

The

Book
Of

Softlkeys

Volume III

Entire contents copyright © 1987 by

SoftKey Publishing
PO Box 110846-BK
Tacoma, WA 98411

All Rights Reserved. Copying done for other than
personal or internal reference (without express written
permission from the publisher) is prohibited. Any
opinions expressed by the authors are not necessarily
those ofHardcore COMPUTIST or SoftKey Publishing.

The Book Of Softkeys Volume III t

Other Publications by SoftKey Publishing:

The Book Of Softkevs Volume II 160 pages

shows you how to deprotect (softkey):
Apple Cider Spider- Apple Logo- Arcade Machine- The
Artist- Bank Street Writer- Cannonball Blitz- Canyon
Climber- Caverns ofFreitag- Crush, Crumble & Chomp
Data Factory 5.t}- DB Master- The Dic*tion*ary- Essential
Data Duplicator 1 & lll- Gold Rush- Krell Logo- Legacy
of Llylgamyn- Mask Of The Sun- Minit Man
Mouskattack- Music Construction Set- Oil Os Well
Pandora's Box- Robotron- Sammy Lightfoot- Screenwriter
II v2.2- Sensible Speller 4.0, 4.0c, 4. Ic- the Spy Strikes
Back- Time Zone v1.1- Visible Computer: 6502- Visidex
Visiterm- Zoxxon- Hayden Software- Sierra Online
Software- PLUS the complete listing of the ultimate cracking
program...Super lOB 1.5- and more!

The Book Of Softkevs Volume I 160 pages

shows you how to deprotect (softkey):
Akalabeth- Ampermagic- Apple Galaxian- Aztec- Bag of
Tricks- Bill Budge Os Trilogy- Buzzard Bait- Cannonball
Blitz- Casino- Data Reporter- Deadline- Disk Organizer
ll- Egbert II Communications Disk- Hard Hat Mack- Home
Accountant- Homeword- Lancaster- Magic Window ll
Multi-disk Catalog- Multiplan- Pest Patrol- Prisoner ll
Sammy Lightfoot- Screen Writer ll- Sneakers- Spy Os

Demise- Starcross- Suspended- Ultima ll- Visifile
Visiplot- Visitrend- Witness- Wizardry- Zork 1- Zork ll
Zork lll- PLUS how-to articles and program listings of need
to-have programs used to make unprotected backups.

COMPUTIST anagazine

The Magazine For Serious Apple][users

The monthly magazine that shows you, step-by-step, how to remove copy
protection from commercial software for the Apple II series of computers.

2 'I1le Book Of Softkeys Volume III

Table of Contents
How To Use This Book 5
What Is A Softkey? 9

-Alien Addition see eDLM
Alien Munchies : 10
-Alligator Mix see eDLM
Computer Preparation SAT 13
-Cut And Paste see eEA
-Demolition Division see e DLM
eDLM (Developement Learning Materials) software 16
eEA (Electronic Arts) software 18
Einstein Compiler version 5.3 21
Escape From Rungistan 23
Financial Cookbook 25
Flip Out 27
Hi-Res Computer Golf II 33
Knoware 35
Laf Pak 37
-Last Gladiator see eEA
Learning VVuh Leeper 46
Lion's Share 47
Master Type vI. 7 51
MatheMagic 55
-Minus Mission see eDLM
Millionaire 57
Music Construction Set 58
-One On One see eEA
e PFS software 65
e PS (Penguin) Software 66
-The Quest see eps
Rocky's Boots 70
Sabotage 76
Seadragon 78
Sensible Speller IV 82
Snooper Troops II 89
SoftPorn Adventure 91
Stickybear series 94
Suicide 102
TellStar 104
Tic Tac Show 106
Time Is Money 114
-Transylvania see e PS
Type Attack 115
UUima III Exodus 117
Zoom Graphics 122

Breaking Locksmith 5.8 Fast Copy 127
Csaver 131
The Core Disk Searcher 139
Modified ROMs 150
The Armonitor 156

The Book Of Softkeys Volume III 3

4

Introduction
Welcome to the Book Of Softkeys Volume III, a

compilation of special articles from Hardcore COMPUTIST
magazine (issues 11 through 15) that explain how to remove
copy-protection from specific commercially-sold, locked
up and uncopyable software for Apple][computer systems.

Hardcore COMPUTIST (now called COMPUTIST) is
a monthly publication devoted to the serious user of Apple
][computers and compatibles. Hardcore COMPUTIST
magazine contains information you are not likely to find in
any of the other major journals dedicated to the Apple market.

Our editorial policy is that we do NOT condone software
piracy, but we do believe that honest users are entitled to
backup commercial disks they have purchased. In addition to
the security of a backup disk, the removal of copy-protection
gives the user the option of modifying application programs
to meet his or her needs.

Furthermore, the copyright laws guarantee your right to
such a deprotected backup copy:

..."It is not an infringement for the owner of a copy of a
computer program to make or authorize the making of another copy
or adaptation of that computer program provided:

1) that such a new copy or adaptation is created as an essential
step in the utilization of the computer program in conjunction with
a machine and that it is used in no other manner, or

2) that such new copy or adaptation is for archival purposes
only and that all archival copies are destroyed in the event that
continued possession of the computer program should cease to be
rightful.

Any exact copies prepared in accordance with the provisions
of this section may be leased, sold, or otherwise transferred, along
with the copy from which such copies were prepared, only as part
of the lease, sale, or other transfer of all rights in the program.
Adaptations so prepared may be transferred only with the
authorization of the copyright owner."

United States Code title 17, §1l7 (17 USC 117)

Those of you who are not already familiar with Hardcore
COMPUTIST are advised to read the How To Use This Book
article in order to avoid frustration when attempting to follow
a softkey article or when typing in the programs printed in
this book.

i

The Book Of Softkeys Volume III

How To
Use This Book

Commands And Controls

Commands which a reader is required to perform are set apart
from normal text by being indented and bold. An example is:

PH#6

The IRETURN) key must be pressed at the end of every such
command unless otherwise specified. Control characters are shown
as a single symbol. For example:

61GPI

To complete this command, you must first type the number 6 and
then hold the 8 key while you press the [E key. Be sure to enter
the command into the computer by finally pressing the IRETURN I key.

Requirements

Most of the programs and softkeys which appear in this book
require one of the Apple Hseries of computers and at least one disk
drive with DOS 3.3. Occasionally, some programs and procedures
have special requirements. The prerequisites for deprotection
techniques or programs will always be listed at the beginning of
the article under the 'Requirements:' heading.

Software Recommendations

The following programs are strongly recommended for readers
who wish to obtain the most benefit from our articles:

An Applesoft Program Editor
such as Call A.P.P.L.E's Global Program Line Editor (GPLE).

A Sector Editor
such as SoftKey's DiskEdit,
or ZAP from Quality Software's Bag of Tricks,
or Tricky Dick from Golden Delicious' The CIA.

The Book Of Softkeys Volume III 5

A Disk Search Utility
such as The Inspector,
The Tracer from The CIA,
or The CORE Disk Searcher (in this volume).

An Assembler
such as the S-C Assembler,
or Merlin/Big Mac.

A Bit Copier
such as Copy II Plus,
Locksmith,
or Essential Data Duplicator (EDD).

A Text Editor
(able to producing normal sequential text files) such as:
Applewriter II,
Magic Window II,
or Screenwriter II.

You will also find COPYA, FlO and MUFFIN from the DOS 3.3
System Master Disk useful.

Super lOB and controllers

Several softkey procedures will make use of a Super lOB
controller, a small program that must be typed into the middle of
Super lOB. The controller changes Super lOB so that it can copy
different disks. See the Super lOB 1.5 article and program in the
The Book Of Softkeys Volume II. Before using any Super lOB
controllers, read the Csaver article in this volume.

Reset Into The Monitor

Some softkey procedures require that the user be able to enter
the Apple's System Monitor (henceforth called the Monitor) during
the execution of a copy-protected program. Check the following list
to see what hardware you will need to obtain this ability.

Apple][Plus - Apple lIe - Apple compatibles:

1) Place an Integer BASIC ROM card in one of the Apple slots.
2) Use a non-maskable interrupt (NMI) card such as Replay or
Wildcard.

Apple][Plus - Apple compatibles:

Install an F8 ROM with a modified reset vector on the motherboard
as detailed in the Modified ROMs article in this volume.

6 The Book Of Softkeys Volume III

Apple I Ie - Apple I Ie:

Install a modified CD ROM on the computer's motherboard. Cutting
Edge Ent. (Box 43234 Ren Cen Station-HC; Detroit, MI48243)
sells a hardware device that will give you this ability. Making this
modification to an Apple Ilc will void its warranty but the increased
ability to remove copy-protection may justify it.

Recommended Literature

Apple Jf Reference Manual

DOS 3.3 manual

Beneath Apple DOS
by Don Worth and Pieter Lechner; Quality Software

Assembly Language For The Applesoft Programmer
by Roy Meyers and C.W. Finley; Addison Wesley

What's Where In The Apple
by William Lubert; Micro Ink

Typing In Applesoft Programs

BASIC programs are printed in this Book Of Softkeys in a format
that is designed to minimize errors for readers who key in these
programs. To understand this format, you must first understand the
formatted LIST feature of Applesoft.

An illustration- If you strike these keys:

10 HOME:REMCLEAR SCREEN

a program will be stored in the computer's memory. Strangely, this
program will not have a LIST that is exactly as you typed it. Instead,
the LIST will look like this:

10 HOME: REM CLEAR SCREEN

Programs don't usually LIST the same as they were keyed in
because Applesoft inserts spaces into a program listing before and
after every command word or mathematical operator. These spaces
usually don't pose a problem except in line numbers which contain
REM or DATA command words. The space inserted after these
command words can be misleading. For example, if you want a
program to have a list like this:

10 DATA 67,45,54,52

you would have to omit the space directly after the DATA command
word. If you were to key in the space directly after the DATA

The Book Of Softkeys Volume III 7

command word, the LIST of the program would look like this:
11 DATA 67,45,54,52

This LIST is different from the LIST you wanted. The number of
spaces you type after DATA and REM command words is very
important.

All of this brings us to the Hardcore COMPUTIST LISTing
format.

In a BASIC LISTing, there are two types of spaces: spaces that
don't matter whether they are keyed or not, and spaces that MUST
be keyed.

The latter spaces are printed here as delta characters (6). For
example:

10 NOTE$ = "NOTE 6 THAT6 THESE 6 SPACES6 MUST6 BE 6 ENTERED"
20 VTAB 10: HTAB 20: PR INT NOTE$; : REM THE SPACES BETWEEN COMMANDS

NEED NOT BE ENTERED,

As you see from this example, other spaces in our BASIC LISTing
are put there for easier reading and it won't matter whether you
type them or not.

Keying In Hexdumps

Machine language programs are printed here as both source code
and hexdumps. Only one of these formats need be keyed in to get
a machine language program. Hexdumps are the shortest and easiest
format to type in. To key in hexdumps, you must first enter the
Monitor with CALL -151IRETuRNI.

Now key in the hexdump exactly as it appears. Ifyou hear a beep,
you will know that you have typed something that the Monitor didn't
understand and you must retype that line.

When finished, return to BASIC by typing E883GIRETURNI.
Remember to BSAVE the program with the correct filename,
address and length parameters as given in the article.

Keying In Source Code

The source code portion of a machine language program is
provided only to better explain the program's operation. Ifyou wish
to key it in, you will need the S-C Assembler. Without this assembler,
you will have to convert the S-C Assembler directives (printed in
Hardcore COMPUTIST # 17) to similar directives used by your
assembler.

---1---

8 The Book Of Softkeys Volume III

The
Softkeys

The softkeys listed below require Super lOB:
Computer Preparation SAT
Demolition Division
Electronic Arts software
Hi-Res Computer Golf II
Master Type vl.7
MatheMagic
Penguin Software
Rocky's Boots
Seadragon
Snooper Troops II
Tic Tac Show
Ultima III Exodus

What is a softkey?

Softkey is a term which we've coined to
describe a procedure that removes, or at
least circumvents, any copy-protection on
a particular disk. Once a softkey
procedure has been performed, the
resulting disk can usually be copied by the
use of Apple's COPYA program (on the
DOS 3.3 System Master Disk) and is said
to be 'COPYAable. '

The Book Of Softkeys Volume III 9

Requirements:
Apple J[with 48K
Means of resetting into the Monitor
One slave disk with a null HELLO program

Alien Munchies by Gentry Software is your common, everyday,
run of the mill "Fry the aliens on your barbecue grill!" arcade game.
(Sure, everyday huh?) This game is slow at the beginning and patient
playing is needed to get to the much more exciting 2nd and 3rd type
of aliens (10,000 and 20,000 points respectively).

The method used to deprotect this game illustrates a very useful
move routine you can use in your own cracks. The problem of
running out of men before reaching these more challenging stages
is solved with an example of the art of Advanced Playing Techniques
(APTs).

Step-By-Step
c:::::!J Boot Alien Munchies.

UJ IRESET) into the Monitor after the picture has come onto the
screen.

OJ Move page eight out of the way for a boot:

2000<800.8FFM

[=:1J Boot a slave disk with no HELLO program.

Q] Enter the Monitor:

CALL -151

[j] Move page eight back:

800<2000.20FFM

10 The Book Of Softkeys Volume III

At this point, the Alien Munchies program is in memory and in
its proper memory locations. Rather than save a huge chunk of
memory, let's save some disk space with a move routine.
Furthermore, to bring the game under control a little better, let's
include an APT routine.

C1J Compact the code:

3000<6000.6FFFM

c:=:!J Enter the space-saving, relocatable move routine:

2000: A0 00 A9 00 85 00 85 02
2008: A9 30 85 01 A9 60 85 03
2010: Bl 00 91 02 E6 02 E6 00
2018: 00 F6 E6 03 E6 01 A5 01
2020: C9 40 00 EC EA

If you disassemble this code, it should look like this:

2000
2002
2004
2006
2008
200A
200C
200E
2010
2012
2014
2016
2018
201A
201C
201E
2020
2022
2024-

A000
A900
8500
8502
A930
8501
A960
8503
B1 00
91 02
E602
E600
00 F6
E603
E601
A501
C940
00 EC
EA

LOY #$00
LOA #$00
STA $00
STA $02
LOA #$30
STA $01
LOA #$60
STA $03
LOA ($00) ,Y
STA ($02) ,Y
INC $02
INC $00
BNE $2010
INC $03
INC $01
LOA $01
CMP #$40
BNE $2010
NOP

~ Type in the following APT routine:

2025: 20 2F FB
2028: 20 58 FC A2 0B 20 4A F9
2030: A2 00 BO 62 20 20 EO FO
2038: E8 E0 12 00 F5 2C 10 C0
2040: AO 00 C0 C9 09 F0 07 C9
2048: CE 00 F5 4C 00 08 A9 EA
2050: 80 C9 1080 CA 10 80 CB
2058: 10 A9 01 80 FO 12 4C 00
2060: 08 EA C9 CE C6 C9 CE C9
2068: 04 C5 A0 CO C5 CE A0 A8
2070: 09 AF CE A9 00

'The Book Of Softkeys Volume III 11

A disassembly of this would show:

2025- 20 2F FB JSR $FB2F
2028- 2058 FC JSR $FC58
202B- A20B LDX #$0B
202D- 20 4A F9 JSR $F94A
2030- A200 LDX #$00
2032- BD 6220 LDA $2062, X
2035- 20 ED FD JSR $FDED
2038- E8 INX
2039- E0 12 CPX #$12
203B- D0 F5 BNE $2032
203D- 2C 10 C0 BIT $C010
2040- AD 00 C0 LDA $C000
2043- C9 D9 CMP #$D9
2045- F007 BEQ $204E
2047- C9 CE CMP #$CE
2049- D0F5 BNE $2040
204B- 4C 00 08 JMP $0800
204E- AHA LDA #$EA
2050- 8D C9 10 STA $10C9
2053- 8D CA 10 STA $10CA
2056- 8D CB 10 STA $10CB
2059- A901 LDA #$01
205B- 8D FD 12 STA $12FD
205E- 4C 00 08 JMP $0800
2061- EA NOP
2062- C9 CE CMP #$CE
2064- C6 C9 DEC $C9
2066- CE C9 D4 DEC $D4C9
2069- C5 A0 CMP $A0
206B- CD C5 CE CMP $CEC5
206E- A0 A8 LDY #$A8
2070- D9 AF CE CMP $CEAF, Y
2073- A900 LDA #$00

Unlike the Sammy Lightfoot APT in The Book Of Softkeys
Volume II, let's make ours optional so you can play normal-style
or with infinite men and a counter in your number of barbecues
to tell you what level you're on.

e:!!] Finally, add a JMP to our special routines before the actual
program starts:

7FD:4C 0020

[!!] Save the new-and-improved Alien Munchies:

BSAVE ALIEN MUNCHIES, A$7FD,L$5803

---1---
12 The Book Of Softkeys Volume III

Computer Preparation: SAT
Harcourt, Brace and Jovanovich, Inc.

Deprotecting Computer Preparation: SAT
by Eddie Fang

(Hardcore COMPUTIST # 14, page 6)

Requirements:
48K Apple H, Apple H Plus, or Apple IIe
One disk drive with DOS 3.3
Four blank disks
Super lOB and the swap controller
(Optional: File transfer program)

This computer preparation package by HBJ ranks up at the top
with Barron's computer preparation course for the SAT. HBJ's
package has a lot of the major words found on the SAT and a lot
of similar mathematical and verbal problems, too.

My problem, however, is that I would like to change the words
and problems for a younger brother or change the problems that
I have finished studying to some newer ones. The frustration of
copying this disk is immense. After trying all of the major bit copiers
to no avail, I decided to try Super lOB. Here is how I did it!

First, get the disk that is labeled A. All the disks follow the same
process, except you will have to modify different programs on
different disks to get each totally broken. Follow these steps
carefully:

[}] Boot the first protected disk. When you hear the drive head
access the first track, hit IRESETI .

L:!] Get into the Monitor:

CALL -151

L::!] We must move the RWTS down to a safe location for Super
lOB to use:

1911<B811.BFFFM

The Book Of Softkeys Volume III 13

C!J When you get the Monitor prompt again, insert your Super
lOB slave disk and boot it:

C6"G

[j] Save the RWTS:

BSAVE RWTS.SAT,A$1988,L$a88

[:::!J Install the controller at the end of this article (a modified r

version of the swap controller) into Super lOB and execute Super
lOB:

RUN

[.=1J When asked if you wish to format the backup first, reply
with a 00. This will put DOS on the disk and set the bootup program
to HELLO.

CiJ Copy the other three sides in the same manner (Steps six
and seven).

Almost Finished
You now have a COPYAable version, but if you want to modify

it, you will have to change a few line numbers of some of the BASIC
programs. Several of the main programs have a line number 0 which
looks something like this:

@ REMIElHlIElHlIElHIIElHlIElHlIElHlIElHlIElHlIElMIElDI FP

Whenever you try to list a line like this, DOS sees the
IElMIElDI FP and clears the program in memory. In other words,
the program self-destructs when LISTed. This situation is easily
circumvented by merely eliminating line zero from these programs.
The general format for doing this is:

LOAD filename
DEL ',1
SAVE filename

Remove line zero from these programs on your duplicate disk:

Math Item Bank Display on the mathematical side.
Vocabulary Flashcards on the vocabulary flash cards side.
Verbal Item Bank Display on the verbal side.
Frank (I don't know why they called it that) on the diagnostic and

testing side.

Closing Comments
You should now have four bootable, completely deprotected and

modifiable Computer Preparation: SAT disks. I hope this helps you
as much as it has helped me.

14 The Book Of Softkeys Volume III

controller

410 GOSUB 80 : HOME :A$ = "FORMATT ING" : FLASH : GOSUB 450 : NORMAL
: PRINT: PRINTCHR$ (4) "INITHELLO,S" S2 ",D" D2 ",V" VL :VL=
o: RETURN

1000 REM SWAP CONTROLLER
1010TK=3 :ST=0 :LT=35 :CD=WR
1020 T1 = TK : GOSUB 490 : GOSUB 360 : ONERR GOTO 5501030 GOSUB 430 :

GOSUB 100 :ST = ST +1 : IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050 ST = 0 :TK = TK + 1 : IF TK < LT THEN 1030
1060 GOSUB 490 :TK = T1 :ST = 0 : GOSUB 360
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1070
1080 ST = 0 :TK =TK + 1 : IF BF = 0 AND TK < LTTHEN 1070
1090 IF TK < LTTHEN 1020
1100 HOME: PRINT "COPY~DONE" : END
10010 IF PEEK (6400) <> 162 THEN PR INT CHR$ (4) "BLOAD~

RWTS.SAT,A$1900"

---1---

The Book Of Softkeys Volume III 15

DLM Software*
(Development Learning Materials)

Softkey For DLM Software
by Chris Chenault & Ray Darrah

(Hardcore COMPUTIST # 13, page 7)

*Specifically for: Demolition Division, Alligator Mix, Alien
Addition, and Minus Mission.

Requirements:
48K Apple](or Apple lie
Super lOB
A blank disk

Demolition Division

Demolition Division is a drill that makes division fun for
youngsters. In this game, you use your correct answers to shoot
enemy tanks. You have a choice of speed, difficulty and paddle or
keyboard control.

Alligator Mix

Alligator Mix is a math drill that consists of a mixture of addition
and subtraction problems. In this game, you can only feed the
alligator if the answer to the addition or subtraction problem matches
the answer he has on his tummy.

Alien Addition

Alien Addition is an addition drill made into an arcade game. The
game gives you the ability to change speed and difficulty levels and
is one of many great education games that offer children fun while
they learn.

16 The Book Of Softkeys Volume III

Minus Mission

In Minus Mission, falling blobs of subtraction problems threaten
to overcome a robot with green slime. Arcade skill is required as
well as subtraction skill to save the robot.

The Softkey To Them All
For all of these great programs, I have developed a Super lOB

controller that deprotects them nicely. I think it may work on other
DLM releases as well as the four mentioned above.

In any case, here are the steps to follow when deprotecting any
of these educational masterpieces:

L1J Type in the Super lOB controller at the end of this article
and save it.

c:il Next, boot a normal DOS diskette and initialize a blank
disk with the filename the same as the disk you wish to copy.

INIT program name

~ Execute the Super lOB program with the DLM controller
installed.

L:!J When Super lOB is finished, try to boot the copy. If
everything comes up OK then you're finished. If you get a FILE
NOT FOUND, CATALOG the disk and RUN the first file you see.
This should have been the program name you used in step 2. You
may go back to step 2 and try again if you like.

controller
1000 REM DLM SOFfWARE CONTROLLER
1010 TK = 3 :ST = 0 :LT = 35 :CD = VIR :MB = 130 :DOS = 13
1015 GOSUB 360 : GOSUB 270 : GOSUB 360
1020 Tl =TK : GOSUB 490 : GOSUB 360 : ONERR GOTO 550
1030 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050ST=0 :TK=TK+ 1: IFTK<lTTHEN 1030
1060 GOSUB 490 :TK =Tl :ST = 0 : GOSUB 360
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1070
1080 ST = 0 :TK = TK + 1 : IF BF = 0 AND TK < LTTHEN 1070
1090 IF TK < LT THEN 1020
1100 HOME : PR INT "EVERYTH ING~ O. K. ~ NO~ DOS~ ON~ COpy" : END
10010 PR INT CHR$ (4) "BLOAD~ RViTS .13, A$1900"

------1------
The Book Of Softkeys Volume III 17

Electronic Arts
Software*
Deprotecting Electronic Arts

by Pete Levinthal
(Hardcore COMPUTIST # 13, page 26)

*Softkeys for: Cut And Paste, The Last Gladiator, and One on One.

Requirements:
48K Apple ll, Apple II Plus, or Apple IIe
DOS 3.3 disk drive
Super lOB
A sector editor
A blank disk

Electronic Arts' recent releases have all used very nearly the same
protection. Their protection scheme has been to change the data field
prologue bytes from a normal D5 AA AD to a modified D5 BB
CF on tracks $03 to $20. Tracks $00 to $02 contain the modified
RWTS to read the new data field bytes and hi-res title page. These
three tracks are unprotected normal DOS 3.3. In addition, these
recent releases have a nibble count on track $22, and track $21 is
unused.

Remember that the prologue data field bytes tell DOS where the
data starts on a sector. This is usually identified by the unique
sequence of bytes D5 AA AD. Electronic Arts has modified these
to D5 BB CF so normal DOS cannot tell where the data starts and
hence, an I/O error occurs when copying with COPYA (or some bit
copiers for that matter).

So, to deprotect the new Electronic Arts releases we must:

[}] Read the original disk with data field prologue bytes of D5
BB CF.

Q] Write to a normal DOS 3.3 disk with normal data field
prologue bytes of D5 AA AD.

c::il Change the modified Electronic Arts' RWTS to read normal
D:; AA AD data field prologue bytes.

c::::i] Disable the nibble count.

18 The Book Of Softkeys Volume III

Easy enough, right? We can use Super lOB to do most of the
work and then use a sector editor to complete the process. Here
is the procedure:

[]] Load Super lOB and type in the controller at the end of
this article.

c:!l With the controller installed, run Super lOB.

Cut and Paste

When Super lOB is finished, it will have made these sector
alterations:

Track Sector Byte From To

01 0F 68 20 18
01 0F 69 A2 60
01 0F 6A Al EB

02 03 47 BB AA
02 03 51 CF AD

If you have copied Cut and Paste, then that's all. Enjoy your
backup.

Pull Out Your Sector Editor
If you have copied The Last Gladiator or One on One, then you

will need to pull out your sector editor and make the following
modifications (to the copied COPYAable disk):

The Last Gladiator

Track Sector Byte From To

IF 0E 05 A0 18
IF 0E 06 20 60
IF 0E 68 20 18
IF 0E 69 A2 60

IF 0F 05 A0 18
IF 0F 06 20 60
IF 0F 68 20 18
IF 0F 69 A2 60

The Book Of Softkeys Volume III 19

One On One

Track Sector Byte From To
--

09 02 IF 01 FD

0C 04- 05 A0 18
0C 04- 06 18 60
0C 04- 07 88 C8
0C 04- DC A0 18
0C 04- DD FF 60

Now you're all done! Don't forget to write the sectors back out
to your COPYAable copy as you change them.

Electronic Arts controller

1000 REM ELECTRONIC ARTS
1010TK=0 :ST=0 :LT=33 :CD=WR
1020 Tl = TK : GOSUB 490 : IF TK > 3 THEN RESTORE: GOSUB 210
1030 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1030
1035 IF TK = 2 THEN GOSUB 210
1040 IF BF THEN 1060
1050ST=0 :TK=TK+ 1: IFTK<lTTHEN 1030
1060 GOSUB 490 :TK = Tl :ST = 0 : GOSUB 230 : IF TK = 0 THEN GOSUB

1110
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1070
1080 ST = 0 :TK = TK + 1 : IF BF = 0 AND TK < LTTHEN 1070
1090 IF TK < LT THEN 1020
1100 HOME: PRINT "DONE" WITH" COpy" : END
1110 POKE 19015 ,170 : POKE 19025 ,173 : POKE 18024,24
1120 POKE 18025 ,96 : POKE 18026 ,235 : RETURN
62010 DATA 213 ,187 ,207

---1---

20 The Book Of Softkeys Volume III

LDA $C08E,X
LDA $C08E,Y

The Einstein Compiler v5.3
The Einstein Corporation

Softkey For The Einstein Compiler Version 5.3
by Marco Hunter

(Hardcore COMPUTIST # 11, page 6)

Requirements:
48K Apple][Plus or equivalent
One disk drive with DOS 3.3
A blank disk
COPYA from the DOS 3.3 System Master
A sector editing program

Although it has a few shortcomings, the Einstein Compiler is
probably the best of its kind available. The compiler produces a
file which is usually saved as a huge Applesoft program and tricks
DOS into thinking it is loading an Applesoft file, when it is actually
loading a compiled program as well as a library of subroutines. But
that is for a review, and this is a softkey. Suffice it to say that Einstein
is most likely your best bet in Applesoft compilers.

Einstein is a program which resides on an essentially normal disk.
The infamous nibble-count technique is used to ensure that an
original disk is being used. The procedure for locating a nibble count
usually involves much time, knowledge of Assembly language and
Assembly language tricks. A little luck can also come in handy.
Fortunately, all nibble counts involve some method of accessing the
disk. Since a disk controller card can reside in any of the Apple's
slots, the nibble count must adjust itself to the slot being used. The
most popular method is to load the X- or Y-register with the slot
number (technically, the slot number * 16) and then to access the
location C08C + X or C08E + X. In Assembly language, it would
look like one of these.

LDA $C08C,X
LDA $C08C,Y

Note: Other options include LDY $C08E,X and LDX $C08C,Y.

The Book Of Softkeys Volume III 21

Since both the register loaded and the index used can change,
it is best to search for C08C or C08E. Because two-byte addresses
are always reversed in machine language, the bytes to search for
are 8C C0 and 8E C0. After locating these bytes on a disk, preferably
with a disk search utility such as Bag of Tricks or The CIA, you
should disassemble the code to find out if it is truly a nibble count.
Try to avoid searching tracks 0-2 because these generally contain
DOS or some type of RWTS which are usually full of 8CC0's, but
not nibble counts. Many times the code around a nibble count will
contain many PLA's and PHA's. The software companies hope that
by playing around with the stack they can fool most people.

Once you have located a nibble count, you can eliminate it in
several ways. You could either put an RTS (return from subroutine)
at the beginning, NOP (no-operation does nothing) the entire routine,
jump out of it, or avoid jumping into it in the first place. Keep in
mind, however, that some companies also protect their disks by
including checksum routines which can detect the presence of altered
code. Sierra On-Line is one company known to do this (See SOL:
Sierra OnLine Software article on page 108 of The Book Of
Softkeys Volume II).

Of course, some knowledge of Assembly language is an invaluable
aid when tracking down protection schemes. If you don't happen
to know any Assembly language yet, it would be well worth your
time to pick up a good book on it. Assembly language is not as
mysterious and hard to learn as many people would have you believe.
If you can learn the hexadecimal number system and condition
yourself to think in it when necessary, half the battle of learning
Assembly language will be behind you. Even if you never write
a single Assembly language program, just being able to follow code
written by others is a valuable skill.

Well, enough talk. On to the process!
I located the bytes on Einstein and figured out a way to jump

around the routine, so that everything went as normal.

[JJ Make a copy of Einstein with COpyA.

~ Use your sector editor to modify:
Track Sector Byte From To
--- --- --- --- ---

08 04 2A BD 4C
08 04 2B 8C E2
08 04 2C C0 91

------1------

22 The Book Of Softkeys Volume III

Requirements:
48K Apple J[or Apple lie
One disk drive with DOS 3.3
A sector editor

Escape from Rungistan is a unique adventure featuring graphics,
sound and animation. At the beginning of the game, you awake in
a foreign prison and hear the guard say that you are to be shot at
sunrise. There is no other choice but to attempt to break out. As
the game progresses, you battle bears, snakes and test your skiing
ability.

This adventure is written with an 'Old West' flavor and the author
shows a great sense of humor. To aid your efforts at playing this
game, the author added a clue file to keep you from getting too
flustered.

Escape With Diskview
The locking procedure on this disk consists of a combination of

many fairly simple procedures, but together they give you endless
trouble. I used DiskView to discover that this is a DOS 3.3 disk
with the last byte of the address prologue marker changed to $F7
from $96 on tracks $03-$22.

Using this pre-analysis, it seems to be a disk that a slightly
modified COPYA would deprotect. Unfortunately, because some of the
last few tracks have been damaged for protection, this won't work.

I finally came up with the following method after discovering that
it had a normal CATALOG on the correct track and a greeting
program called START. I discovered this with the help of DiskEdit.
Now for the procedure.

The Book Of Softkeys Volume III 23

Step-Dy-Step
OJ Boot the DOS 3.3 System Master disk.

Cj] Insert a blank disk and format it with START as the boot
(greeting) file:

INIT START

[]] Re-insert DOS 3.3 System Master and load FlO:

BLOAD FID

c=!J Write-protect your Escape From Rungistan disk.

~ Drop into the Monitor and modify DOS so that the last byte
of the address prologue is ignored:

CALL -151
B969:2900

c::§] Start flO going:

803G

C1J Copy all the files (using the = wildcard feature of FlO)
to the disk you INITed in step 2.

c::iJ When FlO informs you that a file named START already
exists, hit IRETURN) so that we will get the file from the Rungistan
disk.

The copy at this point won't work because the DOS on the original
disk has strange DOS commands. This is how they have been altered:

Normal Command Rungistan Command

RUN
CLOSE
READ
OPEN

MAXFILES
BSAVE
BLOAD

ALL OTHERS

ARC
SVRTT
DNRT
CBSE
FILMAXES
AVESB
ODABL
rubbed out

[]] Use your sector editor to read track $01, sector $07 from
the original disk and write it to your new unlocked disk. This changes
the commands to Rungistan commands).

You're done! To CATALOG your new disk, study the code and
do APTs, simply boot a normal disk before starting. Your copy of
Escape From Rungistan is COpyAable.

------1------
24 The Book Of Softkeys Volume III

Requirements:
Apple }[
A Replay card, Wildcard or other 48K copy card
A blank disk
COPYA from the DOS 3.3 System Master
A sector editor

Here is a quick-and-dirty method to copying the Financial
Cookbook from Electronic Arts. This method requires a copy card
such as the Replay or Wildcard.

Since the Financial Cookbook requires 64K of memory to run,
it is no big deal to use a copy card to load the program back in.
The trick to this method is to copy memory at just the right time.
The object is to escape the protection but catch the program before
it starts loading into the RAM card (thus preventing us from having
to copy 64K of memory).

The Cookbook disk is completely copyable with COPYA except for
track 6, which is the nibble count track. The boot proceeds like any
other Electronic Arts release: it loads a title page and then does a
nibble count and loads the program. Listen to the program load and
you will hear the nibble count (sounds weird, eh?). We want to copy
memory after the nibble count but before the RAM card is activated.
Just after the nibble count, the drive will stop and the text page will
flutter for a second. Press the copy card switch at this instant. You
will only have a second or two to do it. You may have to practice
a few times.

After this process, use your copy card utility disk to make binary
files of the memory.

Now copy tracks $12 to $14 of the original Financial Cookbook
to a blank initialized disk using a slightly modified COPYA then run
a sector editor and change bytes $80 to 00 00, bytes $84 to

The Book Of Softkeys Volume III 25

00 00, bytes $88 to 00 00, bytes $3C to 00 00 and bytes $40 to
00 00 to allocate tracks $12 to $14 and the DOS tracks as used in
the VTOC. Finally, copy the binary (B) files of memory to this disk
using F/0 or some other utility.

You're all done! Just BRUN the memory files and, if all went
correctly, the program will restart, read in some data from tracks
$12 to $14 and all is fine.

Step-By-Step
CIJ Boot the Financial Cookbook and after the title page and

the nibble count, and just after the drive stops (for just a second!),
hit the copy card switch.

c=:i] Copy all 48K of memory.

[}] Process the copied memory using your copy card utility
disk to create normal binary files from it.

Lj] Start COPYA going, then break it at the title page:

RUN COPYA
lacl

[j] Enter the Monitor:

CALL -151

Lj] Make COPYA so that it will only copy specific tracks:

312:16
35F:16
2DE:21 BI 12
2BI:A9 IF aD D1 12 aD D2 12 61
3DIG
71
RUN

C2I When the copy is done, get out your sector editor and make
the following changes to your freshly created disk:

Track Sector Bytes To

$11 $00 $80, $81 $00, $00
$11 $00 $84, $85 $00, $00
$11 $00 $88, $89 $00, $00
$11 $00 $3C, $3D $00, $00
$11 $00 $40, $41 $00, $00

L:!l Finally, transfer the memory files to this disk using F/D.
Now you're all done! Just BRUN the memory files to restart the

program.

---1---
26 'lbe Book Of Softkeys Volume III

Requirements:
48K Apple][or Apple][Plus with old-style F8 Monitor ROM
One blank initialized DOS 3.3 disk

Flip Out is a hi-res strategy game from Sirius Software (R.I.P.)
which requires you to send all ten of your marbles through the
playing course before your opponent does. Each player starts with
ten of his opponent's marbles and then takes turns dropping these
marbles into the Flip Out playing field (of which there are many
variations). Your first goal is to trap your opponent's marbles in
a spot where they will be difficult to recover. Each marble dropped
may cause a chain reaction, so some strategy is required. After the
players have dropped all ten of their opponent's marbles, they begin
to drop their own marbles through the course. This continues until
one of players wins by getting all his marbles through the course.

Who Stole the ROMS?
Flip Out is well done and challenging! But after 1 bought it and

was done playing a game, 1 hit IRESETI and did not see the usual
Monitor prompt (I have an old-style F8 Monitor ROM on the
motherboard). My computer rebooted as if 1 had a new-style F8
Monitor ROM! This intrigued me into investigating this strange
phenomenon.

What 1discovered was that the main program (not the boot code)
will copy an image of the new-style F8 Monitor ROM into a slot
o RAM card if one is found. Of course, 1 had a RAM card and
they had it turned ON instead of the motherboard ROMs. It is easy
to understand what they are doing if you just remember what
memory the RAM card occupies.

The RAM card occupies memory from $D000 to $FFFF. This
may seem strange since the motherboard ROMs (Applesoft and the

The Book Of Softkeys Volume III 27

monitor) also occupy $D000 to $FFFF. However, there are a set
of soft switches that can turn ON motherboard ROMs or turn ON
the RAM card. An example of this occurs when you boot your 48K
DOS 3.3 system master and it loads Integer BASIC into the RAM
card. Now you have two languages available that occupy the same
logical memory space, $D000 to $FFFF. You can switch between
the two with INT and FP. When the INT command is typed in, the
soft switches are thrown so that the language card is read-enabled.
Likewise, the FP command read-enables the motherboard ROMs.

Ifyou read your RAM card manual you can see that the softswitch
at memory location $C080 (assuming your RAM card is in slot zero)
will allow you to look at your RAM card's memory. But have you
ever tried typing $C080 from the Monitor? It will lock up your
Apple, requiring you to power OFF and then back ON again to
recover.

Recovering the ROMS
This phenomenon occurs because you have switched to the RAM

card's memory $D000-$FFFF and turned OFF the motherboard's
ROMs. When you do this, the computer loses control since there
is no longer a Monitor ROM available from $F800-$FFFF to
oversee your Apple's operations! You cannot recover from this
condition, even with a IRESETI.

To get around this problem you must first type:

C081 C081 N F800<F800.FFFFM

from the Monitor. This reads the motherboard's ROM, but allows
you to write to bank 2 of the RAM card. It moves the F8
motherboard ROM into $F800-FFFF in bank 2 of the RAM card!
Now you may type C080 to turn ON the RAM card and look at
its memory, since a copy of the $F8 monitor ROM is in the RAM
card from $F800 to $FFFF.

This is what Sirius and other software publishers will sometimes
do to prevent people from utilizing their RAM cards for deprotection
purposes. With a RAM card in slot 0, no matter what $F8 ROM
you have in the motherboard, your Apple will only look at the new
style $F8 ROM image in your RAM card. Thus, the Apple clears
memory and reboots when IRESETI is pushed! This is an easy
problem to fix, now that we have identified it. Just take your RAM
card out of your computer and you may IRESET I into the Monitor as
usual. As demonstrated in the softkey for Sensible Speller (see article
on page 82 of this volume of The Book Of Softkeys), you can
sometimes get away with moving your RAM card to a slot other
than 0 where the program does not expect to find a RAM card.

Flip Out is a single-load program. To deprotect single-load
programs, there are 3 basic things which we need to determine:
1. What memory is used by the program. 2. The starting address

28 The Book Of Softkeys Volume III

of the program. 3. How to get the memory saved to a normal DOS
3.3 disk and reloaded back into memory in the proper place(s).

Keep these three items in mind as we snoop through Flip Out
or any other single load game.

Sirius has changed its protection schemes a lot in the last few
years. The height of their protection mania was demonstrated in
games like Bandits and Fly~wars. The problem with hi-tech
protection is that a program might not boot on a Rana drive. or on
an Apple lie or some other flavor of Apple. Sophisticated protection
schemes are also costly and drive up the retail price of software.
In light of this. Sirius chose a much simpler. but still effective. copy
protection scheme for Flip Out. Just try and copy it with Nibbles
Away or another bit copier and you'll see just how effective it is!

A Bit of Boot Tracing
Keeping in mind the three things we must figure out to deprotect

a single-load game. the first thing I generally do is to find what
memory is required to run the program. To do this we can flip
through memory (remember that shape tables. etc. don't disassemble
into meaningful code). or we can trace the boot and see where the
program gets loaded to. I prefer to trace the boot when it is fairly
simple. which it is on Flip Out.

So. boot up normal DOS 3.3 (so we can save a piece of code
for later examination. if you wish) and enter the Monitor with:

CALL -151

Now we must copy the code in the disk controller ROM down to
RAM so we can modify it to our liking. Do this by typing:

86GG<C6G0.C6FFM

from the Monitor. Now we have the disk controller ROM code
where we can modify it. and start to trace the boot.

Ifyou did not know already. the disk controller ROM reads track
zero. sector zero into memory from $800 to $8FF. Then it JMPs
to $801 and starts executing the code (which continues by loading
in a little more code. which then loads in more code. which
then.....well. you get the idea).

At the end of the code at $8600 we see a JMP $0801. We must
change this to JMP $FF59. which will exit us in the Monitor after
it is done loading track zero. sector zero into $8000 to $8FF. Put
Flip Out in drive one and type:

86F9:59 FF N 8600G

The drive will recalibrate and. a second later. beep into the Monitor
just like we told it. To turn OFF the drive motor. type:

CGE8

from the Monitor prompt. If you want to. you can save this hunk

The Book Of Softkeys Volume III 29

of code to your normal DOS 3.3 disk with:

BSAVE BOOTe,A$S00,L$lee

(since this process did not disturb DOS which lives from $9600 to
$BFFF). Now type:

SelL

to flip through the code just loaded. Here's what you should find:

801- A52B LOA $2B
803- AA TAX
804- 85 FB STA $FB
806- 4A LSR
807- 4A LSR
808- 4A LSR
809- 4A LSR
80A- 09 C0 ORA #$C0
80C- 800030 STA $3000
80F- A000 LOY #$00 ---------------------
811- 8400 STY $00
813- A900 LOA #$00
815- 8501 STA $01 Put the
817- A230 LOX #$30 code from
819- AD 81 C0 LOA $C081 ROM into
81C- AD 81 C0 LOA $C081 the slot
81F- B100 LOA ($00) ,Y ze ro RAM
821- 9100 STA ($00) ,Y card.
823- C8 INY
824- 00F9 BNE $081F
826- E601 INC $01
828- CA OEX
829- 00F4 BNE $081F ---------------------
82B- A6 FB LOX $FB Load code
820- 84F7 STY $F7 into RAM
82F- A904 LOA #$04 starting
831- 85 F8 STA $F8 at page
833- 85 FA STA $FA $04
835- BO 8C C0 LOA $C08C,X ---------------------
838- 10FB BPL $0835
83A- C9 AD CMP #$AO Look for
83C- 00F7 BNE $0835 a data
83E- BO 8C C0 LOA $C08C,X field
841- 10FB BPL $083E epi logue
843- C90A CMP #$OA of AD,
845- 00F3 BNE $083A OA, DO
847- BO 8C C0 LOA $C08C,X
84A- 10FB BPL $0847
84C- C9 DO CMP #$00
84E- 00EA BNE $083A ---------------------
88A- 4C 29 04 JMP $0429 JMP BOOT2

30 The Book Of Softkeys Volume III

This code loads in the final loader BOOT2 over the text screen
memory ($400 to $7FF) and JMPs to $429. Now we need to examine
BOOT2 (the game loader) to see where it actually loads in the game.

You might notice that this is slightly difficult since BOOT2 gets
loaded over the text page, and when we hit IRESETI this memory
pretty much hits the bit-bucket. But BOOTl (the code which we are
now looking at in $801-$88C) can be changed to load BOOT2
somewhere else and gracefully IRESETI into Monitor. To do this we
can change the load byte from page $04 to page $14, and change
the JMP $429 to jump into the Monitor. Then we can examine the
BOOT21oader. To do this, from the Monitor, enter:

830:14 N 88B:59 FF

The next thing we must change is the disk controller ROM code
at $8600. We need it to execute, but not write over, the modified
code at $801. To do this, we can tell it to load track zero sector
zero at $6000 (instead of $800) and jump to our modified code at
$801. Of course our code will load BOOT2into $1400 so we can look
at it. Ifyou are,-go back and don't return until you understand what
is going on.

OK, put Flip Out in drive one and type:

8659:60 N 86F9:01 08 N 8600G

The drive will recalibrate and boot zero will read track zero, sector
zero into $6000 (thus, not overwriting our code at $801). It will
then jump to $801 (BOOTl) and load BOOT2 into $1400 to $17FF.
Unfortunately, it will keep reading BOOT2 into $1400 to $17FF
because we haven't changed enough code. So, after a few seconds,
hit IRESETI.

Now if you want to, you can put your normal DOS 3.3 disk in
a drive and save BOOT2 with BSAVE BOOTZ,A$14It,L$41t.

Next type 1429L and examine BOOT2. You will notice that
memory from $800 to $BFF gets wiped clean and that a reset error
routine gets moved to $8F00-$8F80. This is a good indication that
Flip Out lives from $C00 to $8F80! I'll let you sort through the
BOOT2 code to find out for sure, or you can take my word for it.

The last tidbit of information that the BOOT2loader reveals is the
starting location of Flip Out. Look at the code at $17CC-$17E4
and you'll see how it wipes out memory from $800 to $BFF and
then JMPs to $7800 to start the game.

Now we have filled requirements one and two. All that is left
is to save the memory from $C00 to $8F80 on a normal DOS 3.3
disk. This is easy since a 48K slave disk does not destroy memory
from $900 to $96FF. So just boot Flip Out and, when the drive
stops, IRESETI into the Monitor. Now boot your 48K slave disk and
save Flip Out to disk! In cook-book fashion, here are the steps
necessary to get a BRUNable version of Flip Out.

The Book Of Softkeys Volume III 31

The Steps
Lil Turn your Apple OFF and remove your RAM card.

Ul Boot Flip Out then after the drive stops and Flip Out is
loaded into memory, hit IRESETI to enter the Monitor.

[}] Boot a 48K slave disk:

PR#6

OJ Enter the Monitor by typing:

CALL-151

~ So that the program will execute when BRUN, enter some
code which JMP's to $7800 to start up the game:

BFD:4C II 78

C§J BSAVE Flip Out by typing:

A964:FF
BSAVE FLIP-OUT,ABFD,L8383

Ifyou want the title page displayed, you will also have to perform
the following steps:

[j] Reboot the Flip Out disk and IRESET I into the Monitor when
you see the title page.

L:1J Boot your 48K slave disk and BSAVE the picture by typing:

PR#6
BSAVE PIC,A$2GGI,L$lFFB

[j] BLOAD the Flip Out file and the picture file:

BLOAD FLIP-OUT
BLOAD PIC,A$2IGG

[]] Enter the Monitor and type in the following code which
will display hi-res page I and wait for a key to be pressed before
it JMP's to the start of the game:

CALL -151
BEI:AD 11 CI AD 51 CI AD 54
BE8:CI AD 57 CI AD 52 CI AD
BFI:II CI 11 FB 4C II 78

[!!] BSAVE the file by typing:

A964:FF
BSAVE FLIP-OUT,ABEI,L83AI

---i---
32 The Book Of Softkeys Volume III

Hi-Res Computer Golf II
Avante-Garde Creations

Using Super lOB to Copy Hi-Res Computer Golf II
by Jeff Rivett

(Hardcore COMPUTIST # 12, page 6)

Requirements:
Apple][Plus or equivalent
Super lOB and the swap controller
Two blank disks

Using the following method will help you to remove the copy
protection from a lot of older software. Although simple, it's a great
solution when your program is constantly accessing the disk and
the DOS is reasonably close to DOS 3.3. It's well worth trying in
many cases, because it is so easy.

How it works
First the original disk is booted to get the copy-protected DOS

into the machine. This is the only tricky part because you have to
have some means of stopping the execution of the program so that
the Apple's Monitor can be entered. In Avant-Garde's Golf II, the
Reset vector is set to re-boot the disk. However, if you lift the drive
door prior to hitting (RESET) twice, the disk drive will shut OFF and
the protected DOS will still be in memory. The RWTS (Read/Write
Tracks & Sectors) of the protected DOS can then be moved to a
safe location prior to booting up with a normal DOS disk. The
protected RWTS can then be saved and utilized by Super lOB, with
the swap controller installed, to read the protected disk. For Golf,
you only have to leave the disk drive door open to capture the
RWTS, but for most other programs you will need an old-style
monitor FS ROM or one of the Non-Maskable Interrupt (NMI) copy
cards to do the trick.

When Super lOB has the swap controller installed, it will load
in a protected disk's RWTS at $1900-$2100. When it comes time
to read the protected disk, this RWTS is moved into $BS00-$BFFF.
For writing, the normal RWTS is moved back into $BS00-$BFFF.

The Book Of Softkeya Volume III 33

In other words, the disk is deprotected by reading it with a protected
RWTS and writing the copy with a standard RWTS.

[j] Boot the Golf II disk and when the DO YOU WANT TO
SEE THE INTRO? prompt appears, open the disk drive door and
hit IRESETI. Hit (RESETI a second time to turn OFF the drive. The
Golf II DOS will still be in memory.

~ Enter the Monitor and move the Golf II RWTS to $1900:

CALL -151
1900<B800.BFFFM

CIl Boot up with a slave DOS 3.3 disk which has a small or
null HELLO program:

C600G

C!J Insert the disk which has Super lOB on it and BSAVE the
Golf RWTS:

BSAVE GOLF.RWTS,A$1900,L$800

~ Load in the Super lOB program:

LOAD SUPER lOB

C§] Type in or EXEC in the swap controller and make sure that
the file BLOADed in line 10010 is called GOLF. RWTS):

[=:7J Run Super lOB and copy both sides of the Golf disk. The
Golf DOS should NOT be copied.

Golf II has a strange bug that can be fixed by adding a line to
the Applesoft file called SWING. PRACTICE. FP. To fix this bug,
LOAD the file and add this line:

2 POKE 16611 ,1

If you use the technique I have just outlined on another disk and
it seems to work (except for the fact that the copied program will
not run), you may be able to figure out what is going on by tracing
the now readily accessible code and making modifications where
necessary. This is something that cannot be taught. Sometimes ihe
modifications will be quite simple, like adding a POKE statement
to an Applesoft program or omitting portions of an Applesoft or
machine language file.

If you happen to have a Replay II card, you can make a copy
of the program at the title page and another copy with normal DOS
3.3 in the machine. You can then use the 'Compare' option on the
Replay II utility disk to compare the copy-protected DOS with
normal DOS 3.3. This is often very helpful in making patches that
allow the new copy to run properly.

---1---
34 The Book Of Softkeys Volume III

Requirements:
Apple][Plus with 64K RAM
A way to IRESETI into the Monitor
COPYA
A sector editor
Three blank disks

Knoware is a very interesting game - simulation - educational
program. The player starts out in a company working in the
mailroom. The objective is to become chairman of the board. In
order to accomplish this, you must use computer application
programs for spreadsheet analysis, wordprocessing, and database
use. All of the application programs may be used on their own, so
once you make chairman of the board, you have learned how to
use all of the programs!

First of all, only the first (out of three) disk is protected. Secondly,
Knoware checks the disk in the drive to be sure it is an original.
However, it is fairly easy to short-circuit this check. The procedure
to make a COPYAable version of Knoware is as follows:

[:JJ Use COPYA and duplicate the original Disk #1.

L:IJ Use a sector editor to make the following changes:

Track Sector Byte From To

$17 $01 $14 $4C $A9
$17 $01 $15 $8D $00
$17 $01 $16 $20 $EA

This changes the file ONESHOT. OVR (A$2flOO,L$FBA), and prevent
a call to a protection-check subroutine by replacing the JSR $208D
with a LDA #00 and a NOP, which tricks the program into thinking
there is an original disk in the drive.

The Book Of Softkeys Volume III 35

c::::il Now use COPYA to copy Disks 2 and 3, and you have the
complete set.

One modification that you might want to make is to allow a fast
DOS to be used. There is a check in the file ONESHOT. OVR to see
if the I/O hooks have been changed. Some fast DOS versions do
change these. The following change will defeat this check:

Track Sector Byte From To

$10 $0F $01 $D0 $EA
$10 $0F $02 $0C $EA
$10 $0F $05 $C9 $A9
$10 $0F $06 $9E $00

An Alternate Procedure
This procedure may not work on all versions of Knoware. This

is an alternate way to unlock Knoware.

UJ Use COPYA and copy the original disk #1.

L'iJ Insert the copy of disk #1 into drive 1 and type the
following:

CALL -151
BLOAD ONESHOT.OVR
2G18:A9 08 EA
BSAVE ONESHOT.OVR, A$20GG,L$FBA
BLOAD BOOTKW
9FD:EA EA
A01:A908
BSAVE BOOTKW,A$8GG,L$852

c::::il use COPYA to make copies of disks #2 and #3.

------1------

36 The Book Of Softkeys Volume III

Requirements:
Apple][
1 blank disk
1 initialized disk (preferably with a fast DOS)
COPYA from the DOS 3.3 System Master
Any sector editor program such as DiskEdit or ZAP

LaJ Pak is a collection of four small but very enjoyable and
playable games. Number one in the pak is Creepy Corridors, a
maze type game that is by far the most fun, especially with the
hilarious sound effects. Apple Zap is a four way shoot'em up game.
Space Race is a game in which you race an opponent or the computer
through a multitude of little bird-like aliens. Finally, Mine Sweep
is an almost impossible game in which you try to clear a mine field
in a given amount of time.

In trying to backup this disk, I first noted that the publisher was
Sierra On-Line. Many companies use a standard copy-protection
method on most of their products and I figured LaJ Pak was
protected, like most of their other products, with a nibble count on
track 0. This turned out to be true. A check is made at the beginning
of each of the individual games. It is always helpful to know of a
company's past methods of copy-protection when trying to unlock
any of their software. For example, the original Zork softkey in 'I1le
Book Of Softkeys Volume I, page 156, still works for all of
Infocom's adventures, almost all of Automated Simulations software
can be DEMUFF/N-ed, and the boot-code-trace for Hard Hat Mack in
'I1le Book Of Softkeys Volume I, page 101, can be used on
some other Electronic Arts games.

To disable the the disk checking routines for LaJ Pak, I simply
had to find the first JSR (a subroutine call) at the beginning of each
of the games and replace it with NaP's (no operation). For example:

'I1le Book Of Softkeys Volume III 37

Creepy Corridors starts at $800 and at $808 there is a JSR $lB33
which is the call to the disk verification scheme. In machine code
this code is 20 33 1B, so I simply used a disk searcher to find these
three bytes on the La! Pak disk. With La! Pak this can easily be
done since the disk is written in standard DOS 3.3 format. I found
similar calls in the other three games and recorded the locations
of all the bytes that needed to be changed to EA (op code for NOP).
So, to back up La! Pak simply use COPYA to copy the entire disk
(always write-protect your original first!). Then use a sector editing
program to make the following changes to the backup.

Track: 4 4 4 14 14 14 9 9 9 C C C
Sector: 0 0 0 0 0 0 2 2 2 7 7 7

Byte: 8 9 A D E F F 10 11 F 10 11
From: 20 33 lB 20 0D 72 20 7C 13 20 33 17

To: EA EA EA EA EA EA EA EA EA EA EA EA

You now have a completely unprotected backup ofLa!Pak which
can be copied with any standard copier. If this is all you want you
can stop here, but I wasn't satisfied because using a full disk for
a backup of a game is usually a waste of disk space. I wanted each
game normalized, i.e. BRUNable and F/Dable. I also wanted the La!
Pak machine to work as normal from a standard binary file.

Normalizing each game will illustrate the method ofusing memory
moves to compact binary files and will also illustrate how to pass
commands to DOS from within machine language programs. When
we are done there will be plenty of room on the disk for any other
games you want to store with La! Pak.

The first thing to do, while the sector editor is still handy, is to
change the name of the file that is run on boot up. It is named LAF
PAK, but is preceded with seven IGHI s. Since we will want to load
this file in from hand, we need to get rid of the control characters.
Use your sector editor to read in track $11, sector $F and, beginning
with byte $0E, type in LP ($CC $D0) and enough spaces ($A0)
to cover the seven IGHI s ($88) and the ASCII codes for LAFPAK.
Write this sector back to disk. Now when you CATALOG your
backup La!Pak disk, the first file should be a 4-sector binary file
named LP.

Before we actually begin you need to boot your initialized disk,
type in the following code at $800 and save it as PAGE MOVER.

CALL -151
811:A2 01 AI FF 84 3E C8 84
818:3C 84 42 BD 25 18 85 43
811:E8 BD 25 18 85 3D E8 BD
818:25 08 85 3F E8 21 2C FE
820:EI 06 DI DE 61 GIl GIl GIl
BSAVE PAGE MOVER,A$8G11,L$28

38 The Book Of Softkeys Volume III

In Assembly language this looks like:

0800- A2 00
0802- A0 FF
0804- 84 3E
0806- C8
0807- 84 3C
0809- 84 42
080B- BO 25 08
080E- 85 43
0810- E8
0811- BO 25 08
0814- 85 3D
0816- E8
0817- BO 25 08
081A- 85 3F
081C- E8
0810- 20 2C FE
0820- E0 06
0822- 00 OE
0824- 60

LOX #$00
LOY #$FF
STY $3E
INY
STY $3C
STY $42
LOA $0825, X
STA $43
INX
LOA $0825 ,X
STA $30
INX
LOA $0825 ,X
STA $3F
INX
JSR $FE2C
CPX #$06
BNE $0802
RTS

This routine uses the Monitor's move subroutine at $FE2C (note
the Y-register must be 0 on entry) to perform block page moves
where a page is considered to be 256 bytes starting at an address
of the form XXfI'I/), i.e. the low order byte is 00. If$800 is considered
the first byte of the routine, then the 'table' begins at byte $825.
A table entry is 3 bytes designating which pages to move and where.
For example, if! wanted the Monitor to perform the following move:
1100<2200.33FFM, the table entry would be: 825: 11 2233 . You
can have as many as 85 table entries but you must set byte $21 to
3 times the number of memory moves to be performed (in other
words, set it to the total number of bytes in the table). As long as
you load this code on a page boundary, then bytes $0D, $13 and
$19 are the only bytes you have to change to relocate the code. These
locations should hold the hi-byte of the page to which you relocate
the code. If you are using an assembler, you can make all of these
changes in the source code by simply changing the origin and the
contents of the table.

Our goal is to have 5 binary files, the 4 games and the menu or
FUN MACHINE file which we will name LAF PAK. We will change the
menu file to simply BRUN the selected game instead of loading it
in directly from disk as it does on the original disk.

On the original, when you are playing any of the games and you
hit ~, the game will BRUN a file called BOOT. DB) which in turn
loads in the menu. We will simply change each game to BRUN LAF
PAK instead of BOOT. DB).

The first thing we need to do is to save each of the games. I will
illustrate all of the steps in detail for the first game, Creepy
Corridors.

The Book Of Softkeys Volume III 39

Creepy Corridors

OJ Boot the initialized disk on which you saved PAGE MOVER
(preferably a disk with a fast DOS on it). Insert your LafPak backup,
load the boot-up file LP and get into the Monitor.

BLOAD LP
CALL -151

OJ LP starts at $1400 where it first reads in the I/O routine at
$220. Whatever the accumulator is holding on entry to $220
determines which game (or the menu) is to be loaded. A" means
Creepy Corridors and a 4 means the menu. At $1438, the
accumulator is loaded with 4 (indicating that the menu is to be
loaded) and a jump is made to $220. We can change this IMP
instruction ($4C) to a $60 (RTS) so that the I/O routine will be
loaded, but not executed. To do this type:

143A:6t N 1488G

Upon examination of the I/O routine at $220, you can see that each
game and the menu are loaded in three seperate chunks. The
destination addresses and the number of pages to be loaded in each
chunk are given in the tables at $2FA and $2EB, respectively. With
this information and a little bit of hexadecimal addition, the following
addresses can be determined:

Creepy Corridors: $800-1CFF $4000-5FFF $7000-94FF
Space Race: $800-15FF $6000-6EFF $8000-93FF

Mine Sweep: $800-1EFF $4000-5FFF $8700-94FF
Apple Zap: $4000-5FFF $6000-7EFF $7D00-8CFF

Fun Machine: $800-EFF $4000-60FF $9000-94FF

c::iJ We are going to let the LafPak routine read in each game,
then stop it before it jumps to the beginning of each game. This
is done by changing the IMP at $28A to aRTS:

28A:6t

c=il Now we just need to load the accumulator with t) for Creepy
Corridors and jump to $220. This is done by changing the code at
$1438 so that the accumulator will contain a" when the I/O routine
executes:

1439:88 4C N 1438G

~ The code is now in, so let's change BOOT. OBJ to LAF PAK
so the menu will be loaded if~ is pressed:

14C5:CC Cl C6 At Dt Cl CB At

40 The Book Of Softkeys Volume III

Cj] We next can compact the 3 chunks of code into one
contiguous block with the following memory moves:

1DeCk4e'8.5FFFM
3D"<7"8.94FFM

c::1J Since PAGEMOVER will live at the end ofthe block (at $6200),
we need to call this subroutine before the main program is run. So
we put a JSR $6200 at the beginning of the code:

7FD:2e" 62

[j] Now insert the initialized disk with PAGEMOVER on it, load
it in and change it so that it will run at this new location:

BLOAD PAGE MOVER,A$62"
62eD:62 N 6213:62 N 6219:62

~ Note that the inverse of the moves made in step 6 are
7000<3DOO.6IFFM & 4000<IDOO.3CFFM, which give us the table
entries for the move code:

6225:78 3D 61 48 1D 3C

[!!J Save the game:

BSAVE CREEPY CORRIDORS,A$7FD,L$5ASe

You now have a completely normalized Creepy Corridors game
which can be BRUN to your heart's content. Before going on, you
should first test it by clearing memory and then running it from disk.
An easy way to clear memory without turning your Apple OFF is
by typing:

S":,, N se<S".95"M

If something goes wrong, BLOAD the file and check the code at
$6200 for any typos.

In case you got lost along the way, here are the basic steps we
performed in order to capture a compacted version of Creepy
Corridors.

CAJ Load the game into memory.

[j] Compact the game code into one contiguous area of
memory.

~ Append the PAGE MOVER routine onto the end of the
compacted code and fix it so it will run propeily there.

~ Put the proper values into the PAGE MOVER table.

[j] BSAVE the game after inserting some code at $7FD that
calls the PAGE MOVER routine before the game tries to execute.

When the game is BRUN, the PAGE MOVER routine de-compacts
the code.

The Book Of Softkeys Volume III 41

For the other three games, the steps are very similar to those we
performed for Creepy Corridors.

Space Race

L:!J - ClJ see Creepy Corridors

L:!] The accumulator should hold a 1 so that Space Race will
be loaded:

1439:01 4C N 1438G

Cil Change BOOT. OBJ to LAF-PAK:

962:80 84 C2 02 05 CE A0 CC
96A:C1 C6 A0 00 C1 CB

C:il Compact the game's code with the following memory
moves:

1600<6000.6EFFM
2500<8000.93FFM

(=:1J Insert the code which calls the PAGE MOVER routine:

7FO:2000 39

[=:iJ Insert the initialized disk, load the move routine and relocate
it:

BLOAO PAGE MOVER,A$3900
3900:39 N 3913:39 N 3919:39

[:::!J Put in the table for PAGE MOVER:

3925:80 25 38 60 16 24

Oil Save the game:

BSAVE SPACE RACE,A$7FO,L$3180

Mine Sweep

L:!J - ClJ see Creepy Corridors.

L:!] The accumulator should hold a 2 so that Mine Sweep is
loaded in:

1439:02 4C N 1438G

C!J Change BOOT. OBJ to LAF PAK:

960:CC C1 C6 A0 00 C1 CB A0

42 The Book Of Softkeys Volume III

L:!l Compact the code with the following memory moves:

2911<SII.1EFFM
6111<S711.94FFM

L2J Insert some code which calls the PAGE MOVER routine
and jumps to the start of the game:

2SFA:21 II 6E 4C II IS

[j] Insert the initialized disk, load PAGE MOVER and relocate
it:

BLOAD PAGE MOVER,A$6EII
6EID:6E N 6E13:6E N 6E19:6E

~ Install the memory move table at $6E25:

6E25:S7 61 6D IS 29 3F

[!j] Finally, save the game:

BSAVE MINE SWEEP,A$2SFA,L$45S1

Apple Zap

ClJ - c:::1J see Creepy Corridors.

[=:!] The accumulator should hold a 3 so that Apple Zap is
loaded:

1439:13 4C N 143SG

~ Change BOOT. DB) to LAF PAK:
63BD:CC C1 C6 A0 D0 C1 CB A0

L::§] No moves are necessary since the code is already
contiguous.

L2J Insert the code which jumps to the beginning of the game:

3FFD:4C II 60

PAGE MOVER is not used with this game,so...

[j] Insert the initialized disk and save the program:

BSAVE APPLE ZAP,A$3FFD,L$4D03

Before we move on to the menu program, I would like to note
that Mine Sweep, Apple Zap and the menu all store standard hi-res
pictures at $4000-$5FFF. Those of you who are ambitious and
wish to save about 50 more disk sectors can pack these pictures and
insert the unpacking routine with them to make these fIles even more

The Book Of Softkeys Volume III 43

compact. If you just want to be able to BRUN each of the games
and do not care about the 'Fun Machine' menu, then you have
completed this task and you can stop here. But if you would like
to use the menu program on occasion, then read on.

The Fun Machine

Capturing the menu program is similar to the above except that
we must intercept the jump to the I/O routine to load in a game
and replace it with our own BRUN routine. At $862, the number
of the game that is chosen is utilized to get an address from an
address table at $D62. This address is stored in $00.$01 which is
used as a vector to the correct entry into the I/O routine. We will
place our own address table at $D62 so that $00.$01 becomes a
pointer to the correct game that should be run. We will then print
out BRUN with the code:

86C- LDY #$06
86E- LOA $0879, Y
871- JSR $FDED
874- DEY
875- BNE $086E
877- JMP $0E30
87A- NURB laDI

At $E30, we will place a routine that uses the address in $00.$01
to print the name of the game. The code to do this looks like:

E30- LDY #$00
E32- LDA ($00) ,Y
E34- JSR $FDED
E37- INY
E38- BNE $0E32

The result is that DOS will BRUN the desired game from the Fun
Machine menu. All of the steps are summarized as follows:

c::il - Lil see Creepy Corridors.

Lil The accumulator should hold a 4 so that the menu is loaded:

1439:14 4C N 1438G

I 5AI Type in the code below which will print out the DOS
command BRUN (preceded by a (RETURNI and a laDI):

86C:AI 16 B9 79 18 21 ED FD 88 DI
876:F7 4C 31 IE CE D5 D2 C2 84 8D

~ Type in this code which will print out the name of the game
to be run:

E31:AI II B1 II 21 ED FD C8 DI F8

44 The Book Of Softkeys Volume III

~ Next, install in memory a table which contains the names
of the four games (each followed by IRETURNI):

E40:C3 02 C5 C5 00 09 A0 C3
E48:CF 02 02 C9 C4 CF 02 03
E50:80 C1 0000 CC C5 A0 OA
E58:C1 00 80 03 oe C1 C3 C5
E60:A0 02 C1 C3 C5 80 CO C9
E68:CE C5 A0 03 07 C5 C5 00
E70:80

I 501 Now, put the addresses ofthe names in the address table:

D62:40 0E 51 0E 5B eE 66 0E

~ Compact the menu code with the following memory moves:

F00<400e.60FFM
3e00<ge00.94FFM

C1J Insert the code which calls the PAGE MOVER routine:

7FO:20 00 0E

c::il Insert the initialized disk, load the PAGE MOVER and
relocate it:

BLOAO PAGE MOVER,A$E00
E00:0E N E13:0E N E19:0E

UJ Install the PAGE MOVER table:

E25:40 0F 2F 90 30 34

[!iJ Of course, we also have to save the compacted code for
the menu:

BSAVE LAF PAK,A$7FO,L$2003

Now you have a completely normalized La!Pak that you can put
on anyone of your game disks. I hope the techniques I have
illustrated will come handy when you are trying to normalize other
copy-protected games.

---i---

The Book Of Softkeys Volume III 45

To

$EA
$EA
$EA

Requirements:
48K Apple][or compatible
One disk drive and DOS 3.3
COPYA from the DOS 3.3 System Master
A sector editor
A blank disk

The three things you can count on in this life are death, taxes, and
Sierra On-Line's nibble counts. With this in mind, I tackled Learning
with Leeper, a recent educational release from Sierra. As usual, the
disk is normal DOS 3.3, easily COPYA-able but it will not work
correctly). I discovered that the nibble count checks track $0. This
was also standard Sierra.

Tracks $00, $03, and $IF are popular tracks for Sierra On-Line
nibble counts. I decided to go all-out and remove the nibble count
entirely. But when I finally found the nibble count routine, I decided
that the easiest thing to do was simply avoid jumping into it, rather
than trying to modify it. Let's deprotect Learning With Leeper:

[}] Boot the 3.3 System Master as usual (PR#6 IRETURNI).

~ Use COPYA to make a backup of Learning with Leeper.

CiJ Use your sector editor to modify these bytes on the new
copy eliminating the nibble count routine:

Track Sector Byte From

$03 $0F $2C $20
$03 $0F $2D $00
$03 $0F $2E $12

---i---
46 The Book Of Softkeys Volume III

Requirements:
Apple][Plus or equivalent
One blank disk
Super lOB

The Lion's Share is a pretty good adventure, with some nice
graphics. I enjoyed it, but even more, I enjoyed figuring out the
protection scheme. It was much more of a challenge than getting
the sword out of the snake pit! First, for those of you who just want
to backup the game, here's the softkey:

UJ Boot your DOS 3.3 System Master and clear any program
in memory.

PR#6
FP

c=!] Enter the Monitor and make some modifications to DOS

CALL -151
BA69:6G
BA6A<BA69.BA91M
BCDF:6G
BCEG<BCDF.BCF8M .

L:il Put in a blank disk and put this modified DOS on it:

INIT A

[=:!J Tum the disk over and put this DOS on the back side, too.
You will have to cut a notch in the side of the disk to allow you
to use the back:

INIT A

The Book Of Softkeys Volume III 47

Q] Put side one of The Lion's Share in the drive, start the drive
with the drive door open then press the (BREAK I key:

PR#6
lacl

[:i] Close the door, wait for the break message and then clear
the program in memory:

FP

OJ Enter the Monitor and move the RWTS to a safe place for
booting:

CALL -151
2GGG<B8GG.BFFFM

[j] Put your Super lOB disk (or some other disk with a very
short Hello program) in the drive, boot it and save the RWTS:.

61apl
BSAVE RWTS.LIONS,A$2GGG,L$8GG

UJ Load Super lOB, type in the controller at the end of this
article and then RUN Super lOB.

[!QJ Copy both sides of the original Lion's Share disk to both
sides of the disks you formatted at the start of the procedure.

[!!J You're done! Boot your copy and enjoy!

Beneath The Softkey
When I booted the game, I noticed a prompt at the bottom of the

screen. This usually means that some form of DOS is being used.
Going on this assumption, I decided to have a look at tracks $0-2
of the disk, to see if I could ferret out the system.

No dice. I couldn't read the disk at all, nor would it CATALOG.
Using a Hardcore COMPUTIST program called Diskview l.lA, I
managed to peek at the raw nibble dump, and it was definitely
nonstandard. So, I resorted to a little trickery.

First I removed the top 8 RAM chips from my machine. These
are the ones nearest to the left rear of the Apple, inside the white
box labeled "RAM." (Scary, isn't it?) Then I booted my System
Master. (It has to be the master, and not a slave disk.) This had
the effect ofloading DOS 16K lower in memory than usual. (The
higher memory was in my left hand!)

You see, the master disk checks to see how much memory is
available and loads DOS in at the top of this available memory. A
slave disk, on the other hand, always loads DOS into the same
location, namely the location it was in when the slave was made.

48 The Book Of Softkeys Volume III

I then initialized a slave diskette, using my now 32K Apple. I'll
call this the 32K slave. Next, I replaced the RAM chips, and booted
The Lion's Share.

Pressing !RESETI causes the disk to re-boot, since the reset vector
has been changed, so I took advantage of this fact. I now removed
the game disk, and put in my 32K slave. Pressing IRESETI caused
the disk to boot, and regular old DOS 3.3 was loaded in at its 32K
location. Because ofthis, Davka's DOS was still intact in the upper
memory! Now it was a simple matter to save this Davka DOS with
an address of $9D00 and a length of $22FF.

I now had Davka DOS on my disk as a binary file. You may be
able to use this method on other protected disks. Just keep the 32K
slave around for future use.

The next step was to boot up the System Master again, thus placing
DOS 3.3 back in its normal location at $9D00. I now BLOADed
Davka DOS at $2D00. (It can be anywhere, really, as long as it
doesn't overwrite DOS 3.3)

Using the Monitor VERIFY command I made a print-out of all
the locations which were different between the two DOSs. This is
a nifty command which compares two ranges in memory and tells
you if they are the same or not, and if not, what the differences
are. Check the Apple reference manual for more information.

In this case, the command was 2D00<9D00.BFFFV. (Turn on
your printer first with a PR#l, and set it to skip the perforations
if you can.) This gave me a complete list of all the changes!

With my trusty copy of Beneath Apple DOS in hand, I proceeded
to analyze the changes. I saw that the spelling of the SAVE and
INIT commands had been altered but the rest of the commands were
the same.

Most importantly, I discovered that both the read and write
routines had been changed, as well as their translate tables. No
wonder I couldn't read the disk; it was scrambled!

Then it was no problem. Ijust patched the DOS 3.3 read routine
to match that used by Davka. Sure enough, I could now CATALOG
the game disk. Of course, the DOS 3.3 write routine was still
standard, so all I had to do was F/0 all the files dver to a normal
disk, right? Not quite, but close!

Once I had copied all the files to a normal disk, I booted it and
tried to run the game. It worked perfectly until I tried the SAVE
GAME option, and then it bombed.

The Apple obligingly informed me that it had stopped at $BA78.
Hmmm. Isn't that unused space in DOS? Yep, it sure is. But Davka
put a routine there which changed the address and data markers back
to standard, so that their game could read and write to standard disks.
(Pretty sneaky, huh?)

I replaced this whole section with 60's (RTS), and also the section
at $BCDF, which was part of the same routine.

The Book Of Softkeys Volume III 49

After I had initially deprotected The Lion's Share, I discovered
something which made the overall softkey procedure a little easier.
What I found was that The Lion's Share boot program would
BREAK (stop execution) if lacl was typed as the disk booted. After
the BREAK occurred, typing:

FP
CALL -151
2000<B800.BFFFM

allowed me to enter the Monitor and move the Lion's Share RWTS
to a safe location. After booting with a slave disk, I just BSAVEd
the RWTS.

To automate the copy process a little, I modified the SWAP
Controller of Super lOB so that it would utilize the Lion's Share
RWTS. All these changes were incorporated into the softkey
procedure which I detailed at the beginning of this article.

Ta Daaa!
I haved played the whole game through on my copy, and it works

perfectly. It works exactly like the original, only now I don't have
to worry about damaging it because I can make backups. Also, I
can peek at the files if! feel too frustrated, although this game isn't
that hard. Not like Zork III, anyway! I can also check out the
program to see how it works and learn some more. That's what
it's all about, right?

controller

1000 REM SWAP CONTROLLER (LIONS SHARE)
1010TK=3 :ST=0 :LT=35 :CD=WR
1020 T1 =TK : GOSUB 490 : GOSUB 360 : ONERR GOTO 550
1030 GOSUB 430 : GOSUB 100 :ST = ST +1 : IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050 ST = 0 :TK = TK +1 : IF TK <lTTHEN 1030
1060 GOSUB 490 :TK = T1 :ST = 0 : GOSUB 360
1070 GOSUB 430 : GOSUB 100 :ST = ST +1 : IF ST < DOS THEN 1070
1080 ST = 0 :TK = TK +1 : IF BF = 0 AND TK <LTTHEN 1070
1090 IF TK < LT THEN 1020
1100 HOME : PR INT "REMEMBER" TO" COPY" BOTH'" SIDES" : END
10010 PR INT CHR$ (4) "BLOAD" RWTS. LIONS, A$1900"

---1---

50 The Book Of Softkeys Volume III

Requirements:
48K Apple][Plus or equivalent, with
Old F8-ROM or copycard
Super lOB
One blank disk

Bruce Zweig's Master Type has been one of the best-selling pieces
of software for the Apple][ever since it was released back in 1<f81.
The program's most unfortunate drawback is a common one: it is
copy-protected. Since the program is undoubtedly being used in a
fair number of schools throughout the USA and elsewhere, there
is a corresponding demand for information on how to backup this
disk. The reluctance of an instructor to turn over the only copy of
a $40 program to a group of precocious eight-year-olds is entirely
understandable.

Luckily, as I found out, Super lOB has little difficulty in copying
Master Type. This article will explain how to make the backup.

Judging from the EDD III parameter list for Master Type, it
appears to have been protected by Lock-It-Up, one of those copy
protection utilities that you may have seen advertised as being able
to produce an 'uncopyable' disk (Note: The 'uncopyable' disk is
close kin to the 'unsinkable' Titanic). Indeed, Master Type is
protected fairly well, as evidenced by its several months stay on
the Hardcore Most Wanted List and the difficulty of backing it
up with a bit copier.

Upon booting Master Type, the familiar Applesoft prompt will
appear while the game loads, an indication that a disk can be copied
by Super lOB with the Swap Controller installed, as long as its
RWTS can be captured by some means. This is the case with Master
Type, but the Super lOB copy made with the standard Swap
Controller will not work because the text of some of the DOS

The Book Of Softkeys Volume III 51

commands have been altered. You can verify this by booting Master
Type, halting it with an old Monitor (RESETI or NMI and then
exarnirning memory from $A884 to $A908. About half of the normal
DOS commands have been blanked out entirely and, of those that
remain, nine are the same as with normal DOS and five have had
their text changed:

DOS 3.3 Command Master Type Command

INIT SAVE
DELETE KILLDE

CLOSE CLOSE
READ READ
EXEC EXEC

WRITE WRITE
OPEN OPEN

CATALOG CATNDOG
NOMON NOMON

PRH PRH
IN# IN#
FP FP

BLOAD YZ123
BRUN YZ23

Because the majority of Master Type is written in Assembly
language, it would take a bit of work to track down the location
from which these altered DOS commands are being executed. This
would be required if you wanted to make the program totally
compatible with DOS 3.3. Instead of all this work, I decided to
modify the Super lOB Swap Controller a bit so that the entire Master
Type disk, with the exception of the sectors that contain the RWTS,
would be copied. A Master Type disk with a hybrid DOS is thus
created. It will be normally formatted and completely COPYAable,
but its DOS will still use the altered commands. If you examine
the Master Type controller listed at the end of this article you will
see that it is the Swap Controller with lines 1010, 1060 and 10010
modified and line 1065 added.

One other change that must be made to the copy of the Master
Type disk is to fill in two of the free areas in the RWTS with
hexadecimal $60's. This is necessary because Master Type can store
user-created lessons on normally formatted disks. On the original
Master Type disk, this free space contains some code which modifies
the RWTS depending upon whether the original or a data disk has
to be read. This code won't be needed, or present, on the copy.
Therefore, we will just replace it with a bunch of machine language
RTS's.

With a little more effort, I'm sure Master Type could be made
to work with a totally normal DOS, but it probably is not worth
the effort to do so unless you have some modifications or
enhancements you would like to add to it. I will leave that chore
up to the more ambitious readers.

52 The Book Of Softkeys Volume III

Making the Copy
c::::!J Boot up the original Master Type disk and, after the program

has been loaded, stop it with a IRESETI or NMI.

[::::!] From the Monitor, move the Master Type RWTS to a 'safe'
location:

1981<BSII.BFFFM

[]] Boot up a DOS 3.3 slave disk and then BSAVE the Master
Type RWTS onto a disk which contains Super lOB:

BSAVE RWTS.MASTER TYPE, A$19I1,L$S18

[=:!J Enter the Monitor and fill in two of the 'holes' in the RWTS
with $60's (RTS's) before initializing a blank disk:

CALL -151
BA69:68 N BA6A<BA69.BA94M
BCDF:68 N BCEI<BCDF.BCFEM
INIT HELLO

L:[] Load Super lOB, install the controller and then make a copy
to the disk initialized in Step 4 above. Note: Do not reformat the
disk.

controller
1000 REM MASTER TYPE CONTROLLER
1010 TK = 0 :ST = 10 :LT =35 :CD = WR
1020 T1 = TK : GOSUB 490 : GOSUB 360 : ONERR GOTO 550
1030 GOSUB 430 : GOSUB 100 :ST =ST + 1 : IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050 ST = 0 :TK = TK + 1 : IF TK < LTTHEN 1030
1060 GOSUB 490 :TK = T1 :ST = 0 : IF TK = 0 THEN ST = 10
1065 GOSUB 360
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST <DOS THEN 1070
1080 ST = 0 :TK = TK +1 : IF BF = 0 AND TK <LTTHEN 1070
1090 IF TK < LT THEN 1020
1100 HOME : PR INT "EVERYTH ING" O. K. A NO" DOS" ON" COpy" : END
10010 IF PEEK (6400) <> 162 THEN PR INT CHR$ (4) "BLOAD

RWTS .MASTER" TYPE, A$1900"

An Alternate Softkey by Harry Noel

I don't have an F8 Monitor ROM, so I had to find another way
to load in Master Type's RWTS. This is how you can do it:

c::::!J Boot a normal DOS 3.3 disk and insert the Master Type
disk.

The Book Of Softkeys Volume III 53

~ Enter the Monitor with:

CALL -151

C:Il Move BOOT0 into RAM and modify it to jump to $8801:

86GG<C6GG.C6FFM 86FA:88

[=:!] Place a jump into the Monitor and start the boot:

88Gl:4C 59 FF
86GGG

[]] Stop the drive and move $800 to $8800:

CGE8
88GG<8GG.8FFM

L:§] Set an indirect jump to the modified read routine:

88GE:8G

[=z:] Return control after reading the RWTS and start the read:

884A:4C 59 FF
86GGG

[=::i] Stop the read and move the RWTS to a safe location:

CGE8
19GG<B8GG.BFFFM

[:::!J Boot the Super lOB disk:

61GPI

[!!] And type:

BSAVE RWTS.MASTER TYPE,A$19GG,L$8GG

Now continue at step 4 in Mr. Rongays' article and you will have
a COPYAable version of Master Type.

If you want to make this disk totally DOS 3.3, you must go one
step further.

First, copy all the files off the broken Master Type to a normal
DOS 3.3 disk (I used Copy II Plus v4.4C to transfer files) and get
ready to use your sector editor (I used Tricky Dick). Find all the
occurences of these low-byte ASCII codes: CATNDOG, KILLDE,
SAVE,YZ123,YZ23. Change them to CATALOG, DELETE,
INIT, BLOAD, BRUN respectively. Then find these high-byte
ASCII codes: YZ123 and YZ23 and change these to BLOAD and
BRUN, respectively. You now have a normal copy of Master Type.

---1---

54 '11le Book Of Softkeys Volume III

Requirements:
Apple][with 48K
COPYA from the DOS 3.3 System Master
Super lOB
A blank disk

MatheMagic is a program which transforms your microcomputer
into the ultimate calculator. With it, you can program your computer
in the same way you would a programmable calculator.

The program disk itself is copy-protected, but it can use and
initialize normal data disks. This is done by altering RWTS when
access is needed to the original disk, and then changing it back to
normal when a data disk is accessed. The only parts of RWTS I
found changed were the following locations:

Location:
From:

To:

$B991
$DE
$DF

$BCAE
$DE
$DF

$BC60
$FF
$FE

The first two locations are the address epilog start bytes and the
last location is the sync mark used in the protected DOS. The only
problem with just changing these locations to their normal values
is that the program keeps changing them back whenever it accesses
the program disk, generating an I/O ERROR. Also, since the
program is a compiled basic program, it is very difficult to discover
the location in the program at which this change is made.

The answer to the problem is to let the program change DOS to
access the program disk, but patch the RWTS subroutine to change
those locations back to normal whenever it is called.

The main entry to RWTS is at $BDOO, and a JuMP to the patch
can be made there if the original instructions at this entry point are
duplicated in the patch. After DOS is put back to normal, the patch

The Book Of Softkeys Volume III 55

jumps back to RWTS and all operates normally!
The steps required to make a normal copy of MatheMagic are:

[:JJ Boot a normal DOS disk.

~ Enter the Monitor, move an image of the normal DOS 3.3
RWTS to $1900 and then modify it so it can be used by Super lOB
to read the protected MatheMagic disk:

CALL -151
1908<B880.BFFFM
lA91: DF
IDAE:DF
BSAVE RWTS, A$1980, L$880

[=:i] Run Super lOB with the Swap Controller installed to make
a copy of MatheMagic. The Swap Controller will use the RWTS
created in Step 2 to read the disk.

L:1J Type in the following short patch:

8368:84 48 85 49 A9 DE 8D 91
8368:B9 8D AE BC A9 FF 8D 68
0378:BC 4C 84 BD

This is the patch which will be executed just before RWTS is
entered. The Monitor listing is:
0360- 8448 STY $48 Store Yand Aas RWTS wou Id
0362- 8549 STA $49
0364- A9 DE LDA #$DE Fix data and add ress rna rks
0366- 8D 91 B9 STA $B991
0369- 8D AE BC STA $BCAE
036C- A9 FF LDA #$FF Might as we II fix t he sync byte too
036E- 8D 60 BC STA $BC60
0371- 4C 04 BD JMP$BD04 Return control totheRWTS

L::§J Save this patch on the copy of the MatheMagic disk:

BSAVE DOSPATCH, A$360, L$14

Q] Load the file MATH. HELLO from the copy disk and add the
following:

227 PRINT CHR$(4) "BLOAD"DOSPATCH"
228 POKE 48384, 76 :POKE 48385, 96 :POKE

48386, 3 :POKE 48387, 234

This places a JMP to $360 and a NOP as the first instructions in
RWTS so that DOSPATCH is executed before every call to RWTS.

C1J Save MATH. HELLO back to the copy disk:

UNLOCK MATH.HELLO
SAVE MATH.HELLO

------i------
56 The Book Of Softkeys Volume III

Requirements:
48K Apple][Plus equivalent
FlO from the DOS 3.3 System Master
A blank disk
Integer Card or modified F8-ROM or NMI card

c::::!J INIT a blank disk with INI TIAL as the null hello program.

INIT INITIAL

[]] Load FlO from the DOS 3.3 System Master and modify DOS:

BLOAD FlO
CALL -151
B925:1860
B988:1860
BE48:18
B8FB:2900

~ Run FlO and copy these files onto a normal DOS 3.3 disk:
CHA IN, COMMON, INOUST, STOCKS, MESOATA, PLAY, OESCRIP, PLAYER,
RANOOM.OTA (and SAVE if it's on your disk):

803G

[=:!J Boot (PR#6(RETURNI) the original Millionaire disk and when
the screen 'asks' if you wish to resume an old game, hit IRESET I (or
use your NMI card) to enter the Monitor, repeat the DOS changes
in step 2 and finally, put the Millionaire hello program, INI TIAL,
onto your normal disk containing the other Millionaire files:

SAVE INITIAL

------1------
The Book Of Softkeys Volume III 57

Requirements:
a separate list is given for each version

Many readers probably own a copy of Music Construction Set
(MCS) which, in my opinion, is the best music program currently
available for the Apple. However, I suspect that many owners of
MCS are dismayed, like I was, by their inability to back up or modify
the program. Because MCS is protected, it has an annoying habit
of checking for an original program disk from time to time. For
the user, this copy-protection measure means increased wear on the
original MCS disk in addition to slowing down the overall process
of composing music.

The MCS disk uses a version of DOS 3.3 called DOS 3.3P (the
P stands for Protected.) Most copy programs will copy the MCS
disk without errors, but the copy will not work because the
program(s) check the disk for its originality.

Luckily it is not too difficult to defeat DOS 3.3P. Once the
protection has been defeated it is possible to make some
modifications to MCS.

The Copy
The first thing to do is determine which version of MCS you have.

The different versions require entirely different copy methods. I
know of two different versions, which I will call version I and
version 2. Version I does not support the cassette output function
(it won't ask you if you would like cassette output), and the files
A3, A4, P3, Nand 0 appear in the catalog. Version 2 allows you to use
cassette port output, and A3, A4 and P3 do not appear in the
CATALOG. Check for which version you have, and then use the
appropriate method.

58 The Book Of Softkeys Volume III

MCS version 1 copy

Requirements:
48K Apple][Plus or equivalent
COPYA from the DOS 3.3 System Master or bit copy program
A blank disk

L!J Boot up with any DOS 3.3 disk:

PR#6

~ Copy your MCS disk with COPYA onto the blank disk. If
COPYAhas any trouble making a copy, get out your bit copy program
and copy tracks $0-$22 with the standard parameters:

RUN COPYA

[::::i] Insert the copy of MCS and load the binary file called A4:

BLOAD A4

~ Enter the Monitor by typing:

CALL -151

~ Make the following modifications to the image of A4 in
memory:

9131:60
913A:EA EA
4C00:60

[::::§] Resave the file A4 by typing:

BSAVE A4,A$4A00,L$B60

c=1J Boot up your copy of the MCS disk and start constructing
(musically, that is).

MCS version 2 copy

Requirements:
Apple][Plus or equivalent
A blank disk
Text-Editing program or. ..
MAKE TEXT from the DOS 3.3 System Master disk

The Book Of Softkeys Volume III 59

L:!J Boot up a DOS 3.3 disk and then initialize a blank disk with
a 'null' HELLO program:

PR#6
FP
INIT HELLO

~ Boot up with the original MCS disk:

PR#6

[:IJ When the title page saying "Will Harvey's Music
Construction Set" comes up, hit IRESET I (GIRESETI). Be sure to IRESET I
as soon as you see the title page!

c=iJ The Monitor prompt should now be showing, so place the
disk you initialized in step 1 into the drive and type in the following
commands:

BSAVE H,A$411,L$6GG
BSAVE A3,AAII,L4111
BSAVE A4,A$4AGG,L$4B61
BSAVE N,A$74IG,L$121
BSAVE P3,A$3GG,L$DI

~ Now, boot up with the disk which contains the MCS files.
Since you can't do a PR#6IRETURNI from MCS, you will have to turn
the power OFF (or 18d1 IRESETI on the Apple lie).

L§] Load in the file called A4 and then enter the Monitor:

BLOAD A4
CALL -151

C1J Next, type:

86D9.86DB

If you get 4C 88 C6 in response, then type:

86D9:EA EA EA
7F39:61

Note: If your new copy doesn't work, type in:

911D:61

If you didn't get 4C Bt) C6, then type:

9131:60
913A:EA EA

[j] Save your changes by typing:

BSAVE A4,A$4110,L$4B61

The new copy will now work, but you'll want a program to start
it off. Since part of Music Construction Set uses the normal BASIC

60 The Book Of Softkeys Volume III

memory and there is little room for a machine language program,
we will use an EXEC file. You will either need a word processing
program or you can use MAKE TEXT from the DOS 3.3 System Master
to create the EXEC file. Note: if you use MAKE TEXT, don't make
any typing mistakes because the backspace characters will be saved
into your file.

c=:iJ Get out your word-processor or MAKE TEXT and create a text
file which contains the following commands:

HGR
POKE -16301,1
BLOAD A3
BLOAD A4
BLOAD P3
BLOAD N
BLOAD H
POKE,-16368,13
CALL 2156

[!j] Save this text file under the name MCS. HELLO on your copy
of the Music Construction Set:

SAVE MCS.HELLO

[ill Type in the following program and save it on the disk as
the Hello program:

FP
10 PRINT: PRINT CHR$ (4) "EXEC"MCS.HELLO"
SAVE HELLO

~ To copy any of the music files from the original MCS disk
to the copy, a file-transfer program like FIDcan be used. Both the
music file and its .OB) file have to be transferred. For instance, if
you want the song "Dixie" on your copy of MCS, then the files
DIXIE and DIXIE. OBi will both have to be transferred.

em You can now boot up your new Music Construction Set disk
and use it normally. If you are using a DOS other than DOS 3.3
(Pronto-DOS, Diversi-DOS, etc.), you'll find the program will run
much faster. I recommend you get one of these fast DOS's as they
are well worth the money.

Alternate ~lethod For l\ICS Version 2
Requirements:

48K Apple][Plus or equivalent
COPYA or a bit-copy program
Disk-editing program
A blank disk

The Book Of Softkeys Volume III 61

[=:!J Make a copy of the original Music Construction Set disk
with COPYA (IfCOPYA won't copy it, use a bit-copier):

RUN COPYA

To

$EA
$EA
$EA
$EA
$EA
$18

$4C
$00
$C6
$20
$00
$4C

FromByte

$D9
$DA
$DB
$29
$2A
$2B

$2
$2
$2
$D
$D
$D

$B
$B
$B
$B
$B
$B

~ Use your disk-editor to make the following changes to the
copy of the MCS:

Track Sector

Don't forget to write the modified sectors back to the copy of MCS.

MCS Modifications
It is also possible to customize the Music Construction Set. For

example, say that you have your Mockingboard in a slot other than
4. The slot that MCS expects to find the Mockingboard in can be
easily changed with the program below. Note that there are two
different DATA statements and you should use one or the other
depending upon which version of MCS you own. Just type the
program in (using the appropriate DATA statement) and save it as
MB SLOT CHANGER by typing:

SAVE MB SLOT CHANGER

Just RUN the program when you want to have MCS utilize a
Mockingboard in another slot. The program can also be used if MCS
will not boot because you have a card in slot 4 that is not a
Mockingboard. Just run the MB SLOT CHANGER program and then
change the Mockingboard slot to one of the slots in your computer
that is empty.

5 REM DATA FOR VERSION 1
10 DATA" 35946,35951 ,35956,35962 ,35967 ,35972 ,35982 ,35987

,35992 ,35998 ,36003 ,36008 ,36019 ,36022 ,36027 ,36030
5 REM DATA FOR VERSION 2
10 DATA" 35932 ,35937 ,35942 ,35948 ,35953 ,35958 ,35968 ,35973

,35978,35984,35989,35994,36008,36005 ,36013 ,36016
15 REM TYPE IN ONLY 1SET OF DATA!!

20DIMA(16) : TEXT: HOME
30 FOR I =1 TO 16 : READ A(I) : NEXT
40 INVERSE : PR INT "MCS" MOCK INGBOARD" SLOT" CHANGER"
50 NORMAL: VTAB 5 : PR INT "WHAT" SLOT" WOULD" YOU" LIKE" TO" PUT"

YOUR" MOCK INGBOARD" IN, "OR" HAVE" MUS IC" CONSTRUCT I0" SET"
LOOK" FOR" A" MOCK INGBOARD?" (1-7) :" ; : GET Z$

62 The Book Of Softkeys Volume III

60 Z=VAL (Z$) : IF Z < 1 OR Z> lTHEN HTAB 1 : GOTO 50
70 PR INT "MAKE" SURE" YOUR" MUS IC" CONSTRUCT ION" SET"" 0ISK" IS" IN"

THE" DR IVE ... AND" KEY" ; : GET Z$
80 PR INT : PR INT CHR$ (4) "BLOAD" A4"
90 FOR I =1 TO 16 : POKE A(I) ,Z + 192 : NEXT
100 PR INT : PR INT CHR$ (4) "BSAVE" A4, A$4A00, L$4B60"
110 PRINT: PRINT "DONE." : END

If you performed the alternate copy method (sector edit method)
on version 2, then the above program will not work for you because
your disk does not have a file called A4 on it. However, you can
still change the Mockingboard slot if you have a sector-editor. The
bytes to modify are stored on track $B, sector $8.

Get your disk-editor running and read in track $B, sector $8 from
the copy of MCS you made. The table below shows the bytes to
modify. You will need to substitute the slot number you want your
Mockingboard in for the n in the To column. For instance, if you
want to use slot 2 for the Mockingboard, change the bytes listed
in the table from $C4's to $C2's.

Byte From To Byte From To
-- --
$5C $C4 $Cn $8A $C4 $Cn
$61 $C4 $Cn $90 $C4 $Cn
$66 $C4 $Cn $95 $C4 $Cn
$6C $C4 $Cn $9A $C4 $Cn
$71 $C4 $Cn $A5 $C4 $Cn
$76 $C4 $Cn $A8 $C4 $Cn
$80 $C4 $Cn $AD $C4 $Cn
$85 $C4 $Cn $BO $C4 $Cn

After changing the bytes, don't forget to write the sector back to
your disk.

Cassette Port Output
Version 1 of Music Construction Set does not allow you to use

the cassette port for output as does version 2. Using the cassette
port for output allows you to play the music through an external
amplifier and speaker for improved sound quality (especially if you
turn the treble all the way down on your amplifier). Adding cassette
port output to version 1 of MCS is really quite simple if you have
a little knowledge of the Apple's built-in I/O.

Sound can be output to the Apple's speaker by referencing address
$C030 or to the cassette output by referencing address $C020. The
binary file called A4 controls the output of MCS, and the changes
necessary for cassette output need only be applied to this one file.
The program listed below will allow you to pick the output path
(speaker or cassette) and will make the necessary modifications to
A4. Type in this program and SAVE it as CASSETTE OUTPUT.

The Book Of SoftkeY8 Volume III 63

CASSETTE OUTPUT

10 DATA A23 ,43 ,46 ,66
20 TEXT : HOME
30 FOR I =1 TO 4 : READ A(I) : NEXT
40 INVERSE: PR INT "MCSACASSETTE/APPLEASPEAKERAOUTPUTATOGGLE"
50 NORMAL: VTAB 5 : PR INT "DOAYOUAWANTA <C>ASSETTEAORA <A>PPLEA

SPEAKERAOUTPUTAW ORA A) :" ; : GET Z$
60 IF Z$ < > "C" AND Z$ < > "A" THEN HTAB 1 : GOTO 50
70 PRINT : PRINTCHR$ (4) "BLOADAA4"
80 N=33 : IFZ$ ="A" THEN N=49
90 FOR I =1 TO 4 : POKE A(I) + 21800 ,N : NEXT
100 PRI NT : PR INT CHR$ (4) "BSAVEAA4, A$4A00, L$4B60"
110 PR INT "DONE." : END

When you want to switch from speaker to cassette output (or vice
versa), just:

RUN CASSETTE OUTPUT

Final Words
Since your new Music Construction Set is now on a normal DOS

3.3 disk, if a DOS error is generated (like trying to load a non
existent file), the program will leave you in BASIC (version 2 only).
To return to MCS just type:

CALL 2156

Anything that you were working on at the time of the error will
still be intact.

That about does it for my modifications to Music Construction
Set. I am sure that if you poke around a bit, you can come up with
some more enhancements for MCS. A good place to start
investigating is the area around $7FlIl0. Happy constructing!

------1------

64 The Book Of Softkeys Volume III

* This softkey applies to: PFS:File, PFS:File lie, PFS:Report,
PFS:Report lie, PFS:Graph, PFS:Graph lie.

Requirements:
Apple][Plus or equivalent
One disk drive
COPYA from your DOS 3.3 System Master
Sector-editor with search capability (Zap, Inspector, etc.)

Although most of PFS's software can be backed-up by using Copy
II Plus' normal-copy (not bit-copy) utility, I prefer to completely
remove the copy-protection from commercial software that I own.
Even though the PFS series of programs are written in Pascal, the
disk-protection code is written in Assembly language and can be
fairly easily circumvented. To remove the protection from any of
the PFS programs listed above, you will need some sort of disk
search utility. The entire disk has to be searched for a byte sequence
of D8 84 88 98 Fe 27. This code is found in a routine which checks
the disk for the presence ofextra bits in the sync fields, a protection
scheme called the 'bit insertion technique'. If the extra bits are
present, an $FF will be pushed on the stack, otherwise, a $00 will
be pushed onto the stack before the routine returns to its caller. By
changing the second byte of the search sequence from an $04 to
a $29, the protection code can modified so that it will always push
an $FF onto the stack whether the extra bits are present or not.

0] First, run COPYA to make a copy of the PFS program.

~ Get out your disk-search utility and search the copy for the
all occurrences of D0 04 88 98 F0 27 and change the $04 in this
sequence to a $29. Be sure to write the changes back to the disk.

C1] Write-protect the disk before trying to boot it.

------1------
The Book Of Softkey8 Volume III 65

Penguin Software
(PS)

Softkey For Transylvania & The Quest
by Thomas A. Phelps

(Hardcore COMPUTIST # 13, page 14)

NOTE: As you are aware, both Penguin Software and Beagle Bros are
spoken ofhighly for their unprotected applications disks. Even the Beagle
game disk Beagle Bag bears no protection. Penguin game disks, on the
other hand, are copy-protected, thus not allowing easy backup nor the art
of APT (Advanced Playing Techniques).

Arcade games in broken form do not especially lend themselves well to
APTdue to difficult-to-understand machine code, but adventures, especially
ones written in BASIC, do. After performing the softkey for both
Transylvania and The Quest, you can examine the BASIC programs which
are the core of these fine adventures, as well as each well-drawn picture,
without the need of traveling there in the adventure itself.

The protection for these adventures is more or less the same, and is easily
broken with just a little effort. First, type in the Super lOB controller below.
Since this controller works on all Penguin entertainment software I've tried
(including Coveted Mirror), save it to disk as PENGUIN. CON.

After using the controller on a Penguin disk, you should add DOS (ideally
a fast DOS).

controller

Hl00 REM PENGUIN CONTROLLER
1010TK=2 :ST=0 :LT=35 :CD=WR
1020 T1 = TK : GOSUB 490 : GOSUB 1110
1030 GOSUB 430 : GOSUB 100 :ST = ST + 1
: IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050 ST =0 :TK = TK + 1 : GOSUB 1110 : IF TK < LT THEN 1030
1060 POKE 47505 ,222: POKE 47413 ,222: GOSUB230: GOSUB490 :TK=

T1 :S1= 0
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1070
1080ST=0 :TK=TK+l: IFBF=0ANDTK<lTTHENI070
1090 IF TK < LTTHEN 1020
1100 HOME: PRINT: PRINT "DONE"'WITH"COPV" : END
1110 POKE 47505 ,218 : POKE 47413,218: IF TK /2 = INT (TK /2)

THEN 230
1120 RESTORE : GOTO 190
63010 DATA 212 ,170 ,150

66 The Book Of Softkeys Volume III

Translyvania

Requirements:
Apple H, Apple H Plus, Apple lie or compatible
one blank disk
Super lOB

First, run Super lOB with the Penguin controller installed. Once
the program has been copied, only one modification needs to be
made for the program to function. The Binary file TPAR checks to
see that $D6 is non-zero (causing the BASIC program to auto-run).
If it is not non-zero, the program will exit to BASIC as soon as
the player is ready to enter his first command. This problem can
be fixed in either one of two ways. One way is to add 5 POKE
214,255 to HELLO, or, better yet, the file TPAR can be modified to
ignore this check. To modify TPAR, follow these steps:

[]] Since TPAR loads in an area normally used by DOS buffers,
change MAXFILES:

MAXFILESl

OJ Load in the file to be modified:

BLOAD TPAR

[j] Enter the Monitor:

CALL -151

L:!l NOP the $D6 byte-check:

943D:EA EA EA

[]] Save the new file:

BSAVE TPAR,A$9411,L$69D

For a complete, stand-alone copy, simply copy DOS onto the disk
and use HELLO as the boot-up program.

According to the VTOC, the disk has no free sectors, but a VTOC
rebuilder will show several free sectors which may be used to store
saved games and the APT programs listed in this article (no extra
disk needed!).

In addition to this bit of protection, TPAR contains a list ofall the
words the adventure understands. A utility that prints out disk files,
or the following program will print a complete list of recognized
words if TPAR is in memory (the periods just fill out commands
requiring less than five letters).

The Book Of Softkeys Volume III 67

APT: Print Commands
5 PR# 1 : PRINT
10 ST =38281 :EN =37888 + 1693
15 COL = 80 : REM #COLUMNS PRINTER SUPPORTS, SET TO FIVE FOR EACH

RECOGNIZED WORD TO BE ON ITS OWN LINE
20 FOR I =ST TO EN : PR INT CHR$ (PEEK (I));
30 NN =NN +1 : IF NN =COL THEN PR INTCHR$ (13) :NN =1
40 NEXT I : PR INT CHR$ (13)
45 PR# 0

Examining the BASIC program TRANS will give you some clues
and show some interesting program techniques; it's worth looking at.

Another benefit of unlocking Transylvania is that the beautiful
hi-res pictures can be enjoyed without the bother of traveling through
the entire adventure. Owners of the Graphics Magician can load
up the pictures, just as if they were any other picture created with
the picture-editor, or those without can use the following program
to take a look at the pictures (save to the Transylvania disk under
SEE PICTURES).

APT: See Pictures
10 IF PEEK (103) +PEEK (104) <> 65 THEN POKE 103 ,1 : POKE 104 ,64

: POKE 16384,0: PRINTCHR$ (4) "RUW'SEE'"PICTURES"
20 TEXT: HOME : HGR : PR INT CHR$ (4) "BLOADP ICDRAW2"
30 HOME; VTAB 21 ; INPUT "SEE'" PICTURE'" ->'" " ;A$; IF LEFT$ (A$,3) <

> "CAT" THEN 50
40 TEXT : HOME: PRINTCHR$ (4) "CATALOG" : PRINT: PRINT "ANY'" KEY'"

" ; : GET A$: PRINT A$: HGR : GOTO 30
50 IF A$ ="" OR A$ ="END" THEN TEXT: HOME: END
60 PR INT CHR$ (4) "BLOAD'"" A$ " ,A4608" : POKE 2560 ,0 : POKE 2561 ,18

: CALL 2608
70 GOTO 30

The possibilities for modification are endless; you can even
modify the adventure map!

The Quest

Requirements:
Apple n, Apple n Plus, Apple lIe or compatible
Super lOB
two blank disks

68 The Book Of Softkeys Volume III

The softkey for The Quest is less complex than the softkey for
Transylvania. You need to use the Penguin controller on the boot
side of the disk and, interestingly enough, only COPYA on the back
side.

After that, a couple of modifications need to be made. First of
all, the boot program needs to be changed so that a fIle called AMP
2.8 can be BLOADed into the DOS buffers. Type the follbwing:

FP
11 PRINT CHR$(4)"MAXFILES1": PRIN'l' CHR$(4)"BRUN QUEST"
SAVE QA

Copy DOS onto the disk and use QA as the boot-up program.
The next modification concerns a check to see if Penguin DOS

is still in the machine. The check occurs in line 9120 of a program
called QB so

LOAD OB

Change the Z = PEEK (47892) in line 9120 to a Z = PEEK
(47893) and then:

SAVE OB

Like Transylvania, the disk shows no free sectors, but a
CATALOG rebuilder (such as FIXCAT from Bag of Tricks) will
recover the unused sectors which can now be used for saved games.

APT For The Quest
The end of this adventure is much, much better than that of

Transylvania. In fact, to see the end without toiling with the
adventure, flip the disk to side two and BRUN EQA. Excellent work
on the part of the authors and on the COPYAable side - interesting.

Again, all the hi-res pictures may be viewed but, disappointingly,
many are duplicates. The BASIC program MQ can also be examined
to aid in solving this adventure.

Minute Man and more...

As I mentioned earlier, Super lOB works on other Penguin game
disks as well. For example, running Super lOB on Minute Man and
simply changing line one to 1 HOME: HGR: HGR2: PRINT
CHR$(4)"MAXFILESl" will create an unlocked Minute Man
which, of course, may be copied with COPYA or any other copier,
even FlO!

Well, that's it! Watch for the return of three mice in The Quest,
and have fun!

------1------
The Book Of Softkeys Volume III 69

Requirements:
Apple][Plus or equivalent
Super lOB
Sector-editor
Blank disk

Rocky's Boots is an educational program designed to instruct
students of any age in the basic concepts of electronic digital logic.
The user progresses from learning about electricity to the point where
he/she is able to construct 'machines' from wires, logic gates, clocks,
sensors and other pieces of hardware that will 'kick' targets of a
specific color and/or shape. Unfortunately (or fortunately for those
of us who like a challenge), Rocky's Boots is copy-protected.

The Learning Company uses two techniques to copy-protect
Rocky's Boots. First, every sector on the disk is marked as if it were
on track 0. This prevents the use of COPYA or any other standard
copier to make a backup. The second copy-protection measure
involves the use of half-tracks with track arcing during the boot
process of the disk. On Rocky's Boots, tracks 3.0,3.5 and 4.0 each
contain five sectors of data.

While the first technique is easy to circumvent with the use of
a bit copier, the latter technique is more difficult to defeat, even
with a bit-copier which can read half-tracks. If full tracks of data
are written to a disk in half-track increments, the data on adjacent
half-tracks will tend to be obliterated. However, the half-tracks on
an original copy of Rocky's Boots are written in a special manner
so that they are synchronized with one another, with each of the
half-tracks containing only five sectors of data. This pattern is
generally very hard to duplicate with a bit-copier but can be read
with the proper software. Both of the copy-protection techniques
I've described can be removed so that a backup which resides on
a normally formatted disk can be produced.

70 The Book Of Softkeys Volume III

There are two basic things which must be done to produce the
backup. First, all of the data that is written to the original must be
moved to a backup disk. The data that resides on the three half
tracks on the original disk will be written onto one full track on
the backup disk. This transfer can be handled by Super lOB with
the Rocky's Boots controller listed on this page installed.

Once Rocky's Boots has been moved to a normally formatted disk,
a couple of changes need to be made to the disk so that it will run
properly. This involves some changes to the disk I/O code so that
no half-tracks will be accessed and I/O errors will not be generated
when the program fmds that the sectors are marked normally instead
of as if they were all on track $0. One other change has to be made
so that one can exit from Rocky's Boots without having it crash into
the Monitor.

Making The Copy
Begin by typing in the controller listed below. Install it into Super
lOB and RUN.

controller
1131313 REM ROCKY'S BOOTS CONTROLLER
113113 TK =13 :ST =13 :LT =34 :CD =WR : POKE 48573 ,128
113213 GOSUB 4913 :T1 =TK :TK =13 :CD =13 : GOSUB 11313 : GOSUB 813 :S =

-128 : GOSUB 1313
11325 CD =RD :S =T1 • 2 : GOSUB 1313 : RESTORE: GOSUB 1713 :S =2
113313 TK =PH / 2 : GOSUB 4313 :TK =13 : GOSUB 11313 :ST =ST +1 : IFST <

DOS THEN 113313
113413 IF SF THEN 113613113513 ST = 13 : GOSUB 1313 : IFPH = 6 THEN GOSUB

11113
11355 IF PH < LT· 2 THEN 113313
113613 GOSUB 3113 : GOSUB 4913 :TK =T1 :ST =13 : GOSUB 2313
113713 GOSUB 4313 : GOSUB 11313 :ST = ST + 1 : IF ST < DOS THEN 113713
113813 ST =13 :TK =TK + 1+ (TK =3) : GOSUB 11513 : IF TK =3 THEN GOSUB

11613
11385 IF BF = 13 AND TK < LT THEN 113713
113913 IF TK < LT THEN 113213
111313 HOME: PRINT "DONE" WITH" COpy" : END
11113 S=1 :ST =1 : GOSUB 11613 : GOSUB 11313 :ST =13
11213 FOR Al =1TO 5 :TK =3 :ST =ST +1 : GOSUB 4313 :TK =13 : GOSUB

11313 : NEXT
11313 GOSUB 1313 : IFPH < 9 THEN 11213
11413 GOSUB 1313 :S = 2 :ST = 13
11513 POKE 48683 ,185 : POKE 48684 ,184 : POKE 48685 ,191 : RETURN
11613 POKE 48683 ,234 : POKE 48684 ,234 : POKE 48685 ,234 : RETURN
5131313 DATA 255 ,255 ,255 ,255
513113 DATA 1" CHANGES
513213 DATA 0 ,7 ,43 ,231

The Book Of SoftkeyB Volume III 71

Note: During the copy process, the disk head will recalibrate just
before reading the original disk. Ifit should recalibrate in the middle
of reading the original, then you will get a bad copy.

A Few Controller Words
Here is a list of the differences in this controller from the standard

one which makes it successful.

HU8 -Set the last track to be copied at 33, set extended error retry
mode.

1828 -Tell DOS to position over track 0, recalibrate.
1&25 -Fix command code, move to correct track via MOVE S

PHASES, alter the ending marks (to FF FF, FF FF), fix
step variable for whole tracks.

1838 -Calculate TK so that PRINT TRACK & SECTOR # will
display the correct track, restore TK to zero since that is
what the sectors are marked as.

1858 -If on track 3 then call the track arcing reader at 1110.
1868 -Call the sector-editor to edit track 0, sector 7, byte $2B to

$E7, normalize the DOS ending marks.
1f)8f) -Skip track 4, tell DOS to write logical sectors unless on track

three in which case, tell DOS to write physical sectors.
1118 -Set the step variable for half-tracks, tell DOS to read physical

sectors, read sector 1 as a dummy, fix sector variable.
1128 -Read the next five physical sectors.
1138 -Step forward a half-track, if not done with the track arcing,

then read five more sectors.
1148 -Move on to track five, fix step variable, start with sector

zero of track five.
1158 -Restore DOS so that it reads logical sectors.
1168 -Alter DOS so that it reads physical sectors.

Once the Super lOB copy ofRocky's Boots has been made, there
are a few changes that have to be made to the disk so that it will
function properly on a normally formatted disk.

Rocky's Boot-up
During the boot-up of the disk, some code is written to page $04

(on the text page) that is responsible for accessing the data on the
half-tracks. After this has been accomplished, the code exits to $500
to where the menu is read in. Putting code on the text page like
this is also a form of copy-protection.

An interesting fact about Rocky's Boots is that it always uses the
sector read routine at $Cx5C (x being the slot number) to read the
disk. That is, the original Rocky's Boots uses this ROM subroutine.
The modification we will make moves this routine into RAM where
it can be modified to suit our purposes.

This change modifies the code that is written to page $04 so that

72 The Book Of Softkeys Volume III

it does not access the half-tracks, but instead, reads the data that
was written on tracks 3.0, 3.5 and 4.0 all from track $03. After
this has been done, the code will move the sector-read routine from
the disk controller card to $400-$49E and then modify it so that
the normally-marked sectors will not cause any errors. Our code
will also make a modification at $508-$50A so that the code which
was moved to $400-$49E will be used instead of the routine in
the disk controller's ROM. This change has to be made to track
$00, sector $07 (logical) on the Super lOB copy of Rocky's Boots.

To make this change, get out your sector-editor and read in track
$00, sector $07 of the backup. Move the cursor to byte $AE of this
sector and start entering the bytes listed in the hexdump below. Write
the sector back to the disk when you have finished entering all of
the bytes. For those who are interested, the source listing of this
is included.

A2 0F 20 0C 04 20 2A 04
46 4A A9 A4 85 76 A9 03
85 77 A9 00 85 78 A5 3F
85 79 A0 5C 81 78 91 76
C8 00 F9 A9 41 80 43 04
A9 04 80 0A 05 A9 00 80
09 05 A6 28 86 EF 4C 00
05 E6 41 20 20 04 60

A Graceful Exit
The final modification is made to track $1, sector $07 of the

backup so that the drive will reboot properly when the "END"
option is chosen from the main menu. This modification is necessary
because with the previous sector-edit we tricked the program into
thinking the disk controller ROM was located on the text page (page
$04). The program will just crash if it tries to reboot from there.
So, to restore a graceful exit to Rocky's Boots, make the following
change to the Super lOB copy.

Track Sector Byte From To

$01 $07 $03 $AC $A4
$01 $07 $04 $0A $3F
$01 $07 $05 $05 $EA

Once you have written the change back to the disk, you will have
a fully functional backup of Rocky's Boots.

Those of you who would like to learn how Rocky's Boots works
might be interested to know that each of the items on the menu
(Rocky's Boots, Rocky's Challenge, etc) has an entry point of $A00.
!fyou have some means of halting without a reboot (old F8 ROM
or a NMI card, etc.) you can stop the program, snoop around
memory to your heart's content and then restart the module in
memory with a A00G. Just keep in mind that the code necessary

The Book Of Softkeys Volume III 73

for disk access resides on the text page and it will hit the proverbial
bit bucket as soon as the Monitor is entered.

Once the program has been halted, you will have to reboot the
disk in order use the main menu.

Other Learning Company Programs
Other Learning Company programs are copy-protected in a

similar fashion to what I have described for Rocky's Boots. There
are several ways to approach these programs.

One of the easiest approaches is to make a bit-copy of the original
and boot it with the cover of the disk drive removed. The head will
probably move inward until it tries to read from a track that should
have adjacent half-tracks. You may then replace the copy with the
original, close the door briefly and then re-open it. As the Apple
reads the data in, you can determine which are the half-tracks. By
alternating between the bit-copy and the original copy, you can
determine where the half-tracks end and when full tracks are again
being accessed. Once the half-tracks have been read, the bit-copy
will probably function just as well as the original.

The sector responsible for reading in the half-tracks probably will
be sector $01 of track $00 on other Learning Company disks, just
as it is on Rocky's Boots. You should be able to read this sector
with the Inspector or Tricky Dick (set the end-of-address and data
marks to 000000). Look for instructions like:

89 81 C0 LDA C081, V
89 80 C0 LDA C080 ,V

These are instructions which control the head movement of the drive.
Look also for instructions which call subroutine which are displaced
three steps away in memory, such as:

800: 20 03 08 JSR $0803
803: 48 PHA
804: 98 TVA
805: 48 PHA

If a call to $803 causes the head to increment a half-track, then a
call to $800 will cause two half-track increments, in other words,
a whole track (for an example of this, look at the code which starts
at byte $2A of track $0, sector $7 on Rocky's Boots). Having found
the appropriate sector, one still needs to recover the data from the
half-track arcs. Knowing the location in memory to which the data
goes, an Integer card could be used (as it could have in our example
here) to recover that data. You would need to dissasemble the sector
to trace that information. With other programs, it may not be easy
to fmd a place in the RAM memory to place the disk controller ROM
as we were able to do with Rocky's Boots. In such a case, you should
plan on only modifying track 0 and the half-track arcs, and backup
the remainder of the disk with a bit copier.

74 The Book Of Softkeys Volume III

source code

EXIT TO $500
PATCH THAT INCREMENTS
THE TRACK #

MAKE AMOD TO PREVENT
I/O ERRORS
MOD IFY THE CODE ON
PAGE $5 SO THAT STA $507
THE CODE AT $400 LDA #$00
ISUSED TO READ DISK STA $506
$2B HOLDS SLOT #

*Patch th i s code to track $0, sector $7 of the lOB copy of Rocky's Boot.
* The code will move the disk cont ro II er ROM Sector Read rout i ne onto
* the text page where it wi II be used to read the norma I i zed copy

.OR $4AE

.TA $800

.TF ROCKY CODE
LDX #$0F START ON SECTOR $F
JSR $040C READ SUBROUT INE
JSR $042A MOVE AFULL TRACK
LSR $4A RESET TO LOG ICAL SECTOR ING
LDA #$A4 SET UP THE ZERO
STA $76 PAGE POINTERS
LDA #$03 TO MOVE THE ROM
STA $77 SECTOR READ ROUTINE
LDA #$00 AT $CX5C TO $400
STA $78
LDA $3F $3F HOLDS HI BYTE OF
STA $79 CONTROLLER'S ROM ADDRESS
LDY #$5C OFFSET INTO ROM

MOVE IT LDA ($78) ,Y MOVE THE CODE
STA ($76) ,Y
INY
BNE MOVE IT
LDA #$41
STA $0443
LDA #$04
STA $050A
LDA #$00
STA $0509
LDX $2B
STX $EF
JMP $0500
INC $41
JSR $042D
RTS

04EA: A20F
04EC: 20 0C 04
04EF: 20 2A 04
04F2: 464A
04F4: A9 A4
04F6: 8576
04F8: A903
04FA: 8577
04FC: A900
04FE: 8578
0500: A53F
0502: 8579
0504: A05C
0506: B1 78
0508: 91 76
050A: C8
050B: D0 F9
050D: A941
050F: 8D 43 04
0512: A904
0514: 8D 0A 05
0517: A900
0519: 8D 09 05
051C: A62B
051E: 86 EF
0520: 4C 00 05
0523: E641
0525: 20 2D 04
0528: 60

Note: Some versions may require the change below:

0514
0517
0519

STA $507
LDA #$00
STA $506

---1---

The Book Of Softkeys Volume III 75

Requirements:
Apple][, Apple][Plus, or Apple IIe
A blank initialized DOS 3.3 disk

Sabotage was about the first game I ever bought for my Apple
way back when DOS 3.3 had just been released. Even though it
is a somewhat simple game, it held my attention for quite some time
and even now I occasionally still play it.

The last time I tried to play Sabotage, I noticed that the original
disk was having a hard time loading the hi-res title page. No doubt,
the disk had seen its day and needed to be backed-up. I figured I
could still save it before it was too late.

The protection used by On-Line was somewhat simple when this
program was released (back in the good 01' days when Sierra On
Line was just On-Line Systems). The disk is in a modified DOS
3.2 format which was another good reason for backing it up (this
thing boots slooooowly!).

You can boot the disk and press lacI to interrupt the Hello
program before it executes. You may now CATALOG the disk and
examine the files if you wish.

The Hello program BLOADs the banner picture and just BRUNs
the game (file: SABOTAGE). What we want to do is BLOAD
SABOTAGE, then check the locations it was loaded at and its length:

BLOAD SABOTAGE

and then enter the Monitor with:

CALL -151

Then type:

AA68.AA73

76 The Book Of Softkeys Volume III

The last two bytes listed will be the location SABOTAGE was loaded
at, and the first two bytes will be the length of the file, in
bassackward order, of course. If you list memory ~ $1D00, you
will see that there are some memory moves to page $01 and an RTS.
If you type $lD88G (RETURNI , the drive starts up and makes sure
you're using the original disk.

Obviously, we don't want this routine in our final production.
Well, past that, the starting address is $1D1F and the file continues
up to $5400.

So, to backup Sabotage we just BLOAD the file SABOTAGE, boot
a 48K slave disk and BSAVE the file.

In cookbook fashion, here are the steps to deprotection:

.C!J Boot the Sabotage disk.

~ Press lacI immediately, and after the Hello program is
loaded, your Apple will beep and you will be in Applesoft BASIC.

[::::!] Type:

BLOAD SABOTAGE

Cil Boot a 48K DOS 3.3 slave disk by typing:

PR#6

[j] Save the program to your disk by typing:

BSAVE SABOTAGE,A$lD1F,L$36E2

---i---

The Book Of Softkeys Volume III 77

Requirements:
Apple][
Super lOB

When I first encountered Seadragon, like most people, I was fairly
impressed by its animation and sound routines. However, I didn't
play it too often because I was not able to back it up, and I don't
like using originals.

The program boots very much like a normal disk. You can get
a good copy up to the title page with any bit-copier, but when you
try to run the game, it will load and then start to do a strange thing.
It sounds as if the disk drive is having a spasm, continually moving
from track $0 to track $22 until you hit (RESETI or tum the machine
OFF. But the designers have nicely set the reset vector so that you
cannot stop the reboot by repeatedly hitting (RESETI.

Count Nibble and Friends
The program is actually doing a funny kind of nibble-count. If

you look at track $22 with a nibble-editor, you will see a repeating
pattern ofFF's and DD's. This pattern is what the copy-protection
looks for, and it is fairly hard to copy. I found that Copy II Plus
will do it on default parameters if you fiddle with your drive speed.

Once I was able to copy the disk, I started to really get into the
game. There, I ran into another old enemy, the Arcade Mentality:
the game is just too difficult. I felt I had been let down, and started
thinking about how I could get some satisfaction from the game.
That's when I thought about modifying it, which means first
removing the copy-protection.

78 The Book Of Softkeys Volume III

The protection on this disk comes in stages. First, the End-of
data marks have been changed from DE AA to AA DE. The DOS
is very much like normal DOS, and to allow it to read the different
marks, the read-error-routine has been turned off. Pretty clumsy,
right? The only sector on the disk without these different marks is
the one used to store high scores, track 3, sector 0. In any case,
I dealt with this problem by writing a Super lOB controller which
fits these requirements.

The disk's DOS does not need to be changed to read the new,
unprotected format, but I wanted to normalize the disk as much as
possible, so I made the Super lOB controller edit track 0, sector
3 as shown in the list below.

The next problem was the nibble-count. Since the disk was now
easily read with a sector-editor, I reasoned that it should be possible
to locate the nibble-count-routine and tum it off. I found this routine
at track $19, sector $0E.

Unscrambling
But the Protectors hadn't finished yet. After I turned off the nibble

count, I booted the copy. The game started to run and then some
very funny things happened. The mines seemed to be allover the
place. And when I got far enough into the cave, the game simply
hung. There is an area that is used for game data at $9500 which
seems to get scrambled when you tum the nibble-count off. But the
routine that does this can be found at track $19, sector $08.

Now the game seemed to run perfectly, and continued to do so
just as long as I never used torpedoes. Well that certainly wasn't
much fun. Another routine had been activated that was forcing an
early link to the next level, that is, the end of the cave where you
meet the Seadragon. When I pushed the torpedo button, this part
of the game loaded and I was actually able to play it. You might
want to try this just for fun if you've never seen the Seadragon.
The routine that messes up this part of the game is at track $15,
sector $0E.

After I located and turned off these routines, I found that the game
ran normally except that it took slightly longer to load. This was
simply due to the fact that I had turned the read-error-routine on.

So to make,a working, COPYA-able copy, load Super lOB and
install the controller listed at the end of this article. Next, run it
on Seadragon. The controller will make these sector changes:

Track: $00
Sector: $03

Byte: $36
From: $EA

To: 00

$00
$03
$37
$EA
$0A

$00
$03
$3F
$00
$AA

$00
$03
$40
$00
$F0

$19
$0E
$00
$4C
$60

$19
$08
$25
$A2
$60

$19
$0E
$E7
$A9
$60

The Book Of Softkeys Volume III 79

The Ad\ anced Pla~ ing Techniques

There are lots of things out to get you in this game. Using the
list I have compiled, you can now customize the game so that the
more insidious ones just disappear. There are also a few irritating
noises, which may now be turned on and off at will. I suggest,
however, that you make a backup of your new copy before you get
too carried away.

APT type Track Sector Byte From To

Stop voice game start: $04 $02 $B8 $AD $60

Stop sub explosion sound: $16 $0D $DF $AD $EA
$E0 $30 $EA
$El $C0 $EA

Stop irritating noise: $17 $07 $8F $AD $EA
$90 $30 $EA
$91 $C0 $EA
$BD $AD $EA
$BE $30 $EA
$BF $C0 $EA

Mine speed ($00=oft): $14 $0C $DE $05 $00-$09

Eel speed ($FF=oft): $14 $08 $0B $04 $00-$FF

Seaweed speed ($FF=oft): $14 $09 $59 $01 $00-$FF

Seaflea speed ($00 = stop): $14 $06 $15 $02 $00-$02

Stalactite speed ($0 = stop): $14 $07 $47 $04 $00-$09

Turn OFF force field: $14 $0A $33 $46 $00
$15 $07 $62 $05 $00

Turn OFF shooters: $14 $0A $E3 $01 $FF

Unlimited damage: $18 $0B $6E $8D $EA
$6F $2E $EA
$70 $43 $EA

Unlimited air: $18 $0B $32 $01 $00

Free sonic disruptor: $18 $0B $59 $05 $00

Other Stuff
The main portion of the game is on tracks $12 to $19. After the

sub blows up, the game restarts at $8868. The actual amount of
air you have is stored at $432B-$432C. Damage is at $432E. There
are many other interesting locations, including $4DB0 and $57F3.

80 The Book Of Softkeys Volume III

How I Did It
Most of the detective work I had to do to de-protect this disk was

done with the aid of my Replay II card and Nibbles Away II. Replay
allowed me to enter the Monitor at any time and look at the code.
When I found a suspicious looking routine, I searched the disk using
the disk-scan utility in the sector-editor part of Nibbles Away II.
After locating the routine, I was able to disassemble it from within
the sector-editor, make a calculated change, and boot the copy to
see what, if anything, had changed.

Closing Remarks
I found that being able to control the game really increased my

enjoyment ofit. For example, I was having a lot of trouble figuring
out how to get past the Seafleas, so I turned everything else off so
that I could concentrate on them alone. You may want to tum
everything offjust to try navigating the cave from beginning to end.
Have fun.

controller

1131313 REM SEA DRAGON CONTROLLER
1r31r3TK=r3 :ST=r3 :LT=34 :CD=WR
113213 T1 = TK : GOSUB 4913 : RESTORE: GOSUB 1713
113313 GOSUB 4313 : IF ST = 1 AND TK = 3 THEN RESTORE: GOSUB 1713
11335 GOSUB 11313 :ST = ST + 1 : IF ST < DOS THEN 113313
113413 IF BF THEN 113613
1r35r3ST=r3 :TK=TK+1: IFTK=3 THEN GOSUB 2313
11355 IF TK < LTTHEN 113313
113613 GOSUB 2313 : GOSUB 3113 : GOSUB 4913 :TK = T1 :ST = 13
113713 GOSUB 4313 : GOSUB 11313 :ST = ST + 1 : IF ST < DOS THEN 113713
1r38r3ST=r3 :TK=TK+1: IFBF=r3ANDTK<LTTHEN1r37r3
113913 IF TK < LT THEN 113213
111313 HOME: PRINT "ooNE"WITWCOPY" : END
5131313 DATA 222 ,1713 ,1713 ,222
513113 DATA r CHANGES
513213 DATA 25 ,14,13 ,96 ,25 ,8 ,37,96
513313 DATA 21 ,14 ,231 ,96
513413 DATA 13 ,3 ,54 ,2138,13,3,55,113
513513 DATA 13 ,3 ,63 ,1713 ,13 ,3 ,64 ,2413

------1------

The Book Of Softkeys Volume III 81

Requirements:
Apple][or Apple][Plus
16K RAM card
(If you don't have a RAM card, see note at end of article)
Blank disk
Any DOS track-copy program

Editor's Note: The softkey that was published in The Book or Softkeys
Volume II (Hardcore COMPUTIST # 9 for Sensible Speller IV was based
upon revision 4.0d and, unfonunately, would only work correctly on that
revision. Apparently there have been many minor revisions (over a dozen)
to Sensible Speller and most ofthese revisions have changed the program
to the extent that it no longer has the same startup point nor does it occupy
the same memory range. If the former softkey is attempted on these revised
versions, the results are usually disappointing: the copy will either hang
up after loading the Sensible Speller logo or will give a CHECKSUM
ERROR message when the main menu appears. Don't despair, though,
because with some modifications to one of the programs
(SPELLER. LOADER) presented in the on'ginal article the softkey can
be performed successfully on any revision ofSensible Speller IV (at least
up to revision 4.2b anyway).

What It Does
Let us first delve a little deeper into what the original softkey

does. This demonstrates an excellent use for a RAM card. A little
realized fact about RAM cards is that they completely ignore the
IRESETI key. When power is first applied to the Apple, the RAM
card's own IRESETI circuitry is set to certain power-up defaults.
After that, whenever it is enabled by use of the soft switches (see
the manual that came with the card if you do not know about soft
switches), it keeps control until it is specifically turned off. That
is why it was possible to reset into the Monitor in the original softkey
by just using the RAM card. This technique is normally possible

82 The Book Of Softkeys Volume III

only with an Integer card or modified F8-ROM! Those of you out
there cursing your lack of an Integer card should note the use of
the RAM card here.

To determine why the original softkey works (at least on 4.0d),
get out your copy of The Book Of Softkeys Volume II or
Hardcore COMPUTIST # 9 and follow along.

First, the RAM card is moved to slot one, which is a non-standard
slot. As mentioned in the article, most software only looks in slot
zero for a RAM card, so it is effectively hidden by moving it to
slot one. Also, as mentioned above, once the RAM card has control
of the Apple, not even IRESETI will make it let go! So an active
RAM card in slot one is not likely to be disabled by software and
has the full power of a 'normal' (slot zero) RAM card.

Next, a disk with a somewhat modified DOS is made. This
modification consists of a 'patch' in the $B6 page of DOS (A page
of memory is 256 locations, which works out in hexadecimal to mean
that the first two digits of the address do not change. Hence, page
$03 refers to $0300-$03FF). Page $B6 ($B600-$B6FF) resides
on the disk on track $0, sector $0 and is the first sector to be read
into memory when a disk is booted. It is read into memory page
$08 where, upon execution, it normally reads track $0, sectors $0
through $9 into memory at $B~$BFFF. This the portion of DOS
containing the RWTS (Read/Write Track & Sector) which is
responsible for all the gory details of disk operation. Track $0, sector
$0 is re-read into page $B6 so that RW'fS has something to put on
the disk so that it can boot. The patch made to the $B600 area in
the original softkey enables a RAM card in slot zero, copies the
motherboard language into it, sets up a location on page $02, and
then jumps to another patch at $B700.

The patch at $B700 is installed in step 7 of the softkey. This is
the real core of the procedure since this patch loads Sensible Speller
into memory from the disk when it is booted. The SPELLER. SAVER
routine in the former article stores the menu and utilities on the disk
in a certain way. The following table is a track/sector map of the
first seven tracks and their respective memory locations.

Track: 0 1 2 3 4 5 6 7
Sector:t 00 B60B x x IB 2B 40 50

01 B70C x x lC 2C 41 51
02 B800 x x 10 20 42 52
03 B90E x x IE 2E 43 53
04 BA 0F x x IF 2F 44 54
05 BB 10 x x 20 30 45 55
06 BC 11 x x 21 31 46 56
07 BO 12 x x 22 32 47 57
08 BE 13 x x 23 33 48 58
09 BF 14 x x 24 34 49 59
0A 71 15 x x 25 5 4A 5A

The Book Of Softkeys Volume III 83

The hi-res Sensible Speller logo is stored on tracks $6 and $7.
The first thing that the patch at $B700 does is to display hi-res page
two ($4000-$5FFF) and load this logo from the disk. Then,
$0800-$3A00 is loaded from tracks $0-$5 (in reverse order),
skipping over tracks $2 and $3 which are not used by the copy
routine. Page $3 is loaded from track $0, sector $0C and then $7700
and $7100 are loaded from track $0, sectors $0B and $0A
respectively. I assume that $7700 must be used in some way by
Sensible Speller 4JM; later versions do not use it. Page $71 was
used by the IRESET) trap routine to store page $0. All the important
parts of memory are restored to their original contents when the
disk is booted. The last task of the patch at $B700 is to restore zero
page and jump to the Speller program. This patch is stored to the
disk on track $0, sector $1 in steps 8 through 10. Then, $0800 to
$3A00 is loaded from tracks $0, $1, $4 and $5 with the use of the
normal DOS RWTS.

Getting back to the original procedure, next the unprotected tracks
($2-$3 and $6-$22) on the original disk are copied with a bit
copier or by Super lOB. Then, the SPELLER. SAVER routine is
patched into the RAM card, the original disk·is booted, and IRESET I
is pressed. The patch entered in step 17 saves page $0 at $7100 when
IRESETI is pressed, allowing the SPEL LER. SA VER routine to save a
complete snapshot of memory to disk. When the SPELLER. SAVER
program is run (D000G in step 22), it writes the important areas
of memory to disk at the tracks and sectors shown in the preceeding
table. When the disk is booted, Sensible Speller is loaded back into
memory and started.

What Goes Wrong
I found that on later revisions of Sensible Speller the menu and

utilities take up two or three more pages of memory than the original
softkey saves to disk. If the entire menu is not present in memory,
the copy of Sensible Speller will print a CHECKSUM ERROR
message when the menu appears. The SPELLER. SAVER program
saves the menu and utilities to the unprotected disk on tracks $0,
$1, $4 and $5, but I found out that the same code also exists on
tracks $8 through $B which are copied during step 11 of the softkey.

Another problem with the original softkey is that the entry point
of $33D9 is correct only for 4.0d. Each of the revisions seems to
have a different entry point and if the entry point is not correct,
the copy will usually just load in the Sensible Speller hi-res logo,
switch to the text screen and then hang.

One thing to notice about an original copy of Sensible Speller
is that the program will always return to the main menu if the
IRESET I key is hit (at least with an autostart F8-ROM). This is a clue
that the reset vector at $3F2 somehow points to the correct menu
entry point. Because the original softkey saves page $03 on track

84 The Book Of Softkey8 Volume III

$0, sector $0C, the values in the IRESETI vector can be viewed with
a sector-editor. The values in $3F2-$3F3 tum out to be $F8 83,
which points at $03F8. At $3F8 the Assembly language instruction
reads IMP ($004E) which is an indirect IMP to the values at
$4E-$4F. Therefore, for all versions of Sensible Speller to work
correctly, the last thing the SPELLER. LOADER program should do is
to perform a IMP ($004E).

The modifications I have made to the SPELLER. LOADER program
load the menu and utilities from tracks $8-$B into memory at
$0800-$3FFF. Some of these sectors on track $B mayor may not
be needed but the program loads them in regardless so that the
procedure will work with all of the different revisions. Another
modification I made was to have the SPELLER. LOADER program lay
track $2, sector $0F over page $09 in memory where the setup is
contained. This ensures that the latest setup is used each time the
disk is booted. Finally, my modified SPELLER. LOADER program
performs the IMP ($004E) to enter the menu.

Note: This assumes that you have already tried making a copy
using the softkey from. the previous Book Of Softkeys (Hardcore
COMPUTIST # 9). This non-working copy will work if you:

[JJ Boot the DOS 3.3 master disk.

c::il Insert the copy disk made using the original procedure, then
enter the Monitor and type in this hexdump:

CALL -151
B7II: 2C 51 CI 2C 57 CI 2C 52
B718: CI 2C 55 CI A9 IF 8D ED
B711: B7 A9 17 8D EC B7 A2 11
B718: 8E EA B7 CA 8E FI B7 A9
B72I: 5F 8D F1 B7 21 7F B7 AD
B728: F1 B7 C9 41 BI F6 A9 IB
B731: 8D EC B7 A9 17 8D ED B7
B738: 21 7F B7 AD F1 B7 C9 18
B741: BI F6 A9 13 8D F1 B7 A9
B748: .. 8D EC B7 A9 IC 8D ED
B751: B7 21 7F B7 A9 77 8D F1
B758: B7 21 7F B7 A9 71 8D F1
B761: B7 21 7F B7 A9 12 8D EC
B768: B7 A9 IF 8D ED B7 A9 19
B771: 8D F1 B7 21 7F B7 AD 51
B778: CI AD 54 CI 4C 9C B7 A9
B781: 11 8D F4 B7 A9 B7 AI E8
B788: 21 B5 B7 CE ED B7 11 18
B791: A9 IF 8D ED B7 CE EC B7
B798: CE F1 B7 61 A2 .. BD ..
B7AI: 71 95 .. E8 DI F8 6C 4E
B7A8: ..

The Book Of Softkeys Volume III 85

If you want to save this program in the event of an error:

BSAVE SPELLER.LOADER.MOD,A$B71.,L$A9

~ Use RWTS to write page $B7 to track $0, sector $0:

S13:A9 B7 AI ES 4C B5 B7
B7EB:II.111
B7FI:.I B7 II 11.2
SI3G

The disk will now boot and work normally.
Ifyou have not tried the softkey from The Book Of Softkeys

Volume II (Hardcore COMPUTIST # 9), just use the
SPELLER. LOADER. MOD from this article in place of the original
SPELLER. LOADER. The rest of the steps in the original article can be
followed without modification.

SPELLER.LOADER.MOD source code

BIT $C050
BIT$C057
BIT $C052
BIT $C055

.OR $B700

.TF SPELLER. LOADER. MOD

.EQ $B7EA

.EQ $B7EC

.EQ $B7ED

.EQ $B7F1

.EQ $B7F4

.EQ $B7B5

Note that some code was rearranged to make room for the
new code. The free space fo r pat ches is $B700-$B7B4.
RWTS entry at $B7B5must not be disturbed!
*--

SPELLER. LOADER.MOD
Loads what used to be part of Sensible Speller boot code
Modification toSPELLER.LOADERoriginally printed in
Volume II of The Book Of Soft keys (Hardcore COMPUT 1ST 19)
and works on Sensible Speller IV up to revision 4.2b.

1100 ---
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230 *
1240 * DOS 3.3 RWTS Parmi ist
1250 *
1260 DRIVE
1270 TRACK
1280 SECTOR
1290 BUFHI
1300 COMMAND
1310 RWTS
1320 *
1330 * Display Hi-res page 2
1340 *
1350
1360
1370
1380

86 The Book Of Softkeys Volume III

1390 • 1920 •
1400 • Load the SS logo 1930 LDA #$ 71
1410 • from tracks 6 &7 1940 STA BUFHI
1420 • 1950 JSR READ
1430 LDA #$0F 1960 •
1440 STA SECTOR 1970 • Overlays the setup
1450 LDA #$07 1980 • code ove r pg $09
1460 STA TRACK 1990 • from trk $2, sct $F.
1470 LDX #$01 2000 •
1480 STX DRIVE 2010 LDA #$02
1490 DEX 2020 STA TRACK
1500 STX BUFHI-l 2030 LDA #$0F
1510 LDA #$5F 2040 STA SECTOR
1520 STA BUFHI 2050 LDA #$09
1530 LOOP 1 JSR READ 2060 STA BUFHI
1540 LDA BUFHI 2070 JSR READ
1550 CMP #$40 2080 •
1560 BCS LOOPI 2090 • Set the screen to text
1570 • 2100 • page 1 and ex it.
1580 • Load menu-ut i Is from 2110 •
1590 • t rks $8-$B into mem 2120 LDA $C051
1600 • $0800-$3FFF. 2130 LDA $C054
1610 • 2140 JMP EXIT
1620 LDA #$0B 2150 •
1630 STA TRACK 2160 • READmodified to dec.
1640 LDA #$07 2170 • BUFHI after each read
1650 STA SECTOR 2180 • to save code space
1660 LOOP 2 JSR READ 2190 •
1670 LDA BUFHI 2200 READ LDA #$01
1680 CMP #$08 2210 STA COMMAND
1690 BCS LooP2 2220 LDA #$B7
1700 • 2230 LDY #$E8
1710 • Load pg $03 from 2240 JSR RWTS
1720 • trk $0, sct $0C. 2250 DEC SECTOR
1730 • 2260 BPL RTSI
1740 LDA #$03 2270 LDA #$0F
1750 STA BUFHI 2280 STA SECTOR
1760 LDA #$00 2290 DEC TRACK
1770 STA TRACK 2300 RTSI DEC BUFHI
1780 LDA #$0C 2310 RTS
1790 STA SECTOR 2320 •
1800 JSR READ 2330 • Restore pg $0 f rm $7100
1810 • 2340 • and jump to SS IV ent ry
1820 • Get $7700 from t rk $0 2350 •
1830 • sct $B. This may not be 2360 EXIT LDX #$00
1840 • needed fo r you r rev. 2370 LOOP3 LDA $7100,X
1850 • 2380 STA $0,X
1860 LDA #$77 2390 INX
1870 STA BUFHI 2400 BNE LooP3
1880 JSR READ 2410 •
1890 • 2420 • JMP i nd i rect to Menu
1900 • Get $7100 (SS page $0) 2430 •
1910 • from trk $0, sct $A. 2440 JMP ($004E)

The Book Of Softkeys Volume III 87

No RAM card?
Readers who wish to make a back up of Sensible Speller IV but

who do not have a removable RAM card should refer to page 82
of The Book Of Softkeys Volume II or Hardcore
COMPUTIST # 10, page 6.

The procedure described in that article doesn't require a RAM
card but does require that the entry point to the Sensible Speller
menu be known for the particular revision being backed up.

Entry points for revisions 4.0c and 4.1c were given in the article
and we have since learned the menu entry points for several other
revisions. The table below gives the menu points for several different
revisions currently in circulation.

The correct entry point should be used in line 1070 of the source
code or at address $B791-$B792 of the object code.

If you don't have one of the versions listed try using an entry
point of $0800.

Revision Entry Point

4.0c: $33B8
4.0d: $33D9
4.0h: $351A
4.0i: $3538
4.0j: $3522
4.lb: $3514
4.1c: $3517
4.2a: $3584
4.2b: $3586

---1---

88 The Book Of Softkeys Volume III

Requirements:
Apple][
One blank diskette
DOS 3.3 System Master
Super lOB

Snooper Troops Case #2 is an educational game by Spinnaker
Software for ages 10 to adult. This game and Snooper Troops I are
copy-protected in exactly the same way and cannot be backed-up
using the usual copy programs. However, they can be transformed
into COPYA form without too much difficulty.

The copy-protection consists of changing the address-field-header
from $DS AA 96 to $BB AA 96, and leaving track $09 empty
(actually filled with $FF's). When Snooper Troops is copied with
Locksmith or Copy II Plus, the disk will boot and send you off to
track $09 where you will stay until you boot another disk. To change
this program into the friendlier COPYA form, all you need to do is
use a Super lOB controller to read the address-field-header as $BB
AA 96, and write the track back onto an empty disk with the normal
$DS AA 96 address-field-header. When all the tracks have been
transferred to the new disk, DOS 3.3 will be written onto the disk
using the MASTER CREATE program from the System Master diskette.
You should then have an unprotected copy of Snooper Troops, Case
#2, which you may examine or modify at your leisure.

Procedure:

L:iJ Type in and save the Super lOB controller at the end of
this article.

~ Save the program in case of an error. I also suggest that
you write-protect your original copy of Snooper Troops to protect

The Book Of Softkeys Volume III 89

it during this procedure, but be sure to remove it before running
the program or it will not run properly.

CjJ Run Super lOB and follow the prompts that the program
will display on your monitor. Note that your drive will make noise
when reading tracks $00 and $09. Do not interrupt the procedure.
Just ignore the noise if possible; it will not affect the finished product.
Also, note that tracks $00-$02 will not be copied.

Cil When the copy is completed, remove the original copy of
Snooper Troops and place it in a safe location.

~ Insert your System Master diskette and execute the MASTER
CREA TE program.

BRUN MASTER CREATE

~ When asked for the name of the greeting program, type
HELLO.

L:1J Now insert your new copy of Snooper Troops that you just
made with Super lOB and press (RETURN). DOS 3.3 will now be
written onto the disk and, when the disk is booted, the HELLO
program will automatically run.

You may now CATALOG the disk, examine the program, and
modify it if you like. You may also copy the new disk using COPYA
or any other copy program.

Note:This program will also allow you to make a backup copy of Snooper
Troops, Case #1. I have not attempted to use it on any other programs from
Spinnaker Software, but I suspect that it might work on some of them. It
will also work on Piece ofCake, an educational math program by Counter
Point Software, which I found to have a nearly identical protection scheme.
No changes to the program are necessary.

controller
1000 REM SNOOPER TROOPS
1010TK=3 :ST=0 :LT=35 :CD=WR
1020 Tl = TK : GOSUB 490 : RESTORE: GOSUB 190
1030 GOSUB 430 : GOSUB 100 :ST = ST t 1 : IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050ST=0 :TK=TKtl: IFTK=9THENTK=10
1055 IF TK < LTTHEN 1030
1060 GOSUB 230 : GOSUB 490 :TK = Tl :ST = 0
1070 GOSUB 430 : GOSUB 100 :ST = ST t 1 : IF ST < DOS THEN 1070
1080ST=0 :TK=TKt 1: IFTK=9THENTK= 10
1085 IF BF = 0 AND TK < LT THEN 1070
1090 IF TK < LTTHEN 1020
1100 HOME: PRINT: PRINT "DONE~WITH"COPY" : END
63010 DATA 187 ,170 ,150

---1---
90 The Book Of Softkeys Volume III

Requirements:
Apple 11 Plus
One blank disk
Copy II Plus or. ..
MUFFIN from your DOS 3.3 System Master

After several sojourns into the semi-sleazy world of Sierra On
Line's SoftPomAdventure, I attempted to SAVE a game in progress,
but was only rewarded with an I/O ERROR. I then decided that this
disk needed to be moved to a normal DOS. The steps are quite simple
and illustrate some of the basic steps for de-protecting many other
programs.

First of all, this program is bootable under either DOS 3.2 or
DOS 3.3. For many disks like this, all it takes to break the basic
protection scheme is to MUFFIN the file over to a normal DOS 3.3
disk. On SoftPomAdventure, however, there are some other fairly
simple protection schemes which also have to be removed.

Conversion to Normal DOS
You will need a formatted DOS 3.3 disk to copy the SoftPom

files onto so you should INIT a blank disk if you don't already have
one at hand. Then, either BRUN MUFFIN from the DOS 3.3 System
Master or the normal copy mode of COPYII Plus. If you use COPY
II Plus, set the source disk to DOS 3.2 and the destination to DOS
3.3. Copy (or MUFFIN) all files exceptHELLO to the DOS 3.3 disk using
the wildcard character (=).

Unusual File Names
An old method of protecting files on a disk was to include control

The Book Of Softkeys Volume III 91

characters within the name or the use of characters that couldn't
be entered from the keyboard.

The files are: CHAIN, HELLO, ///, ////, __, , and .

Modem copy programs such as Copy II Plus have no trouble
displaying titles like this or copying the programs. The Apple IIe
allows direct entry of these characters, but on an Apple l[or Apple
l[Plus about the only way to get control characters and characters
not on the keyboard is to do a CATALOG and then use ~, (lJ,
and EJ to trace over the file names. Of course, if you have a disk
editor you can use it to change the file names directly on the directory
sectors, although I would not recommend doing this to an original
disk. The use of the wildcard character when transferring files with
FIDeliminates the any problems caused by file names.

I recommend that you do NOT rename the files on the SoftPom
Adventure disk. If you wish they can be easily LOADed and LISTed
by CATALOGing and using ~, (lJ and G. If you change the
names then you will also have to change the names inside the
programs:

A I shows up in a program as LOG and _ shows up as SIN.
In , lines 550,560, and 580 refer to / / / /. Lines 520, 530,

and 540 refer to and line 610 refers to __ .
In program __ , line 2011 refers to// /. Line 510 in the program

/ / / refers to __ .

Nibble Count
SoftPom's first line of defense actually isn't its DOS, but the use

of a nibble-count. Checking through the Hello program, I found
that its only real function was to perform the nibble-count.
Therefore, don't bother copying it or delete it after transfer. On
your new disk:

RENAME , HELLO
LOAD HELLO

Now delete line 347 which again checks the nibble-count:

347
SAVE HELLO

The Reset Vector
The last step in the deprotection of this program is the disabling

of the 'on reset, boot... ' command. To do this:

LOAD HELLO
LISTG,1

92 The Book Of Softkeys Volume III

Delete the POKE UUl,0 and the POKE 1012,0 commands.
These POKEs set up the reset vector so that it will boot when
IRESETI is pressed.

SAVE HELLO

You have a fully broken SoftPorn Adventure.

Advanced Pornography Technique?
The deprotected SoftPorn Adventure disk works just like the

original, except that you can now save a game in progress, even
onto the game disk itself. Just ignore the prompts to switch disks.

You may also list the BASIC programs by LOADing them using
the 8to retype.

You can also read the Text files using Copy II Plus's "VIEW
FILES/TEXT" option for some clues for playing the game.

You can even IRESETI from within a game, give yourself a
million dollars (type M = 10000 IRETURN), then type CONTIRETURN I
to get back into the game.

One final clue for the game. As the serpent told Eve: "One man's
garbage is another man's gain."

Recapping, here are the necessary steps for making a backup of
SoftPorn Adventure.

c::!J Use MUFF/Nfrom the DOS 3.3 Master disk to transfer all the
files except HELLO from the original SoftPorn Adventure over to a
formatted DOS 3.3 disk. Use the wildcard character
(=), with prompting, when making the transfer:

BRUN MUFFIN

Alternatively, the normal file transfer utility from Copy II Plus can
be used if the original DOS is set to 3.2 and the copy DOS is set
to 3.3.

c=:Il On the copied disk:

RENAME ,HELLO

If you have an Apple H or Apple H Plus you will need Copy II
Plus or a disk-editor to change the file name. CATALOGing the
disk and then using ~, CD, and ITI will also work.

Cil Removes the nibble count check from the HELLO program:

LOAD HELLO
347
8 POKE 34,8: POKE 35,24: CLEAR
SAVE HELLO.ECD

---1---
The Book Of Softkeys Volume III 93

Requirements:
Apple][Plus or equivalent
Blank disks
Disk Search Utility (Inspector, ZAP, etc.)
COPYA from the DOS 3.3 System Master
Copycard or Integer card (optional)

For those who have looked into the excellent Stickybear series,
the disks can be read by a normal sector editor or copied by COPYA
with the exception of one sector. The protection scheme is based
solely upon the data residing on this one sector. On the different
programs in the series, the location of this protection will vary, but
it is generally sector $0F on track $01 or $02. This sector is checked
at various intervals to validate the presence of the original Stickybear
disk and, as many of you probably know, is very hard to duplicate
even with the latest bit-copy programs.

Analysis of the booting process reveals that various tracks are
loaded into memory, and then a jump is taken to a sequence of
machine language instructions that are nearly identical on several
of the Stickybear disks. In this series of instructions, an lOB
(Input/Output Block, see pages 94-98 of the DOS 3.3 Manual or
Chapter 6 of Beneath Apple DOS) is created for reading the protected
sector. Next, a subroutine which alters the RWTS 'post-nibblization'
routine (used to convert the 6-x-2-encoded nibbles read from the
disk into 8-bit bytes) at $B8C2 is called. This change to the post
nibblization routine makes the first instruction of it a jump to a
different post-nibblization routine located on hi-res page 2 (at $4E9F
on Stickybear Bop). When the RWTS is called, the protected sector
is read into memory. To restor~ the post-nibble routine to its original
form, a second call is made to the routine which changed it in the
first ~lace.

94 The Book Of Softkeys Volume III

The technique for producing a backup is as follows:
Using a modified COPYA, the original disk will be copied, ignoring

the the read-error on the protected sector.
The COPYA-ed backup will then be searched with a disk-search

utility for the code which reads the protected sector. Once this code
has been found, the memory where the protected data is read into
must be identified by examining the code which sets up the lOB.

The original Stickybear disk is then booted up, allowed to read
the protected sector into memory and the program is then halted
by an old Monitor IRESETI, an NMI card, or by modifying one of
the copies of the disk. This translated data can then be recovered
and written back to the proper sector on the COPYA-ed disk with a
sector-editor.

Finally, because this sector on the backup will no longer be
protected, the routine which alters the post-nibblization routine must
be disabled.

Modifying COpyA
As pointed out in the documentation for Bag of Tricks, COPYA

can be modified to permit disks with I/O errors to be copied (except
for the sectors which are unreadable). This can be done by changing
byte $El of file COPY.OBJ9 to an $EA (NOP instruction). The
procedure to do this is as follows:

First, insert the disk with COPYA on it and load the COPY. OBJ file:

BLOAD COPY.OBJ

Alter COPY.OBJ so that it will ignore unreadable sectors:

POKE 929 ,234

And resave it on another disk:

BSAVE COPY.OBJG,A$2CG,L$lGB

Note: BSAVE this to another disk which contains the Applesoji
program COPYA, unless you want to have the modified version on your
System Master.

Now, run the modified COPYA and, when prompted, copy the
original disk to a blank. You should hear the drive recalibrate twice
when it comes across the protected sector. If you do not have any
means of resetting into the Monitor, make two copies of the
Stickybear disk at this time.

The backups made with the altered COPYA will be almost identical
to the original now, except that they will not work. The sector that
is protected on the Stickybear original will be formatted, but will
contain no data. We will rectify this situation shortly.

The next step in creating the backup is to locate the sector which
contains the instructions for setting up the lOB to read the protected
sector. These instructions are as follows:

The Book Of Softkeys Volume III 95

A,9 II

8D EC 87
A9 ss
8D ED 87

LDA #$((
STA $87EC
LDA #$ss
STA $87ED

Track with protected sector
Store it in the 108
Protected sector
Put it in the 108, too

You will need a disk-search utility like ZAP or Inspector to search
the backup for the instruction STA $B7EC (8D EC B7). This code
could be located almost anywhere on the disk, but tracks $1, $2
and $11 are likely candidates. Once you find this code, disassemble
the sector and look for some more code which has the form:

A9 II
8D F0 87
A9 hh
8D F1 87

LDA #$11
STA $87F0
LDA #$hh
STA $87Fl

Low byte of data buffer
Store it in the 108
High byte of the data buffer
Store it in the 108

This set of instructions will indicate to you the location in memory
that the protected sector will be read into. For example, if the code
you find reads:

A900
8D F0 87
A903
8D Fl 87

LDA #$00
STA $87F0
LDA #$03
STA $87Fl

then the protected sector will be read into memory starting at address
$300. However, different Stickybear programs will store the data
at different locations. Make a note of whatever address you decide
that the protected sector is being loaded into.

Next, disassemble a little bit further and look for the next three
JSR's. (Note: On some programs in the Stickybear series, the three
JSR's will be on a sector adjacent to the one where the code which
sets up the lOB is found). You should find a JSR $B7B5 which is
sandwiched between two other JSR's to the same address. The call
to $B7B5 is the main entry point to RWTS and the other two JSR's
call the routine which alters the post-nibblization routine. The first'
call to the routine will alters the post-nibble routine before reading
the protected sector and the second call to the routine restores it
back to its normal form.

Just past the second call to the table-alteration routine you should
see the instructions:

60 RTS
A2 00 LDX #$00

The RTS marks the end of the routine which reads the protected
sector and the LDX #$00 is the first instruction of the code
responsible for altering the post-nibble routine. Later, we will negate
this subroutine by storing a $60 in the place of the $A2 so that no
alteration of the post-nibble routine will occur when it is called.

96 'I11e Book Of Softkeys Volume III

Recovering the Data
The data on the protected sector can be recovered in one of two

ways. The first method requires an old Monitor F- ROM or NMI
card so that the running Stickybear program can be interrupted. If
you do not have any means of halting the program, then y"ou will
have to use the second, brute force method. I'll describe the easy
method first.

The Easy Way
The IRESETI method of recovering the data is very straight

forward. First, the original Stickybear program is booted up and
allowed to read the protected sector. The program is then halted
and the portion of memory that the data was read into is moved
to a 'safe' location in memory before booting up a DOS 3.3 slave
disk. The translated data from the protected sector can then be saved
onto disk for later use. For instance, ifyou discover that the protected
sector is being read into $300, boot up the original Stickybear disk,
halt the program after itJ1as started running and from the monitor
type:

9111<311.3FFM
C611G (After inserting a DOS 3.3 slave disk)
BSAVE PROTECTED SECTOR,A$911I,L$111

The data from this sector will later be written to a backup copy of
the Stickybear disk.

The Hard Way
Lacking an Integer or NMI card, we must alter one of the backups

we have made to allow us to boot the backup, wait for us to insert
the original, read the encoded sector and then exit to the monitor.

Earlier in the article the 'JSR sandwich' responsible for altering
the post-nibblization-routine and reading the protected sector was
described. What we will do is alter the first and third JSR's. The
first JSR will be altered so that it calls a routine which we will write.
This routine will wait for a keypress (while we insert the original
disk) before calling the post-nibble-alteration routine. The second
JSR will be changed to a JMP $FF65 so that the Apple's Monitor
will be entered and the data from the protected sector can be
recovered.

Due to of the number of different Stickybear programs, the
location on the disk that these alterations have to be made will vary.
As an example, I will show you how to make the changes to
Stickybear Bop. For other programs in the series, the changes will
be pretty much the same, except that they will have to be made to
different sectors on the disk.

The Book Of Softkeys Volume III 97

On Stickybear Bop, the code which reads the protected sector
starts on track $11, sector $02 and ends on track $11, sector $01.
A disassembly of this routine is printed below:

4DD8- A902 LDA #$02 4E12- A200 LDX #$00
4DDA- 8D EC B7 STA $B7EC 4E14- A000 LDY #$00
4DDD- A90F LDA #$0F 4E16- BD 3B 4E LDA $4E3B,X
4DDF- 8D ED B7 STA $B7ED 4E19- E8 INX
4DE2- A900 LDA #$00 4E1A- 85 68 STA $68
4DE4- 8D F0 B7 STA $B7F0 4E1C- BD 3B 4E LDA $4E3B, X
4DE7- A9 B0 LDA #$B0 4E1F- E8 INX
4DE9- 8D F1 B7 STA $B7F1 4E20- 85 69 STA $69
4DEC- A900 LDA #$00 4E22- C568 CMP $68
4DEE- 8D EB B7 STA $B7EB 4E24- D005 BNE $4E2B
4DF1- A901 LOA #$01 4E26- C900 CMP #$00
4DF3- 8D EA B7 STA $B7EA 4E28- D001 BNE $4E2B
4DF6- A9 B7 LDA #$B7 4E2A- 60 RTS
4DF8- A0 E8 LDY #$E8 4E2B- BD 3B 4E LDA $4E3B, X
4DFA- A200 LDX #$00 4E2E- 48 PHA
4DFC- 48 PHA 4E2F- B1 68 LDA ($68) ,Y
4DFD- 8A TXA 4E31- 9D 3B 4E STA $4E3B,X
4DFE- 48 PHA 4E34- E8 INX
4DFF- 98 TYA 4E35- 68 PLA
4E00- 48 PHA 4E36- 91 68 STA ($68) ,Y
4E01- 2012 4E JSR $4E12 4E38- 4C 16 4E JMP $4E16
4E04- 68 PLA 4E3B- C2 ???
4E05- A8 TAY 4E3C- B8 CLV
4E06- 68 PLA 4E3D- 4C C3 B8 JMP $B8C3
4E07- AA TAX 4E40- 9F ???
4E08- 68 PLA 4E41- C4 B8 CPY $B8
4E09- 20 B5 B7 JSR $B7B5 4E43- 4E DC B8 LSR $B8DC
4E0C- 08 PHP 4E46- 4C DD B8 JMP $B8DD
4E0D- 20 12 4E JSR $4E12 4E49- 4F ???
4E10- 28 PLP 4E4A- DE B8 4E DEC $4EB8,X
4Ell- 60 RTS 4E4D- 00 BRK

As a result of examining this code you should be able to see that
sector $F on track $02 is the protected sector and that it is read
into $B000-$B0FF.

The JSR $4E12 instructions are the calls to the post-nibblization
alteration routine. The first of these calls will be changed to a JSR
$BCDF. At $BCDF, which is the beginning of 33 free bytes within
the RWTS, we will put the routine which waits for the keypress
before reading the protected sector. This routine will look like this:

20 0C FD JSR $FD0C Wait for a keypress
20124E JSR$4E12 AlterPostnibble
60 RTS Return

The second JSR $4E12 will be changed to JSR $FF65 for entry

98 The Book Of Softkeys Volume III

into the Apple's Monitor. So, on Stickybear Bop make the following
sector edits to one of your backup copies:

Track Sector Byte From To

00 06 DF 88 20
00 06 E0 A5 0C
00 06 El E8 FD
00 06 E2 91 20
00 06 E3 A0 12
00 06 E4 94 4E
00 06 E5 88 60
11 01 02 12 DF
11 01 03 4E BC
11 01 0E 12 65
11 01 0F 4E FF

After making the changes, boot this disk. The patch at $BCDF
will be executed momentarily. The drive will continue to spin, but
all movement of the head will stop because the code is waiting for
a key to be pressed. At this time, remove the modified backup, insert
your write-protected original disk and press any key. When you hear
a beep, the protected sector will have been read into memory.
Depending upon the current setting of the'screen soft-switches, you
mayor may not be able to see what you type at the keyboard. But
fear not. Your Apple will accept input just the same. So, place a
DOS 3.3 slave disk in the drive and recover the data from the
protected sector by carefully typing:

9000<B000.B0FFM
C600G
BSAVE PROTECTED SECTOR,AS9000,LSl00

Remember, Stickybear Bop was used as an example here and you
will have to modify the procedure depending upon which disk in
the series you are using.

Once you have saved the data from the protected sector on disk,
all you have to do is write this data back to the appropriate sector
on the other COPYAed disk of the Stickybear disk and change the
first byte of the routine that alters the post-nibble routine from a
$A2 (LDX) to a $60 (RTS). A generalized step-by·step procedure
for making backups of the Stickybear series follows below.

Stickybears in General
[JJ Make two copies of the Stickybear disk using the modified

COPYA program which was described earlier.

~ Use a disk search utility, such as ZAP or Inspector to search
the disk for the code which sets up the lOB for reading the protected
sector. Search for a hex pattern of aD EC B7.
Note: On Stickybear Bop, it will be found on track $11, sector $2.

The Book Of Softkeys Volume III 99

~ Examine the code on the sector where this pattern was found
and identify the portion of memory that the protected sector is read
into.
Note: On Stickybear Bop, it is read into $B000-$B0FF from track
$02, sector $F.

L:il Recover the data from the protected sector by using either
the 'Easy Way' or the 'Hard Way' and save it to disk.

~ Write the data from the protected sector to the appropriate
sector on the backup with a sector-editor.
Note: On Stickybear Bop, it should be written to track $02, sector
$F.

~ Change the first byte of the routine which alters the post
nibble-routine from a $A2 to a $60 and write it back to the disk.
Note: On Stickybear Bop, this is byte $12 on track $11, sector $1.

At this point, you should (hopefully) have a completely COPYA
able version of your Stickybear disk that boots and runs exactly likes
the original. Congratulations, if you were successful. Ifyour backup
does not boot, then carefully go back over the procedure and make
sure that you did not forget to do anything along the way.

Although I have not had an opportunity to test this procedure on
anything but Stickybear disks, I would not be surprised if it also
works on other programs put out by Xerox.

Albert Snopes'

More Stickybear softkeys

for: Fat City
Basket Bounce
Numbers Or Shapes

[:JJ Use the modified COPYA presented in the previous article.

~ Use the TRACER from CIA files to find the sector where
the lOB is set up. Then search for a pattern of 8D EC B7 and
determine the location on the disk of the protected sector and its
destination in memory.

c=1] IRESETI into the Monitor after booting the game. Move the
data from the protected sector to $9000 where it was safe from a
reboot. Booted a slave disk and BSAVED PROTECTED SECTOR,
A$19000,L$100.

L:il Use the Inspector and Watson to write the recovered data
back to the COPYA-ed disk. Perform the sector edit that prevents the
program from altering its RWTS.

100 'I11e Book Of Softkeys Volume III

I have found that this technique will work on four of the disks
in the series without any alterations. Here is the data you will need:

Sector which reads protected sector: track $02, sector $06

Protected sector: track $01, sector $0F

Destination of protected sector: $IF00

Sector edit: track $02, sector $06, from $3A to $60

Randy Ramirez's

Still More Stickybear info

If you're a beginner and a little shaky about writing the protected
sector back to the COPYA backup, here's another way to do it:

c::::u Instead of moving $300-$3FF to $9000, move it to 6000
(it's just a nice number to tinker with...):

6000<301.3FFM C600G

~ Boot a DOS 3.3 diskette without a Hello program.

c:::lJ Remember: You copied $300-$3FF into $6000-$60FF.
Now, instead of BSAVEing the protected sector, lets just write it
directly to the backup disk that you made, since it's already in
memory. This short write-routine will do the job:

CALL -151
300:20 E3 03 sets up DOS' RWTS routine
303:4C D9 13
B7EB: 00 02 IF set track ($@2) and sector ($@F)
B7F0:00 60 buffer (storage) in lo-hi order ($6000)
B7F2: II II 02 @2 tells RWTS to write a track & sector

[:=i] Now you're ready to write. Insert the backup you've made
of the Stickybear and from the Monitor type:

300G

You have a perfectly COPYAable Stickybear BOP backup.
I used this technique of writing a sector because when you BSAVE

the protected sector, it creates a third sector which makes it
impossible to write into a single sector without a sector editor. The
third sector is due to a binary files address and length information.

This technique writes a sector to disk as long as you specify the
buffer address and the track and sector, of course.

---1---
The Book Of Softkeys Volume III 101

Requirements:
Apple J[or Apple J[Plus with old-style F8 Monitor ROM
A blank initialized DOS 3.3 disk

Suicide is a rather gruesome little arcade game in which you
attempt to save some creatures from killing themselves on the
sidewalk. The game has a few twists too: you should not save mutant
creatures, but let them fall to their deaths. Although this game has
been around for quite awhile, the technique used to remove its
protection is applicable to a great deal of other protected software.

Piccadilly uses a lot of disk protection to keep you from making
a nibble-copy of their disk. The primary protection is the use of
half-tracks. Upon booting the disk, the disk drive head seeks track
32 and then proceeds to read in the program alternating between
whole and half-tracks down to track 19. The program then JMP's
to $1000 to start the game.

The first step in removing the copy-protection from adisk like
this is to find what range of memory it occupies. The best way to
do this is to use the Monitor memory-move command to fill most
of memory with 00's, load in the game, and then to IRESET! into the
Monitor what has been loaded over by the program. To fill memory
from $800-$9600 with 00's, from the Monitor type:

800:00 N 801<800.95FFM

After this is done, boot the game and IRESETI into the Monitor and
see what memory is used.

For Suicide, you should find that memory from $800 to $5FFF
is used by the game. After booting the game and IREsETling into
Monitor, typing:

7000<800.A00M

102 The Book Of Softkeys Volume III

will clear the way for a slave disk boot. We can now BSAVE Suicide
to a DOS 3.3 slave disk.

If you try 1000G, you will find that the game starts up and
everything is fine. When you IRESETI into the Monitor you will see
some screen garbage over text page one but fear not. This is the
program loader and not part of the game. It does not need to be
saved.

With Suicide, it is important to press IRESETI at the right time.
Make sure you press IRESETI right when the red drive light goes out
(when the initial title page is showing). Stopping the program here
serves two purposes. First, when you save the game you will get
the nice title page, and second, it stops the program before it
initializes the lower pages of memory.

So here's the method to deprotecting Suicide:

L:!J Boot Suicide and, just after the drive motor stops (and when
the initial title page is showing), IRESETI into the Monitor.

~ Next, move pages $08 and $09 where they will be safe
during the boot of a slave disk;

7000<800.9FFM

Lj] Boot a 48K slave disk with a short or null HELLO greeting
program:

PR#6

[=:!J Enter the Monitor and move pages $08 and $09 back to
their original locations:

CALL -151
800<7000.71FFM

[:::iJ Next, enter some code which displays hi-res page 2 before
the game starts:

FF4:AD 50 C0 AD 54 C0 AD 57 C0 AD 52 C0

c::::§] Install a patch to the above code at $FF4:

7FD:4C F4 0F

C1J Finally, BSAVE the game to a DOS 3.3 disk by typing:

BSAVE SUICIDE,A$7FD,L$5803

---1---
The Book Of Softkeys Volume III 103

Requirements:
Apple][Plus or Apple IIe
Inspector/Watson
MUFFIN from the DOS 3.3 System Master
Initialized DOS 3.3 disk

TeliStar is an absolutely amazing program. It is great to ,have
around for the people that look at the Apple and say, "So what does
it do other than play games?" I have yet to see anyone who hasn't
been impressed by TeliStar's information of the night sky. The
program does have one slight problem, though: copy-protection.
That problem can be remedied quite easily so that the program can
be viewed and reduced in size from a whole disk to 326 sectors.

There are two parts to the protection scheme for this program.
The first is an altered DOS 3.2 format. The second is a phony catalog
on track $11; the real catalog is on $15. It's good to know that
someone puts those Beagle Brothers tip books to use. We'll use
MUFFINas our DOS 3.2 code source and to transfer the files when we
are ready. \

The first thing to do is to fix the catalog so that MUFFINcan find
the files. We'll be writing to the TeliStar disk, so use a backup to
be on the safe side.

[}] Boot the Master disk, install Inspector (or Watson) and load
MUFFIN:

BLOAD MUFFIN

[:::lJ Now we'll fix the 3.2 code to match that used by TeliStar.
You can make the changes from Inspector or from the Monitor.
The last byte of the Address-marker changes from track to track
so we'll make DOS ignore it:

104 The Book Of Softkeys Volume III

1A8A:2900

LlJ The last byte of the End-of-Data-marker has been changed
to $D5 so we'll match that next.

1A60:D5

Q] Since we need to write to the disk, we must also match the
bytes in the section of DOS that does the writing. The last byte of
the Address-marker on track $11 is $D6 (you may wish to verify
the markers on your disk in the event that they aren't all the same)
so we'll match it:

1FFF:D6
19E3:D5

~ Now to fix the CATALOG. Enter Inspector if you haven't
already done so. Inspector uses $3DA-$3DB as a pointer for the
RWTS it uses when accessing a disk. The RWTS for MUFFINthat
we just altered is at $IE00 so edit these bytes to $00 and $IE
respectively. Next, go to a clean buffer such as $50 and read in
track $11, sector $C. Bytes $2 and $3 show $11 and $0C, the fake
catalog. Edit these to $15 and $09, the real catalog location, and
write the sector back to the disk. Return the pointer on page $3 to
$B7B5 and exit Inspector.

~ Now to unlock the disk. Start up MUFFIN:

CALL 2051

~ Use =for FILE NAME and transfer all the files to the
3.3 disk. You can delete the file called REAL CAT (it just reserved
space for the CATALOG on the protected disk). TELLSTAR I is the
greeting program.

[jJ Exit from MUFFIN and load the greeting program:

LOAD TELLSTAR I

~ Eliminate the POKE 214 ,255 from line 100.
Now if you IRESETI from within the program, it won't try to run

itself every time you enter a command. You're finished! Grab a
drink and enjoy the feeling of having beaten The Protectors once
again.

---i---

The Book Of Softkeys Volume III 105

Requirements:
Apple)[Plus or equivalent
Bit-copier or Super lOB
One blank disk

Tic Tac Show is a computerized rendition of the popular TV game
show that bears a very similar name..The game can be played by
I or 2 players and is hosted by the lovely young lady, Carol. The
players try to place their X's or O's on a Tic-tac-toe board by
correctly answering questions from a particular subject category.
The first player to get 3 adjacent squares on the board is declared
the winner. The game is very nicely done and youngsters of all ages
should enjoy playing it. Because the program allows you to create
your own categories and questions, the game can be tailored for
specific educational settings. Unfortunately, the potential of this
program in an educational environment is somewhat limited by its
copy-protection.

With a little investigation, I found the protection scheme on Tic
Tac Show to be as follows:

1. The Address-epilogues and Data-epilogues on track $0 have
been modified. The Address-epilogues are changed to B5 AB EB
and the Data-epilogues are AB AA EB.

2. The Tic Tac Show DOS resides on tracks $1.5 through $4.5.
3. Tracks $6-$22 are normally formatted, but 2 directories are

present, one on track $11 and one on track $06. The files in the
directory on track $11 contain the questions and answers, and the
files in the directory on track $6 hold the code for the game itself.
The DOS utilizes the two directories by changing the value at $AC01
from a $11 to a $06, or vice-versa.

From this description of the protection scheme, it appears that
it would not be too difficult to backup this disk with a bit-copier

106 The Book Of Softkeys Volume III

by copying tracks 0, 1.5-4.5 and 6-22. Surprisingly, I could not
get Copy II Plus v4.4c or Essential Data Duplicator III to make
a bootable copy of Tic Tac Show. Instead of fooling around with
parameter settings and disk drive speed adjustments, I decided to
try and boot-code-trace the disk. For me, this proved to be a more
successful and educational approach than using a bit copier. My
report follows.

Boot Code Theory

Although the boot-code-tracing technique has been covered
several times before in the pages of this magazine, I will quickly
go over a little theory for the benefit of new readers.

The basis for boot-code-tracing lies in the fact that on any bootable
disk, whether protected or not, track $0, sector $0 must be readable
by the disk controller hardware. The first thing that happens when
a disk boots is that track $0, sector $0 is read into memory at
$800-$8FF. After this has occurred, the code in the disk
controller's ROM jumps to $801 and the code there reads track $0
into memory (on normal disks). Protected disks may vary. The boot
will continue from here, reading whatever tracks are necessary, until
it is complete.

To boot-code-trace a disk, it is necessary to halt the boot after
track $0, sector $0 has been read into memory, but before the code
at $801 starts to excute. This can be done by moving the code from
the disk-controller ROM down into RAM where it can be modified.
Instead of jumping to $801 to continue the boot, it will now enter
the Apple's Monitor. The code read in from the disk can then be
examined and possibly modified so that another stage of the boot
will take place before the Monitor is again entered. By stopping
at various stages of the boot, the entire program can eventually be
read into memory and transferred to a normal disk. The difficulty
of boot-code-tracing copy-protected disks varies greatly, but
whatever the difficulty, a good knowledge of 6502 machine language
is an absolute necessity for trying this technique on your own.

Tic Tac Boot

When performing a boot-code-trace, first disconnect DOS and
fill up memory from $800-$BFFF with $11 's so we can tell where
code gets loaded into. Do this by typing:

CALL -151
FE89G N FE93G
811:11 N 811<811.BFFFM

Next, move the code from the disk-controller ROM down into
RAM where it can be modified:

The Book Of Softkeys Volume III 107

9600<C600.C6FFM
96F8:A9 00 85 FC 85 FD 85 FE
9700:A9 60 85 FF A0 43 81 FC
9710:91 FE 88 10 F9 AD E8 C0
9718:4C 69 FF

If you disassemble from $96F8, you should see the following code:

96F8- A900 LDA #$00 9706- Bl FC LDA ($FC) ,Y
96FA- 85 FC STA $FC 9708- 91 FE STA ($FE) ,Y
96FC- 85 FD STA $FD 970A- 88 DEY
96FE- 85 FE STA $FE 970B- 10 F9 BPL $9706
9700- A9 60 LDA #$60 970D- AD E8 C0 LDA $C0E8
9702- 85 FF STA $FF 9710- 4C 69 FF JMP $FF69
9704- A0 43 LDY #$43

This code will save some necessary zero page locations to page $60
before turning OFF the drive motor and entering the Monitor.

Insert the original Tic Tac Show disk into the drive and boot it:

9600G

When the drive turns OFF, the BOOn code will have 1:}een read
into page $08. Examine and compare this code to BOOn from a DOS
3.3 slave disk. They are identical except for the values at
$84D-$85C (sector-skewing-table) and $8FE-$8FF. The Tic Tac
Show boot reads the sectors from track $0 in physically ascending
order rather than interleaving them as DOS normally does. This,
in part, accounts for the slow boot of the disk. On a DOS 3.3 slave
disk, the values at $8FE-$8FF are B6 09 which indicates that the
data will be read into memory starting at $B600 and that 10 sectors
(0-9) will be read in this stage of the boot. On the Tic Tac Show
disk, these values are $3F $05. This means that 6 sectors of data
will be read into memory starting at $3F00.

The BOOn code exits at $84A with an indirect jump to the address
stored in $8FD-$8FE. On a normal slave disk this will be $B700
but, on Tic Tac Show, it is $4000.

We now want to execute the BOOn code and let it read the 6 sectors
of data from track $0 into memory. Typing 801GIRETuRN! would
prove to be unsuccessful because the code at $801 expects the disk
drive to be revolving and needs some data from zero page that was
lost when the Monitor was entered. The necessary code from zero
page was stored on page $60, so we must enter some code which
will turn on the disk drive, wait for the drive to come up to speed
(about 1 second) and restore locations $0-$43 from page $60 before
jumping to $801. This code can be placed at $900:

900:8D E9 C0 A0 09 A9 C0 20
908:A8 FC 88 D0 F8 A0 43 81
910:FE 91 FC 88 10 F9 4C 01
918:08

108 The Book Of Softkeys Volume III

This should disassemble as:

0900- 8D E9 C0
0903- A0 09
0905- A9 C0
0907- 20 A8 FC
090A- 88
090B- D0 F8

STA $C0E9
LDY #$09
LDA #$C0
JSR $FCA8
DEY
BNE $0905

090D- A043
090F- Bl FE
0911- 91 FC
0913- 88
0914- 10 F9
0916- 4C 01 08

LDY #$43
LDA ($FE) ,Y
STA ($FC) ,Y
DEY
BPL $090F
JMP $0801

This code uses the Monitor WAIT routine at $FCA8 to create the
delay that pauses while the disk drive reaches its proper speed.
Before you can execute this code we will also have to modify the
instruction at $84A so that it jumps to the code which turns OFF
the disk instead of continuing with the boot:

84A:4C 0D 97

and then execute the next stage of the boot:

900G

When the drive shuts off, the code responsible for accessing the
half-tracks will have been placed at $4000-$44FF (track $0, sector
$0 is re-read into $3F00-$3FFF). The start of this code should
disassemble as:

4000- 862B
4002- A2 FF
4004- 9A
4005- 2C 80 C0
4008- 2C 81 C0

STX $2B
LDX #$FF
TXS
BIT $C080
BI T $C081

400B- A900
400D- 85 06
400F- 85 07
4011- 8508
4013- 8D 78 04

LDA #$00
STA $06
STA $07
STA $08
STA $0478

Notice that the first thing this code does is to store the X-register
into $2B, which is where the slot number of the drive controller
is held (actually 16 * slot number). We have to make sure that,
when we execute the next stage of the boot at $4000, the X-register
.:ontains a #$60.

If you disassemble from $40D8, you should find:

40D8- A9 06 LDA #$06 40EF- 4A LSR
40DA- 8D 01 AC STA $AC01 40F0- 4A ·LSR
40DD- A901 LDA #$01 40Fl- AA- TAX
40DF- 8D EA B7 STA $87EA 40F2- A900 LDA #$00
40E2- 8D F8 B7 STA $87F8 40F4- 9D 78 04 STA $0478, X
40E5- A5 28 LDA $28 40F7- 9D F8 04 STA $04F8, X
40E7- 8D E9 B7 STA $B7E9 40FA- 2093 FE JSR $FE93
40EA- 8D F7 B7 STA $87F7 40FD- 2089 FE JSR $FE89
40ED- 4A LSR 4100- 4C 84 9D JMP $9D84
40EE- 4A LSR

By the time this code executes, the Tic Tac Show DOS is in place,
but not yet initialized. A value of #$06 is stored at $AC01 to set
up the access of the directory on track $06, and the code goes on
to set up some memory locations used by DOS and does the

The Book Of Softkeys Volume III 109

equivalent of an IN#0:PR#0. At $4100, the JMP $9D84 is the entry
to the DOS cold-start routine. When this routine is executed, the
DOS will be initialized and the disk's greeting file MENU//Be will
be loaded in and take over. We don't want this to happen. Instead,
change the instruction at $4100 so that it jumps to the Monitor:

4101:69 FF

The code that we placed at $900 for turning ON the drive and
setting up zero page is still intact and is again needed for executing
the next stage of the boot. It has to be changed so that the X-register
will hold a #$60 and the jump will be to $4000 instead of $801:

916:A2 60 4C 00 40

Then continue the boot with:

900G

When the drive shuts off, all the code we need to save will be in
memory. I found the necessary code to be at $800-$lFFF and
$8C00-$95FE, in addition to the DOS at $9600-$BFFF. To
recover this code, it will have to be moved to a location in memory
that is not overwritten by the boot of a slave disk ($900-$95FE
is safe). To do this, perform the following memory moves:

6000<800.8FFM
2100<8C00.BFFFM

and then boot a DOS 3.3 slave disk:

C600G

Enter the Monitor and move page $08 back into place:

CALL -151
800<6000.60FFM

and then enter some code at $20DE that will put $8C00-$BFFF
back into place before jumping to the DOS cold-start routine:

200E:20 89 FE
20E1:20 93 FE A0 00 84 3C 84
20E9:42 88 84 3E A9 21 8530
20F1 :A9 54 85 3F A9 8C C8 20
20F9:2C FE 4C 84 90

This code should disassemble as:

20DE- 20 89 FE
20E1- 2093 FE
20E4- A000
20E6- 843C
20E8- 84 42
20EA- 88
20EB- 843E
20ED- A9 21

JSR $FE89
JSR $FE93
LDY #$00
STY $3C
STY $42
DEY
STY $3E
LDA #$21

20EF- 853D
20F1- A9 54
20F3- 85 3F
20F5- A93C
20F7- 85 43
20F9- C8
20FA- 20 2C FE
20FD- 4C 84 9D

STA $3D
LDA #$54
STA $3F
LDA #$3C
STA $43
INY
JSR $FE2C
JMP $9D84

110 The Book Of Softkeys Volume III

Checked the new code, then save $800-$54FF to disk by typing:

BSAVE TIC TAC SHOW,A$800,L$4D13

About the only thing left to do is to copy tracks $6-$22 of the
original Tic Tac Show disk to an initialized disk (preferably with
a fast DOS) and create a HELLO program for the disk. The necessary
tracks can be copied either with a bit copier or by Super lOB, and
the standard controller with the variable TK in line 1010 changed
from 0 to 6. The Applesoft HELLO program must relocate itself to
a free area of memory ($800-$54FF will be occupied). Therefore,
BLOAD in the file TIC TACSHOWandthendo a CALL 8414 ($20DE).
This HELLO program is listed near the end of the article.

Tic Tac Show is definitely not one of the more difficult disks to
boot-code-trace. As such, this program would be a good beginner
project for those wishing to learn the technique. The principles
covered here can definitely be applied to disks with tougher forms
of copy-protection if desired. The steps necessary for boot-code
tracing Tic Tac Show are recapped below.

A Recap

c:::!J INITialize a blank disk, preferably with a fast DOS. The
volume number of this disk must be 1:

INIT HELLO,Vl

~ Use a bit copier or Super lOB with a modified standard
controller to copy tracks $6-$22 from the original Tic Tac Show
disk to the disk initialized in Step 1.

[:j] Boot up DOS 3.3, enter the Monitor, move the code from
the disk controller ROM down to page $96 and modify it to save
some necessary zero page locations before turning OFF the drive
motor and entering the Monitor at $FF69:

CALL -151
9600<C600.C6FFM
96F8:A0 43 A9 00 85 FC 85 FD
9700:85 FE A9 60 85 FF Bl FC
9708:91 FE 88 10 F9 8D E8 C0
9710:4C 69 FF

c=il Boot the original Tic Tac Show; insert disk and:

9600G

Cil After the drive turns OFF and the Monitor prompt
reappears, make the BOOn exit jump to the code at $970D, where
the drive will be turned OFF and the Monitor is entered:

84A:4C 0D 97

The Book Of Softkeys Volume III 111

[::::§] At $900, place a routine which will turn on the drive, wait
about one second, restore the necessary zero page locations and then
jump to the BOOTl code at $801:

900:8D E9 C0 A0 09 A9 C0 20
908:A8 FC 88 D0 F8 A0 43 Bl
910:FE 91 FC 88 10 F9 4C 01
918:08

L:1J Read the code necessary for accessing the half-tracks into
memory by typing:

900G

c=i] The next stage of the boot starts at $4000 and exits at $4100,
where a jump to the DOS cold-start-routine is taken. Modify this
jump to enter the Monitor instead of performing the cold-start:

4101:69 FF

~ The code we entered at $900 is still necessary for turning
on the drive; however, it must be modified a bit so that a jump to
$4000 is taken with the X-register set to #$60 (for the slot H). Modify
this code and then execute it:

916:A260
918:4C 00 40 N 900G

C1..iJ After the drive has been on for about thirty seconds, the
Monitor prompt should reappear and the drive will turn itself OFF.
All the code that has to be recovered is now in memory. Insert the
DOS 3.3 slave disk that was initialized in Step I into the drive.
Before booting it, move the code to 'safe' areas of memory:

2100<8C00.BFFFM
6000<800.8FFM
C600G

[ill After the DOS 3.3 slave disk has been booted, enter the
Monitor and move page $60 back down to page $08 by typing:

800<6000.60FFM

~ At $20DE, enter the routine which will move code at
$2100-$54FF back to its proper location ($8C00-$BFFF) before
jumping to the DOS coldstart routine:

20DE:20 89 FE
20El:20 93 FE A0 00 84 3C 84
20E9:32 88 84 3E A9 21 85 3D
20Ft :A9 54 85 3F A9 8C 85 43
20F9:C8 20 2C FE 4C 84 9D

112 The Book Of Softkeys Volume III

[ill Next, save memory from $800-$54FF to the disk by
typing:

BSAVE TIC TAC,A$80G,L$4D13

[!1] Finally, type in the following HELLO program and save it
to the disk:

HELLO

10 ON PEEK (104) =96 GOTO 20 : POKE 104 ,96 : POKE 24576 ,0 : PR INT
CHR$ (4) "RUWHELLO"

20 PR INT CHR$ (4) "BLOADA TICA TACA SHOW, A$800"
30 CALL 8414

SAVE HELLO

The resulting disk is completely COPYA-able and, in addition, will
boot quite a bit faster than the original did.

Carol awaits you.

~--i~~-

The Book Of Softkeys Volume III 113

Requirements:
48K Apple][Plus equivalent
COPYA from DOS 3.3 System Master
A blank disk
A sector-editing program

Copy Time Is Money easily using the following instructions:

[:::!] Make a copy of Time Is Money with COPYA from the DOS
3.3 System Master:

RUN COPYA

To

$60
$18
$60
$18

$BD
$38
$BD
$38

From

~ Use a sector-editor to make the following modifications to
the copy of Time Is Money:

Track Sector Byte

$02 $0F $19
$02 $0F $74
$05 $0F $19
$05 $0F $74

c=iJ Don't forget to write the modified sectors back out to the
disk.

-=---------- i ------

114 The Book Of Softkeys Volume III

Requirements:
48K Apple J[Plus or equivalent
A nibble-copy program
A sector-editor
One blank disk

Type Attack from Sirius is one of those rare pieces of software
that is both educational and fun to use. Unfortunately, like so many
home and educational programs, Type Attack is copy-protected to
the extent that none of the bit-copiers I own would make a working
backup copy. Not wanting to hand my original Type Attack disk
over to my young children, I set out to find a way to make a copy.
Happily, I was successful. My report follows.

I found that on the original Type Attack disk, only tracks $0-$10
have any useful data on them, although track $22 is used to verify
the presence of the original program disk. I assumed that if I could
find and circumvent the routine which checks track $22, I would
have a working bit-copy of Type Attack.

The majority of the Type Attack disk is 4-x-4-encoded (rather than
6-x-2-encoded) and cannot be read by a normal sector-editor. This
makes it very difficult to find the location on the disk that the
verfication routine is called from. However, track $0, sector $0 can
be read by any sector-editor and I found that it was possible to make
some modifications there to prevent the disk-verification-routine
from being called. The changes I made on track $0, sector $0
modified the instruction at $A68 so that the disk-verification-routine
is bypassed and also changed the reset vector so that the disk will
not do a total reboot if IRESETI is hit.

On an original copy of Type Attack the final instruction of the
code on track $0, sector $0 reads:

JMP $9F0

The Book Of Softkeys Volume III 115

I modified this code to read:

LOA #$4C
STA $A68
LOA #$6E
STA $A69
LOA #$0A
STA $A6A
LOA #$00
STA $A01
LOA #$40
STA $A0F
JMP $9F0

Luckily, there is enough free space on the sector to fit in the extra
code. Thus, the entire procedure for making a backup of Type Attack
involves copying tracks $0-$10 with a bit-copier followed by the
sector-edit to track $0, sector $0 of the copy.

Attack On Type Attack
[JJ Use a bit-copy program to copy tracks $0-$10 of Type

Attack. Set the Address-header parameters to AD DA DD (for COPY
II Plus: E = AD, F = DA, 10 = DD).

l.:.=:!J Use your sector-editor to make the following changes to
track $0, sector $0.

Byte From To Byte From To
-- --

$93 $4C $A9 $Al $00 $0A
$94 $F0 $4C $A2 $00 $A9
$95 $09 $8D $A3 $00 $00
$96 $00 $68 $A4 $00 $8D
$97 $00 $0A $A5 $00 $01
$98 $00 $A9 $A6 $00 $0A
$99 $00 $6E $A7 $00 $A9
$9A $00 $8D $A8 $00 $40
$9B $00 $69 $A9 $00 $8D
$9C $00 $0A $AA $00 $0F
$9D $00 $A9 $AB $00 $0A
$9E > $00 $0A $AC $00 $4C
$9F $00 $8D $AD $00 $F0
$A0 $00 $6A $AE $00 $09

OJ Write the sector back to the disk.

i
116 The Book Of Softkeys Volume III

Requirements:
Apple with 48K
One disk drive with DOS 3.3
Super JOB
One blank disk

Exodus: Ultima III, by Origin Systems, is a superior role-playing
game. The author, Lord British, has added many enhancements to
this, the third, Ultima scenario. Unfortunately, the program side
of this third Ultima still doesn't allow the user to back it up. On
the brighter side, there exists a method of unprotecting Exodus. Some
boot code tracing is required to capture its RWTS, but once this
has been done, Super lOB, with the proper controller installed, can
be used to make a backup of Exodus.

Several things prevent making a duplicate of Exodus with a bit
copier. The address and data marks on the disk are changed
extensively throughout the disk. The only tracks that are used on
the disk are $0-$10, the rest ofthe tracks being unformatted. The
disk is similar to normal DOS 3.3 in that it uses normal DOS 3.3
RWTS calls and an Input/Output Block (lOB). Even though the
RWTS and lOB are at different locations than in normal DOS 3.3,
Exodus is a prime target for deprotecting with Super lOB.

But How Do I Do It?
To make a backup of your original Exodus disk, first we have

to capture the entire Exodus RWTS so that it can later be put into
memory for utilization by Super lOB. In order to do this a little
boot-code-tracing is required. Boot-code-tracing is not a process used
for manufacturing footware, but is a technique for gradually loading
pieces of code into memory from disk and halting the code before
it can begin to execute. This method is based upon the fact

The Book Of Softkeys Volume III 117

that, even on higWy protected Apple disks, track $0, sector $0, must
be readable by the disk controller hardware.

[:JJ Begin by entering the Monitor:

CALL -151

~ Move BOOrlJ into RAM so we can control where it will go
after reading in BOOTl:

8600<C600.C6FFM

At this point, you may look at $86F8 and see that it jumps out
to $0801 after reading in BOOTl. We want to modify this so it will
jump to $8801 instead. We make $8601 jump to $FF59, the Monitor,
so it will give us control after it has read in BOOTl .

CIJ Modify BOOrlJ to jump to $8801 and at $8801 place a jump
to the Monitor:

86FA:88
8801 :4C 59 FF

[:::iJ Everything is ready so we can start up our modified boot:

8600G

L:§] Stop the drive after it beeps:

C0E8

L:§] Move $0800 (BOOTl) to $8800 so we can change how it
works:

8800<800.900M

L:1J The next step changes $8811 to ORA with #$80 instead
of #$C0 so it will set up the indirect jump to go to $865C (our
modified-read routine, down in RAM), and not $C65C (the ROM
read routine). There is a branch out to $8846 that jumps out only
after it has read in the necessary information. This step also makes
$8846, the location where it branches out, jump to the Monitor in
order to give us control after it has read in the RWTS.

8812:80
8846:4C 59 FF

Note from Nathan Manlove: On my version, a better choice for step
7 is $8812:80, $8848:4C 59 FF. At this point it is interesting to
note that the RWTS is loaded and set up. Therefore, I just skipped
steps 9, 10 and 11 and went right to step 12. Everything went
smoothly from there.

[j] Start it up again and stop it after the beep:

8600G
C0E8

118 The Book Of Softkeys Volume III

CiI It has just loaded in its RWTS, but we will not be able to
use it at this point because it has not set itself up. Let's make it so
it will set itself up and let us have control afterwards. Look at $0846,
the original BOOn location. It sets up the reset vector and the slot
number where the disk drive resides ($0854 up to $(860). We will
have to skip this portion of the code and start our next boot process
at $0860. But first, we have to set up the reset vector at $03F2 to
jump to the Monitor when we hit IRESETI after the demo has begun:

3F2:59 FF 5A

O!J Remember, we don't want the code to set up its own values
for the reset vector and other items. Therefore, we will begin the
next boot at $0860.
Note: the drive may recalibrate, but it will read the rest of the
program in afterwards.

860G

[!!J As soon as the red light on the disk drive goes off, hit
IRESETI. Looking through the RWTS starting at $B500, one would
find that the lOB table begins at $B750 and that some locations go
to $B610 to read or write. This location is the main RWTS call to
go and read a sector.

~ Now let's move the RWTS down to $2400 where Super
lOB will use it:

2400<B400.BFFFM

Insert the disk that has Super lOB. Make sure that the disk has
a short HELLO program. For example, a program which merely
CATALOGs the disk and gives control to the user. Boot up with
this disk, and after the HELLO program gives you control ofthe Apple,
type:

BSAVE RWTS.EXODUS,A$2400,L$C00

~ Type in the controller at the end of this article and save
it by whatever means you usually use.

[!!J When RUNning Super lOB with the Ultima III controller
installed, you must copy with disk drives that are in slot 6.

Press IX) when the program asks if it should INITialize the blank
disk. Give the disk a volume number of 2.

What Happened?
After it is finished, Super lOB makes some sector edits by

changing all the bytes referred to on the small chart below from
Bl to B2. This tells Exodus that a non-protected disk is being used.

The Book Of Softkeys Volume III 119

Track Sector Change these bytes

00 00 E7
00 0D 4 10 lC 28 34 40 4C 58 64 70 7C 88

In order for Exodus to have a protected boot side and a normal
DOS player side, the RWTS has to differentiate between the two.
The protection scheme relies upon the disk volume number to tell
whether the disk is protected or not. A volume number of 1 tells
the RWTS that the disk is protected and tells it to get the address
and data marks from the table which begins at $B765. A volume
number of 2 tells the RWTS that the disk is the player disk and that
it should use normal address and data marks. All other volume
numbers are rejected. The sector-edit performed on track $00,
sectors $00 and $0D ensures that a normal RWTS is always accessing
the disk.

Here is an explanation of some of the modifications to Super lOB
that the controller makes.

60 - makes $1AOO-$23FF Applesoft variable space, giving plenty
of room for the program to work in.

361 - moves memory from $2400-$2FFF to $B400-$BFFF.

1111 - sets the last track to be copied at 16 and sets up page 3
to call the Exodus RWTS at $B610.

1021 - makes the volume to be accessed next a 1, which indicates
a protected disk.

1161 - makes the volume number a 2, which indicates an
unprotected disk. It also tests to see if track zero was read in
in order to call the sector-edit-routine.

1111-1120 - performs the above mentioned sector edits so that
upon booting, the Exodus RWTS will think it is reading the
player disk.

62"1-62111 - alters the Exodus RWTS so that it gets its lOB
data from $030A instead of $B750.

Exodus with normal address and data marks is now ready to be
backed-up and played. This same procedure, with a few changes,
can be used to make Caverns of Callisto COPYA-able.

controller

60 LOMEM: 6656 : HIMEM: 9215 : GOTO 10010
360 POKE 253 ,36 : POKE 255 ,180 : POKE 224 ,12 : CALL 832 : RETURN
1000 REM ULTIMA III CONTROLLER
1010 TK =0 :ST =0 :LT =17 :CD =VIR: 10 =772 : GOSUB 360: POKE 773

,16 : POKE 774 ,182 : GOSUB 62000
1020 VL = 1 :T1 = TK : GOSUB 490
1030 GOSUB 430 : GOSUB 100 :ST =ST + 1 : 1F ST < DOS THEN 1030

120 The Book Of Softkeys Volume III

1040 IF BF THEN 1060
1050 ST = 0 :TK = TK + 1 : IF TK <lTTHEN 1030
1060 VL = 2 : GOSUB 490 :TK = T1 :ST = 0 : IF TK = 0 THEN GOSUB 1110
1070 GOSUB 430 : GOSUB 100 :ST = ST + 1 : IF ST < DOS THEN 1070
Hl80ST=0 :TK=TK+1: IFBF=0ANDTK<lTTHEN1070
1090 IF TK < LT THEN 1020
1100 HOME: PR INT : PR INT "DONE" WITW COPY" : GOSUB 360 : END
1110 READ LOC : POKE LOC ,178 : IF LOC <> 13448 THEN 1110
1120 RETURN
10010 PR INT CHR$ (4) "BLOAD" RWTS. EXODUS, A$2400"
62000 READ LOC : READ NUM : POKE LOC ,NUM : IF NUM < > 10 THEN 62000
62010 RETURN
62020 DATA 46610 ,13,46611,3,46621,14,46622,3,46625,14

,46626,3,46708,3,46710,10
62030 DATA 10215 ,13316 ,13328 ,13340 ,13352 ,13364 ,13376 ,13388

,13400,13412,13424,13436,13448

------1------

The Book Of Softkeys Volume III 121

Requirements:
Apple][Plus or equivalent
COPYA and FlO from DOS 3.3 System Master
Two blank disks

Zoom Grafix is a superb piece of programming and a delight to
use, and has been a workhorse in my library for years. The recent
acquisition of a hard-disk drive prompted me to deprotect it.

After investigating the Zoom Grafix disk a bit, I was surprised
to find that the bulk of the programs on the disk are written in
Applesoft. Zoom Grafix is protected against standard DOS 3.3 copy
programs by the use of non-standard address marks. This can be
easily circumvented by making the appropriate POKEs into DOS
before COPYA is run. However, the Zoom Grafix programs also check
the disk for an illegal volume number in addition to the usual
techniques of setting the autorun flag ($D6) and messing up the DOS
warm-start routine. Since the programs were written in Applesoft,
it was fairly easy for me to remove these traps.

The two major steps to deprotecting Zoom Grafix involve:
1. Copying Zoom Grafix onto a disk which has normal DOS 3.3.
2. Studying the LISTable Applesoft programs and removing the

instructions which serve to copy-protect the disk.

What To Do
This procedure is based upon the version of Zoom Grafix which

is dated 9APR82. The procedure will also work on the earlier
version, but the programs are numbered differently and you will
need to find the appropriate lines to modify on your own.

We will use a modified COPYA to copy the original disk to a
temporary disk which retains the abnormal DOS. Then FlO will be
used to transfer all the files from the temporary disk to a normal

122 The Book Of Softkeys Volume III

3.3 disk or one that has been initialized with a fast DOS. We also
have to write a new boot program for the final deprotected Zoom
Grafix and remove copy-protection traps that some of the Applesoft
programs contain.

The overall procedure I use may seem rather roundabout, but there
are no special requirements such as a non-autostart ROM or NMI
card. All owners of Zoom Grafix should be able to perform this
softkey. Let's get started.

L:!J Boot with a normal DOS 3.3 disk and then RUN the COPYA
program:

PR#6
RUN COPYA

[:::i] After COPYA is loaded and running, we need to halt it so that
some modifications to DOS can be made. Line 70 of COPYA will
also be deleted to eliminate the reLOADing of COPY. OB):

70
CALL -151
B954:2900
B991:2901
3DIG
RUN

The changes at $B954-$B955 and $B990. $B991 cause DOS to
ignore the first bytes of the address headers (normally $D5) and
address trailers.

~ After you have made a copy of Zoom Grafix delete the file
called GRAF/X from the copy disk and then restore the proper bytes
to the addresses that were modified above. To do this, type:

FP
DELETE GRAFIX
CALL -151
B954:C9 D5
B991:C9 DE
3D0G

c=i] Next type in the BASIC program listed below which will
serve as the boot program for the final deprotected Zoom Graphix
disk:

10 TEXT: HOME :0$ =CHR$ (13) +CHR$ (4)
20 PR INT 0$ "MAXF ILES"I" : PRJ NT 0$ "BLOAO" GRAF JX. OBJ"
30 HOME: PR JNT "1) H CONF IGURE" ZOOM" GRAF IX" : PR INT : PRJ NT"2) H

RUN"'ZOOM"GRAFIX": PRINT: PRINT "H ENTER" YOUR"CHOICE" " ; :
GET A$: PRINT A$

40 IF VAL (A$) < 1 OR VAL (A$) > 2 THEN GOTO 30
50 A=VAL (A$) : ON AGOTO 60 ,80

The Book Of Softkeys Volume III 123

613 POKE 1133 ,1 : POKE 1134 ,96 : POKE 24576 ,13
713 PR INT CHR$ (4) "RUN"" GRAF IX'" SET-UP" : END
813 POKE 1133 ,1 : POKE 1134 ,96 : POKE 24576 ,13
913 PR INT CHR$ (4) "RUN'" GRAF IX'" PART'" I I"

Cil Now, initialize a blank disk with this program in memory.
If you like, a fast DOS can be used:

INIT ZOOM LOADER

Ci] We will use FlO from the DOS 3.3 System Master to transfer
the files from the temporary copy of Zoom Grafix to the disk we
just initialized. Get FlO up and running and use the wildcard character
(=)to transfer all the files:

BRUN FlO

You are now done with the temporary disk. When you
CATALOG the final copy disk, you'll notice ,that the program files
all seem to be 000 sectors long. This is wrong and we will correct
their sizes by loading, deleting, and resaving them as we deprotect
them. If you have an Applesoft program editor like GPLE, load it
in now because it will make your job much easier.

C1J The first file we will start up is called GRAFIXSET-UP, so
load it into memory:

LOAD GRAFIX SET-UP

Cil From the end of line 105, remove the following instruction
which checks for a logo on the text screen. Be sure to remove just
this one instruction and not the entire line:

: IF PEEK (1130313) > 153 THEN!

c::i] Insert line 107 (to defeat the volume number check) and
modify lines 440 and 590 by typing in the lines listed below:

187 LM = 8
448 VTAB 4 :POKE 47147 ,8 :PRINT CHR$ (4)

"RUN'" GRAFIX'" PART'" II"
590 NORMAL :TEXT :HOME :PRINT CHR$ (4)"FP"

[!!] Check your work and then SAVE the modified GRAFIX
SET-UP program:

DELETE GRAFIX SET-UP
SAVE GRAFIX SET-UP

[!1] The next file to be modified is called GRAFIXPART J [, so
LOAD it in. You may have to CATALOG the disk and trace over
the file name if you can't type the left bracket ([) from your
keyboard:

LOAD GRAFIX PART II

124 The Book Of Softkeys Volume III

GRAF/X PART] [is the main program which contains a number of
excellent routines.

[ill Make the following modification to GRAF/X PART] [
before resaving it: Enter a line to kill the volume number check:

195 LM = G

Remove from the beginning of lines 990 and 1750 a command which
will trash the DOS warm-start routine:

: POKE -25150,18:

Replace line 880 with the following line:

88GNORMAL:TEXT:HOME:PRINT CHR$(4);" FP"

Em Check your work and then resave the program. The brackets
in the file name will be replaced with I's. Again, you may have
to CATALOG and trace over the file name:

DELETE GRAFIX PART 11
SAVE GRAFIX PART II

Oil The remainder of the files do not need to be modified, but
we will LOAD, DELETE and reSAVE them all so that a
CATALOG will show the proper file sizes:

BLOAD GRAFIX.INFO
DELETE GRAFIX.INFO
BSAVE GRAFIX.INFO,A$8GG,L$4D5

The next binary file overwrites its own buffer at the default
MAXFILES of 3, so:

MAXFILES 1
BLOAD GRAFIX.OBJ
DELETE GRAFIX.OBJ
BSAVE GRAFIX.OBJ,A$9GGG,L$94D
FP

Final Comments
You now have a fully functioning, deprotected Zoom Grafix which

you can list, examine, and modify.
GRAF/X PART] [is the main program; it pokes in two short

machine language routines from 926-935 and 936-973 (the latter
switches hi-res screens).

GRAFfX. /NFO contains set-up parameters as used by GRAFfX
SET-UP. These parameters are ultimately passed to GRAF/X. OB). The
latter performs the actual printing tasks, as well as screen flipping
and other duties.

The deleted program GRAF/X is a loader which is so full of traps
it's best replaced by the program which we called ZOOM LOADER.
Note that the loader resets the Applesoft start-of-program pointers

The Book Of Softkeys Volume III 125

to $6000, so that GRAF/X SET-UP and GRAF/XPARTJ [load above
hi-res page 2 (from 24577 to 34(16). We closed our exit routines
with FP so that these pointers and MAXFILES would be normalized
on exit from the program; if you IRESETI out of either program,
remember that these are left abnormal.

Ifyour deprotected program seems to run but won't actually print,
it is probably because you haven't properly run the set-up routines.
As I mentioned before, those of you who have a different version
than mine (9APR82) will have to list the programs and find the
appropriate changes to make.

A final enhancement

Zoom Grafix has an undocumented feature. Ifyou enter a question
mark (?) when the initial screen is displayed, (It will say: MAKE
SURE PRINTER IS READY THEN PRESS RETURN TO GO ON,
a date will appear on the screen, presumably the date-of
manufacture. You can change this to whatever date you like with
the following method:

MAXFILES 1
BLOAD GRAFIX.OBJ
POKE 36926, first number (month)
POKE 36927, second number (day)
POKE 36928, third number (last two digits of year)
BSAVE GRAFIX.OBJ,A$9000,L$94D
FP

------1------

126 The Book Of Softkeys Volume III

Breaking
Locksmith 5.0

Fast Copy

Putting Locksmith 5.0 Fast Copy
Into A Normal Binary File

by C. V. Fields
(Hardcore COMPUTIST # 14, page 15)

Requirements:
Locksmith 5.0, Rev F
A way to reset into the Apple Monitor
A blank disk

In the past, I have seen two procedures for placing the 16
SECTOR FAST DISK BACKUP portion of Locksmith 5.0 into
a normal binary file that you can BRUN. However, neither
procedure was easy to follow and both required that you write
memory move routines and save memory from Page 0 through the
end of the program. This method resulted in a program that was
much longer than necessary, in addition to the procedures being
difficult to follow.

Most readers of this magazine should be able to follow this
procedure which will produce a 46-sector BRUNable version of the
fast copy program. It may be a problem for some readers to enter
the Apple Monitor at just the right time. I use a Replay card, but
several methods should work, for example: the Old Monitor ROM
or moving your RAM card to Slot 1 (See Chris Rys' softkey for
Sensible Speller in The Book Of Softkeys Volume II page 75
or Hardcore COMPUTIST # 9).

What follows is a narrative of what I did. Those of you who can't
wait or don't care about the detail can skip to the step-by-step
procedure.

I first stored $11 in all memory locations from $0800 through
$95FF so I could determine where the program loads:

The Book Of Softkeys Volume III 127

CALL - 151
N 811:11
811<811.95FFM

I then booted LS 5.fJ and selected the 16 SECTOR FAST DISK
BACKUP from the utility menu. The instant the disk drive light went
out I pressed the button on my Replay card and then selected M
to go into the Apple Monitor. A quick scan of memory, 800.BFFF,
showed that the program extended from approximately $800 through
$3FFF, although some of the code was suspect. There was also some
code above $8000 that is moved there during the program
initialization and is not needed as part ofthe binary file we will save.

Because page $60 was empty, I moved Page $8 there so I could
boot a DOS 3.3 slave disk:

6111<811.8FFM

I then booted a DOS 3.3 slave disk, with the HELLO deleted, and
went back to the Monitor so I could move page $8 back down to
where it belongs:

CALL - 151
811<6111.6IFFM

Then I saved the file with:

BSAVE LS 5.1 FAST COPY,A$801,L$3811

Now, I knew this file wouldn't work 'as is' because when you
BRUN a program, DOS BLOADs it and then JuMPs to the starting
address. So the next thing I had to do was locate the entry point
of the program so I could put a jump to it at the beginning of the file.

I used the Inspector/Watson utility to examine the code. If you
BLOAD the file and then step through the buffers on
Inspector/Watson, you can view the program in memory with all
the ASCII text identified. As I scanned the program, I made notes
on likely starting points, where all the ASCII text was located and
possible code at the beginning and end that could be eliminated.

I then started testing the entry points that I had on my list. As
luck would have it, one of the first points I tested, $2002, bombed
me into Zero Page (sometimes a bomb means luck) at an address
of $AB. Since the Monitor shows the address two steps beyond the
break I subtracted $2 and booted the original LS 5.@ disk again.
After it loaded I used the Replay card to check location $A9 and
found a $60, which is a 'ReTurn from Subroutine' instruction.

Again I BLOADed my test file and this time I went into the
monitor and placed a $60 at $A9 before I typed 2002G. Much to
my surprise, it worked perfectly.

As I said earlier, some of the code looked unnecessary to the
program so I started cutting off the suspect code a page at a time
and testing the program until I determined that only Pages $0A
through $36 were required. There was also enough room at the

128 The Book Of Softkeys Volume III

beginning of Page $0A for our starting code and at the end of Page
$36 so we could cut to an even full sector. When you BSAVE a
file, the starting address and length are saved at the beginning of
the first sector. This extends the code by 4 bytes. The length then
becomes $36FF - $A00 = $2CFF and $2CFF - $4 = $2CFB. The
code will, therefore, take up $2D or 45 sectors. Add one sector
for a track/sector list, and a total of 46 sectors will be needed.

After some code' searching, I also discovered that the slot number
for all the copying is stored at location $A4B. Adding this to the
fact that there is some free space at the beginning of page $A, I
wrote a little startup routine that will allow you to change slot
numbers. Using this routine you can place the 16 SECTOR FAST
BACKUP file on a hard disk.

Therefore, to put your 16 SECTOR FAST BACKUP in a normal
DOS 3.3 file, follow these steps:

Step-By-Step Procedure

CIl Init a DOS 3.3 slave disk and delete the HELLO program.
I recommend one of the rapid DOS programs such as Diversi-DOS,
ProntoDOS or my favorite, RapiDOS II.

INIT HELLO
DELETE HELLO

L:!l Boot your original of Locksmith 5.O, Rev F, and select the
16 SECTOR FAST DISK BACKUP from the utility menu.

L:il The instant the disk drive light goes out (while loading the
Fast Disk Backup) exit to the Apple Monitor using your favorite
method.

CIJ Boot your DOS 3.3 slave disk (Note: Since Page $8 is not
needed, we don't have to move it out of the way):

618PI

A2 GC 2G
25 2G 24
2G 35 GA

GC FD 91
C9 Bl 9G
GA A9 6G
85 FE 86
FG G5 91

2C
85
11

2G
F7
4B
2G
FE
6G

A9
G8
A2
24
BG
8D
G2
Bl
F7

58 FC
GA A9
A9 56
G5 84
C9 B9
E9 BG
A9 4C
AG II
C8 DG

c:!J Enter the Monitor and key in the following hexdump:

CALL -151
GAGG: 2G
GAG8: 35
GA1G: FC
GA18: AG
GA,2G: 28
GA28: F3
GA3G: 85
GA38: FF
GA4G: 28

The Book Of Softkeys Volume III 129

[:=§J Check your typing against this listing:

0A00- 20 58 FC
0A03- A9 2C
0A05- A2 0C
0A07- 20 35 0A
0A0A- A9 08
0A0C- 85 25
0A0E-20 24 FC
0All- A9 56
0A13- A2 11
0A15- 20 35 0A
0A18- A0 05
0AIA- 84 24
0AIC- 20 0C FO
0AIF- 91 28
0A21- C9 89
0A23- 80 F7
0A25- C9 81
0A27- 90 F3
0A29- E9 80
0A28- 80 48 0A
0A2E- A9 60
0A30- 85 A9
0A32- 4C 02 20
0A35- 85 FE
0A37- 86 FF
0A39- A0 00
0A38- 81 FE
0A30- F0 05
0A3F- 91 28
0A41- C8
0A42- 00 F7
0A44- 60

JSR $FC58
LOA #$2C
LOX #$0C
JSR $0A35
LOA #$08
STA $25
JSR $FC24
LOA #$56
LOX #$11
JSR $0A35
LOY #$05
STY $24
JSR $F00C
STA ($28), Y
CMP #$89
8CS $0AIC
CMP #$81
8CC $0AIC
S8C #$80
STA $0A48
LOA #$60
STA $A9
JMP $2002
STA $FE
STX $FF
LOY #$00
LOA ($FE) ,Y
8EQ $0A44
STA ($28),Y
INY
8NE $0A38
RTS

This code will set up the display on the text screen, get the slot
number and place it at $A4B, and store a $60 at $A9 before
performing the aforementioned JMP $2002.

[::1] Make a couple of modifications to the main program so that
it works with the previous hexdump, then save it:

2005:20 78 12
2008:AD 43 0B F0 0D 4C 1C 0A
1B13:EA EA EA
B60:00
BSAVE FAST COPY.LS, A$A00,L$2CFB

You should now have a 46-sector, working copy of this great fast
copy utility.

------1------
130 The Book Of Softkeys Volume III

CSaver

The Advanced Way To Store
Super lOB Controllers

by Ray Darrah
(Hardcore COMPUTIST # 13, page 16)

Requirements: -
Apple][with Applesoft in ROM
16K RAM (or language) card
DOS 3.3 (not PRODOS)

After reading Ken Burnell's letter in Hardcore COMPUTIST
12, I realized that saving Super lOB controllers with The
Controller Saver from The Book Of Softkeys Volume II page
146 (Hardcore COMPUTIST # 10) isn't as convenient as:

&Holding

and

&Merging

them. Therefore, I wrote CSAVER (pronounced "SEE SAVER")
which adds the capability of holding programs and merging them.

Typing It In
Entering the CSAVER is quite simple. Merely type in the hexdump

at the end of this article and:

BSAVE CSAVER,A$4000,L$111

To install the CSAVER, type:

BRUN CSAVER

It will appear as if nothing has happened to your precious
computer but, in fact, all kinds of strange and wondrous events have
occurred: Your entire language card has been filled with the image
of your Applesoft ROMS; a small routine that hides and merges
programs has been relocated into page $F7 of your language card;
a short routine that calls the hider and merger at $F700 has been
placed in the end of page three; and the ampersand has been
revectored to the short page three routine.

The Book Of Softkeys Volume III 131

How To Use The CSAVER
Once CSAVER has been installed, you should LOAD (yes, an

Applesoft file) the controller and then type:
&:8

This will put the controller on 'hold', allow you to LOAD Super
lOB, and finally let you should merge the programs by typing:

&:M

It is important to note that when the two programs are merged,
the one on 'hold' takes precedence over the one LOADed second.
That is: Lines of the program just LOADed will be overwritten (by
the program on 'hold') when the line numbers are the same.

CSAVER will work on most programs that you wish to merge.
Just be sure to first LOAD the program you wish to have precedence.
Note: Remember to use FP when clearing Applesoft programs when
CSAVER is installed, not NEW.

The Inner Workings
Those of you who get a little queasy when the conversation swings

toward machine language might avoid some discomfort by skipping
the following text:

When CSAVER is BRUN, the ampersand JuMP vector is set to
$3B5. Next, memory locations $403D through $4057 are copied
into locations $3B5 through $3CF. Third, the code from $401A
through $4032 copies the Applesoft ROMs into the language card.
The last thing to happen is that the main routines of the CSAVER
(locations $4058 through $4110) are copied into the language card
starting at $F700. This area is usually occupied by the hi-res routines
HPLOT, ROT= and XDRAW etc. But since CSAVER's main
routines don't use any hi-res routines while holding or merging
programs, they can occupy that area.

An Encountered Ampersand
When the Applesoft interpreter comes across the ampersand, it

reads one more character (from the input line or BASIC program)
into the A-register and JuMPs to address $3F5.

The routine at $3F5 (placed there after CSAVER is BRUN)
switches the RAM card so that it is just like RAM (you can read
from and write to it) and then JuMPs to $F700 which is the entry
to the main routines of the CSAVER. The enabling of the language
card in this manner is.necessary because of a routine at $F776 that
is like the CHRGET routine (at location $OOB1) used by Applesoft.

The remainder of the routines in page 3 are used by CSAVER
as exits. All of them start by disabling the language card and then
(depending upon which exit) they JuMP to the final routines used
by CSAVER.

132 The Book Of Softkeys Volume III

The CSAVER Main Routines
First of all, CSAVER tests to see if a 'hold' was specified. If not,

execution continues at $F72E.

The Hold Routine
If a 'hold' was specified, then the code at $F704 through $F712

makes sure that the beginning of program is set $801 (i.e. a program
has not already been hidden). If the program pointer isn't set to $801,
then CSAVER exits via ERROR (at $3BE) which disconnects the
language card and JuMPs to $FBE2 (the Monitor bell routine).

Assuming the beginning of program pointer is set correctly,
CSAVER then stores a $801 into the fake CHRGET routine at $F776.
Next, it sets the beginning of program pointer equal to the end of
program pointer and simultaneously calculates the length of the
program and stores the answer in $FE and $FF. Finally, the hold
routine exits via EXIT.HOLD (at $3C4) which disconnects the
language card and JuMPs to the Applesoft NEW routine (at $D64B).

The Merge Routine
The code at $F72E through $F731 makes sure that a merge was

specified. If not, execution goes to the ERROR routine. If a merge
was specified, then the code at $F732 through $F73D makes sure
that the beginning of program pointer is not set to $801. If it is,
CSAVER exits via ERROR. Otherwise, the pointer to the start of
variables is set equal to the end of program pointer. This has the
effect of erasing all numeric variables and is necessary for the
ENTER. LINE routine called later.

Next, CSAVER sets the COUT vector to point to DO.l.LIN. This
must be done because the ENTER. LINE routine doesn't end with
a RTS. Instead, it prints a prompt and waits for another line to enter.
Therefore, by setting the COUT vector to DO. 1.LIN as soon as
ENTER.LINE prints the prompt, CSAVER takes over again.

The two PLA instructions at the beginning are meant to remove
the JSR to COUT (in order to print the prompt) but eliminate the
JSR to the Applesoft command handler the first time through. The
two JSRs to CHRGET get the line link pointer. If the MSB is zero,
then we have merged the whole program and execution continues
at DONE.MERGE.

If the MSB wasn't zero, then DO. 1.LIN sets the entry conditions
for ENTER.LINE by making LINNUM equal to the line number
we wish to enter, putting the tokenized line in the input buffer and
setting register Y to 5 more than the length of the line. ENTER.LINE
enters the tokenized line just as if you typed it.

CHRGET gets a byte from the program on 'hold', increments
its pointer, and returns.

DONE.MERGE starts by setting the beginning of program pointer

The Book Of Softkeys Volume III 133

back to $801 and then moves the merged program back to $801
via the Monitor MOVE routine. It does a PR#0 (JSR SETVID) so
that the COUT vector is fixed and then reconnects DOS. Next, it
fixes the start of variables pointer by subtracting the length from
the end of program pointer. Last, it exits via EXIT. MERGE which
disconnects the language card and then JuMPs to a routine in
Applesoft which fixes the line number link numbers.

That's all there is to hiding and merging programs.

CSAVER Hexdump

4000: A9 4C 80 F5 03 A9 85 80
4008: F6 03 A9 03 80 F7 03 A2
4010: lA 80 3F 40 90 85 03 CA
4018: 10 F7 AO 81 C0 AO 81 C0
4020: A2 00 80 00 00 90 00 00
4028: E8 00 F7 EE 24 40 EE 27
4030: 40 00 EF 80 5A 40 90 00
4038: F7 E8 E0 87 00 F5 60 AE
4040: 83 C0 AE 83 C0 4C 00 F7
4048: AO 82 C0 4C E2 F8 AO 82
4050: C0 4C 48 06 AO 82 C0 4C
4058: F2 04 C9 48 00 2A A5 67
4060: C9 01 F0 03 4C 8E 03 A4
4068: 68 C0 08 00 F7 80 77 F7
4070: 8C 78 F7 A5 AF 85 67 38
4078: E9 01 85 FE A5 80 85 68
4080: E9 08 85 FF 18 4C C4 03
4088: C9 40 00 08 A5 67 C9 01
4090: 00 06 A5 68 C9 08 F0 CC
4098: A5 AF 85 69 A5 80 85 6A
40A0: A9 4E 85 36 A9 F7 85 37
40A8: 68 68 20 76 F7 20 76 F7
4080: AA F0 29 20 76 F7 85 50
4088: 20 76 F7 85 51 A0 00 20
40C0: 76 F7 99 00 02 C8 AA 00
40C8: F6 C8 C8 C8 C8 4C 6A 04
4000: AO FF FF EE 77 F7 00 03
4008: EE 78 F7 60 A5 67 85 3C
40E0: A5 68 85 30 A9 01 85 67
40E8: 85 42 A9 08 85 43 85 68
40F0: A5 AF 85 3E A5 80 85 3F
40F8: 20 2C FE 20 93 FE 20 EA
4100: 03 38 A5 AF E5 FE 85 69
4108: A5 80 E5 FF 85 6A 4C CA
4110: 03

134 The Book Of Softkeys Volume III

CSAVER Source Code
03F5 AMP.VEC .EQ $3F5 & eorrmand hand Ier
FBE2 BELL .EQ $FBE2
0067 PRG.BEG .EQ $67 program beginning pointer
00AF PRG.END .EQ $AF end of program poi nter
D64B NEW .EQ $D64B rout i ne that does a new
0069 VARTAB .EQ $69 pointer to start of variables
0036 COUT.VEC .EQ $36 Ioeat i on that po i nt to output

routine
0050 LINNUM .EQ $50 used to determi ne the line we

are on right now
0200 BUFF .EQ $200 Input buffer
D46A ENTER.LINE .EQ $D46A
00B8 TXT. PTR .EQ $88
003C Ai .EQ $3C Move from
003E A2 .EQ $3E Move to
0042 A4 .EQ $42 Move into
FE2C MOVE .EQ $FE2C Mon i tor move rout i ne
D4F2 FIX.LINKS .EQ $D4F2 fixes the line number link bytes
FE93 SET.VID .EQ $FE93 Rout i ne t hat does a PR#0
00FE LEN .EQ $FE Length of hidden program
C080 RD.RAM .EQ $C080 Read Language ea rd
C082 RD.ROM .EQ $C082 Read ROMS
C083 RD.WR.RAM .EQ $C083 RAMat i ze language ea rd
C081 WR.RAM .EQ $C081 Read ROM, WriteRAM
F700 CSAVEl .EQ $F700 CSAVE is moved to here

.OR $4000 out of t he way
*---

* HOOK UP THE AMPERSAND LOCAT ION

4000
4002
4005
4007
400A
400C

LDA #$4C a JMP inst r
STA AMP.VEC
LDA #$3D0- END. AMPtBEG. AMP
STA AMP.VECtl Make Ampersand
LDA /$3D0- END. AMPtBEG. AMP
STA AMP.VECt2 Start of program

*---

* PUT AMPERSAND JUMP ROUT INE INTO PAGE 3
*---

400F
4011 MOVE.AMP
4014
4017
4018

LDX # END. AMP - BEG. AMP-l
LDA BEG.AMP,X
STA $3D0 - END. AMPtBEG. AMP, X
DEX
BPL MOVE.AMP

*---
• MOVE THE CSAVE ROUT INE INTO THE RAM CARD
*---

401A LDA WR.RAM

The Book Of Softkeys Volume III 135

twice!
Start at zero
Move ROM into
RAMcard

4010
4020
4022 COPY. ROM
4025
4028
4029
402B
402E
4031
4033 MOVE.CSV
4036
4039
403A
403C
403E

LDA WR.RAM
LDX #0
LDA $D000,X
STA $D000,X
INX
BNE COPY. ROM Fin ish page
INC COPY.ROM+2 Next page
INC COPY. ROM+5 LDA and STA
BNE COPY. ROM Not done!
LDA CSAVE,X Move CSAVE
STA CSAVE1, X into RAMca rd
INX Next byt e
CPX #END.CSAVE -$F700
BNE MOVE. CSV unt i I done
RTS

• DO AHIDE OR MERGE

403F BEG.AMP LDX RD.WR.RAM
4042 LDX RD.WR.RAM
4045 JMP CSAVE1
03BE ERROR .EQ $3BE
4048 LDA RD. ROM
404B JMP BELL
03C4 EXIT.HOLD .EQ $3C4
404E LDA RD.ROM
4051 JMP NEW
03CA EXIT.MERGE .EQ $3CA
4054 LDA RD.ROM
4057 JMP FIX.LINKS

END.AMP

• START OF CSAVE ROUT INES

RAMca rd on
twice!
Perform funct ion

Beep!

405A CSAVE
F700
F702

.OR $F700

.TA $405A

.EQ $405A
CMP #'H
BNE M.CMP not an Hso try M

• HOLD THE CONTROLLER

F704
F706
F708
F70A HOLD. ERR
F70D TRY.MSB
F70F
F7U

LDA PRG.BEG
CMP #1
BEQ TRY.MSB
JMP ERROR
LDY PRG.BEG+1
CPY #8
BNE HOLD.ERR

Make sure program
po inter is at $801
o. k. so far
Erro r!
See if it is 8
Y, not Abecause of merge store
No, error

136 The Book Of Softkeys Volume III

F713
F716
F719
F71B
F71D
F71E
F720
F722
F724
F726
F728
F72A
F72B

HOLD

STA CHRGETtl
STY CHRGETt2
LDA PRG.END
STA PRG.BEG
SEC
SBC #1
STA LEN
LDA PRG.ENDtl
STA PRG.BEGtl
SBC #8
STA LENtl
CLC
JMP EXIT.HOLD

for merge later
CHRGET to get at $801
Make start of program
equa I to cu rrent end of program

Find Iength of progr

Finding length

and do a new

Make su re
a program is
on ho Id

Nope!
Squash var iab Ie
table

• TRY FOR MERGE

F72E M.CMP
F730

• DO THE MERGE

F732
F734
F736
F738
F73A
F73C
F73E DO.MERGE
F740
F742
F744
F746
F748
F74A
F74C

CMP #'M
BNE HOLD. ERR not Mei ther, error!

LDA PRG.BEG
CMP #1
BNE DO. MERGE
LDA PRG.BEGtl
CMP #8
BEQ HOLD.ERR
LDA PRG.END
STA VARTAB
LDA PRG.ENDtl
STA VARTABtl
LDA #DO.1.LIN pointCOUTtoODO.1.LIN
STA COUT. VEC so t hat when
LDA IDO.l.LIN finished,
STA COUT. VECtl do next one

*---------------------------~------------------------- --------

• DO ONE LINE
*-----------~--- --------

F74E DO. 1. LIN
F74F
F750
F753
F756
F757
F759
F75C
F75E
F761
F763

PLA pop of f JSR
PLA
JSR CHRGET sk ipLSB link
JSR CHRGET Get MSB
TAX
BEQ DONE. MERGE when LINK =0, done
JSR CHRGET get LINNUMBER
STA LINNUM
JSR CHRGET
STAll NNUMt1
LDY#0 Fill input buffer

The Book Of Softkeys Volume III 137

End of line?
Nope, move next byte
Ymust equa I EOLt5
fortheenter line
routine

F765 .2
F768
F76B
F76C
F76D
F76F
F770
F771
F772
F773
F776 CHRGET
F779
F77C
F77E
F781 .1

* FIN ISH MERGE

JSR CHRGET
STA BUFF,Y
INY

TAX
BNE .2
INY
INY
INY
INY
JMP ENTER. LINE Put this Iine in the program
LDA $FFFF Dummy numbe r
INC CHRGETtl
BNE .1
INC CHRGETt2

RTS

DONE.MERGE
F782 LDA PRG.BEG Move program
F784 STA Al
F786 LDA PRG. BEG+l back to $801
F788 STA Altl
F78A LDA #1
F78C STA PRG,BEG
F78E STA A4
F790 LDA #8
F792 STA A4tl
F794 STA PRG.BEGtl
F796 LDA PRG.END
F798 STA A2
F79A LDA PRG.ENDtl
F79C STA A2tl
F79E JSR MOVE Move it down!
F7Al JSR SET.VID PR#0
F7A4 JSR $3EA Reconnect DOS
F7A7 SEC Move program end down
F7A8 LDA PRG.END
F7AA SBC LEN
F7AC STA VARTAB
F7AE LDA PRG.END+l
F7B0 SBC LENtl
F7B2 STA VARTAB+l
F7B4 JMP EX IT. MERGE Ex it via FIX. LINKS

END.CSAVE

---1---

138 The Book Of Softkeys Volume III

The CORE
Disk Searcher

by Bryce L. Fowler & Ray Darrah
(Hardcore COMPUTIST # 12, page 19)

Requirements:
48K Apple)[with Applesoft
DOS 3.3 (not PRODOS)

Hardcore COMPUTIST publishes some softkeys that involve
finding one or more specific bytes on a disk. Often, for one reason
or another, the location of these bytes is not known. In these softkeys
a disk search utility is required. For those who don't have a program
with this capability, I wish to present The CORE Disk Searcher.

The CORE Disk Searcher (CDS) will search an entire disk in just
over a minute and a half for one string of input. CDS will display
the track, sector and starting byte where each search string is found.
Provisions have been made to allow for searching less than the entire
disk, searching hard disks, scanning protected disks and skipping
tracks or sectors.

Type in the BASIC program listing at the end of this article and:

SAVE CORE DISK SEARCHER

Next, type in the hexduml? at the end of this article and:

BSAVE SEARCH.OBJ,A$2F0,L$B9

Using The Program
When CDS is RUN, you will first be prompted whether to make

any DOS ALTERATIONS or not. If you type a 00, then you may
change the address marks, data marks and the option to ignore the
checksum or not. If you place a ee in any of the input string, then
that byte is considered ignored. An example would be if you wanted
to ignore the second byte of the address start marker you would
change the string to D58896. This feature allows you to search even
some protected diskettes.

Next, you will be prompted for the DISK SLOT and DRIVE
numbers where the disk to be searched will be placed. To enter the

The Book Of Softkeys Volume III 139

default values of the last accessed disk, you merely press IRETURNI.

Third, you will be prompted for the high track, low track and
track step. The HIGH TRACK is the highest track you wish to be
searched. The LOW TRACK is the lowest track you wish searched.
The TRA CK STEP is a whole number that determines whether or
not to skip any tracks. A track step of one will evenly search every
track. But a track step of two will skip every other track.

A Word About The Inputs

The input values in CDS aren't checked very thoroughly (so as
to work on drives with more tracks or sectors etc.) so be sure that
you enter them correctly. Note: All values in this program are
hexadecimal unless otherwise noted. When two digits are displayed
as the default and you must type a preceding zero if you wish to
change it to a one digit number (ex. type 8E for a high track of
$E). Pressing IRETURN I in the middle of a hexadecimal string will not
truncate it at the cursor position. However, pressing IRETURNI in the
middle of an ASCII string will.

Next you are asked for the HIGH SECTOR, LOW SECTOR and
SECTOR STEP. These are similar to the track prompts preceding
them except these deal with sectors instead of tracks.

This is followed by the SLOTFOR PRINTOUT. A zero will print
the search results to the screen. Any o~her number will attempt to
print the results to a printer in the corresponding slot. If you select
a slot other than zero, be sure your printer is ON before continuing.

The Wildcard
Next, you will be asked if you wish a wildcard or not; If you

answer 00, then the hexadecimal value of this wildcard must be
input. If this wildcard is contained in any of the search strings, that
byte in the string will match any byte on the disk.

Entering The Search Strings

Finally, you will be asked to enter the strings to search for. There
are three types of search strings (displayed at the top of the screen).
They are LOW ASCII, HIGH ASCII and HEXADECIMAL. CDS
will first ask you for the type of string that is to follow:

You may press a: quote [::J for high ASCII
apostrophe CJ for low ASCII
dollar sign [[J for hexadecimal.

After the type indicator, you may enter the string to search for.
Up to eighty search strings may be entered. This should
be more than enough for your searching needs. When you finish
entering all the search strings, press IRETURN I when asked for the
type of string.

140 The Book Of Softkeys Volume III

Pausing

CDS will automatically pause every time it finds a search string.
To get it going again, press any key. To stop CDS from pausing,
press the 11ill.

The Assembly Language Subroutine

The machine language portion of the CORE Disk Searcher is rather
unique. When it is BRUN, SEARCH. OS) hooks itself up to the now
famous ampersand (&) vector. Once hooked up, you pass it
commands in the form & X,Y,Z where X and Yare the track and
sector numbers (respectively) of the sector to be searched, and Z
is the number of strings to compare. As soon as Applesoft encounters
this statement, SEARCH. OS) will read the specified track and sector
(into the input buffer ($200-$2FF)) and then compare Z number
of strings (starting with string 0) in the first dimensioned array_
Therefore, the array that is dimensioned first must be one
dimensional and must be set to the strings you wish to search for.
In the BASIC program, this is F$.

If you wish to use a wildcard value in the search, you must place
a number greater than 127 in location 249 ($F9) and the value of
the wildcard in location 250 ($FA).

When SEARCH. OS) returns (to whomever called it), location 0 will
be incremented if a string has been found and decremented if a disk
error has occurred. If a string has been matched, location 1 holds
the byte position in the sector where the string starts and location
255 ($FF) holds information about which string it was.

If a string has been found, then another ampersand must not be
performed. Instead, a CALL to the 'Continue Scanning' part ofthe
program must occur in order to continue the search.

Closing Notes

Few provisions have been made for error handling. This was done
in the BASIC program to ensure compatibility with a wide range
of off-line mass storage devices, and in the Assembly program
because I wanted it to fit into page 3.

Boink!

I hate programs that don't have some element of humor in them.
I program mostly for fun, and want my programs to reflect that.
I have, therefore, included a humorous sound routine that is executed
just prior to exiting the Applesoft program. The noise it makes
sounds like its name, "Boink". You gamers out there might like
to use this routine. It's relocatable and very friendly.

The Book Of Softkeys Volume III 141

Core Disk Searcher BASIC listing

10 REM ---
20 REM - THE CORE
30 REM - DISK SEARCHER
40 REM-
50 REM - BY RAY DARRAH
60 REM ---
70 REM
80 GOTO 380
90 NF = - 1 : IF NS = ZTHEN 800
100 HOME: POKE 34 ,TW : PR# PR : PR INT : VTAB 3
110 PR INT "COREA DISKA SEARCHER" : PR INT : PR INT "STRI NGS: "
120FORA=ZTONS-01: PRINTAtOl ")A"P$(A) "A_A";
130 IF P$(A) = F$(A) THEN PRINT "LOWAASC I I " : GOT0160
140 IF ASC (P$(A)) = ASC (F$(A)) -128 THEN PRINT "H IGH-" ASCI I " :

GOTO 160
150 PR INT "HEX"
160 NEXT : PR INT : IF1'1$ <> "" THEN PR INT "1'1 I LDCARDA=>$" 1'1$: PR INT
170 Y= PEEK (37) : POKE 249 ,WI : POKE 250 ,1'12 : FOR A= T2 TO T1

STEP - TS
180 FOR B= Sl TO S2 STEP SS : PR# Z : VTAB 01 : HTAB 01
190 PR INT "SCANN INGATRACKA" ; : POKE C2 ,A : CALLC1 : PR INT " ,A

SECTORA " ; : POKE C2 ,B
200 CALL C1 : POKE Z ,Z : &A ,B ,NS : IF PEEK (Z) = 255 THEN 300
210 IF PEEK (Z) = ZTHEN NEXT: NEXT: POKE - 16368 ,Z : GOTO 370
220HTAB01 :VTABYtOl :PR#PR:NF=NFt01: IFNF/10<>INT

(NF / 10) THEN 240
230 PRINT "STRING" SPC(6) "TRACK" SPC(6) "SECTOR" SPC(6)

"BYTE"
240 PRINT ".... " NS- PEEK (255) tOl TAB(14);
250 POKE C2 ,A: CALL C1 : PRINT SPC(8); : POKE C2 ,B
260 CALL C1 : PRINT SPC(8); : POKE C2 , PEEK (01) : CALL C1 : PRINT

CM$;
270 Y= PEEK (37) : IF PEEK (- 16384) < > 155 THEN WAIT - 16384 ,128
280 IF PEEK (- 16384) < > 155 THEN POKE - 16368 ,Z
290 POKE Z ,Z : CALL C3 : GOTO 210
300 HOME : PR INT CHR$ (7) "SECTORAUNREADABLE I " : PR INT : PR INT

"PROCEEDATO:" : PR INT
310 PRINT "l)ANEXTASECTOR" : PRINT "2).0 BEGINNINGAOFAPROGRAM" :

PRINT "3)ABASIC" : PRINT
320 PRINT "AWHICH-"?" CH$;
330 GET A$: IF A$ < "1" OR A$ > "3" THEN 330
340 HOME : ON VAL (A$) GOTO 350 ,360 ,370
350 POKE Z ,Z : GOTO 210
360 RUN
370 TEXT : CALL 922 : END

142 The Book Of Softkeys Volume III

380 TEXT: NORMAL: SPEED= 255 : DIM F$(80) ,P$(80) ,HX$(15)
,AD(9 ,2)

39HOR A= 0 TO 9 : READ AD(A ,0) ,AD(A ,2) :HX$(A) = STR$ (A) :
NEXT : FOR A= 0 TO 5

400 HX$(A t 10) = CHR$ (65 t A) : NEXT: IF PEEK (768) t PEEK (769)
<> 155 THEN PR INT CHR$ (4) "BRUN" SEARCH. OBJ "

41HORA=ZT08 :AD(A ,1) =AD(A,0) tTW :NEXT :AD(A,I) =AD(A,0)
420 CH$" CHR$ (8) :CU$ = CHR$ (21) :CM$" CHR$ (13)
43001=1 :Z=0 :TW=2 :Cl=912 :C2=918 :C3,,905: PR#Z: IN#Z:

CALL 1002
440 HOME: PRINT TAB(9) "THE"CORE"DISK"SEARCHER"
450 VTAB 5 : PR INT "DOS" ALTERAT IONS=>N" CH$;
460 GET A$: IF A$ < > "Y" AND A$ < > "N" AND A$ < > CM$ THEN 460
470 PRI NT A$: IF A$ = "N" OR A$ = CM$ THEN 590
480 X= Z :y" TW: GOSUB 1010: VTAB 5: PRINT "ADDRESS" START=> " ; :

GOSUB 1080
490·GOSUB 1040 :X = 3 :y" 4 : GOSUB 1010 : PRINT "ADDRESS"END=>" ; :

GOSUB 1080
500 GOSUB 1040 :X = 5 :Y = 7 : GOSUB 1010 : PRINT
510 PR INT "DATA" START=>" ; : GOSUB 1080 : GOSUB 1040 :X=8 :Y=9 :

GOSUB 1010
520 PR INT "DATA" END=>" ; : GOSUB 1080 : GOSUB 1040
530 POKE 47422,201 : IF PEEK (47423) = ZTHEN POKE 47422,41
540 PR INT : PR INT " IGNORE" CHECKSUM=>N" CH$; : IFPEEK (47498) "Z

THEN PR INT "Y" CH$;
550 GET A$: IF A$ < > "Y" AND A$ < > "N" AND A$ < > CM$ THEN 550
560 IFA$ = CM$ THEN PR INT : GOTO 580
570PRINTA$: POKE 47498 ,183: IFA$="Y"THENPOKE47498,Z
580 PRINT
590 PRINT "DISK"SLOT=>" ; :P$"STR$ (PEEK (47081) 116) : GOSUB

1080 : GOSUB 1230
600 IF R< 01 OR R> ?THEN 590
610 POKE 47081 ,R• 16
620 PRINT "DRIVE=>" ; :P$ = STR$ (PEEK (47082)) : GOSUB 1080
630 IF P$ < "1" OR P$ > "9" THEN 620
640 POKE 47082, VAL (P$) : PRINT
650 PR INT "H IGW TRACK=>" ; :P$ = "22" : GOSUB 1080 : GOSUB 1230
660 T2 = R : IF T2 < ZOR T2 > 35 THEN 650
670 PR INT "LOW" TRACK=>" ; :P$ = "00" : GOSUB 1080 : GOSUB 1230
680 Tl = R : IF Tl <ZOR Tl > T2 THEN 670
690 PR INT "TRACK" STEP,,>" ; :P$ " "01" : GOSUB 1080 : GOSUB 1230
700TS = R : IF TS < 01 THEN 690
710 PRINT
720 PR INT "H IGW SECTOR=>" ; :P$ = "0F" : GOSUB 1080 : GOSUB 1230
730 S2 = R : IF S2 <Z THEN 720
740 PR INT "LOW" SECTOR=>" ; :P$ = "00" : GOSUB 1080 : GOSUB 1230
750 S1 = R : IF S1 <Z OR S1 > S2 THEN 740
760 PR INT "SECTOR" STEP=>" ; :P$ = "01" :GOSUB 1080 : GOSUB 1230 :SS =R
770 PRINT

The Book Of Softkeys Volume III 143

780 PR INT "SLOT6FOR6PRJ NTOUT=>" ; :P$ = "0" : GOSUB 1080 : GOSUB 1230
790 PR = R : IF PR > lTHEN 780
800 HOME: PR INT SPC (13) "SEARCH" STR INGS" CM$: PR INT" USE'" A6

WILDCARD?=>N" CH$;
810 P$ = "":1'1'1 = Z : GET A$: PRINT A$: IF A$ < > "Y" THEN 830
820 PR INT "WI LDCARD6VALUE6=>$" ; :P$ = "00" : GOSUB 1080 :WI =128 :

GOSUB 1230 :1'1'2 = R
8301'1'$ = P$: PRJ NT : PR INT " '6 =6 LOW6ASCII" : PR INTCHR$ (34) ,,6 =6

HIGH" ASC JI" :NS =Z
840 PR INT "$6 =6 HEX" : PR INT "<CR>6 =6 N06MORE6STR INGS"
850 PR INT : PR INT "TYPE6OF6STR ING=>" ; : GET A$
860 IF A$ <> CHR$ (34) AND A$ <> "$" AND A$ <> "'" AND A$ <> CM$

THEN 850
870 IF A$ = CM$ THEN 90
880 PR INT A$: IF A$ < > "$" THEN 940
890 P$ = "66" : FORA= OlT04 :P$ =P$ +P$: NEXT: GOSUB 1080
900 P$(NS) = P$: FOR A= LEN (P$(NS)) TO 01 STEP - 01
910 IF MID$ (P$ (NS) ,A ,01) = "6,, THEN NEXT: GOTO 850
920 P$ (NS) = LEFT$ (P$,A) :F$ (NS) = '''' : FOR A= 01 TO LEN (P$ (NS)

) STEP TW
930P$=MID$ (P$(NS) ,A ,TW) : GOSUB 1230 :F$(NS) = F$(NS) +CHR$

(R) : NEXT A : GOTO 980
940 INPUT "" ;P$(NS) : IF P$(NS) = "" THEN 850
950 F$ (NS) = P$ (NS) : IFA$ = " , " THEN 980
960 F$(NS) = '''' : FOR A= 01 TO LEN (P$(NS))
970 F$(NS) = F$(NS) +CHR$ (ASC (MID$ (P$(NS) ,A ,01)) + 128) :

NEXT
980 NS = NS + 01 : IF NS < 81 THEN 850
990 GOTO 90
1000 REM FORM P$ FROM ADDRESSES
1010 P$ = "" : FOR A= XTO Y : IF PEEK (AD(A ,01)) = ZTHEN P$ = P$ +

"00" : NEXT: RETURN
1020 R= PEEK (AD(A ,Z)) :P$ = P$ + HX$(INT (R /16)) + HX$(R

INT (R / 16) • 16) : NEXT : RETURN
1030 REM POKE P$ INTO ADDRESSES
1040A$=P$: FORA=XTOY :P$=MID$ (A$,TW' (A-X) +01 ,TW):

GOSUB 1230
1050 IF R= ZTHEN POKE AD(A ,01) ,Z : NEXT A : RETURN
1060 POKE AD(A ,01) ,AD(A ,TW) : POKE AD(A ,Z) ,R : NEXT A : RETURN
1070 REM INPUT HEX NUMBER
1080 A= PEEK (36) : PRINT P$; : POKE 36 ,A :B = 01 :A = LEN (P$)
1090 GET A$: IF A$ = CM$ OR A$ = CH$ OR A$ = CU$ THEN 1170
1100 IF B> (A) THEN 1090
1110 JF (A$ < "0" OR A$ > "9") AND (A$ < "A" OR A$ > "F") THEN 1090
1120 IF B= 01 AND LEN (P$) = 01 THEN P$ = A$: GOTO 1160
1130 IF B= 01 THEN P$ =A$ + RIGHT$ (P$,A - 01) : GOTO 1160
1140 IF B= (A) THEN P$ = LEFT$ (P$,A - 01) + A$: GOTO 1160
1150 P$ = LEFT$ (P$,B - 01) + A$ + RIGHT$ (P$,A - B)
1160 PRINTA$; :B = B+ 01 : GOTO 1090

144 The Book Of Softkeys Volume III

1170 IFA$ = CM$ THEN PR INT : RETURN
1180 IF A$ = CH$ AND 8 = 01 THEN 1090
1190 IF A$ = CH$ THEN PRINT A$; :8 =8 - 01 : GOTO 1090
1200 IF 8 > (A) THEN 1090
1210 A$ = MID$ (P$,8,01) : GOTO 1110
1220 REM CONVERT P$ TO DECIMAL
1230 R= Z : FOR 8 = LEN (P$) - 01 TO ZSTEP - 01 : FOR C= ZTO 15
1240 IF MIO$ (P$, LEN (P$) - 8,01) <> HX$(C) THEN NEXT
1250 R= R+ INT (16 • 8' C) : NEXT 8 : RETURN
1260 REM DATA FOR ALTERED MARKS
1270 DATA 47445 ,240 ,47455 ,242 ,47466 ,231
1280 DATA 47505 ,174 ,47515 ,164
1290 DATA 47335 ,244 ,47345 ,242 ,47356 ,231
1300 DATA 47413 ,10,47423 ,170

Core Disk Searcher hexdump

02F0: A9 00 8D F6 03 A9 03 80
02F8: F7 03 A9 4C 8D F5 03 60
0300: 20 78 DD 20 F2 E8 A5 Al
0308: 80 EC 87 20 8E DE 20 78
0310: DD 20 F2 E8 A5 Al 8D ED
0318: 87 20 8E DE 20 78 OD 20
0320: F2 E8 A5 Al 85 FF A9 01
0328: 8D F4 87 A9 01 80 F0 87
0330: 8D E8 87 A9 02 80 F1 87
0338: 20 E3 03 20 D9 03 90 03
0340: C6 00 60 A9 07 85 FE A4
0348: FE 81 68 85 FD C8 81 68
0350: 85 F8 C8 81 68 85 FC C8
0358: 84 FE A2 00 A0 00 81 F8
0360: 24 F9 10 04 C5 FA F0 0A
0368: DD 00 02 F0 05 E8 00 EC
0370: F0 08 C8 C4 FD 80 08 E8
0378: D0 E4 C6 FF D0 C9 60 E6
0380: 00 E8 CA 88 D0 FC 86 01
0388: 60 A6 01 E8 00 CE F0 EA
0390: A9 A4 20 ED FO A9 00 4C
0398: DA FD A0 6E AD 30 C0 98
03A0: 38 E9 01 D0 F8 88 00 F4
03A8: 60

The Book Of Softkeys Volume III 145

Search.obj source code

1131313 FRM.EVAL .EQ $DD7B Evaluates the BASIC expr
113113 AMP.VEC .EQ $3F5 BAS ICJSRs he re when it

gets an &
113213 INT.CONV .EQ $EBF2 Converts FAC into an

i nt ege r at $A13 and $A1
113313 COM.CHK .EQ $DEBE Makes su re COMM as

separate parameters
113413 RWTS .EQ $309 Hooked to RWTS
113513 lOB. TRK .EQ $B7EC RWTS track parameter
113613 10B.SECT .EQ $B7ED Secto r numbe r
113713 FIND. lOB .EQ $3E3 Loads Aand Ywi th the

addr. of the lOB
113813 10B.BUF .EQ $B7F13 Pointer to user data

buffer
113913 10B.CMD .EQ $B7F4 lOB command
111313 VAL .EQ $A1 Whe re INT .CONV st 0 res its

answer
11113 lOB. VOL .EQ $B7EB RWTS vo Iume expected
11213 NUM.STRINGS .EQ $FF Number of st rings to

match
11313 YSAVE .EQ $FE St ring cu rrent Iy on
11413 ARRAY.PTR .EQ $6B Poi nts to start of arrays
11513 LEN .EQ $FD Length of current string
11613 STR.PTR .EQ $FB And $FC po i nt to cu r rent

string
11713 WILD.CARD .EQ $FA Wi Idcard character
11813 WILD.ON .EQ $F9 If B7=1 Then wi Idcard

character is val id
11913 BUFF .EQ $21313 Sector buffer
121313 FOUND.FLG .EQ $13 If found, t1
12113 POS .EQ $1 Pos i t ion it was found in
12213 COUT .EQ $FDED Print A as ASCII
12313 PRBYTE .EQ $FDDA Pr i nt A as Hex
12413 SPEAKER .EQ $C13313 Toggle speaker location
12513
12613 .OR $2F13 $2F13-$2FF is expendab Ie
12713 .TF SEARCH.OBJ
12813
12913 ---
131313 * HOOK UP TO AMPERSAND
13113 ---
13213
13313 LOA #MAIN.PRG LSB
13413 STA AMP.VECt1
13513 LOA /MAIN.PRG MSB

146 The Book Of Softkeys Volume III

First
OFFSETT=7

BUF=$200
Any vo I

Read command

Get 10B.PTR
Get SECTOR
DOS cou Idread it
Tell BASIC

Put number of
st rings in VAL

Comma

Get t rack#
Integer please
Get answer

Hookup comp Iet e

JMP opcode

FIND. lOB
RWTS
NO. ERR
FOUND.FLG

FRM.EVAL
INT.CONV
VAL
10B.TRK
COM.CHK
FRM.EVAL
INT.CONV
VAL
10B.SECT
COM.CHK
FRM.EVAL
INT.CONV

VAL
NUM.STRINGS
#1
IOB.CMD
#0
10B.BUF
lOB. VOL
#2
IOB.BUF+1

AMP.VEC+2
#$4C
AMP.VEC

JSR
JSR
BCC
DEC
RTS

LDA #7
STA YSAVE

JSR
JSR
LDA
STA
JSR
JSR
JSR
LDA
STA
JSR
JSR
JSR
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA

STA
LDA
STA
RTS

1360
1370
1380
1390
1400
1410 *---
1420 • GET PARAMETERS FOR SCAN
1430 * AND READ SECTOR
1440 *---
1450
1460 MAIN.PRG
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680 *---
1690 * TRY TO GET THE SECTOR
1700 *---
1710
1720
1730
1740
1750
1760
1770
1780 *---
1790 * SETUP STR INGS
1800 *---
1810
1820 NO.ERR
1830
1840

The Book Of Softkeys Volume III 147

Done?

YSAVE 4 next $

(ARRAY.PTR) ,Y
STR.PTR+1

(ARRAY.PTR),Y ADDR
STR.PTR

YSAVE CURRENT $
(ARRAY.PTR),Y Get
LEN length

LDX #0 BUFF=0
LDY #0 STRING=0
LDA (STR.PTR) ,Y Get CHAR
BIT WILD.ON Active?
BPL NO.WILD
CMP WILD.CARD Match?
BEQ MATCHED1
CMP BUFF,X Match?
BEQ MATCHED1
INX
BNE TRY.CHAR
BEQ NXT.STR1NG

INY St ring done?
CPY LEN
BCS TELL.B Yes'
INX Next BUFFR
BNE NXT.CHAR Not EOB

DEC NUM.STRINGS
BNE GET.STNG
RTS

LDY
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
STY

TRY.BUF
TRY. CHAR
NXT.CHAR

1850 *---
1860 * GETTHE NEXT STR ING
1870 *---
1880
1890 GET.STNG
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010 *---
2020 * SCAN FOR ASTR ING
2030 *---
2040
2050
2060
2070
2080
2090
2100
2110
2120 NO.WILD
2130
2140
2150
2160
2170
2180 MATCHED1
2190
2200
2210
2220
2230
2240 ---
2250 * TRY FOR ANOTHER STR ING
2260 *---
2270
2280 NXT.STRING
2290
2300
2310
2320
2330

148 The Book Of Softkeys Volume III

INC FOUND.FLG Found!
INX For cont i nue
DEX Backup to
DEY Start of $
BNE BACKUP
STX POS
RTS

LOY #$6E Set loop
LOA SPEAKER CI ick
TVA
SEC Delay loop gets
SSC #1 shorter each
BNE DELAY time through
DEY
BNE TOGGLE
RTS

Printa"$"

Durrrny numbe r
Print it

Get 0 Id POS

Go!
.always

#$A4
COUT
#0
PRBYTE

TRY.CHAR
NXT.STRING

LOX POS
INX
BNE
BEQ

LOA
JSR
LOA
JMP

2330 *---
2340 * TELL BAS ICABOUT MATCH
2350 *---
2360
2370 TELL.B
2380
2390 BACKUP
2400
2410
2420
2430
2440
2450 *---
2460 * CONT INUE SCANN ING
2470 *---
2480
2490
2500
2510
2520
2530
2540 *---
2550 * PR INT AHEX NUMBER
2560 ---
2570
2580
2590
2600
2610
2620
2630 *---
2640 * BOINK!
2650 *---
2660
2670
2680 TOGGLE
2690
2700 DELAY
2710
2720
2730
2740
2750

---i---

The Book Of Softkeys Volume III 149

Modified ROMs
As explained in the article How To Use This Book on page 5,
some softkeys require the user to enter the Monitor during the
execution of a copy-protected program. One way would be to
install a modified Reset vector on the computer's motherboard.
Here's how.

by Ernie Young
(Hardcore COMPUTIST # 6, page 14)

WARNING
SOftKey Publishing assumes·no responsibility for any
damage done to the computer while following this
procedure.

Requirements:
48K Apple][Plus
One disk drive
A supply of 2716 16K EPROM chips
Several 24-pin, low-profile sockets
Access to an EPROM burner
Knowledge of Assembly Language is helpful. ..

In the article Hidden Locations Revealed (Hardcore
COMPUTIST # 3, page 10) the author addressed the idea of what
to do when performing a softkey on a program that uses the text
page for valid code use.

He suggested a small hardware modification to the Apple to
enable one to see the text page of a program while another page
(i.e., hi-res page) was supposed to be displayed.

What I am about to discuss is an inexpensive modification to
your computer that is about as good (maybe even better) than those
cards that save all of memory. Needless to say, this is a very good
means to achieve that end on programs which use volatile (easily
eraseable) memory.

Volatile memory includes such locations as a great deal of page
zero, page one, page two and the text page location at $400 to $7FF.
For example, as you type and characters are echoed onto the text

150 The Book Of Softkeys Volume III

screen, locations $400-$7FF change. Each ASCII character is
represented on the screen in one of the locations in the range of
$400 to $7FF.

In most softkeys it has been assumed that by hitting IRESET I

(with the old-style Monitor, of course) and dropping into Monitor,we
can snoop through memory and find what we need to save or
disregard.

When the text page and the keyboard input buffer (page 2) is
used for valid program storage, resetting will destroy these volatile
memory locations. Indeed, it is no new trick to many software
publishers that using the text page and other volatile memory
locations is a good way to keep the public from snooping through
their programs and possibly reducing them to a more copyable form.

Hitting IRESETI

To understand this more clearly, let's examine what happens
when you press IRESETI.

Instead of going through the input latch at $C000 as the other
keys on the keyboard do, the IRESETI key is connected directly to
pin 40 of the 6502 microprocessor chip. This is the big
long chip just in front of the slots on the motherboard.

When IRESET I is pushed, pin 40 gets connected to ground and
the computer unconditionally jumps to the address contained in
locations $FFFC and $FFFD. These locations are in the F8-monitor
ROM and, depending on which F8-monitor ROM you have, your
computer can do one of two things.

There are two flavors of Monitor ROMs in the Apple world,
known as the 'autostart' and the 'old-style' Monitor ROMs.

In the 'autostart' F8-ROM, which is used in the Apple][Plus
model, these locations point to a series of routines that check to see
if the computer is just being powered up or if IRESETI had been
pressed before. If it finds the power already on, it jumps to the
routine pointed to by locations $3F2 and $3F3. Normally, they point
to the BASIC warm-start and you get the Applesoft prompt.

The 'old-style' Monitor found in the older Apple][models has
$59 and $FF stored in locations $FCCC and $FCCD. This causes
the Apple to jump to the routines at $FF59. These routines set the
keyboard for input, the monitor (or TV) for output, the text page
for viewing and, finally, it puts you in the machine language monitor
with an asterisk prompt.

In the 'autostart' ROM, anyone can program where they want
their Apple to go, when IRESET I is pressed, by changing the code at
$3F2 accordingly. In the 'old-style' Monitor, however, there is no
way to prevent a reset from occuring and, eventually, giving you
the Monitor prompt. This is obviously essential if you want to break
into a program to examine the code but this is no guarantee to
performing a working softkey.

The Book Of Softkeys Volume III 151

Destructive IRESETI

The problem is that when we IRESETI into the Monitor, many
locations are destroyed. These locations mayor may not be essential
to thne line when the Monitor prompt is printed. This scrambles
locations $400-$7F8 and destroys locations $400-$427
completely.

Most software publishers know this and use it against us to keep
us 'unwanteds' from snooping through their code. This becomes
evident if you hit IRESETI and find that the text page is filled with
garbage and other incomprehensible junk.

Ultimately, we would like to be able to save locations $00
$8FF in non-volatile memory upon hitting IRESET I and, then, to exit
to the Monitor for examination. I include $800 - $8FF, even though
it doesn't get destroyed on IRESET Iing, because it gets wiped out
when we do a 48K slave disk boot. The best place to store this
information would be at $2000-$28FF, since this is normally the
hi-res page used in most games and is not destroyed by booting a
slave disk. (Remember that $00-$8FF and $9600-$BFFF are
destroyed when booting a 48K slave disk).

In order to save these volatile memory addresses into locations
$2000-$28FF, we need to change what normally happens when
we hit IRESETI. This may seem impossible to do since what happens
when we hit that key is predetermined in ROM and, therefore, is
not changeable.

Well, yes and no.
We can copy the code from the F8-ROM down to RAM, change

it and bum it into a new ROM!

Help from EPROM
Of course, this assumes that you have access to an EPROM

(Eraseable, Programmable, Read-Only Memory) programmer and
some 2716 EPROM chips.

Most computer stores that are worth anything will be willing
to bum you a new 2716 chip for a reasonable fee if you do not have
your own access to an EPROM programmer. These 2716 chips are
available from many sources. See the back of any BITE magazine
for names of suppliers of the EPROM if you can't find any locally
in your area

So, assuming you have access to these two resources, all we
have to do is alter the normal F8-code.

First, let's develop the code that we will need to jump to when
the IRESETI key is pressed, moving memory from $00-$8FF to
$2000-$28FF. This requires some knowledge of Assembly
language but if you are not familiar with machine code try and follow
along anyway.

(While going to the extreme of burning new ROM, it would also

152 The Book Of Softkeys Volume III

be a good idea to change the NMI (non-maskable interrupt) vector
to point to our new routine).

[}] Let's start by moving the code at $F800-$FFFF down to
RAM. Location $2800 would be a good place for it.

~ We need a place to put our 'Super Saver' routine. We don't
have any open memory locations, but we do have some routines
in the monitor code which we never use, like the tape read and write
routines. These will have to be sacrificed for our new routines. To
enter this code, carefully type in the hexdump.

[=:!] Now, change the reset and the NMI vectors in our RAM
version of the F8-ROM

2FFA:CD FE CD FE

c=!J Save the file onto a disk with the command:

BSAVE MODIFIED F8.ROM,A$28G0,L$800

LID Now, burn your new EPROM!

Plugging-in your New F8 Monitor ROM
In order to use your new, modified ROM, we must install it

in the motherboard (or in an Integer card).
But, first, we have to make one explanation: both the 2716 you

just burned and the original 9316 ROM, used by Apple, are Read
Only-Memory devices, containing 2K bytes of information, which
gives us 16K bits of information. Hence, 16K ROMs. But,
unfortunately, they are not totally compatible. The arrangement of
the pin numbers are slightly different.

To use your new EPROM, you must either make these changes
directly to the chip itself (not advisable), or to a jumper socket which
your new chip will plug into. This, then, will be plugged into the
motherboard, or Integer card.

For the latter, you will need a 24-pin, low-profile socket, which
is available from Radio Shack or similar stores.

With the socket upside-down and the pins looking you in the
face, it should look like this:

13 14 15 16 17 18 19 20 21 22 23 24

1111I111I111

12 11 10 09 08 07 06 05 04 03 02 01

The Book Of Softkeys Volume III 153

Your soldering skills come in handy now. Using some short,
hi-gauge wire (wire-wrap is preferrable, but anything in the 26-30
gauge will work), solder a piece between pins 21 and 24 and then
solder a piece between pins 12 and 18.

Be extremely careful not to short out the wire or to cross-solder
any pins! Also, try and solder as close to the base of the socket as
possible, since you have to cut off pins 18 and 21 after you have
finished soldering them.

The next step is to cut off pins 18 and 21 as close to the base
of the socket as you can, without cutting the freshly soldered wires.
Both pins must be short enough so they will not touch the socket
you will be plugging this one into. The socket should look like this:

13 14 15 16 17 18 1920 21 22 23 24

~IIIIII
12 11 10 09 08 07 06 05 04 03 02 01

Double-check your soldering and the connections to be certain
that pins 18 and 21 are cut off.

Make sure the power is OFF before continuing.
Now, carefully remove the ROM labelled F8 (it is the socket

farthest to the left that has 24 pins, as you face the keyboard) and
plug this jumper socket into the motherboard. (You could plug this
socket into your integer card in the same fashion). Now, plug the
modified EPROM into this jumper socket and you will all be done!

Go ahead and turn on your Apple and, if you had followed these
instructions correctly, you will see the text page filled with
"garbage." At this time, press (RETURN I to get things going as usual.

How to use the 'Super Saver' F8 ROM
From now on, whenever you press IRESETI the computer will just
freeze (no beep or anything). Then, you must press one of three
keys, depending on what you want the computer to do.

First of all, by pressing (RETURN) the computer will just do the
usual kind of reset (i.e. JuMP to BASIC). Secondly, by typing G
the computer will act as if you have the 'old-style' F8-ROM and
JuMP into the Monitor without any memory saves. Finally, pressing
[i] will engage the 'Super Saver,' thus, moving the volatile memory
(locations $0000 through $900) into locations $2000 through $2900,
with the stack pointer saved at $2901 and it will put you in the
Monitor.

154 The Book Of Softkeys Volume III

Here's the process again:

CJJ Acquire a blank 2716 and access to an EPROM
programmer.

~ Boot a disk with normal DOS and enter the monitor:

CALL-151

c=1J Move the memory from ROM to RAM:

2800<F800.FFFFM

L::!] Type in this hexdump.

2ECD: 2C 00 C0
2ED0: 10 FB 8D 10 C0 AD 00 C0
2ED8: C9 2D F0 7D B0 03 4C 62
2EE0:FA BA 8E 01 29 A0 00 B9
2EE8: 00 00 99 00 20 B9 00 01
2EF0: 99 00 21 4C FD FE 20 00
2EF8: FE 68 68 D0 6C C8 D0 E7
2F00: 84 3C 84 42 84 3E A9 09
2F08: 85 3F A9 02 85 3D A9 22
2F10: 85 43 20 2C FE 20 2F FB
2F18: 2058 FC 4C 59 FF 60

c=i] Alter the reset and the NMI vectors:

2FFA: CD FE CD FE

[j] Save the modifications:

BSAVE MODIFIED F8ROM,A$2800,L$800

C1J Burn the blank 2716 with this saved code.

[::::iJ Using a low-profile, 24-pin socket, solder pin 12 to pin 18,
then solder pin 21 to pin 24.

c::!J Cut off pins 18 and 21 as close to the socket body as
possible.

[ill Plug the jumper socket into the F8 socket on the
motherboard or Integer card.

C!!J Plug the modified 2716 into the jumper socket and you are
done!

------1------

The Book Of Softkeys Volume III 155

The ArlDonitor

by Nick Galbreath
(Hardcore COMPUTIST # 12, page 23)

Requirements:
48K Apple with DOS 3.3

Wouldn't it be nice to be able to find the location of that darned
lIO ERROR on your disk? You could get out your disk-editing
program and fix it right then and there!

Or, how about reconstructing track/sector lists from blown files?
What about an easy way of learning what the Disk Operating

System (DOS) does?
Dream no more. Your wish has been answered.
This small program, the Armonitor, does all of the above, and

more.
In a nutshell, the Armonitor monitors the disk head, recording

and printing all it does in a simple, logical way. The format of the
recording is:

XYZ

where:
X is the operation the disk head is performing.

The possible operations are:

S for a seek operation
R for a read operation
W for a write operation

Y and Z, the two-digit hexadecimal numbers which follow X,
specify the track and sector on which the former operation is in
effect.

For example, R 04 0A would mean that DOS is attempting to
read from track $4, sector $A.

Typing it In

[}] Enter the Monitor:

CALL -151

156 'I11e Book Of Softkeys Volume III

c=!J Type in this hexdump:

G3GG: A9 4C 8D F5 G3 A9 1G 8D
1318: F6 13 A9 13 8D F7 13 61
1311: AD IG BD CD 68 13 FIIC
G318: A2 G3 BD 68 13 9D IG BD
1321: CA 1G F7 61 A9 2G 8D IG
G328: BD A9 39 8D G1 BD A9 G3
1331: 8D 12 BD A9 EA 8D G3 BD
1338: 6G 48 98 48 21 8B FD AE
G34G: F4 B7 BD 65 13 2G ED FD
1348: A9 AI 2G ED FD AD EC B7
G351: 21 DA FD A9 AG 20 ED FD
G358: AD ED B7 20 DA FD 68 85
036G: 48 68 85 49 61 D3 D2 D7
0368: 84488549

OJ Save it.

BSAVE ARMONITOR,A$31G,L$6C

How to Use It

Using this utility is quite simple: BRUN the program and then
press (jU install the Armonitor. Unfortunately, the Armonitor really
slows down disk-access time and can be a nuisance for long files.
However, removing it is as easy as installing it -- just re-press(jU
and it will 'unhook' itself, waiting for another (jU to revive it again.

---1---

The Book Of Softkeys Volume III 157

Don't
WOJlJlV
You can stiD get Volumes Iand II of

The Book Of Softkeys

Volume I: Issues 1·5 ($12.95)
contains softkeys for: Akalabeth IAmpermagic IApple Galaxian IAztec IBag ofTricks IBill
Budge's Trilogy IBuzzard Bait ICannonball Blitz ICasino IData Reporter IDeadline IDisk
Organizer II IEgbert II Communications Disk IHard Hat Mack IHome Accountant IHomeword I
Lancaster IMagic Window II IMulti-{)isk Catalog IMultiplan IPest Patrol IPrisoner II ISammy
Lightfoot IScreen Writer II ISneakers ISpy's Demise IStarcross ISuspended IUltima II I
VisifIle IVisiplot IVisitrend IWitness IWizardry IZork I IZork II IZork III IPLUS how-to
articles and program listings of need-tn-have programs used to make unprotected backups.

Volume II: Issues 6·10 ($12.95)
contains softkeys for: Apple Cider Spider IApple Logo IArcade Machine IThe Artist IBank
Street Writer ICannonball Blitz ICanyon Climber ICaverns of Freitag ICrush, Crumble &
Chomp IData Factory 5.0 IDB Master IThe Dic*tion*ary IEssential Data Duplicator I& III I
Gold Rush IKrell Logo ILegacy of Uylgamyn IMask Of The Sun IMinit Man IMouskattack I
Music Construction Set IOil's Weill Pandora's Box IRobotron ISammy Lightfoot IScreenwriter
II v2.2 ISensible Speller 4.0, 4.0c, 4.lc I the Spy Strikes Back ITime Zone vl.l IVisible
Computer: 6502 IVisidex IVisiterm IZaxxon IHayden Software ISierra Online Software I
PLUS the complete listing of the ultimate cracking program...Super lOB 1.5

Volume I. $12.95 + $2 shipping & handling
Volume 11... $12.95 + $2 shipping & handling
Both volumes!. $20.90 + $3 shipping & handling

Foreign orders (except Canada &Mexico), please add $5.00 per book shipping
& handling. U.S. funds drawn on U.S. banks only. Most orders shipped within
5 working days, however please allow 4-6 weeks delivery for some orders.
Washington State orders add 7.8% sales tax. Send your orders to:

SoftKey Publishing PO Box 110846-B Tacoma, WA 98411

158 The Book Of Softkey8 Volume III

Ordering Volumes I and II of

The Book Of Soflkeys

Easyas

123
Name ID# _

Address _

City ------"State__---"zip, _

Country Phone _

•• Exp.,---

Signature BSK3

10
20
30

Volume I. $12.95 + $2 ship/handling

Volume 11... $12.95 + $2 ship/handling

Both volumes! $20.90 + $3 ship/handling

Foreign orders (except Canada & Mexico), please add $5.00 per book
shipping & handling. U.S. funds drawn on U.S. banks only. Most orders
shipped within 5 working days, however please allow 4-6 weeks delivery
for some orders. Washington State orders add 7.8% sales tax.
Send your order to:

SoftKey Publishing
PO Box 110846-8

Tacoma, WA 98411

The Book Of SOftkey8 Volume III 159

We are NOT

PIRATES!
but we're not fools, either.

We're serious programmers and software users who just want to
have backup copies of any software we own. COMPUTIST
magazine shows us HOW TO BACKUP COMMERCIAL SOFTWARE
regardless of the maker's attempt to stop us from having legal
copies. Don't let them stop you from protecting your own rights.

Remove copy-protection
from your valuable library of expensive software. The publisher of
COMPUTIST has been showing subscribers how to unlock and modify
commercial software for the past 5years. Don't be one of the users
abused by user-FIENDLY locked-up software. Subscribe.

SUBSCRIPTIONS RATES FOR 12 ISSUES:
D U.S.-$32 DU.S. First Clas&-$45 DCanada, Mexlc0-$45 DOther Forelgn-$75
SAMPLE COPY: DU.S.- $4.75 DForelgn- $8.00

US funds drawn on U.S. bank. Send check or fTI()I/IY order to:
COMPUTIST PO Box 110846-B Tacoma, WA 98411

o NEW subscriber 0 Renew my subscription.

Name _

Address _

City State Zip _

Country Phone _

•• --_._--_._-_._-- Exp'---

Si ture BSK3

FQEE ~TAQTEQ KIT
(a $32.00 waIDe)

With your new subscription, you will receive a FREE software
kit, containing several utility programs to help you remove
copy-protection and modify your locked-up software.

160 The Book Of Softkeys Volume III

.~

•

• Seadragon
• Sensible Speller IV
• Snooper Troops II
• SoftPorn Adventure
• Stickybear series
• Suicide
• TellStar
• Tic Tae Show
• Time Is Money
• Transylvania
• Type Attack
• Ultima III Exodus
• Zoom Graphics

Not any more. The publisher of (Hardcore) COMPUTIST magazine has been
showing Apple-computer users how to modify and make copyable backups
of uncopyable (copy-protected) commercial software for the past 5 years.

It's'!~~~!.~t'sCfu!l!r:!a:~!~!ii~!!!ed
(normalized),you can then modify, make backups of all modified versions,
pack them on hard disk, and maintain an archival file of originals while
you use the backups. Don't risk crashing the original. Use only backups.

VV~.I\I.I\IG -,

Softkey information In this Book Of Softkeys should NOT be used to make copies of copyrighted
software for illegal distribution. The puhlisher does NOT condone software piracy.

Don't be a software

PIRATE.
But don't be a fool, either.

This Book Of Softkeys, like the previous volumes, shows you how to remove
copy-protection from specific commercial software. This volume shows you
how to deprotect the following software packages:

• Alien Addition • Last Gladiator
• Alien Munchies • Learning With Leeper
• Alligator Mix • Lion's Share
• Computer Preparation SAT • Master Type vi.7
• Cut And Paste • MatheMagic
• Demolition Division • Minus Mission
• Einstein Compiler version 5.3 • Millionaire
• Escape From Rungistan • Music Construction Set
• Financial Cookbook • One On One
• Flip Out • PFS software
• Hi-Res Computer Golf II • The Quest
• Knoware • Rocky's Boots
• Laf Pak • Sabotage

Plus other helpful articles and utility software LISTings.

	01-cover.tif
	page-001.tif
	page-002.tif
	page-003.tif
	page-004.tif
	page-005.tif
	page-006.tif
	page-007.tif
	page-008.tif
	page-009.tif
	page-010.tif
	page-011.tif
	page-012.tif
	page-013.tif
	page-014.tif
	page-015.tif
	page-016.tif
	page-017.tif
	page-018.tif
	page-019.tif
	page-020.tif
	page-021.tif
	page-022.tif
	page-023.tif
	page-024.tif
	page-025.tif
	page-026.tif
	page-027.tif
	page-028.tif
	page-029.tif
	page-030.tif
	page-031.tif
	page-032.tif
	page-033.tif
	page-034.tif
	page-035.tif
	page-036.tif
	page-037.tif
	page-038.tif
	page-039.tif
	page-040.tif
	page-041.tif
	page-042.tif
	page-043.tif
	page-044.tif
	page-045.tif
	page-046.tif
	page-047.tif
	page-048.tif
	page-049.tif
	page-050.tif
	page-051.tif
	page-052.tif
	page-053.tif
	page-054.tif
	page-055.tif
	page-056.tif
	page-057.tif
	page-058.tif
	page-059.tif
	page-060.tif
	page-061.tif
	page-062.tif
	page-063.tif
	page-064.tif
	page-065.tif
	page-066.tif
	page-067.tif
	page-068.tif
	page-069.tif
	page-070.tif
	page-071.tif
	page-072.tif
	page-073.tif
	page-074.tif
	page-075.tif
	page-076.tif
	page-077.tif
	page-078.tif
	page-079.tif
	page-080.tif
	page-081.tif
	page-082.tif
	page-083.tif
	page-084.tif
	page-085.tif
	page-086.tif
	page-087.tif
	page-088.tif
	page-089.tif
	page-090.tif
	page-091.tif
	page-092.tif
	page-093.tif
	page-094.tif
	page-095.tif
	page-096.tif
	page-097.tif
	page-098.tif
	page-099.tif
	page-100.tif
	page-101.tif
	page-102.tif
	page-103.tif
	page-104.tif
	page-105.tif
	page-106.tif
	page-107.tif
	page-108.tif
	page-109.tif
	page-110.tif
	page-111.tif
	page-112.tif
	page-113.tif
	page-114.tif
	page-115.tif
	page-116.tif
	page-117.tif
	page-118.tif
	page-119.tif
	page-120.tif
	page-121.tif
	page-122.tif
	page-123.tif
	page-124.tif
	page-125.tif
	page-126.tif
	page-127.tif
	page-128.tif
	page-129.tif
	page-130.tif
	page-131.tif
	page-132.tif
	page-133.tif
	page-134.tif
	page-135.tif
	page-136.tif
	page-137.tif
	page-138.tif
	page-139.tif
	page-140.tif
	page-141.tif
	page-142.tif
	page-143.tif
	page-144.tif
	page-145.tif
	page-146.tif
	page-147.tif
	page-148.tif
	page-149.tif
	page-150.tif
	page-151.tif
	page-152.tif
	page-153.tif
	page-154.tif
	page-155.tif
	page-156.tif
	page-157.tif
	page-158.tif
	page-159.tif
	page-160.tif
	rear-cover.tif

