 
9003 
9003 .::::::::::::::":::::::::::::;;;:: :: ::::::::::::::::::::: ....... . 
9003 
9003 Here are .EOUates for ca ll nums: 
9003 
9003 ;: ::::::::::::": :::::::::: :::::::::::::::::::::::::::: ::: :: ::: :: : 
9003 
9003 OOCA READ • EQU OCA call nurn for READ 
9003 OOCB WRITE .E QU OCB call-num for WRlTE 
9003 0083 D CNTL .EQU 083 call-nurn for 0 CONTROL 
9003 
9003 j::::::::::::::: . .. :.::::::::::':::::::::::::::::::::::::::::::::: 

19003 
9003 Here are more aEQUates: 
9003 
9003 i::::::::::::::::::::::::::::::::::::::::::::::::::;::::::::: ... . . 
9003 
9003 0000 FALSE .EQU 00 
9003 0080 TRUE .EQU 80 
9003 

19003 FFEF BREG .EQU OFFEF Bank register 



• I nterpreters and Modules 135 

PAGE 

900) 
9003 
9003 
9003 
9003 
9003 
9003 
9003 
9003 
9004 
9008 
900C 
9000 
900E 
9DOE 
9DOE 
900E 
900E 
900E 
900E 
900E 
900E 
900E 
9010 
9010 
9010 
90 10 
9010 
9010 
9010 
9010 
9010 
9011 
9012 
9012 
9013 
9014 
9016 
9018 
90lA 
90lA 
9018 
90l C 
90lE 
9020 
9020 

- SCREENIJR HLE: 

.PACE 
:::::::::::::::::::::::::::::: 

These var iables a r e used f o r c;ommu1l 1cat i on ber,wee n (he 
mai n program and the OPENCON$ subroutine . 

.. ::::::;:;:::::::::: ....... .. 

08 CNAME .BITE 08 nRm 1 ngt h 
2E 4) 4f 4E S3 4f 4C • ASCI L ". CONSOLE" p.<tc hn.,r.lC 0 con i'io l e 

45 

00 REf • BITE 00 Co nsole ref num 

00 CONSNUM .BYTE 00 Co nsn l e dc v-'1Um 


.................... ::::::::::: 


Here is the data buffer for th e READ a nd WRiTE , · .~ll<; in 
the main program. Only the f irs!: byt e is wrie r ,' n into; 
one or both are written out . 

::::::::::::::: 

00 OA BUFfER .BYTE 00. OA ; da crt bLLf fe r with tra ilin g I.F 

•..... :::::::::::::::::::::::::::;;:: :::::::::: 

Here ;)re required param e t e r List s for SOS CAlls in the 
main program. 

;:::::: ::::::::::::::: .... . ... . . . . . .. , .. . ..... 

01 FEifL[ST . BYTE 01 pa rame te r f or St:T fE NCE 

00 .BYTE 00 f t~ n cc = 0 


04 ReLlST . BYTE 04 par ame t e rs for REAO 

00 RREF . BYTE 00 re f num 

OE90 • WORD BUffER data buff e r po in te r 

0100 • WORD 000 1 re ques t count 

0000 RCNT .WORD 0000 transf er count 


03 WPLlST .BYTE 03 pa r ameter s for WRITE 

00 WREF .BYTE 00 r e f num (f rom opn: c .:\ll) 

OE90 • WORD BUffER data buff er po inter 

0000 weNT • WORD 0000 r.::quest count 
-

;* *** ** ****** *** *** * ******* ** * **** * * •••••••• **** ****** ***:1< * * ** k••• 

http:hn.,r.lC


136 SOS Reference Manual • 

PAGE - SCREE~"WR FILE : 

9020 .PAGE 

19020 ;******* •••• *••*•• '*'******* ** ** *** *** ** ••• 1111''11'*** ***.*•••******* "'* ** 
9020 
9020 Ma in Program Code 
9020 
9020 j: : :::::::::::::::::::::: .......... . . ... ::::::::::::::::::::::: :: : 
9020 
9020 This is the se tup pore i.on, exc' cut e rl at the start. 
9020 
9020 ........................ .. . . ................... .. .. ...... .... .................. ......... . .. . 
9020 
9020 
9020 

9020 
20 *••• 

BEGIN • EQU 
JSR OPE NCONS Open .CONSOLE 

902) 20 JSR GETDNUM Get dey num 
9026 20 **1111 JSR SETCONS Uisable-echo 
9029 20 "If·/de. JSR ARMCTRLQ Ann att~nt ion event 
902C SOS 60, FENLtST Se t e VE>nt f e n CQ to 0: 
90)0 here we coded "60" direct l y 
90)0 
90)0 AD OC90 LOA REF Set up ref num 
90)3 80 1390 STA RJ<F. F for reads 
9011i 80 1890 STA WRF.F and writes 
90) 9 

9039 •. ..... ::: ::::::: :: : :::::::::::::::::::::::::::::::::::: ... . . . 
9039 

19039 This is the main loop. executed un til term inatio n. 
9039 
9039 •. .. :::::::::::::::::::::::: :::::::::::::::::: ::::::::::::: 

19039 
9039 SO lO SOS READ, RCLIST Read 1n one byte: 
90)0 here we used READ f or OCA 
9030 AD 1890 LOA RCNT IF no bytes wer e read 
9040 FOF7 BEQ SO 10 THEN go read ag.3 i n 
904 2 
9042 8D IE90 STA WCNT Set up writ e Cllunt 
9045 AD OE90 LOA BUFFER 
9048 C9 00 CMP GOD IF first byte in buffer is CR 
904A DO** BNE S020 THEN write out LF also 
904C EE IE90 INC WCNT 
904F 
904F S020 SOS WRITE, WPLI ST Write o ut I or 2 byt es 
90531 
9053 1 4C 3990 JMP SO l O Repeat ad infinitum 
905 6 
9056 1 ;** ********* k k ** k ***** **** *k * k k *** * k k* k* kk* ****k* k k k k* k k k *** k*k kkk 



• Interpreters and Modules 137 

PAGE - SC REENlJR FlLE : 

.PAGE9056/
90 56 
9056 
9056 
9056 
9056 
9056 
9056 
9056 
9056 
90 56 
9056 
9057 
9059 
905A 
905C 
9050 
9050 
905E 
905E 
905E 
905E 
905F 
9060 
9062 
9065 
9068 
90 69 
9069 
9069 
9069 
9069 
9069 
9069 
9069 
906A 
906C 
9060 
9060 
90 60 
9060 
906E 
906F 
9071 
90710 
9077 

;******"'*** ******** ***11* **** *11 ** ** **** *****'**** ********* ***** ***** 

SU BROU TINE S 

... ::::::::::::::::::::::::::: : :::::: :: ::::: ::::: : :::: 

OPENCONS; ope n the .CON SOLE file for reading 

;:: ::: ::: ::: :::: :: ::::: :: ::::::::::::::::::::::: :: ::::: :: ::: ..... . 

010 COLlST • BYTE 010 requi red pa ram e ters for OPEN 
0390 .WOR O CNAME pat hname pointer 
00 CREF • B TIE 00 r ef num returne d h t'( -.! 

• WORD COPLIST optTon 1 ist poinc(! r 
0 1 .BTIE 01 l engc h-of o pt parm list 

03 COPLlST • B TIE 0 3 Open f or ["L'adin r, and writing 

OPENCONS Here we didn r t use a macro. 
00 BRK Begin SOS call bl oc k. 
C8 • BTIE oc a Ope n the consol e. 
56 90 .WOR D COL 1ST Pointe r t o parame ter 1 i s t 
AD 5990 LOA CREF Save the r esu I t ref num 
80 OC 90 STA REF f or READs and WRITF.s. 
60 RTS 

::: ::::: :: ::: :: ........ . ::::::::::::::::::::::::::::::::: 


CETONUM: Get the device number of .CONSOLE 

;:: :: :::::::::::::: :: :::: ::: :::; ::: ::::::::::::::::::: :: ::::: : :::: 

02 GDLl ST • BTIE 02 parameters fo r GET DEV NU M 
0390 • WORD CNAM E dev_oil IDe point er 
00 GONUM • B TIE 00 dev num go es here 

GETONUM 
00 BRK 
84 .BYTE 810 Call GET OEv NUM 
6990 • WORD GOLlST 
AD 6C90 LOA GDNUM Sav e the result dev num 
80 0090 STA CONSNUM for console coot ro l 
60 RTS 



- -

138 SOS Reference Manual • 

PAGE - SCREENWR Fl LE: 

9078 .PAGE 
9078 ;::: ::: ::::;:::::::: :: :::: ::: :::: :: :::: :::: :::::;::::: ::: :::: ;:; :: 
9078 
9078 SETCONS: set the .CDNSOLE file to suppress screen echo 
9078 
9078 ;:: ::: :::: :::: :::: :::: : : ::::::::: : ::::::::::::: : ::::::: :: ::::: :: :: 
9078 
9078 03 SETLIST .B YTE 03 required parms for D_CONTROL 
9079 00 CNUM .BYTE 00 dev num of • CONSOLE 
907 A OB .BYTE 08 control code = OB: Screen echo-907B .WORD CONLIST cont rol 1 ist pointer-9070 
9070 00 CONLIST .BYTE FALSE o isa bl e screen echo 
907E 
907E 
907E SETCONS 
907£ AD 0090 LOA CONSNUM Set up device number 
908l 80 79 90 STA CNUM of .CONSOLE 
9084 SOS 0_CNTL. SET LIST 
9088 60 RTS 
9089 
9089 ;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
9089 
9089 ARMCTRLQ: Arm the Attention Event for CONTROL-Q 
9089 
9089 ;::::::::::::::::::::::::::::::::::::;::::: : :::::::::::::::::::::: 
9089 
9089 03 DCLI ST • BYTE 03 requi. t"ed parms f 0< 0 CONTROL 
908A 00 DNUM .BYTE 00 dev num of • CONSOLE goes here 
908B 06 .BYTE 06 control code: 06: 
908C Arm-Attention Event 
908C *••• • WORD CLlST cont rol list pointer 
908E 
908E CLIST Cant rol list 
908E FF • BYTE OFF Event pr iority 
908F 02 • BYTE 02 Event 10 
9090 .WORD HANDLER Event handler address*.*. 
9092 00 BANK .BYTE 00 Event handler bank 
9093 II .BYTE II Attent ion char ' CTRL-Q 
9094 
9094 
9094 ARMCTRLQ 
9094 AD EFFF LOA BREG Set up bank number 
9097 80 9290 STA BANK of event handler 


AD 0090 LOA CONS NUM Set up dev ice number 

80 8A90 STA DNUM for cant rol request
:~:~I 

90AO SOS 0_CNTL, DCLIST o CONTROL call macro 
90A4 60 RTS 



• Interpreters and Modules 139 

PAGE - 8 SCREENWR FILE: 

.PAGE 
90AS 
90A5/ 

;: : :::::::::::: ::::: : ::::::::::::::::::::::::::::;:::::::::::::::: 

90A5 
90A5 HANDLER: Attention event handler subroutine 
90A5 
90A5 This subroutine reads the a tt en t i.o n char<ict er (CONTROL-O) 

from . CONSOLE, t hen beeps t he ice. 1 f the prev 10U590A5 
character was ESCAPE, the program t erminates.90A5 

90A51 A buffer separa te from the main data buffer is used for9QA5 
reading the attention character, as ocheN ise the90A5 
attention chara cter 'W ou ld sOloecimes c lobber the char::tct e r 90A5 
in the data buffer before it could be written.90A5 

90A5 
90A5 The bufter BELLS co ntains three BEL character s. separated 

by a number of SYNC characters. When wri tten to the90AS 
90A5 co nsole, these cause a total delay of about l50 ms. 
90A5 
90A5 .......... ..... . ........................................ . ........ .
, ........... . .. . ....................... . ....... ......... ......... . 

90A5 
90AS 9CA5 BELLS .EQU ; Buffer with BELs and delay: 
90A5 07 .BYTE 07 BEL 
90A6 16 16 16 16 16 16 16 .BYTE 16. 16. 16. 16. 16. 16. 16. 16. 16 SYNCs 
90AD 16 16 
90AF 07 .BYTE 07 BEL 
90BO 16 16 1616161616 • BYTE 16. 16. 16. 16. 16. 16 . 16 . 16. 16 SYNCs 
90B7 16 16 
90B9 07 . BYTE 07 BEL 
90BA 00 15 BELLEN .EQU '-BELLS Cal culat e buff er lengt h 
90BA 
90BA 04 HBLKI • BYTE 04 requir ed parameters for READ 
90BB 00 HREF 1 .BYTE 00 ref num 

• WORD HBUF 1 data_buff e r pointer
90BCI 

0100 • WORD 0001 request count 
90CO 
90BE 

0000 • WORD 0000 transfer count 
9OC2 
90C2 00 HBUF I • BYTE Buf f er for attention c haracter 
9OC3 
90C3 03 HBLK2 .BYTE 03 required parameters for WRlTE 
9OC4 00 HREF2 .BYTE 00 ref num 
90C5 A590 • WORD BELLS dats_buffer pointer 
9OC7 1500 • WORD BELLEN request_cOunt 
90C9 
90C9 01 HBLK3 .BYTE 01 requ i red parameter for CLOSE 
90CA 00 .BYTE 00 ref nom = 0: CLOSE all files 

90CB/ 
90CB 00 HBLK4 .BYTE 00 required parms for TERMINATE 



- -

140 SOS Reference Manual • 

PAGE - SCREENWR FILE: 

90CC .PAGE 
90CC HANOLER 
90CC AO OC90 LOA REF Set up reference number s 
90CF 80 BB90 STA fl RE FI Eo r co nsole READ 
9002 80 C490 STA HREF2 and c: •• nso Le WR 1Tf. 
9005 
9005 SOS RoAD. HHLKl Read actent ion ella ra c t er 
9009 
90091 SOS WRITE. HBLK2 Writ e three 8EL s t o • CONSOLE 
9000 
9000 1 AO OE90 LOA BUFFER 
90EO 
90E2 

C9 I B 
DO·· 

CM!' 
BNE 

UI B 
SOlO 

IF last ke yst roke wa s ESCAPE 

90E4 

90E4 SOS DCC . HBLK3 THEN CLOSE all file s 
90E8 SOS 065. HBLK4 and TERMINATE 
90EC 
90 EC 20 9490 SO l O JSR ARMCT RLO ELSE re-arm at t eoe lon event 
90EF 60 RTS a nd resume e xeCut ion 
90FO 
90FO 
90FO 
90FO 
90FO 
90FO End of program - calculate length 
90FO 
90FO ;:: ::::::: ::::::: : ::::;:: ::::: :::::::::::::;:::: : :::::::::: :::::: : 
90FO 
90FO OO FO COOELEN • EOU >-START Calculate number o f by tes in 
90FO I .END prugram 



• Interpreters and Modules 141 

PAGE - 10 SCREENWR FlLE, SYMBOLTABLE DUMP 

All - AbsolUlt LB - Labe l DO - Und ef incd Me - Ma c r o 

RF - Ref 

PB - Publ ic 

ARHCTRLQ LB 
CLlST LB 
COPLIST LB 
COLlST L 8 
HBLK4 LB 
READ AB 
START AB 

BELLS LB 
COLl ST LB 

ONUM LB 
HBLK I LB 
OPENCON S LB 
SETCONS LB 
WREF LB 

DF - Det PR - P roc Fe - Fune 
PV - Pr i.vate CS - Co ost 5 

LB 9092 BEGIN LB 9020 BELLEN AB 00 15 
LB 900) CNU~1 LB 9079 CODE LEN LB OOF O 
LB 9059 DCL IST LB 9089 OCNTL AB 008) 

L B 906C GETDNUM LB 9060 HANDLER LB 90CC 

L B 90C 2 HREF I LB 90BB HRH2 LB 90C4 
LB 900C RREF L 8 90 1) SCREENWR PR 

AB 00801 WCNT LB 90lE »PLlST LB 90 lA 

All f'FE!' BUFf'ER LB 900E 
LB 9070 CONSNUM LB 9000 
AB 0000 FE Nl.J ~T I. B 9010 
L8 90C) HULK) LB 9OC 9 
LB 901 2 RCNT LB 90 18 
LB 9078 SOS MC 
AB OOCB 

9094 
908E 
9050 
9069 
90CB 
OOCA 
9000 

9OA51 
9056 
908A 

BAlIK 
CNAME 
CREF 
GONUM 
HB UF I 
REf' 
TRUE 

BREC 
CONLlST 
FALSE 

90 BA I HBLK2 
905E RCL 1ST 
90lE SETL 1ST 

901 B WRl TE 



142 SOS Reference Manual • 

PAGE - II SCREEi'/\JR FILE: 

Current min imum space i s l5687 words. 

Assem bly complete: 394 lines 
o Erro r~ E l~ ,~go d on thi s As sembly 



143 • 	 Interpreters and Modules 

Z3 Creating Interpreter Files 

The Apple III Pascal Assembler reads a source text file of assembly
language statements and creates a code file consisting of a header block, 
a code section, and a relocation section, if the code file is relocatable. A 
SOS interpreter file must be in a format different from the standard code 
file format that is used for a module: 

• 	 It must be in absolute format, beginning at the proper memory location. 

• 	 It must have a special header that identifies the file as an interpreter, 
and the standard header and trailer must be removed. 

• 	 It must be named SOS.INTERP before it can be booted. 

A utility program , Makelnterp, transforms code files into 
interpreter files. Its use is described in Appendix C. 

Z4 Assembly-Language Modules 

An interpreter that is too large to fit into the the memory space allocated 
for it can be split up into a main interpreter and one or more assembly
language modules. An interpreter can also use modules if it is made to be 
extensible, or if it wishes to swap sections of machine code in and out of 
memory. A language interpreter may use modules to allow the user 
programs it interprets to call assembly-language subroutines. 

SOS does not directly support creating, loading, or maintaining modules: 
modules are defined, loaded, and called by the interpreter only. 

Whereas an interpreter must be written and assembled in absolute code, 
a module can be in either absolute or relocatable format. A stand-alone 
interpreter performing an application will probably only have to support 
absolute modules, if any. A language interpreter, however, may support 
relocatable modules, as do the BASIC and Pascal interpreters. 



- ------

144 SOS Reference Manual • 

Z4.1 Using Your Own Modules 

An interpreter can use the REQUEST _ SEG call to request a fixed memory 
segment in free memory, then load a 6502 code file into this space and 
execute its code. An interpreter can execute modules located in bank
switched memory by using the technique described in section 2.4.1. 

In this way, an interpreter can have several sections of overlay code
subroutines that are swapped into a certain memory space only when 
they are needed, and are replaced by other code when their usefulness is 
expended. This is illustrated in Figure 7-2. 

module 

module 

free memory 

SOS kernel 

driver 

-

interpreter 

SOS kernel 

$0000 

free memory 

driver 

driver 

last... I~'bank 

$A000 

$8800 

$FFFF 

Figure 7-2. Interpreter and Modules 

Rather than allocating free memory, an interpreter can also overlay code 
into itself and execute it without bank-switching. This technique is 
dangerous unless you carefully control which parts of the interpreter are 
being overwritten. 



• Interpreters and Modules 145 

14.2 BASIC and Pascal Modules 

The Apple Pascal and Business BASIC languages both have facilities for 
loading assembly-language modules or linking them with a Pascal or 
BASIC program. The modules are in the relocatable format produced by 
the Apple Pascal Assembler: the Pascal and BASIC interpreters are both 
designed to load, relocate, and execute files in this format. 

The BASIC and Pascal interpreters each place a module in a convenient 
place in memory, then use the relocation information in the code file to 
alter the program code to run in its new location. A BASIC program 
communicates with modules via PERFORM and EXFN statements; a 
Pascal program uses EXTERNAL PROCEDURE and FUNCTION calls. 
Whereas invokable modules used by BASIC are loaded dynamically at run 
time, modules used by Pascal are linked in with the Pascal host program 
during a post-compilation linking phase, and are stored as part of the final 
code file . 

Both the BASIC and Pascal interpreters pass parameters to their modules 
via the interpreter's stack. The modules remove and store the return 
information, then pull the parameter bytes off the stack and process them. 
When they are finished, they push the return information back on the 
stack and perform an RTS. 

~ A module used by the BASIC or Pascal interpreter does not need 
~ to know any entry pOints in the interpreter. 

A module can access your programs or data by means of pointer 
parameters. The interpreter passes the two bytes of the pointer on the 
stack, and sets up the X-bytes of the pointer in a fixed location in the 
interpreter's X-page. The module pulls the pointer off the stack and stores 
its pointers in the proper places in the zero page: it can then use extended 
addressing to access the host program's data structures. 

You can find more information on the use of assembly-language modules 
with Pascal in the Apple III Pascal Program Preparation Tools manual, in 
the chapter The Assembler. 



- - -- -

146 80S Reference Manual • 

Z4.3 Creating Modules 

Modules can be in either of two formats: absolute and relocatable. The 
absolute form is easier to load, but less versatile. If you can be sure a 
particular region of memory will be available for a module, you can 
assemble that module to fit into that region, and write a routine into your 
interpreter to load that module into that region. In doing so, you must take 
into consideration whether assembling a module to run in a particular 
region will affect the interpreter's memory requirements. You can also do 
this with a number of modules: you can even assemble several modules 
for the same region, if they are to be used one at a time and swapped in 
as needed. 

Relocatable modules can go anywhere in free memory, so they can more 
easily be used by machines of different memory sizes, driver sets, and so 
forth . A language interpreter that supports modules will probably support 
relocatable modules. However, such an interpreter must take care of the 
relocation itself. This task goes beyond the scope of this manual. The data 
formats of relocatable assembly-language code files are described in 
Appendix E; more detail is in the Apple III Pascal Technical Reference 
Manual. If you are designing an interpreter that supports relocatable 
modules and need further assistance, contact the Apple pes Division 
Technical Support Department. 



Making SOS Calls 

148 8.1 Types of SOS Calls 
148 8.2 Form of a SOS Call 
148 8.2.1 The Call Block 
150 8.2.2 The Required Parameter List 
152 8.2.3 The Optional Parameter List 
154 8.3 Pointer Address Extension 
155 8.3.1 Direct Pointers 
155 8.3.1.1 Direct Pointers to S-Bank Locations 
156 8.3.1.2 Direct Pointers to Current Bank Locations 
156 8.3.2 Indirect Pointers 
157 8.3.2.1 Indirect Pointers with an X-Byte of $00 
158 8.3.2.2 Indirect Pointers with an X-Byte Between $80 and $8F 
159 8.4 Name Parameters 
160 8.5 SOS Call Error Reporting 



- - -

148 80S Reference Manual 	 • 

B.1 Types of SOS Calls 

An interpreter communicates with SOS primarily through SOS calls. 
A 80S call is a request that 50S perform an action or return some 
information about a file, device, or memory segment. 

SOS calls fall into four categories: 

• 	 File calls, which manipulate files according to the file model 

presented in Chapter 4; 


• 	 Device calls, which manipulate devices according to the device 
model presented in Chapter 3; 

• 	 Memory calls, which allocate and release memory for 

interpreters and keep track of areas of free memory; and 


• 	 Utility calls, which access the system clock, the event fence, 

and other resources. 


The individual SOS calls are presented in Volume 2. The way a SOS call 
is made, however, is the same regardless of the function of the particular 
call; the remainder of this section discusses how an interpreter makes 
808 calls. 

B.2 Form of a SOS Call 

A 80S call has three parts: the call block, the required parameter list, and 
the optional parameter list. Not every call has every part. The parts need 
not be in any particular order, and need not be contiguous, as they are 
linked by pointers. 

8.2. 1 The Call Block 

A SOS call begins with the call block, a four-byte sequence executed as 
part of an interpreter's code. Figure 8-1 is a diagram of a call block, along 
with the code implementing it: 



- -------------

• Making SOS Calls 149 

54F9100 CALBLK BRK 
$54F9

54FAlc8 .BYTE 0C8; OPEN 
54FBI2052 WORD PLiST ; PTR 

$54FA 

$54FB 

$54FC 

$00 BRK 

$C8 call nurn 
value 

$20 parrn_list 
-

$52 pointer }
Figure 8-1. SOS Call Block 

The SOS call block has three fields: 

BRK (1 byte) : 

This field always contains the BRK opcode, $00; 

call_num (1 byte): 

This field contains the SOS call number, which must correspond to a valid 
SOS call. 

parm_list (2 bytes) : 

This field contains a pointer to the required parameter list for this SOS 
call . The parm -,ist is an address in S-bank notation, $nnnn , which specifies 
a location in the current bank or in the S-bank, never in the zero page. The 
location specified contains the first byte of the required parameter list for 
the call being made: the required parameter list is described below. 

If the call_num or the parm_list is invalid , SOS returns an error code to 
the caller. 

If the format of the SOS call is correct, SOS performs the requested 
action. After the call is completed, SOS restores the state of the machine 
(the values in the X- and Y-registers and all status flags except Z and N) 
and returns control to the caller. If an error was encountered, the error 
code is returned in the accumulator. If the call was error-free, the 
accumulator returns $00. You can think of a SOS call as a 4-byte LOA 
#ERRORCOOE instruction; you can check for the presence of an error 
code with the BEQ and BNE instructions. 



- - -
- - -

150 SOS Reference Manual • 

8.2.2 The Required Parameter List 

The required parameter list is a table in memory that the interpreter uses 
to communicate with SOS. It is from here that a SOS call gets the 
information it needs, and it is also here that the call returns information 
to the caller. 

Each SOS call expects a certain number of parameters: the number and 
type of parameters is different for each call. But the first byte of the 
required parameter list for any SOS call always contains the number of 
parameters for the call (not the number of bytes in the list). SOS checks 
this number against the number of parameters the call is expecting, to 
verify that you've supplied the correct list for that call. If the numbers don't 
match, SOS returns an error message. 

Figure 8-2 is a required parameter list: 



• 	 Making 808 Calls 151 

54F9/00 CALBLK BRK 
$54F954FA/C8 .BYTE 0C8 ;OPEN 

54FB/ 2052 .wORD PLlST ; PTR 
$54FA 

$54FB 

$54FC 

5220/04 PLiST .BYTE 04 
5221/0652 PATHN .wORD FILE1 ; PTR $5220 

5223/00 REFNUM .BYTE 00; VALUE 
5224/0052 OPLIST .wORD REQACC ; PTR $5221 
5226/04 OPLEN .BYTE 04; VALUE 

$5222 

$5223 

$5224 }$5225 

$5226 

$00 BRK 

call nurn 
$C8 vaiue 

$20 parrn_list 
--------------
$52 pointer 

$04 
parrn_count 

value 

$06 pathnarne 
-------------
$052 pointer 

$00 
ref nurn 

result 

$00 option)ist 
-------------
$52 pointer 

$04 
length 
value 

Figure 8-2. The Required Parameter List 

This list contains all the required parameters for the call. A value must be 
supplied for each parameter: no default values are assumed. The number 
of parameters and the length of the required parameter list are constant 
for anyone 808 call , and usually different for every call . 

Parameters are of the four types listed below. 

• 	 A value parameter is 1, 2, or 4 data bytes passed from the caller to 
808. The caller places a value in the proper field of the parameter 
list, destroying its previous contents; SOS reads it without 
changing it. 

• 	 A result parameter is 1, 2, or 4 data bytes returned by 80S to the 
caller. 80S places a result in the proper field of the parameter list, 
destroying its previous contents; the caller reads the result 
without changing it. 



152 SOS Reference Manual 	 • 

• 	 A valuelresult parameter is 1, 2, or 4 data bytes that are read and 
modified by SOS: the value and the result share the same space. 
The caller places a value in the proper field of the parameter list, 
destroying its previous contents; SOS reads the value and 
rep laces it with a result, destroying the value. Few parameters 
are of this type. 

• 	 A pointer parameter is a 2-byte address (in any format- see 
section 8.3.1 below) that specifies the beginning of a buffer 
established by the caller. SOS uses the pointer to read information 
from the buffer or to return data to the same buffer. Pointers allow 
you to exchange variable-length data with SOS. Pointers are 
discussed in more detail in section 8.3. 

The calling program supplies a pointer to SOS: SOS never returns or 
alters a pointer. It either reads from or writes to the buffer the pointer 
points to. 

Some required parameter lists can be used for more than one call , usually 
for a pair of complementary calls. In the case of GET _FILE_INFO and 
SET_FILE_INFO (which read and change miscellaneous information 
about a file) , you can call the former, examine its results in the required 
parameter list, perhaps change them, and call the latter with the same 
required parameter list to make your changes take effect. 

8.2.3 The Optional Parameter List 

Some SOS calls have parameters that need not be supplied for their 
simplest operation. These parameters are stored in an optional parameter 
list. A pointer (option_list) in the required parameter list specifies the first 
byte in the optional parameter list, and a length parameter in the required 
parameter list indicates how many bytes of optional parameters are 
supplied. Figure 8-3 is an optional parameter list: 



-- - - - - - - - - ---

• 

54F9100 
54FAI C8 
54FBI2052 

5220104 
522110652 
5223 100 
522410052 
5226104 

5200103 
5201104 
520210055 

CALBLK 

PLiST 
PATHN 
REFNUM 
OPLIST 
OPLEN 

REQACC 
PAGES 
IOBUF 

Making SOS Calls 153 

BRK 
.BYTE 0C8 ; OPEN $54F9 

WORD PLlST ; PTR 

$54 FA 

$54FB 

$54FC 

$04 
parm count 

value 

$06 pathname 
---------------

$52 pointer 

$00 
ref num 

result 

$00 option_list 
- ------- --- - ---

$52 pointer 

$04 
length 
value 

$03 req_access 
value 

$04 
pages 
value 

$00 io_buffer 
-- - ---------- -

$55 pointer 

$00 BRK 

$C8 
call num 

value 

$20 parm_list 
-

$52 pointer 

.BYTE 04 
$5220WORD FILE1 ; PTR 

.BYTE 00 ; VALUE 
WORD REQACC ; PTR $5221 
.BYTE 04 ; VALUE 

$5222 

$5223 

$5224 

$5225 

$5226 

.BYTE 03 ; VALUE 
$5200WORD 04; VALUE 

WORD 00 ; PTR 
$5201 

$5202 

$5203 }
Figure 8-3. Optional Parameter List 



154 SOS Reference Manual 	 • 

You can supply any number of optional parameters, depending upon 
what you want the call to do. If the length of the optional parameter list 
is $00, the call will expect no optional parameters. If the length is non
zero, the call will expect as many optional parameters as can fit in that 
number of bytes. 

Some calls supply default values for optional parameters that are not 
supplied; see the individual call description. 

8.3 Pointer Address Extension 

Some parameters in the parameter lists are pointers, which are simply 
addresses of other data structures (usually buffers) in memory. You can 
supply these addresses in S-bank, current-bank, indirect, or extended 
format, all of which are described in section 2.1. 

When you make a SOS call involving a buffer, you must give a pointer 
to the buffer, and the number of bytes to be acted on. For example, the 
Rf:AD call requires a data_buffer pointer and a request_count parameter 
specifying how many bytes are to be read. SOS takes care of incrementing 
the pointer to read successive bytes: you need only tell it how to find the 
first byte. 

There are two kinds of pointers: 

• 	 A direct pointer is a two-byte address in current-bank or S-bank 
format. This address is that of the beginning of the buffer in the 
current or S-bank. 

• 	 A indirect pointer is a two-byte address whose high byte is $00. 
This address specifies a zero-page location: the location contains 
the indirect or extended address of the beginning of the buffer 
in memory. 

SOS converts both kinds of pointers into extended addresses. It does not 
change the pointers in your parameter list: instead it moves them to its 
own zero page so it can use them as extended addresses. The following 
paragraphs describe how SOS handles different kinds of pointers. 



• Making SOS Calls 155 

For all pOinter conversions, SOS checks only that the pointer 
indicates a valid location: it does not ensure that the structure 
pointed to is in a valid place. It does not verify that the location 
pointed to actually exists in system RAM. There are limits on how 
big and where the buffer can be: such restrictions are discussed 
with each conversion. 

8.3.1 Direct Pointers 

A direct pointer can specify a location in either the S-bank or the current 
bank. If the latter, the current bank can be either bank 0 or some other 
bank. These cases are considered here. 

Figure 8-4 shows a direct pointer: 

$41 pointer }$62A4 low byte 
f--------I 

$71 pOinter
$62A5 high byte 

data
$7141 

$7142 

Figure 8-4. A Direct Pointer 

8.3.1.1 Direct Pointers to S-Bank Locations 

SOS moves the pointer directly to its zero page without conversion, and 
sets the X-byte of the pointer to $00 to form a normal indirect address. 

Original Pointer Extended Form 

$nnnn $A000 to $B7FF $00:nnnn $00:A000 to $00:B7FF 



156 SOS Reference Manual • 

A buffer that begins in the S-bank must reside in a contiguous 
region of &-bank memory. For example, if you start reading from 
a buffer beginning at location $A000 and read $200 bytes, you will 
cover the address range $A000 to $A 1 FF. If you read beyond 
$B7FF, you wilt run into SOS's region. 

8.3.1.2 Direct Pointers to Current Bank Locations 

SOS converts such pointers to extended form. If the current bank is not 
bank 0, SOS creates an X-byte based on the caller's current bank number, b. 
The result is converted to ensure that the resulting pointer specifies 
neither the zero page nor the last page of a bank pair. 

Original Pointer (bank <> 0) Extended Form 

$nnnn $2000 to $21 FF $xx:nnnn $8b-1 :8000 to $8b-1 :81 FF 
$nnnn $2200 to $9FFF $xx:nnnn $8b:0200 to $8b:7FFF 

If the current bank is bank 0, then the address is converted to an 
extended address whose X-byte is $8F. 

Original Pointer (bank =0) Extended Fonn 

$0:nnnn $0:2000 to $0:9FFF $BF:nnnn $8F:2000 to $8F:9FFF 

A buffer that begins in switched memory must lie entirely within 
switched memory. If a buffer begins between $b:2000 and 
$b:9FFF, it can extend up to 64K bytes, and can wrap across 
bank boundaries, if b is not zero. For example, if you start reading 
from a buffer at $b:9F00 and read $200 bytes, you will cover the 
ranges $b:9F00 to $b:9FFF and $b+1 :2000 to $b+1 :20FF. However, 
the buffer may not go into the address range $A000 to $FFFF. 

8.3.2 Indirect Pointers 

I ndirect pointers are always stored on the caller's zero page. The two-byte 
value in the parameter list is the address of the pointer on zero page. 
When SOS processes an indirect pointer, it moves the two bytes of the 
pointer from the caller's zero page to its own zero page, and also moves 
the X-byte of that pointer to its own X-page. 



-----------

• 	 Making SOS Calls 157 

An indirect pointer can have an X-byte equal or unequal to zero: if it is 
equal to zero, the bank number can likewise be equal or unequal to zero. 
These cases are considered here. 

Figure 8-5 shows an indirect pointer: 

$20 pointer 
$62A4 low byte 


$00 pointer 
 :: 
} $0021high byte 

r-------~ 

$1620 

$1621 

$41 	pointer 

low byte 


$71 	pOinter 

high byte 


$81 	pointer 
X-byte 

data
$81 : 7141 

$81:7142 

Figure 8-5. An Indirect Pointer 

8.3.2.1 Indirect Pointers with an X-Byte of $00 

These pointers are converted by SOS to full extended addresses, as in 
the direct-pointer examples above. An indirect pointer with an X-byte of 
00 is identical to a direct pointer and follows the cases shown above. 
SOS creates an X-byte based on the caller's current bank number, b. 
The address may be converted to prevent it from pointing to the zero 
page, as shown in the first line below. 

Original Pointer 	 Extended Form 

$00:nnnn $00:$2000 to $00:$21 FF $xx:nnnn $8b-1 :8000 to $8b-1 :81 FF 
$OO:nnnn $00:$2200 to $00:$9FFF $xx:nnnn 8b :0200 to $8b:7FFF 

If the current bank is bank 0, the address is converted to an extended 
address whose X-byte is $8F. 



158 SOS Reference Manual • 

Original Pointer (bank = 0) Extended Form 

$00:nnnn $00:2000 to $00:9FFF $BF:nnnn $8F:2000 to $8F:9FFF 

A buffer that begins in switched memory must lie entirely within 
switched memory. If a buffer begins between $b:2000 and 
$b:9FFF, it can extend up to 64K bytes, and can wrap across 
bank boundaries, if b is not zero. For example, if you start reading 
from a buffer at $b:9F00 and read $200 bytes, you will cover the 
ranges $b:9F00 to $b:9FFF and $b+ 1 :2000 to $b+ 1 :20FF. However, 
the buffer may not go into the address range $A000 to $FFFF. 

B.3.2.2 Indirect Pointers with an X-Byte Between $B@ and $BF 

These pointers are invalid if they point to the zero page or stack: 

Original Pointer Extended Form 

$B0:nnnn $80:0000 to $80:01 FF Invalid 
$Bx:nnnn $8b:0000 to $8b:00FF Invalid 

The range of addresses in the second line could be replaced by alternate 
form, $8b-1 :8000 to $8b-1 :80FF. This trick doesn't work in the first case, 
as bank 0 is the lowest bank. 

Indirect pointers that have an X-byte between $80 and $8E are converted 
only to ensure that addresses produced by indexing on them do not point 
to the zero page. The pointers below are converted: 

Original Pointer Extended Form 

$8x:nnnn $8b:0100 to $80:01 FF $8x:nnnn $8b-1 :8100 to $8b- 1 :81 FF 
$Bx:nnnn $8b:FF00 to $80:FFFF $Bx:nnnn $8b+1 :7F00 to $8b+1 :7FFF 

The pointers below are unchanged: 

Original Pointer Extended Form 

$8x:nnnn $8b:0200 to $8b:FEFF $Bx:nnnn $8b:0200 to $8b:FEFF 
$8F:nnnn $8F:2000 to $8F:B7FF $BF:nnnn $8b:2000 to $8b:B7FF 



--------------

• 	 Making SOS Calls 159 

The X-byte $8F is a special case that looks like a direct pointer if b is zero. 

~ The buffer that the above address points to can contain up to $FFFF 
~	bytes, and can wrap from one switched bank to another. SOS will handle 

all the pOinter manipulations automatically. A buffer cannot, however, 
cross over into S-bank space; and it must reside in no more than three 
adjacent banks. 

8.4 Name Parameters 

Many 80S calls use device names, volume names, or pathnames as 
parameters. Since a name is a variable-length string of characters, it 
cannot be included in a parameter list: you must supply a pointer to a 
name. The pointer can be specified in any of the formats described above. 
Figure 8-6 illustrates the format of a name parameter. 

$32A0 

$32A 1 

$02 

$B3 dey name 

$SA pointer 

$00 
dey num 

result 

--.,}$32A2 

$32A3 

$03 length -4---' 
value$SAB3 

$SAB4 $2E .. 
- - -- ----- - ---

$SABS $44 '0' 

--------- - ----
$SAB6 $31 '1' 

Figure 8-6. Format of a Name Parameter 



- - - -- -

160 SOS Reference Manual 	 • 

The first byte pointed to by the parameter contains the number of 
characters in the rest of the name; the bytes immediately following 
contain the individual characters in sequence. 

Device and volume names can contain up to 15 characters: such names 
use 2 to 16 bytes of storage. Pathnames can be up to 255 characters in 
length: such names require 2 to 256 bytes of storage. 

8.5 SOS Call Error Reporting 

After execution of a SOS call, the accumulator contains the error code 
reported by the call, and the Nand Z status flags are updated according Iy. 
All other registers are returned to their state before the call . If the call was 
completed successfully, the accumulator contains $00: a BEQ instruction 
can detect a successful SOS call. 

Error numbers range from $01 to $FF. Errors can be classified into groups 
by their error numbers: 

• 	 Error codes $01 through $05 indicate a problem with the form of 
the SOS call, or its parameters or pointers . 

• 	 Error codes $10 through $2F indicate device call errors. Either a 
requested operation is not supported by SOS, or the operation 
cannot be performed due to interface problems with a device. 
Some of these errors can also be produced by file calls. 

• 	 Error codes $30 through $3F are generated by individual device 
drivers, and they indicate a problem in a particular device. 

• 	 Error codes $40 through $5A indicate file call errors. 

• 	 Error codes $70 through $7F indicate utility call errors. 

• 	 Error codes $E0 through $EF indicate memory call errors. 

These errors can be generated by SOS for any SOS call : 

$01: Invalid SOS call number (BADSCNUM) 

The byte immediately following the BRK instruction ($00) in the SOS call 
block is not the number of a currently defined SOS call . 



• Making SOS Calls 161 

$02: Invalid caller zero page (BADCZPAGE) 

808 requires that the interpreter use page $1A as its zero page when 
calling 808. 

$03: Invalid indirect pOinter X-byte (BADXBYTE) 

The extension (X-) byte of an indirect pointer is invalid. Legal values for 
this byte are 

$00 Indirect, current bank 
$80 through $8E Indirect, extend bank 
$8F Indirect, 8/0 bank 

$04: Invalid SOS call parameter count (BADSCPCNT) 

The first byte of the required parameter list contains a parameter count 
not expected by the specified 808 call. Either the call number is incorrect 
or the call is using the wrong required parameter list. 

$05: SOS call pointer out of bounds (BADSCBNDS) 

A 808 call pointer parameter is within a proscribed range of memory. 
Either the required parameter list resides on zero page or a pointer is 
attempting to point into 808. The proscribed memory ranges are: 

$0100 through $01FF Restricted for 808 
$B800 through $FFFF Restricted for 808 

$xx:0000 through $xx:00FF Zero Page 

$8F:0100 through $8F:01 FF Restricted for 808 
$8F:B800 through $8F:FFFF Restricted for 808 



162 SOS Reference Manual • 



Index 

Page references in Volume 2 are shown in square brackets [ ]. 

A 
absolute 

code 120 

mode 29 

modules 143 

or relocatable format 143 


access 63,68, 81 , 84, 88, 90, [11], 

[18] 


data 10, 27, 29-32 

path(s) 52 


information 64- 66 

maximum number of 53 

multiple 52 


techniques 27-38 

accessing 


a logical device 41 

zero page and stack, warning 


17 

ACCSERR [55J 

accumulator 110 

ADC 31 

address(es) 15 


bank-switched 10, 12, 30, 32 
bus 10 

conversion 25, 32-35 

example 122 


current-bank 12, 38 

extended 13, 38 


notation 15 

extension, pointer 154-159 

invalid 13 

limit 122 

notation 


bank-switched 15 

extended 15 

segment 23- 27 


of blocks 96, 97 

of event handler 108 

relocatable [138J 

risky 15 

risky regions 32 

S- bank 12, 38 

segment 24, 38 


notation, S- bank 25 

three-byte 13 

two-byte 12 


addressing 

bank-switched memory 10-13, 


30-31 

enhanced indirect 10, 13- 16, 


31-32 

indirect-X 13 

indirect-Y 13 




164 SOS Reference Manual • 

modes 10-16 

enhanced 8 


module 27-29 

normal indirect 14 

restrictions 15 

subroutine 27-29 


ALCERR [128] 
algorithms 32 


reading a directory file 91-92 

incrementing a pointer 36-37 

sample 27 


allocate memory 25 

allocation 7, 23 


of a segment of memory 121 

scheme, block 95 


analog inputs 113 

AND 31 

Apple III , overview of 3-8 

Apple III Pascal Assembler 145, 


[132], [134] 

Apple III Processor xvii 

arming events 108, 125 

.ASCII [139] 

ASCII equivalents [117] 

Assembler, Apple Pascal 145, 


[132], [134] 

assembly language 5 


code file(s) [131-139] 

data formats for relocatable 


146 

module 19,118, 143- 146 


linking 145 

loading 145 


procedure [136] 

attribute tables [136]. [137) 


programming xvii 

asynchronous operations 5 


of device drivers 104 

attribute table [136). [138) 


assembly-language procedure 

[136) 


format of [137) 
procedure [136) 


.AUDIO [111) 

audio [111) 

aux_type 64, 88, [5]. [14]. [19] 


B 
B field 14 

backup bit 90, [12). [18) 

Backup III 90, [13) 

BADBKPG [88) 

BADBRK [127] 

BADBUFNUM [128] 

BADBUFSIZ [128] 

BADCHGMODE [88] 

BADCTL [71] 

BADCTLPARM [71] 

BADCZPAGE 161 

BADDNUM [71) 

BADINT [127] 

BADJMODE [104] 

BADLSTCNT [56] 

BADOP [72) 

BADPATH [53] 

BADPGCNT [88) 

BADREFNUM [54) 

BADREQCODE [71] 

BADSCBNDS 161 

BADSCNUM 160 

BADSCPCNT 161 

BADSEGNUM [88] 

BADSRCHMODE [88] 

BADSYSBUF [56) 

BADSYSCALL [127) 

BADXBYTE 161 

BCBERR [128) 

bank 


$0 16 

current 12 

highest 11 


switchable 15 




• Index 165 

number 15 

pair 13,14 


highest 15 

part of segment address 25 

register 11, 19, 28 


restoring contents of 31 

switch able 11 


bank- pair field 14 

bank-switched address 10, 12, 


30,32 

as intermediate form 32 

notation 15 


bank-switched memory 
addressing 10-13,30-31 


bank-switched notation 23 

bank-switching 27, 28, 30 


for data access 30 

for module execution 30 

restrictions 28 


base 23,122, [43]. [48]. [75], [78], 
[83] 


BASE 122 

base-relative relocation table 


[138] 
BASIC 118,143 


and Pascal modules 145 

interpreter 145 

program 145 


BCS [139] 
bibliography [141] 
bit 

backup 90, [1 2J, [18] 

destroy-enable [12]. [18] 

enhanced-addressing 14 

map 54 

read-enable [12], [18] 

rename-enable [12], [18] 

write-enable [12]. [18] 


bit_map_pointer 82 

BITMAPADR [56] 

.BLOCK [139] 


block(s) 77 

addresses of 96, 97 

allocation 


for sparse files 98 

scheme 95 


altering configuration 46 

call 148-149, [x] 

configuration 43 


altering 46 

data 93,96 

device 8, 40, 76 


logical 53 

status request $00 [60] 


device information (DIB) 43 

DIB configuration 43 

file 50-56, 62 


control 64 

structure of 50-51 


index 93,94 

key 77, 82,93,97 

logical 77 

master index 94, 96, 97 

maximum index 94 

on a volume 77 

SOS call [103] 

subindex 94, 96 

total 45,82 


blocks_used 63, 87, [19] 

BNE [139] 

bootstrap 


errors [128] 

loader 77,93 


BRK 149 

instruction 8 


BTSERR [55] 

buffer 


data 50, [117] 

editing [117] 


1/ 0 50 

space, for drivers 21 

string [117], [118] 


BUFTBLFULL [56] 




- - - - - -

166 SOS Reference Manual • 

. BYTE [139] 

byte 99, [133] 


extension 14, 31 (See also 

X-byte) 


locating in a standard 

file 98- 99 


numbering 51 

order of pointers 79 

position, logical 98 


C 
call(s) 

block 148-149, [x] 
SOS [103] 


choosing [114] 

coding TERMINATE 131 

D_CONTROL 128 

device 46-47, [58-71] 


errors [71-72] 

management 5 


errors 
device 160, [71-72], [125] 
file 160, [53-56], [125-126] 
memory 160, [88] 
utility 160, [104], [126] 

file 69-73, [2-53] 

errors [53-56] 

management 5 


FIND_SEG 30 

form of the SOS 160 

memory 25-27, [74-87] 

errors [88] 

management 5 

OPEN 128 

REQUEST SEG 30 

SOS 8 


error reporting 160 

form of a 148-154 

types of 148 


utility [90-103] 

errors [104] 

management 5 


ca"_num 149, [xi] 

capacity of a file, maximum 94 

carry 15 

CFCBFULL [53] 

changing device 


name 46 

subtype 46 

type 46 


changing slot number 46 

change_mode [81] 

CHANGE SEG 26, [81-82] 

character 


device 8,40 

control code $01 [64] 

control code $02 [64] 

status request $01 [60] 

status request $02 [61] 


file(s) 50-56, 57 

structure of 50-51 


line-termination 67 

newline 67 

null (ASCII $00) 97 

streams 40 

termination 67 


circumvention of programming 

restrictions 3 


clock 112-113, [95], [97], [98] 

rate 19 

system 112 


CLOSE 66,68,72, 90, [39-40] 

closed files 52-53 

closing files before TERMINATE 


[103] 

CMP 31 

code 


file(s) 145 

data formats of relocatable 


assembly-language 146 

organization [132] 

assembly-language [131-139] 

code part of [135] 


fragments, examples xiv 




167 • Index 

interpreter, executing 10 

part of a code file 119, 121, 


[132]. [135] 

segments, executing 27 

sharing 44 

procedure [136] 


code_length 120 

CODEADDR [134] 

CODELENG [134] 

colon 15 

command interpreter [103] 

common code 44 

common file structure 3 

common foundation for 


software 3 

defined 2 


communicating with the 

device 42 


comparing two pointers 37-38 

compatibility with future 


versions 18 

conditions for enhanced indirect 


addressing 31 

configuration block 43 


alter 46 

DIB 43 


conflicts 

between interrupts 104 

with zero page 16 


.CONSOLE 66, 105, 108, 125, 

[109] 


console 40 

constant, relocation [138] 

control 


block , file 64 

flow of 27 

transfer 28 


CONTROL-C [117] 
CONTROL-RESET [117] 
control_code [63] 

$01 , character device [64] 
$02, character device [64] 

control_list [63] 

conversions 32 

copy- protection [103] 

copying sparse files 98 

CPTERR [55] 

CPU 104 

CREATE 68, 69, 90, 98, [3-6] 

creating interpreter files 143 

creation date and time 64, 81 , 84, 


88,89-90 

field 89-90 


current 

bank 12 

direct pointers to 156 

directory 62 

position marker 51 


current-bank 

address 12, 38 

form 13 


cylinders 77 


D 
.D1 [109] 

.D2 [109] 

.D3 [109] 

.D4 [109] 

D _ CONTROL 45,47, 108, 125, 


128, [63-64], [118] 
D_INFO 43,45, 47, [67-71] 
D_STATUS 45,46, [59-61]. [118] 
data 

access 10,27, 29-32 

bank-switching for 30 


and buffer storage 19 

block 93, 95, 96 

buffer 50, [117] 


editing [117] 

formats of relocatable 


assembly-language code 

files 146 


in free memory 30 




168 SOS Reference Manual • 

data block 99 

data_ buffer [35], [37] 

date and time 


creation 64,81,84,88,89-90 

format 90 

last mod 64,88, 89-90, [14], 


[19] 

decimal numbers xix 

decimal point xix 

DESTROY 68,69, [7-8] 

destroy-enable bit [12], [18] 

detecting an event 105 

deY_name 43, 60, [23], [65], [67] 

dey _ num 43, [59], [63], [65], [67] 

dey)ype 44,45, [68] 

device(s) 8,40-42 


adding a 46 

block 8,40 

call(s) 46-47 


errors 160, [125] 

changing name of 46 

character 8,40 

communicating with the 42 

control information 45 

correspondence 


logical/ physical 54 

special cases of 54 


defined as logical device 54 

driver(s) 5,41,77, 104, 107, 


108, 125 

asynchronous operation of 


104 

environment 20- 21 

errors, individual 160 

graphics 16 

standard [109-111] 

memory placement 21 


independence 7, 67 

information 43-44 


block (DIB) 43 

input 40 


logical 40 

block 53 


management calls 5 

multiple logical 54 

name(s) 41-42, 44,50,55,60 


illegal 42 

legal 42 

syntax 42 


number 44 

operations on 45-46 

output 40 

peripheral 8, 104 

physical 40 

random- access 7 

removing a 46 

requests 50 

sequential-access 7 

status information 45 

subtype 44 


changing 46 

type 44 


changing 46 

device-independent I/O 67 

DIB 


configuration block 43 

header 43 


dictionary 8 

current 62 

entry 62 


procedure [135], [136] 

error (DIRERR) [55] 

file 57-58 


format(s) 78-92 

header 78 


storage formats 76 

segment [132] , [134] 

volume 54, 57, 78 


digit(s) 42, 56 

hexadecimal 12 


direct pointer 154, 155 

to S-bank locations 155 


directory file, reading a 91-92 




• Index 169 

DIRERR [55] 

DIRFULL [55] 

disarming events 108 

Disk III driver 41 

disk drives 40 

disk, flexible 42, 77, 93 

DISKSW [72] 

dispatching routine 28 

displacement [43], [48] 

Display/ Edit function [117] 

DNFERR [71] 

dollar signs xviii , xix 

driver 


device See device driver 

module 41 


placement of 44 

DRIVER FILE NOT FOUND [129] 

DRIVER FILE TOO LARGE [129] 

DUPERR [54] 

DUPVOL [56] 


E 
E-bit 14 

editing data buffer [117] 

EMPTY DRIVER FILE [129] 

empty file 65 

end- of-file marker See EOF 

enhanced 


addressing bit 14 

addressing modes 8 

indirect addressing 10, 13-16, 


27, 30,31 - 32 
conditions for 31 


ENTER IC [138] 

entries_per_block 82 , 85, 92 

entry (entries) 86 


active 86 

directory 62 

FCB 53,62 

format compatibility 91 

inactive 86 


pOints 145 

storage formats of 76 


entry_length 81, 84, 92 

environment 


attributes 19 

execution 16-22 

interpreter 18- 19 

SOS device driver 20- 21 

SOS Kernel 19-20 

summary 22 


EOF 51,53, 63, 64-65, 68 , 87, 89, 

94, 95, 96,97, 98, [5], [19], [49] 

limit 94 

movement of 


automatic 65 

manual 65-66 


updating 65 

EOFERR [55) 

EOR 31 

error(s) [124] 


bootstrap [128) 

device call [125] 

file call [125] 

messages [123- 130] 

numbers range 160 

reporting, SOS call 160 

SOS 


fatal [124], [126] 

general [124) 

non-fatal [124] 


utility call [126) 
event(s) 5, 104-115 


any- key 105 

arming, example 129 

arming and response 105, 108, 


125 

attention 105 

detecting an 105 

disarming 108 

existing 108 

fence 106,109-110 




170 50S Reference Manual • 

handler(s) 5, 107, 110-111 , 125 

address of 108 

examples 129 


handling 106, 107 

system status during 111 


identifier (10) 108 

mechanism, sample 126,129, 


139 

priority 105, 108 

processing 106 

queue 106, 108-109 


order 109 

overflow [127] 


summary of 112 

EVQOVFL [127] 

examples 


code fragments xviii 

sample programs xviii 


executing 

code segments 27 

interpreter code 10 


execution 

environment 16-22 

speed 19 


ExerSOS [113-119] 

EXFN 145 

extended to bank-switched 

address conversion 34-35 

extension byte 14, 31 (See also 


X- byte) 

extension , pointer address 154 

EXTERNAL PROCEDURE 145 

eye symbol xv 


F 

FCB 52 


entry 53, 62 

FCBERR [128] 

FCBFULL [54] 

fence [91] , [93] 
fence, event 106, [91]. [93] 

field(s) 

formats 89-92 

bank-pair 14 

pointer 79 


FIFO (first-in, first-out) 109 

FILBU5Y [55] 

file(s) 7-8,52 


assembly- language code [133] 

block 50- 56, 62 


allocation for sparse 98 

call(s) 69- 73, [2] 


errors 160, [125] 

character 50- 56, 57 

closed 52- 53 

closing before TERMINATE 


[103] 

code 145 


partofacode [135] 

control block 64 

copying sparse 98 

creating interpreter 143 

data formats of relocatable 


assembly- language code 
146 


defined 50 

directory 57- 58 


format 78- 92 

relocatable 120 


or absolute 143 

reading 91 - 92 


empty 65 

entry (entries) 78, 85- 89 


inactive 86, 89 

sapling 89 

seedling 89 

subdirectory 89 

tree 89 


information 62- 64 

input/output 67 

interpreter, creating an 143 

level , system 66 

management calls 5 




171 • Index 

maximum capacity of a 94 

name(s) 58-59, 60 


illegal 59 

legal 59 

syntax 59 


open 52-53, 63 

operations on 68 

organization 76-99 


code [132] 

sapling 93, 95 

seedling 93, 95 

SOS 56-62 

sparse 63, 94, 97-98 

standard 57-58 


locating a byte in 98-99 

storage formats of 92-99 


structure 

common 3 

hierarchical 8 

of a block 50-51 

of a character 50-51 

of a sapling 96 

of a seedling 95 

of a tree 96 


subdirectory 57, 78 

system 


relationship to device 

system 57 


root of 59 

SOS 55-62 

tree 61 


top- level 57 

tree 94, 96-97 


growing a 92-95 

type 68 

volume directory 77 


file_count 82, 85 

file_name 60, 63, 80, 83, 87 

file_type 64, 87,91 , [4]. [13]. [18] 

FIND_SEG 26, 30, 121, 122, 


[77-79] 
flexible disk 42, 77,93, [109] 

floppy disk See flexible disk 

flow of control 27 

FLUSH 66,72, [37]. [41 - 42] 

FNFERR [54] 

form 


bank-switched 13 

current- bank- switched 13 

of a SOS call 148,160 


format(s) 

absolute or relocatable 143 

date and time 90 

directory file 78 

of attribute table [137] 

of directory files 78 

of information on a volume 77 

of name parameter 159 

of relocatable assembly-


language code files, data 146 

relocatable 120 

volume 77 


free memory 23 

data in 30 

obtaining 121 - 124 

segment allocated from 29 


free_blocks (23) 

.FUNC [136]. [139] 

FUNCTION 145 

future versions 


compatibility with 18 

of SOS 91 , 92, 93 


G 
general purpose communications 

(.RS232) [111] 
GET ANALOG 113,115, 

[99-101] 
GET_DEV_NUM 43,44, 45, 47, 

[65] 

GET_EOF 65,66,68, 73, [49] 

GET_FENCE 110, 114, [93] 

GET _ FILE_ INFO 63, 65, 68, 70, 


152, [17- 21] 



172 SOS Reference Manual 

GET LEVEL 66, 69, 73, [53] 

GET-MARK 66, 68, 72, [45] 

GET-PREFIX 70, [27] 

GET-SEG INFO 26, [83- 84] 

GET-SEG- NUM 26, [85] 

GET-TIME- 90, 112, 115, [97- 98] 

.GRAFIX [110] 

graphics 16, [110] 


area 16 

device drivers 16 


growing a tree file 92 


H 
hand symbol xv 

handler 


event 5,125 

interrupt 5 


handling an event 106, 107 

hardware 8, 10 


independence 2 

interrupt 105 


header(s) 43, 119 

directory 78, 79-82 

subdirectory 82-85, 89 

volume directory 79, 80, 89 


header_pointer 89 

heads 77 

hexadecimal (hex) xviii 


digit 12 

numbers xviii 


hierarchical file structure 8 

hierarchical tree structure 56, 76 

high-order nibble [117] 

highest bank 11 


pair 15 

highest switchable bank 15, 18 

highest-numbered bank 23 

housekeeping functions 3 


• 

I 

I/O 


block 51 

buffer 50, 127 

character 51 

device-independent 67 

ERROR [129] 


implementation versus interface 

76 

warning 99 


INCOMPATIBLE INTERPRETER 

[129] 


increment loop 124 

one-bank example of 124 


incrementing a pointer 36- 37 

index block(s) 93,94,95 


master 94 

maximum 94 

sub- 94, 96 


index block 99 

indexed mode, zero-page 29 

indexing 15 


addresses 15 

indirect 


addressing 10 

enhanced 10, 13- 16, 27, 30, 


31-32 

normal 14 


operation , normal 31 

pointer(s) 154, 156, 157 


with an X- byte between $80 

and $8F 158 


with an X-byte of $00 157 

indirect-X addressing 13 

indirect-Yaddressing 13 

input(s) 


analog 113 

device 40 

parameters [116] 


input/output, file 67 




• 

interface versus implementation 

76 

warning 99 


interface, SOS 76 

intermediate form, bank-switched 


addresses as 32 

.INTERP [139] 

interpreter(s) 5, 16, 118-125, 145, 


[132] 

and modules 144 

BASIC 145 

code 10 


executing 10 

command [103] 

environment 18-19 

files, creating 143 

language 118 

maximum size of 18 

memory 


placement 18 

requirements of 146 


Pascal 145 

return to 29 

sample(s) 125-142 


listing, complete 131-142 

stand-alone 118 

structure of 119-121 

table within 29, 30 


INTERPRETER FILE NOT 
FOUND [129) 

interpreter-relative relocation 
table [139] 

interpreter's 

stack 19,110 

zero page 19 


interrupt(s) 5, 104-115 

conflicts between 104 

handler 5, 22, 104 

IRQ 22 


and NMI 20 

ranked in priority 104 

summary of 112 


Index 173 

invalid 

address 13 

jumps 29 

regions 15,16 


INVALID DRIVER FILE [129] 

io _ buffer [31) 

IOERR [72) 

IRQ interrupts 20, 22 

is_newline 67, 68 , [33] 


J 
JMP 27-28, [139) 

joy_mode (99) 

joy_status [100) 

joystick [99] 

JSn-8 [100] 

JSn-Sw (100) 

JSn-X (100) 

JSn-Y (100) 

JSR 27-28 

jumps 29 


inside module 29 

invalid 29 

valid 29 


K 
KERNEL FILE NOT FOUND 

[130] 

key_pointer 87, 92 

keyboard 40 


L 
labels xix, 120 


local 127 

language interpreter 118 

largest possible file 94 

lastmod date and time 64, 88, 


89-90, [14], [19] 

field 89-90 


LOA 31 , [139] 




174 SOS Reference Manual • 

leaving ExerSOS [119] 

legal device names 42 

legal file names 59 

length 152, [3], [11], [17], [25], 


[30], [67], [116] 

letters 42,56 

level 66, [51], [53] 

level, system file 66 

limit 23, 122, [75], [78], [83] 

LIMIT 122 

line-termination character 67 

linked list 78 

linker information [133] 

linking 


assembly-language modules 

145 


dynamic loading during 145 

lists 


required parameter 129, 

150-152 


optional parameter 152-154 

loading 


dynamic, during linking 145 

assembly-language modules 


145 

routine [134] 

loading_address 120,121 
locating a byte in a standard 

file 98 

logical 


block 77 

device 53 


byte position 98 

device(s) 40 


accessinga 41 

multiple 54 


structures 76 

logical/physical device 


correspondence 54 

loop, increment 124 

low-order nibble [117] 

LVLERR [56] 


M 
machine 


abstract 2 

storing the state of the 110 


macro, SOS 126 

Makelnterp [121-122] 

management calls 


device 5 

file 5 

memory 5 

utility 5 


manager, resource 2-3 

manual movement of EOF and 


mark 66 

manuf_id 45, [70] 

manufacturer 45 

mark 51 , 53,64-65,68, 97,98, 


[45] 

movement of, automatic 65 

movement of, manual 65-66 


marker, current position 51 

master index block 94,96, 97 

maximum 


number of access paths 53 

capacity of a file 94 

number of index blocks 94 

size of an interpreter 18 


MCTOVFL [127] 

media, removable 53, 54 

medium 42, 53 

MEM2SML [127] 

memory 6-7, 23 


access techniques 27-38 

addressing, bank-switched 


10-13 

allocation 25, 121 

bookkeeper 7 

call(s) 25-27 


errors 160 

conflict 121 


avoiding 121 




175 • Index 

management 7 

calls 5 


obtaining free 121 - 124 

placement 


interpreter 18 

module 144 

SOS device driver 21 

SOS Kernel 20 


S-bank 19 

segment 7 

size, maximum 6, 10 

unswitched 28 


messages, error [123- 130] 

min _ version 81 , 84, 88 

mode(s) 


absolute addressing 29 

addressing 10-16 

enhanced addressing 8 

newline information 67 

zero-page addressing 29 


indexed 29 

modification date and time 68 

module(s) 5, [132] 


absolute 143 

addressing 27-29 

assembly- language 19, 118, 


143-146 

linking 145 


BASIC invokable 145 

creating 146 

driver 41 

execution, bank-switching 


for 30 

formats 146 

loader [134] 

Pascal 145 

program or data access by 145 

relocatable 143,146, [132J 


multiple 

access paths 52 

logical devices 54 

volumes 54 


N 
name(s) 60, 68 


device 60 

file 58-59, 60 

local 59 

parameter 159-160 

volume 55-56, 60 


name_length 80,83, 87 

naming conventions 76 

new_pathname [9J 

NEWLINE 67,68,69, 71, [33-34J 

newline 


character 67 

mode 67 


newline_char 67, 68, [33] 

newline-mode information 67 

nibble 


high-order [117J 

low-order [117J 


NMI 114 

interrupts 20 


NMIHANG [127] 

NORESC [72J 

notation xviii 


and symbols xviii 

bank-switched address 15, 


23 

extended address 15 

numeric xviii 

segment address 23-27 


NOTBLKDEV [56] 

I\lOTOPEN (72] 

NOTSOS (55J 

NOWRITE [72] 

null characters (ASCII $(0) 97 

number(s) 


decimal xix 

device 44 

hexadecimal xiv 

reference 52 

slot 44 


changing 46 




-

176 SOS Reference Manual 

unit 44 

version 45 


numeric notation xviii, xix 


o 
OPEN 52,53, 68,69,71 , [29- 32] 


call, example 128 

operating system 2-3 


defined 2 

operations 


asynchronous 5 

normal indirect 31 

on devices 45-46 

on files 68 

sequential read and write 50 


opt_header 120 

opt_header _length 120 

option_list 152, [3]. [11]. [17]. 


[29]. [67] 

optional parameter list 152-154, 


[x] 

ORA 31 

orderofeventqueue 109 

organization, code file [132] 

OUTOFMEM [56] 

output device 40 

overview of the Apple III 3-8 

OVRERR [54] 


p 
page(s) 23, [31]. [78]. [81]. [83] 


part of segment address 25 

parameter(s) 


format of a name 159 

input [116] 

list, 


optional 152-154, [x] 
required 129,150-152, [x] 


name 159-160 

passing 145 

pointer 145 


• 

parent_entry)ength 85 

parent_entry _ number 85 

parent_pointer 85 

parm_count [xi] 

parm list 149 

Pascal 118, 143, [132] 


and BASIC modules 145 

assembler 145, [134] 

interpreter 145 

prefix 62 

program 145 

versus SOS prefixes 62 


path(s) 
access 52 


information 64-66 

multiple 52 

maximum number of 56 


pathname [3]. [7]. [9]. [11] , [17]. 
[25]. [29] 

pathname 52, 59- 61 

full 62 

partial 61-62 

syntax 60 

valid 61 


PERFORM 145 

period 42, 56 

peripheral device 8, 104 

physical device 40, 54 


correspondence with logical 
devices 54 


PNFERR [54] 

point, decimal xix 

pointer(s) 31 , 69, 152 


address extension 154-159 

byte order of 79 

comparing two 37 

direct 154,155-156 


to current 156 

to X-bank 155 


extended 123 

fields 79 

Incrementing a 36-37 




• Index 1n 

indirect 154, 156-159 

manipulation 36-38 

parameters 145 

preceding- block 78 

self- relative [136], [138] 

three-byte 98 


POSNERR [55) 
prefix(es) 60 , 61-62 

Pascal 62 
restrictions on 62 
SOS 62 

versus Pascal 62 
.PRINTER (111) 
printers 40 
priority of zero 108 
priority- queue scheme 108 
.PRIVATE [138] 
.PROC [136], [139] 
procedure(s) [135], [136] 

attribute table [136] 
code [136] 
dictionary [135] 

entries [136] 
PROCEDURE NUMBER [138] 
procedure-relative relocation 

table [139] 
processing an event 106 
Processor, Apple III xvii 
Product Support Department 45 
program 

execution, restrictions on 14 
exiting from 66 

programming 
assembly-language xiii 
restrictions , circumvention of 

SOS 3 
psuedo-opcode(s) [136] 

.FUNC [136] 

.PRIVATE [138] 

.PROC [136] 

.PUBLIC [138] 
.PUBLIC [138] 

Q 
queuing an event 106 

R 
range, X- byte 15 
READ 67,68, 71 , [35-36) 
read and write operations, 

sequential 50 
read-enable bit [12], [18] 
reading a directory file 91 
ref_nlJrn 52, 64,67, [2], [29], [33], 

[35], [37], [39], [49] 
[41], [43], [45], [47] 

references, relocation (138) 
regions 

invalid 15, 16 
risky 15,16 

release memory 25 
RELEASE SEG 27, [87] 
relocation- 146 

constant [138] 

information 145 

references [138] 

table(s) [138] 

base-relative [138] 

interpreter- relative (139) 

procedure-relative [139] 

segment-relative [139] 


RELOCSEG NUMBER [138] 

RENAME 69, 90, [9- 10] 

req_access [30] 

request_count [35], [37 ] 

REQUEST _ SEG 25, 121 , [75-76] 


call 30 
required parameter list 129, 

150- 152, [x] 
example 129 

resource manager 2-3 
defined 2 

resources 112-114 



-

178 SOS Reference Manual 	 • 

restrictions 

addressing 15 

bank-switching 28 

on program execution 14 


result 69,151 

return to interpreter 29 

risky regions 15, 16 


addresses 32 

avoiding 37 

warning 32 


ROM ERROR: PLEASE NOTIFY 
YOUR DEALER [130] 


root of file system 59 

.RS232 [111] 


S 
S-bank 11,23,28 


address 12, 38 

in segment notation 25 


locations, direct pointers to 155 

memory 19 


sample programs, examples xiv 

sapling file 93, 95 


entry 89 

structure of a 96 


SBC 31 

scheme, priority-queue 108 

SCP 43 

screen 40 

search mode [77] 

sectors 77 

seedling file 93, 95 


entry 89 

structure of a 95 


seg_address [85] 

seg_id [75], [78], [83] 

seg_"um [76], [78], [81], [83], 


[85], [87] 

segment 23-24 


address 24, 38 

bank part of 25 

conversion 33-35 


notation 23-27 

page part of 25 


allocated from free memory 29 

dictionary [132], [134] 

memory 7 

of memory, allocating a 121 

to bank-switched address 


conversion 33 

to extended address conversion 


33 

segment-relative relocation 


table [139] 
SEGNOTFND [88] 
SEGRODN [88] 
SEGTBLFULL [88] 
sequential 

access 51 

devices 7 


read and write operations 50 

serial printer (.PRINTER) [111] 

SET_EOF 66,68,72-73, [47-48] 

SET_FENCE 107, 110, 114, [91] 

SET_FILE_INFO 63, 68,70, 88, 


90,152, [11 - 16] 

SET_LEVEL 66,73, [51] 

SET_MARK 66,68,72, [43- 44] 

SET_PREFIX 70, [25-26] 

SET_TIME 90, 112, 115, [95-96] 

slash (I) 56, 60 

slot number 44 


change 46 

of zero 44 


slot_"um 44, [68] 

software, common foundation 


for 2, 3 
Sophisticated Operating System 

See SOS 
SOS xvii , 3, 5-6,16,104 

1.1 xix, [106] 
1.2 	 18, 77, 81 , 82, 84, 85, 88, 92, 


93,95,99, 105 

1.3 xix, [106] 



179 • Index 

bank 11 
call(s) 8 


block (103] 

form error 160 


reporting 160-161 
form of 148-154, 160 
types of 148 

device 
driver 

environment 20-21 
memory placement 21 

system 43 

disk request 55 

errors 


fatal [124], (126] 
general (124] 
non- fatal (124] 

file system 56, 58 
future versions of 91 , 92, 93 
implementation 76 
interface 76 
Kernel 19 

environment 19-20 
memory placement 20 

macro 126 
for SOS call block 126 

prefix(es) 62 
versus Pascal 62 

programming restrictions, 
circumvention of 3 

specifications [105-111] 
support for 76 
system 104 
versions xix, [106] 

SOSDRIVER 6, 41 
SOS.INTERP 118 
SOS.KERNEL 6, 41 
sparse file(s) 63,94, 97- 98 

block allocation for 98 
copying 98 

special symbols xv 
STA 31 

stack 17, 20 
interpreter's 145 
overflow (127] 
pages 19 

stand-alone interpreter 118 
standard device drivers (109- 111] 
standard file(s) 57-58 

locating a byte in 98- 99 
storage formats of 92-99 

state of the machine, storing 
the 110 

status request 
$00, block device (60] 
$01 , character device [60] 
$02, character device [61] 

status_code (59] 
status_list [60] 
STKOVFL [127] 
stop symbol xv 
storage formats 

directory headers 76 
entries 76 
of standard files 92-99 

storage_type 64, 80, 83, 87, 89, 
92, 95, 96, 97, (5], [19] 

string buffer [117], [118] 
structure(s) 

hierarchical tree 56, 76 
logical 76 
of a sapling file 96 
of a seedling file 95 
of a tree file 96 
of an interpreter 119- 121 
of block f iles 50-51 
of character files 50-51 

sub_type 44, 45, [69] 
subdirectory (subdirectories) 

file(s) 57, 78 
entry 89 

header 82, 83, 89 
subindex block 94, 96 
subroutine addressing 27-29 

8 



180 SOS Reference Manual • 

summary 

of address storage 38 

of interrupts and events 112 


switchable bank 11 

highest 15, 18 


symbol(s) 

eye xix 

hand xix 

stop xix 

v1 .2 xix 


syntax 

device name 42 

file name 59 

pathname 60 

volume name 56 


System Configuration Program 
(SCP) 41,46 

system 

clock 112 

configuration time 104 

file level 66 

operating 2-3 

status during event handling 111 


T 
table 


procedure attribute [136) 

within interpreter 29, 30 

Technical Support Department 

146 


TERMINATE 114, 115, 126, 131 , 

[x i), [103) 

call , coding 131 

closing files before [103) 


termination character 67, [61) , 
[64) 

three-byte 

address 13 

pointer 98 


time 
date and 


creation 64, 81 , 84,88, 89-90 

format 90 

last_mod 64,88, 89- 90, [14], 


[19) 

time pointer [95], [97) 

time-dependent code 104 

timing loop 19, 104 

TOO MANY BLOCK DEVICES 


[130) 

TOO MANY DEVICES [130) 

TOOLONG [128) 

top-level files 57 

total_blocks 45, 82, [23], [70) 

tracks 77 

transfer control 28 

transfer_count [36) 

tree file 94, 96- 97 


entry 89 

growing a 92- 95 

structure of a 96 


tree structure, hierarchical 56 

tree, file system 61 

TYPERR [55) 


U 

unit number 44 

unit_ num 44, [68) 

unsupported storage type 


(TYPERR) [55) 

utilities disk 41 

utility 


call(s) 114 

errors 160, [126) 

management 5 


V 

v1 .2 symbol xix 


and other versions xix 




Index 181 

WORD [139] 
words [133] 
WRITE 68,71,90, [37-38] 
write-enable bit [12]. [18] 

x 

X register 14 

X-bank, direct pointers to 155 

X-byte 14, 15, 31 , 145 


between $80 and $8F, indirect 
pointers with an 158 


format 14 

of $00, indirect pointers with 


an 157 

of $8F 16 

range 15 


X-page 145 


y 
V-register 15,32 

z 
zero 


interpreter's 19 

page 15, 17,20, 29 


and stack 17, 20 

warning on accessing 17 


conflicts with 16 

priority of 108 


zero-page addressing mode 29 

zero-page indexed addressing 


mode 29 


Special Symbols and Numbers 
& v1.2 81, 82,84 

$ xviii, xix 

$0 16 

$8F 16 

6502 xvii 


instruction set 8 


• 

valid 
jumps 29 

pathnames 61 


value 69,151 

valuelresult parameter 

VCBERR [128] 

version 81, 84, 88 


number 45 

version_nurn 45, [70] 

VNFERR [54] 

vol name 60, [23] 

VOLUME 70, [23-24] 

volume(s) 53-54, 76 


bit map 77, 93 

blocks on a 77 

directory 54, 57, 78,93 


file 77 

header 79,80,89 


formats 77 

multiple 54 

name(s) 42, 55-56, 60 


advantages of 56 

syntax 56 


switching 54-55 

volume/device correspondence 


54 


W 
warning 


address conversion 123 

interface versus implementation 


99 

on accessing zero page and 


stack 17 

on pointer conversions 155 

on sample interpreter 125 

pointer 


direct 156 

indirect 158,159 


risky regions 32 

termination 114 

unallocated memory 121 


152 





	Contents
	Figuresand Tables
	Preface
	1)The Abstract Machine
	2)Programs and Memory
	3)Devices
	4)Files
	5)File Organization on Block Devices
	6)Events and Resources
	7)Interpreters and Modules
	8)Making SOS Calls
	Index

