
PROmGRAMER™
INSTRUCTIONS

INTRODUCTION

If you understand EPROMs and the mechanics of programming,
set the switches, boot the disk, and ignore the rest of these
instructions. If you are in a rush to use the PROmGRAMER, or
are not interested in the technology behind this product, you
may. skip the next section, and GOTO "SETTING THE SWITCHES".

WHAT IS AN EPROM

Taking our APPLE as an example, we know that some of its mem­
ory is volatile, that is, when we turn off the power, the computer
"forgets" ·what it had in it. This type of memory is called RAM
(Random Access Memory), or, more correctly, R/W (Read-Write) mem­
ory, since you can write information into it, and read it out
again. However, there is some memory that is not volatile. We
know that as soon as we turn on the computer, some programs are
available to us, even without a disk. Examples of these programs
include APPLESOFT and the system monitor. These programs are
stored in a non-volatile memory called ROM (Read Only Memory).
[We leave it as an exercise to the reader to figure out what a

WOM (Write Only Memory) is good for].

A major problem with ROMs is that they are manufactured with
the program in place, and it is impossible for the user to change
the memory. The cost to make just one is in the vicinity of
$3,000 (U.S.). Obviously, this is too high to be practical, unless
you make many of them, since each additional one is only a few
dollars.

Along came the PROM (Programmable Read Only Memory). This
device is manufactured with many tiny fuses in it. Where a fuse
exists, a·logical ONE would be read. To change it to a logical
ZERO, a high pulse of current is sent through the fuse, melting
it. The obvious problem with this is that you can program the de­
vice once. If you make a mistake, buy another one, and try again.

Which brings us to the EPROM (Erasable Read Only Memory).
This device is also manufactured with each "cell" reading a logi­
cal ONE. If you want a logical ZERO, you have to program it in.
A rigorous explanation is beyond the scope of these instructions,
but, in short, this is done by "pumping" a charge into an insula­
tor. This is the job of the PROmGRAMER. The wanted address and
data are set up and a relativly high voltage is applied to the
chip. This causes an insulator to temporarily change into a con­
ductor. A charge of electrons is injected into the middle of the
conductor, and, when the high voltage is removed, these electrons
now find that they are trapped, surrounded by an almost perfect
insulator. This "floating" charge affects circuitry which "sees"
a logical ZERO where such charge exists.

These EPROMs are programmed one byte at a time, i.e. eight
bits per programming pulse. The charge is as permanent as we wish
to make it (Well, not absolutly permanent. Most EPROM manufac­
tures will guarantee the charge retention for only(!) ten years).
We can change this insulator back into a conductor, however, by
shining a short-wavelength ultra-violet lamp through the little
window on the EPROM. This causes the insulator to allow the char­
ges to "leak" rapidly, thus erasing the EPROM. This usually takes
about 20 minutes. Now, unless you know what you are doing, please
read the rest of these instructions before you try programming
your first EPROM.

SETTING THE SWITCHES

On the PROmGRAMER is a set of ten switches. All switches
should be in the down position (OFF) except for those shown by the
white square above the switch. On the right edge of the white
squares are some numbers representing the different types of
EPROMs. This unit will program the single voltage supply type of
EPROM from the 2708 to the 27512. The number 27 does not appear
on the guide. For instance, to read or program a 27128, find the
number 128 to the right of the guide. You will notice that the
squares above switch numbers 1, 4, 7, and 9 are highlighted.
These switches should be turned on (UP). NOTE: It is especially
important that switches 8, 9, and 10 be in the correct position for
the type of EPROM used. These switches control the level of pro­
gramming voltage, and failure to have them in the correct position
may result in catastrophic failure of the EPROM.

DIFFERENT EPROMS

There are several EPROM types other than those listed on the
guide. It is important to remember that the PROmGRAMER can only
program the single voltage-type EPROMS. Some of the earlier EPROM
types need three voltages to operate. These types should be con­
sidered obsolete, and the PROmGRAMER will not program them. In
particular, TI (Texas Instruments) had an EPROM called a 2716
which uses three voltages. Their 2516 is the equivalent of every­
one elses 2716. The Intel type 2716, which everyone else makes,
can be programmed by the PROmGRAMER.

Toshiba makes a 27256 which is the same as the others, except
that it uses a 21 volt programming voltage, instead of the 12.5 that
the others use. Use the settings as shown, except switches 8 and 10
should be DOWN, and switch 9 should be UP.

Due to space limitations, we did not list all EPROM types
that you can use. If you have a single voltage 2708, use the set­
tings for the 2716. If you have a 2764A, use the settings for the
2764, except switch 8 should be up, and switch 9 down.

PLUGGING IN THE EPROM

When you have the switches in the correct position for the
the type of EPROM you will be using, you may plug the EPROM into
the ZIF (Zero Insertion Force) socket. This is the large socket
to the left of the guide. The lever will securely hold the EPROM
when it is parallel to the PROmGRAMER board. Move the lever per­
pendicular to the board to insert or remove the EPROM. IMPORTANT
NOTE: If the EPROM is inserted into the socket incorrectly, you
may cause (you guessed it!) catastophic failure of the EPROM.
Pin #1 of the EPROM is on the same edge as the small notch,

as shown in figure one. Pin #1 must be toward the top of the ZIF
socket. There is a note at the top of the card reminding you of
this, and two dots on the left side of the socket showing the lo­
cation of pin #1. Note that if you have a 28 pin device (2764,
27128, 27256, or 27512), pin #1 is on the upper left side of the
ZIF socket. If you have a 24 pin device (2708, 2716, or 2732),
pin #1 is the third pin down from the top on the left of the ZIF
socket. Thus, if you have a 24 pin device in the socket, there
will be two holes visible above the EPROM on each side of the ZIF
socket.

INSTALLATION

With power off, plug the PROmGRAMER into any slot (except
zero) of your APPLE 1 [, 1 [+, or //e. Turn on the power, boot the
disk, and the "HELLO" program on the disk will load the driver
program (B.PROMGRAMER). NOTE: If you have not yet done so, make
a copy of the disk, and put the original in a safe place. You may
use any standard copy program.

PROGRAMMING THE EPROM

Programming the EPROM basically consists of taking an area of
memory, and transferring it to the EPROM. The PROmGRAMER takes
care of the mechanics, and it is up to you to make sure to get the
correct data into the EPROM. We will show this by example, but
first, a word about the driver program (the one that makes the
PROmGRAMER work).

The program loads into memory at $803. (The dollar sign sig­
nifies that the number following is in hexadecimal). The length
of the program is $77A, bringing you to $F7C. The rest of memory
(up to $9600 where DOS begins) is available to you as the working
array. A memory map is shown in figure 2.

Boot the disk, and the "HELLO" program will load the driver
program into memory. The program will then ask you which slot the
PROmGRAMER is in, and the type of EPROM you are using. (Type in
a number between 1 and 8). You will then be presented with a menu
of choices. Anthropomorphically speaking, you have to tell the
computer which area of memory you are using (called the WORKING
ARRAY). You do this by specifing the starting address (symbolized
by SSSS), and the ending address (EEEE). You also have to tell
the computer where you want to start programming the EPROM. You
do this by giving is a relative address (PPPP) relative to the
start of the EPROM, where the start is 0000. All these addresses
are in hexadecimal.

To program an EPROM, you should have a binary file ready on
disk with the necessary information. The length of the data you
can fit in depends on the specific EPROM you are using. Table ONE
on the back cover, shows EPROM types, the length of the file that
can fit in, and programming times.

For our first example, let's try programming a 27128 with a
unique pattern that tests every possible combination. Looking at
the above table, we can see that the maximum length of the file is
$4000 bytes. On the disk that we sent you is a program called
"TEST PATTERN". This just consists of a sequence of numbers from
0 to $FF, repeating as necessary to fill the $4000 byte range.
First, we set the switches, plug in the EPROM, and plug it into a
slot (REMEMBER- POWER OFF!). Turn on the power, boot1ng the

disk, and type the slot number.

Since we are using a 27128, type the number 5, which is the
type number for a 27128.

DOS commands can be typed within the PROmGRAMER driving pro­
gram, so we type~

BLOAD TEST PATTERN

This pattern will load starting at location $1000.

We will now "burn" the EPROM with the memory range from $1000
to $4FFF, starting at EPROM location O, so we type:

B 1000 4FFF 0000

Note that it is necessary to put in the blank spaces, and
four digits per number. (Actually, as we shall explain later, it
is only necessary to type the letter "B", then return, as these
parameters are the default numbers for the 27128).

Now, make yourself a cup of tea, and find something to pass
the time. Each byte takes 50 milliseconds to program (0.05 sec­
onds), so we have a wait of about .05 seconds times 16384 = 819.2
seconds, or 13 minutes 39.2 seconds. You can follow the progress
of the programming, as the current EPROM address is printed on the
lower right side of the screen.

After programming is complete, the PROmGRAMER will check if
the job was done correctly. It will compare each byte of memory
with the corresponding location in the EPROM, and verify that both
are the same. If so, there will be a four note audio signal, and
a visual message. If not, the computer will give you a six note
audio signal, and start printing the addresses of the offending
byte(s). You may abort the listing at any time by hitting the ESC
or RETURN key.

While the PROmGRAMER is programming, there is a high voltage
on one of the pins. As damage may occur if the wrong voltage is
removed first, DO NOT insert or remove EPROMs while the PROmGRAMER
is in the programming state. Since the programming voltage is re­
moved in the read or idle state, there should be no problem in­
serting or removing EPROMs, even with power on. However, you MUST
turn off power before removing the card, or dire consequences will
follow.

READING EPROMS

Turn off the computer to assure yourself that the test pat­
tern in memory has disappeared. Turn the computer back on, and
initilize the program. Type 5 (the EPROM type), and~

L

This command will load memory locations $1000 through $4FFF
with the information in the EPROM starting at EPROM location zero.
To display the memory, type D. You should see the test pattern
appear. (You may pause the listing by pressing any key (except

ESC or RETURN), and continue it with another keypress). The in­
formation you are looking at was stored inside the EPROM. At this
point, you can be sure that the PROmGRAMER and your technique are
working correctly.

NORMAL OR FAST BURN?

You have a choice of two programming algorithms (an algorithm
is the program that the computer uses.) The first, which we call
"BURN", gives a 50 ms pulse for every address. This is the pulse
length recommended by most EPROM manufacturers. Most EPROMs, how­
ever, will program sucessfully with a much shorter pulse. The
"FAST BURN" algorithm will give a 2 ms. pulse, and read the byte
back. If it does not read back correctly, it will get another 2
ms. pulse, and so forth until the byte reads back correctly. The
PROmGRAMER will then give an "overprogramming" pulse lasting 4 ms.
As most bytes will program with the first pulse, programming time
is drastically reduced. For most EPROMs, however, this method is
not guarenteed by the manufacturer (although off-the-record, most
of the engineers say this method works fine.) It's up to you
which method to use. Our recommendation is to use the FAST al­
gorithm, unless it makes you uncomfortable. Incidentally, you
will find that in almost all cases, the programming time will be
shorter than that listed in the table, because both algorithms
will skip any byte of $FF, as that is the same as an unprogrammed
EPROM byte.

DEFAULTS

(Quick definition~ a DEFAULT is a parameter chosen by the
program, but can be overridden by the user.) Most of us will pro­
gram EPROMs at the same address. Since it is a pain to have to
enter a string of numbers each time we want to program an EPROM,
the software has built-in defaults. These numbers are chosen to
give the most utility to the most people. But we all know what
happens when a manufacturer decides what's good for you. They are
usually wrong. There will be times that you will not want to use
our standard defaults. That's fine with us. The default param­
eters assume that you want to program the entire EPROM, from a
file loaded at $1000. If you press "B", and return, the default
parameters will be printed, just ap if you had typed them in. If
you wish to use different parameters, just type them in after the
command letter. Note that the default parameter for the 27512 is
for the lower half of the EPROM. To program the upper half, you
will have to type in the parameters.

If you will be exclusively using a particular slot and/or
EPROM, you may save a copy of the program with these as defaults,
so you will not have to select the slot or EPROM type each time
you start the program. The byte at $806 usually holds $00, which
signifies that a choice of slot has to be made. You may put the
slot number times 16 in this location. The EPROM type is in loca­
tion $807, where $00 signifies that no choice has been made, or a
value from $B1 to $B8. You may save these parameters by running
the program, making your slot and EPROM choices, then type "BSAVE
[name}, A$803, L$77A. BRUNning this program will bypass the
choices for slot and EPROM. If you wish to change the EPROM type,
you may press "Z", which will restart the program.

OTHER NOTES OF INTEREST

If you EXIT the program to APPLESOFT, you may restart it by
typing"&", and RETURN. If you go to the MONITOR, you may re­
start by typing 803G, or by typing CONTROL-Y, then RETURN.

At any time, you may abort listings or programming by typing
ESC or RETURN. You may pause listings or programming by pressing
any other key, and pressing a key again to continue.

You may ERASE CHECK a portion of an EPROM. For instance,
typing E 400 7FF will check the indicated bytes.

You may issue a PR#1 command, to turn on a printer.

The source code for the driving program is included on the
disk. It is written for the S-C Assembler (available from S-C
Software, Post Office 280300, Dallas, TX 75228. Telephone (214)
324-2050). You may experiment with, and modify the program.

Although the source code and driving programs are copyright­
ed, the disk is not copy-protected. You are urged to make back-up
copies, for your own use, of course.

On the off chance you misplace these directions, a copy is
on the disk, in an APPLEWRITER text file.

While DOS commands can be used from within the program, you
will have to remember that LOADing or RUNning a program will
destroy the driving program, as will BLOADing or BRUNning a pro­
gram between $803 and $F7C.

To maintain compatibility with earlier versions of this pro­
gram, V (for verify) will do the same as C, K = E, and R = L

PROGRAMMING THE 27256

For some reason, most people who get into programming EPROMs
start their files at $2000. That is a nice round number, it won't
interfere with the PROmGRAMER driving program, and it does seem to
be a standard, so why not continue to use it? Well, we'll tell
you why. If you start at $2000, the file for a 27256 will end at
$9FFF. We all remember (don't we?) that DOS resides starting at
$9600, so we have a conflict. In this type of conflict, no one
wins. We must avoid overwriting DOS. If we start the file at
$1000, it will end at $8FFF neatly avoiding problems, so let's set
a standard: All files will start at $1000 (naturally, you may
start at another location if it is necessary for a particular job).

For programming Toshiba EPROMS, see "DIFFERENT EPROMS, page 2.

One other thing; under DOS 3.3 the maximum file length you
can save to disk is $7FFF bytes, one byte less than that needed
for a 27256 (amazing how often things like that seem to happen) .
We can do one of two things, save one byte less than we need, or
change DOS. If you type POKE -22172,255, DOS will now accept
files up to 64 Kbytes long. The "HELLO" program on the disk
does this for you. We suggest that you do not INIT any
disks after making this change, because your DOS is no longer
standard (until you re-boot) •

PROGRAMMING THE 27512

The 27512 can hold 64K of memory, which is the.entire m~mory
f the standard APPLE) [. Obviously, most of that 1S someth1ng we

~ould not want to program, so we must do it in two steps. Assum­
ing the files are saved as "FIRST HALF" and "SECOND HALF", we
would proceed somewhat as follows:

[initalize program
BLOAD FIRST HALF, A$1000

F 1000 8FFF 0000 (or just "F", since these are the defaults)

[after about 4 minutes)

BLOAD SECOND HALF, A$1000

F 1000 8FFF 8000

CREDITS

The hardware design of the PROmGRAMER is by BOB BRICE. The
Software was written by BOB SANDER-CEDERLOF. DOS 3.3 is a copy­
righted program by APPLE COMPUTER. PROmGRAMER is a trademark of
SOUTHERN CALIFORNIA RESEARCH GROUP.

A MESSAGE TO quikLoader OWNERS

We're sure that you would like the convenience of having the
driver program on the quikLoader, available for instant loading
without the bother of having to find the correct disk. Would we
let you down? On the program diskette is a fil~ called .
"QUIKLOADER". It is all set up to load in locat1on $1000, ~nd.ls
complete with overhead files to store in a 2716. To store 1t 1n a
larger chip, "BLOAD" it at the correct address (i.e. 2732 - A$1800,
2764- A$2800, etc.)

YOU'RE ON YOUR OWN, NOW

Well, not quite, we are available to give you any necessary
assistance. Call us at (805) 529-2082. While we cannot be
expected to teach you to program, we will be happy to help you
with any PROmGRAMER questions.

WARRANTY

THE PROmGRAMER is warrented for six months for defects in
parts or workmanship. If you have.any pro?lem within th~s time,
return it postpaid to us, and we w1ll repa1r or replace 1t. Our
address is:

SOUTHERN CALIFORNIA RESEARCH GROUP
·Post Office Box 593
Moorpark, CA 93020

Telephone (805) 529-2082

• • '"tJ -
'"tJ z

1\)

z ,.. ...&

...& :! z
0
m
< -0
m

:I

Figure 1

1.

1\)
.Q)

'"tJ -z
0
m
< -0
m

0- $802

$803- $F7C

$F7D- $95FF

$9600-$FFFF

SYSTl:M
DRIVER

WORKING
ARRAY

DOS &
IS'YST_t:M

Figure 2

Table 1

