
Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2 1 of 9

Apple II
Technical Notes

Developer Technical Support
Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2

Revised by: Jim Luther May 1991
Revised by: Matt Deatherage & Keith Rollin November 1988
Revised by: Pete McDonald January 1986

This Technical Note presents a new version of the Apple II Family Identification Routine, a
sample piece of code which shows how to identify various Apple II computers and their memory
configurations.
Changes since November 1988: Converted the identification routine from Apple II
Assembler/Editor (EDASM) source code to Apple IIGS Programmer’s Workshop (APW)
Assembler source code. Added the Apple IIe Card for the Macintosh LC to the identification
routine’s lookup table and memory check routine. Made minor corrections to text.

Why Identification Routines?

Although we present the Apple II family identification bytes in Apple II Miscellaneous
Technical Note #7, many people would prefer a routine they can simply plug into their own
program and call. In addition, this routine serves as a small piece of sample code, and there is no
reason for you to reinvent the wheel.

Most of the interesting part of the routine consists of identifying the memory configuration of the
machine. On an Apple IIe, the routine moves code into the zero page to test for the presence of
auxiliary memory. (A IIe with a non-extended 80-column card is a configuration still found in
many schools throughout the country.)

The actual identification is done by a table-lookup method.

What the Routine Returns

This version (2.2) of the identification routine returns several things:

• A machine byte, containing one of seven values:
$00 = Unknown machine
$01 = Apple][
$02 = Apple][+
$03 = Apple /// in emulation mode

Apple II Technical Notes

2 of 9 Developer Technical Support

$04 = Apple IIe
$05 = Apple IIc
$06 = Apple IIe Card for the Macintosh LC

In addition, if the high bit of the byte is set, the machine is a IIGS or equivalent.
For all current Apple IIGS computers, the value returned in machine is $84 (high
bit set to signify Apple IIGS and $04 because it matches the ID bytes of an
enhanced Apple IIe).

• A ROMlevel byte, indicating the revision of the firmware in the machine. For
example, there are currently five revisions of the IIc, two of the IIe (unenhanced
and enhanced), and three versions of the IIGS ROM (there will always be some
owners who have not yet upgraded from ROM 00 to ROM 01). These versions
are identified starting at $01 for the earliest. Therefore, the current IIc will return
ROMlevel = $05, the current IIGS will return ROMlevel = $03, etc. The
routine will also return correct values for future versions of the IIG S, as a
convention has been established for future ROM versions of that machine.

• A memory byte, containing the amount of memory in the machine. This byte
only has four values—0 (undefined), 48, 64, and 128. Extra memory in an Apple
IIGS, or extra memory in an Apple IIe or IIc Memory Expansion card, is not
included. Programs must take special considerations to use that memory (if
available), beyond those considerations required to use the normal 128K of
today’s IIe and IIc.

• If running on an Apple IIGS, three word-length fields are also returned. These are
the contents of the registers as returned by the ID routine in the IIGS ROM, and
they indicate several things about the machine. See Apple II Miscellaneous
Technical Note #7 for more details.

In addition to these features, most of the addressing done in the routine is by label. If you wish
things to be stored in different places, simply changing the labels will often do it.

Limitations and Improvements

As sample code, you might have already guessed that this is not the most compact, efficient way
of identifying these machines. Some improvements you might incorporate if using these routines
include:

• If you are running under ProDOS, you can remove the section that determines
how much memory is in the machine (starting at exit, line 127), since the
MACHID byte (at $BF98) in ProDOS already contains this information for you.
This change would cut the routine down to less than one page of memory.

• If you know the ROM is switched in when you call the routine, you can remove
the sections which save and restore the language card state. Be careful in doing
so, however, because the memory-determination routines switch out the ROM to
see if a language card exists.

May 1991

Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2 3 of 9

• If you need to know if a IIe is a 64K machine with a non-extended 80-column
card, you may put your own identifying routines in after line 284. NoAux is only
reached if there is an 80-column card but only 64K of memory.

Apple II Technical Notes

4 of 9 Developer Technical Support

How It Works

The identification routine does the following things:

• Disables interrupts
• Saves four bytes from the language card areas so they may be restored later
• Identifies all machines by a table look-up procedure
• Calls 16-bit ID routine to distinguish IIGS from other machines of any kind, and returns

values in appropriate locations if IIGS ID routine returns any useful information in the
registers

• Identifies memory configuration:
• If Apple /// emulation, there is 48K
• If Apple][or][+, tests for presence of language card and returns 64K if present,

otherwise, returns 48K
• If Apple IIc or IIGS, returns 128K
• If Apple IIe, tries to identify auxiliary memory

• If reading auxiliary memory, it must be there
• If reading alternate zero page, auxiliary memory is present
• If none of this is conclusive:

• Exchanges a section of the zero page with a section of code that switches
memory banks. The code executes in the zero page and does not get switched
out when we attempt to switch in the auxiliary RAM.

• Jumps to relocated code on page zero:
• Switches in auxiliary memory for reading and writing
• Stores a value at $800 and sees if the same value appears at $C00. If so,

no auxiliary memory is present (the non-extended 80-column card has
sparse memory mapping which causes $800 and $C00 to be the same
location).

• Changes value at $C00 and sees if the value at $800 changes as well. If
so, no auxiliary memory. If not, then there is 128K available

• Switches main memory back in for reading and writing
• Puts the zero page back like we found it

• Returns memory configuration found (either 64K or 128K)
• Restores language card and ROM state from four saved bytes
• Restores interrupt status
• Returns to caller

May 1991

Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2 5 of 9

 keep ID2.2

 list on

 org $2000

 longa off
 longi off

* *
* Apple II Family Identification Program *
* *
* Version 2.2 *
* *
* March, 1990 *
* *
* Includes support for the Apple IIe Card *
* for the Macintosh LC. *
* *

; First, some global equates for the routine:

PROGRAM start

IIplain equ $01 ;Apple II
IIplus equ $02 ;Apple II+
IIIem equ $03 ;Apple /// in emulation mode
IIe equ $04 ;Apple IIe
IIc equ $05 ;Apple IIc
IIeCard equ $06 ;Apple IIe Card for the Macintosh LC

safe equ $0001 ;start of code relocated to zp
location equ $06 ;zero page location to use

test1 equ $AA ;test byte #1
test2 equ $55 ;lsr of test1
test3 equ $88 ;test byte #3
test4 equ $EE ;test byte #4

begpage1 equ $400 ;beginning of text page 1
begpage2 equ $800 ;beginning of text page 2
begsprse equ $C00 ;byte after text page 2

clr80col equ $C000 ;disable 80-column store
set80col equ $C001 ;enable 80-column store
rdmainram equ $C002 ;read main ram
rdcardram equ $C003 ;read aux ram
wrmainram equ $C004 ;write main ram
wrcardram equ $C005 ;write aux ram
rdramrd equ $C013 ;are we reading aux ram?
rdaltzp equ $C016 ;are we reading aux zero page?
rd80col equ $C018 ;are we using 80-columns?
rdtext equ $C01A ;read if text is displayed
rdpage2 equ $C01C ;read if page 2 is displayed
txtclr equ $C050 ;switch in graphics
txtset equ $C051 ;switch in text
txtpage1 equ $C054 ;switch in page 1
txtpage2 equ $C055 ;switch in page 2
ramin equ $C080 ;read LC bank 2, write protected
romin equ $C081 ;read ROM, 2 reads write enable LC
lcbank1 equ $C08B ;LC bank 1 enable

lc1 equ $E000 ;bytes to save for LC

Apple II Technical Notes

6 of 9 Developer Technical Support

lc2 equ $D000 ;save/restore routine
lc3 equ $D400
lc4 equ $D800

idroutine equ $FE1F ;IIgs id routine

; Start by saving the state of the language card banks and
; by switching in main ROM.

strt php ;save the processor state
 sei ;before disabling interrupts
 lda lc1 ;save four bytes from
 sta save ;ROM/RAM area for later
 lda lc2 ;restoring of RAM/ROM
 sta save+1 ;to original condition
 lda lc3
 sta save+2
 lda lc4
 sta save+3
 lda $C081 ;read ROM
 lda $C081
 lda #0 ;start by assuming unknown machine
 sta machine
 sta romlevel

IdStart lda location ;save zero page locations
 sta save+4 ;for later restoration
 lda location+1
 sta save+5
 lda #$FB ;all ID bytes are in page $FB
 sta location+1 ;save in zero page as high byte
 ldx #0 ;init pointer to start of ID table
loop lda IDTable,x ;get the machine we are testing for
 sta machine ;and save it
 lda IDTable+1,x ;get the ROM level we are testing for
 sta romlevel ;and save it
 ora machine ;are both zero?
 beq matched ;yes - at end of list - leave

loop2 inx ;bump index to loc/byte pair to test
 inx
 lda IDTable,x ;get the byte that should be in ROM
 beq matched ;if zero, we're at end of list
 sta location ;save in zero page

 ldy #0 ;init index for indirect addressing
 lda IDTable+1,x ;get the byte that should be in ROM
 cmp (Location),y ;is it there?
 beq loop2 ;yes, so keep on looping

loop3 inx ;we didn't match. Scoot to the end of the
 inx ;line in the ID table so we can start
 lda IDTable,x ;checking for another machine
 bne loop3
 inx ;point to start of next line
 bne loop ;should always be taken

matched anop

; Here we check the 16-bit ID routine at idroutine ($FE1F). If it
; returns with carry clear, we call it again in 16-bit
; mode to provide more information on the machine.

idIIgs sec ;set the carry bit
 jsr idroutine ;Apple IIgs ID Routine
 bcc idIIgs2 ;it's a IIgs or equivalent

May 1991

Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2 7 of 9

 jmp IIgsOut ;nope, go check memory
idIIgs2 lda machine ;get the value for machine
 ora #$80 ;and set the high bit
 sta machine ;put it back
 clc ;get ready to switch into native mode
 xce
 php ;save the processor status
 rep #$30 ;sets 16-bit registers
 longa on
 longi on
 jsr idroutine ;call the ID routine again
 sta IIgsA ;16-bit store!
 stx IIgsX ;16-bit store!
 sty IIgsY ;16-bit store!
 plp ;restores 8-bit registers
 xce ;switches back to whatever it was before
 longa off
 longi off

 ldy IIgsY ;get the ROM vers number (starts at 0)
 cpy #$02 ;is it ROM 01 or 00?
 bcs idIIgs3 ;if not, don't increment
 iny ;bump it up for romlevel
idIIgs3 sty romlevel ;and put it there
 cpy #$01 ;is it the first ROM?
 bne IIgsOut ;no, go on with things
 lda IIgsY+1 ;check the other byte too
 bne IIgsOut ;nope, it's a IIgs successor
 lda #$7F ;fix faulty ROM 00 on the IIgs
 sta IIgsA
IIgsOut anop

**
* This part of the code checks for the *
* memory configuration of the machine. *
* If it's a IIgs, we've already stored *
* the total memory from above. If it's *
* a IIc or a IIe Card, we know it's *
* 128K; if it's a][+, we know it's at *
* least 48K and maybe 64K. We won't *
* check for less than 48K, since that's *
* a really rare circumstance. *
**

exit lda machine ;get the machine kind
 bmi exit128 ;it's a 16-bit machine (has 128K)
 cmp #IIc ;is it a IIc?
 beq exit128 ;yup, it's got 128K
 cmp #IIeCard ;is it a IIe Card?
 beq exit128 ;yes, it's got 128K
 cmp #IIe ;is it a IIe?
 bne contexit ;yes, go muck with aux memory
 jmp muckaux
contexit cmp #IIIem ;is it a /// in emulation?
 bne exitII ;nope, it's a][or][+
 lda #48 ;/// emulation has 48K
 jmp exita
exit128 lda #128 ;128K
exita sta memory
exit1 lda lc1 ;time to restore the LC
 cmp save ;if all 4 bytes are the same
 bne exit2 ;then LC was never on so
 lda lc2 ;do nothing
 cmp save+1
 bne exit2
 lda lc3

Apple II Technical Notes

8 of 9 Developer Technical Support

 cmp save+2
 bne exit2
 lda lc4
 cmp save+3
 beq exit6
exit2 lda $C088 ;no match! so turn first LC
 lda lc1 ;bank on and check
 cmp save
 beq exit3
 lda $C080
 jmp exit6
exit3 lda lc2
 cmp save+1 ;if all locations check
 beq exit4 ;then do more more else
 lda $C080 ;turn on bank 2
 jmp exit6
exit4 lda lc3 ;check second byte in bank 1
 cmp save+2
 beq exit5
 lda $C080 ;select bank 2
 jmp exit6
exit5 lda lc4 ;check third byte in bank 1
 cmp save+3
 beq exit6
 lda $C080 ;select bank 2
exit6 plp ;restore interrupt status
 lda save+4 ;put zero page back
 sta location
 lda save+5 ;like we found it
 sta location+1
 rts ;and go home.

exitII lda lcbank1 ;force in language card
 lda lcbank1 ;bank 1
 ldx lc2 ;save the byte there
 lda #test1 ;use this as a test byte
 sta lc2
 eor lc2 ;if the same, should return zero
 bne noLC
 lsr lc2 ;check twice just to be sure
 lda #test2 ;this is the shifted value
 eor lc2 ;here's the second check
 bne noLC
 stx lc2 ;put it back!
 lda #64 ;there's 64K here
 jmp exita
noLC lda #48 ;no restore - no LC!
 jmp exita ;and get out of here

muckaux ldx rdtext ;remember graphics in X
 lda rdpage2 ;remember current video display
 asl A ;in the carry bit
 lda #test3 ;another test character
 bit rd80col ;remember video mode in N
 sta set80col ;enable 80-column store
 php ;save N and C flags
 sta txtpage2 ;set page two
 sta txtset ;set text
 ldy begpage1 ;save first character
 sta begpage1 ;and replace it with test character
 lda begpage1 ;get it back
 sty begpage1 ;and put back what was there
 plp
 bcs muck2 ;stay in page 2
 sta txtpage1 ;restore page 1
muck1 bmi muck2 ;stay in 80-columns

May 1991

Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.2 9 of 9

 sta $c000 ;turn off 80-columns
muck2 tay ;save returned character
 txa ;get graphics/text setting
 bmi muck3
 sta txtclr ;turn graphics back on
muck3 cpy #test3 ;finally compare it
 bne nocard ;no 80-column card!
 lda rdramrd ;is aux memory being read?
 bmi muck128 ;yup, there's 128K!
 lda rdaltzp ;is aux zero page used?
 bmi muck128 ;yup!
 ldy #done-start
move ldx start-1,y ;swap section of zero page
 lda |safe-1,y ;code needing safe location during
 stx safe-1,y ;reading of aux mem
 sta start-1,Y
 dey
 bne move
 jmp |safe ;jump to safe ground
back php ;save status
 ldy #done-start ;move zero page back
move2 lda start-1,y
 sta |safe-1,y
 dey
 bne move2
 pla
 bcs noaux
isaux jmp muck128 ;there is 128K

* You can put your own routine at "noaux" if you wish to
* distinguish between 64K without an 80-column card and
* 64K with an 80-column card.

noaux anop
nocard lda #64 ;only 64K
 jmp exita
muck128 jmp exit128 ;there's 128K

* This is the routine run in the safe area not affected
* by bank-switching the main and aux RAM.

start lda #test4 ;yet another test byte
 sta wrcardram ;write to aux while on main zero page
 sta rdcardram ;read aux ram as well
 sta begpage2 ;check for sparse memory mapping
 lda begsprse ;if sparse, these will be the same
 cmp #test4 ;value since they're 1K apart
 bne auxmem ;yup, there's 128K!
 asl begsprse ;may have been lucky so we'll
 lda begpage2 ;change the value and see what happens
 cmp begsprse
 bne auxmem
 sec ;oops, no auxiliary memory
 bcs goback
auxmem clc
goback sta wrmainram ;write main RAM
 sta rdmainram ;read main RAM
 jmp back ;continue with program in main mem
done nop ;end of relocated program marker

* The storage locations for the returned machine ID:

machine ds 1 ;the type of Apple II
romlevel ds 1 ;which revision of the machine
memory ds 1 ;how much memory (up to 128K)

Apple II Technical Notes

10 of 9 Developer Technical Support

IIgsA ds 2 ;16-bit field
IIgsX ds 2 ;16-bit field
IIgsY ds 2 ;16-bit field
save ds 6 ;six bytes for saved data

IDTable dc I1'1,1' ;Apple][
 dc H'B3 38 00'

 dc I1'2,1' ;Apple][+
 dc H'B3 EA 1E AD 00'

 dc I1'3,1' ;Apple /// (emulation)
 dc H'B3 EA 1E 8A 00'

 dc I1'4,1' ;Apple IIe (original)
 dc H'B3 06 C0 EA 00'

; Note: You must check for the Apple IIe Card BEFORE you
; check for the enhanced Apple IIe since the first
; two identification bytes are the same.

 dc I1'6,1' ;Apple IIe Card for the Macintosh LC (1st release)
 dc H'B3 06 C0 E0 DD 02 BE 00 00'

 dc I1'4,2' ;Apple IIe (enhanced)
 dc H'B3 06 C0 E0 00'

 dc I1'5,1' ;Apple IIc (original)
 dc H'B3 06 C0 00 BF FF 00'

 dc I1'5,2' ;Apple IIc (3.5 ROM)
 dc H'B3 06 C0 00 BF 00 00'

 dc I1'5,3' ;Apple IIc (Mem. Exp)
 dc H'B3 06 C0 00 BF 03 00'

 dc I1'5,4' ;Apple IIc (Rev. Mem. Exp.)
 dc H'B3 06 C0 00 BF 04 00'

 dc I1'5,5' ;Apple IIc Plus
 dc H'B3 06 C0 00 BF 05 00'

 dc I1'0,0' ;end of table

 end

Further Reference
• Apple II Miscellaneous Technical Note #7, Apple II Family Identification

