
Apple II Miscellaneous
#14: Guidelines for Telecommunication Programs 1 of 4

Apple II
Technical Notes

Developer Technical Support
Apple II Miscellaneous
#14: Guidelines for Telecommunication Programs
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage July 1989

This Technical Note discusses recommended guidelines to ensure future compatibility and maintain
workable standards for telecommunication programs.
Changes since July 1989: Rewritten to be more explicit in passages.

Telecommunication programs have always been a particularly troublesome area on the Apple II as
far as standards are concerned. Exiting from terminal programs often leaves the system in an
unbalanced state or leaves strange and unknown things upon the user’s disks. Yet complying with
standards would not only make life easier for the users, it’s not that hard for developers to do. This
Note lists the primary guidelines Apple II telecommunication program developers should keep
foremost in their minds.

Talking to the Hardware

Communicating with the modem through the interface provided by the user isn’t always the easiest
task in the world. It often just can’t be done at acceptable speeds when using high-level software
routines, and sometimes it can’t even be done at the firmware level. It’s widely known that the
Super Serial Card can’t keep up with 9600 bps communication unless a low-level driver uses the
6551 chip on the card directly—the firmware just can’t do it. The Apple IIGS serial port firmware
can easily keep up with 9600 bps, but the GS/OS generated character drivers for those ports can’t
do single character I/O at that speed.

In general, programs must use the highest level interface available to them that functions to
specifications. If dealing with speeds of less than 9600 baud in 16-bit mode, on the Apple IIGS, use
the GS/OS drivers. That means if your terminal program uses both 4800 and 9600 baud, it should
use the GS/OS drivers for 4800 baud and another method for 9600 baud—you cause more
problems than you solve by using non-recommended methods for all speeds.

Remember that any GS/OS driver owns the slot or port it controls, and going around the drivers
causes problems. High-speed, highly-configurable loaded drivers for the serial ports may ship with
the System Software in the future, and it would be unfortunate if your terminal program was the one
that caused the driver to break.

For speeds of 9600 bps or higher with System Software 6.0, the driver can’t help you. It is
necessary to go directly to the firmware or hardware and risk future incompatibility. Remember
that the firmware must be called from bank zero emulation mode. If single character I/O isn’t
necessary, the driver can handle speeds of 9600 bps when used in multicharacter input or output.

Note: In the future, System Software may include loaded drivers for the serial ports. An
application can tell whether a driver is generated or loaded by examining bit 14 of
the characteristics word returned by the GS/OS DInfo call—a generated

Apple II Technical Notes

Apple II Miscellaneous
2 of 4 #14: Guidelines for Telecommunication Programs

driver has this bit set. A loaded driver may be able to handle 9600 bps
single–character I/O, but a generated one may not.

File Transfer Considerations

Transferring files is probably the most important function of a telecommunication program.
However, transferring the file’s data itself is not always adequate. Telecommunication programs
must find a way to transfer a file’s attributes as well as a file’s contents to keep things running
smoothly.

File attributes include the file’s type and auxiliary type (necessary fields for most applications to
identify their data files), the size of the file, creation and modification dates and times, as well as
information about how many forks the file has, what file system it came from, and how the file is
stored on disk. In addition, when asked, GS/OS returns in its option_list information about
the file that the native file system uses but GS/OS does not (information such as access privileges,
native file types and creator types, parent directory IDs, extended attribute records and other
information as important to the native file system as file type and auxiliary type are to GS/OS).

Any telecommunication program can devise a way to keep such attributes with a file when the file is
transferred between two machines that are both running the program in question. It is a much
trickier task to address the issue of keeping all file attributes with files regardless of the programs
involved in the transfer. An industry-wide standard is necessary for such integration.

The Binary II standard, devised by Gary B. Little (and documented in the Apple II File Type Note
for File Type $E0, Auxiliary Type $8000), has been accepted as a standard for maintaining these
attributes for a number of years. Many major telecommunication programs already incorporate
support for this standard; Apple urges those that don’t to do so at their earliest convenience.

Binary II is designed to keep attributes with files on the fly—it is not an archival standard and
should not be used as such. A standard like Binary II should always be used to keep attributes
with a file; confusing it with an archival standard can result in files being transferred without their
own attributes. Even archival files must be transferred with their attributes. It is never acceptable to
transfer a file without it’s attributes.

Archival considerations are a completely separate issue. An archival format and program must be
carefully designed with archiving considerations in mind, such as manipulating files within the
archive, preserving the attributes of the files archived, and allowing for a myriad of compression
schemes. The NuFX standard (documented in the Apple II File Type Note for File Type $E0,
Auxiliary Type $8002) is such an archival format, which Apple recommends be used for those
purposes. The program ShrinkIt is an example of a NuFX archival utility.

In an ideal world, all files would be transferred with their attributes sent transparently by the
telecommunication program. The user would select the file to send, and the program would
automatically send the attributes. When the program receives a file, it would already have the
attributes with the file, so no postprocessing by the user would be necessary to use the file.

Developer Technical Support May 1992

Apple II Miscellaneous
#14: Guidelines for Telecommunication Programs 3 of 4

Even archival files such as NuFX should be transferred with all attributes intact. Although the
archival utility may allow the user to select any file for processing (in case the file’s attributes were
lost), assuming that this will happen implies that it’s acceptable. It is not. No file should ever be
transferred without all its attributes, down to, and including the GS/OS option_list, if
present.

Apple IIGS Considerations

A few more guidelines for Apple IIGS-specific telecommunication applications follow:

• Don’t ignore slot configurations. Attempting to use a serial port through
hardware while an interface card for that slot is switched in will break dynamic slot
arbitration if, and when, it becomes available, unless the application does not use the
firmware.

• Be a good neighbor to interrupt handlers. Interrupts will be coming through
that you did not enable. (This is true for Apple IIe computers with Workstation
Cards, and is also true for IIGS computers even when AppleTalk is not involved.)
Programs not prepared for this could bring the system down.

Stealing main interrupt vectors is not a good idea. The main interrupt handler is
already very tight code, and it runs in ROM 10% faster than any code you can
replace it with in RAM. If you patch out the main interrupt vector and add more
than about two instructions to the code path before returning to the ROM,
AppleTalk will lose data. If you patch out the main interrupt vector, you make it
impossible for Apple to add additional functionality by patching the same vector
without breaking AppleTalk—and the vector is there for system software’s
convenience, not yours.

I can’t make it any plainer than this—do not patch out the main interrupt
vector unless it absolutely, positively cannot be avoided. The only cases we
know about where it absolutely can’t be avoided are very high-speed
communications from slot-based cards; high-speed serial communications from the
serial ports can be handled by patching the serial interrupt vector (see Apple IIGS
Technical Note #18, Do-It-Yourself SCC Interrupts). If you have to patch the main
interrupt vector to run at 38400 bps, unpatch it when you switch to 2400 baud.
Only patch the vector while it’s absolutely necessary, and don’t leave it continually
patched just because it’s easier. You’re breaking things when you do that, whether
your testing reveals it to you or not.

If you must patch out the main interrupt vector, make it very clear to your users, both
in the documentation and on-screen, that other system services like AppleTalk will
not function and may not return until the computer is restarted. Give them a chance
to back out.

• Don’t go stepping on things you don’t own. It is better to alert the user that a
certain resource (like a slot or a port) is not available than to blindly switch it in and
crash the system. Never switch slots without using the Slot Arbiter.

Apple II Technical Notes

Apple II Miscellaneous
4 of 4 #14: Guidelines for Telecommunication Programs

• Behave yourself. Don’t make wild assumptions or do things differently just
because you’re a terminal program and you think you have to do it for speed. Most
users won’t be impressed by a terminal program that’s fast and robust if it breaks
every time they activate a desk accessory or if they have to reboot the system when
they’re done with it. Don’t compromise system integrity for superficial
functionality.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIGS Hardware Reference
• Apple IIGS Technical Note #18, Do-It-Yourself SCC Interrupts
• Apple II File Type Notes, File Type $E0, Auxiliary Type $8000
• Apple II File Type Notes, File Type $E0, Auxiliary Type $8002

