
• }

Interactive Microware, Inc.
P.O. Box 771
State College, Pa 16801
(814) 238-8294

•••• Jglf#.M
'

•••
•••

By Paul K. Warme

Copyright © 1981

• •

INTERACTIVE MICROWARE, INC.

·m·
1w1

Interactive Microware, Inc.
P.O. Box 771
State College, Pa 16801
(814) 238-8294

Q U I C K I I 0 (tm) S 0 F T W A R E M A N U A L

By Paul K. Warme

Copyright (c) 1981

INTERACTIVE MICROWARE, INC.

PREVIEf/'J OF OUIC1a/O(t:n) FEATURES

HOW TO PRODUCE A 3.1\CKUP DISK

fJQ\;'J TO USE THE QUICKSAMPLE DE~WNS'I'Rl\TION PROGRl\M
Initial Self-Test
Setting and Reading the Real Time Clock
Setting and Reading the Alarm
Diqital Input and Output
General Input and Output
Analog Linearity Test
Analog Stability Test
Self-Test Program

1

3

4
4
5
5
5
fi
7
8
9

BACKGROUND INFORMATION ABOUT QUICKI/O(tm) PROGRAMMING 10
Initialization of QUICKI/O(tm) 10
QUICKI/O(tm) Command Format 10
Other Things You Should Know About QUICKI/O(tm) 11
QUICKI/O(tm) Error Conditions 11

DETAILS AND EXAMPLES OF QUICKI/O(tm) FUNCTIONS 12
Details About the Real Time Clock 12
Examples Using the Real Time Clock 12
Details About the Countdown Timer/Alarm 12
Examples Using the Countdown Timer/Alarm 13
Details About Timers 2 and 3 13
Examples Using Timers 2 and 3 14
Details About Timers on Extra ADALAB(tm) Boards 14
Details About Digital Input and Output 15
Examples Using Digital Input and Output 15
Details About Parallel Input and Output 15
Examples Using Parallel Input and Outout lfi
Details About Analog Input and Output In
Examples Using Analog Input and Outout 18
Details About Serial Input and Output 18
Examples Using Serial Input and Outout 19

PREVIEW OF QUICKI/O(tm) FEATURES

QUICKI/O(tm) provides a straightforward, easy-to-use method
for controlling your instruments. In order to use this
software, one or more ADALAB(tm) in-terface boards must be plugged
into any slot of your APPLE computer. When you run QUICKI/O(tm),
it automatically locates each ADALAB(tm) board and initializes
the hardware. Thereafter, simple commands in BASIC enable you to
control the ADALAB(tm) hardware, including the real-time clock
and timers, digital Input/Output(I/0), serial I/0, parallel I/O
and analog I/0. For example, &PI0 reads a value from Parallel
Input channel 0 and stores the value in variable D%. &P00 sends
the value in D% to Parallel Output channel 0. A,other form of
command allows you to transfer values to and from an array called
D%. For example, &PI0,5 reads a value from Parallel Input
channel 0 and stores it in D%(5). &P00,2 sends the value in D%(2)
to Parallel Output channel 0. For ease of programming, the
channel number and array element number may be replaced by any
valid BASIC expression. For example, &PO(X/4),(Y+3) would
transfer the value stored in D%(Y+3) to Parallel Output channel
X/4. Commands such as these may be executed immediately after
you type them or they may be included in any BASIC program for
repeated execution under program control. Also, notice that
these commands are very short, so that they are easy to remember
and convenient to type.

QUICKI/O(tm) constantly displays the time in hours, minutes
and seconds in the upper right corner of the screen. You may set
the time or read the current time in your program, thus enabling
you to start or stop external processes at particular times. In
addition, a countdown timer may be set for any time interval.
When the timer count reaches zero, the APPLE speaker will buzz to
request your attention, but it continues to count, so that you
can determine the amount of time that has elapsed since the alarm
went off. The timer count may be read at ani t~me, to an
accuracy of 0.1 second. Thus, you can time more than one event
under program control.

QUICKI/O(tm) is written in machine language so that commands
are executed as rapidly as possible, typically in less than 0.002
seconds. In fact, there is no faster way to control your
instruments, short of laboriously programming everything in
machine language. QUICKI/O(tm) links your BASIC programs to the
ADALAB(tm) hardware by a method that is very convenient and easy
to learn. Also, since QUICKI/O(tm) uses only 2.25K of memory,
you will have plenty of memory space left for your programs.

Included with QUICKI/O(tm) is a sample program that
demonstrates all capabilities of the system. With this program,
you can set or read the real time clock. Also, you may set the
countdown timer to buzz after a specified period of time.
Reading the timer will stop the buzzing. The digital I/O section
of the sample program allows you to toggle output bits under
keyboard control, while the state of each input and output bit is

-1-

shown on the d
sample program
at a specified
devices. You
on the screen
this sample pr
you how easy i
powerful capab
hardware, most
programs in BA

splay screen. The general I/0 section of the
permits you to input or output a series of values
rate from the serial, parallel or analog I/O
ay also enter values from the keyboard, list them
r plot a high-resolution graph. Most important,
gram and other examples in this manual will show
is for you to write your own programs. Using the

1 i ties of QUICKI/0 (tm) and the .ADALAB(tm)
scientists will find it quite easy to develop
IC that can control their scientific instruments.

Glf1' OOI'ICE: DOS 3.3 is a copyrighted
p ogram of APPLE Ol1PUTER, INC. licensed to
I ERACTIVE MICROWARE, INC. to distribute for
u e only in combination with this product.

PLE CCMPUI'ER, INC. makes no warranties, ei
t er expressed or implied, regarding the en
c osed computer software package, its mer
e antability or its fitness for any particular
p rpose. This disk also contains a high-speed
o rating system · called Diversi -DOS (tm) ,
w ich is licensed for use with this program
o ly. To legally use Diversi-DOS with other
p ograms, you may send $30 directly to: DRS,
I c., 5848 Crampton ct., Rockford, IL 61111.
Y u will receive a Diversi-DOS utility disk
w th documentation.

-2-

HOW TO PRODUCE A BACKUP DISK

This program is copyrighted, which means that it is illegal
for anyone to make copies of it or give copies to others.
However, the original purchaser of this program is hereby granted
permission to make a backup disk for his own exclusive use on a
single computer system. For safety's sake, your first action
should be to copy the master disk to another disk as follows:

1. Note that this proqram requires an APPLE II+ or APPLE II
computer with Applesoft in ROM, 48K RAM and one or more
ADALAB(tm) boards.

2. Mount the QUICKI/O(tm) disk, leaving the write protect tab in
place. Then, type LOAD QUICKSAMPLE and press RETURN (from now
on, you should always press RETURN after entering a command).
After the disk stops, type BLOAD QUICKI/0.

3. Mount your copy disk (remove the write protect tab) and type
SAVE QUICKSAMPLE. After the disk stops, type BSAVE
QUICKI/O,A$8D00,L$8F0.

-3-

Before usi
board as desc r
following expl
to the sel f-te
some parts of
outputs from i

USE THE QUICKSAMPLE DEMONSTRATION PROGRAM

g QUICKSAMPLE, you should install the ADALAB(tm)
bed in the ADALAB(tm) hardware manual. The
nation assumes that you have connected the cables
t accessary board, although it is possible to use
he QUICKSAMPLE program with other inputs and
struments, etc.

RUN QUICKSAMPLE. This program automatically
loads QUICKI/O(tm), initializes the ADALAB(tm) hardware and runs
the self-test n channel 0. The self-test program starts the
real-time cloc , verifies that the alarm (timer 1) is working,
runs a test pa tern through the digital I/0 and parallel I/0 and
sends a series of values to the Digital to Analog (D/A)
converter. The voltages output from the D/A converter are read by
the Analog to Digital (A/D) converter and a running tally of the
difference bet een the D/A output value and the A/D input value
is printed on he screen. The D/A output value is printed in the
column labelle VOUT=, the A/D input value is given under VIN=,
the difference is printed in the column labelled ERROR= and the
maximum differ nee between VOUT and VIN is given as MAX ERROR=.
A separate num er is given for the maximum positive and the
maximum negati e difference between VOUT and VIN. After these
tests have bee completed, you may change the output voltage by
repeatedly pre sing the left or right arrow keys. The left arrow
key decreases he voltage, and the right arrow key increases the
voltage. The irst time you press one of the arrow keys, the
step size is o e: however, the step size increases by one each
time you press the same arrow key. This will allow you to
quickly scan t any possible output value and read the
corresponding 'nput value. You may press the REPT key, together
with one of th arrow keys, in order to speed up the scanning.
Whenever you s itch from one arrow key to the other, the step
size goes back down to one, so you can narrow down on a
particular out ut voltage. To exit from the self-test on channel
0, press any k y other than one of the arrow keys.

If you hav plugged the ADALAB(tm) cables properly into the
self-test boar , all of these tests should proceed without any
problems. The real-time clock test, the timer 1 test, the
digital I/0 te t and the parallel I/O test should each print OK
as the last th'ng on the corresponding line. The analog I/0 test
should display a maximum error of +10/-10. If ERROR is printed
instead of OK fter any test or if the analog error is greater
than +10/-10, ou should consult the hardware manual before
proceeding. T e hardware manual describes a procedure for
calibrating th analog input and output values.

-4-

Setting and Reading the Real Time Clock

After the self-test has ended, the screen is erased and a
list of QUICKSAMPLE options (the main "menu") appears on the
screen. To start the real time clock, select the first option by
typing a 1. Then, enter the current time as a 3- or 4-digit
number. For example, if the time is 10:30, type 1030. You will
notice that the time is now displayed in the upper right corner
of the screen and the time is updated once each second.

After each program option, you will be asked to press RETURN
to continue. This gives you time to read the results before they
are erased. After you press RETURN, the screen will be erased
and the menu will be redisplayed.

Next, you might want a report of the time. Of course, you
could just look at your watch or look at the top of the screen,
but please have patience and select option 2. This demonstrates
that QUICKSAMPLE actually understands what time it is.

Setting and Reading the Alarm

Option 3 is used to set the countdown timer/alarm. If you
have more than one ADALAB(tm) card, you must enter a CHANNEL
number at this point: type 0 for the first card, 1 for the
second, and so on. Then, you will be asked to enter a time
interval in units of 0.1 second: for example, if you want the
alarm to buzz after 3 seconds, type 30. After you set the timer
alarm, you can read the time remaining by selecting option 4. If
you repeatedly select option 4, you will find that it counts down
at the rate of 10 per second, regardless of whatever else the
program may be doing. Reading the timer/alarm disables the
buzzer; thus, if you wish to hear the alarm, don't read the timer
until it starts buzzing. You will note that the timer/alarm
count is negative after the buzzer begins: this tells how long it
has been since the alarm went off.

Digital Input and Output

Now, let's test the digital input/output by selecting option
5. The screen display shows the state of each input bit (blank
for off and * for on) and it also shows the state of each output
bit (0 for off and 1 for on). The bits are numbered from 7 (the
most significant bit) to 0 (the least significant bit). On the
Apple keyboard, keys 0 through 7 will reverse the state of the
corresponding output bit. For example, if bit 2 is off (0), you
can turn it on (1) by typing 2. If the ADALAB(tm) cables are
connected to the self-test board, the digital outputs are
connected to the digital inputs. In this case, the digital input
states will always be the same as the digital output states.

-5-

General Input nd Output

Option 6 s lects the general purpose I/0 test. First, you
will be asked o select a source of input data. To input data
from the keybo rd, type 1. The input data is always stored in a
data buffer (a ray D%), so after your first use of option 6, you
may reuse the ame input data by selecting input option 2.
Options 3 thro gh 5 select serial, parallel or analog input.
Next, you will select the output device. Option 1 causes the
input values t be printed on the screen, while options 3 through
5 send the val es to the serial, parallel or analog outputs.
Option 2 plots the input values using high-resolution graphics1
in this case, ou will be asked to enter a scale factor. Each
input value wi 1 be multiplied by this scale factor before it is
plotted. A sc le factor less than 1.0 is needed if some of the
input values are larger than 191, since this is the maximum Y
value on the A PLE screen.

The next q estion asks how many values (1 to 280) you wish to
input and outp t. Then, you will be asked to select the delay
time, in units of 0.1 seconds. For example, if you want to input
a value once e ch second, type 10. For fastest I/O, you may
enter a delay ime of 0, but this will be too fast for analog
input, serial 'nput and serial output.

As an exam le, let's input some values from the keyboard and
output them to the Analog Output. First, select option 6
(GENERAL I/0) n the main menu. Then, type 1 to select the
keyboard for i put. Next, type 5 to select Analog Output. If
you have more han one ADALAB(tm) card, you will be asked to
enter a CHANNE · number. When it asks HOW MANY VALUES?, type 10
or any positiv number. Since our typing speed is much slower
than the Anal Output can handle, you may type 0 when it asks
for the DELAY IME. Now the program will ask you to enter VALUE
1, VALUE 2 and so on. After you type each value, it is sent
immediately to the Analog Output channel selected. You may
connect a volt eter to the voltage test points on the self-test
adapter in ord r to verify that the Analog Output is working
properly. If ou type the value -2047, the Analog Output will
give the most egative voltage for the range you have selected
(see the ADALA (tm) hardware manual for more information about
jumper options),. If you type 0, the output will read zero volts.
If you type 20 7, the voltage will be the most positive value
for the select d range. This approach may be used for
calibrating th Analog Output (see the instructions in the
ADALAB (tm) bar ware manual).

Our second
channel 9 and
on the main me
have more than
number. Next,
asked to enter
maximum neg a ti

example will collect samples from Analog Input
1 ot a graph. First, select option 6 (GENERAL I/O)
u. Then type 5 to select Analog Input. If you
one ADALAB(tm) card, you must enter a CHANNEL
select option 2 for GRAPHic Output. When you are
the scale factor, type 0.0465 (this will plot the
e voltage at the bottom of the screen, 0 volts in

-6-

the center and the maximum positive voltage at the top of the
screen). Feel free to experiment wih different scale factors, if
you wish. Next, enter 50 or more for the number of VALUES and
enter 1 to select a DELAY TIME interval of 0.1 seconds between
samples. After you type the delay value and press RETURN, the
screen will be erased and a series of points will be plotted.
After the plotting ends, press RETURN to display the main menu.
If the analog cable is plugged into the self-test adapter, the
input voltage will be constant (whatever you last sent out on the
Analog Output), so the plot should be a straight line. In fact,
this is a good way to check the stability of the analog circuits
on the ADALAB(tm) board. Since the plot is scaled down quite a
bit, you might want to list the values stores ir the data buffer
in order to detect small changes in the Analog Input values that
are not visible on the graph. To do this, select option 2 (DATA
BUFFER) for input and select option 1 (SCREEN LIST) for output.
If you wish, you may connect some other voltage source to Analog
Input channel 0 and in this case, the plot will generally be a
curved line.

Analog Linearity Test

Option 7 on the main menu tests the Analog Input and Analog
Output circuits to make sure that the signal response is linear
over their entire voltage range. Before running this test, plug
the analog I/O cable into the self-test adapter board, so that
the Analog Output is connected to the Analog Input. Also, make
sure that the voltage range jumper is on the same range for both
Analog Input and Analog Output. If you have more than one
ADALAB(tm) card, the program asks you to enter a CHANNEL t.
During the analog linearity test, a graph of the input voltage is
plotted: it should be a straight line. After the last point is
plotted, a straight line will be drawn from the last point to the
first point for comparison with the plotted points. Then, the
maximum differential nonlinearity is calculated by taking the
difference between each successive pair of input values. Since
the output value changes in steps of 15, the difference between
successive input values should also be 15. However, a maximum
differential nonlinearity of +2/-2 (+0.05% of full scale range)
is considered to be within specifications for the +4V range.
Somewhat greater nonlinearity may be observed at higher gain
values. The maximum integral nonlinearity is also reported.
This is calculated by comparing each input value with the
predicted value, based on the average step size for the entire
voltage range. Here, a maximum integral nonlinearity of +4/-4
(+0.1% of full scale range) is considered to be within
specifications for the +4V range. Note that these nonlinearity
figures include errors from four possible sources: the D/A
converter, the output amplifier, the input amplifiers for the A/D
converter and the A/D converter itself. By testing the analog
I/0 in this way, we tend to exaggerate the nonlinearity error.

-7-

Analog Stabilit Test

Option 8 on the main menu permits you to measure the short
term and long t rm stability of the analog I/O subsystem. Before
running this te t, plug the analog I/O cable into the self-test
adapter board. Normally, the voltage range jumper should be on
the same range for the D/A as for the A/D, although this test
will operate su cessfully with different ranges, provided that
the D/A output oltage is within the range of the A/D input.

At the beginning of this test, you will be asked to enter the
CHANNEL number, unless you have only one ADALAB(tm) board. Next,
you will select the output voltage, which should be a value
between -2047 and 2047. After this, the screen will be erased
and a scale fr -5 to +5 will be printed along the bottom. The
channel number, output voltage (VOUT), initial input voltage (V0)
and the initia time (T0) are printed on the second line. On the
third line are printed the SCALE factor for the histogram graph,
the percentage of input values which fall outside the ideal range
of +1 (ERROR%), the current input voltage (Vl) and the current
time (Tl). A ontinuous stream of input values is read by the
A/D converter, running at its maximum rate and a histogram of the
deviations fro the average input value (Vl) is plotted. For
example, if an input value of 1002 is read from the A/D while the
average value Vl) is 1000, the +2 column on the histogram is
incremented. f one of the columns runs off the top of the
screen, the SC E factor is incremented and the histogram is
replotted acco ding to the new SCALE factor.

Short term stability of the analog I/O subsystem is indicated
by the distrib tion of values on the histogram and by the ERROR%
figure on line 3. Bear in mind that Vl is the average of the
most recent bach of 15 A/D input values and therefore, the
histogram refl cts only the short term stability. Long term
stability (dri t) is indicated by the difference between V0 and
Vl, over the t 'me interval T0 to Tl. You will note that the
ERROR% value g nerally starts out high, becau~e it takes a few
readings befor the A/D input settles to the exact value.
Thereafter, th ERROR% value decreases rapidly. Also, note that
ERROR% is not percentage of full scale voltage: it is actually
the percentage of values falling outside the ideal of +1 least
significant bi • This is a very stringent measure of accuracy.

Long term
you have just
drift of as mu
thereafter, th
the computer w
change the tem
applications,
measurements a
application pr

rift is primarily a function of temperature. If
urned on the computer, you may expect a long term
h as 10 over the first hour of warmup, but
drift will be much less. Removing the cover of

11 also cause drift because drafts of air will
erature of the interface card. In many
ong term drift is of little significance because
e made over a short time interval or else the
gram can measure and compensate for drift.

-8-

Self-Test Program

Option 9 on the main menu selects the self-test program. As
discussed earlier (see Initial Self-Test), the self-test program
checks all parts of the standard ADALAB(tm) hardware. The only
difference here is that you will be asked to enter a CHANNEL
number, if you have more than one ADALAB(tm) interface card.
Consult the earlier discussion of the initial self-test procedure
for further details about interpretation. Also, you should
consult the hardware manual about calibration procedures.

-9-

I
BACKGROUijD INFORMATION ABOUT QUICKI/O(tm) PROGRAMMING

I

Initialization of QUICKI/O(tm)

QUICKI/O(t) is a machine language program that quickly
executes comma ds that you include in your BASIC programs. The
easiest way to activate QUICKI/O(tm) for use in immediate mode is
to type BRUN Q ICKI/0. This initializes the ADALAB(tm) hardware
and then retur s to BASIC. Thereafter, you may type QUICKI/O(tm)
commands (see elow) in the immediate mode and obtain your
results immedi tely. If you have already used BASIC to run
another progra , type NEW or CLEAR to clear all variables and
arrays.

To use QUI KI/O(tm) in deferred execution mode, begin your
BASIC program ith the following statement:

1 HIMEM:36095: D%=0: DIM C%(5),Q%(5),D%(desired size):
PRINT CHR$ 4)"BRUN QUICKI/0"

When this stat ment is executed, QUICKI/O(tm) is loaded at
address $8D00 hrough $95FF and the ADALAB(tm) hardware is
initialized. UICKI/O(tm) automatically determines which slots
contain an ADA AB(tm) card. The card in the lowest-numbered slot
will be called channel 0, the next card is channel 1, and so on.
Memory locatiof 36221 ($8D7D) contains the number of ADALAB(tm)
cards found. emory locations 36222 to 36225 tell which slots
are occupied b ADALAB(tm) cards.

QUICKI/O(tm) crmmand Format
I

QUICKI/O(t) commands are very short, easy to type and easy
to remember. he first letter of every command is the ampersand
(&); this tell BASIC that a QUICKI/O(tm) command is to follow.
The second let er of each command selects the type of device; T
selects the Re 1-Time clock or a Timer, D means Digital, S means
Serial, P mean Parallel and A means Analog. The third letter of
a QUICKI/O(tm) command is either I for Input or 0 for Output.
The fourth let er selects the channel number: this may be a
number, a vari ble name or an expression that represents the
channel number~ Let's consider a few examples: &PI0 means
Parallel Input on channel 0. &DOl means Digital Output on
channel 1. Wh t does &AI0 mean? What does &T02 mean? Now,
suppose that t e variable X has a value of 2. What does &DOX
mean? What ch nnel would be read by the command &PIX/2?
[&AI0 means An log Input channel 0, &T02 means Timer Output
channel 2, &DO means Digital Output channel 2 and &PIX/2 means
Parallel Input channel 1].

By now, yo •re probably wondering where
and output are~l placed. Variable 0% is used
output. In ot er words, the result from an
returned in 0% and you should place a value

I

I

-10-

the values for input
for both input and
Input command is
in D% before issuing

an Output command. Another form of command allows you to input
and output values from array D%(). Any QUICKI/O(tm) command may
be followed by a comma and a number, variable name or expression
that represents the element number in D%() that contains the
input or output value. For example, the command &AI0,10 returns
a value in D%(10) and &P00,10 outputs the value in D%(10). If
the value of X is 10, &AI0,X and &P00,X would give the same
results.

Other Things You Should Know About QUICKI/O(tm)

After QUICKI/O(tm) has been initialized by ~xecuting
statement 1 (above), commands may be executed in deferred mode
(while your program is running) or in immediate mode (when your
program is stopped). Bear in mind that input values are returned
in variable D% or array D% and also, that values for output must
be placed in variable D% or array D%. D% must be the first
variable declared in your program. If you want to use array D%,
you must DIMension C%(5), Q%(5), D%(desired size) as the first
arrays declared in your program. Arrays C% and Q% are not
actually used by QUICKI/O(tm), but they must be included to allow
for upward compatibility with the ADALAB(tm) Real-Time Operating
System (available soon).

After you start the clock, it continues to tick along, even
if you stop your program. You can even load and run a different
program without stopping the clock, but in this case you must
make sure that the new program doesn't erase any part of
QUICKI/O(tm) (set HIMEM:36095). If you press RESET, the clock
stops and the ADALAB(tm) hardware is partially disabled. To
reinitialize the hardware, type CALL 36096.

Since QUICKI/O(tm) uses memory locations 36096 to 38399, you
should press RESET before running any program that uses memory
above 36095. To reload and initialize QUICKI/O(tm) later, type
BRUN QUICKI/0.

QUICKI/O(tm) Error Conditions

If an error is detected in any QUICKI/O(tm) command, a SYNTAX
ERROR will result. Any of these conditions will cause an error:

1. The second letter is not T,D,S,P or A.
2. The third letter is not I or 0.
3. The channel number is laroer than the number of ADALAB (tm)
boards in your computer. ·
4. The element number is larger than the DIMension of D%().
5. An invalid expression is given for the channel number or
element number.

If such a SYNTAX ERROR occurs in a running program, BASIC
will print the line number in which the error occurred. In
immed1ate mode, no line number will be printed.

-11-

DETAILS AND EXAMPLES OF QUICKI/O(tm) FUNCTIONS

One very g
study the QUIC
this program,
the PR# comman
through 9 will
ON • • • GOSUB
remainder of t
all features o

Details About

Timer 0 is
because it is
the heart of y
hour times 100
10; 30, set D%
the seconds co
time to be ace
reading on you
command. Afte
displayed in h
of your displa
interrupts are
clock will cat
the disk opera
or writing, yo
during disk op

od way to learn how to use QUICKI/O(tm) is to
SAMPLE source program. To obtain a listing of
ust LOAD QUICKSAMPLE, activate your printer (using
) and then type LIST. The code for options 1
be found at the subroutine addresses following the
command in line 114. The examples given in the
is manual will also help you to learn how to use

QUICKI/0 (tm) •

he Real-Time Clock

used as the real-time clock. It is very accurate
ontrolled by the quartz crystal oscillator deep in
ur APPLE. To set the time, set D% equal to the
plus the minutes. For example, if the time is
o 1030. Then, type &T00. When you set the time,
nt is always set to zero. Thus, if you want the
rate to the nearest second, wait until the seconds

watch reaches zero before issuing the &T00
you set the real-time clock, the time is

urs, minutes and seconds at the top right corner
screen. The display is updated each second. If

disabled, the clock will fall behind1 however, the
h up as soon as interrupts are reenabled. Since
ing system (DOS) disables interrupts while reading
may notice the clock falling behind temporarily

rations.

The comman to read the real-time clock is &TI0. This
returns the ti e in D%, in the same format as you used to set the
clock. In oth r words, if the time is 10:30, D% will be set to
1030. After t e hour reaches 12, it is not reset to zero, but
continues coun ing up to 13, etc. as they do in the military.

Examples Using the Real-Time Clock

This examp e illustrates setting and reading the clock:

10 INPUT "WHAT TIME IS IT?"1D%: &T00
20 INPUT "WHEN DO YOU WANT TO STOP?"1T
30 &TI0: IF D% T GOTO 30
4 0 PRINT "IT I " D% "! TIME TO STOP"
50 STOP

Details About he Countdown Timer/Alarm

(Set the time)
(Enter stop time)
(Wait for stop time)
(Print time)

Timer 1 is a~-bit timer/alarm. To set the timer, place a
value in D% an then type &TOl. To read the alarm, issue the
command &Til. This returns the timer value in D%. The timer

-12-

continuously counts down at the rate of 10 counts per second,
regardless of whether you set the timer or not. However, if you
have set the alarm, the speaker will start to buzz when the count
reaches zero and will continue to buzz as long as the count is
negative. The buzzing will stop when you read the alarm. Note
that if you read the timer while the count is still positive, the
buzzing will not occur, although the timer will continue to count
down.

The countdown timer is very useful for timing various
activities and for starting or stopping something after a certain
delay.

Examples Using the Countdown Timer/Alarm

The following program measures the length of time that
Digital Input bit 1 is on.

10 D%=32767: &TOl
20 &Dil: IF D%=0 GOTO 20
30 &Til: T=D%
40 &Dil: IF D%=2 GOTO 40

(Set to maximum + value)
(Wait for bit=l to start)
(Read start time, T)
(Wait for bit=0 to stop)

50 &TIl: PRINT "DURATION = .. (T-D%) /10 II SECONDS"

This program will work for time intervals as long as 6553.5
seconds (1.82 hours), but beyond this time, the duration will
s t a r t o ve r a t 0 •

In the next example, we wish to collect 10 samples from
Analog Input channel 0 with a certain time interval (DELAY)
between each sample. The sample values will be stored in array
D% ().

10 &Til: T=D%: &AI0
20 FOR SAMPLE=! TO 10
30 T=T-DLAY
40 &Til: IF D%>T GOTO 40
50 &AI0,SAMPLE: NEXT SAMPLE

(Read initial count & start A/D)
(Loop for 10 samples)
(Subtract delay)
(Wait for delay time)
(Read value and loop)

Note that DELAY is a precise time interval measured in tenths of
seconds~ this is much more accurate than a counting loop written
in BASIC. Also note that the loop counter, SAMPLE, is used to
index the values stored in D%().

Details About Timers 2 and 3

Timers 2 and 3 are each 16-bit timers that are available for
your use as timers, frequency generators, frequency counters,
shift registers, etc. QUICKI/O(tm) allows you to set these
timers by the &T02 and &T03 commands. You can read these timers
via the &TI2 and &TI3 commands. Timers 2 and 3 are actually
timers 1 and 2, respectively, on the user 6522 chip. Initially,

-13-

both are confi
rate of 1. ~ 2 3
operation by P
49211+256*N),
AOALAB(tm) boa
information ab

ured as one shot interval timers that count at a
Hz. However, you can change their mode of
KEing the desired mode value in location $CN3B (or
here N stands for the slot number of your
d. See the ADALAB(tm) hardware manual for more
ut modes of these timers.

Examples Using Timers 2 and 3

As an exam
square wave on
will count pul
assume that yo
Before running
must be change
1 ocation $CN3 2
doing this, yo
channel ~ (con
cable), so tha
6. Next, RUN

1~ INPUT "SLOT
2~ INPUT "TIME
30 &TI3: HTAB
4 ~ IF PEEK (-16
5~ GOTO 2~

Details About

If you hav
timers per boa
numbered 4 to
and 12 to 15 f
initially set
per second and
respectively.
same way as ti
the frequency
these timers c
one-half pulse
0. If you set
will buzz when
read them with

Timers 6,
t ime r s 7, 11 a
timers are ent
and 3. Consul
information.

le, we'll set up Timer 2 to output a continuous
bit 7 of parallel output channel ~ and Timer 3
es on bit 6 of parallel output channel ~. We will
r ADALAB(tm) board is plugged into slot 2 (N=2).
this program, bit 6 of Parallel Output channel ~
to an input. To do this, POKE the value 191 into

for slot N, type POKE 492~2+256*N,l91). After
may jumper bit 7 to bit 6 on Parallel Output

ect pin 4 to pin 13 on the 16 pin DIP output
the pulses output on bit 7 will be input on bit

his program:

#?";N: POKE 49211+256*N,224
2 RATE?";D%: &T02

: PRINT D%;
84)<128 GOTO 3~

(Set mode $E0=224)
(Set pulse rate)
(Read & display count)
(Loop until key press)
(Enter new pulse rate)

imers on Extra ADALAB(tm) Boards

more than one ADALAB(tm) board, 4 additional
d are available for your use. These timers are

for the second board, 8 to 11 for the third board
r the fourth board. Timers 4, 8 and 12 are
p to continuously output pulses at the rate of 1~
these pulses are counted by timers 5, 9 and 13,
Thus, timers 5, 9 and 13 may be used exactly the
er 1; that is, as alarm timers. You may change
f timers 4, 8 and 12 with an &TO command. All of
unt down at the 1.~23 MHz clock rate and output
to timers 5, 9 or 13 each time the count reaches
timers 5, 9 or 13 with an &TO command, the speaker
their count becomes negative (providing you don't
an &TI command before the alarm begins).

~ and 14 are exactly analogous to timer 2, while
d 15 are just like timer 3. The modes of these
rely up to you, as described above for timers 2

the ADALAB(tm) hardware manual for further

-14-

Details About Digital Input and Output

Many people think that Digital I/O is the same as Parallel
I/O. However, QUICKI/O(tm) makes the distinction that Digital
I/O refers to a single bit, whereas Parallel I/O refers to a
group of 8 bits. If you have a single ADALAB(tm) board, you may
use Digital bits 0 to 1. A second board adds bits 8 to 15, a
third board adds bits 16 to 23 and a fourth board adds bits 24 to
31. Actually, Digital bits 0 to 7 are the same as Parallel
channel 0. Likewise, Digital bits 8 to 15 are the same as
Parallel channel 1, bits 16 to 23 are the same as channel 2 and
bits 24 to 31 are the same as channel 3. In spite of this
overlap in function, our distinction between Digital and Parallel
I/O makes it much easier to use ADALAB(tm) for turning switches
on or off and for reading switch states. This feature is
included in QUICKI/O(tm) because Applesoft BASIC is poorly suited
for extracting digital (bitwise) information from parallel I/O.

To read a Digital Input bit, type &DI, followed by the bit
number. The value returned in D% is 0 if that bit is off. If
that bit is on, D% will contain two raised to the power N-8*C,
where N is the bit number and C is the channel number of the
corresponding Parallel _.Input channel. For example, if bit 9 is
on, the value returned in D% will be 2 raised to the 9-8*1 power
(that is, D%=2) because N is 9 and C is 1. Normally, we don't
care about the exact value of D%1 we only need to determine
whether D% is zero or not zero.

To write a Digital Output bit, set D% to 0 if you want to
turn it off or set D% to 1 (or any other nonzero value) to turn
it on. Then, issue the &DO command, followed by the desired bit
number.

Examples Using Digital Input/Output

This program will familiarize you with the &DI and &DO
com rna nds:

10 INPUT "INPUT(!) OR OUTPUT(O)?"; IO$
20 INPUT "BIT NUMBER?";B
30 IF IO$="I" THEN &DIB: PRINT "VALUE="D%
4 0 IF IO$ ="0" THEN INPUT"VALUE?" ;D%: &DOB
50 GOTO 10

Details About Parallel Input/Output

(Select IN or OUT)
(Select Bit)
(Input)
(Output)
(Try again)

Parallel I/O means simultaneous Input or Output of 8 bits of
information. This is the fastest method for communicating with
instruments. A single ADALAB(tm) card enables channel 0; a
second card adds channel 1, a third card adds channel 2 and a
fourth card adds channel 3.

To read a_Parallel Input value, type &PI, followed by the

-15-

channel number
between 9 and
in the range o
followed by th
the D%() array
com rna and the

In order t
the ADALAB(tm)
signals help t
their info rma t
to make sure t
a receiver of
accepting it.
care about han
at tent ion to t
Parallel Input
disable handsh
some thing di st
the cable), th
data. QUICK!/
sort of deadlo
handshaking si
program reads

Several di
QUICKI/0 (tm) (
To change the
value in locat
use POKE 49212

The result returned in 0% will have a value
55. To write a Parallel Output value, put a value

0 to 255 in D% and then issue the &PO command,
channel number. Often, it is convenient to use

to contain the I/O values. In this case, add a
ext element number at the end of the command.

simplify communication between instruments and
board, handshaking signals are provided. These
e computer and the instruments to synchronize
on transfer. After sending data, the sender has
at the receiver has received the data. Similarly,
ata has to make sure that the data is valid before
Initially, QUICKI/O(tm) assumes that you don't
shaking. In order to make QUICKI/O(tm) pay
e handshaking signals, you must POKE 36257,1 (for

or POKE 36273,1 (for Parallel Output). To
king mode, POKE zero in the same locations. If
rbs the handshaking process (such as disconnecting
computer may have to wait around forever for

(tm) contains a safety measure to prevent this
k~ if you type any key during Parallel I/0, the
nal will be ignored until the next time your
he keyboard.

ferent types of handshaking can be used with
ee the ADALAB(tm) hardware manual for details).
andshakinq mode, you must POKE the desired MODE
on $CN3C, where N is the slot number. In BASIC,
256*N,MODE to do this.

Examples Using Parallel Input/Output

This progr

10 INPUT "INPU
20 INPUT "CHAN
3 9 IF IO$="I"
49 IF I0$="0"
59 GOTO 10

input or output on any parallel channel:

(I) OR OUTPUT(O)?"~IO$
EL t?"~CH
HEN &PICH: PRINT "VALUE="D%
HEN INPUT "VALUE?"iD%: &POCH

(Select type)
(Select channel)
(Input)
(Output)
(Try again)

This progr m inputs 109 values from Parallel Input channel 1
(in slot 2) an stores the values in the 0% array:

10 POKE 49212+ 56*2,8
20 POKE 36257,
39 FOR I=l TO 00
4 0 &P Il, I: NEX

Details About nalog Input/Output

(Handshaking mode 8)
(Enable handshake)
(Take 100 samples)
(Input and loop)

An analog ignal is a positive or negative voltage. You may

-16-

select the voltage range for input and output by connecting
certain pins on the ADALAB(tm) interface card (see the ADALAB(tm)
hardware manual). Voltage ranges +a.5V, +lV, +2V and +4V are
available. Regardless of which voTtage range you select, the
value -2a47 corresponds to the most negative voltage, the value 0
means zero volts and the value 2047 is the most positive voltage.
The channel numbers for analog input and output range from a to
3, depending on the number of ADALAB(tm) boards in your system.

To read an analog voltage, use the &AI command, followed by
the channel number. variable D% then contains a value between
-2047 and 2047, which denotes the most negative or the most
positive voltage, respectively, for the selectee range. If D% is
-4095 or 4095, this means that the voltage exceeds the limits for
accurate voltage conversion. It is important to realize that the
analog to digital conversion process takes slightly less than
0.05 seconds and therefore, it is necessary to wait at least this
long before asking for a new value. Each time you use the &AI
command, the Erevious reading is returned in D% and a new
conversion is started. This approach allows your program to
p~·rform some calculations while the next sample is being taken.
It also means that the first sample value is inaccurate and
should be discarded. Thus, if you want to read a single value,
use the &AI command once to start the conversion and then use the
&AI command again after 0.05 seconds to read the actual value.
If you wish to read more than one value, it is not necessary to
issue the &AI command twice for each sample; just bear in mind
that the value in D% was sampled immediately following the
previous &AI command.

Initially, QUICKI/O(tm) is set up to ignore the signal from
the A/D converter that tells when a conversion is done. However,
if you POKE the value 1 into location $8DA3 (decimal 36259), a
value will not be returned until the previous conversion is done.
This conveniently avoids the need to write a timing loop in BASIC
to wait 0.05 seconds between each reading. To return to normal
mode, POKE 36259,0.

In order to write a value to the Digital to Analog converter,
place a value between -2047 and 2047 in D% and use the &AO
command, followed by the appropriate channel number. The value
-2047 outputs the most negative voltage for the selected range,
while the value 2047 outputs the most positive voltage. When the
computer is first turned on, the output voltage is set to the
most negative voltage for the selected range; thus, if this
negative voltage could harm your instrument, be sure to
disconnect the ADALAB(tm) cable before turning the computer on.
When QUICKI/O(tm) is initialized (by BRUN QUICKI/0), the output
voltage is changed to 0 volts. Thereafter, the output voltage
will be determined by your &AO commands and the voltage will
remain constant until the next &AO command. One feature of the
Digital to Analog converter that you should know about is that
the &AO command automatically triggers an Analog to Digital
conversion on the board with the same channel number. This will

-17-

affect you onl if you have connected the Analog Output to the
Analog Input o the same board. In this case, it is necessary to
discard the fi st two Analog Input values after changing the
Analog Output alue, due to the delayed response of the Analog to
Digital conver er. The Digital to Analog converter works much
faster than BA IC, so it is not necessary to test for conversion
done. The max mum D/A conversion time is 20 microseconds.

Examples Using Analog Input and Output

Our first xample allows input or output of a value on any
valid analog c annel:

1 0 INPUT " I NPU
20 INPUT "CHAN
30 IF IO$="I"

: &AICH: P
411.1 IF I0$="0"
50 GOTO 111.1

The next p
at the maximum
Each reading i
screen, with t
the bottom of
screen until y

111.1 &AI11.1: POKE
2 0 FOR SAMPLE=
30 &AI0: Y=96-
411.1 HPLOT SAMPL
5 0 IF PEEK (-16
6 0 TEXT

This progr
channel 0. Yo
second (HZ).
volts to the m
faster speeds,
pattern, due t

10 MN=0': MAX=2
2 0 INPUT "FREQ
3 0 DV=F RQ *SCA
4 0 FOR V=MN T
50 D%=V: &A00:
6 0 IF PEEK (-16

(I) OR OUTPUT(O)?"~IO$
EL t?"~CH
HEN &AICH: FOR I=l TO 50: NEXT
INT "VALUE="D%

(Select type)
(Select channel)
(Wait 50 msec)
(Input and print)
(Get value & output)
(Try again)

HEN INPUT II VALUE"~ D%: &AOCH

ogram takes 2811.1 Analog Input samples on channel 0
rate permitted by the conversion done signal.
scaled for plotting on the high resolution

e value 2047 at the top of the screen and -2047 at
he screen. At the end, the graph remains on the
u press any key.

6259,1: HGR
TO 279

%/21.5
,Y: NEXT SAMPLE
84)<128 GOTO 50

(Initialize, set graphics mode)
(Take 280 samples)
(Input and scale)
(Plot a point)
(Wait for key press)
(Revert to text mode)

m outputs a sawtooth wave form on Analog Output
select the frequency from 0.01 to 100 waves per

n each case, the output voltage ranges from 0
ximum for the selected voltage range. With the
an oscilloscope trace will show a more jagged

the large step size.

47: SCAL=20
ENCY (0.01 TO 1011.1 HZ)?"~FRQ

MAX STEP DV
NEXT V
84)<128 GOTO 40

(Set voltage range)
(Get frequency)
(Calculate step size)
(Loop for one wave)
(Output voltage)
(Continue until key pressed)

Details About erial Input and Output (optional)

QUICKI/O(t) includes provisions for Serial I/0 using an
optional APPLE Communications Card plugged in slot number 7.

-18-

This enables communication of data via a telephone modem or any
other serial terminal. Serial communication means that an 8 bit
unit of data is broken down into a timed series of on and off
signals that reflect the state of each successive bit of the data
unit. A start signal precedes the first data bit and a stop
signal is transmitted following the last data bit. Although
serial I/O is slower than parallel I/0, it has the advantage of
requiring only 2 connecting wires.

To read a value from the Serial Input, use the &SI0 command.
The value is returned in D%. To send a value to the Serial
Output, place the value in D% and issue the comwand, &S00. Note
that only channel 0 is allowed in each of these cases. Since the
data is transferred directly to and from the serial interface
chip, none of the special characters described in the APPLE
Communication Card Manual have any effect.

Initially, QUICKI/O(tm) is set up to ignore the handshaking
signals that tell whether the serial interface chip has completed
its previous operation. In this condition, you must ensure that
serial data is not read or written at too fast a rate (11 values
per second for 110 baud or 30 values per second for 300 baud).
To make QUICKI/O(tm) pay attention to the handshaking signals,
you should POKE 36255,1 for serial input or POKE 36271,1 for
serial output. If you do this, QUICKI/O(tm) will wait until the
serial interface chip is ready before transferring data. As a
safety measure, in case no data is available for a long time, you
may press any key to make QUICKI/O(tm) temporarily ignore the
handshaking signals. To return to the non-handshaking mode
permanently, POKE 0 into the locations indicated above.

Examples Using Serial Input and Output

This program echoes Serial Input values to the Serial Output
channel in handshaking mode. The program stops when you press
any key on the APPLE keyboard.

10 POKE 36255,1: POKE 36271,1
20 &SI0: &S00
30 IF PEEK(-16384)<128 GOTO 20

(Invoke handshaking)
(Input and Echo Output)
(Loop until key is pressed)

To store successive Serial Input values in an array, just
append the element number to the command. This program reads 10
values into D%():

10 POKE 36255,1
20 FOR SAMPLE=! TO 10
30 &SI0,SAMPLE: NEXT

(Invoke handshaking)
(Take 10 samples)
(Input and store)

Often, serial I/O is used for transmitting strings of
letters. This program shows you how to assemble and disassemble
strings for I/0. After 10 letters are input, the string is
printed and then the string is output serially.

-19-

1 0 s $ =" II : FOR
20 &SIS: S$=S$
3 0 NEXT: PRINT
4 0 FOR L=l TO
58 D%=ASC(MID$
68 NEXT

=1 TO 18
HR$ (D%)

S$
8
S$,L,l)): &S08

(Input 18 letters)
(Assemble string)
(Print string)
(Output 18 letters)
(Disassemble and output)

-20-

Interactive Microware, Inc.
P.O. Box 771
State College, Pa 16801
(814) 238-8294

QUICKI/0 UPDATE tl

When the real-time clock is runninq and/or whenever
interrupts are enabled for any other device, conflicts with the
Disk Operating System (DOS) may occur at random times. DOS
sometimes uses location S45, which is also used to store the A
register contents when an interrupt occurs. The only way to
prevent this conflict is to disable interruots before executing
any DOS command, including the "PR#" command. After the DOS
command is finished, interrupts may be reenabled. The real-time
clock will recalculate the correct time after interruPts are
disabled for as long as 6553 seconds (1.82 hours). However, no
data will be input or outout from other devices that deoend on
interrupt servicino as long as interrupts are disabled.

The following short machine lanquaqe subroutines will
disable or enable interruPts:

DISABLE SEI
RTS

ENABLE CLI
RTS

;S78=120 decimal
;$60=96 decimal
; $ 58= 8 8 dec i rna 1
;$60=96 decimal

These subroutines may be Placed anywhere in memory. For examole,
if we put them at location 0, which is safe for BASIC, vou could
use the followinq BASIC statements to set up the subroutines:

POKE 0,120: POKE 1,96: POKE 2,R8: POKE 3,96

and use them as follows:

CALL 0: PRINT CHR$(4)"PR#0": CALL 2

In order to make the DISABLE and ENABLE subroutines a
Permanent part of QUICKI/0, type BLOAD OUICKI/0 and then POKE
38300,120: POKE 38301,96: POKE 38302,88: POKE 38303,96. Now,
type BSAVE QUICKI/O,A$8D00,L$8F0. In subsequent QUICKI/0
programs, you should CALL 38300 to disable interrupts and CALL
38302 to reenable interrupts.

·m
lw

USI

Normally,
setting and re
However, if
another progr
minimize the a
you may use o

The firs
Timer 1 to c
To set the ti
889 ($379).
time is retur
given time, s
CALL 921 ($39
down to that
desired time
halt for as 1
may terminate
The accompany
this program
readings from

Current
TIMOBJl, and
programs are
CALL -151) a
in cqlumn 2 o
and type BSA

You will
machine langu
Thus, you can
the same prog

Interactive Microware, Inc.
P.O. Box 771
State College, Pa 16801
(814) 238-8294

THE ADALAB REAL-TIME CLOCK WITH VIDICHART
AND OTHER BASIC PROGRAMS

the &T commands in QUICKI/0 are ideally suited for
ding ADALAB's real-time clock and timers.
CKI/0 conflicts with the memory space occupied by

(as it does with VIDICHART) or if you want to
unt of memory space devoted to ADALAB routines,
of the programs described here.

and simplest program (ADALAB TIMER I/O #1) uses
t tenths of seconds and does not use interrupts.
, set 0% to a number (tenths of seconds) and CALL
read the time, CALL 998 ($38C), and the current
in 0% (in tenths of seconds). To wait for a

D% to the desired time (in tenths of seconds) and
). Your program will resume when Timer 1 counts
lue. In case of error (such as setting the
eater than the current time), your program may
g as 1.82 hours. In this unfortunate case, you

e request by pressing any key on the keyboard.
BASIC program is an example of how you can use

SET, GET, or WAIT for a given time and convert
imer 1 into hours, minutes, and seconds.

rsions of QUICKI/0 contain this program as file
he BASIC test program is called TIMTESTl. If these

t on your QUICKI/0 disk, enter the Monitor (type
type 379:A9 E9 80, etc., copying the hex numbers
the listing. Then, return to BASIC (press RESET)
TIMOBJl, A$379, L$49.

note that TIMOBJl resides just above the AOOBJ
routine for reading ADALAB's A/D converter.

use both the A/0 routine and the timer routine in
To combine the AOOBJ and TIMOBJl programs,

type BLOAD ADOBJ,A$320 and BLOAD TIMOBJl,A$370 and then type
BSAVE ADTIM,A$320,L$90. This combined program is used for a new
version of VIDICHARTAD which uses Timer 1 to accurately control
the delay (DLY) between samples. Since the timer runs
independently of your BASIC program, you can perform some
calulations between samples in the BASIC program and still
maintain an accurate time interval between samples. To use this
new version of VIDICHARTAD, type LOAD VIDICHARTAD and enter the
changes in lines 1010-1015 as listed. Then, type SAVE
VIDICHARTADTIM to save this new version. When vou use the ·ADC
command, enter the #DELAY value in units of ten._hs of seconds.

The second time-keeping program (ADALAB TIMER I/O #2) uses
50 millisecond interrupts to update the time in hours, minutes,
and seconds. To initialize the real-time clock, CALL 880 ($370).
To set the time, POKE HOURS at 972 ($3CC), POKE MINUTES at 971
($3CB), POKE SECONDS at 970 ($3CA), and POKE UNITS at 969 ($3C9)
where UNITS are measured as 50 millisecond intervals. To read
the time, read HOURS, MINUTES, SECONDS, and UNITS at the same
corresponding locations. Here, the time is automatically
updated, so you don't need to calculate the time from the 58
millisecond down-counter value. The accompanying BASIC program
gives an example of how to SET or GET the time and WAIT for a
particular time to arrive. It also shows how to display a
continuously updated time on the video screen.

Current versions of QUICKI/0 contain this progrum as file
TIMOBJ2 and the BASIC test program is called TIMTEST2. If these
programs are not on your QUICKI/0 disk, use the monitor to enter
370:A9 E0 8D, etc., copying the second column from the listing.
Then, press RESET and BSAVE TIMOBJ2,A$378,L$5F.

Both TIMOBJl and TIMOBJ2 assume that your ADALAB interface
card is in slot 2. If this is not the case, you should change
all of the $C2's in the 3-byte instructions to $C0+N, where N is
the slot containing the ADALAB card. Also, note that both
TIMOBJl and TIMOBJ2 are relocatable to any address in memory,
although if you move TIMOBJ2, you must update INTADR (location
$3C7) to contain the new address of the TIMINT interrupt routine.

~::G70 A'3E0
03~72 8D~3E:C2

0375 A9BE
'.:.~377 8D04C2
€137~::. A':.::.C7
037C: 8D05C2
037F AD0360
0382 8D08C2
~3385 AD026~3

(138:3 8[:t0'3'C2
~1388 6~3

038(: AD~38C2

038F AC09C2
(1392 80~3360

0395 8C0260
a:-$98 60

039'3' 2C~10C0

~339C 3010
039E AD~18C2

~13A1 CD0~56~3

~13A4 D0F3
03A6 AD09C2
f.1~5A9 CCJ0260
03AC C•0EB
03AE 6~1

LABEL TABLE
DPEF<: 60~12

BASEl C200
SETH1 03~7~1

GETII'1 03:3C
I.~IATH1 0399
OUT 03AE

0~110

~1~::120

~1030

~3~.380

0085
~1090

01~1~1

(1110
~1120

~:::1130

~114~1

0150
016~3

0170
~1180

(1190
0200
0210
~:::122121

(1230
0240
~1250

~3260

02"?0
~128~3

€1285
~1290

0300
~:::1310

~2132~1

0:53~"3

0340
0350
036(1

; DA LAB T I 1'1EFi: I /0# 1
DPER EG!U 6~11212

BA~::;E 1 EG!U C2~30

OFi:G (~:::.'70

OB.J 8000
~ !3ET T I t1E I t..J D~·~
~::·ET I t·1 LDA #$EI2t

STA BASE1H3B
LDA #$BE
STA Bf~SE1+04
LDA #$C7
STA BASE1+05
LDA DPER+~11
STA Bf~SE1+08
LDA C•PEF::
STt==:t BASE1+~19
F<:TS

; GET Tit .. IE It..J D~-;;

t ET I t·1 LC•A BASE 1 +08
L[:t'·,·' BASE 1 H39
STA DPER+01
STV DPER
RTS

; I.~IAIT Tit·1E It..J D~·~

1.~ AT I t·1 BIT $Ct2t0~"3

;TIMEUP ON KEVPRESS

CUT

8t·1I OUT
L[:•A Bf~SE 1 H38
Ct'IP DPEFi:+t:::11
Bt..JE ~IATH"I

U>A BASE 1 +09.
CI"•1P DPER
Bt-IE l.~lfH H1
RTS

JLIST

1 Lot·1Et1: 24576: [:·~-;; = 0: PF<:It..JT CHR$
(4) II BLOA[:• T I t·108.J 1 • A$370 II

100 INPUT "SET(S) :e GET(G) OR l.t.IAI
TO.J) ?";A$

110 IF A$ = "S" THEt..J GO SUB 9000

120 IF A$ = "G" THEt..J GO SUB '3'100

130 IF A$ - "1.~1 II THEt..J GOSUB '3200

140 GOTO 1 ~"3~3
9000 SETIM = 880:GTIM = 908:WTIM =

921:D% = 32767: CALL SETIM
9010 I HPUT "T I 1'1E (HOUFi:S, t•1 I t-1 ,. SEC)

? 11
; HR. t··lt..J, SC: CALL GTit·1: T0 =

[:•~-;;: RETURt..J
9100 CALL GTIM~T1 = D%:DT = T0 -

T1: IF DT < 0 THEN DT = DT +

9110 D% = DT / 36000:DT = DT - D%
* 36000:1-JR = HR + D%

9120 D% = DT / 600:DT = DT - D% *
600: t1N = t·1t..J + D~-;;

9130 D% = DT / 10:DT = DT - D% *
10:T0 = T1 + DT:SC = SC + D%

9140 IF SC > = 60 THEN SC = SC -
60: t·1t..J = t·1N + 1

9150 IF MN > = 60 THEN MN = MN -
612t: HF.: = HR + 1

'316~.3 PR It..JT II T H1E Is II I-IF.: II: "t·1t..J II: "S
c II. II DT: Fi:ETUFi:N

·~:;.20~3 I t·4PUT II DELA'·,·' TIME (TEt..JTHS 0
F SECCti·..JDS) ""?II :: DLV

·~::.210 Cf~LL t3T H1: D~·~ = D~-~ - DLV: CALL
I.•.IT I 1'1: F.:ETURt..J

] LIST 101 ~J--

1010 IF AD = 0 THEt..J AD = 800: PRINT
C[:•$ II BLOFtC• ADT I t·1 :• t==:t" AD

1012 T = 32767:D% = T: CALL 880:W
T = 921

1015 FOR I ~ 0 TO NS:D% = OP: CALL
AD:D%(I.80) = D%:U = USR (N
):T = T - DLV:D% = T: CALL W
T: NEXT :U - USR <1-1>: TEXT
: F.:ETUI~t··l

