The Apple][Monitor Peeled « William E. Dougherty « 1979

/777 ZN

THE

APPLENMN
MONITOR

PEELED

CALLS PEEKS POKES
BY TOPIC

ALL EXPLAINED IN ENGLISH

LOCATIONS IN HEX AND DECIMAL

* APPLE II is a Trademark of by
the Apple Computer Corp. Willian E. Dougherty

L Apple][Computer Technical Information Page 0001 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

FOREWARD
Second printing, May 1979

While writing programs for my APPLE II, I have many times had to stop
constructive work to delve into the Monitor to determine (or redetermine)

how to make use of a particular function or feature. Being totally un-
successful in finding a single PEEK, POKE, CALL reference publication in

the marketplace, and having delved deeply into a dozen computers in the

last twenty years, I decided to put together for myself, and maybe for others,
a description of the ROM contents of the APPLE IT in an organization by
subject instead of organization by machine address. With a lot of encouragment
from my associates who have APPLEs, I decided to go beyond the organized
notes I needed for my purposes and actually finish it for publication,
describing functions and features for readers to whom it would be new
information instead of just making up charts of addresses with a few

cryptic comments to refresh my memory.

Although the listed CALL points in the Monitor are most useful to the
machine language programmer, very many are also useful to BASIC or
APPLESOFT programmers as well. For example, keyboard input of single
strings which happen to contain commas and cassette tape input and output
can be accomplished by the methods described within. While programming
in Integer BASIC you may have decided that arrays of two dimensions

would be a way to keep dollars and cents separate to allow quantities
larger than $327.67 to be manipulated, and then decided otherwise when
faced with a multiply. This publication is the first in which I have seen
documentation for the use of the 16 bit/32 bit multiply and divide routines
in the (non-auto-boot) Monitor.

What is covered in this publication is the APPLE II Monitor, ROM address
range F800-FFFF. I have not yet covered the utilities (Floating point
arithmetic, Sweetl6) or the compilers or DOS.

This is the manual I have been looking for. I hope you feel the same way.

Copyright 1979
William E. Dougherty

14349 San Jose St.
Mission Hills, Calif. 91345

213.896-6553

L Apple][Computer Technical Information Page 0002 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

TABLE OF CONTENTS

Page Zero Usage by the Monitor 3
Overview of Keyboard Input and Text Mode Output 11
Keyboard Input Routines of the Monitor 12
User Program Calls to Monitor Keyboard Input Routines

Actual Keyboard Input, Functional Description 14
Keyboard Input Monitor Routine Addresses 17
Page Zero Locations Regarding Keyboard Input and Screen Output 19
Output to £he Screen, Text Mode, Functlional Description 20
Screen Format Control Address Table 21
Screen Format Control by POKE/STore 22
Scroll Window Data Manipulation Entry Points 23
Cursor Position Control 24
General Text Output 27
Special Text Output (Bell, Hex, Memory display, etc.) 28
Character Output Without the Scroll Window 29
LORES Plotting 32
Data Manipulation Functions 34

Multiply and Divide 16/32 bit

MOVE memory to memory

SAVE/RESTORE 6502 registers
Speaker (Bell) Use Through the Monitor 37
Cassette Tape Input and Output 38
Machine Language Program Development Aids 4o
Paddles and Buttons and Annunciator Output 41
Miscellaneous Monitor Support L2

WAIT for specified time interval
Example of Use of Control-Y with Parameter 43
Setting Registers for Monitor Calls from BASIC/APPLESOFT Ly
BRK Instruction Processing Description 45
Single Cycle and Trace Peculiarities 46
Program to Program Control Information Transfer 46

Extra bytes in the Text Window

L Apple][Computer Technical Information Page 0003 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

32

33

35

36

$20

$21

$22

$23

$24

WNDLFT

WNDWDTH

WNDTOP

WNDBTM

CH

PAGE ZERO USAGE BY THE MONITOR

The Monitor makes use of page zero locations 32 ($20) thru 79 ($4F)
for general functions. In addition, locations 80 ($50) thru 85 ($55)
are used for the 16 bit Multiply and Divide routines which are not
used by the Monitor itself.

Following are definitions of the page zero locations used by the Monitor
with descriptions of how and when they are used.

Left column of the Scroll Window:

Range is 0 to 39 ($27).

This field is used only in VTABZ. The contents,
when changed by user program, become effective on
the next scroll operation, clear to end of page
operation, or carriage return output. CH contains
cursor horizontal position relative to (WNDLFT).

After changing the contents of WNDLFT, either
CALL VTAB or output a carriage return to make it
take effect.

Width of the Scroll Window:

Range is 1 to 40-(WNDLFT).

Whenever a character is written through COUT to
the screen, CH is incremented after use in storing
the character in the screen area. At that time
the contents of CH is compared with the contents
of WNDWDTH to determine whether the cursor has
exceeded the right margin of the Scroll Window.

Top line of the Scroll Window:

Range is 0 to 22 ($16) for full text screen.

Range is 20 to 22 ($14 to $16) for mixed graphics/text.
This field is only used during a scroll operation to
indicate where the operation should start.

Bottom line of Scroll Window:

Range is (WNDTOP)Hl to 24 ($18).

Contents of WNDBTM are tested only on output of

a carriage return ($8D) or line feed ($8A§. It is
used by Clear to End of Page and by Scroll routines.

Displacement from WNDLFT where next character to

the screen will be placed:

Range is O to (WNDWDTH)-1.

After the screen output routine STOADV places a
character into the screen area as part of normal
character output, CH is then incremented and compared
to WNDWDTH. If CH is not low then a carriage return
will be simulated.

Note that CH is used for echoing keyboard input to
the screen by the Monitor GETLN etc. routines.

L Apple][Computer Technical Information Page 0004 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

PAGE ZERO USAGE BY THE MONITOR

37 $25 CV Vertical screen position (line mumber) for next
character to be written to the screens
Range is 0 to 23 ($17).
The content of CV is relative to the top of the screen,
not to the top of the Scroll Window. It may be set
by loading the desired line number into A-reg and
calling TABV. It may be set by POKEing the line
number into CV and then calling VTAB. Actual storage
of a character into the screen area includes use of
BASL,H for line number, not CV. The calls above to
VTAB or TABV are to set BASL,H from CV for immediate
future reference.

CV is never compared to WNDTOP, so no output character
will automatically place it in the Scroll Window.

If CV is below WNDBTM it will remain on current line
as carriage returns go by while the contents of the
Seroll Window will be scrolled for each.

38 $26 GBASL Memory address within the screen area of the left
39 $27 GBASH end point of the desired line for LORES plot.
This field is set by GBASCALC routine to the memory
location appropriate for the line number specified
in the A-reg.

4O $28 BASL This two byte field is the memory address for the

41 $29 BASH left end character position of the current text line,
within the Scroll Window. The contents are a function
of CV and WNDLFT.

This field is set by the BASCALC routine to point

to the memory address for the left end of the line
specified in the A-reg. This call to BASCALC is
usually accomplished by the VIAB routine, which then
adds (WNDLFT) to BASL,H to point to the left end of
the line within the window.

L2 $2A BAS2L This two byte field is used as a work area only

43 $2B BAS2H during a scroll operation. It is the destination
line pointer used as each line is moved to the
position above current.

Ly $2c¢ H2 Right end point of a horizontal line being drawn
by HLINE routine:
Range is 0 to 39 ($27).
This byte is set by the calling program before
HLINE is called.

" " LMNEM Low byte of two byte pointer (LMNEM,RMNEM) used
by Disassembler for index to mnemonics table.

" " RTNL Save area used by Instruction Trace routine.

L Apple][Computer Technical Information Page 0005 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

PAGE ZERO USAGE BY THE MONITOR

4s $2D V2 Bottom point of a vertical line being drawn by VLINE
routine:
Range is 0 to 19 for mixed screen, 0 to 23 ($17) for
full screen graphics.,
This byte must be set before VLINE is called.
Note that this byte is used when the Clear Screen
(CLRSCR) uses VLINE to clear the screen.

" " RMNEM Used with IMNEM as table index for mnemonic table
by Disassembler.

" " RTNH Used with RTNL as save area by Instruction Trace
routine.

46 $2E MASK With this label, this location is used as a $OF
or $FO0 by PLOT depending on whether the point is
on the high side or the low side of the two
plot lines represented by the GBASL,H pointer.
Each character of the form (GBASL),Y contains two
points on the screen, one above the other. MASK
is used to set the appropriate one while leaving the
other unchanged.

" " FORMAT Using this label, the Disassembler uses this byte as
temporary storage for the code which indicates the
format of the instruction for display purposes.

" " CHKSUM This byte is used during cassette tape read to
continually accumulate the checksum which will be
"compared" to that generated during the write
operation which created the record. This byte
is initialized to zero at the beginning of a tape
read. As each byte is stored into memory it is
Exclusively ORed against CHKSUM. After the last
byte has been stored, one more byte is read from the
tape and exclusively ored against CHKSUM. If the
result in the A-reg is zero, a good read may be assumed.
As this result is not finally stored back into CHECXSUM,
that field cannot be used by the calling program to determine
success or failure of the read. See page 38 for a way.

47 $2F IASTIN With this label the RDBIT routine uses this byte as
a work area to determine whether the sense of
input from the cassette tape input register has
changed.

" " LENGTH This field is set by the Disassembler to indicate
the length of the instruction. After output of
the disassembled instruction, PCADJ uses this
value to update PCL,H. Instruction trace also
uses this field to indicate number of bytes to move
the the instruction trace execution work area.

" " SIGN After a call to MULPM or DIVPM (signed 16 bit multiply
or divide) the $01 bit of this byte is set if result
is to be complemented by calling program.

5

L Apple][Computer Technical Information Page 0006 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

48 $30
b $31
5 $32
51 $33
52 $34
53 $35
M $36
55 $37

COLOR

MODE

INVFLG

PROMPT

YSAV

YSAV]

CSWL
CSWH

PAGE ZERO USAGE BY THE MONITOR

This byte contains the code for the color of

points to be placed on the screen in graphics mode.
The SETCOL routine is entered with a value in the
low order 4 bits of the A-reg. This value is then
placed in both the high and low nibbles of COLOR.
COLOR is then used with MASK in setting the value

of the byte in the screen area to accomplish setting
a particular point to a certain color.

This byte is used by the Monitor Command processing
routines to indicate disposition of hex information
in the input line. For example, a hex address
followed by a colon causes setting of MODE so that
during further processing of the input line each
blank encountered signifies end of a hex value to
be placed in memory.

This byte is a mask used by COUT1 to cause characters
written to the screen area to display white on

black (INVFLG=$FF) or black on white (INVFIG=$3F) or
blinking (INVFLG=$7F).

This byte contains the prompt character which is
written to the screen by the Monitor GETLN routine
in preparation for reading a line of characters from
the keyboard. When the RESET key is pressed the
Monitor places an asterisk in this location as the
prompt character for the Monitor.

This byte is a save area used by the Monitor Command
Processor. The Y-reg is used by the Command Processor
in indexing through the input line. When a command
has been decoded the Y-reg is saved at YSAV before
going to the selected service routine. On return to
the Command Processor the Y-reg is reloaded from here
before transfer of control to NXTITM to continue
scanning of the input line.

This byte is a save area for the Y-reg across a call
to the screen output routines. Y-reg is saved and
restored in the COUT! routine.

This two byte field contains the address of the routine
which is to receive and dispose of output characters.

When the RESET key is pressed this field is initialized

to point to COUT! to send output characters to the screen.
Entering a Monitor Command nPc (n=port number, Pc=Control-P)
will cause the Monitor to set CSWL,H to Cn0O. The routine
at that location will then receive (in the A-reg) each

byte "written" through COUT, which is a JPI (CSWL).

L Apple][Computer Technical Information Page 0007 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

56
57

60
61

67

thru

PAGE ZERO USAGE BY THE MONITOR

$38 KSWL This two byte field contains the address of the user

$39 input routine. It is set by RESET key processing to
point to KEYIN which gets its input from the keyboard.
The Monitor Command nKc (n=port number, Kc=control K)
causes the setting of KSWL,H to CnOO. This routine is
then called any time the Monitor or executing program
asks for another byte of input by calling RDKEY or one

of the routines which calls RDKEY.

$3. PCL This field is a save and control area for the Program
$3B PCH Counter. In addition to the Monitor uses described
below, this field is the index to next address used

by the Mini Assembler (at F666).

This field is set by execution of a BRK instruction
(but sometimes incorrectly I believe) to provide for

indication of where the BRK was encountered.

This field is set by Monitor Commands L, G, S, T.
. It is updated as required by the routines
supporting commands L (disassemble), S (single step),

and T (trace).

This is the field by means of which control 1s transferred
to the desired memory location for Monitor commands

G, S, T.

Updating of this field 1is handled by the PCADJ routine
using LENGTH previously set by instruction disassembly.

$3¢ XQT/XQINZ This field is 8 bytes long and overlays AlL,H,

$3D A2T H, A3L,H and ALL,H.

This field is a work area for Instruction Step/Trace.

$43 nodified under some conditions.

The instruction next to be executed is moved here and

L Apple][Computer Technical Information

Page 0008 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

PAGE ZERO USAGE BY THE MONITOR

60 $3c AlL Multipurpose Monitor work areat
61 $3D AlH Clobbered by Instruction Trace; see XQT above.

When the Monitor begins processing a command, MODE

is initialized to zero. As the input line is scanned,
hex digits are first placed into A2L,H. From there
they are moved also to AlL,H and A3L,H as long as

MODE remains zero. When a plus, minus, colon, or period
is encountered, MODE is modified to indicate which,

and A1L will continue to contain the value terminated
by the t or - or : or . .

A1L,H is the primary index for the BLANK Monitor
command, memory examine or display.

A1L,H contains the minuend for a subtract Monitor
command .

A1L,H is the source field pointer during a Monitor
MOVE command.

Al11L,H is one of the two indices used in the Monitor
VERIFY command.

A1L,H is the source field from which PCL,H is set
onlL, S, T, and G Monitor commands, if an address
is specified for those commands. If no address is
used in the input line then PCL,H is used from the
residue of the last command which maintained/used it.

A1L,H is the memory pointer used for cassette tape
READ and WRITE Monitor operations.

62 $3E A2L Multipurpose Monitor work areat
63 $3F A2H Clobbered by Instruction Trace; see XQT above.

This field is the receiving field into which hex

data is stored from the input area during Monitor
Command processing. When the command itself is
encountered, A2L,H contains the last parameter entered.
While MODE contains zero (until a plus, minus, colon,
or period is encountered) A2L,H is continually

copied into AlL,H and A3L,H. If a "less than" sign

is encountered, A2L,H is immediately copied to A4L,H
and A5L,H.

A2L,H is used to terminate examine (memory display),
tape write, tape read, memory move, and memory verify
operations.

A2L,H contains the subtrahend in a Monitor subtract
command operation.,

A2L,H contains the augend in a Monitor add command
operation.

A2L is the source field and A3L,H is maintained as the
pointer for the Monitor store command.

A2L contains the port number in an input port select
or output port select (control K or P) command.

8

L Apple][Computer Technical Information Page 0009 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

64
65

66
67

68
69

$40
$41

$u2
$43

$uby
$u5

A3L
A3H

A4L
ALH

A5L
AS5H

PAGE ZERO USAGE BY THE MONITOR

Multipurpose Monitor work area:
Clobbered by Instruction Trace; see XQT above.

A1L,H and A3L,H are both filled from A2L,H during
Monitor Command processing scan of the input line
as described above regarding A1L,H.

A3L,H is used as the destination pointer during
Monitor store command processing.

A3L,H is used as a work area by the Register Display
routine which is called by the control-E Monitor
command or as part of single step or trace operation.

Multipurpose Monitor work area:
Clobbered by Instruction Trace; see XQT above.

This field (and A5L,H) are loaded from A2L,H during
Monitor Command Processor scan of the input area when
a "less than" sign is encountered.

A4L,H is the receiving field pointer during a Monitor
MOVE command execution.

A4L,H is the second field pointer during a Monitor
VERIFY operation.

Multipurpose Monitor work area:
This field is not within the bounds of the area
of XQT, which overlays A1L thru A4H.

This field is filled from AZ2L,H as described above for

Note; ASH and
ACC are same

ALL,H,

This field is not referenced by any Monitor Command.

address.

69 $45 ACC

70 $46 XREG
71 $47 YREG
72 $48 STATUS
73 $49 SPNT
74 $4A unused
75 $4B unused
76 $4C unused
77 $4D unused
78 $4E RNDL
79 $4F RNDH

This register save area is used primarily for support
of single cycle and trace operations. In addition,
the registers are stored here by BRK instruction
handling, and the registers are reloaded from here
(except S from SPNT) before going to the address
specified by a GO Monitor command.

During instruction step or trace, the registers are
loaded from here before execution of the instruction
being traced, and stored here again after said execution.

The Register Display function of the Monitor, as called
by control-E or as part of single step or trace prints
the contents of this area as the register contents.

Random number field, 16 bits:

This field is continually counted up by the KEYIN
routine while testing for key pressed. Thus, the
results are effectively random as it does not take long
to overflow and start over. There is no other reference
to this field within the Monitor.

9

L Apple][Computer Technical Information

Page 0010 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

80
81
82
83
84
85

$50
$51
$52
$53
$54
$55

ACL
ACH
XTNDL
XTNDH
AUXL
AUXH

PAGE ZERO USAGE BY THE MONITOR

These three two byte fields are used only by the

16 bit multiply and divide routines, which themselves
are not called from anywhere in the Monitor.

Therefore, these fields are used only if a user program
makes use of the multiply and divide routines.

The section on Data Manipulation Functions contains
a full description of the multiply and divide routines.

For Multiply, place the two factors in ACL,H and
AUX,H, call the appropriate routine (MULPM at FB60

or MUL at FB63), and find the results in ACL,H-XTNDL,H.
In order of significance, place the factors in $51,50
and $55,54 and find the results in $53,52,51,50.

For Divide, the entry points are DIVPM at FB81 or

DIV at FB84. Place the divident in ACL,H-XTNDL,H

and the divisor in AUXL,H. The results will be

quotient in ACL,H and remainder in XTNDL,H.

In order of significance, the dividend is in $53,52,51,50,
the divisor in $55,54, the quotient in $51,50, and the
remainder in $53,52.

10

L Apple][Computer Technical Information Page 0011 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

OVERVIEW OF KEYBOARD INPUT AND TEXT MODE SCREEN OUTPUT

The default operation of the screen is as a scrolling device. That is,

new data is entered or output at the bottom of the screen and all above

is shifted up line by line until the oldest information disappears

off the top of the screen. However, it is also possible, with a little

extra work in the user program, to use the screen as a formated display.
Following is a description of the ramifications of that type of use,

and suggested solutions to the troublesome situations encountered.

Characters generated by the user program for display on the screen are
handed to the Monitor one character at a time. The screen output handlers
check for control character vs. display character, and operate in accordance
with what they find. For example, output of a carriage return character

or line feed character while the cursor is on the bottom line of the

screen will cause a scroll operation to take place. If the screen is

being used with a format instead of as a scroll device, then the program

can easily avoid output of a carriage return or line feed when the

cursor is on the bottom line of the screen.

The easiest way for the user program to read information from the
keyboard is to call the Monitor at the point where it will read in a
line (up to a carriage return) before returning control to the calling
program. When this is done, the input information is always available
at the same place in memory. There is, however, a conflict between
this type of a call and using the screen as a format type display.
While the Monitor is receiving the keyboard input, it "echoes" the
characters to the screen at the current cursor location. When end of
input is signaled by a carriage return, the Monitor clears the cursor
current line from cursor to right end of the line. Thus, the user
program must make sure that before asking for input from the keyboard
the cursor is placed where there is no data to the right.

It is possible to divide the screen into scroll area and non-scroll area.
Many complications arise from this method of operation, so the recommended
solution to the format display problem is to leave the screen full

scroll and avoid scroll services when they are not desirable.

In the section on Screen Output Without the Scroll Window will be found
the entry points and qualifiers for using a divided display.

11

L Apple][Computer Technical Information Page 0012 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

KEYBOARD INPUT ROUTINES OF THE MONITOR

The Monitor routines supporting keyboard input are designed to do the
following; echo the keyboard input to the screen (through COUT) at the
current cursor position, and store the entered characters in the
keyboard input area ($200-$2FF), for the convenience of the calling
program. The executing program may position the cursor anywhere

(in the scrolling window) before calling the Monitor keyboard input
routines. On entry of a Carriage Return from the keyboard, the
Monitor keyboard input routines will cause return of control back to
the calling program with the character count in the X-reg, and a
Carriage Return in the input area as a terminator. The program need
not look into the screen refresh memory to determine what was entered.

The routines described below are included in the address table.

GETLNZ Entry at this point causes output of a Carriage Return (through
COUT) before going to GETLN to write prompt and read data.

GETLN Entry at this point is with the cursor properly positioned
(cv, BASL,H, and CH) as described in the section regarding
Text Mode Output Within the Scroll Window.

GETLN prints the Prompt character and initializes X-reg for
indexed storage of the input characters in the Input Area.
Control then goes to NXTCHAR.

NXTCHAR This is the top point in the character input loop.
RDCHAR is called to get a character into the A-reg. On return
the A-reg is tested for presence of the Ctrl U (right arrow)
and if so the A-reg is loaded from screen memory assuming
that the Y-reg contains the same value as CH.

If the A-reg value is $EO or greater, the lower case letter
is then converted to upper case.

The character is then stored from the A-reg to the Input Area.

If the character is a Carriage Return, it is printed through

COUT and the RTS exit of COUT will then give control back to

the calling program with X-reg indicating the input character
count ¥1. That is, the input is in memory locations

$200 through $200,X where 200,X contains a Carriage Return.

RDCHAR This routine calls RDKEY to get the next character placed
into the A-reg. If, on return, it is found that the Escape
key has been pressed, control is passed to the ESCl routine
for BEscape key processing. After Escape key and the key
following have been read and processed control returns to
the RDCHAR routine as if it were just being entered.

RDKEY This routine picks up and saves the character in the screen
area at BASL,H CH (leaving Y-reg containing the contents of CH).
It then changes that character to blinking to indicate current
cursor position.
This routine asks for the next input character to be placed
in the A-reg by doing an indirect jump via KSWL,H, which is
normally pointing at KEYIN. Return is therefore to the
caller of RDKEY, not to the RDKEY routine itself.

12

L Apple][Computer Technical Information

Page 0013 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

KEYIN

ESCi

This is the routine which gets the next input key from the
keyboard hardware. There are two required actions and two
extra actions taken by this routine. The required actions
are reading the keyboard input buffer over and over again
until it is determined (by presence of the $80 bit) that

a character has indeed been read, and the keyboard strobe is
hit to prepare for the next keyboard input.

The auxilliary actions taken by this routine are first, to
count up the random number field, ignoring overflow, and
second, restoring to the screen area the character modified
by the RDKEY routine to remove the blink.

Return to caller of RDKEY is accomplished by an RTS.

This routine is called by the RDCHAR routine if an Escape
key is found in the A-reg by that routine. ESC1 actually
gets control after the next key is provided by RDKEY.

ESC1 calls the appropriate Scroll Window service routine
based on the input character. The RTS at the end of such
routine results in control returning to RDCHAR at its normal
entry point.

When this routine is called, the A-reg contains the character

designating the action to be taken, and Carry is set. If Carry

is not set at time of entry into this routine, the function

accomplished is that of the character one less than the contents

of the A-reg.

13

L Apple][Computer Technical Information

Page 0014 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

USER PROGRAM CALLS TO MONITOR KEYBOARD INPUT ROUTINES _ ACTUAL KEYBOARB INPUT

The following paragraphs describe how to set up for calls to the various
entry points in the Monitor for keyboard input, and what the results
will be.

GETLNZ X-reg, Y-reg, and A-reg are insignificant.
CH is insignificant.
CV should point to a line in the Scroll Window.
BASL,H is insignificant.

Results:

Keyed information is in $200 through $200,X where $200,X
contains Carriage Return.

A-reg contains a Carriage Return.

X-reg contains the number of characters read excluding the
terminating Carriage Return.

Y-reg contains contents of WNDWDTH.

CH contains zero.

CV contains line pointer, current value.

BASL,H contains memory address corresponding to CV and WNDLFT.

Screen line is blanks to the right of the end of echoed input.

GETLN Setup:
X-reg, Y-reg, and A-reg are insignificant.
CV and BASL,H should be compatible, pointing in the Scroll Window.,
CH indicates where on that line the prompt character is to
be placed, to be followed by echoed keyboard input.

Results are the same as for GETLNZ above.

NXTCHAR Enter here to bypass print of Prompt character.

Setup:
X-reg should be set to zero to begin storing of input at $200.
Y-reg and A-reg are insignificant.
CV and BASL,H should be compatible, pointing in the Scroll Window.
CH indicates where echoing of keyboard input is to start

(should be less than WNDWDTH).

Results are the same as for GETLNZ above.

NOTE: For all the above, Escape Key functions are as defined in the
Reference Manual. Also, Ctrl U (right arrow for cursor movement)
picks up screen contents and uses it as keyboard input.

14

L Apple][Computer Technical Information Page 0015 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

RDCHAR Entry here gives the calling program each character as
entered, except that the Escape function is supported,
hidden from the calling program. Entry here bypasses
Monitor service in support of the cursor right arrow key,
and the input characters will not be stored in the Input Area.
Conversion to upper case is bypassed. The calling program
will have to take appropriate action on Carriage Return.

Blink of the current cursor position on the screen will
still happen, but the Monitor service of echoing the key
to the screen (and advancing CH to the next position) is
bypassed.

Monitor support for the cursor left arrow (vackspace) is
bypassed. Cancel input line Monitor support is bypassed.

Setup:
X-reg is insignificant and will not be clobbered.
Y-reg is insignificant.
A-reg is insignificant.
CV and BASL,H should be compatible, pointing in the Scroll Window.
CH indicates horizontal position in the Scroll Window where
the cursor will be indicated by blinking.

Results:

On return to the caller A-reg will contain the key value.

Y-reg will contain contents of CH.

X-reg will contain same value as at input.

CV, CH, BASL,H will have changed only if an Escape key
sequence has been performed.

RDKEY Entry here bypasses Escape key Monitor support, and all the
other Monitor support bypassed by RDCHAR entry. Functions
still supported are to set the indicated cursor position to
blinking until a key is pressed, at which time the position
is restored to its previous state.

Setup:

X-reg, Y-reg, and A-reg are insignificant.

CV and BASL,H should be compatible, pointing in the Scroll Window.
CH indicates horizontal position where cursor will blink.

Results:

A-reg contains the input character (which may be Escape key
or any control key or any character).

X-reg is unchanged from the call.

Y-reg contains contents of CH.

CV, CH, BASL,H remain unchanged.

NOTE: For all the above, the random number at RNDL,H is continually
incremented while KEYIN routine is testing for key pressed.

15

L Apple][Computer Technical Information Page 0016 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

KEYIN This is the keyboard physical read routine executed by the
normal setting of KSWL,H.
Setup:

X-reg is unused and unaffected across this call.
A-reg input to this routine is stored at (BASL),Y when a
key 1s pressed, before the A-reg is filled from
the keyboard register.
Y-reg is used for storing A-reg in screen area to (BASL),Y.
CH and CV are not referenced, but should be appropriately set.
BASL,H are used as indicated for A-reg above.

Result:
On return to the caller, only the A-reg has been changed.
It contains the input from the keyboard register.

KEYIN replacement;

There are cases in which it is desirable to replace the physical
keyboard input routine with a routine which either reads from the
keyboard and preprocesses the input, or gets the information to feed
to the reading program from some other source than the keyboard.

The requirements of such a program in replacing the KEYIN routine are
as follow. Placing the program/routine into effect is accomplished by
storing the entry point in KSWL,H.

The replacement routine should manage the following resources as indicated.

A-reg Store the A-reg at (BASL),Y ,
then load the A-reg from whatever source is to be used.
X-reg Must be unaltered. Save on entry and restore on exit if
it must be used by the replacement routine.
Y-reg Use as indicated above for A-reg.

It must not be changed on return from contents on entry,
so save and restore if it must be used otherwise.
(This caution is not required, however, if the
source of the input prevents Escape key and
Ctrl U (cursor advance arrow) from being entered.
In such case, Y-reg is expendable.)

CV and BASL,H and CH

These are all used for echoing the "keyboard" input, so

the replacement routine should either leave them alone or

manipulate them in an intelligent mannex.

NOTE: On replacing the pointer to KEYIN at KSWL,H, it is generally
safer to pick up and store the current contents of KSWL,H
in a save area before placing the address of your routine,
and then restore KSWL,H from that save area when taking the
replacement routine out of sexrvice.

NOTE ALSO: If you replace the contents of KSWL,H with the address of
your routine while using DOS, expect the unexpected. DOS uses
both CSWL,H and XKSWL,H, and periodically restores them to appear
the way DOS likes to see them regardless of current contents.

16

L Apple][Computer Technical Information Page 0017 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

KEYBOARD INPUT MONITOR ROUTINE ADDRESSES

There are many points in Keyboard Service which a user program could
usefully call. However, because they are generally different entry

points in a continuous string of instructions, and all instructions

after the point of entry will be used, this table of addresses 1s

in Monitor sequence, rather than in sequence by potential usability.

Function Hex tDEC -DEC Monitor Regs
Addr Addr Addr Label Destroyed

Set screen to blink at cursor FDOC 64780 =756 RDKEY
saving original character in

A-reg. from (BASL),Y

Jump Indirect (KSWLS to KEYIN FDL8 64792 -744

Increment random number at RNDL,H FDIB 64795 =741 KEYIN
while polling keyboard register.

Store A-reg to (BASL),Y (clear FD26 64806 -730
blink set by RDKEY routine).

Load A-reg from Keyboard register FD28 64808 -728

Clear keyboard strobe

Return (RTS)

Call RDKEY for Escape key service FDZF 64815 -721 ESC
Call ESCi with char in A-reg to FD32 64818 -718
do indicated function.
Call RDKEY to get next char into A FD35 64821 -715 RDCHAR
Compare to $93. =, br to ESC
to call for next char and do ESC
Return to caller (RTS)

Using character in A-reg, br to FC2C 64556 =980 ESc1
routine for Escape key service.

@ HOME clear scroll window

A ADVANCE cursor right

B BS cursor left

C LF cursor down one line

D UP cursor up one line

E CLREOL clear to end of line

F CLREOP clear to end of window

other - ignore it, just RTS.

PRIMARY CALL POINTS ARE ON NEXT PAGE.

BASL,H $28-29
KSWL,H $38-39

17

L Apple][Computer Technical Information Page 0018 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

KEYBOARD INPUT MONITOR ROUTINE ADDRESSES, continued.

(Logically speaking, the place to start below is GETLNZ, but the sequence
of presentation here is the sequence of Monitor instructions because of
heavy use of "fall into" next code segment.)

Function Hex

+Dec

Addr Addr

-Dec
Addrx

Monitor Regs

Label

Destroyed

Echo keyboard input thru COUT to FD3D
screen, from IN,X , with INVFLG
temporarily set to $FF.

Pick up char from IN,X; FD4D
if $88 goto BCKSPC
if $98 goto CANCEL
if X-reg (input index) greater

than $F7 fall into FD5C.
Otherwise to NOTCR1, bypass Bell

Sound bell if X indicates 248t FD5C
input characters.

Increment X FD5F
If X not zero goto NXTCHAR
If X=0 fall into CANCEL

Load $0C (backslash) into A-reg FD62
to indicate cancelled input.

Call COUT to print A-reg FD64
then fall into GETLNZ

Print Carriage Return thru COUT FD67

Load PROMPT into A-reg FD6A

Call COUT to print A-reg FD6C

Load X-reg with $01 for passage FD6F
thru backspace operation.

If X=0 goto GETLNZ to start over. FD71
else decrement X, fall into NXTCHAR
Call RDCHAR to get next character FD75
If character gotten is $95 (ctrlU

cursor right arrow) pick up

screen character from (BASL),Y

to replace it.

If A-reg greater than$DF then

AND against $DF to make upper case

Store A-reg to input area at IN,X FD84
Compare to Carriage return.

Goto NOTCR (above% if not.

64829

64845

64860
64863

64866
64868
64871
64874
64876
64879
64881

64885

64900

~707

-691

-676
-673

-670
-668
-665

-662
-660

-657
0655
-651

-636

Else, call CLRECL to clear rest of line, then print

carriage return thru COUT,
with included RTS to return
to caller of keyboard input.

IN =$200
INVFLG is at $32

NOTCR

NOTCR1

CANCEL

GETLNZ
GETLN

BCKSPC

NXTCHAR

ADDINP

18

L Apple][Computer Technical Information

Page 0019 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

PAGE ZERO LOCATIONS REGARDING KEYBOARD INPUT AND SCREEN OUTPUT

Text mode output to the screen can be done within the Scroll Window
or without the Scroll Window. Text mode output outside of the Scroll
Window is sometimes a little difficult. Keyboard input is echoed to
the screen using Monitor support for the Scroll Window.

This table of page zero locations used for keyboard input, Scroll Window
output, and outside of Scroll Window output is provided for quick reference.
A more complete description of each field may be found in the section

on Page Zero Usage by the Monitor.

Loc Loc Monitor Range Range Definition - description
Dec Hex Label Dec Hex

32 20 WNDLFT 0-39 0-27 Left edge of Scroll Window
33 21 WNDWDTH 1-40 1-28 Width of Scroll Window
W 22 WNDTOP 0-22 0-16 Top line of Scroll Window
20-22 14-16 if mixed graphics and text
35 23 WNDBTM 1-24 1-18 Bottom line of window
36 24 CH 0-39 0-27 Horizontal distance from left
edge of window to cursor position
37 25 cv 0-23 0-17 Line number of cursor position,

relative to top of screen, not
top of Scroll Window

38-39 26-27 GBASL Memory address of left end of
GBASH screen line for LORES graphics
or text outside of window
40-41 28-29 BASL Memory address corresponding to
BASH contents of CV and WNDLFT
50 32 INVFLG =255 =FF Display next character white on black
=127 =7F Display next char. blinking.
=63 =3F Display next char. black on white.
54-55 36-37 CSWL Address of routine for character
CSWH output to screen, normally COUTL.
56-57 38-39 KSWL Address of routine for keyboard
KSWH physical input, normally KEYIN.

19

L Apple][Computer Technical Information Page 0020 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

OUTPUT TO THE SCREEN, TEXT MODE

There are many points in the Monitor where a user program can call
for service. This section is therefore subdivided to facllitate
finding the entry point for the function desired.

Screen Format Control

identifies the entry points by means of which display operation (full
text, full graphics, mixed LORES graphics and text, display page),
Secroll Window setup, and character display mode (black on white or
white on black or blinking) are established or modified.

Window Data Manipulations

describes Monitor calls which clear all or part of the Scroll Window,

set parts of the window to some user specified value, or cause conditional
or unconditional scrolling of the window.

Cursor Control

describes the ways and means of moving the cursor relative to its current
position, or moving it to some location independent of its current
position.

General Data Output

describes the Monitor entry points by means of which to output user
program generated data to the screen or to the current output device

if COSWL has been modified. Also, entry points are described by means of
which standard types of output (blanks, bell code, carriage return)

can be transmitted to the output device (generally screen%

Special Data Output

describes Monitor entry points for printing the contents of certain
fields in certain ways, generally used for program development or
programming aid programs. Entry points are indicated for printing the
contents of certain registers in hex, printing special or general
parts of memory in hex, and calling on the Monitor register display
routine.

Text Output Without the Scroll Window

describes the entry points used for placing characters on the screen
outside of the Scroll Window, and for reading the keyboard when echo
to the Scroll Window is not to be performed.

Any entry points which would seem to belong in more than one place will,
of course, be found in each applicable place.

20

L Apple][Computer Technical Information Page 0021 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SCREEN FORMAT CONTROL

This page identifies the places in the Monitor which control the
display mode of operation and the Scroll Window configuration.

Function Hex tDec -Dec Monitor Regs
Addr Addr Addr Label Destroyed
Entry point from RESET key function FBZF 64303 -1233 INIT A
(STATUS byte cleared, ignore) and
Clear HIRES graphics mode and FB33 64307 -1229 A
Set display page 1 and FB36 64310 -1226 A
Set TEXT mode and FB39 64313. -1223 SETTXT A
Load 0 into A-reg for WNDTOP and FB3C 64316 -1220 A
branch to SETWND below.
Set color graphics mode and FB4O 64320 -1216 SEIGR A
Set mixed graphics/text mode and FB43 64323 -1213 A
Call CIRTOP to clear graphics and FB46 64326 -1210 A,Y
Load 20 ($14) into A-reg for set FB49 64329 -1207 A
of WNDTOP. Fall into SETWND ’
Set top line of window (WNDTOP) FB4B 64331 -1205 SETWND A
from A-reg, 0 or 20 or user set.
and
Load A-reg with O for WNDLFT and FBAD 64333 -1203 A
Store A-reg to WNDLFT and FB4UF 64335 -1201 A
Load A-reg with 40 for WNDWDTH and FB51 64337 -1199 A
Store A-reg to WNDWDTH and FB53 64339 -1197 A
Load A-reg with 24 ($18) for WNDBTM FB55 64341 -1195 A
Store A-reg to WNDBTM and FB57 64343 -1193 A
Load A-reg with 23 for VTAB and FB59 64345 -1191 A
Store A-reg to CV and FB5B 64347 -1189 TABV A
Jump to VTAB to set BASL,H and RTS.
Load Y-reg with $FF for INVFLG and FEB4 65156 -380 SETNORM Y
br to SETIFLG
Load Y-reg with $3F for INVFLG and FEB0 65152 -384 SETINV Y
br to SETIFLG
Store Y-reg in INVFLG and RTS FE86 65158 -378 SETIFIG Y
$FF from SETNORM = white on black
$3F from SETINV = black on white
$7F from user set = blinking
Set CSWL,H to point to COUT1 FE93 65171 -365 SETVID A,X,Y
STATUS $48 WNDTOP $22
cv $25 WNDLFT $20
BASL,H $28-29 WNDWDTH $21
INVFLG $32 WNDBTM $23

21

L Apple][Computer Technical Information

Page 0022 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SCREEN FORMAT CONTROL BY POKE/STore

In many cases, the routine in the Monitor described on the previous page
exists because the Monitor itself requires the capability indicated.
Often, calling the Monitor for a specific control function is doing it
the hard way. This table indicates other ways of accomplishing the same

Set bottom line of Scroll Window

Set Normal (white on black)
Set Blink for future output
Set Reverse (black on white)

POKE

35 ($23) with line number, 1-24,
Bottom must be greater number than top.
POKE 50,255 or store $FF in $32.

POKE 50,127 or store $7F in $32.

POKE 50,63 or store $3F in $32.

results.

Function Method

Set LORES Graphics display mode POKE -16304,0 or STA C050

Set TEXT display mode POKE -16303,0 or STA CO51

Set LORES mode to Full Screen POKE -16302,0 or STA CO52

Set MIXED LORES and TEXT mode POKE -16301,0 or STA €053

Set display to page 1 (normal) POKE -16300,0 or STA CO54

Set display to page 2 (alternate) POKE -16299,0 or STA CO55

Clear HIRES graphics mode POKE -16298,0 or STA €056

Set HIRES graphics mode POKE -16297,0 or STA CO57

Set top line of Scroll Window POKE 34 §$22§ with line number, 0-23

Set left edge of Scroll Window POKE 32 ($20) with column no., 0-39

Set width of Scroll Window POKE 33 ($21) with no. columns, 1-40,
Left edge + width not to exceed 40.

22

L Apple][Computer Technical Information

Page 0023 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SCROLL WINDOW DATA MANIPUIATION ENTRY POINTS

This table describes three types of Scroll Window data manipulation
entry points. The first is Monitor label ESC1, Escape Key Processor,
because it transfers control to a number of the other entry points
depending upon the A-reg contents. Second is points supporting clearing
or setting parts to the screen to a particular value. Third is points
causing conditional or unconditional scrolling of the window.

Function Hex *Dec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

Call screen data manipulation FC2C 64556 -980 ESC1 AY
If A = @ goto HOME

ADVANCE

BS

LF

[8)

CLREOL

CLREOP

other, RTS back

=g Qe

Clear from line (CV) col (CH) to FC42 64578 -958 CLREOP A,Y
end of window.

Clear from 1n (CV) col (Y) to FCU4 64580 -956 A,Y
end of wihdow

Clear to EOP from 1n (A) col (Y) FC46 64582 -954 CLEOP1 A,Y

Clear Scroll Window to blanks, FC58 64600 -936 HOME AY
set cursor to top left of window
Set CH=0, CV=(A), clear to EOPage. FC54 64602 -934

A

Clear line from cursor g(BASLg,CH) FCOC 64668 -868 CLREOL A

Clear line from cursor ((BASL),Y) FC9E 64670 -~866 CLEOLZ A

Set character in A-reg from FCAO 64672 -864 CLEOL2 A
cursor ((BASL),Y) to EOLine

Clear line (BASL), then set BASL,H FC95 64661 -875 SCRL3 A,Y
from CV, WNDLFT

Clear line from cursor ((BASL),Y FC97 64663 -873 AY
then set BASL,H from CV, WNDLFT

Following points are sequential, enter at any point to do following.

Zero to A-reg for CH FC62 64610 -926 CR AY
Set A-reg to CH FC64 64612 -924 AY
Increment CV FC66 64614 -922 LF AY
Compare CV to WNDBTY, FC68 64616 -920 A,Y
set BASL,H if ok,
call scroll function if required.
Seroll the window, lines (CV) FC70 64624 -912 SCROLL A,Y
thru (WNDBTM)
Scroll window, lines (A)-(WNDBTM) FC72 64626 -910 AY
CH $24 Cursor horizontal posit, relative to WNDLFT
Cv $25 Cursor vertical, rel to top of screen, not window.

BASL,H $28-29 Memory address of screen line from (CV) and WNDLFT set
by BASCALC routine and VTAB routine.

23

L Apple][Computer Technical Information Page 0024 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CURSOR POSITION CONTROL

In general, the Cursor is at the position indicated by the contents of
¢V (1line number relative to top of screen) and CH (column number relative
to left margin of the Scrolling Window). The memory location of the
cursor is the sum of the contents of BASL,H (which contains the address
of the leftmost character of the line within the Scrolling Window)

and the contents of CH. Normally, then, BASL,H contains an address
computed from the contents of CV and WNDLFT. However, if either

CV or WNDLFT is changed without recomputing BASL,H then the different
routines of the Monitor may come up with unpredictable (or at least
undesired) results.

In the following table, the description includes indication of which of the
cursor address fields is being used for what. Note, for example, that

at FC95 the line indicated by BASL,H is cleared, and then BASL,H is
recomputed from CV, WNDLFT for future references.

The ESC1 and VIDOUT routines are included in the table because they
can be made to call {goto) the other entry points by giving them the
appropriate A-reg contents on entry. VIDOUT is the routine which
handles CR, backspace, and line feed when such characters are sent
through COUT1 (generally through COUT). ESC1 is the routine called

by the Monitor keyboard input routines to handle the first character
after recognition of an Escape key. Thus it has four way cursor
movement capability, as well as being able to call for clearing the
screen line to the right of the cursor, clearing also all lines from
there to the bottom of the window, or clearing the entire Scroll Window.

The next group of points contains those which affect (clear) data on
the screen as well as move the cursor.

The third group is entry points supporting movement of the cursor
relative to its current position

The fourth group supports positioning the cursor at a desired location
without reference to its current position. To do this, the program
should set CV and CH and then call the appropriate routine to set
BASL,H.

24

L Apple][Computer Technical Information Page 0025 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CURSOR POSITION CONTROL continued

Function Hex tDec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

Call screen/cursor manipulation FC2C 64556 -980 Escl AY

If A = @ goto HOME clear the scroll window, cursor to top left.
A ADVANCE cursor right one space
B BS cursor left one space (to right end of line
above if necessary and possible)
c LF cursor down one line, scroll if necessary.
D UpP cursor up one line if possible.
E CLREOL clear line to right of cursor.
F CLREOP clear from cursor to end of window.
other RTS; ignore the entry.

Place character in screen memory FBFD 64509 -1027 VIDOUT A,Y
or Process Control Character
If (A) GT $9F or LT $80 goto STOADV

If A = $8D goto CR FCO4 64516 -1020 A,Y
$8A LF
$88 BS
$87 sound bell
other ignore it - RTS
Clear Scroll Window, set cursor FC58 64600 =~936 HOME AY
to top left corner of window.
Set CV from A-reg; Clear to bottom FC5A 64602 -934 AY

of window. Set CH=0

Clear line (BASL,H), whole line FC95 64661 -875 SCRL3 AY
then set new BASL,H from CV, WNDLFT.

Load Y from CH and FBFO 64496 -1040 STOADV A,Y
Store A-reg to screen at (BASL),Yad FBF2 64498 -1038 A
Increment CH and FBF4 64500 -1036 ADVANCE A
Compare (CH) with (WNDWDTH) and FBF6 64502 -1034 A
goto CR if CH not less.
Else return (RTS)
Move cursor left one column, to FCl0 64528 -1008 BS A
right end of line above if required
and possible.
Move cursor up one line (if possible) FC1A 64538 -998 0] A
Load O to A-reg for CH (Car.RET)and FC62 64610 -926 CR A
Store A-reg to CH and FC64 64612 -924 A
Increment CV and FC66 64614 -922 LF A
Compare CV to WNDBTWM, FC68 64616 -920 A

If CV not less
decrement CV and do scroll
If CV less goto VIABZ to set BASL,H and return.

BASL,H $28-29 WNDLFT $20
cv $25 WNDWDTH $21
CH $24 WNDTOP $22

WNDBTM $23

25

L Apple][Computer Technical Information Page 0026 of 0048)

The Apple][Monitor Peeled « William E. Dougherty

1979

CURSOR POSITION CONTROL continued

Function Hex tDec -Dec Monitor Regs
Addr Addr Addr Label Destroyed
Place cursor at line (A), col (CH) FB5B 64347 -1189 TABV A
(store A to CV and comp BASL,H
by JMP to VTAB)
Set BASL,H from CV and WNDLFT FC22 64546 -990 VTAB A
by call BASCALC and add WNDLFT
Set BASL,H from A-reg and WNDLFT FC24 64548 -988 VTABZ A
by call BASCALC and add WNDLFT
Set BASL,H to memory address for FBC1 64449 -1087 BASCALC A
left character of line in A-reg
(not left character of window)
BASL,H $28-29 WNDLFT $20
CH $ou WNDWDTH $21
cv $25 WNDTOP $22
WNDBTY $23

26

L Apple][Computer Technical Information

Page 0027 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

GENERAL TEXT OUTPUT

The preferred method of sending text to the screen is by loading the
character desired into the A-reg and calling COUT to handle it from there.
The reason this is preferred is that if it is (later) desired to send

the output to some other device than the screen, this can be managed

by changing CSWL,H to point at the program supporting such other device.
There are times, however, when it is desired to write to the screen
regardless of the setting of CSWL. COUTL is the entry point for screen
only output, where support is desired for reverse video display,

or blinking characters by means of setting INVFLG. COUTZ is an entry
point later in the processing, wherein INVFLG is no longer of interest.

Output to the screen may be written via these alternate entry points.
However, note that the Monitor will still use COUT for the keyboard
input echo function.

Following are addresses of the above mentioned locations, and a few
other entry points which will output the specified character(s) without
the calling program having to load them into the A-reg before the call.
Such points mentioned here are useful for general user programs. The
section on Special Text Output contains more points of less usefullness.

Function Hex +*Dec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

Print a byte to specified (CSWL) FDED 65005 =531 CouT A
output device, normally COUTI.

Print a byte to the screen after FDFO 65008 -528 couTi A
AND with INVFLG (if not control)

Print a byte to the screen FDF6 65014 -522 COUTZ none
Print Carriage return thru COUT FDSE 64910 -626 CROUT A
Print three blanks thru COUT FOu8 63816 -1720 PRBLNK A,X
Print (X) blanks thru COUT FoLa 63818 -1718 PRBL2 AX

Print A-reg followed by (X)-1 blnks FOMC 63820 -1716 PRBL3 AX

Note 1; In each case, the character printed goes to line (cv) col (CH),
after which CH is advanced.

Note 23 The following control characters are effective - have the
expected effect.

$8D carriage return

$3A line feedj cursor down one line, may scroll.
$88 backspace

$87 sound the bell.

Any other character in the range of $80 thru $9F is dropped.
Tt does not cause cursor motion or screen memory modification.

27

L Apple][Computer Technical Information Page 0028 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SPECIAL TEXT OUTPUT

The general method of output from a program to the screen is for the
program to load the desired characters, one at a time, into the A-reg
and call COUT. There are, however, a number of places in the Monitor
where either data in registers or storage is printed in a different way,
or specific data is printed without regard to the input registers.

In all cases below, COUT is used for passing the data to the output
device. Many of the points below are handy for patching into a program
being developed in order to facilitate determining why there is a
difference between actual and intended operation of the program.

Many of these, then, will be repeated in the section on Debugging Aids.

Function Hex tDec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

Print "ERR" and sound bell FF2D 65325 -211 PRERR A

Sound bell FF3A 65338 -198 BELL A

Print Carriage Return FDB8E 64910 -626 CROUT A

Print hex, right nibble of A-reg FDE3 64995 -541 PRHEX A

Print hex, A-reg FDDA 64986 -~550 PRBYTE A

Print hex, Y reg and X-reg FO4O 63808 -1728 PRNTYX A,X

Print hex, A and X regs Fo4l 63809 -1727 PRNTAX A,X

Print hex, X reg Fold 63812 -1724 PRNTX AX

Print three blanks FO48 63816 -1720 PRBLNK A,X

Print (X) blanks FO4A 63818 -1718 PRBL2 AX

Print char in A-reg & (X)-1 blanks FO4C 63820 -1716 PRBL3 A,X

Print Car Ret, then hex of Y & X FD96 64918 -618 PRXY2 A
regs, then print minus sign

Print hex Y&X regs and minus sign FD99 64921 -615 A

Print CR, then hex of AlH,AlL, FD92 64914 -622 PRAL AVX,Y
then minus sign.

Print hex of memory from xxxx FDA3 64931 -605 XAM8 A (Y must
thru xxx7 where xxxx is contents be 0 on
of A1L,H entry)

Print hex contents of memory FDB3 64947 -589 XAM A (Y=0
from (A1L,H) thru (A2L,H) before call)

Save all registers at $45-$49 FF4A 65354 -182 SAVE none

Display register contents as saved FAD? 64215 -1321 REGDSP A,X
by SAVE routine from $45-$49.

28

L Apple][Computer Technical Information Page 0029 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CHARACTER OUTPUT WITHOUT THE SCROLL WINDOW

If all or part of the screen is to be used in a direct addressing manner,
it 1s necessary to avoid certain Monitor services. In general, the
Scroll Window services provided by the Monitor are;

1. Scroll all text in the window up one line if a carriage return
or line feed takes the cursor down thru the bottom line.

2. Automatically assume carriage return if window width is exceeded.

3. Place cursor at left edge of the Scroll Window instead of at the

left edge of the screen on a carriage return.

L, Support screen clear functions;
A. Clear the window, place cursor at top left corner.
B. Clear the window from current cursor position.
C. Clear line to the right of cursor position.

When using all or part of the screen as a random access display, these
automatic services need be avoided.

If the full screen is to be used as a random access display, without a
portion being used as a working Scrolling Window, the problem is not too
difficult. Consider leaving the whole screen defined as the Scroll Window.

1. The scroll operation only occurs if a Carriage Return or
line feed or exceeding window width occurs on the bottom line
of the Scroll Window. Avoid this by not having the program
output CR or LF or excessive data on the bottom line of the
screen, and by keeping the cursor away from the bottom line
of the screen during keyboard input operations.

2 The full screen is defined as the Scroll Window by the Monitor
when the RESET key is pressed. A user program can restore the
window parameters to this configuration if they have been altered
by calling Set Normal Scroll Window at $FB3C or 64316 or -1220.

3. Preceed the output of each string of characters with a Monitor
call to set line number (TABV or VTAB) in CV and BASL,H, and
a POKE or STore of character number in CH.

L, Output the string of characters by the same means as if operating
with scroll services, being careful not to unintentionally exceed
window width or output carriage returns. Depending on your screen
design, you may intentionally do each of these.

Note that program output of a carriage return does not clear the line
to the right of that carriage return, but keyboard input of a carriage
return does (1f reading the keyboard is being done by the Monitor
get-line routines).

29

L Apple][Computer Technical Information Page 0030 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

CHARACTER OUTPUT WITHOUT THE SCROLL WINDOW continued

If part of the screen 1s to be allocated as an operating Scroll Window
while the remainder of the screen is to be directly accessed, then a
different (lower) level of Monitor services must be called upon.

One approach toward supporting such a divided screen is to use the
Scroll Window for data input, using the Monitor get-input-line services,
and use Scroll Window support for whatever output the program intends
to put there, and then use parts of LORES graphics support for placing
characters on the screen outside the Scroll Window, as described below.
The aim here is to leave support of cursor position (zero page fields
CV, CH, and BASL,H) up to the Monitor, and use other methods/fields

for placing characters outside the Scroll Window.

To place characters on the screen outside the scroll window,

1. with the line number in the A-reg, call GBASCALC ($F847, +63559,
-1977) to set GBASL,H ($26-27) to point to the memory address
of the left character position of the indicated line.

2. With Y-reg indicating horizontal position on the line, store
the desired character at (GBASL),Y.

Note that this technique does not interfere with LORES plotting if the
screen is being used in mixed mode because PLOT calls always set GBASL,H
as required without regard to possible previous contents.

30

L Apple][Computer Technical Information Page 0031 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CHARACTER OUTPUT WITHOUT THE SCROLL WINDOW continued

Function Hex +Dec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

OUTSIDE OF SCROLL WINDOW

Compute memory address for line F847 63559 -1977 GBASCALC A
in A-reg; set GBASL,H

INSIDE SCROLL WINDOW

Write byte in A-reg to screen FDFO 65008 -528 CcouTi none
at cursor (CV),(CH) using INVFLG
and supporting cursor move.

Write byte in A-reg to screen FDF6 65014 -522 CcouTZ none
at (CV), (CH) with cursor move
but not INVFLG.

Clear Scroll Window to blanks, FC58 64600 -936 HOME AY
cursor to top left corner
Set CV from A-reg, clear window FC5A 64602 -934 AY

to end of window.

Place cursor at line (A) col (CH) FB5B 64347 -1189 TABV A
setting CV and BASL,H from A

Set BASL,H from CV (and WNDLFT) FC22 64546 -990 VTAB A

Set BASL,H from (A) and WNDLFT FC2u4 64548 -988 VTABZ A
without regard to CV

Set BASL,H to left end of screen FBC1 64449 -1087 BASCALC A
line (not window line) in A-reg

WNDLFT $20
WNDWDTH $21
WNDTOP $22
WNDBTM $23
CH $24
cv $25

GBASL,H $26-27
BASL,H $28-29
INVFLG $32

31

L Apple][Computer Technical Information Page 0032 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

LORES PLOTTING

In standard (or low resolution) plotting mode, the graphic area of the
screen is 40 points wide and either 40 points high with 4 lines of text
below or 48 lines high. The same memory area 1s used for low resolution
plotting as is used for text output to the screen. However, in the
graphics mode, each character position contains information for two plot
points, one immediately above the other. Thus, 20 text lines are used

to display 40 graphics lines in the mixed mode, and 24 text lines are used
to display 48 graphics lines in the mixed mode.

There are four bits allocated for each point, by means of which the point
may be displayed in any of 16 colors.

The Monitor contains routines supporting the following functions;
Set display mode to mixed graphlics and text,
Clear the graphics part of the screen (in whole or in limited part),

Set a color control byte to be used for each plot point established
until another color is selected,

Plot a single point at an indicated vertical/horizontal position,

Plot a horizontal line from one vertical/horizontal point to a vertical
point,

Plot a vertical line from given start poirt to specified end horizontal,

Return to requesting program the color value of the point at a specified
coordinate.

There are limitations on some of these functions which may not always

be desirable. For example, using the entry point which sets mixed
graphics and text includes clearing the graphlics part of the screen,
setting the Scroll Window to be the entire remalnder of the screen,

and moving the cursor (straight down from current position) to the bottom
line of the screen. In addition, there is no Monitor entry point for
setting full screen graphics mode. However, the display mode controls
are easily set in any desired fashion merely by poking or storing into
the appropriate memory locations, so this is certalnly no major problem.

Various page zero locations are used for low resolution graphics mode.

GBASL,H $26- is set by the GBASCALC routine to the memory address of

$27 the plotting line specified.

COLOR 330 contains the selected color value in both high and low
nibbles of the byte.

MASK $2C is used internally by the plot routines as $FO or $0F to
set either the high or low nibble of the receiving byte
depending on whether the graphics line is the top or bottom
of the two displayed from that "text" line.

H2 $2C is the end of line position for horizontal line drawing.

V2 $2D is the end of line position for vertical line drawing.

32

L Apple][Computer Technical Information Page 0033 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

LORES PLOTTING continued

Function Hex *tDec -Dec Monitor Regs
Addr Addr Addr Label Destroyed

Plot a point at line (a) col (Y) FB800 63488 -2048 PLOT A
leaving GBASL,H and MASK set

Plot a point, line per GBASL,H F8OE 63502 -2034% PLOT1 A
and MASK, col in Y

Draw horizontal line at (A) F819 63513 -2023 HLINE A,Y
from (A) thru (H2)
Draw horizontal line at line F81C 63516 -2020 HLINEL A,Y

indicated by GBASL,H & MASK
from (Y) thru (H2)

Plot vertical line at (Y) F828 63528 ~-2008 VLINE A
from (A) thru (V2)

Plot vertical line at (Y) F826 63526 -2010 VLINEZ A
from (A)H+carry thru (V2)

Plot vertical line at (Y) F82D 63533 -2003 A
from (A)¥ thru (V2)

Clear full (48 lines) screen F832 63538 -1998 CLRSCR A,Y

Clear graphics area (40 lines) F836 63542 -1994 CLRTOP A,Y

Clear graphics partial from F838 63544 -1992 CLRSC2 A,Y
line 0 thru (Y), 40 col wide

Clear graphics partial from F834 63546 -1990 A Y
line 0 to (V2§a40 col wide

Clear graphics partial, top left F83C 63548 -1998 CLRSC3 A,Y
lines O thru (V2),
cols 0O thru (Y)

Set C?LgR for following points F864 63588 -1948 SETCOL A
to (A

Change COLOR to (COLOR)*3 F85F 63583 -1953 NXTCOL A

Load color of point (A),(Y) to A F87L 63601 -1935 SCRN A

Set GBASL,H from (A). (A)=line/2 F847 63559 -1977 GBASCALC A

Set Color Graphics display mode FB4O 64320 -1216 SETGR A
and following also donej

Set graphics mode to Mixed and FB43 64323 -1213 A

Clear graphics part of scrn and FB4G6 64326 -1210 A

Load $14 to A for WNDTOP and FB49 64329 -1207 A

Store (A) to WNDTOP and FB4B 64331 -1205 SETWND A

Load 0 to (A) for WNDLFT and FB4D 64333 -1203 A

Store (A) to WNDLFT and FB4F 64335 -1201 A

Load $28 to (A) for WNDWDTH and FBS51 64337 -1199 A

Store (A) to WNDWDTH and FB53 64339 -1197 A

Load $18 to (A) for WNDBTM and FB55 64341 -1195 A

Store (A) to WNDBTM and FB57 64343 -1193 A

Load $17 to (A) for TABV and FB59 64345 -1191 A
Go to TABV to set BASL,H

GBASL,H $26-27

H2 $2c

V2 $2D

MASK $2F

COLOR $30 33

L Apple][Computer Technical Information Page 0034 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

DATA MANIPULATION FUNCTIONS

There are a number of routines in the Monitor which may be called by

user programs to perform often needed tasks. These may be divided into
two categoriesj those which are used by the Monitor to perform Monitor
commands, and those provided specifically for user programs but not "used"
by the Monitor. The routines described in this section are listed here
for quick reference.

MOVE bytes from (A1) thru (A2) to (A4)

Increment Al and A4 with compare Al:1A2

Increment Al with compare AliA2
MULtiply two bytes by two bytes giving four byte result
DIVide four or two bytes by two bytes glving two byte result
SAVE 6502 registers (for reload or display)
RESTORE 6502 registers from save area (except S)

The addresses of these routines are in the table below. The user is
cautioned, however, to pay close attention to the descriptions of
Multiply and Divide on the next page with regard to scaling and signs.

Function Hex = *Dec -Dec Monitor Regs
Addr Addr Addr Label Destroyed
Multiply signed fields leaving FB60 64352 -1184 MULPM AX,Y
slgn in LSB of SIGN
Multiply fields unsigned FB63 64355 -1181 MUL AX,Y

51,50 * 55,54 = 53,52,51,50

Divide signed fields leaving sign FB8L 64385 -1151 DIVPM AX,Y
in SIGN LSB (from 51,55)

Divide unsigned fields FB84 64388 -1148 DIV AX,Y
53,52,51,50 / 55,54 = 51,50
Set absolute values for ACL,H FBA4 64420 -1116 MD1 AX,Y

and AUXL,H leaving resulting
sign in LSB of SIGN (called
by MULPM and DIVPM)

Move bytes in memory to (A4L,H) FE2C 65068 -468 MOVE A
from (A1L,H) thru (A2L,H)
(call with Y=0)

Increment pointer A4L,H and FCB4 64692 -844 NXTA4 A
Increment pointer A1L,H with set FCBA 64698 -838 NXTA1 A
of carry if resulting A1L,H
not less than AZL,H

Save 6502 regs A,X,Y,P,S at $45-49 FFLA 65354 -182 SAVE AX

Restore 6502 regs A,X,Y,P FF3F 65343 -193 RESTORE A,X,Y,P
from $45-48

ACC $45 AL H $3¢, 3D
XREG $46 A2L,H $3E, 3F
YREG $u7 ANL,H $42,43
STATUS (P reg) $48 ACL,H $50,51
SPNT (S reg) $49 XTNDL, H $52,53
AUXL,H $54,55

4

L Apple][Computer Technical Information Page 0035 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

DATA MANIPULATION FUNCTIONS

MULTIPLY routine

Set Multiplier in $55,$54 (MSB,LSB)

Set Multiplicand in $51,$50 (MSB,LSB)

Clear $52, $53 to zero.

Call/JSR FB60 or FB63 (-1184 or -1181) (MULPM or MUL) depending on sign
conventions/requirements,

Result, in order of significance most to least, is in $53, $52, $51, $50.
This result is positive. If one of the two inputs (but not both) was
negative, then SIGN (at $2F) contains an Ol bit, indicating that the
result should be complemented by the user program before further use.

Examples:

Called Inputs Output

routine $51 $50 $55 $54 $53 $52 $51 $50 $2F
MULPM 00 01 00 01 00 00 00 01 00

00 01 01 00 00 00 01 00 00
o4 00 08 00 00 20 00 00 00
FC 00 08 00 00 20 00 OO 01
FC 00 F8 00 00 20 00 OO 02
7F FF 7F FF 3F FF 00 01 00
80 00 02 00 01 00 00 00 01
80 00 80 00 LO 00 00 00 02

MUL 00 01 00 01 00 00 00 O1
00 01 01 00 00 00 01 00
o4 00 08 00 00 20 00 00

FC 00 08 00 07 EO 00 00
FC 00 F8 00 F4 20 00 00
00 FC 00 F8 00 00 F4 20

80 00 02 00 01 00 00 00
80 00 80 00 4LO 00 00 00
12 34 56 78 06 26 00 60

35

L Apple][Computer Technical Information Page 0036 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

DATA MANTPULATION FUNCTIONS
DIVIDE routine

This routine accomplishes the division of the number in bytes (most to
least significant) $53,52,51,50 by the number in bytes $55, 54,
leaving the quotient in $51,50 and remainder in $53,52.

If the contents of $53,52 is larger than the contents of $55,54 then
the result will not fit in the quotient bytes -~ overflow has resulted.

With regards to scaling, looking at the four byte dividend as an integer
value and the divisor in $55,54 as an integer, the quotient and remainder
fields are also integers.

Sign can be a problem if the DIVPM entry point is used. The sign Dbit
of the dividend is the $80 bit of byte $51. If the intended divide is
two bytes by two bytes (with $53,52 cleared before divide) then signed
fields division is supported, with the sign bit being the LSB of $2F.
If the call is to DIVPM, then if $2F contains $01 complement the result
before using it.

When using unsigned divide, entry point DIV, then the divide is a 32 bit
field by a 16 bit field with a 16 bit result.

Examples:

Called Inputs Outputs

Routine Dividend Divisor Quotient Remainder Sign
53 52 51 50 55 54 51 50 53 52 2F

DIVPM 00 40 00 00 08 00 08 00 00 00 00
00 00 00 08 00 04 00 02 00 00 00
00 01 00 00 00 02 80 00 00 00 00
00 00 00 03 00 02 00 01 00 01 00
00 00 30 00 02 00 00 18 00 00 00
00 00 30 00 20 00 00 01 10 00 00
00 00 33 33 00 22 01 81 00 11 00
00 10 40 00 04 00 o4 10 00 00 00
00 20 80 00 08 00 o4 10 00 00 01
00 20 82 00 08 00 Ok OF 06 00 [
00 10 41 00 0& 00 o4 10 01 00 00

DIV 00 80 00 00 80 00 01 00 00 00
00 00 80 00 08 00 00 10 00 00

36

L Apple][Computer Technical Information Page 0037 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SPEAKER (BELL) USE THROUGH THE MONITOR

There are many ways to use the speaker in the APPLE. One of these ways

is to signal program events. The Monitor contains a routine which supports
this use by toggling the speaker at 1 khz for .1 second. This is the "beep"
heard when the RESET key 1s pressed or at completion of a tape record read
or write.

The APPLE does not contain the only speaker in town. That is, some printers
which attach to the APPLE make a sound of some type when presented with the
BELL code.

There are two basic ways to call for the BELL from a user program. If it
is intended to sound the Bell in the APPLE regardless of output device
in use, then

CALL -1059 (or CALL 64477) or JSR FBDD expecting destruction of A,Y.

If it is intended to sound the alarm of the APPLE if screen is the print

device or speaker in the printer, whichever applicable, then
CALL -198 (or CALL 65338) or JSR FF3A expecting destruction of A-reg.

37

L Apple][Computer Technical Information Page 0038 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CASSETTE TAPE INPUT AND OUTPUT

There are two primary entry points in the Monitor with regard to reading and
writing tape. They are READ and WRITE. The requirements for call, etc. for
these are described below. There are a number of other routine entry points
which are used by the Monitor on bit and byte basis. These are described
below to the extent of location in the Monitor and indication of which APPLE
programs call them, but I do not have the specifications with regard to
timing between the calls. That is beyond the scope of this work,

As you will have found by now, some tape files are composed of one record, and
some of two records. For example, LOADing a BASIC program results in two beeps,
signaling the completions of the reads of two separate records from the tape.
The first of these records is two bytes long, and contains the length of the
second record. When the Monitor has satisfied BASIC's read of the first record,
BASIC uses the record length indicated in that record to tell the Monitor

the start and end points in memory to use for the second record. Each call

to READ or WRITE in the Monitor accomplishes only one record input or output.

APPLESOFT programs are also SAVEd as two record sets. However, the first
record 1s three bytes long; two bytes of length and one byte set to $55.

Some other programs write a longer (but fixed 1ength) first record containing
length of the second record and other information about it.

WRITE FECD 65229 -307

Before entry at this point, set the first byte address in A1L,H (3C,3D) and
the last byte address at AZL,H (3E,3F). The Monitor will write ten seconds
of continuous tone (header) followed by the contents of memory as specified,
followed by one byte of checksum (result of exclusive OR of all the bytes
written to the tape).

READ FEFD 65277 -259

Before entry at this point, set the first byte address into A1L,H (3C,3D) and
the last byte address at AZL,H (3E,3F). The Monitor reads the data from the
tape, storing it into memory in the specified locations, and maintaining

a running Exclusive OR result in the field called CHECKSUM ($2E). When the
last specified memory location has been filled from the tape, the Monitor
reads one more byte and compares it with the contents of CHECKSUM. If equal,
the Monitor sounds a beep and returns to calling program. If not equal,

the Monitor writes "ERR" through COUT (to the screen) before sounding the
beep and returning.

If it is desired to have the calling program determine whether the tape was
read successfully or not, then some special actions must be taken. One
method is to compare the contents of CH ($24) before the tape read with the
contents after. If they are equal, "ERR" was not written to the screen.

If cursor horizontal position (CH) has changed across the call to READ,
then ERR must have been written to the screen. If this condition is
encountered, the program can then ask the operator to try the tape read
operation again.

38

L Apple][Computer Technical Information Page 0039 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

CASSETTE TAPE INPUT AND OUTPUT continued

The following entry points / routines are described as to function, but
not documented for use. For some of them, timing is critical, and the
documentation for using them would depend on how they were to be used.

HEADR FCCo 64713 -823

This routine writes the synchronization monotone which is the first part
of every tape record. When the WRITE routine calls HEADR it loads a $40
into the A-reg causing a 10 second header to be written. The READ
routine also calls HEADR to delay from first detection of data coming
in from the tape to the first point at which reading for 0/1 detection
begins. This routine is not called by BASIC or APPLESOFT, but it is
called by the Programmer's Aid #1 Tape Verify routine.

RDZ2BIT FCFA 64762 -774

This routine causes looping with decrementing of Y-reg until the
hardware has indicated two transitions of the tape input register.
The routine RDBIT is called twice for this purpose. Contents of the
Y-reg on return compared with contents on entry indicate the length
of time it took for the transitions.

This routine is called from within the Monitor by the READ routine to
delay entering data transfer mode until tape input is available. READ
calls HEADR for the 3.5 second delay on return from its call to RDZBIT.
This routine is also called from APPLESOFT, and from Tape Verify and
Shape Table Load in the Programmer's Aid #1.

RDBIT FCFD 64765 -771

This routine loops with decrementing of the Y-reg while testing the
tape input register for change from zero to one or one to zero.

Bit value of zero or one is then determined from the residual count in
the Y-reg. This routine is called from within the Monitor routines
RD2BIT and READ. It is also called by Programmer's Aid #1 Tape Verify.

RDBYTE FCEC 6L748 -788

This routine has the obvious function of calling bit reading until
a byte is accumulated, and then returning to caller with the byte
in hand. In addition to being called from the Monitor READ routine,
it is also called by Shape Table Load.

WRBIT FCD6 64726 -810
This routine accomplishes writing a bit to the tape when called by
either the HEAIR routine or the WRBYTE routine.

WRBYTE FEED 65261 -275

When called to write a byte to the tape, this routine uses WRBIT to
write ten bits to the tape. The only caller I have found is WRITE
in the Monitor.

39

L Apple][Computer Technical Information Page 0040 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

MACHINE LANGUAGE PROGRAM DEVELOPMENT AIDS

There are many routines in the Monitor which can be helpful when developing

machine language programs.

finished program, like the Monitor MOVE routine possibly.

Some of these are routines to be used in the
The others

in this list are general, special, or very special screen output routines,

and some data manipulation routines.

FUNCTION Hex +Dec ~Dec Monitor Regs
Addr Addr Addr ILabel Destroyed
Write byte in A to screen at CV,CH FDED 65005 -531 COUT A
Print Carriage Return thru COUT FDBE 64910 -626 CROUT A
Print three blanks thru COUT FOU8 63816 -1720 PRBLNK AX
Print (X) blanks thru COUT FOLA 63818 -1718 PRBL2 AX
Print character in A followed by FOLC 63820 -1716 PRBL3 AX
(X)-1 blanks
Print BELL code thru COUT FF3A 65338 -198 BELL A
Print "ERR" and BELL thru COUT FF2D 65325 -211 PRERR A
Print low nibble of A as hex char FDE3 64995 -541 PRHEX A
Print A-reg as 2 hex nibbles FDDA 64986 -550 PRBYTE A
Print hex of Y,X regs FO40 63808 -1728 PRNTYX A
Print hex of A,X regs Fo41 63809 -1727 PRNTAX A
Print hex of X reg Fou4 63812 -1724 PRNTX A
Print CR, then hex of Y,X regs, FD96 64918 -618 PRYX2 A
then minus sign or dash
Print hex of Y,X regs, then dash FD99 64921 -615 A
Print CR, hex of A1H,AlL, and dash FD92 64914 -622 PRAL AX,Y
Print memory as hex with preceeding FDA3 64931 -605 XAM8 A (Y=0)
address from mmmm to mmm7 where
mmmm is contents of A1L,H on entry.
Print memory as hex from (A1L,H) FDB3 64947 -589 XAM A (Y=0)
to (A2L,H) inclusive.
Save A,X,Y,P,S regs at $45-49 FFUA 65354 -182 SAVE AX
Display registers with names from FAD? 64215 -1321 REGDSP ALX
$45-49 as SAVEd, with
preceeding carriage return.
Display regs as above without CR FADA 64218 -1318 RGDSP1 AX
Restore regs A,X,Y,P not S from $45 FF3F 65343 -193 RESTORE AX,Y,P
Restore regs (call RESTORE), then FEB9 65209 -327 AX,Y,P
JMP (PCL% to continue execution
Execute one instruction at (PCL,H) FA43 64067 -1469 STEP
with register restore before,
register save after,
update of PCL,H,
and display of instruction
and display of result regs.
Move memory contents to (A4L,H) FE2C 65068 -468 MOVE A (Y=0)
from (A1L,H) thru (A2L,H)
Compare memory contents (ALL,H) FE36 65078 -458 VFY A (Y=0)
to (A1L,H) thru (A2L,H), differences
are displayed.
Increment ALL,H ($42,43) and FCB4 64692 -8U4L NXTAL A
Inc A1L,H (3C,D), set carry if FCBA 64698 -838 NXTA1 A
A2L,H not less than A1L,H
40

L Apple][Computer Technical Information

Page 0041 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

PADDLES AND BUTTONS AND ANNUNCIATOR OUTPUT

The APPLE has a Game I/0 connector with hardware support for four digital
outputs, three digital inputs, and four analog inputs (called paddles).
The Monitor contains support for reading the paddles, which consists of
writing a strobe to start the paddle timer and then reading the paddle
timer of interest with incrementing of Y-reg until the paddle detector
comes true. The Monitor does not contain support for the digital outputs
or digital inputs. Access to the digital I/O ports is accomplished by
PEEKing or POKEing the appropriate address (or LDx or STx).

To use the Monitor support to read the setting of a paddle, call
PREAD at (FBIE, 64286, -1250) with Paddle number (0-3) in X-reg
and on return the "value" of the paddle will be found in the Y-reg.
The A-reg is destroued in the process.

Direct reading of the paddles may be accomplished by accessing the paddle
trigger and then reading the appropriate paddle input address repeatedly
while counting until the value read no longer has the $80 bit set.

Game I/0 Addresses Table

Start Paddle Timers CO70 49264 -16272

Paddle O timer CO64 49252 -16284 negative until
Paddle 1 timer C065 49253 -16283 timer

Paddle 2 timer C066 49254 -16282 expires
Paddle 3 timer C067 49255 -16281

Paddle O switch C061 49249 -16287 negative
Paddle 1 switch C062 49250 -16286 indicates
Paddle 2 switch C063 49251 -16285 button is pushed
Clear Annunciator 0 output C058 49240 -16296 POKE/STore

Set Annunciator 0 output C059 49241 -16295 zero to
Clear Annunciator 1 output CO5A 49242 -16294 appropriate
Set Annunciator 1 output CO5B 49243 -16293 address
Clear Annunciator 2 output CO5C 4o2ul -16292

Set Annunciator 2 output CO5D 49245 -16291

Clear Annunciator 3 output COSE 49246 -16290

Set Annunciator 3 output CO5F 49247 -16289

NOTE FOR PADDLE READ;
Rapid reading of a second paddle after a first paddle may produce
incorrect results. This caution comes from the APPLESOFT manual originally.

L1

L Apple][Computer Technical Information Page 0042 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

MISCELLANEOUS MONITOR SUPPORT

WAIT FCA8 64680 -856

A call to this routine will cause a loop for a predictable length of
time, such as is used by the Monitor with regards to using the speaker
as a Bell, It may be usable, for example, in writing data to a lower
speed device like a printer or typewriter.

My analysis of the code indicates that the time between the call WAIT
(JSR) and the end of the RTS of WAIT is
2.5A2 + 13,54 + 13 machine cycles of 1.023 microseconds.

The following table indicates delay times in the WAIT routine from a number
of values of A (the A-reg contents when WAIT is called).

A-reg Time in A-reg Time in
Decimal Seconds Decimal Seconds
1 .000029667 73 .014650383
2 .00005115 7L .01 5040146
3 .000077748 75 .01 5435024
: oootviags 83 019665129
Z 1000188232 86 .020116272
7 .00023529 96 024909027
8 000287463 97 025416435
9 +0003447 51 105 .0296 598139
17 .000987195 106 030213282
18 .001090518
b ousek 12 omeet
25 001956999
137 049907055
26 .002101242 138 050624478
31 .002899182
150 .059628624
3 +003074115 151 .06041 2242
36 003824997 ,
162 06936963
37 1004025505 163 .070214628
Z; '882?332?7 174 .079847196
4 '005813709 175 080753574
) 184 .0891411 51
ié .002260255 185 090098679
9 .00683057
195 099955284
50 +007097 574 196 .100969077
% omeiiase 2o 1109263561
55 1008509314 205 110323389
56 008807007 218 124566618
57 .00910981 5 219 125698056
gg :8832%3;?2 239 149400966
60 .010048929 250 :150639819
255 169836414

L2

L Apple][Computer Technical Information Page 0043 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

2000
2002
2004
2006
2008
200A

200C
200E
2010
2012
2014
2016
2019

201B
201D
201F
2021

2023
2025
2028
2024
202¢
202F
2031
2034
2036
2039
203C
203E
2040
2042

20Uk
2046
2048
2044
204C
204E
2050
2052
2055
2057
2059

03F8

LDA
STA
LDA
STA
LDA
STA

LDA
STA
LDA
STA
LDX
JSR
STY

DEC
BNE
DEC
BMI

LDX
JSR
STY
LDA
JSR
LDA
JSR
LDA
JSR
JSR
INC
BNE
INC
BNE

LDA
STA
STA
INC
BNE
INC
BNE
JSR
LDA
STA
BNE

JMP

#CO
L
3C
10
3D
11

10
12
11
13
#0
FBLE
0

12
201B
13
201B

#1
FB1E
1

0
FDDA
#A0
FDED

FDDA
FoL8

203C

200C
#0

20LA

204A
FC58
#CO

200C

2000

EXAMPLE USE OF CONTROL Y WITH PARAMETER.

In the APPLESOFT manual there is a caution that if one paddle is read,
another should not be read too quickly. Following is a machine language
program with which the interference between the paddles can be demonstrated.

Where X represetns control y, initiation of the program is by entry of
the Monltor command
xﬂ‘where xxxx represents the amount of delay to
use between reading paddle O and reading paddle 1.

set counter for number of samples to run
before clearing screen and starting over
pick up low part of entered count from A1L
and store it for repeated use

pick up high part of entered count from AlH
and store it for repeated use.

pick up low part of count
store it in counter for this pass
and the high part as well,

set X for paddle O read
call paddle read
store paddle zero value in zero

counting down delay loop

set X for paddle 1 read

call paddle read

store paddle 1 value in 1
pick up paddle zero reading
print as hex value

pick up a blank to print
print a blank

pick up paddle 1 reading
print hex of paddle 1 reading
print three blanks

delay to keep paddle 1 from upsetting pdl O,

is this all before we clear screen and restart?
NE means no, go back and sample again.

wait awhile before clearing screen.

clear the screen.
restore the per screen counter

and go one more big round.

43

L Apple][Computer Technical Information

Page 0044 of 0048

The Apple][Monitor Peeled « William E. Dougherty « 1979

SETTING REGISTERS FOR MONITOR CALLS FROM BASIC

Many of the entry points specified in this book require presetting of
registers for proper operation. Following 1s a sample program, written
for APPLESOFT, which uses Monitor calls for conversion from decimal to
hex.

The theory behind the operation is that on a Monitor G command, the
registers are loaded from the SAVE area before going to the location
specified in PCL,H. Thus, by poking destination address into PCL,H and
the required register contents into XREG, YREG, an entry point in the
Monitor Go command processor can be used to pass the registers to a
selected routine.

10 REM CONVERT DECIMAL INPUT TO HEX OUTPUT

100 INPUT "ENTER NUMBER ";A read the input

110 IF A=99999 THEN END provide a way to end the program.
150 C% = A / 256 isolate the high byte

200 POKE 71,C% set YREG for PRNTYX call

300 B% = A / 256 get remainder from A/256

310 B = B% * 256 for low byte (XREG) poke

320 B% = A - B

350 POKE 70,B%

400 POKE 59,249 set PCH to F9

500 POKE 58,64 set PCL to $40

550 PRINT space print

600 CALL 65209 entry point in GO processor is FEB9
650 PRINT a space

700 GOTO 100 around for another number.

Ly

L Apple][Computer Technical Information Page 0045 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

BRK INSTRUCTION PROCESSING

When the BRK instruction is executed the 6502 goes through an interrupt
procedure which is common with the Interrupt Line of the 6502, The
difference between the two is that the P bit $10 is set if a BRK instruction
was the cause of the interrupt.

On this type of interrupt the 6502 stacks the current program address and
the processor status byte. If the BRK lnstruction caused the interrupt,
the address stored in the stack is the address of the BRK instruction 2.

The 6502 then sets the program counter from memory locations FFFF,FFFE,
causing program execution to continue at the address specified in that
field. In the APPLE control is thereby transferred to the IRQ routine
at $FA86.

The first thing done in the IRQ routine is to save the A-reg by storing
i1t at ACC in the register SAVE area. It then pops the stack into A, and
pushes it back to restore the stack pointer. The result is that the
P-reg contents stored in the stack by the interrupt process is now in the
A-reg where it can be examined. The $10 bit is then tested to determine
whether the interrupt was caused by BRK instruction or tickling of the
Interrupt line.

If the indication is that the interrupt was not a BRK instruction, the
Monitor transfers control to the routine, the address of which the user
program must have previously stored at memory locations $3FE, 3FF.

The Monitor executes a JPI (BFE) to get to that routine.

If a BRK instruction is found to have caused the interrupt, control
goes to the BREAK routine at FA92. That routine restores the P-reg
from the stack, and then calls SAV1 to save all registers (for display)
except A-reg which had already been saved.

The instruction address from the stack is then placed in PCL,H for
display on the screen. Note that it is two bytes beyond the BRK which
interrupted the processor. The registers are then displayed from the SAVE
area, and control is transferred to the Monitor Command Processor.

NOTE that during STEP operations (Single cycle or Trace) the BRK

instruction is software detected and handled without an interrupt,
and with correct display of instruction and address.

ks

L Apple][Computer Technical Information Page 0046 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

SINGLE CYCLE AND TRACE PECULIARITIES

There are some instructions for which register display is incorrect
during STEP processing. The STEP routine detects and gives special
attention to JSR, RTS, JMP, JPI, RTI, and BRK instructions. In each
case, the register contents are displayed from the SAVE area at $45-49,
However, there is no SAVE call after "execution" of these instructions,
as there is for normally traced instructions, so the registers displayed
are those present in the save area before execution of this instruction.

Therefore, on JSR and RTS, the displayed contents of the S-reg is

incorrect. On the first instruction after a JSR or RTS the S-reg
displays correctly (unless it is a JSR or RTS).

PROGRAM TO PROGRAM CONTROL INFORMATION TRANSFER

Page zero is heavily used differently by different software products as
Integer BASIC, APPLESOFT, the Monitor. Sometimes it is desirable

to place a few bytes of data somewhere where it will survive across
program loads. As it happens, there are a few bytes available for

such use.

CAUTION: I UNDERSTAND THAT DOS USES SOME OF THESE but I don't know which.

There are 1024 bytes allocated to the primary text page, $400-7FF.
24 lines of 40 characters adds up to 960 bytes. There are 64 bytes
in that area which are not clobbered by text or plot or anything
else I can find (except DOS, as indicated above). The available
bytes are in eight groups of eight bytes.

Hex range Decimal range
478-47F 1144-1151
L4FB-L4FF 1272-1279
578-57F 1400-1407
5F8-5FF 1528-1535
678-67F 1656-1663
6F8-6FF 1784-1791
778-77F 1912-1919
7F8-7FF 2040-2047
—END —

L6

L Apple][Computer Technical Information Page 0047 of 0048)

The Apple][Monitor Peeled « William E. Dougherty « 1979

The Apple II MONITOR Peeled

The End

AEARRAR R

\\\\\\\\\\\\

Q222

P2
.....
e

iz

H
.o
O
.....
cimve o2°

JINithy

L

ccccc

O
'
'
lllll
U
R IR

PRI ,
ann

-y -
-

-
- e =

-
\&—

William E. Dougherty

May 1979

.......

L Apple][Computer Technical Information

Page 0048 of 0048)

